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Abstract

We introduce a scalar product for n-dimensional copulas, based on the Sobolev
scalar product for W 1,2-functions. The corresponding norm has quite remarkable
properties and provides a new, geometric framework for copulas. We show that, in
the bivariate case, it measures invertibility properties of copulas with respect to the
∗-operation introduced by Darsow et al. (1992). The unique copula of minimal norm
is the null element for the ∗-operation, whereas the copulas of maximal norm are
precisely the invertible elements.
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1 Introduction

Let I be the closed unit interval [0,1]. For any integer n ≥ 2, an n-dimensional
copula (or n-copula) is a function C : In → I with the following properties:

(C1) C(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for all i = 1, . . . , n and for all xj ∈ I
with j = 1, . . . , i− 1, i + 1, . . . , n.

(C2) C(1, . . . , 1, xi, 1, . . . , 1) = xi for all i = 1, . . . , n and for all xi ∈ I.
(C3) C is n-increasing, i.e., for all B = ×n

i=1[ai, bi] ⊆ In we have

∑

v∈B

sgn(v) C(v) ≥ 0
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where the sum is taken over all vertices v = (v1, . . . , vn) of B, with
vi ∈ {ai, bi} for each i = 1, . . . , n, and sgn(v) is defined to be 1 if vi = ai

for an even number of i’s, and −1 otherwise.

Copulas were introduced by Sklar [14] for the investigation of how joint distri-
bution functions are related to their univariate margins. In particular, Sklar’s
theorem (see [12, 13, 14]) states that for all real valued random variables
X1, . . . , Xn with joint distribution function H and univariate margins F1, . . . , Fn

there exists a copula C such that

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (1)

If F1, . . . , Fn are all continuous, then C is unique and is called the copula of
X1, . . . , Xn; otherwise C is uniquely determined on Range F1×· · ·×Range Fn.
Conversely, given a copula C and univariate distribution functions F1, . . . , Fn,
then the function H defined by (1) is an n-dimensional distribution function
with univariate margins F1, . . . , Fn. It follows that copulas fully capture the
dependence structure of random variables, irrespective of their univariate dis-
tributions.

Further applications of copulas in probability theory arise from the fact that,
after an appropriate extension to Rn, every n-copula is an n-dimensional joint
distribution function with uniform margins on I. In fact, for n = 2, a cop-
ula is simply the joint distribution function of a doubly stochastic probability
measure defined on the Borel subsets of I2, thus there is a one-to-one corre-
spondence between these two concepts; see, e.g., [6, 8]. Furthermore, Brown [1]
showed that there is a one-to-one correspondence between Markov operators
on L∞(I) and doubly stochastic measures on the Borel subsets of I2, and
hence between Markov operators on L∞(I) and 2-copulas. In particular, Olsen
et al. [10] established an isomorphism between 2-copulas under the ∗-product
(see the definition below), and Markov operators on L∞(I) under composition.
This isomorphism has been exploited by Li et al. [7], who proposed another
type of convergence for 2-copulas. Finally, we mention the importance of cop-
ulas to the theory of probabilistic metric spaces and refer to [11, 12].

Copulas exhibit several nice analytic properties. In particular, copulas are
Lipschitz continuous functions from In to I with Lipschitz constant equal
to 1, which immediately implies that they are absolutely continuous in each
argument and their partial derivatives exist almost everywhere (a.e.). For ar-
bitrary n ≥ 2, let Cn denote the set of all n-dimensional copulas. The dif-
ferentiability properties of copulas imply that Cn is a subset of any Sobolev
space W 1,p(In,R) with p ∈ [1,∞]; see [4]. Moreover, Darsow et al. [3] introduce
a product operation on the set C2 of 2-dimensional copulas, given by

(A ∗B)(x, y) =
∫ 1

0
∂2A(x, t) ∂1B(t, y) dt
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where ∂iA, i = 1, 2, denotes the partial derivative of A with respect to the
i-th variable.

