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Abstract

We present a new way of constructing n-copulas, by scaling and gluing finitely many
n-copulas. Gluing for bivariate copulas produces a copula that coincides with the inde-
pendence copula on some grid of horizontal and vertical sections. Examples illustrate
how gluing can be applied to build complicated copulas from simple ones. Finally, we
investigate the analytical as well as statistical properties of the copulas obtained by
gluing, in particular, the behavior of Spearman’s ρ and Kendall’s τ .

1 Introduction

Let I be the closed unit interval [0,1].

Definition 1.1. For any integer n ≥ 2, an n-dimensional copula (or n-copula) is a
function C ∶ In → I with the following properties:

(C1) C(x1, . . . , xk, . . . , xn) = 0 when xk = 0 for some k = 1, . . . , n.

(C2) C(1, . . . ,1, xk,1, . . . ,1) = xk for all k = 1, . . . , n and for all xk ∈ I.

(C3) C is n-increasing, i.e., for all n-boxes B = ×n
k=1[ck, dk] ⊆ In we have

VC(B) ∶= ∑
v∈B

sgn(v)C(v) ≥ 0

where the sum is taken over all vertices v = (v1, . . . , vn) of B, with vk ∈ {ck, dk} for
each k = 1, . . . , n, and sgn(v) is defined to be 1 if vk = ck for an even number of
k’s, and −1 otherwise.
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It can be shown that for any copula C and for all (x1, . . . , xn) ∈ In

C−(x1, . . . , xn) ≤ C(x1, . . . , xn) ≤ C+(x1, . . . , xn) (1)

where C− and C+ are the so-called Fréchet-Hoeffding bounds given by

C−(x1, . . . , xn) = max(x1 + . . . + xn − n + 1,0),
C+(x1, . . . , xn) = min(x1, . . . , xn).

The upper bound C+ is a copula itself for all n ≥ 2, whereas the lower bound C− is a
copula only for n = 2. Another distinguished copula is the product copula

P (x1, . . . , xn) = x1 . . . xn.

The importance of copulas to the theory of statistics stems from the well-known
Sklar’s theorem (see [7, 8, 9]), which states that for all real valued random variables
X1, . . . ,Xn with joint distribution function H and univariate margins F1, . . . , Fn there
exists an n-copula C such that

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (2)

Conversely, given an n-copula C and univariate distribution functions F1, . . . , Fn, then
the function H defined by (2) is an n-dimensional distribution function with univariate
margins F1, . . . , Fn. Moreover, if F1, . . . , Fn are all continuous, then C is unique and
is called the copula of X1, . . . ,Xn; otherwise C is uniquely determined on RangeF1 ×
⋯ × RangeFn. In view of Sklar’s theorem, a rich collection of n-copulas yields a rich
collection of n-dimensional joint distribution functions with arbitrary margins, which
proves useful in statistical modeling and simulation. Furthermore, the decomposition
of the joint distribution function in (2) implies that copulas represent the dependence
structure of random variables, irrespective of their distributions. Thus, as noted in [6],
the study of concepts and measures of nonparametric dependence is equivalent to the
study of properties of copulas and, therefore, it is useful to have a variety of copulas at
our disposal.

Several general methods of constructing copulas exist. Among them are the in-
version method, geometric methods (e.g., ordinal sums, shuffles of min, and copulas
with prescribed horizontal, vertical or diagonal sections), algebraic methods (e.g., a
copula transformation), and methods based on generators, leading to the large class
of Archimedean copulas; for details we refer to [6]. For more recent constructions see,
e.g., [1, 2, 3, 4, 5] and the references therein. Note, however, that most of the existing
construction methods apply to the bivariate case only and have not been generalized to
the n-dimensional situation. To quote from [6], “constructing n-copulas is difficult.”

In this paper, we present a new method for constructing copulas in any dimension,
the so-called gluing construction. In its simplest form, gluing with respect to the first
variable x1 proceeds as follows. Given two n-copulas C1 and C2 and a number θ ∈ (0,1),
the graphs of C1 and C2 are scaled and pasted into the boxes [0, θ]×In−1 and [θ,1]×In−1,
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respectively, i.e., they are glued together along the hyperplane {x1 = θ}. Of course, this
construction can be carried out with respect to any other variable, and with finitely
many copulas. Finally, successive gluing with respect to different variables leads to
the gluing method in its most general form. The copulas obtained by gluing exhibit
several interesting statistical properties. For instance, the gluing of two bivariate copulas
produces a copula which has the same section as the independence copula. Furthermore,
we deduce formulas for the behavior of Spearman’s ρ and Kendall’s τ under gluing.

