
MODELLING OF INTERFACES IN UNSATURATED POROUS

MEDIA

Mario Ohlberger

Mathematisches Institut, Universität Freiburg
Herrmann-Herder-Str. 10, D-79104 Freiburg, Germany

Ben Schweizer

Mathematisches Institut, Universität Basel
Rheinsprung 21, CH-4051 Basel, Switzerland

Abstract. In this contribution we discuss interface conditions for unsaturated flow
in porous media. Typical applications are subsurface flow and technical applications
like fuel cells. After an analysis of suitable interface conditions at the contact interface
of two porous materials of different kind, we introduce a model for outflow boundary
conditions at the interface of a porous material with open space. Finally, we discuss
an existence result for unsaturated flow, supplemented with the outflow conditions.

1. Introduction. Our objective in this contribution is the discussion and the anal-
ysis of boundary conditions for unsaturated two phase flow in porous media on a
macroscopic level. Examples for two phase flow in porous media are the simultane-
ous transport of water and oil, water and air, or any liquid together with any gas.
Such flow processes occur for example in groundwater modelling, oil recovery, and
environmental problems. In addition, they are of great importance in industrial
applications, such as filter processes, flow through catalysts, or the gas and water
flow within the diffusion medium of a fuel cell.

If one of the fluid phases is gas and the other is a liquid, in many physical
situations the variations in the gas pressure can be neglected in comparison with
the variations of the liquid pressure. In this case one speaks of an unsaturated flow
process and modells the evolution by neglecting the pressure driven motion of the
gas phase. In this article we concentrate on such unsaturated flow; for simplicity of
the presentation we assume that the liquid phase is water.

Our interest are unsaturated flows in situations where the porous medium is in
contact with either another porous medium (with differing flow properties), or —
and this is even more important — if it is in contact with an open space filled by
one fluid phase. An example of such a problem is the gas and water flow within
the porous diffusion layer of a fuel cell, which is in contact with a free flow in the
supplying gas channels. The geometry of a fuel cell system is displayed in Figure 5.

Bulk equations. Before we turn our attention to interface and boundary condi-
tions for unsaturated flow, let us introduce the bulk equations for two phase flow
and unsaturated flow in a porous media (see [3, 6]). To fix notations we denote the
region occupied by the porous material by Ω ⊂ R

n. The macroscopic behaviour of
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two phase flow is characterized by the pressures pα(x, t), α = w, g of the water and
the gas phase, the macroscopic phase velocities vα(x, t), α = w, g, and the satura-
tion s(x, t) of the water phase which is defined as the volume fraction of pore space
occupied by water. As we assume that the pore space is fully occupied with water
and gas, the gas saturation is given by 1 − s.

The first model assumption is that the phase velocities are given by Darcy’s law
as

vα(x, t) = −kα(s)∇pα. (1)

The bulk equations for two phase gas–water flow are then given by the conservation
law for the two materials and read

∂ts = ∇(kw(s)∇pw) + fw, (2)

∂t(1 − s) = ∇(kg(s)∇pg) + fg. (3)

Here, fα(x, s), α = w, g are sources and kα(x, s), α = w, g denotes effective perme-
abilities of the water or gas phase, respectively. Note that for simplicity we assumed
a constant porosity of the material such that all quantities are rescaled with respect
to the porosity. In order to close the system we assume a material law for the
capillary pressure pc := pw − pg,

pw − pg = pc(s) (4)

for some given function pc, which might also depend on the position in space,
x ∈ Ω. This law is motivated by the pore scale dynamics: The Laplace law of
surface tension implies that the pressure difference depends linearly on the mean
curvature of the interfaces between water and gas inside the microscopic pores. The
curvature of these free boundaries depends on the typical size of the pores where
interfaces are located. This, in turn, is a quantity that depends on the saturation,
which motivates law (4). Regarding analysis of two phase flow equations we refer
to [7], [5], and the references therein.

In the situation of unsaturated flow, we assume pg = const, such that ∇pw =
∇pc(s). This results in the so called Richards equation for unsaturated flow with
unknown water saturation s,

∂ts = ∇ · (k(s)∇p) + f, p ∈ pc(s). (5)