In this paper, we introduce a new structure for n-dimensional copulas, exploit-
ing the fact that the particular Sobolev space W 1,2(In,R) is a Hilbert space.
Namely, we show that

〈f, g〉 =
∫

In
∇f · ∇g dλ

defines a scalar product on the linear span of Cn with corresponding norm

‖f‖ =
( ∫

In
|∇f |2 dλ

)1/2

where · and | | denote, respectively, the Euclidean scalar product and norm
on Rn, and λ denotes the n-dimensional Lebesgue measure.

The existence of a scalar product yields a new, geometric way of looking at
copulas. In addition, for 2-copulas the scalar product admits a representation
via the ∗-product and, therefore, provides a link between their geometric and
algebraic properties. In particular, the set C2 has diameter 1 and lies in the

shell of radii
√

2/3 and 1. There is a unique copula of minimal norm, which is

the null element in (C2, ∗), whereas the copulas of maximal norm are precisely
those which are invertible with respect to the ∗-product. Thus, loosely speak-
ing, the Sobolev norm measures the “degree of invertibility” of 2-copulas. We
point out that, since copulas can be interpreted as dependence functions, the
above results also have a probabilistic counterpart.

Briefly, the paper is organized as follows. In Section 2 we collect some basic
properties of multivariate copulas. Section 3 introduces the scalar product for
n-copulas and its corresponding norm and distance. In Section 4, we deduce
fundamental geometric properties of the set of 2-copulas and relate them to
the algebraic structure given by the ∗-product. The final Section 5 addresses
issues concerned with the topology of the set of n-copulas.

2 Basic properties of copulas

We state here some key properties of copulas which we will need throughout.
These follow easily from the definition; for proofs, we refer to [2, 9, 12]. Recall
that, for n ≥ 2, Cn denotes the set of all n-copulas and ∂iC, i = 1, . . . , n,
denotes the partial derivative of C ∈ Cn with respect to the i-th variable.

Theorem 1 For any C ∈ Cn, the following statements are true:

(i) C is increasing in each argument.
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(ii) C is Lipschitz continuous and for all xi, yi ∈ I with i = 1, . . . , n,

|C(x1, . . . , xn)− C(y1, . . . , yn)| ≤
n∑

i=1

|xi − yi|. (2)

(iii) For each i = 1, . . . , n the partial derivative ∂iC(x1, . . . , xn) exists for all
xj ∈ I with j = 1, . . . , i − 1, i + 1, . . . , n, and for almost all xi ∈ I, and
satisfies

0 ≤ ∂iC(x1, . . . , xn) ≤ 1. (3)

Remark 2 Note that (ii) implies that a copula is absolutely continuous in
each argument, so that it can be recovered from any of its partial derivatives
by integration. Moreover, by (iii) we have ∂iC ∈ Lp(In,R) for all p ∈ [1,∞].

Furthermore, it can be shown that for any C ∈ Cn and for all (x1, . . . , xn) ∈ In

C−(x1, . . . , xn) ≤ C(x1, . . . , xn) ≤ C+(x1, . . . , xn) (4)

where C− and C+ are the so-called Fréchet-Hoeffding bounds given by

C−(x1, . . . , xn) = max(x1 + . . . + xn − n + 1, 0),

C+(x1, . . . , xn) = min(x1, . . . , xn).

The upper bound C+ is a copula itself for all n ≥ 2, whereas the lower bound
C− is a copula only for n = 2. Another distinguished copula is the product
copula

P (x1, . . . , xn) = x1 . . . xn.

Observe that for any copula C ∈ C2, it is possible to define a copula C> by

C>(x, y) = C(y, x), (5)

which is called the transposed copula of C. C is called symmetric if C = C>.

The set C2 of all 2-dimensional copulas is of particular interest since it carries
an algebraic structure, the so-called ∗-product introduced by Darsow et al. [3].
For any A,B ∈ C2 and x, y ∈ I, set

(A ∗B)(x, y) =
∫ 1

0
∂2A(x, t) ∂1B(t, y) dt. (6)

Theorem 3 For any A,B ∈ C2, A ∗B is in C2.
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In particular, Darsow et al. [3] show that (C2, ∗) is a monoid with P and C+

as null and unit element, respectively, since for any copula C ∈ C2 we have

P ∗ C = C ∗ P = P, (7)

C+ ∗ C = C ∗ C+ = C. (8)

In addition, by direct calculation, the ∗-product of C with C− is given by

(C− ∗ C)(x, y) = y − C(1− x, y),

(C ∗ C−)(x, y) = x− C(x, 1− y).
(9)

Concerning transpositions of copulas, note that P,C+, C− ∈ C2 are all sym-
metric and that

(A ∗B)> = B> ∗ A> (10)

for any A, B ∈ C2.