The paper is organized as follows. Section 2 introduces the general gluing construc-
tion for N -copulas and illustrates the method by examples. In Section 3 we discuss
analytical and statistical properties of copulas obtained by gluing.

2 The gluing construction

2.1 Gluing two copulas

For the sake of clarity, we illustrate the gluing construction in its most basic form.
Consider two copulas C1,C2 on In with n ≥ 2. Fix any index i ∈ {1, . . . , n} and real
number θ ∈ (0,1), and partition the unit cube as

In = (I × . . . × [0, θ] × . . . × I) ∪ (I × . . . × [θ,1] × . . . × I).

Then we define the function
C1 ⍟

xi=θ

C2 ∶ In → I

by setting
(C1 ⍟

xi=θ

C2)(x1, . . . , xi, . . . , xn) = θC1(x1, . . . ,
xi

θ
, . . . , xn) (3)

if 0 ≤ xi ≤ θ, and

(C1 ⍟
xi=θ

C2)(x1, . . . , xi, . . . , xn) =

(1 − θ)C2(x1, . . . ,
xi − θ

1 − θ
, . . . , xn) + θC1(x1, . . . ,1, . . . , xn) (4)

if θ ≤ xi ≤ 1. Thus, C1⍟xi=θ C2 can be seen as the result of gluing C1 and C2 along the
section {xi = θ}. We claim that it is indeed a copula.

Theorem 2.1. For any two n-copulas C1,C2, any index i ∈ {1, . . . , n}, and any number
θ ∈ (0,1), the function C1⍟xi=θ C2 is an n-copula.

Proof. We show that C = C1⍟xi=θ C2 satisfies the axioms (C1)–(C3) from Definition 1.1.
Indeed, since C1 and C2 satisfy (C1), the same follows for C. Similarly, it is easy to
check that, if all but one variable xk are equal to 1, then C(1, . . . , xk, . . . ,1) = xk; one
just has to distinguish the cases k = i and k ≠ i.
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Figure 1: The support of the singular copula C in Example 2.2

Hence, the only condition to be checked is (C3), i.e., that VC(B) ≥ 0 for all n-
boxes B ⊆ In. Since the volume Vf is additive for every function f , i.e., Vf(B) =
Vf(B1)+Vf(B2) if B = B1 ∪B2 where B1 and B2 have disjoint interior, we may restrict
ourselves to the case where B is contained in either In∩{xi ≤ θ} or In∩{xi ≥ θ}. Now the
claim follows from the observation that the right sides of (3) and (4) are n-increasing.
This finishes the proof of the theorem.

Let us illustrate the gluing construction in the simplest case of bivariate copulas. A
bivariate copula C is called singular if ∂2C/∂x1∂x2 vanishes almost everywhere in I2;
in this case, the support of C has Lebesgue measure zero in I2. We refer the reader to
[6] for more details.

Example 2.2. Let θ ∈ (0,1), and suppose that probability mass θ is uniformly distributed
along the line segment joining (0,0) and (θ,1), and probability mass 1 − θ is uniformly
distributed along the segment between (θ,1) and (1,0). Consider the resulting singular
copula C whose support consists of these two line segments; see Figure 1. It follows (see
[6, Example 3.3]) that

C(x1, x2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 if x1 ≤ θx2

θx2 if θx2 < x1 < 1 − (1 − θ)x2

x1 + x2 − 1 if 1 − (1 − θ)x2 ≤ x1.

(5)

This copula is a standard example of a singular copula. In terms of gluing, C can be
written as

C = C+ ⍟
x1=θ

C−

where C+(x1, x2) = min(x1, x2) and C−(x1, x2) = max(x1 + x2 − 1,0) is the Fréchet-
Hoeffding upper and lower bound, respectively.
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2.2 Gluing many copulas

In the following, we introduce the gluing method for the general case of finitely many
copulas. Note that this can also be realized by sequentially gluing two copulas as
described in the previous section. Fix any i ∈ {1, . . . , n} and numbers θk such that
0 = θ0 < θ1 < . . . < θN = 1, and let C1, . . . ,CN be n-copulas. Then we consider the
partition

In =
N

⋃
k=1

I × . . . × [θk−1, θk] × . . . × I

and define the function ⍟xi=θk
Ck ∶ In → I by

( ⍟
xi=θk

Ck)(x1, . . . , xi, . . . , xn) =

(θk − θk−1)Ck(x1, . . . ,
xi − θk−1

θk − θk−1
, . . . , xn) + θk−1Ck−1(x1, . . . ,1, . . . , xn) (6)

if xi ∈ [θk−1, θk] with 1 ≤ k ≤ N ; note that the formal term involving C0 is irrelevant since
θ0 = 0. Then the same arguments as in the proof of Theorem 2.1 show the following
result.

