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Abstract

Two random variables X and Y are mutually completely dependent (m.c.d.) if
there is a measurable bijection f with P(Y = f(X)) = 1. For continuous X and Y,
a natural approach to constructing a measure of dependence is via the distance
between the copula of X and Y and the independence copula. We show that this
approach depends crucially on the choice of the distance function. For example,
the LP-distances, suggested by Schweizer and Wolff, cannot generate a measure of
(mutual complete) dependence, since every copula is the uniform limit of copulas
linking m.c.d. variables.

Instead, we propose to use a modified Sobolev norm, with respect to which,
mutual complete dependence cannot approximate any other kind of dependence.
This Sobolev norm yields the first nonparametric measure of dependence capturing
precisely the two extremes of dependence, i.e., it equals 0 if and only if X and Y
are independent, and 1 if and only if X and Y are m.c.d.

Key words: Measure of dependence, Mutual complete dependence, Copula,
Sobolev norm
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1 Introduction

Let X and Y be two random variables on a common probability space. Y is
defined [8] to be completely dependent on X if there exists a Borel measurable
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function f such that
PY = f(X)) =1 (1)

X and Y are called mutually completely dependent (m.c.d.) if Y is completely
dependent on X, and X is completely dependent on Y. In other words, X and
Y are m.c.d. if and only if there is a Borel measurable bijection f satisfying (1).

Stochastic independence and mutual complete dependence are exactly oppo-
site in character. The former case entails complete unpredictability of either
random variable from the other, whereas the latter corresponds to complete
predictability. Therefore, we claim that a measure of dependence for X and Y
should measure the strength of mutual complete dependence with extreme
values satisfying the following: (i) the measure equals 0 if and only if X and Y’
are independent, and (ii) it equals 1 if and only if X and Y are m.c.d.

On analyzing the implications of these requirements, several things become
apparent. In particular, choosing [0, 1], as the range of values, suggests that
such indices aim at measuring the degree of functional relationship between
two random variables rather than their concordance. The latter property can
be assessed by a measure of concordance, e.g., Spearman’s p and Kendall’s 7.
This concept was developed by Scarsini [13] and discussed, e.g., in [6, 11].

Condition (i) hints at the construction of a measure of dependence, in terms
of a metrical distance or, in a broad sense, dissimilarity between the joint
distribution and the distribution representing independence. Indeed, there is
an extensive literature on measures of dependence based on this idea. We refer
to [4, 5,9, 12, 18] and the references therein for an exhaustive list. If X and Y
have continuous marginal distributions functions F'x and Fy, respectively, and
joint distribution function Fx y, the approach can also be applied to the joint
distribution of the probability integral transformations Fx(X) and Fy(Y),
given by the copula of X and Y. In this case, by Sklar’s theorem [15], there
exists a unique copula C' such that

Fxy(z,y) = C(Fx(x), Fy(y)). (2)

This modified approach for the construction of a measure of dependence, intro-
duced by Schweizer and Wolff [14] (see also [3]), has two important advantages.
First, the measure is independent of the type of Fy and Fy since, by Sklar’s
theorem, the joint distribution can be decomposed into the marginal distri-
butions and the dependence structure, represented by the copula. Second, as
shown in [14], it is precisely the copula which captures those properties of
the joint distribution which are invariant under a.s. strictly increasing trans-
formations of X and Y. Since X and Y are independent if and only if their
connecting copula is the product copula P(z,y) = xy, Schweizer and Wolff [14]
argued that any suitably normalized distance between C' and P, in particular,
any LP-distance, should yield a symmetric nonparametric measure of depen-



dence. Specifically, they studied the L!-distance given by
o(X,Y) = 12/ IC — P|dA (3)
12

where I = [0, 1] denotes the closed unit interval and A the two-dimensional
Lebesgue measure.

