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Abstract: We introduce an approximation procedure and provide
existence results for two-phase flow equations in porous media. The
medium can have hydrophobic and hydrophilic components such that
the capillary pressure function is degenerate for extreme saturations.
Our main interest is the outflow boundary condition which models
an interface with open space. The approximate system introduces
standard boundary conditions and can be used in numerical schemes.
It allows the derivation of maximum principles. These are the basis
for the derivation of the limiting system in the form of a variational
inequality.
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1 Introduction

We study equations that describe two immiscible fluids in a porous medium,
e.g. water and oil in rock, water and air in soil, or liquid water and water
vapor in fuel cells. It is customary to model the porous medium with Ω ⊂ Rn,
n = 2, 3, and to use the following two-phase flow equations on the time
dependent domain ΩT = Ω× (0, T ).

∂ts = ∇ · (k1(s)∇p1)(1.1)

−∂ts = ∇ · (k2(s)∇p2)(1.2)

p1 − p2 = pc(s).(1.3)

1Fakultät für Mathematik, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Ger-
many. michael.lenzinger@tu-dortmund.de and ben.schweizer@tu-dortmund.de
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Figure 1: Typical shape of the saturation dependent functions kj and pc. The
permeability k1 vanishes on [0, a], the permeability k2 on [b, 1], the capillary
pressure is monotonically increasing and unbounded for s↘ a and s↗ b.

Here s1 := s and s2 := 1 − s are the saturations of the two phases, defined
as the volume fractions of pore space occupied by the fluids. The pressures
pj are related to the phase velocities vj by Darcy’s law, vj = −kj(s)∇pj,
j = 1, 2. Equations (1.1) and (1.2) are the laws of mass conservation for
incompressible fluids, in the second equation appears ∂ts2 = −∂ts. The
permeabilities kj depend on the saturation and are typically degenerate. The
capillary pressure function pc = pc(s) depends on material properties of the
involved substances and the microscopic properties of the medium. It relates
the two pressures in (1.3). We remark that more general models can also be
studied, of particular interest are hysteresis relations [5], [18]. Typical shapes
of the coefficient functions kj(s) and pc(s) are depicted in Figure 1.

Three fundamental existence results are available for the degenerate sys-
tem. In the case of Dirichlet and Neumann boundary conditions, in [9] a
weak solution is constructed with a regularization of the permeabilities k1

and k2. Based on the global pressure formulation, [3] and [7] derive an exis-
tence result for the same boundary condition. Outflow conditions are treated
in [1] in the case of hydrophilic media. A more detailed description of the
literature is given at the end of the introduction.

We are interested in degenerate permeability functions kj such that k1(s) =
0 for s ≤ a and k2(s) = 0 for s ≥ b. This reflects the physical fact that, e.g.,
isolated water reservoirs can be contained in the porous medium, but flow of
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Figure 2: Illustration of a droplet formation on the outflow boundary. Due
to a small curvature of the free boundary, the pressure difference between
water and air is negligable in the drop. Therefore, as soon as outflow occurs,
the capillary pressure vanishes along the boundary.

water is impossible since no connected pathways are available. In the case of
materials with hydrophilic and hydrophobic parts, the absolute value of the
capillary pressure may tend to infinity at the points a and b. Thus, problem
(1.1)–(1.3) is doubly degenerate.

Boundary conditions

A further difficulty for the modeling arises from the boundary conditions. The
simplest case is that a layer of impenetrable material inhibits flow into and
out of the porous volume. In this case, homogeneous Neumann conditions are
appropriate. If, instead, the porous material is in contact with open space,
filled with one of the two fluids, we have to deal with outflow (or inflow)
conditions. We describe here briefly the droplet argument which motivates
these outflow condition. In this description we assume that we study water
(phase 1) and air (phase 2) in soil, and a boundary where the soil is in contact
with open space, filled with air. For more detailed descriptions see [14] and
the references therein.

The gas in the exterior has a constant pressure pout
2 . The gas phase inside

the porous material is in contact with the gas in the exterior domain such
that the pressures coincide. This leads to the Dirichlet condition p2 = pout

2 .
For the water phase, we observe the following facts: No water can enter the
porous medium from outside, since there is no water. Therefore v1 · n =
−k1(s)∂np1 ≥ 0. Let us now investigate the situation that water leaves the
medium. In this case, water drops form on the surface of the porous material.
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Since their curvature is large in comparison to the curvature of interfaces
inside the pores, the pressure difference between water and air is negligible
at the boundary. This leads to the condition of a vanishing capillary pressure,
p1− p2 = 0 if v1 · n > 0. Since water exits fast once that p1 reaches pout

2 , this
value can never be exceeded. Keeping in mind that one of the two conditions
must be fulfilled, and with the normalization pout

2 = 0, we find the outflow
boundary condition

p2 = 0

v1 · n ≥ 0, p1 ≤ 0, (v1 · n) p1 = 0
on Γout.(1.4)

At the Dirichlet boundary ΓD we prescribe the pressure values, at the
Neumann boundary ΓN the normal velocities.

p1 = pD
1 and p2 = pD

2 on ΓD,

v1 · n = 0 and v2 · n = 0 on ΓN .
(1.5)

Regularized equations and main results

In the following we present a regularization of the above system with a param-
eter δ > 0. We introduce a sequence of strictly positive coefficient functions
kδ

j , j = 1, 2, and bounded capillary pressure functions pδ
c, such that system

(1.1)–(1.3) tranforms into a non-degenerate problem.

We furthermore discretize the time variable t. We introduce a small
number h > 0 such that T = hN for N ∈ N and introduce the discrete time
steps tk = kh, k = 0, 1, ..., N . We denote the time discrete solution at time
tk with sh

k, p
h
1,k, p

h
2,k and recall that the solutions depend additionally on δ.

sh
k − sh

k−1

h
= ∇ · (kδ

1(s
h
k)∇ph

1,k)(1.6)

−
sh

k − sh
k−1

h
= ∇ · (kδ

2(s
h
k)∇ph

2,k)(1.7)

ph
1,k − ph

2,k = pδ
c(s

h
k)(1.8)

with some initial condition sh
0 = s0 in Ω.

