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Equations Modeling the Time

Evolution of a Process of

Preferential Attachment with

Fitness

Flavius Guiaş
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GENERALIZED BECKER-DÖRING EQUATIONS MODELING

THE TIME EVOLUTION OF A PROCESS OF PREFERENTIAL

ATTACHMENT WITH FITNESS

FLAVIUS GUIAŞ

Abstract. We introduce an infinite system of equations modeling the time
evolution of the growth process of a network. The nodes are characterized
by their degree k ∈ N and a fitness parameter f ∈ [0, h]. Every new node
which emerges becomes a fitness f ′ according to a given distribution P and
attaches to an existing node with fitness f and degree k at rate fAk , where
Ak are positive coefficients, growing sublinearly in k. If the parameter f takes
only one value, the dynamics of this process can be described by a variant
of the Becker-Döring equations, where the growth of the size of clusters of
size k occurs only with increment 1. In contrast to the established Becker-
Döring equations, the system considered here is nonconservative, since mass
(i.e. links) is continuously added. Nevertheless, it has the property of lin-
earity, which is a natural consequence of the process which is being modeled.
The purpose of this paper is to construct a solution of the system based on a
stochastic approximation algorithm, which allows also a numerical simulation
in order to get insight into its qualitative behaviour. In particular we show an-
alytically and numerically the property of Bose-Einstein condensation, which
was observed in the literature on random graphs.

1. Introduction

The growth process of random networks has been intensively studied in the
physics literature. It intends to model phenomena like the distribution of scientific
citations or the growth of the world wide web. The basic model which we are inter-
ested in is described in [7]. Every new node which appears attaches to an existing
one with degree k with probability proportional to Ak. By assuming a time scaling
which ensures a linear growth of the total mass of the system, a system of equations
for the number densities of nodes with degree k = 1, 2 . . . is derived. This turns
out to be convenient especially for studying the asymptotic behaviour as t → ∞.
However, as it will be pointed out later, if we are interested in the correct dynam-
ics over time, the growth will be exponential and the system of equations takes a
form similar to the Becker-Döring equations for pure coagulation, see [4]. These
equations decribe a cluster growth process which can occur only with increment 1,
i.e. the size of a cluster can grow form k to k+ 1 due to attachment of a monomer,
that is a particle of size 1. The equations considered in the mentioned reference are
mass-conserving and nonlinear, since the mass of monomers varies in time. Nev-
ertheless, it is pointed out that the original equations considered by Becker and
Döring in 1935 assumed a constant concentration of monomers, which made them
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linear. The same pattern can be observed in the growth of random networks, where
links are continuously added to the system. They take the form

d

dt
u1(t) = −A1u1 +

∞
∑

i=1

Aiui,

d

dt
uk(t) = −Akuk +Ak−1uk−1, k = 2, 3 . . .(1)

where uk(t) denotes the concentration of nodes with degree k at time t. These
equations stand for the correct time evolution of the model considered in [7].

If we think at concrete situations, this approach turns out to be unrealistic.
In [2] it is introduced a model of preferential attachement with fitness, which is
rigourously analyzed in [3]. The key assumption is that the rate of growth of a
node with degree k should not only be proportional to its “degree of popularity”
taken as Ak = k, but also to a certain “attractiveness” or “fitness’,’ which the node
gets at its birth according to a given distribution. In this way it can be ensured
that the degree of a node which is born later, but has higher fitness, can surpass in
the long run that of the nodes with larger degree which were already present before
its appearance.

The setting for this problem is the following. Consider a fitness distribution P
on the compact interval [0, h]. We may assume either that P is discrete, taking the
values fi, i = 1,∞ with 0 ≤ f1 < f2 < . . . fn < · · · < h with h = supi fi, or that
it has a density p(f) with respect to the Lebesgue measure such that p(f) > 0 on
(0, h). By denoting uk(t, f) the density of nodes with degree k and fitness f at time
t, one obtains the following system of equations:

d

dt
u1(t, f) = −fA1u1(t, f) + p(f)

∫ h

0

f ′

∞
∑

i=1

Aiui(t, f
′)df ′,

d

dt
uk(t, f) = −fAkuk(t, f) + fAk−1uk−1(t, f), k = 2, 3 . . .(2)

In the mentioned references the analysis of this growth process is performed
within the framework of random graphs, i.e. from the node perspective. The
following interesting behaviour was observed in [2] and proved in [3]: namely the
Bose-Einstein condensation, which means a “leak” of a macroscopic fraction of
links at h, the right end of the fitness interval. If Ak = k, this happens if the fitness
distribution P has an infinite support and satisfies the condition

(3) I(h) :=

∫ h

0

f

h− f
dP (f) < 1.

According to [3], an example in the absolutely continuous case is given by the
Beta(µ, ν)-distribution on [0, 1] with ν > µ+ 1, while for the discrete case one can
take fj = h − h/j for j ≥ 1 and P (fj) = j−θ/ζ(θ), where ζ(θ) =

∑

j≥1 j
−θ is

the Riemann zeta function. If one takes θ sufficiently large, e.g. θ > 3 (a more
precise estimate can be obtained numerically: θ > θ∗ ≈ 2.48) then condition (3)
holds true. This behaviour, which is similar to the phenomenon of gelation known
from coagulation processes, is caused by the appearance of clusters with larger
and larger fitness values. If the tail of the distribution P decays sufficiently fast
when approaching h, then we will have basically very few clusters with high fitness
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values, which concentrate most of the links of all nodes in that range. This structure
speeds up their growth process and in the long run a fraction of links “escapes” out
of the system. Depending on the profile of the fitness distribution one can observe
the following phenomena, which, using the terminlogy from [3] (inspired from the
economic growth according to the “market-fitness” of old and young companies),
can be described as follows:

• first-mover-advantage, which shows up for flat fitness distributions and
means that the links will be mostly concentrated at those fitness values
which were present at the initial moment.