It should be noted, however, that both construction methods, described above,
yield, in general, a measure of independence only, since the measure always
satisfy (i), but not necessarily (ii). In other words, while any distance guaran-
tees that, at its lower bound, such a measure can capture independence in the
variables, the type of the ‘highest’ dependence, detected at the upper bound,
depends heavily on the type of the distance function employed. It follows that
the choice of the distance function cannot be arbitrary, but is predetermined
by the desired properties of a measure of dependence.

As mentioned in the beginning, we argue that mutual complete dependence
is the opposite of stochastic independence and therefore, a measure of de-
pendence should take this into account by satisfying (ii). This requirement is
much stronger than both Renyi’s original postulate [12] and its modification
by Schweizer and Wolff [14]. In fact, there is a lack of measures satisfying (ii),
probably due to the fact that mutual complete dependence seems incompati-
ble with the concept of convergence in distribution. In particular, it has been
shown in [10] (see also [7, 16, 17]) that the joint distribution of any two contin-
uously distributed random variables X and Y can be approximated uniformly
by the joint distribution of a pair of m.c.d. random variables, identically dis-
tributed as X and Y. This counterintuitive phenomenon led to the concept
of monotone dependence, which corresponds to mutual complete dependence
when in (1) the class of Borel measurable bijections f is restricted to a.s.
monotone ones. Kimeldorf and Sampson [7] argued that monotone depen-
dence could be interpreted as the opposite of stochastic independence because
it is preserved under convergence in law.

For instance, Schweizer and Wolff’s o(X,Y), defined in (3) is a measure of
monotone dependence because it attains its maximum of 1 if and only if X
and Y are monotone dependent. This is easily seen since any copula lies (point-
wise) between the lower and upper Fréchet-Hoeffding bounds, which are copu-
las themselves and correspond precisely to monotone decreasing and increasing
dependence, respectively [14]. However, if X and Y are m.c.d., o(X,Y’) can
attain any value in (0, 1]. This follows from the above mentioned phenomenon,
which implies that the set of copulas linking m.c.d. random variables is dense
in the set of all copulas with respect to the L*>-distance [10], and, since copu-
las are continuous functions, with respect to any LP-distance, p > 1. In other
words, none of the LP-distances is capable of detecting mutual complete de-
pendence, which emphasizes again that the choice of the metrical distance



function used in the construction of a measure of dependence is crucial for its
resulting properties.

We argue that the inconsistency between mutual complete dependence and
the LP-distance neither weakens the concept of mutual complete dependence
as the opposite of independence, nor does it imply that a measure of depen-
dence should be restricted to monotone dependence. It rather suggests that
convergence in law, or, alternatively, uniform convergence of the correspond-
ing copulas, is an inappropriate concept for the construction of measures of
dependence.

Instead of the LP-norm, we propose to measure the distance between two
copulas by a modified Sobolev norm given by

jci = ( [, 1vora)” )

where V denotes the gradient of the copula. This norm derives from a scalar
product which, among other things, allows a straightforward representation
via the *-product for copulas, introduced by Darsow et al. [1]. Furthermore,
this Sobolev norm turns out extremely advantageous since the degree of depen-
dence between two continuous random variables X and Y, and, in particular,
mutual complete dependence, can be determined by analytical properties of
their copula. It follows that, in contrast to the LP-distance, with respect to
the Sobolev norm, mutual complete dependence cannot approximate any other
kind of stochastic dependence.

Using this Sobolev norm we define a new nonparametric measure of depen-
dence for two continuous random variables X and Y with copula C', given by

w(X,Y) = (31017 - 2)”* = vBllc - P, (5)

which represents the normalized Sobolev distance between C' and the indepen-
dence copula P. We show that w(X,Y’) has several appealing properties, e.g.,
its extremes are precisely at independence and mutual complete dependence.

The paper is organized as follows. Section 2 sets up the notation and briefly
reviews some fundamental properties of copulas. Section 3 introduces the
Sobolev scalar product for copulas and its corresponding norm and distance.
We show that the scalar product allows a representation via the x-product. In
Section 4 we turn to the statistical interpretation of the Sobolev norm for cop-
ulas, which leads naturally to a new nonparametric measure of dependence for
two continuous random variables. Examples and comparisons are presented in
Section 5.