In Figure 1 the typical behaviour of the permeability – saturation, and of the
capillary pressure – saturation relationship is displayed for two different materials.
Note that with our notation the capillary pressure is positive for a hydrophobic
material and negative for a hydrophilic one. A material that consits of a mixture of
hydrophilic and hydrophobic parts my exhibit a hydrophilic or hydrophobic macro-
scopic behaviour depending on the water saturation (see [13]). A pc – s curve for
such mixed materials is displayed on the right hand side of Figure 1. In all those
cases the water permeability is zero below some critical residual saturation s = a.
This reflects the physical situation where water pools are contained in the porous
material that are not connected through pores any more (we neglect that the same
effect may occur on the right end of the interval). Thus, no water flow is possible
and we denote such regions (with s ≤ a) as dry regions. The capillary pressure
tends to minus infinity for s approaching a from above, and it is not defined any
more in dry regions. On the other hand, we assume that for s → 1 the capillary
pressure either tends to plus infinity, or that it converges to a finite value. In the
latter case we regard it as a multivalued function in s = 1, i.e. pc(1) = [p∗,∞).
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The multivalued character not only simplifies notations in the interface conditions,
but it also reflects a physical fact, namely that any high pressure can be realised in
a saturated medium. In many applications one uses the inverse relation, s = Θ(p),
with Θ = p−1

c . In this formulation, Θ is defined on the whole real axis and yields a
unique saturation for all pressure values.

Regarding a classical existence results for the unsaturated flow equations we refer
to [1].
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Figure 1. Possible shapes of the functions pc(s) and k(s), a hy-
drophilic material on the left, a mixed material on the right. In
the hydrophilic case, at a vanishing exerted pressure p = 0, the
material is completely filled with water, s = 1. In this case, the
capillary pressure is multivalued, pc(1) = [0,∞). In the mixed ma-
terial there are hydrophobic regions inside the material that are
getting filled with water only when a positive pressure is exerted.

We note that in a saturated material (i.e. s = 1), the unsaturated flow equation
reduces to the linear Darcy equation,

−∇ · (k∇p) = f, (6)

with a fixed permeability k = k(1).

Methods of measuring the capillary pressure – saturation relationship.

We will now describe two traditional methods for measuring the capillary pressure
– saturation relationship. The first one is called desorption method, the second
one is the centrifuge method (see [9]). Both methods are schematically displayed
in Figure 2 and 3. We recall these experiments in order to emphasize that the
interpretation of the experiment needs an understanding of interface conditions —
in one case between the porous medium and a membrane, in the other between the
porous medium and open space.

In the desorption method, the porous sample under investigation rests on a semi-
permeable membrane which allows the water phase to flow through, but not the gas
phase. The surrounding of the sample is occupied by gas which is kept at a controlled
pressure. Instead, the water phase may exit the sample through the membrane
and is thus in contact with the atmospheric pressure below the membrane. For
each defined pressure of the gas, the system tends to an equilibrium situation where
water flow stops and the amount of water remaining in the sample can be measured.
Altering the pressure of the gas yields the relation between capillary pressure and
saturation.



4 MARIO OHLBERGER AND BEN SCHWEIZER

In the centrifuge method, the sample is first saturated with the water phase and
then centrifuged in a container, surrounded by gas. At constant speed of rotation the
amount of water that leaves the porous sample is measured. From this measurement
the capillary pressure – saturation relationship can be computed.
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Figure 2. The desorption method.

Outline of this contribution. In the next section we are going to present and
discuss classical interface conditions for two phase flow, when two porous media with
differing material properties are in contact. In a next step, we introduce suitable
boundary conditions for the outflow of water from an unsaturated porous medium
into open space filled with either water or gas. Finally, in Section 3, we discuss an
existence result for the Richards equation, supplemented with the outflow boundary
condition from Section 2.

2. Interface conditions. We are concerned with appropriate model equations in
the case that the boundary of the porous material is (i) an interface with another
porous material and (ii) an interface with open space, filled with either gas or liquid.
An example where the interface conditions are of utmost importance is the effect
of oil trapping, see [12] and the references therein.

2.1. Contact of two porous materials. Let us first look at interfaces where two
porous materials of different kind are in contact. On the interface, two transmission
conditions are required. Physically, these are the continuity of the fluid pressures
(balance of forces) and the continuity of the flux (conservation of mass). For a
derivation of these conditions we refer to [3] and [4]. We note that in the situation
of unsaturated flow also the gas phase has a constant pressure across the interface.
With the notation of Section 1 this yields

p|side 1 = p|side 2, (7)

n · (k(s)∇p)|side 1 = n · (k(s)∇p)|side 2, (8)

where n denotes a unit outer normal to the material interface.
As the capillary pressure curve is a material property that differs from material

1 to material 2, condition (7) might enforce a jump of the water saturation s across
the material interface. In the case that all expressions below are single valued, the
jump is determined by the relation

s|side 2 = p−1
c |side 2(pc|side 1(s|side 1)),

in which the indices 1 and 2 may also be exchanged. In Figure 3 the determination
of the jump condition for s is sketched for different materials on either side.
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Figure 3. Left: Illustration of the centrifuge method to deter-
mine the capillary pressure law. Right: Diagram of the capillary
pressure curves for two mixed porous media of different kind, and
determination of the saturation jump at the interface.