Theorem 2.3. The function ⍟xi=θk
Ck ∶ In → I is an n-copula.

Finally, we may combine gluings in different variables, resulting in the most general
gluing construction of gluing finitely many copulas in each variable xi,1 ≤ i ≤ n. We
illustrate this with the simplest nontrivial example, the gluing of four bivariate copulas.

Example 2.4. Given four bivariate copulas C1, . . . ,C4 and three numbers θ1, θ2, θ3 ∈
(0,1), let us first glue C1 and C2 along {x1 = θ1}, and C3 and C4 along {x1 = θ2}. Then
we glue these two copulas along {x2 = θ3}. This results in the copula

C = (C3 ⍟
x1=θ2

C4) ⍟
x2=θ3

(C1 ⍟
x1=θ1

C2) (7)

which is represented by the partition of I2 outlined in Figure 2. If we consider the new
copula C on the rectangle [0, θ2] × [0, θ3], for instance, we obtain

C(x1, x2) = θ2θ3 C3(x1

θ2
,
x2

θ3
). (8)

As an example, the reader might want to visualize the copulas

(C− ⍟
x1=1/2

C+) ⍟
x2=1/2

(C+ ⍟
x1=1/2

C−)

and
(C+ ⍟

x1=1/2
C−) ⍟

x2=1/2
(C− ⍟

x1=1/2
C+)

by drawing their supports.
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Figure 2: The copula C from Example 2.4

Note that in the special case when θ1 = θ2 = θ there are two different ways of
representing the copula C from (7) as a gluing, namely

C = (C3 ⍟
x1=θ

C4) ⍟
x2=θ3

(C1 ⍟
x1=θ

C2) = (C3 ⍟
x2=θ3

C1) ⍟
x1=θ

(C4 ⍟
x2=θ3

C2). (9)

Remark 2.5 (Bivariate orthogonal grid construction). It turns out that, in two dimen-
sions, the gluing construction coincides with the so-called orthogonal grid construction
with P as background copula, which has been developed in [2]. Indeed, the copula Q
in [2, Prop 12] agrees with the bivariate gluing C1⍟x1=θ C2 in the special case when
(u1, u

′
1) = (0, θ), (u2, u

′
2) = (θ,1), and (v1, v

′
1) = (0,1).

3 Properties of copulas obtained by gluing

3.1 Analytical properties

It follows from the definition that the rescaling in the gluing construction is made in such
a way that the relative volume is preserved. Suppose, for instance, that C is obtained
by gluing a copula C̃ into the rectangle [0, θ1] × [0, θ2]. Then (8) implies

C(x1, x2) = θ1θ2 C̃(x1

θ1
,
x2

θ2
)

on [0, θ1] × [0, θ2] so that we have

VC(θ1I1 × θ2I2) = θ1θ2 VC̃(I1 × I2) (10)

for any closed intervals I1, I2 ⊆ I. Note that this quadratic scaling distinguishes the
gluing construction from the well known ordinal sum construction (see, e.g., [6]) which
has linear scaling.
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A special role in the gluing construction is played by the independence copula
P (x1, . . . , xn) = x1 ⋅ . . . ⋅ xn. Note that P ⍟xi=θ C = P for xi ∈ [0, θ], and C⍟xi=θ P = P
for xi ∈ [θ,1], respectively. In particular, gluing P with itself yields P again:

P ⍟
xi=θ

P = P. (11)

In fact, this is the only possibility to obtain P as a gluing in view of the following result.

Proposition 3.1. For any two copulas C1,C2, any index i ∈ {1, . . . , n}, and any number
θ ∈ (0,1) the following holds:

C1 ⍟
xi=θ

C2 = P ⇔ C1 = C2 = P.

Proof. In view of (11), we only need to show “⇒”. But C1⍟xi=θ C2 = P implies
θC1(x1/θ, x2) = x1x2 for all (x1, x2) ∈ [0, θ] × I, which is equivalent to C1 = P . Analo-
gously, we see that C2 = P .

A bivariate copula C is called absolutely continuous if, considered as a joint distri-
bution function, it has a joint density which is given by ∂2C/∂x1∂x2. C is singular if
∂2C/∂x1∂x2 = 0 almost everywhere on I2. It is clear from the construction that both
properties are preserved under arbitrary gluings.