• fit-get-richer, which means that most of the links will be concentrated in
nodes with high fitness values.

• innovation-pays-off, i.e. the Bose-Einstein condensation described before,
as an extreme case of the fit-get-richer phenomenon.

All mentioned references on this topic were concerned mainly with the long-
time behaviour of the network growth process and considered only discrete time
steps. The puropse of this paper is to introduce the equations (2) as a model for
the time-evolution of this process, which is done in Section 2. Our next aim is to
approximate them by a stochastic numerical scheme in order to get insight into the
qualitative behaviour of this model. This stochastic scheme is presented in Section
3. A relative compactness property of the approximating stochastic processes is
shown to hold for Ak ≤ Ck. This yields also existence results for the deterministic
system of equations in the cases Ak = o(k) or Ak = Ck and I(h) > 1, that is, in
absence of Bose-Einstein condensation and away from the limit case. In this latter
case the solution turns out ot be unique. In addition, we give interpret condition
(3) in the framework of the equations (2), showing that in this case we have indeed
a loss of mass. The results of the numerical simulations are presented in Section 4.

2. A model for the time dynamics of preferential attachment with

fitness

For a finite h > 0 denote I = [0, h] and let E = I × N. The set Cc(E) of
continuous real functions with compact support in E consists therefore of functions
of the type ψ = (ψk(·))k∈N with ψk continuous functions on I, such that ψk(·) ≡ 0
for k > n(ψ) (the maximal index k for which the component ψk(·) is nontrivial) .

Let further M+(E) be the set of positive Radon measures on E, which can be
identified with the space of positive linear forms on Cc(E). For an arbitrary measure
µ and a measurable function f we use the standard notation 〈µ, f〉 :=

∫

fdµ. Since
E is separable, following [1] we define on M+(E) the vague topology in which the
convergence is defined by

µn
v
→ µ⇔ 〈µn, f〉 → 〈µ, f〉, ∀f ∈ Cc(E).

By considering an appropriate countable and dense (with respect to uniform con-
vergence) set of functions φi ∈ Cc(E), i ∈ N, the vague topology is induced by the
metric

ρ(µ, ν) :=

∞
∑

i=1

ci(|〈µ, φ
i〉 − 〈ν, φi〉| ∧ 1).

In [1], p.240 it is considered ci = 2−i, but here we will take for technical reasons ci
with the property that Sρ =

∑

ci · (n(φi)‖φi‖∞ ∨ 1) <∞. The symbols ∧,∨ stand
as usual for min and max respectively and ‖ · ‖∞ for the sup-norm.
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We will define next the notion of a weak (or measure valued) solution of the
equation system modeling preferential attachment with fitness on the time interval
[0, T ], with T > 0 fixed. It is more relevant to have as components the link densities
in nodes of degree k and fitness f given by vk(t, f) := kuk(t, f). We then have:

d

dt
v1(t, f) = −fA1v1(t, f) + p(f)

∫ h

0

f ′

∞
∑

i=1

Ai
i
vi(t, f

′)df ′,

d

dt
vk(t, f) = −fAkvk(t, f) + fAk−1

k

k − 1
vk−1(t, f), k = 2, 3 . . .(4)

By multiplicating the integral form of the above differential equations with an
arbitrary test function ψ ∈ Cc(E) and integrating over E we note that we can
group terms in the form

fAkvk(t, f) · (−ψk(f)+
k + 1

k
ψk+1(f)) = f

Ak
k
vk(t, f) · (−kψk(f)+(k+1)ψk+1(f)).

Assume now that

(5) Ak ≤ Ck

for all k ∈ N, where C is a positive constant.
We say then that the time-dependent family of finite Radon measures µ(t) ∈

M+(E) is a solution of (4) on the time interval [0, T ], if for any ψ ∈ Cc(E) we have

〈µ(t), ψ〉 = 〈µ(0), ψ〉 +

∫ t

0

{

∞
∑

k=1

Ak
k

〈µk(s),−kψkidI + (k + 1)ψk+1idI〉 +

〈P, ψ1〉 ·

∞
∑

k=1

Ak
k

〈µk(s), idI〉
}

ds,(6)

for all t ∈ [0, T ], where µk(A) := µ({k} × A) for any Borel measurable subset A
of I and idI(f) = f denotes the identity function on I. Note that the first series
has in fact only a finite number of terms due to the compactness of the support of
ψ, while the second one can be majorized by C · h · µ(s)(E) < ∞, since µ(·) are
assumed to be finite measures on E.

In a condensed form the equation can be stated as

(7) 〈µ(t), ψ〉 = 〈µ(0), ψ〉 +

∫ t

0

〈µ(s), ψ̂〉ds,

for all ψ ∈ Cc(E), where ψ̂(k, f) = fAkk
−1[〈P, ψ1〉 − kψk(f) + (k + 1)ψk+1(f)].

Note that ψ̂ ∈ Cb(E), i.e. ψ̂ is continous and bounded, but in general ψ̂ 6∈ Cc(E).

