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Abstract

We give two proofs of the two-dimensional Borsuk-Ulam theorem. One
is completely elementary and does not use homology theory or the map-
ping degree, while the second one makes use of the recent theory of sym-
plectic quasi-states.

1 Introduction

The two-dimensional Borsuk-Ulam theorem states that a continuous vector field
on S? takes the same values on at least one pair of antipodal points.

Theorem 1.1 (Borsuk-Ulam for S?). Let o : S* — S? be the antipodal map
o(x) = —x. Then, for every continuous mapping V : S* — R2, there exists at
least one point x € S* such that V(x) = V(o (z)).

There are several proofs of this result (as well as higher-dimensional gener-
alizations), most of them using some kind of degree argument [Dod, DG, GP]
or combinatorial methods [Fan, Had, Tuc].

The aim of this note is to present two proofs in two dimensions which rely on
geometric rather than topological arguments. The fundamental idea is the same
for both of them: the pair of antipodal points is characterized as the intersection
of the zero sets of two real-valued functions on S?. This intersection result on
S? can then be established by either elementary arguments (see Section 3) or
the recent theory of symplectic quasi-states (see Section 4).

For the historical background and a thorough mathematical discussion of
the Borsuk-Ulam theorem in arbitrary dimensions, we refer to [DG, Sect. 5].

Acknowledgement: For helpful discussions on this note, I thank Hansjorg
Geiges and Leonid Polterovich.



2 Reduction to an intersection result

We represent the given vector field V as V = (V3,V3) with two continuous
functions V; : §? — R. Then the condition V(z) = V(o(z)) is equivalent
to fi(z) = fa(z) = 0 for the continuous functions f; : S2 — R defined by
fi(x) = Vi(z) — Vi(o(x)). In other words, we are looking for intersection points

z e fiH(0)n f51(0)

with each f; satisfying the relation

foo=—f (1)
because ¢ is an involution, i.e., 0 0 o = id.

Theorem 2.1 (Intersection result). Let fi, fo : S? — R be smooth functions,
both satisfying (1) and having 0 as a regular value. Then f;(0) N f5(0)
contains at least one pair of antipodal points.

As a corollary, we immediately obtain Theorem 1.1 for smooth vector fields
V. Thus, it remains to prove Theorem 1.1 in the continuous setting, taking its
smooth version for granted.

For this, we approximate the continuous functions f; and fs by smooth
functions fi1, and fa ., respectively, such that each f;, possesses 0 as a regular

value and satisfies )

n

| fi = fimllco <

for every n € N; see [Hir]. Now define

_ fin®) ~ finlo@))
/ |

(2)

fim(x)

In view of (2) we conclude that

- 1 1

Ilfi = finllco = 5 I fi = fin— (fioo— finoo)lco < o

Applying Theorem 2.1 to fi,m we obtain sequences of antipodal points z,, o ()
such that

fi,n(xn) - fi,n(g(xn)) =0
for all n. By the compactness of S we may assume that z,, — = so that the
continuity of f; implies f;(z) = fi(o(x)) = 0 for ¢ = 1,2. This finishes the proof
of Theorem 1.1.
It remains to prove the intersection result given in Theorem 2.1. For this,
let w be the standard area form on S?, normalized such that
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According to Jordan’s Curve Theorem, every embedded circle on S? divides S?
into two domains. We call an embedded circle an equator if these two domains
have equal area 1/2.

The following theorem states that the zero set of a function satisfying (1)
must contain an equator. Since two equators on S? intersect in at least two
points, Theorem 2.1 is an immediate consequence of Theorem 2.2. Note, how-
ever, that the two intersection points can be antipodal points themselves, so the
intersection of the two equators may consist of just one pair of antipodal points
(e.g., when the two equators are great circles).

Theorem 2.2 (Existence of an equator). Let f : S? — R be a smooth function,
satisfying (1) and having 0 as a regular value. Then f~1(0) contains an equator.

In the remaining part of the paper, we provide two proofs of Theorem 2.2,
one elementary and one based on symplectic quasi-states.

3 An elementary proof of Theorem 2.2

Since 0 is a regular value for f and S? is compact, the zero set f~1(0) is the
union of finitely many, pairwise disjoint, embedded circles C; C S?; see, e.g.,
[GP]. Each of the circles C; divides S? into two domains DJi If some Cj is an
equator, the theorem is proven.