We furthermore regularize the outflow boundary condition (1.4). For
phase 1, we relate the normal velocity to the positive part of the pressure,

ph
2,k = 0

n · ∇ph
1,k = −1

δ
(ph

1,k)+

on Γout.(1.9)
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This regularization guarantees that the normal velocity is always positve.
Furthermore, a positive pressure results in a fast outflow. For δ → 0, this ef-
fect limits the pressure and yields, eventually, condition (1.4). The remaining
boundary conditions need not be regularized. We keep

ph
1,k = pD

1 (tk) and ph
2,k = pD

2 (tk) on ΓD,

n · ∇ph
1,k = 0 and n · ∇ph

2,k = 0 on ΓN .
(1.10)

Main results

In our first result, we study the regularized equations (1.6)–(1.10). We prove
the existence of solutions and derive bounds that are independent of δ and
h. The main ingredient is a maximum principle. Such a maximum principle
seems intuitive, in particular if one keeps in mind that the global pressure
(see (2.1)) satisfies an elliptic equation. But proofs turn out to be intricate
since no boundary condition allows to control the global pressure at the
outflow boundary. In our second result we perform the limit δ, h → 0 and
find solutions (s, p1, p2) of the original degenerate problem. In this step we
must use a variational formulation for the outflow boundary condition (1.4).

We now specify the general assumptions on the data. The porous medium
is given by the domain Ω ⊂ Rn. In order to have regularity results at our
disposal, we restrict to the case of parallelepipeds Ω = (a1, b1)× ...× (an, bn)
with n ≥ 2. We assume that the left boundary is the Dirichlet boundary,
ΓD = {a1} × (a2, b2) × (a3, b3), the right boundary is the outflow boundary,
Γout = {b1} × (a2, b2)× (a3, b3), the remainder consist of impenetrable walls,
ΓN = ∂Ω \ (Γ̄D ∪ Γ̄out). For some T > 0, the time cylinder is ΩT := Ω ×
(0, T ). The inflow data are given by functions pD

j : Ω̄T → R with pD
j ∈

C1([0, T ], C2,α(Ω̄) ∩ H1(Ω)) satisfying pD
j = 0 on Γout, p

D
2 ≥ 0 in ΩT . The

initial saturation is s0 ∈ Cα(Ω̄) with a < s0 < b on Ω. Finally, we assume
the compatibility pc(s0) = pD

1 (., 0)− pD
2 (., 0) on ΓD.

Theorem 1 (Bounds for the saturation). Let the coefficient functions
satisfy Assumption 2.1. Then, for every δ > 0, there exists a weak solution
to (1.6)–(1.10). Furthermore, for some δ0 > 0, there exist constants a <
Smin ≤ Smax < b and C > 0 such that, for all 0 < δ ≤ δ0 and all k ≤ N

1. The saturation sh
k is bounded in Ω̄T ,

(1.11) Smin ≤ sh
k ≤ Smax in Ω̄T ,

2. The pressure functions are bounded in Ω̄T ,

(1.12) max
Ω̄T

{
|ph

1,k|+ |ph
2,k|

}
≤ C.
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Theorem 2 (Regularization limit). Let Assumptions 2.1 hold. For a
subsequence (δ, h) → 0, the regularized solutions (sh, ph

1 , p
h
2) converge weakly

in L2(0, T,H1(Ω)) to limit functions (s, p1, p2) that satisfy

∂ts−∇ · (k1(s)∇p1) = 0 in D′(ΩT ),(1.13)

−∂ts−∇ · (k1(s)∇p2) = 0 in D′(ΩT ),(1.14)

p1 − p2 = pc(s(.)) a.e. in ΩT .(1.15)

The standard boundary conditions (1.5) hold in the sense of traces. At the
outflow boundary we have p2 = 0, p1 ≤ 0 in the sense of traces and v1 ·n ≥ 0
in the distributional sense. Additionally, for a.e. t ∈ (0, T ) there holds the
variational inequality

−
∫

Ω

(Pc(s(t))− Pc(s
0)) +

∫
Ω

s(t)(φ1 − φ2)(t)−
∫

Ω

s0(φ1 − φ2)(0)

−
∫

Ωt

s ∂t(φ1 − φ2)−
∑

j

∫
Ωt

kj(s) |∇pj|2 +
∑

j

∫
Ωt

kj(s)∇pj∇φj ≥ 0

(1.16)

for all φj ∈ C1(ΩT ), φj = pD
j on ΓD, φ1 ≤ 0 and φ2 = 0 on Γout.

We will prove Theorem 1 in Section 2 and Theorem 2 in Section 3.

Remark (variational outflow condition). The variational inequality (1.16)
was introduced in [1] to define weak solutions for the outflow problem.

Concerning the equivalence of the original system and the equations of
Theorem 2 we note the following. Every strong solution of the original system
(1.1)–(1.5) is also a solution in the sense of Theorem 2. The variational
inequality (1.16) follows with the test function ϕj = pj − φj.

Vice versa, every sufficiently regular solution of the variational inequality
(1.16) with p2 = 0 and p1 ≤ 0 on Γout is a solution of the original system.
The distributional limit equations can be obtained from inequality (1.16) by
inserting φj = pj +ϕj with arbitrary ϕj ∈ C∞

0 (ΩT ). At the outflow boundary
one finds ∫

Γout

v1 · n (p1 − φ1) ≥ 0 ∀φ1 ≤ 0,

which implies the outflow conditions (1.4). For further considerations we
refer to [1], Lemma 2.7.

Possible generalizations. Many of the assumptions are made to have
C2,α-solutions of the reguarized system. One can treat pD

j ∈ L∞(ΩT ) ∩
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L∞((0, T ), H1(Ω)) and s0 ∈ L∞(Ω) with a < s0 < b a.e. on Ω with one
further regularization procedure.

Also more general domains can be treated. The problem are the contact
lines Γ̄D ∩ Γ̄N and Γ̄out ∩ Γ̄N , where different boundary conditions meet.
At these lines, in general, the time discrete solutions are not C1 and our
maximum principle can not be applied. But it is possible to introduce a
regularization of the domain and to approximate a general domain with one
where different boundary conditions meet only at interfaces that meet at a
90◦ angle. The essential condition is Γ̄D ∩ Γ̄out = ∅, which is also a physical
constraint. We regard also pD

2 ≥ 0 as a physical constraint; it guarantees that
no gas exits at ΓD. In the opposite case one should use an inflow condition
rather than a Dirichlet condition on ΓD.