A copula C ∈ C2 is called left invertible if there is a copula A, called a left
inverse, such that A ∗ C = C+. It is right invertible if there is a copula A,
called a right inverse, such that C ∗ A = C+. A copula is called invertible if
it is both left and right invertible. Darsow et al. [3] show that these algebraic
properties can be translated into analytical ones.

Theorem 4 If they exist, left and right inverses of a copula C ∈ C2 are unique
and given by the transposed copula C>. Also, the following statements hold:

(i) C is left invertible if and only if for each y ∈ I, ∂1C(x, y) ∈ {0, 1} for
almost all x ∈ I.

(ii) C is right invertible if and only if for each x ∈ I, ∂2C(x, y) ∈ {0, 1} for
almost all y ∈ I.

The next result is established in Mikusiński et al. [8].

Theorem 5 Invertible copulas are L∞-dense in C2.

Remark 6 Theorem 5 implies that the ∗-product is not (jointly) continuous
under the uniform norm, as has been shown in [3]. Indeed, if it were, any
sequence of invertible copulas (Ck)k∈N with limk→∞ ‖Ck − P‖L∞ = 0 would
satisfy C>

k ∗ Ck = C+ for all k, so that, since limk→∞ ‖C>
k − P>‖L∞ = 0, P>

would be a left inverse for P , contradicting (7).

In view of Sklar’s theorem, the preceding results have interesting probabilistic
interpretations. Consider two continuous random variables X1 and X2 with
(unique) copula C. It is well-known that C = P if and only if X1 and X2 are
independent. Furthermore, Darsow et al. [3] show that C is left invertible if and
only if there is a Borel measurable function f such that X2 = f(X1) almost
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surely (a.s.). An analogous statement holds if C is right invertible, which
implies that C is invertible if and only if there is a Borel measurable bijection
f such that X2 = f(X1) a.s. Thus, Theorem 5 expresses the counterintuitive
fact that any type of stochastic dependence, in particular independence, can
be approximated uniformly by the dependence corresponding to an invertible
deterministic relationship.

3 The Sobolev scalar product for copulas

Recall that · and | | denote the Euclidean scalar product and norm on Rn, and
λ denotes the n-dimensional Lebesgue measure. It follows immediately from
Theorem 1, and has been noticed in [4], that

Cn ⊂ W 1,p(In,R)

for each p ∈ [1,∞], where W 1,p(In,R) is the standard Sobolev space. However,
it has not been exploited in this context that W 1,2(In,R) is a Hilbert space
with respect to the scalar product

〈f, g〉W 1,2 =
∫

In
fg dλ +

∫

In
∇f · ∇g dλ (11)

where ∇f denotes the vector consisting of the weak partial derivatives of f .
We refer to [5] for more details.

In fact, there is an even simpler way to define a scalar product for copulas.
Let span(Cn) denote the vector space generated by Cn. Obviously, span(Cn) is
a subset of W 1,2(In,R). For f, g ∈ span(Cn), set

〈f, g〉 =
∫

In
∇f · ∇g dλ, (12)

‖f‖ =
( ∫

In
|∇f |2 dλ

)1/2

, (13)

d(f, g) =
( ∫

In
|∇f −∇g|2 dλ

)1/2

. (14)

Proposition 7 〈 , 〉, ‖ ‖ and d define, respectively, a scalar product, a norm
and a metric on span(Cn).

PROOF. We need only prove the first statement. Obviously, 〈 , 〉 is a sym-
metric bilinear form. If 〈f, f〉 = 0 then ∇f = 0 a.e. which, in view of Remark 2
and f(0) = 0, implies that f = 0. Therefore, 〈 , 〉 is nondegenerate. 2
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Thus, with a slight abuse of notation (because Cn is not a vector space itself),
we can make the following definition.