Finally, a bivariate copula C is called symmetric if C(x1, x2) = C(x2, x1) for all
(x1, x2) ∈ I2. In general, the gluing of two symmetric copulas is not symmetric anymore,
as the simple copula (5) from Example 2.2 shows. On the other hand, gluing two non-
symmetric copulas may yield a symmetric copula; this is illustrated by the following
example.

Example 3.2. We come back to Example 2.4 and consider the two non-symmetric copulas
C1 = C−⍟x2=1/2 C+ and C2 = C+⍟x2=1/2 C−. Then it follows from (9) that

C = C1 ⍟
x1=1/2

C2 = (C− ⍟
x1=1/2

C+) ⍟
x2=1/2

(C+ ⍟
x1=1/2

C−),

and this copula is symmetric since

C(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max((x1 + x2)/2 − 1/4,0) if (x1, x2) ∈ [0,1/2]2
min((x1 + x2)/2 − 1/4, x1) if (x1, x2) ∈ [0,1/2] × [1/2,1]
min((x1 + x2)/2 − 1/4, x2) if (x1, x2) ∈ [1/2,1] × [0,1/2]
max((x1 + x2)/2 − 1/4, x1 + x2 − 1) if (x1, x2) ∈ [1/2,1]2

.

The gluing of two bivariate copulas C1 and C2 along {x1 = θ} produces a copula
C = C1⍟x1=θ C2 with the property that

C(θ, x2) = θx2 = P (θ, x2). (12)
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This means that C coincides on the vertical {x1 = θ} with the independence copula P ,
which one might express by saying that C has as a “vertical section of independence”.
Since a copula can be viewed as the joint distribution function of random variables
with uniform distributions on I, the vertical and horizontal sections of a copula have
the following statistical interpretation. If X1 and X2 are random variables uniformly
distributed on I, the sections are proportional to conditional distribution functions;
see [6]. If C coincides with P on {x1 = θ} then for x1 = θ the conditional probability
agrees with the unconditional one, i.e.,

P(X2 ≤ x2 ∣ X1 ≤ θ) = C(θ, x2)
θ

= x2 = P(X2 ≤ x2).

The question arises if, conversely, any copula C satisfying (12) can be obtained by
gluing. The affirmative answer is given in the following representation theorem.

Theorem 3.3. Let C be a copula on I2. Then the following are equivalent:

1. There is θ ∈ (0,1) such that C(θ, x2) = θx2 for all x2 ∈ I;

2. There are two copulas C1 and C2 such that C = C1⍟x1=θ C2.

Proof. If C = C1⍟x1=θ C2 then C(θ, x2) = θx2. Conversely, we define two functions
C1,C2 ∶ I2 → I by setting

C1(x1, x2) = 1
θ

C(θx1, x2) , C2(x1, x2) = 1
1 − θ

(C(θ + (1 − θ)x1, x2) − θx2).

Then, since C is a copula with C(θ, x2) = θx2, it is straightforward to check that also
C1 and C2 are copulas, i.e., they satisfy the axioms (C1)–(C3) from Definition 1.1.
Moreover, in view of (3) and (4), we have C = C1⍟x1=θ C2.

Note that this theorem yields all copulas with the given vertical section θx2 at the
point x1 = θ. In particular, we immediately obtain the precise upper and lower bounds
for those copulas.

Corollary 3.4. Let C be a copula with C(θ, x2) = θx2 for all x2 ∈ I. Then

(C− ⍟
x1=θ

C−) ≤ C ≤ (C+ ⍟
x1=θ

C+),

and all three copulas coincide on {x1 = θ}.
Note that an analogous result has been proved in [5]. Finally, we point out that these

results can be generalized, by gluing finitely many copulas in each variable, to copulas
coinciding with P on a given grid in I2. Note that this grid may be more general than
just a Cartesian product of line segments, as is demonstrated in Figure 2.
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3.2 Statistical properties

In this final section we investigate statistical properties of bivariate copulas obtained by
gluing. In particular, we are interested in how classical measures of concordance, e.g.,
Spearman’s ρ and Kendall’s τ , behave gluing. Also, we consider the effect of gluing on
tail dependence.

If C is copula on I2 then Spearman’s ρ is given by

ρC = 12∫
1

0
∫

1

0
C(x1, x2)dx1dx2 − 3 (13)

and Kendall’s τ by

τC = 1 − 4∫
1

0
∫

1

0
∂1C(x1, x2)∂2C(x1, x2)dx1dx2 (14)

where ∂kC for k = 1,2 denotes the partial derivative of C with respect to the k-th
variable. We refer to [6] for the original definitions and more details.