Comparison to the literature

The one-phase flow equation or Richards’ equation with outflow boundary
condition and degenerate coefficient functions is studied e.g. in [2] and [19].
The existence result of [2] is based on a time discretization which is, in itself,
formulated with variational inequalities. Instead, [19] uses a stronger solution
concept which allows a more direct formulation of the outflow condition with
a defect measure. Approximate solutions are defined with a δ-regularization,
in particular, the regularized outflow relation (1.9) is introduced. Our contri-
bution combines both concepts in order to treat the two-phase flow system.
The regularization is as in [19], but the outflow condition can only be derived
as a variational inequality. The time discretization serves for two purpuses:
It allows to find smooth solutions in order to derive maximum principles by
classical means. Additionally, it allows the strong formulation of the nonlin-
ear regularized outflow condition in (1.9).

The two-phase flow equations are studied in the fundamental contribution
of Alt and DiBenedetto [1]. The aproach is much like that of [2], with a time
discretization, transformed pressures, and the use of variational inequalities.
The proofs are technically more involved since e.g. a vanishing saturation is
not excluded. We note that only the hydrophilic case is studied in [1]. The
authors assume that: (i) pc is strictly monotone to define si = si(p1 − p2)
between equations (1.1) and (1.2), (ii) pc ≤ pmax in (1.3), (iii) v1 6= 0 only if
pc = pmax in (1.6). Our interest here is outflow at capillary pressure 0, even
though positive capillary pressures are possible.

Dirichlet- and Neumann-boundary conditions are studied in [9], where,
once more, the permeability functions k1 and k2 are approximated by non-
degenerate versions. The main tool in that work are maximum principles
which guarantee that the regularized saturations remain bounded away from
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the degenerate points. Our aim is to treat the outflow boundary condition
along the same lines. Our first step is to establish bounds for the regularized
saturation and for the regularized pressure. These bounds allow to perform
the limit procedure much as in [9]. While in [9] testing procedures are used
to derive the estimates, the outflow condition forces us to use geometrical
techniques and to work with classical solutions.

Other existence results for the two-phase flow system can be found in
[3, 7], regularity results in [8], e.g. Hölder continuity of the saturation. These
contributions are based on the global pressure formulation of the problem,
exploiting that the global pressure solves a non-degenerate elliptic equation.
Accordingly, only Dirichlet- and Neumann conditions are studied, since out-
flow boundaries admit no boundary condition for the global pressure. We
mention at this point that we nevertheless use the global pressure as an
auxiliary variable in our derivation of the uniform bounds.

Regarding the interesting field of homogenization of the two-phase flow
system we mention [4, 6, 20], regarding numerical approaches see [11, 13, 16],
for fuel cell applications we refer to [12, 15] and the references therein. [16]
contains also a maximum principle for standard boundary conditions.

2 Uniform bounds

Aim of this section are bounds on the saturation and the pressures, bounds
that are independent of δ > 0 and h > 0. Typical coefficient functions are
illustrated in Figure 1, the precise assumptions are the following.

Assumption 2.1 (Assumptions on the coefficients). We assume that the
coefficients and their regularizations satisfy, for points 0 ≤ a < a0 < b ≤ 1
and constants c0, c1, K > 0:

(i) Degenerate coefficient functions. The permeabilities kj ∈ C0([0, 1]) sat-
isfy 0 ≤ kj ≤ K, k1 + k2 ≥ c0 > 0, with k1(s) = 0 ⇔ s ∈ [0, a] and
k2(s) = 0 ⇔ s ∈ [b, 1]. The capillary pressure pc ∈ C2,1((a, b),R)
satisfies pc(a0) = 0, ∂spc ≥ c1 > 0, and |pc(s)| → ∞ as s → a or
s→ b.

(ii) Regularized coefficient functions. The regularized permeabilities kδ
j ∈

C1,1([0, 1]) satisfy kδ
j ≥ kj and 0 < cδ ≤ kδ

j ≤ 2K with cδ depending
on δ. The capillary pressure function is regularized to pδ

c ∈ C2,1((0, 1))
with ∂sp

δ
c ≥ c1 > 0 and |pδ

c(s)| → ∞ for s→ 0 or s→ 1.

(iii) Convergence of the regularized coefficients. There holds kδ
j ↘ kj uni-

formly on [0, 1]. For every compact interval I ⊂ (a, b) there exists
δ0 = δ0(I) such that pδ

c = pc on I for all δ ≤ δ0.
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We will use the global pressure as e.g. [7]. It is defined as

(2.1) pδ
g := pδ

2 +

∫ s

a0

kδ(ξ) ∂sp
δ
c(ξ) dξ, kδ :=

kδ
1

kδ
1 + kδ

2

.

We recall that a0 is the saturation with vanishing capillary pressure, i.e.
pc(a0) = 0. Our maximum principle exploits the fact that the global pressure
solves the elliptic equation

(2.2) ∇ · ([kδ
1(s) + kδ

2(s)]∇pδ
g) = 0.

For ease of notation we omit in the following the superscript δ.

2.1 Existence and energy estimates

For the derivation of a priori estimates it is convenient to work with interpo-
lations of the time discrete solutions. For every k = 0, 1, ..., N − 1 and every
t ∈ (tk, tk+1], t = µtk + (1− µ)tk+1, we define the piecewise constant and the
piecewise affine interpolation as

s̄h(t) = sh
k+1(2.3)

ŝh(t) = µsh
k + (1− µ)sh

k+1.(2.4)

and in the same way we define p̄h
j and p̂h

j . Furthermore, we denote by pD,h
j

the constant interpolation of pD
j (tk). For the a priori estimates we define the

inverse of pc and the primitives

θδ = (pδ
c)
−1 : R→ (0, 1), Θδ(ρ) =

∫ ρ

0

θδ(ξ) dξ, P δ
c (σ) =

∫ σ

a0

pδ
c(ζ) dζ.