2 Basic properties of copulas

Let I = [0, 1] be the closed unit interval and I = [0, 1] x [0, 1] the closed unit
square.

Definition 1 A two-dimensional copula (or briefly, a copula) is a function
C : I? — I satisfying the conditions:

(i) C(x,0) =C(0,y) =0 for all x,y € I.

(i) C(x,1) =x and C(1,y) =y for all z,y € I.
(i1i) C(x2,y2)—C(x2,y1)—C(21,y2)+C(x1,91) > 0 for all rectangles [xy, x2] X
[yl,yg] cI?.

Let € denote the set of all (two-dimensional) copulas. Denote by 0;C the
partial derivative of C' € € with respect to the i-th variable. The conditions
in Definition 1 imply the following key properties of copulas; for a proof see,
e.g., [11].
Proposition 2 (i) C is increasing in each argument.

(ii) C is Lipschitz (and hence uniformly) continuous.

(iii) For i € {1,2}, 0;C emists a.e. on I* with 0 < 9;C(x,y) < 1.

(iv) The functions t — 0, C(x,t) and t — 0,C(t,y) are defined and increas-

ing a.e. on 1.

There are three distinguished copulas, namely

C™ (z,y) = max(z +y — 1,0),
C*(z,y) = min(z, y),
P(z,y) = zy.

C* and C~ are called the Fréchet-Hoeffding upper and lower bound, respec-
tively, since for any copula C' and any (x,y) € I* we have

C~(z,y) < C(z,y) < C(x,y). (6)

The set € can be equipped with the x-multiplication [1]. Let A, B € €. For
any x,y € I, set

(Ax B)(z,y) = /0 L0y A(z.1) O B(L, ) dt. (7)

Theorem 3 A * B s in C.



C™T and P are the unit and null element, respectively, i.e., for any copula C,
we have

CtxC=Cx*xCt=C, (8)
P+C=CxP=P. 9)

Denote by C'T the transposed copula of C given by
C'(z,y) = Cly, ). (10)
C is called symmetric if C = C'". It is easy to see that for any A, B € €

(Ax*B)T =BT+ A", (11)

3 The Sobolev scalar product for copulas

We denote by - the Euclidean scalar product, by | | the Euclidean norm on
R2, and by X the 2-dimensional Lebesgue measure.

It follows immediately from Proposition 2 (iii), and has been noticed in [2],
that

¢ C W'(I*,R)
for every p € [1, 0o] where WP (1% R) is the standard Sobolev space. However,
it has not been exploited in this context that W'2(I* R) is a Hilbert space
with respect to the usual W'2-scalar product

(fghwiz = [ fgar+ [ Vf-Vgdr (12)

so that the set of copulas, €, comes equipped with a scalar product structure.

There is, however, an even simpler way to define a scalar product for copulas.
Since copulas are continuous and satisfy C'(0,0) = 0 we can actually forgo the
first term. Indeed,

(f.9)= [,V Vgax (13)

defines a scalar product on the subspace
Wo*(I,R) = {f € WY (I*,R) N C(I*,R) | f(0,0) = 0}

which contains €. The restriction of ( , ) to € will be called the Sobolev scalar
product for copulas. As usual, we define the corresponding Sobolev norm on

¢ by
1/2
Il = ( [ 1vcrar) (14
I



and the Sobolev distance function on € x € by

d(A, B) = </I VA - VB|2d/\>1/2. (15)

We have seen that the Sobolev scalar product for copulas appears very natu-
rally from an analytical point of view. However, it also allows a representation
via the *-product, defined in (7).