Definition 8 The restrictions of 〈 , 〉, ‖ ‖ and d to Cn are called the Sobolev
scalar product, the Sobolev norm and the Sobolev distance function on Cn,
respectively.

Remark 9 (i) Darsow and Olsen [4] show that (C2, d) is a complete metric
space and the ∗-product on C2 is (jointly) continuous with respect to d.

(ii) The Sobolev norm ‖ ‖ is reminiscent of the classical energy functional,
which is well known in PDEs and differential geometry. In fact,

E(C) =
1

2
‖C‖2 =

1

2

∫

In
|∇C|2 dλ

may be called the energy of a copula C ∈ Cn.

We have seen that the Sobolev scalar product for copulas appears naturally
from an analytical perspective. Moreover, it also allows a representation via
the algebraic structure of C2, given by the ∗-product defined in (6).

Theorem 10 For all A,B ∈ C2, we have

〈A,B〉 =
∫ 1

0
(A> ∗B + A ∗B>)(t, t) dt

=
∫ 1

0
(A> ∗B + B ∗ A>)(t, t) dt.

PROOF. The partial derivatives of the transposed copula are given by

∂1A
>(x, y) = ∂2A(y, x),

∂2A
>(x, y) = ∂1A(y, x).

(15)

Using (15) and (6) we can write

∫ 1

0

∫ 1

0
∂1A(x, y) ∂1B(x, y) dx dy =

∫ 1

0

( ∫ 1

0
∂2A

>(y, x) ∂1B(x, y) dx
)
dy

=
∫ 1

0
(A> ∗B)(y, y) dy

∫ 1

0

∫ 1

0
∂2A(x, y) ∂2B(x, y) dx dy =

∫ 1

0

( ∫ 1

0
∂2A(x, y) ∂1B

>(y, x) dy
)
dx

=
∫ 1

0
(A ∗B>)(x, x) dx.

Adding up both terms we obtain the first identity. The second one follows from
the fact that along the diagonal we have (A ∗ B>)(t, t) = (A ∗ B>)>(t, t) =
(B ∗ A>)(t, t) for each t ∈ I. 2
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Corollary 11 If A, B ∈ C2 are symmetric, then

〈A,B〉 = 2
∫ 1

0
(A ∗B)(t, t) dt.

4 The Sobolev geometry of C2

This section deals with the geometric properties of the set C2 of all 2-dimensional
copulas. We begin with a representation of the Sobolev scalar product for the
three distinguished copulas P,C+ and C− defined in Section 2.

Theorem 12 For all C ∈ C2, we have

〈P, C〉 =
2

3
, (16)

〈C+, C〉 = 2
∫ 1

0
C(t, t) dt, (17)

〈C−, C〉 = 1− 2
∫ 1

0
C(t, 1− t) dt. (18)

PROOF. Since P is symmetric, Theorem 10 and (7) imply that

〈P,C〉 =
∫ 1

0
(P ∗ C + C ∗ P )(t, t) dt = 2

∫ 1

0
P (t, t) dt =

2

3
.

(17) and (18) are shown analogously using (8) and (9), respectively. 2

Corollary 13 For all C ∈ C2, we have

〈C − P, P 〉 = 0, (19)

‖C − P‖2 = ‖C‖2 − 2

3
. (20)

PROOF. Equation (19) follows immediately from (16), while (20) is a con-
sequence of (16) in connection with the identity

d(A,B)2 = ‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2 〈A,B〉. 2 (21)

Theorem 14 For any A,B in C2, we have

1

2
≤ 〈A,B〉 ≤ 1

where both bounds are sharp. Moreover, 〈A,B〉 = 1 if and only if A = B and
‖A‖ = ‖B‖ = 1.
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PROOF. Theorems 3 and 10, together with (4), imply

2
∫ 1

0
C−(t, t) dt ≤ 〈A,B〉 ≤ 2

∫ 1

0
C+(t, t) dt.

Simple calculations yield
∫ 1
0 C−(t, t) dt = 1/4 and

∫ 1
0 C+(t, t) dt = 1/2. Fur-

thermore, using Theorem 12 one easily computes that

〈C−, C−〉 = 〈C+, C+〉 = 1 and 〈C−, C+〉 =
1

2
. (22)

This shows that the bounds in the statement are sharp. Finally, since we have
‖A‖2 = 〈A,A〉 ≤ 1, the last statement is a consequence of (21). 2

Corollary 15 The diameter of (C2, d) is 1; in particular, d(C−, C+) = 1.
Moreover, d(A,B) = 1 if and only if 〈A,B〉 = 1/2 and ‖A‖ = ‖B‖ = 1.