Lemma 2.2 (The time discrete regularized system). There exists a weak
solution sh

k, p
h
j,k of time discrete system (1.6)–(1.10). The interpolations

s̄h, p̄h
j satisfy the following estimates with a constant C > 0 independent of

δ > 0 and h > 0. ∫
ΩT

(kδ
1 |∇p̄h

1 |2 + kδ
2 |∇p̄h

2 |2) ≤ C,(2.5) ∫
ΩT

kδ
1 k

δ
2 (∂sp

δ
c)

2|∇s̄h|2 ≤ C,(2.6)

sup
[0,T ]

∫
Ω

P δ
c (ŝh(·, t)) ≤ C.(2.7)

The estimates hold also for the linear interpolations ŝh and p̂h
j . Every solution

has the regularity

(2.8) sh
k, p

h
j,k ∈ C2,α(Ω̄).
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Proof. The proof is straight-forward and sketched here to highlight the es-
sential steps.

Existence. A solution for the single time step can be constructed as the
fixed point of a map T : sold 7→ snew, where snew is a solution of problem
(1.6)–(1.8) with fixed coefficients kδ

j (s
old). The elliptic system for (p1, p2) and

snew = θδ(p1 − p2) can be solved with the variational formulation

inf
(ϕ1,ϕ2)

∫
Ω

{
1

2
kδ

1(s
old)|∇ϕ1|2 +

1

2
kδ

2(s
old)|∇ϕ2|2

+
1

h
Θδ(ϕ1 − ϕ2)−

sh
k−1

h
ϕ1 +

sh
k−1

h
ϕ2

}
.

Schauder’s fixed point theorem provides the existence of s with T (s) = s in
an appropriate ball.

A priori estimates in the time dependent problem. The estimates
are obtained by testing (1.6) with (p̄h

1 − p
D,h
1 ), testing (1.7) with (p̄h

2 − p
D,h
2 )

and adding. On the left-hand side we have

A :=

∫ T

0

∫
Ω

∂tŝ
h pδ

c(s̄
h)−

∫ T

0

∫
Ω

∂tŝ
h pδ

c(s
D,h)

=

∫ T

0

∫
Ω

∂tP
δ
c (ŝh) +

N−1∑
k=0

∫ tk+1

tk

∫
Ω

sh
k+1 − sh

k

h
(pδ

c(s̄
h)− pδ

c(ŝ
h))

−
∫ T

0

∫
Ω

∂tŝ
h pδ

c(s
D,h)

≥
∫

Ω

P δ
c (ŝh)(T )−

∫
Ω

P δ
c (s0)− C.

Here, we used the monotonicity of the capillary pressure pδ
c and the bound-

edness of pD
j and its time derivatives.

Comparing with the right-hand side yields

A = −
∫

ΩT

(kδ
1 |∇p̄h

1 |2 + kδ
2 |∇p̄h

2 |2)−
∫ T

0

∫
Γout

kδ
1(s̄

h)

δ
(p̄h

1)+ p̄h
1

+

∫
ΩT

kδ
1∇p̄h

1∇p
D,h
1 + kδ

2∇p̄h
2∇p

D,h
2 .

This yields (2.5) and (2.7), since the boundary integral is non-negative. The
estimate (2.6) for the saturation follows from (2.5).

10



Regularity. For any weak solution we consider, in a first step, (1.6) and
(1.7) as linear elliptic equations for ph

1,k and ph
2,k with bounded data f =

±(sh
k − sh

k−1)/h. Regularity theory implies the Hölder continuity of the pres-
sures, ph

j,n ∈ Cα(Ω̄). This result can be found e.g. in [10], Chapter 3, Theorem
14.1 for Dirichlet boundary data.

The improved regularity and relation (1.8) provide the Hölder continuity
of sh

k. Invoking again regularity theory, now with Hölder continuous coeffi-
cients, we conclude that ph

j,k have Hölder continuous second derivates in Ω.

The C2,α regularity holds also for sh
k due to smoothness of pc.

Concerning the boundary we note the following. The C2,α regularity
holds up to smooth Dirichlet boundaries, see [10], Chapter 3, Theorem 1.1.
Again, we use it also for smooth boundaries with an inhomogeneous Neu-
mann condition, i.e. on Γout. In our situation of parallelepipeds Ω we can
use a reflection principle and extend the solution as even functions across
Neumann boundaries (compare e.g. [17]). In this way, points on the Neu-
mann boundary become inner points and the C2,α-estimates remain valid on
Ω̄. Furthermore, points on Γ̄D ∩ Γ̄N and Γ̄out ∩ Γ̄N can be regarded as inner
points of ΓD and Γout, respectively.

2.2 Maximum principles

For the time discrete solution we now show that saturation and global pres-
sure take their maxima and minima at inflow or outflow boundaries.

The saturation. We show that sh attains its maximal and minimal value
on the parabolic boundary of the domain ΩT . We set Σ0 = Ω × {0}, Γ0 =
ΓD ∪ Γout, and Γ0,t = Γ0 × (0, t).

Lemma 2.3 (Maximum principle for the saturation). Every solution s̄h, p̄h
1 , p̄

h
2

of (1.6)–(1.10) satisfies the maximum principle

(2.9) max
Ω̄t

s̄h ≤ max
Σ̄0∪Γ̄0,t

s̄h

for all 0 ≤ t ≤ T . The analogous result holds for the minimum of s:

(2.10) min
Ω̄t

s̄h ≥ min
Σ̄0∪Γ̄0,t

s̄h.

Proof. We argue by contradiction. Let k be the smallest positive integer
such that (2.9) fails for t = tk. We find a point x0 ∈ Ω̄ such that sh

k has
its maximum in x0. By assumption, x0 6∈ Γ̄0. We recall that, due to the
reflection principle, points on the Neumann boundary can be regarded as
inner points. It is therefore sufficient to consider the case x0 ∈ Ω.
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Since x0 is a maximum, ∇sh
k(x0) = 0, such that equation (1.6) yields

k1(s
h
k)∆p

h
1,k(x0) =

sh
k(x0)− sh

k−1(x0)

h
> 0.

Analogously, (1.7) provides

k2(s
h
k)∆p

h
2,k(x0) < 0.

The capillary pressure pc is a strictly increasing function of the saturation
s and therefore also has an interior maximum at the point (x0, tk). We
therefore have

0 < ∆ph
1,k(x0)−∆ph

2,k(x0) = ∆[pc(s
h
k)](x0) ≤ 0,

the desired contradiction.
The same argument provides the result for minima.

The global pressure. The global pressure in the time discrete setting is

(2.11) ph
g,k := ph

2,k +

∫ sh
k

a0

kδ(ξ) ∂sp
δ
c(ξ) dξ, kδ :=

kδ
1

kδ
1 + kδ

2

.