3. A stochastic scheme approximating the deterministic equations

We will construct next a Markov jump process on the space of finitely supported
measures on E which describes the dynamics of preferential attachment with fitness.
Let µ =

∑

(k,f)m(k, f)δk,f be such a measure which describes the current state of

the process, where the pair (k, f) runs over the (finite) size/fitness combinations
where mass is concentrated. The possible transitions µ → µ′ of the process are
defined by

(8) µ→ µ+
1

N
δ1,f ′ −

k

N
δk,f +

k + 1

N
δk+1,f at rate N · p(f ′)df ′ · f ·

Ak
k
m(k, f).
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The interpretation is that a new node of size 1 and fitness f ′ is generated according
to the probability density p and attaches instantaneously to the existing nodes of
type (k, f) with probability proportional to fAkk

−1m(k, f). The factor N gives
the “resolution” of the model, N−1 stands for the smallest amount of density the
process can “see”, that is the mass of a node of size 1. By attachment of a new
node, the number of nodes of size k decreases with 1 and that of nodes of size k+1
increases with 1. Since the values of the weights of our discrete measure µ stand
for the link density, i.e. size×number density, the modifications after a transition
step take the form given above.

By Dynkin’s formula we have the martingale representation of the dynamics in
terms of the infinitesimal generator Λ:

Ψ(µ(t)) = Ψ(µ(0)) +

∫ t

0

(ΛΨ)(µ(s))ds +MΨ(t)

for all bounded continuous functions Ψ defined on M+(E), where MΨ(·) is a mar-
tingale with respect to the σ-algebra generated by the process.

By taking Ψ(µ) = 〈µ, ψ〉 for test functions ψ ∈ Cc(E) we have

(9) 〈µ(t), ψ〉 = 〈µ(0), ψ〉 +

∫ t

0

(ΛΨ)(µ(s))ds+Mψ(t).

The infinitesimal generator can be computed in this case by

(ΛΨ)(µ(t)) = λ(µ)

∫

M+(E)

(Ψ(µ′) − Ψ(µ))r(µ, dµ′)(10)

=

∫ h

0

∑

(k,f)

[ψ1(f
′) − kψk(f) + (k + 1)ψk+1(f)] · f ·

Ak
k

·m(k, f) · p(f ′)df ′

= 〈P, ψ1〉 ·
∑

k

Ak
k

〈µk(t), idI〉 +
∑

k

Ak
k

〈µk(t),−kψkidI + (k + 1)ψk+1idI〉

= 〈µ(t), ψ̂〉,

where r(µ, dµ′) = λ−1(µ) ·N ·
∑

(k,f) fAkk
−1m(k, f)p(f ′)df ′ is the transition kernel

corresponding to (8) and λ(µ) = N ·
∑

(k,f) fAkk
−1m(k, f) is the total rate. In

order to ensure that the jumps do not accumulate, the total rate function has to be
bounded. We achieve this by fixing a maximal time T > 0, considering a sufficiently
large constant a and introducing the stopping time τa := inf{t : µ(t)(E) ≥ a} ∧ T .
We will consider therefore the stopped process µ(t∧ τa) which belongs to the space
Ma

+(E) := {µ ∈ M+(E) : µ(E) ≤ a}.
For simplicity of the notation we have suppressed the dependence on N and

τa = τa(N), but the dynamics above define a family of stochastic processes indexed
by N , with values in D([0,∞),Ma

+(E)), that is the set of right continuous with left
limits, Ma

+(E)-valued functions defined on [0,∞). The appropriate convergence in
this space is defined by the Skorokhod topology, which is weaker than the topology
of uniform convergence and takes in account also the distance in time between the
jumps. For details see [5], p. 117.

We point out that Ma
+(E) is separable, being a subspace of the separable metric

space (M+(E), ρ). Furthermore, it is also complete: cf. [1], Lemma 30.3, if µn
v
→ µ

for finite measures µn, we then have µ(E) ≤ lim inf µn(E), which is ≤ a for µn ∈
Ma

+(E).
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We will show next a relative compactness property of this family, i.e. the prob-
ability distributions L(µNk

(·)) on the space D([0,∞),Ma
+(E)) of a subsequence

µNk
(·) converge weakly to the law of a limit process as N → ∞. Conditions under

which the weak limits solve equation (6) will be also given.
We first need some preliminaries. Define an upper bound M̄(t) for the total

mass process µ(t)(E) by

(11) M̄N (t) → M̄N (t) +
2

N
at rate NCh · M̄N(t).

Note that after a step in (8) the mass µN (t)(E) increases by 2/N . We define a
higher total rate for this transition step by considering only the maximal value for
the fitness, using the bound (5) of the growth coefficients and majorizing the sum
over the terms m(k, f) by the total mass M̄N itself. The process M̄N(t) delivers
therefore an upper bound for the increase of the total mass µN (t)(E). By standard
results of convergence towards solution of ODE’s ([5], Chapter 11) we have that
E[M̄N(t)] → M̄0 · exp(2Cht) as N → ∞, provided the convergence of the initial
condition to M̄0.

Proposition 1. Assume that the sequence µN (0)(E) of initial masses has a limit
for N → ∞. Then for every T ≥ 0 we have infN τa(N) → T a.s. for a→ ∞.