Theorem 4 For all A, B € € we have the identity

(A, B) = /Ol(AT « B+ Ax B)(t,t)dt

1
:/ (AT« B+ Bx AT)(t,t)dt.
0

PROOF. It follows from (10) that

alAT(xv y) = aQA(y7 ZL')

AT (2,y) = 1 A(y, ) (16)

Using (7) and (16) we can write

1 1 1 1 T
| [ o oy dedy = [ ([ 0247 2) 008w, 9) ) dy
0 JO 0 0
1
=/0 (AT % B)(y,y) dy
1 1 1 1
//%A(x,y)@QB(x,y)dfrdy:/ (/ 82A(w,y)8lBT(y,$)dy)dx
0 JO 0 0
1
:/ (A BT)(z,z) da.
0
Adding up both terms we obtain the first identity.

The second equation in Theorem 4 is equivalent to

1 1
/ (Ax BT)(t,t)dt = / (Bx A")(t,t)dt
0 0
which follows from (A BT)(t,t) = (A* B")T(t,t) = (B x A")(t,t), where we
have used (11). O

The representation in Theorem 4 becomes particularly simple for symmetric
copulas.



Corollary 5 If A, B € € are symmetric, then

(A, B) = 2/01(A>:<B)(t,t) dt.

Theorem 4 yields upper and lower bounds for the scalar product of two copulas.
More precisely, we have the following result.

Theorem 6 Let A, B € €. Then
<{4,B) <1,

where both bounds are sharp.

PROOF. Theorem 4, in connection with the bounds for copulas given in (6),
implies that

1 1
2/‘Oﬂa®dt§@&B>§2/‘Oﬂa®dt
0 0
Simple calculations yield [ O~ (¢, t)dt = 1/4 and [} C*(t,t)dt = 1/2.

Finally, one easily computes that

(C=,C7) = (CT,CT) =1
. 1 (17)
(c.ch=3.

This shows that the bounds in the statement are sharp, and the proof is
complete. O

Theorem 7 For all C' € €, the following hold:
(i) (C, P)=2/3.

(i) |IC =PI =[|C|]* - 2/3.
(iii) 2/3 < |C||? < 1.

PROOF. For (i), we remark that P = P, so Theorem 4 and (9) imply
1 1 9
(P,C) :/ (P*C+C*P)(t,t)dt:2/ Ptt)dt = .
0 0
This, in turn, proves (ii) because
2
IC = PP = lIC|* = 2(C, P) + [|PII* = |CII* - 5

Finally, (iii) is a consequence of (ii) and Theorem 6. O



4 A nonparametric measure of dependence

We now turn to the statistical interpretation of the Sobolev norm for copulas
and the construction of a new nonparametric measure of dependence for two
continuous random variables.

Lemma 8 ([1]) Let X andY be continuous random variables with copula C.
The following statements are equivalent:

(i) Y is completely dependent on X if and only if 0,C € {0,1} a.e.
(ii) X is completely dependent on'Y if and only if 0oC € {0,1} a.e.
(15i) X andY are m.c.d. if and only if 0,C,0,C € {0,1} a.e.

PROOF. Darsow et al. [1, Theorem 7.1,Theorem 11.1] prove that Y is com-
pletely dependent on X if and only if, for each y € I, one has 0,C(-,y) €
{0,1} a.e. Actually, the proof shows that this is tantamount to assuming that
0,C(z,y) € {0,1} a.e. This proves (i). Analogous statements hold for (ii),
from which (iii) follows. O

The next theorem describes the main results of this paper.

Theorem 9 Let X andY be continuous random variables with copula C'. The
Sobolev norm for copulas satisfies ||C||? € [2/3,1], for all C € €. Moreover,
the following assertions hold, where the bounds are sharp:

(i) |C||> = 2/3 if and only if X and Y are independent.
(ii) |C||* € [5/6,1] if Y is completely dependent on X (or vice versa).
(iii) |C)|> =1 if and only if X and Y are m.c.d.

This result, together with the identity ||C'— P||*> = ||C||* — 2/3, expresses the
astonishing fact that the Sobolev norm itself measures stochastic dependence,
with extremes exactly at independence and mutual complete dependence. In
addition, the Sobolev norm is able to detect that two random variables are
not completely dependent.

PROOF. The foremost statement is contained in Theorem 7 (iii).