Therefore, we assume that none of the C; is an equator. Then, for every j,
the two domains Dji have different areas, and we write Dy for the smaller one.
Let us denote by C that circle C’; whose domain D} has maximal area, and call
D? the corresponding domains on S?. Note that

/_w<%</D+w. (3)

Because of (1), f~1(0) is invariant under o, so o(C) is also one of the circles
Cj, and there are only two cases: either o(C') = C or o(C)NC = 0.

If 0(C) = C then, since o preserves the non-oriented area, (3) implies that
o(D*) = D¥, so o preserves orientation which is a contradiction. Therefore,

s(CYNC = 0.

Then C and o(C) bound some annulus-like region A C S?; see Figure 1. We
claim that
o(A) = A.

Consistently neglecting boundaries, we see that the domain DT consists of two
parts, the annulus A and another domain D. Since C = 9D~ and o(C) = 9D,
we have either o(D~) = D or o(D~) = D~ U A, the latter being impossible
since o preserves the non-oriented area. Hence o(D) = o(o(D~)) = D~ which
implies o(A) = A.
Finally, we will see that
f‘A = 07 (4)
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Figure 1: o(C) = C [left] and o(C) N C = { [right]

which, of course, is impossible because 0 is a regular value of f.

In order to show (4) we observe that, since D~ has maximal area, A cannot
contain any C; in its interior that is non-contractible in A. Now, if A = o(A)
contains a circle C; which is contractible in A, and hence bounds an open disk
B C A, then it also contains ¢(C;) which bounds the open disk ¢(B) C A. In
view of (1), the function f has different signs on B and o(B). Moreover, there
exists a path v : [0,1] — A with (0) € B and (1) € o(B) such that there are
0<a<b<lwith f(v(t)) =0 if, and only if, ¢ € {a,b}. Considering the sign
of f along v one sees that this contradicts the fact that 0 is a regular value of
f. Consequently, A does not contain any Cj in its interior, so f has a fixed sign
on A = o(A) which, in view of (1), implies (4).

Therefore, our starting assumption that none of the C; is an equator leads
to a contradiction, proving Theorem 2.2.

4 A symplectic proof of Theorem 2.2

Since an area form in two dimensions is the same as a symplectic form, the
above proof of Theorem 2.2 suggests a symplectic approach in which Theo-
rem 2.1 would become a Lagrangian intersection result. Surprisingly, such an
approach exists. However, it is not elementary anymore—it is based on the
recent notion of symplectic quasi-states which was introduced by Entov and
Polterovich in [EP1]. We refer the interested reader to [EP1, EP2, EPZ] for a
detailed description of quasi-states in symplectic topology.

A symplectic quasi-state on a closed connected symplectic manifold (M, w)
is a functional

¢:C°(M,R) = R
satisfying the following properties:
1. ¢(1)=1
2. ((F)<((GQ)if F<@



3. ((aF +bQG) = a((F)+b¢(G) for all a,b € R and all smooth functions F, G
with vanishing Poisson bracket.

It is shown in [EP2, EP1] that for (M,w) = (S*,w) with [,w = 1, a
symplectic quasi-state { can be constructed as follows. For any given Morse
function F : S — R with distinct critical values, there is a unique connected
component Cg of the level lines of F' such that the w-area of every connected
component of its complement is at most 1/2. Then set

((F) = F(Cr)

and extend it to all F € C°(S%,R) by continuity with respect to the C°-norm.
Note that ¢ is invariant under any diffeomorphism of S? which preserves the
non-oriented area, in particular,

((F) =((Foo). (5)

Now assume that f is a smooth function on S?, satisfying (1) and having 0
as a regular value. Then (5), together with the linearity of ¢, implies that

C(f) =<(foo)=C(=f) = —=C(f)

so that ((f) = 0. But, by definition of ¢, this means that f~1(0) contains an
equator Cy, and Theorem 2.2 is proven.

5 Concluding remarks

If i # id is any involution on S? then a classical result—apparently due to
Brouwer [Bro], see also [Ker]—states that i is topologically conjugate to a Eu-
clidean rotation about an angle of m, the reflection along an equatorial plane,
or the antipodal map o.

Theorem 5.1. Let i : S? — S? be any involution. Then, for every continuous
mapping V : S? — R2, there erists at least one point x € S? such that V(x) =

V(i(z)).

Proof. If ¢ has fixed points, the theorem is trivially true. If i is fixed point free it
is topologically conjugate to o, and applying Theorem 1.1 yields the result. [
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