Proof. Using the majorant property of M̄N and the Markov inequality we have:

P (τa(N) = T ) = P (µN (T )(E) ≤ a) ≥ P (M̄N (T ) ≤ a) ≥ 1 −
E[M̄N (T )]

a

= 1 −
M̄0 · exp(2ChT ) + ε(N)

a
≥ 1 − ηa

for all N (since ε(N) → 0), with ηa → 0 as a → ∞. This proves the statement of
the proposition.

�

Lemma 1. For a given T > 0 there exists a family of random variables γN (θ), θ ∈
[0, 1], with supN E[γ(θ)] → 0 as θ → 0 such that

E[ρ(µN (t+ s), µN (t)) |FN
t ] ≤ E[γN (θ) |FN

t ]

for all 0 ≤ t ≤ T and 0 ≤ s ≤ θ, where FN
t is the σ-algebra generated by the process

µN (t).

Proof. For the sake of simplicity we suppress the index N . We then have:

E[ρ(µ(t+ s), µ(t)) |Ft] = E[
∑

i

ci(|〈µ(t+ s), φi〉 − 〈µ(t), φi〉| ∧ 1) |Ft]

≤ E[
∑

i

ci(

∣

∣

∣

∣

∫ t+s

t

(ΛΦi)(µ(τ))dτ

∣

∣

∣

∣

∧ 1 + |Mφi(t+ s) −Mφi(t)| ∧ 1) |Ft].

Taking into account the expression (10) of the infinitesimal generator and the stop-
ping property of the process we estimate further:

E[ρ(µ(t+ s), µ(t)) |Ft] ≤

≤ E[s · 3Cha
∑

i

ci · n(φi)‖φi‖∞ +
∑

i

ci(|Mφi(t+ s) −Mφi(t)| ∧ 1) |Ft]

≤ E[s · 3Cha · Sρ +
∑

i

ci(|Mφi(t+ s) −Mφi(t)| ∧ 1) |Ft] ≤ E[γ(θ) |Ft]
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for

γ(θ) = θ · 3Cha · Sρ + sup
0≤s≤θ

∑

i

ci|Mφi(t+ s) −Mφi(t)| ∧ 1 =: γ1(θ) + γ2(θ).

We only have to analyze the convergence of the second term. We have:

E[γ2(θ)] ≤ E[
∑

i

ci sup
0≤s≤θ

|Mφi(t+ s) −Mφi(t)|]

=
∑

i

ciE[ sup
0≤s≤θ

|Mφi(t+ s) −Mφi(t)|]

≤
∑

i

2ci
(

E[|Mφi(t+ θ) −Mφi(t)|2]
)1/2

.(12)

where in the last step we used Doob’s inequality for the martingale Mφi(t + s) −
Mφi(t) with respect to the variable s. The interchange of the expectation with the
infinite summation is possible due to [6], Theorem 9.2..

Using the martingale property we compute further:

E[|Mφi(t+ θ) −Mφi(t)|2 |Ft] = E[M2
φi(t+ θ) − 2Mφi(t+ θ)Mφi(t) +M2

φi(t) |Ft]

= E[M2
φi(t+ θ) |Ft] − 2Mφi(t)E[Mφi(t+ θ) |Ft] +M2

φi(t)

= E[M2
φi(t+ θ) |Ft] −M2

φi(t),

and therefore:

E[|Mφi(t+ θ) −Mφi(t)|2] = E[E[|Mφi(t+ θ) −Mφi(t)|2 |Ft]]

= E[E[M2
φi(t+ θ) |Ft] −M2

φi(t)] = E[M2
φi(t+ θ)] − E[M2

φi(t)].(13)

By standard techniques we have:

E[Mφi(t)2] = E[

∫ t

0

[Λ(Φi)2 − 2ΦiΛΦi](µ(s))ds]

= E[

∫ t

0

λ(µ(s))

∫

(Φi(µ′) − Φi(µ))2r(µ(s), dµ′)ds]

=
1

N
E[

∫ t

0

∫ h

0

∑

(k,l)

(φi1(f
′) − kφik(f) + (k + 1)φik+1(f))2 ·

·f ·
Ak
k

·m(k, f)p(f ′)df ′ds],(14)

while a similar formula can be computed for the second moment at t + θ. This
yields:

E[M2
φi(t+ θ)] − E[M2

φi(t)] =

=
1

N
E[

∫ t+θ

t

∫ h

0

∑

(k,l)

(φi1(f
′) − kφik(f) + (k + 1)φik+1(f))2 ·

·f ·
Ak
k

·m(k, f)p(f ′)df ′ds] ≤
1

N
θ · 3Cha · n2(φi) · ‖φi‖2

∞.

Inserting in (12) we obtain:

E[γ2(θ)] ≤
∑

i

2ci

√

3Cha · θ

N
· n(φi) · ‖φi‖∞ ≤ 2

√

3Cha · θ

N
· Sρ → 0
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as θ → 0 uniformly in N .
�

We can state now the convergence result of the constructed stochastic scheme.

Proposition 2. Assume that condition (5) holds and that the initial distributions
µN (0) of the family of stochastic processes given by the transitions (8) converge
in distribution to a finite measure µ̃0 on E. Then the family (µN (· ∧ τa))

∞
N=1

is relatively compact in D([0,∞),Ma
+(E)). Moreover, any weak limit µ̃(·) has

continuous paths a.s..

Proof. According to [1], Corollary 31.3., the set Ma
+(E) is vaguely compact. To-

gether with Lemma 1, this enables us to use Theorem 8.6. from [5], p.137 in order to
infer the relative compactness property. The transitions (8) imply that the distance
between two consecutive jumps can be estimated by

ρ(µ, µ′) =
1

N

∑

i

ci(|〈φ
i(f ′) − kφi(f) + (k + 1)φi(f)| ∧ 1) ≤

Sρ
N
.