Assertion (i) is an immediate consequence of Theorem 7(ii). It follows from (14)
that

o= [ [[oc@wiaas [ [@cwy)iad.  03)



If Y is completely dependent on X we know from Lemma 8 that (0,C)* = 9,C
a.e., so the first summand in (18) is equal to

/()l/()lalo(x,y)dxdy:/olydy:;. (19)

To estimate the second term in (18) consider the inequality
11
/ / (0,0(2,y) — x)*dody >0

(:)// (0:C(x,y)) dxdy—Q//82 xyxdxdy+//xdxdy>0

@// (0,C(z,y))? dxdy>§

To show that the bound is sharp set C' = P. The case when X is completely
dependent on Y can be shown analogously, which proves (ii).

Finally, in view of Proposition 2 (iii), we have (9;C)? < 9;C' with equality if,
and only if, 0;,C' € {0,1}. Consequently, (18) implies that

1 1 1 1 1
I < [ [ oCley)dudy+ [ [ 0 y)dudy =S+ =1
0o Jo 0 Jo 2 2
with equality if and only if 9,C' € {0,1} a.e. By Lemma 8, the latter is equiv-
alent to X and Y being m.c.d. O

Corollary 10 Let X and Y be continuous random variables with copula C.
The following are equivalent:

(i) X andY are m.c.d.
(i) |C|| =1
(iii) 0,C,0,C € {0,1} a.e.
() [3(C*CT +CTxC)(t,t)dt = 1.

PROOF. This follows immediately from Lemma 8, Theorem 9 and Theo-
rem 4. O

Corollary 11 Let (X,Y) and {(X,,Y,)} be a pair and a sequence of pairs of
continuous random variables, respectively, with respective copulas C' and C,,.
Then the following assertions hold:

(i) If, for almost all n, X,, and Y, are m.c.d. and lim |C, — CJ| =0, then
X and 'Y are m.c.d.

(ii) If, for almost all n, X,, is completely dependent on'Y,,, or'Y, on X,, and
lim ||C, — C|| =0, then X and Y are not independent, i.e., C # P.

n—od

10



PROOF. Part (i) is an immediate consequence of Theorem 9 since ||C,|| =1
and lim ||C,—C|| = 0 implies [|C|| = 1. An analogous argument proves (ii). O

Corollary 11 emphasizes the advantage of the Sobolev distance over the LP-
distances, as mentioned in the Introduction. While, in the uniform sense, any
copula, in particular, the independence copula P, can be approximated by
copulas of m.c.d. random variables, the Sobolev convergence preserves the
property of mutual complete dependence. Hence, with respect to the Sobolev
distance, mutual complete dependence cannot approximate any other kind of
stochastic dependence. In fact, independence cannot even be approximated by
completely dependent random variables.

Therefore, measuring the distance between copulas with the Sobolev norm
resolves the disturbing phenomenon observed in [7, 10].

These remarkable statistical properties of the Sobolev norm lead immediately
to the following definition.

Definition 12 Given two continuous random variables X,Y with copula C,
we define

w(X,Y) = (31017 - 2)"*. (20)

In view of Theorem 7, the quantity w(X,Y’) represents a normalized Sobolev
distance of C' from the independence copula P:

_le- P

CXY) = VB~ Pl = 2

(21)

where C is any copula of m.c.d. variables. The normalization guarantees that
w(X,Y) € [0, 1]. Definition 12, however, makes clear that the Sobolev norm
of C itself serves as a measure of dependence.

For symmetric C' we may use Corollary 5 to write

1 1/2
W(X,Y) = (6 [« nyar- 2) . (22)
0
Theorem 13 Let X and Y be continuous random variables with copula C'.
The quantity w(X,Y") given by (20) has the following properties:

(i) w(X,Y) is defined for any X and Y.
(i) w(X,Y) =w(, X).
(iii) 0 < w(X,Y) < 1.
() w(X,Y) =0 if, and only if, X and Y are independent.
(v) w(X,Y) =1 1if, and only if, X andY are m.c.d.