Just as in the time continuous case, the global pressure satisfies an elliptic
equation. Indeed, (1.6)–(1.8) imply

(2.12) ∇ · ([kδ
1(s

h
k) + kδ

2(s
h
k)]∇ph

g,k) = 0.

Lemma 2.4 (Maximum principle for the global pressure). For every time
discrete solution, the global pressure satisfies an elliptic maximum principle.
There holds

min
Ω̄
ph

g,k ≥ min
Γ̄0

ph
g,k, max

Ω̄
ph

g,k ≤ max
Γ̄0

ph
g,k.(2.13)

for every k = 1, ..., N .

Proof. The elliptic equation (2.12) implies that extrema of the global pressure
lie on the boundary. For extrema on the boundary ΓN holds

∇ph
g,k · n = ∇ph

2,k · n+ kδ(sh
k)∇(ph

1,k − ph
2,k) · n = 0,

in contradiction to the Lemma of Hopf.
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2.3 Uniform bounds

Uniform bounds for pressure and saturation are derived with a detailed
analysis of the maxima and minima of the saturation. Due to the maxi-
mum principle of Lemma 2.3, we can assume that, for (xM , tM) ∈ Γ̄0,T and
(xm, tm) ∈ Γ̄0,T

s̄h(xM , tM) = M := max
Ω̄T

s̄h,(2.14)

s̄h(xm, tm) = m := min
Ω̄T

s̄h.(2.15)

By the strict monotonicity of the capillary pressure we also have the global
maximum and minimum of pδ

c(s̄
h) = p̄h

1 − p̄h
2 at the points (xM , tM) and

(xm, tm), respectively.

Upper bound for the saturation. Starting from the Dirichlet data, we
introduce numbers that will provide the uniform bounds. On the Dirichlet
boundary, pc and p2 are bounded by

pc,max := max

{
0, max

Γ̄D×[0,T ]
(pD

1 − pD
2 )

}
, p2,max := max

Γ̄D×[0,T ]
pD

2 ≥ 0,

which allows to define the numbers

pmax := p2,max + pc,max,

sc,max := p−1
c (pc,max) , smax := p−1

c

(
4K

k1(a0)
pmax

)
> sc,max.

The initial saturation is bounded by s0,max := maxΩ̄ s0.

Lemma 2.5. There exists δ0 > 0 such that, for all δ ≤ δ0, the saturation is
bounded from above,

(2.16) max
Ω̄T

s̄h ≤ Smax := max(smax, s0,max).

Proof. We choose I ⊂ (a, b) with smax, s0,max, sc,max ∈ I and then δ0 > 0
sufficiently small to have pδ

c = pc on I for all δ ≤ δ0. For a contradiction ar-
gument, let us assume that M > Smax. By choice of Smax and the maximum
principle for s in Lemma 2.3, we necessarily have xM ∈ Γ̄out.

Along the Dirichlet boundary, the global pressure satisfies

max
Γ̄D

p̄h
g(·, tM) ≤ p2,max +

∫ sc,max

a0

kδ ∂sp
δ
c

≤ p2,max +

∫ sc,max

a0

∂spc = pmax.

13



On the other hand, in the maximum with saturation M > Smax

p̄h
g(xM , tM) =

∫ M

a0

kδ ∂sp
δ
c ≥

1

4K

∫ M

a0

kδ
1 ∂sp

δ
c ≥

kδ
1(a0)

4K
pδ

c(M) > pmax,

since pδ
c(M) > pδ

c(smax) = pc(smax) and kδ
1(a0) > k1(a0) for all δ ≤ δ0 by

construction. We find that xM is not on the Dirichlet boundary. With the
maximum principle for the global pressure of Lemma 2.4 we conclude that,
at time t = tM , also the global pressure p̄h

g must attain its global maximum
on the outflow boundary Γ̄out.

Since p̄h
2 = 0 on Γout, saturation and global pressure are in a monotone

relation on Γout. Therefore they have their maxima at the same point xM ∈
Γ̄out,

max
Ω̄

p̄h
g(·, tM) = max

Γ̄out

p̄h
g(·, tM) = p̄h

g(xM , tM).

Maximality of the functions together with Hopf’s Lemma (p̄h
g(·, tM) satisfies

an elliptic equation and is not constant on Ω̄) implies

n · ∇p̄h
g(xM , tM) > 0,(2.17)

n · ∇(p̄h
1 − p̄h

2)(xM , tM) ≥ 0.(2.18)

Exploiting the definition of the global pressure and kδ ∂sp
δ
c∇s̄h · n =

kδ∇(p̄h
1 − p̄h

2) · n we find, with 1 ≥ kmax := kδ(M) > 0,

0 < n · ∇p̄h
g(xM , tM)

= n · ∇p̄h
2(xM , tM) + kmax n · ∇(p̄h

1 − p̄h
2)(xM , tM)

= n · ∇p̄h
1(xM , tM)− (1− kmax) n · ∇(p̄h

1 − p̄h
2)(xM , tM)

≤ n · ∇p̄h
1(xM , tM).

This is in contradiction to the outflow boundary condition n · ∇p̄h
1 ≤ 0.

Lower bound for the saturation. In order to establish a lower bound
for s̄h we define

pc,min := min
Γ̄D×[0,T ]

(pD
1 − pD

2 ),

and
sc,min := p−1

c (pc,min), s0,min := min
Ω̄
s0.

Lemma 2.6. There exists δ1 > 0 such that, for all δ ≤ δ1, the saturation is
bounded from below,

(2.19) min
Ω̄T

s̄h ≥ Smin := min(smin, s0,min, a0).
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Proof. We choose I ⊂ (a, b) with smin, s0,min, a0 ∈ I and δ1 > 0 sufficiently
small such that pδ

c = pc on I for all δ ≤ δ1. For a contradiction we assume
m < Smin such that s̄h attains its minimal value m in the point (xm, tm) on
the outflow boundary Γ̄out.

We first show that for t = tm the global pressure p̄h
g = p̄h(·, tm) also has

its minimum with respect to Ω̄ in xm ∈ Γ̄out. By the definition of p̄h
g and the

assumption on the Dirichlet data we have

min
Γ̄D

p̄h
g ≥

∫ sc,min

a0

kδ ∂sp
δ
c >

∫ m

a0

kδ∂s p
δ
c = min

Γ̄out

p̄h
g(·, tm) = p̄h

g(xm, tm).