We then have
∫ ∞

0

e−t[sup
s≤t

ρ(µ(s), µ(s−)) ∧ 1]dt ≤
Sρ
N

∫ ∞

0

e−tdt→ 0

as N → ∞. By using Theorem 10.2. from [5], p.148, we obtain that the paths of
the limit process, denoted by µ̃, are a.s. continuous. �

We will analyze next the behaviour of the limit processes.

Theorem 1. Assume that Ak = o(k) and convergence of initial conditions. Then
any weak limit µ̃(·) of the family of stochastic processes given by (8) solves equation
(6) on [0, τa], where P (τa = T ) → 1 as a→ ∞.

Proof. Denote the weakly convergent subsequence again with µN (·). This means
that we have E[F (µN )] → E[F (µ̃)] for all bounded and continuous functions F on
D([0,∞),Ma

+(E)). For ψ ∈ Cc(E) and t ∈ [0, T ] consider in particular

Fψ(µ) = 〈µ(t), ψ〉 − 〈µ(0), ψ〉 −

∫ t

0

〈µ(s), ψ̂〉ds,

where ψ̂(k, f) = fAkk
−1[〈P, ψ1〉 − kψk(f) + (k + 1)ψk+1(f)].

Taking into account that µ ∈ Ma
+(E), it is easy to see that Fψ is bounded.

According to [5], Proposition 5.2. on p.118, convergence in the Skorokhod space
implies pointwise convergence in all continuity points of the limit function. Since
our limit process has continuous paths a.s., we will replace on D([0,∞),Ma

+(E))
the Skorokhod topology with the topology associated to the pointwise convergence
and have to show that Fψ is continuous with respect to it. The continuity of the
part corresponding to the first two terms in the expression of Fψ is clear, since this
means nothing else than to say that if µn(·) → µ(·) pointwise in D([0,∞),Ma

+(E)),

then µn(t)
v
→ µ(t) for all t, i.e. 〈µn(t) − µ(t), ψ〉 → 0 for all t.

In a similar way we obtain pointwise convergence 〈µn(s), ψ̂2〉 → 〈µ(s), ψ̂2〉 for

ψ̂2(k, f) = fAkk
−1[−kψk(f) + (k + 1)ψk+1(f)], since ψ has compact support. For

ψ̂1(k, f) = fAkk
−1〈P, ψ1〉, due to Ak = o(k) we have ψ̂1 ∈ C0(E), which is the

space of continuous functions on E which vanish at infinity (defined as the closure

of Cc(E) in the sup-norm). Since µn(s)(E) ≤ a and µn(s)
v
→ µ(s), according to [1],
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Theorem 30.6., we have 〈µn(s), φ〉 → 〈µ(s), φ〉 for all φ ∈ C0(E). The continuity of
the integral term is obtained then by using the dominated convergence theorem.

Returning to our processes, we obtain therefore that E[|Fψ(µN )|] → E[|Fψ(µ̃)|]
or, equivalently, E[|MN

ψ (t)|] → E[|Fψ(µ̃)|], with MN
ψ the martingale given in (9).

By using the same steps as in the estimates for γ2 in the proof of Lemma 1, we
obtain that E[supt≤T |MN

ψ (t)|] → 0 as N → ∞, which implies that Fψ(µ̃)=0 a.s.,

for every ψ ∈ Cc(E).
In order to finish the proof, it remains to show that we can commute in the

above statement, that is, that we have Fψ(µ̃)=0 for every ψ ∈ Cc(E) a.s..
Note first that we can state that Fφi(µ̃)=0 for every i ∈ N a.s., for the functions

(φi)i∈N, which are dense in Cc(E) and were used for the construction of the vague
distance on M+(E). Let now ψ ∈ Cc(E) be arbitrary. Due to the construction of
the functions φi (see [1], p. 240), we can find a sequence (φin ) with n(φin) ≤ nmax
and ‖φin − ψ‖∞ → 0. The index nmax depends only on the function ψ. We have
now to show that Fφin (µ̃) → Fψ(µ̃). Using the approximation property of (φin) we

obtain immediately 〈µ̃(·), φin〉 → 〈µ̃(·), ψ〉.
We have next
∑

k

Akk
−1〈µ̃k(s), idI〉 · |〈P, ψ1〉 − 〈P, φin1 〉| ≤ ‖φin − ψ‖∞ · Ch · µ̃(s)(E) → 0

and
∑

k

Ak〈µ̃k(s), |ψk(·) − φink (·)|〉 ≤ Cnmax · ‖φ
in − ψ‖∞ · µ̃(s)(E)

≤ Cnmax · ‖φ
in − ψ‖∞ · a→ 0.

Applying now the dominated convergence theorem we obtain the desired statement.
Using Proposition 1 for estimating the stopping time τa we obtain the conclusion

of the theorem. �

The above proof can not be extended in a straightforward way to the case where

we have Ak = O(k). In order to obtain convergence of the terms 〈µn, ψ̂1〉 we would
need a stronger property, namely a convergence of the type 〈µn(t), ψ〉 → 〈µ(t), ψ〉
for all ψ ∈ Cb(E) (weak convergence). According to [1], Theorem 3.8., this is

implied by µn(t)
v
→ µ(t) and µn(t)(E) → µ(t)(E). That is, we need in addition a

mass conservation property which is not automatically ensured, since by the vague
convergence in the limit we may have a loss of mass, see [1], p.221.