PROOF. It follows immediately from equation (21) and Theorem 14 that
d(A,B) ≤ 1 for all A,B ∈ C2. The equality d(C−, C+) = 1 follows from (21)
and (22). The last statement follows again from (21) and Theorem 14. 2

Remark 16 We point out that C− and C+ are not the only copulas realizing
the lower bound 1/2 of the Sobolev scalar product in Theorem 14. For instance,
by (17), any B ∈ C2 with B(t, t) = C−(t, t) for t ∈ I yields 〈C+, B〉 = 1/2.
An example of a copula B 6= C− with this property is given by

B(x, y) =





min(x, y − 1/2) if (x, y) ∈ [0, 1/2]× [1/2, 1],

min(x− 1/2, y) if (x, y) ∈ [1/2, 1]× [0, 1/2],

C−(x, y) otherwise.

In addition, by direct calculation, we obtain ‖B‖ = 1 and thus, in view of
Corollary 15, d(C+, B) = 1. Hence C− and C+ are also not the only copulas
realizing the diameter of C2.

Proposition 17 The transposition map C 7→ C> is an isometry on the met-
ric space (C2, d). Furthermore, for every C ∈ C2 we have

‖C‖2 ≥ 2
∫ 1

0
(C ∗ C)(t, t) dt,

with equality if and only if C is symmetric.
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PROOF. The fact that ‖C‖ = ‖C>‖ follows from (13) and (15). Using (21),
Theorem 10 and C> ∗ C> = (C ∗ C)>, we can therefore write

0 ≤ ‖C − C>‖2

= ‖C‖2 + ‖C>‖2 − 2〈C, C>〉
= 2

(
‖C‖2 −

∫ 1

0
((C ∗ C)> + (C ∗ C))(t, t) dt

)

= 2
(
‖C‖2 − 2

∫ 1

0
(C ∗ C)(t, t) dt

)

from which the second assertion follows. 2

The next theorem is one of the main results of the paper. It describes funda-
mental features of the Sobolev norm on C2, and shows that the norm detects
algebraic properties of 2-dimensional copulas. Loosely speaking, the Sobolev
norm measures the “degree of invertibility” of 2-copulas.

Theorem 18 For all C ∈ C2, the Sobolev norm on C2 satisfies

2

3
≤ ‖C‖2 ≤ 1.

Moreover, the following assertions hold:

(i) ‖C‖2 = 2/3 if and only if C = P .
(ii) ‖C‖2 ∈ (5/6, 1] if C is left or right invertible.
(iii) ‖C‖2 = 1 if and only if C is invertible.

PROOF. The fact that 2/3 ≤ ‖C‖2 ≤ 1 follows immediately from (20) and
Theorem 14. Statement (i) is also a consequence of (20). As for (ii), we have

‖C‖2 =
∫ 1

0

∫ 1

0
(∂1C(x, y))2 dx dy +

∫ 1

0

∫ 1

0
(∂2C(x, y))2 dx dy. (23)

If C is left invertible we know from Theorem 4 that (∂1C)2 = ∂1C a.e., so the
first summand in (23) is equal to

∫ 1

0

∫ 1

0
∂1C(x, y) dx dy =

∫ 1

0
y dy =

1

2
.
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To estimate the second term in (23), consider the inequality

0 ≤
∫ 1

0

∫ 1

0
(∂2C(x, y)− x)2 dx dy

=
∫ 1

0

∫ 1

0
(∂2C(x, y))2 dx dy − 2

∫ 1

0
x

∫ 1

0
∂2C(x, y) dy dx +

∫ 1

0

∫ 1

0
x2 dx dy

=
∫ 1

0

∫ 1

0
(∂2C(x, y))2 dx dy − 1

3
.