Theorem 3.5. Let C = C1⍟x1=θ C2 be a copula obtained by gluing two copulas C1 and
C2 along {x1 = θ}. Then Spearman’s ρ and Kendall’s τ can be written as

ρC = F (ρC1 , ρC2) and τC = F (τC1 , τC2)
where F (x, y) = θ2x + (1 − θ)2y.

Proof. In order to prove the formula for Spearman’s ρ we recall the gluing formulae (3)
and (4) and calculate

∫
1

0
∫

1

0
C(x1, x2)dx1dx2

= θ∫
1

0
∫

θ

0
C1(x1

θ
, x2)dx1dx2 + (1 − θ)∫

1

0
∫

1

θ
C2(x1 − θ

1 − θ
, x2)dx1dx2 + θ∫

1

0
∫

1

θ
x2 dx1dx2

= θ2∫
1

0
∫

1

0
C1(z, x2)dzdx2 + (1 − θ)2∫

1

0
∫

1

0
C2(z, x2)dzdx2 + 1

2
θ(1 − θ).

Using (13), is it easy to see that the constants involving θ cancel each other, which
finally yields the result for ρC .

A completely analogous calculation proves the statement for τC .

We immediately obtain the possible ranges for Spearman’s ρ and Kendall’s τ .

Corollary 3.6. If C = C1⍟x1=θ C2 then

ρC , τC ∈ [−1 + 2θ(1 − θ),1 − 2θ(1 − θ)].
Proof. As measures of concordance, Spearman’s ρ and Kendall’s τ respect the concor-
dance ordering on the set of bivariate copulas; see [6]. Therefore, the claim follows
from Theorem 3.5 and Corollary 3.4, together with the fact that ρC− = τC− = −1 and
ρC+ = τC+ = 1.
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Example 3.7. By gluing two copulas one can obtain any value for ρ and τ , respectively.
Indeed, consider the singular copula

C = C+ ⍟
x1=θ

C−

from Example 2.2. Theorem 3.5 shows immediately that

ρC = τC = 2θ − 1,

in accordance with the calculations suggested in [6, Exer. 5.6].

Finally, we turn to a different dependence concept, the so-called tail dependence,
which measures the dependence in the tails of the joint distribution. More precisely,
given a copula C, its lower tail dependence parameter is defined as

λC = lim
t↘0

C(t, t)
t

(15)

whenever this limit exists; see [6]. Again, it does not make sense to study the tail
dependence of a copula C = C1⍟x1=θ C2 in the general case. However, if we construct
C by gluing copulas in such a way that the copula C1, say, is fit into the square [0, θ]2
then

λC = θ2 lim
t↘0

C1( t
θ , t

θ)
t

= θ lim
u↘0

C1(u,u)
u

= θλC1 . (16)

Consequently, the lower tail dependence parameter scales with θ and tends to zero if
the square [0, θ]2 is made smaller and smaller. This phenomenon is due to the fact that
gluing scales quadratically, and not linearly, as described in (10).

Example 3.8. Let α,β ∈ I with α + β ≤ 1, and consider the Fréchet copula Cα,β = αC+ +
(1−α−β)P +βC−; then λCα,β

= α. It follows that the copula C = (Cα,β⍟x1=θ P )⍟x2=θ P
satisfies

C(x1, x2) =
⎧⎪⎪⎨⎪⎪⎩
θ2Cα,β(x1

θ , x2
θ ) if (x1, x2) ∈ [0, θ]2

x1x2 otherwise
. (17)

In view of (16), the copula C has lower tail dependence parameter λC = θα. For instance,
if α = 1/2, β = 1/3, and θ = 1/10, then λC = 1/20.
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[3] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi. Copulas with given values on
a horizontal and a vertical section. Kybernetika, 43(2):209–220, 2007.
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[5] E.P. Klement, A. Kolesárová, R. Mesiar, and C. Sempi. Copulas constructed from
horizontal sections. Comm. Stat. Theory and Methods, 36(16):2901–2911, 2007.

[6] R.B. Nelsen. An Introduction to Copulas. Springer, New York, 2nd edition, 2006.

[7] B. Schweizer and A. Sklar. Probabilistic metric spaces. Dover Publications, New
York, 2005.

[8] A. Sklar. Random variables, distribution functions, and copulas—a personal look
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