In order to deal with this problem we will consider next only the case Ak = Ck.
Without loss of generality we may assume C = 1.

Let us make some formal considerations about equations (4) in this special case.
We will modify slightly the interval where the fitness values are defined. Namely, if

I(h) =

∫ h

0

f

h− f
dP (f) ≥ 1,

we obtain then by monotonicity arguments the existence of a h∗ ≥ h with I(h∗) = 1.
Note that if P has a finite support this is always the case. We extend then the
probability density to be 0 on (h, h∗]. If I(h) < 1 then we take h∗ = h.

Consider h′ ≥ h. We make the observation that for f ∈ [0, h′) we have

f

h′ − f
=

∞
∑

k=1

(

f

h′

)k

.
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Denote the total mass corresponding to the fitness f at time t by

m(t, f) =

∞
∑

k=1

vk(t, f)

and

Mk(t) :=

∫ h′

0

(

f

h′

)k

m(t, f)df.

By summing up equations (4) for Ak = k we obtain then

(15)
dm(t, f)

dt
= f ·m(t, f) + h′p(f)M1(t).

The equations for Mk are obtained by multiplying with (f/h′)k and integrating
with respect to f :

dMk(t)

dt
= h′[Mk+1(t) +M1(t)

∫ h′

0

(

f

h′

)k

p(f)df ].(16)

By summing up all these equations we obtain for

(17) M(t) =
∞
∑

k=1

Mk(t)

the following equation:

dM(t)

dt
= h′[M(t) −M1(t) +M1(t)

∫ h′

0

∞
∑

k=1

(

f

h′

)k

p(f)df ]

= h′[M(t) −M1(t) +M1(t)

∫ h′

0

f

h′ − f
p(f)df ]

= h′[M(t) + (I(h′) − 1)M1(t)].(18)

If I(h∗) = 1, then we have

(19)
dM(t)

dt
= h∗M(t),

while if I(h∗) < 1 then we can registrate the “loss of mass” due to the Bose-Einstein
condensation, since the series of normalized moments M(t) grows slower that the
expected exponential growth.

Note that if I(h) > 1 then we have a unique solution. Equation (18) holds in
fact for all h′ ≥ h, therefore also for h′ = h. Inserting (19) in (18) for h′ = h we
obtain

h∗M(t) = h[M(t) + (I(h) − 1)M1(t)]

and thus

M1(t) =
(h∗ − h)M(t)

I(h) − 1
.

Note that the quantities m(t, f), vk(t, f) depend in fact only on h, since p ≡ 0
on (h, h′] implies that we do not have mass concentrated at these fitness values.

h′M1(t) =
∫ h′

0 fm(t, f)df is therefore independent on h′ > h, depending only on
h. Inserting now hM1(t) in the first equation of (4), we obtain v1(t, f) in a unique
way. We insert then succesively the unique value of vk in the equation for vk+1 and
obtain that (4) has a unique solution.

The next theorem states the properties of the limit process in the case Ak = Ck.
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Theorem 2. Assume that Ak = Ck, convergence of initial conditions and I(h) > 1.
Then any weak limit µ̃(·) of the family of stochastic processes given by (8) solves
equation (6) on [0, τa], where P (τa = T ) → 1 as a→ ∞.

Proof. The lines of the proof are similar to Theorem 1. According to the previous
observations, in order to obtain the weak convergence property, we need to show
convergence of the total mass.

Define now the quantities M̃N(t) corresponding to the approximating jump pro-
cesses in a similar way to (17). Assume also that we are working directly with the
weakly convergent subsequence. We have then the transitions

M̃N → M̃N +N−1

(

f

h∗ − f
+

f ′

h∗ − f ′

)

at rate Np(f ′)df ′ · fmN(t, f),

where f ′ is the fitness of the new generated node, f runs over all (finite) fitness
values which are already present and mN (t, f) stands fot the total mass at fitness
f .

By Dynkin’s formula we obtain

M̃N(t) = M̃N (0) +

∫ t

0

∫ h∗

0

∫ h∗

0

(

f

h∗ − f
+

f ′

h∗ − f ′

)

p(f ′)df ′ · fmN(t, f)dfds+

+MN (t)

= M̃N (0) +

∫ t

0

h∗[M̃N (s) + (I(h∗) − 1)M̃1(s)]ds+ MN (t)

= M̃N (0) +

∫ t

0

h∗M̃N (s)ds+ MN (t),(20)

where MN(t) is the corresponding martingale for which we have

E[MN (t)2] =
1

N
E[

∫ t

0

∫ h∗

0

∫ h∗

0

(

f

h∗ − f
+

f ′

h∗ − f ′

)2

p(f ′)df ′ · fmN (t, f)dfds].

Now if I(h) > 1, then h∗ > h and we can bound the terms of the type f/(h∗ − f)
by a constant independent on f , since f takes values actually only in [0, h]. This
implies that E[MN (t)2] → 0 with the order N−1/2. We obtain then immediately

that supt≤T |M̃N (t) −M(t)| → 0 in mean square, where M is the solution of (19).
This means that in the limit all moments Mk, k ≥ 1 are conserved, therefore also
the total mass

M0(t) =

∫ h∗

0

m(t, f)df

which satisfies the equation

dM0(t)

dt
= 2h∗M1(t),

obtained also formally by summing up all equations in (4) and integrating w.r.t f .
This conservation property enables us to infer weak convergence and argue sim-

ilarly as in Theorem 1 in order to get the desired result.
�
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4. Numerical simulations

The basic setting which we consider is the following: define on [0, h] the fitness
values fj = h − h/j for j = 1,M and the probability distribution pj = P (fj) =

j−θ/ζM (θ), where ζM (θ) =
∑M

j=1 j
−θ. Consider only the case Ak = k, since this is

the most interesting one. As stated in the introduction, one can compute numeri-
cally a critical value θ∗ ≈ 2.48 such that I(h) < 1 for θ > θ∗.