Hence, the second term in (23) is at least 1/3, which proves ‖C‖2 ≥ 5/6.
Equality holds if and only if ∂2C(x, y) = x a.e. which, by Remark 2, is equiv-
alent to C = P . But this contradicts the assumption that C is left invertible,
so ‖C‖2 > 5/6. Analogous arguments hold for right invertible copulas. This
proves statement (ii).

Finally, by (3) we have (∂iC)2 ≤ ∂iC for i = 1, 2, with equality if and only if
∂iC ∈ {0, 1}. Consequently, (23) implies that

‖C‖2 ≤
∫ 1

0

∫ 1

0
∂1C(x, y) dx dy +

∫ 1

0

∫ 1

0
∂2C(x, y) dx dy =

1

2
+

1

2
= 1

with equality if and only if ∂1C, ∂2C ∈ {0, 1} a.e. In view of Theorem 4, this
is equivalent to C being invertible. 2

Remark 19 The inverse implication in Theorem 18 (ii) is not true. For ex-
ample, the copula C = αC+ + (1 − α)C− with α ∈ (0, 1) is, by Theorem 4,
neither right nor left invertible, and ‖C‖2 = 1− α(1− α) converges to 1 as α
tends to 0 or 1.

Corollary 20 For any C ∈ C2, the following are equivalent:

(i) C is invertible, i.e., C ∗ C> = C> ∗ C = C+.
(ii) ∂1C, ∂2C ∈ {0, 1} a.e.
(iii)

∫ 1
0 (C ∗ C> + C> ∗ C)(t, t) dt = 1.

(iv) ‖C‖ = 1.

PROOF. See Theorems 4, 10 and 18. 2

In summary, the Sobolev scalar product yields the following geometric picture
for the set C2 of 2-dimensional copulas. First of all, C2 has diameter 1 and lies

in the shell of radii
√

2/3 and 1. The unique copula of minimal norm is the
product copula P , whereas the copulas of maximal norm are precisely those
which are invertible with respect to the ∗-product. In between, the copulas

which are left or right invertible are contained in the shell of radii
√

5/6 and 1;
however, it is an open question whether the lower bound is sharp. Furthermore,
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C2 is contained in the affine hyperplane through P perpendicular to P . Since
copulas satisfy certain boundary conditions (see Section 1), any ray in the
vector space span(Cn) emanating from the origin intersects C2 in at most
one point. Finally, we point out that, in view of the discussion at the end of
Section 2, the above results also have a probabilistic counterpart.

5 The Sobolev topology of Cn

We conclude the paper with some results concerning the topology induced by
the Sobolev norm ‖ ‖ on span(Cn). Recall from (11) that the standard Sobolev
norm ‖ ‖W 1,2 is given by

‖f‖2
W 1,2 = ‖f‖2

L2 + ‖∇f‖2
L2 = ‖f‖2

L2 + ‖f‖2.

Proposition 21 The norms ‖ ‖ and ‖ ‖W 1,2 are equivalent on span(Cn).

PROOF. Let f be a function in span(Cn). Trivially, we have ‖f‖ ≤ ‖f‖W 1,2 .
In order to prove the proposition, we will show that

‖f‖2
L2 ≤ 1

2
‖∇f‖2

L2 =
1

2
‖f‖2 (24)

which is a version of Poincaré’s inequality, yielding ‖f‖2
W 1,2 ≤ 3/2 ‖f‖2. In-

deed, in view of Remark 2, we can write

|f(x)| =
∣∣∣∣
∫ xn

0

∂f

∂xn

(x′, t) dt

∣∣∣∣ ≤ x1/2
n

( ∫ xn

0

∣∣∣ ∂f

∂xn

(x′, t)
∣∣∣
2
dt

)1/2

by Hölder’s inequality where x = (x′, xn) ∈ In = In−1 × I. Therefore,

‖f‖2
L2 =

∫

In
|f(x)|2 dx

≤
∫

In
xn

( ∫ 1

0

∣∣∣ ∂f

∂xn

(x′, t)
∣∣∣
2
dt

)
dx

≤
∫

In−1

( ∫ 1

0
xn dxn

∫ 1

0
|∇f(x′, t)|2 dt

)
dx′

=
1

2

∫

In
|∇f(x)|2 dx

=
1

2
‖∇f‖2

L2 .