By minimality of the saturation and Hopf’s Lemma for the global pressure
we find

n · ∇ph
g(xm, tm) < 0,(2.20)

n · ∇(p̄h
1 − p̄h

2)(xm, tm) ≤ 0.(2.21)

Therefore, with 0 < kmin := kδ(m) ≤ 1,

0 > n · ∇ph
g(xm, tm)

= n · ∇p̄h
2(xm, tm) + kmin n · ∇(p̄h

1 − p̄h
2)(xm, tm)

= n · ∇p̄h
1 − (1− kmin) n · ∇(p̄h

1 − p̄h
2)(xm, tm)

≥ n · ∇p̄h
1 .

We find that outflow occurs in the minimum, the outflow condition implies
p̄h

1(xm, tm) = pδ
c(m) > 0. This is in contradiction with m < Smin ≤ a0.

Bounds for the pressures. Since the capillary pressure pc is monotoni-
cally increasing, the bounds for the saturation imply

(2.22) pc(Smin) ≤ pδ
c(s̄

h) ≤ pc(Smax) on Ω̄T

for all 0 < δ ≤ min(δ0, δ1). We now show that the pressures p̄h
j can be

estimated with the help of the capillary pressure bounds.

Lemma 2.7. The following estimates hold for the pressures p̄h
j , j = 1, 2.

pc(Smin) ≤ p̄h
1 ≤ pc(Smax) + p2,max,(2.23)

pc(Smin)− pc(Smax) ≤ p̄h
2 ≤ pc(Smax)− pc(Smin) + p2,max(2.24)

for all 0 < δ ≤ min(δ0, δ1).
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Proof. From Lemma 2.4 and the boundary condtions for p̄h
2 we obtain

p̄h
2 +

∫ s̄h

a0

kδ∂spc = p̄h
g ≤ p2,max +

∫ Smax

a0

kδ∂spc

in Ω̄T . Thus we get in Ω̄T , since kδ ≤ 1,

p̄h
2 ≤ p2,max +

∫ Smax

s̄h

kδ ∂spc ≤ p2,max +

∫ Smax

s̄h

∂spc

≤ p2,max + pc(Smax)− pc(s̄
h)

Because of s̄h ≥ Smin we have the second inequality of (2.24). Furthermore,
we may insert pc(s̄

h) = p̄h
1 − p̄h

2 on the right hand side. Then p̄h
2 cancels on

both sides and we arrive at the upper bound of (2.23).
In the same way the lower bounds can be established. The maximum

principle for p̄h
g and p2 ≥ 0 on Γ0 provide

p̄h
2 +

∫ s̄h

a0

kδ ∂spc = p̄h
g ≥

∫ Smin

a0

kδ ∂spc,

and therefore

p̄h
2 ≥

∫ Smin

s̄h

kδ ∂spc ≥ pc(Smin)− pc(s̄
h)

in Ω̄T . Monotonicity of pc and s̄h ≤ Smax imply the first inequality in (2.24).
Inserting pc(s̄

h) = p̄h
1 − p̄h

2 yields the lower bound for p̄h
1 of (2.23).

Lemmas 2.5–2.7 imply the uniform bounds for solutions of (1.6)–(1.10).
This concludes the proof of Theorem 1.

3 Approximation result

3.1 Convergence and compactness

Due to the maximum principle, the interpolations s̄h and ŝh, respectively,
are bounded away from the critical values where the coefficient functions
degenerate. Therefore, the permeability functions kδ

j are uniformly positive,
kδ

j (s
δ,h) ≥ c > 0 with a constant c independent of δ and h, and the capillary

pressure and its derivative remain bounded. We thus have uniform bounds
for the saturations s̄h and the pressures p̄h

j in L2(0, T ;H1(Ω)), j = 1, 2.
The following proposition summarizes the convergences which hold due

to the a priori estimates and the boundedness of the regularized quantities.
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Proposition 3.1 (Convergences and limit functions). For every sequence
h→ 0 and δ = δ(h)→ 0 there exists a subsequence h→ 0 and limit functions
s ∈ L∞(ΩT ) ∩ L2(0, T ;H1(Ω)), pj ∈ L2(0, T ;H1(Ω)) and vj ∈ L2(ΩT ,Rn)
such that:

Convergence of the saturation.

ŝh → s and s̄h → s in L2(ΩT ),(3.1)

s̄h ⇀∗ s in L∞(ΩT ), ∇s̄h ⇀ ∇s in L2(ΩT ).(3.2)

Convergence of the coefficient functions.

kδ
j (s̄

h)→ kj(s), pδ
c(s̄

h)→ pc(s) in L2(ΩT ),(3.3)

P δ
c (ŝh)→ Pc(s) =

∫ s

a0

pc(ζ) dζ in L2(ΩT ).(3.4)

Convergence of the pressures and velocities.

p̄h
j ⇀ pj in L2(0, T ;H1(Ω)),(3.5)

v̄h
j = −kδ

j (s̄
h)∇p̄h

j ⇀ vj = −kj(s)∇pj in L2(ΩT ).(3.6)

Proof. The most important result is the strong convergence of (3.1). The-
orem 1 provides the non-degeneracy of the coefficients, thus the estimates
(2.5) and (2.6) imply uniform bounds for

s̄h, p̄h
1 , p̄

h
2 ∈ L2(0, T ;H1(Ω)).

The L2H1-norm of ŝh is bounded by the L2H1-norm of s̄h. This fact, and
the evolution equations (1.6)–(1.7) imply uniform bounds for

ŝh ∈ L2(0, T ;H1(Ω)), ∂tŝ
h ∈ L2(0, T ;H−1(Ω)).

We can apply the compactness theorem of Lions-Aubin (see e.g. [21]) and
find the desired strong convergence of ŝh. Lemma 3.2 below provides the
strong convergence of s̄h.

The weak convergences of (3.2), (3.5), and (3.6) follow from the uniform
bounds for an appropriate subsequence.