We compare basically the numerical simulations for two values θ1 < θ∗ < θ2
which imply different regimes of our problem. Consider also h = 10 and M = 100.

We are interested to compute quantities like:

• m(t, fj): the total mass concetrated at fitness fj
• vk(t, fj): the mass of nodes of degree k and fitness fj
• structure of the mass spectrum at a given fitness value.

Note that in the case Ak = Ck we can in fact decouple the equations in a
very convenient way, which considerably speeds up the simulations. Namely, in the
equation for v1(t, f) for a given f are entering only the total massesm(t, fj) for all j.
Therefore we can allow to compute the dynamics of the total mass cf. (15) at several
fj’s, without destroying the full dynamics at the other fitness values. We basically
do the following thing: if the support size of the mass spectrum corresponding to a
given fitness becomes larger than a given bound, then we continue computing only
the total mass corresponding to that fitness value. In this way we still track the
complete mass spectrum at fitness values where we typically have one single large
cluster and a few other smaller clusters. This pattern is also a numerical indication
of the Bose-Einstein condensation, where a positive fraction of the total mass is
concentrated in a single large cluster.

Depending on the situation, we will plot the quantities either with respect to
the fitness index j = 1 . . .M , or with respect to the actual fitness value fj ∈ [0, h).
Note that in the distribution we considered we have in fact f1 = 0, so the nodes
with fitness f1 to not gather additional links, but they only attach to nodes with
larger fitness values. The values corresponding to f1 will be omitted from our plots.
Depending on the situation, we will consider the values N = 104, 105, 106, 107.

We will compare first the convergence properties of the numerical scheme for
θ1 = 1.5 and θ2 = 4 for the initial condition v1(0, f2) = 0.01 and 0 otherwise.

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

50

100

150

200

250

fitness value

to
ta

l m
as

s 

θ=1.5

 

 

N=104

N=105

N=106
t=1.0

t=0.8

t=0.9

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

5

10

15

20

25

30

35

40

45

50

fitness value

st
an

da
rd

 d
ev

ia
tio

n

θ=1.5, t=1.0

 

 

N=104

N=105

N=106

Figure 1. m(t, f): mean value and standard deviation for θ = 1.5, t ≤ 1
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Figure 2. m(t, f): mean value and standard deviation for θ = 4, t ≤ 1.8

The numerical values of the total mass (mean and standard deviation) obtained
over 20 independent realizations are plotted in Figures 1 and 2. The time intervals
were chosen such that the mass at the fitness value f2 (where the initial condition
was concentrated) should be approximatively equal in both cases, in order to have
the same basis of comparison. For having a better picture, the standard deviation is
plotted only at the maximal time. We note the clear convergence of the method for
θ1 = 1.5, while for θ2 = 4 the convergence is significantly slower and less uniform.
Only if we takeN = 107 we can observe a convergence behaviour also at large fitness
values. Note that the relative compactness property proved in Proposition 2 holds
for Ak ≤ Ck, but in this case, for Ak = k and I(h) < 1, we have no information
about the connection between the weak limits and the deterministic equation (4).
We do not know if the limit is deterministic at all and the convergence which shows
up only at a very high precision (N = 107) may be also due to the fact that from
the numerical point of view we can work only with finitely supported distributions,
for which we always have I(h) ≥ 1.
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Figure 3. Equilibrium of the components for θ = 4 (left picture) versus
continous increase for θ = 1.5 (right picture)

By plotting the mass concentrated at certain sizes we observe a different quali-
tative behaviour for the two values of θ. For θ = 4 we observe that the quantities
vk(t, f) increase up to a certain time tf and then remain constant. This is shown in
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the left picture from Figure 3 for v1 and v2. For θ = 1.5 we observe a completely dif-
ferent behaviour, namely a continuous increase of v1 (right picture). Note also the
significant discrepancy between the values of the component v1 itself, remembering
that both simulations started with the same initial condition and were stopped at
times such that the total mass at f2 had approximatively the same value (about
200). By taking N = 104 we were able to compute the same dynamics for θ = 1.5
up to the time t = 1.4, but even in this case the pattern did not change. Theoreti-
cally it is possible that equilibrium shows up at later times, which are beyond our
available computational possibilities, but the present numerical simulations show
nevertheless a different tendency.

Arrived at this point, let us make some comments about the computational limits
of the problem. Since the total rate is proportional to the total mass, which has
essentially an exponential growth, if we arrive at very large values the time steps
between the jumps become smaller and smaller. Therefore, giving a time increment
for saving the results of 0.1 as in our case, we always end up at a certain problem
time t∗ from which we never reach the next time step t∗ + 0.1 in an affordable
physical time, since the time distance between two consecutive jumps decreases
dramatically and the jumps tend to accumulate. This is the point T where we have
to stop the simulations. Note that this has nothing to do with the stopping time
τa introduced for technical reasons. a is a theoretical constant which we can take
arbitrarily large. We “stop” the process in the stochastic sense only if the value of
the total mass becomes dramatically larger than the expected value given by the
deterministic dynamics. Due to the light-tailed property of exponential distribution
of the waiting times between the jumps, such events are extremeley rare and in fact
do not show up for a normal number of simulations.