This proves (24) and, hence, the proposition. 2

Recall from Theorem 5 that any 2-copula can be L∞-approximated by an
invertible copula. Probabilistically, this implies that, in the L∞-topology, in-
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vertible functional dependence cannot be distinguished from any other type
of stochastic dependence, including independence. The next result shows that
the Sobolev norm resolves this somewhat paradoxical phenomenon.

Theorem 22 If (Ck)k∈N is a sequence of left invertible copulas in C2 with

lim
k→∞

‖Ck − C‖ = 0

for some C ∈ span(C2), then C is in C2 and is left invertible. Analogous
statements hold for right invertible and invertible copulas.

PROOF. By Remark 9, the Sobolev limit of a sequence of copulas is a copula
and the ∗-product on C2 is (jointly) continuous with respect to d. Moreover,
limk→∞ ‖Ck −C‖ = 0 implies limk→∞ ‖C>

k −C>‖ = 0. Thus, if each Ck is left
invertible, then

C> ∗ C = lim
k→∞

C>
k ∗ lim

k→∞
Ck = lim

k→∞
(C>

k ∗ Ck) = C+,

which proves that C is left invertible. The case where each Ck is right invertible
is shown analogously. Thus, it follows that the Sobolev limit of a sequence of
invertible copulas is again an invertible copula. 2

Remark 23 Note that the above proof does not really refer to the Sobolev
norm. In fact, the statement of Theorem 22 holds for any metric on C2 under
which C2 is closed and the ∗-product, as well as the transposition map, are
continuous.

Theorem 24 On each Cn, Sobolev convergence implies L∞-convergence; how-
ever, the converse is not true.

PROOF. In view of Poincaré’s inequality (24), Sobolev convergence implies
L2-convergence on each Cn. Since, by (2), all functions in Cn are Lipschitz
continuous with Lipschitz constant 1, it is readily verified that L2-convergence
implies L∞-convergence.

For the proof that the converse implication is not true let (Ak)k∈N be a se-
quence of invertible copulas in C2 with limk→∞ ‖Ak−P‖L∞ = 0; by Theorem 5,
(Ak)k∈N exists. (Note that here and in the sequel the dimension of the product
copula P corresponds to the dimension of the respective sequence.) On the
other hand, by (20) and Theorem 18 (iii), we have

‖Ak − P‖2 =
1

3
(25)

13



for all k, so limk→∞ ‖Ak − P‖ = 1/
√

3 6= 0. In higher dimensions, define for
each k a function Bk : In → I by Bk(x1, . . . , xn) = Ak(x1, x2)x3 . . . xn. Then
Bk ∈ Cn (see [9, Thm. 3.5.3]) and limk→∞ ‖Bk − P‖L∞ = 0 since for each k

‖Bk − P‖L∞ = sup
x1,...,xn∈I

|Ak(x1, x2)− x1x2|x3 . . . xn ≤ ‖Ak − P‖L∞ .

However, we show that (Bk)k∈N does not converge to P with respect to the
Sobolev norm ‖ ‖. Indeed, an easy calculation yields

‖Bk − P‖2 =
2∑

i=1

∫

In
(∂iBk − ∂iP )2 dλ +

n∑

j=3

∫

In
(∂jBk − ∂jP )2 dλ (26)

=
1

3n−2
‖Ak − P‖2 +

n− 2

3n−3
‖Ak − P‖2

L2 . (27)

Now observe that for any L∞-function f on In with ‖f‖L∞ ≤ 1 we have

‖f‖p
Lp =

∫

In
|f |p dλ ≤

∫

In
‖f‖p

L∞ dλ ≤
∫

In
‖f‖L∞ dλ = ‖f‖L∞ .

Therefore, ‖Ak−P‖2
L2 ≤ ‖Ak−P‖L∞ , which shows that the second term in (27)

goes to zero. By (25), we conclude that limk→∞ ‖Bk−P‖2 = 1/3n−1 6= 0, which
completes the proof. 2
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[6] A. Kamiński, P. Mikusiński, H. Sherwood, and M. D. Taylor. Doubly

stochastic measures, topology, and latticework hairpins. J. Math. Analysis
Appl., 152(1):252–268, 1990.
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