The sequence kδ
j converges uniformly to kj on [0, 1] by Assumption 2.1, s̄h

converges strongly due to (3.1). This implies the first convergence of (3.3).
For the second we exploit the uniform convergence of pδ

c → pc on compact
subsets of (a, b) and the uniform bounds of Theorem 1. The same facts imply
(3.4).
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Lemma 3.2 (Comparison of interpolations). Let X be a Hilbert space and
T > 0 a number, h = T/N → 0 be a sequence with N ∈ N. Let tk = hk and
fh

k ∈ X for k = 0, 1, ..., N . We consider the piecewise affine interpolation f̂h

and the piecewise constant interpolation f̄h of the point values fh
k ∈ X,

f̄h ∈ Vh := {f̄h ∈ L2(0, T ;X)|f̄h is constant on all intervals (tk, tk+1]},
f̂h ∈ Wh := {f̂h ∈ L2(0, T ;X)|f̂h is affine on all intervals [tk, tk+1]}.

In this situation, the strong convergence

f̂h → g in L2(0, T ;X)

implies the convergences

f̄h → g in L2(0, T ;X) and(3.7)

h ∂tf̂
h → 0 in L2(0, T ;X).(3.8)

Proof. Step 1. We claim that

(3.9) ‖f̄h‖2L2(0,T ;X) ≤ 6 ‖f̂h‖2L2(0,T ;X)

for all f̄h ∈ Vh and f̂h ∈ Wh that agree on the points tk. The calculation is
elementary,

‖f̂h‖2L2((0,T ),X) =
∑

k

h

∫ 1

0

‖tfh
k + (1− t)fh

k+1‖2X

=
∑

k

h

∫ 1

0

(t2‖fh
k ‖2X + (1− t)2‖fh

k+1‖2X) + 2h

∫ 1

0

t(1− t)〈fh
k , f

h
k+1〉

=
∑

k

h

3
(‖fh

k ‖2X + ‖fh
k+1‖2X + 〈fh

k , f
h
k+1〉)

≥ 1

6

∑
k

h(‖fh
k ‖2X + ‖fh

k+1‖2X) ≥ 1

6

∫ T

0

‖f̄h‖2X .

Step 2. Given g ∈ L2(0, T ;X), we construct the averages

gh
k :=

1

h

∫ tk

tk−1

g(t) dt

and the corresponding piecewise affine and constant interpolations ĝh ∈ Wh

and ḡh ∈ Vh. We use the strong convergences of interpolations, ĝh → g and
ḡh → g in L2(0, T ;X). By assumption,

‖f̂h − ĝh‖L2(0,T ;X) ≤ ‖f̂h − g‖L2(0,T ;X) + ‖g − ĝh‖L2(0,T ;X) → 0.
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Inequality (3.9) implies

‖f̄h − ḡh‖2L2(0,T ;X) ≤ 6‖f̂h − ĝh‖2L2(0,T ;X) → 0.

Another application of the triangle inequality yields

‖f̄h − g‖L2(0,T ;X) ≤ ‖f̄h − ḡh‖L2(0,T ;X) + ‖ḡh − g‖L2(0,T ;X) → 0.

Step 3. Convergence (3.8) follows from

‖f̄h − f̂h‖2L2(0,T ;X) =
∑

k

h

∫ 1

0

‖fh
k+1 − fh

k ‖2X t2 dt

=
∑

k

h

3
‖fh

k+1 − fh
k ‖2X =

1

3
‖h ∂tf̂

h‖2L2(0,T ;X).

This concludes the proof.

3.2 Equations for the limit functions

We write (1.6) in the form

∂tŝ
h = ∇ · (kδ

1(s̄
h)∇p̄h

1,k).(3.10)

Proposition 3.1 allows to take the limit and we find (1.13). The same argu-
ment yields (1.14). The constitutive relation (1.15) follows from the identity
pδ

c(s̄
h) = p̄h

1 − p̄h
2 by passing to limits according to (3.3) and (3.5).

The limit saturation satisfies the relation s(0) = s0 for t = 0 in the
weak sense. With the convergences of Proposition 3.1 we have for any φ ∈
C∞

0 (Ω× [0, T ))

0 =

∫
ΩT

(ŝh ∂tφ+ v̄h
1 ∇φ) +

∫
Ω

s0 φ(0)→
∫

ΩT

(s ∂tφ+ v1∇φ) +

∫
Ω

s0 φ(0).

On the Dirichlet boundary ΓD we can take the weak L2(ΓD,T )-limit

0 = p̄h
j − p̄

D,h
j ⇀ pj − pD

j ,

due to the weak convergence of p̄h
j and its trace. In the same way the Dirichlet

condition for p2 on the outflow boundary is obtained.
Concerning the Neumann condition we calculate, using the regularized

equations with the notation ŝh
1 = ŝh, ŝh

2 = 1− ŝh,

0 =

∫
ΓN

v̄h
j · n φ =

∫
ΩT

ŝh
j ∂tφ+

∫
ΩT

v̄h
j ∇φ

for any φ ∈ C∞
0 ((Ω ∪ ΓN) × (0, T )). Passing to the limit on the right-hand

side yields the corresponding expression for the limit functions which defines
the normal velocity v · n on the boundary in distributional sense.
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The outflow boundary condition

For the proof of Theorem 2 it remains to verify the weak formulations of the
outflow condition (1.4).

Regarding v1 · n ≥ 0 on Γout we use an arbitrary function φ ∈ C∞
0 ((Ω ∪

Γout)× (0, T )) with φ ≥ 0 and calculate

0 ≤
∫

Γout,T

v̄h
1 · nφ =

∫
ΩT

ŝh ∂tφ+

∫
ΩT

v̄h
1 ∇φ(3.11)

→
∫

ΩT

s ∂tφ+

∫
ΩT

v1∇φ =

∫
Γout,T

v1 · nφ.

Regarding p1 ≤ 0 on Γout we use φ ≥ 0 as above.∫
Γout,T

(p̄h
1)+ φ = −

∫
Γout,T

δ∇p̄h
1 · nφ = δ

∫
Γout,T

[kδ
1(s̄

h)]−1v̄h
1 · n φ.

The saturations s̄h are bounded away from the degeneracy of k1, hence
[kδ

1(s̄
h)]−1 is bounded by a constant Ck independent of δ and h. Further-

more, the equality in (3.11) implies the boundedness of the outflow integral.
We conclude, for φ ≥ 0,∫

Γout,T

p1 φ←
∫

Γout,T

p̄h
1 φ ≤

∫
Γout,T

(p̄h
1)+ φ ≤ δ Ck

∫
Γout,T

v̄h
1 ·nφ ≤ Cδ(h)→ 0.