Our next numerical experiment has a different nature. Consider θ1 = 2.1 <
θ∗ < θ2 = 2.6 and as initial condition v1(0, f2) = 10−1, v1(0, f90) = 10−5 and 0
otherwise. We take N = 105. That is, we put a small amount of mass, equivalent
to only one numerical particle, at one of the large fitness values and a much larger
amount of mass at f2. The behaviour for the two parameters is shown in Figure 4.
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Figure 4. “First mover advantage” scenario for θ = 2.1 (left picture) versus
“fit-get-rich” scenario for θ = 2.6 (right picture)

We note that for θ < θ∗ the properties of the fitness distribution do not allow
that the mass remains concentrated at high fitness values and in fact the small



GENERALIZED BECKER-DÖRING EQUATIONS FOR PREFERENTIAL ATTACHMENT 15

fitness values will prevail. For θ > θ∗, even close to it like in our example, we notice
an opposite tendency, namely that the mass concentrated at higher fitness values
will prevail. For larger θ this phenomenon is certainly even more accentuated, as
we will see further.

Consider θ = 4 and take for the moment the same initial condition as in the first
numerical example. That is we take v1(0, f2) = 0.01, all other components being
0. Instead of running a larger number of independent simulations, we will present
only two runs, but computed up to a larger time, close to the computational limit
described before. Here we take again N = 105.
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Figure 5. Two computations of the total mass for θ = 4 and different

initial conditions: appearance of mass concentrations at large fitness values
(left picture) versus prevailance of mass at large fitness values (right picture)

Even if initially we had mass only at f2, in the left picture in Figure 5 at later
times we notice the appearance of significant mass concentrations at larger fitness
values. Note that the fitness index 10 corresponds to the actual fitness value of
9, in the interval [0, 10]. Since the values of the mass have become too large, we
cannot compute further. But, due to the linearity of the problem, we may “rescale”
the whole setting and consider an initial condition similar to that corresponding to
the simulations in Figure 4: a larger mass at small fitness values and a very small
mass at a large fitness value. The absolute values are not important. The results
are plotted in the right picture of Figure 5 and show the prevailance of the mass
concentrated at larger fitness values, where the initial “seed” has been placed. This
right plot is the equivalent to Figure 4, but for θ = 4. We see clearly that the
growth of the total mass at this large fitness value is even more accentuated.

A similar pattern can be observed in Figure 6, where we take as initial condition
v1(0, fi) = (10 · (i−1))−2 for i = 2, 4, 6, v1(0, f90) = 10−5 and 0 otherwise. We now
put some additional mass also at the larger fitness values f4 and f6, which is again
significantly larger than the mass placed initially at f90.

We note the four peaks corresponding to the fitness values where we have placed
the initial mass “seeds”. Their height is almost in an inverse relation to the initial
values of the mass: the peak at f90 is higher than those at f2 and f4 and on the
same level with that at f6, despite the initial proportions of the mass values.

We will show next a numerical indication of the Bose-Einstein condensation,
where a macroscopic amount of mass is concentrated in one single huge cluster.
Figure 7 shows the mass spectrum at the fitness values where the second moment
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Figure 6. The growth speed of the total mass is increasing with the fitness
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Figure 7. Numerical evidence for the “innovation-pays-off” scenario

in the left picture of Figure 5 is maximal. They correspond to the highest peak in the
picture (realization corresponding to the dotted line, f16 at t = 2.4 ), respectively
the peak at the right end of the picture (realization corresponding to the continuous
line, f41 at t = 2.7). In both cases almost all mass at the corresponding fitness
values is concentrated in a single huge cluster. The observed phenomenon is due
to the small probability of appearance of clusters with high fitness values. But,
once they appear, they become dominant in time. The “loss” of mass which can
be shown only theoretically occurs due to a continouos shift towards the right end
of the interval of peaks corresponding to large clusters like those presented above,
which in the long run always dominate the previous ones.
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5. Conclusions

In this paper we introduced an infinite system of equations of Becker-Döring type
which models the time dynamics of network growth in the context of preferential at-
tachment with fitness. We construct a stochastic scheme and give conditions under
which we obtain convergence to solutions of the system. In a special case, which is
the mostly treated in the literature on random graphs, we show uniqueness as well as
presence of Bose-Einstein condensation, which is consistent with the existing results
on asymptotic behaviour which disregard the exact time evolution. The equations
are linear, which on the one hand is an advantage for handling them. On the other
hand, in contrast to the usual Becker-Döring or general coagulation-fragmentation
equations, they are nonconservative, i.e. the total mass grows continuously. Exactly
this is the phenomenon which leads to the main difficulty, especially when trying
to prove the limit dynamics for the general case Ak = O(k). This is also the main
challenge for their numerical simulations, since a very large value of the total mass
implies that the time steps between two consecutive jumps become so small, that
in fact the jumps tend to accumulate and we can not afford to wait an arbitrarily
long (physical) time in order to perform computations on an arbitrary time inter-
val [0, T ] of the problem. The maximal possible T is practically prescribed by the
problem parameters and the computational resources. The mentioned difficulties
are therefore a challenge for future research in this direction.
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