11
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Fig. 1. w(X,Y) as a function of p for jointly normal X,Y

(vi) w(X,Y) € [V0.5,1] if Y is completely dependent on X (or vice versa,).
(vii) If f and g are a.s. strictly monotone functions on Range(X ) and Range(Y ),
respectively, then w(f(X),g(Y)) = w(X,Y).
(viit) If {(X,,Yn)} is a sequence of pairs of continuous random variables with
copulas Cy, and if lim |C,, — C|| =0, then JLI&W(X”’Y”) =w(X,Y).

PROOF. Everything is obvious by definition, or follows from Theorem 9,
except for (vii). Here we distinguish four different cases. For the sake of clarity,
let Cx y denote the copula of X and Y.

If both f and ¢ are increasing it is well known [11, Theorem 2.4.3] that
Crixygy) = Cxy which implies w(f(X),9(Y)) = V3| Crxgv) — Pl =
V3[|Cxy = P|| = w(X,Y).

If f is increasing and g is decreasing then Cyix) ¢vy(2,y) = 2 —Cxy (2,1 —y);
see [11, Theorem 2.4.4]. Therefore (Cx) gv)—P)(,y) = (P—=Cxy)(z,1-y)
which, by the transformation formula for the Lebesgue measure, again implies
w(f(X),9(Y)) = w(X,Y). If fis decreasing and g is increasing, the result
follows from interchanging f and g in the previous case.

The case when f and g are both decreasing can be shown similarly. O

Remark 14 If X and Y are jointly normal with correlation coefficient p,
then w(X,Y) is a strictly increasing function of |p| whose graph is shown in
Figure 1.

12
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Fig. 2. The gradient VC of the copula C in Example 15

5 Examples and comparisons

We conclude the paper with some examples clarifying the relationship between
the measure of dependence w(X,Y) and the quantity o(X,Y), as defined
in (3). We assume that the reader is familiar with the concept of singular
copulas; for details we refer to [11].

Example 15 Let 0 € [0,1], and consider the singular copula C' whose support
consists of two line segments in I*, one joining (0,0) and (6,1), and the other
joining (6,1) and (1,0) (see [11, Example 3.3]). It follows that

x if v < Oy
C(z,y) =4 0y ifly<x<l—(1-0)y
r+y—1 ifl—(1-0)y <z

Clearly, Y is completely dependent on X, but not vice versa. Since probability
mass 0 and 1—0 is uniformly distributed on the first and second line segments,
respectively, it is heuristically clear that the value § = 1/2 describes the least
dependent situation, whereas the limiting cases § = 0 and 8 = 1, when C' = C~
and C' = C7, respectively, correspond to mutual complete dependence.

This is perfectly reflected in the behavior of w(X,Y). Indeed, a straightforward
calculation (compare Fig. 2) shows that

1 N2 7 7
=2(0-3) +5¢ s
o =5(0-3) 3¢5
with the lowest and highest values attained precisely for @ = 1/2 and 6 € {0,1},

respectively. Consequently, w(X,Y") takes on its smallest value \/1_0/4 ~ .79
for 6 =1/2.

13



The quantity o(X,Y’) shows the same qualitative behavior, however, its mini-
mal value is .5.

Example 16 Let 0 € [0,1], and consider the singular copula C' whose support
consists of the two segments {(x,1—x) | x € [0,0]U[1—0, 1]} and the segment
{(z,z) |z €[0,1—0]} (see [11, Exercise 3.15]). It follows that

CH(z,y)—0 if (z,y) €[0,1—0)
ey = {CEN 0 T 10
C~(z,y) otherwise
Now X and Y are mutually completely dependent so w(X,Y) = 1, regardless
of the value of 6.

In contrast, o(X,Y") varies between 1 (for 0 € {0,1}) and values around .46
(for 0 ~ .12), indicating a definite degree of independence when, actually,
there is none. Note that the copula from Ezample 15 with 0 = 1/2 yields
almost the same value for o.
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