This yields p1 ≤ 0 on Γout in the sense of traces.

It remains to verify the variational inequality (1.16). Let φj ∈ C1(ΩT ),
j = 1, 2 be test functions, φj = pD

j on ΓD,T , with φ1 ≤ 0 and φ2 = 0 on
Γout,T . We denote by φ̄h

j the piecewise constant interpolations and multiply
(1.6) with (φ̄h

1 − p̄h
1) and (1.7) with (φ̄h

2 − p̄h
2). We obtain∫

Ωt

∂tŝ
h (φ̄h

1 − p̄h
1) +

∫
Ωt

kδ
1∇p̄h

1 ∇(φ̄h
1 − p̄h

1) =

∫
Γout,t

kδ
1∇p̄h

1 · n (φ̄h
1 − p̄h

1),

−
∫

Ωt

∂tŝ
h (φ̄h

2 − p̄h
2) +

∫
Ωt

kδ
2∇p̄h

2 ∇(φ̄h
2 − p̄h

2) = 0.

Summing the equations and inserting the regularized boundary condition
(1.9) yields∫

Ωt

∂tŝ
h((φ̄h

1 − p̄h
1)− (φ̄h

2 − p̄h
2)) +

2∑
j=1

∫
Ωt

kδ
j (s̄

h)∇p̄h
j ∇(φ̄h

j − p̄h
j )

= −
∫

Γout,t

kδ
j (s̄

h)
1

δ
(p̄h

1)+ (φ̄h
1 − p̄h

1) ≥ 0,

(3.12)
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where the inequality follows with a distinction of two cases, exploiting φ1 ≤ 0
on Γout,t. Using p̄h

1 − p̄h
2 = pδ

c(s̄
h) we define

Iδ,h
1 :=

∫
Ωt

∂tŝ
h (φ̄h

1 − φ̄h
2), Iδ,h

2 := −
∫

Ωt

∂tŝ
h pδ

c(s̄
h),

Iδ,h
3 :=

2∑
j=1

∫
Ωt

kδ
j (s̄

h)∇p̄h
j ∇(φ̄h

j − p̄h
j ),

and have Iδ,h
1 + Iδ,h

2 + Iδ,h
3 ≥ 0. It remains to pass to the limit in each term.

Convergence of Iδ,h
1 . With ψ := φ1 − φ2 we write

Iδ,h
1 =

∫
Ωt

∂tŝ
h (ψ̄h − ψ) +

∫
Ωt

∂tŝ
h ψ.

In the first term we exploit ‖ψ̄h−ψ‖L2(ΩT ) = O(h) and h ∂tŝ
h → 0 in L2(ΩT )

for h→ 0. The latter follows from (3.8) of Lemma 3.2. In the second integral
we integrate by parts to obtain∫

Ωt

∂tŝ
h ψ = −

∫
Ωt

ŝh ∂tψ +

∫
Ω

ŝh(t)ψ(t)−
∫

Ω

s0ψ(0).

By the strong convergence of ŝh we have, for almost every t

(3.13) lim
h→0

Iδ,h
1 = −

∫
Ωt

s∂tψ +

∫
Ω

s(t)ψ(t)−
∫

Ω

s0ψ(0).

Convergence of Iδ,h
2 . We insert the term pδ

c(ŝ
h) such that

Iδ,h
2 = −

∫
Ωt

∂tŝ
h pδ

c(ŝ
h)−

∫
Ωt

∂tŝ
h(pδ

c(s̄
h)− pδ

c(ŝ
h))

≤ −
∫

Ω

(P δ
c (ŝh(t))− P δ

c (s0)),

since the second integral is non-negative due to the monotonicity of the cap-
illary pressure. The convergence (3.4) yields, for a.e. t,

(3.14) lim inf
h→0

Iδ,h
2 ≤ −

∫
Ω

(Pc(s(t))− Pc(s0)).

Convergence of Iδ,h
3 . We have

Iδ,h
3 =

2∑
j=1

∫
Ωt

kδ
j (s̄

h)∇p̄h
j ∇φ̄h

j −
∫

Ωt

kδ
j (s̄

h) |∇p̄h
j |2,
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where we can directly pass to the limit in the first integral by (3.3) and (3.5).

The convergence (kδ
j (s̄

h))
1
2 ∇p̄h

j ⇀ (kj(s))
1
2 ∇pj in L2(ΩT ) and the weak lower

semicontinuity of the L2(ΩT )-norm implies

(3.15) lim inf
h→0

Iδ,h
3 ≤

2∑
j=1

∫
Ωt

kj(s)∇pj∇φj −
∫

Ωt

kj(s) |∇pj|2.

The relation
0 ≤ lim inf

h→0
(Iδ,h

1 + Iδ,h
2 + Iδ,h

3 )

together with the expressions in (3.13)–(3.15) provide the variational inequal-
ity (1.16). This concludes the proof of Theorem 2.

Further remarks and conclusions.

Separate limits. Our approach allows any combined convergence (h, δ)→
0. It is also interesting to study the limit h → 0 with δ > 0 fixed, i.e. to
search for time-continuous solutions of the δ-regularized problem. We remark
that even in the case of a regularized outflow condition, the validity of the
boundary condition in the limit h → 0 is not clear. The same problem
appears in the limit δ → 0 with h > 0 fixed.

Bounded capillary pressure. We have assumed that the pc-curve is un-
bounded at a and at b, but the opposite case is also interesting and relevant
in applications. In the case of a bounded pc-function one may approximate
the pc-curve with a sequence of unbounded functions pδ

c. Our a priori esti-
mates can be applied to the approximate problems, but the limit procedure
becomes intricate due to the degenerate coefficient functions.

Conclusions. In this contribution we have derived uniform bounds for
solutions of the two-phase flow system with an outflow condition. At first
sight, one may think that such estimates follow easily from the parabolic
character of the equations. Nonetheless, they are hard to prove since neither
p1 nor p2 satisfies a maximum principle, and the global pressure satisfies no
boundary condition on the outflow boundary.

We used the uniform estimates to study initial saturations that are not
in the degenerate regime. In this case, the equations remain non-degenerate
for all times and we find solutions of the original outflow problem.
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