Figure 4. Two extreme cases for the interface condition. On the
left, the contact of medium 1 with a very hydrophobic material, on
the right, the contact with a very hydrophilic material.

It is interesting to discuss three special cases in which the interface condition does
not reduce to a jump condition for the saturation, but to either a Neumann bound-
ary condition, a Dirichlet boundary condition, or a different interface condition. For
simplicity we assume that the value of a is the same for both materials.

A. Contact with a very hydrophobic material. Let material 2 be very hydrophobic
in comparison with material 1, to be precise, let pc,1(s) ∈ pc,2(a) for all values
s ∈ (a, 1). In this case, the jump relation for the saturation always yields s = a in
material 2. Thus no water is able to penetrate into material 2 and hence a no flux
Neumann boundary condition is realized (see left of Figure 4).

B. Contact with a very hydrophilic material. On the other hand, let material 2 be
very hydrophilic in comparison with material 1 such that the jump relation for the
saturation always yields s = 1 on side 2. Thus material 2 is filled with water only
and the flow in material 2 can be modelled with the Darcy equation (6) (see right
of Figure 4).

C. Contact with a thin hydrophilic material. Let us assume the situation of B and,
in addition, that the hydrophilic material 2 is very thin, just as in the desorption
measurement method. In this case, the water pressure in material 2 can be pre-
scribed by the surrounding pressure of material 2 and hence a Dirichlet condition
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p = pout is realized at the interface to material 1. To make the argument complete,
it must by argued as in the next subsection that the pressure in the membrane
indeed coincides with the outside pressure.

2.2. Contact of a porous material with a gas surrounding. We are presenting
an argument which provides the outflow boundary conditions. The conditions are
used e.g. in the analysis of [2], for another description of the droplet effect we refer
to [8], [10].

The droplet argument. We have to analyze the pore-scale situation; in our descrip-
tion we assume that the water is hydrophilic, but the arguments carry over to a
hydrophobic material. In the hydrophilic case, inside the material, the small pores
are filled with water, the large pores with air, both phases occupy a connected set
in the pore space. Furthermore, both phases are in contact with the boundary of
the medium. At the end-points of pores that are filled with gas, the equality of the
gas pressures ensures the constant gas pressure inside the medium. Interesting are
those points at the boundary of the medium, where a water filled pore ends. Two
cases may occur.

droplet with
"large" curvature

Figure 5. Left: Illustration of the droplet argument. The water
drop sits at the macroscopic boundary of the material and has a
large curvature in comparison with the water – air interfaces inside
the capillaries. Right: Computational grid of a fuel cell segment.

(i) At all those points, the pore radius is so small that the water is kept inside
the pore due to a high curvature of the water-gas interface. In this case, no water
leaves the medium.

(ii) At some of those points, the water leaves the pore into the void space. In
this case, a droplet forms as indicated in Figure 5. Since the drop is large compared
to the pore scale, the curvature is small compared to the curvature of interfaces
inside the pores. This means that the pressure difference between water phase and
gas phase vanishes.
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Effective equations. Based on the above considerations it is now easy to complete
the outflow conditions. We claim that we should impose as effective equations

v · n ≥ 0, (9)

p ≤ 0, (10)

(v · n) · p = 0. (11)

Condition (9) is clear since from the gas surrounding no water can enter the porous
medium. Regarding (10) we note that in the physical situation of (ii) we have a
pressure difference pw − pg = 0, in our normalization p = 0. A higher pressure can
not be achieved: A pressure p > 0 would result in a fast outflow of water until the
pressure is fallen to p = 0. Finally, equation (11) reflects the fact that we have
either the situation (i) and therefore v · n = 0, or situation (ii) and therefore p = 0.

Remark on hydrophobic materials. The above reasoning regarding (10) fails in the
case of a hydrophobic material, i.e. for p−1

c (0) = a. In this case we expect that water
leaves fastly the medium, at least those pores that are close to the boundary. But
once we have a low saturation in the vicinity of the boundary, the low permeability
inhibits the flow towards the boundary. The boundary conditions in this case are
not clear.

2.3. Contact of a porous material with water surrounding. As a last case
we have a look at boundary conditions in the case that the medium is immersed in
water. Since the water filled pores are in contact with the outside water, the pressure
p must coincide with the outside pressure, we find a Dirichlet condition p = pout.
As a consequence, we find the boundary condition of a prescribed saturation s =
p−1

c (pout).
We emphasize that this model must be applied with care. The model is only

applicable as long as the unsaturated flow assumption of a constant gas pressure
remains satisfied. In particular, keeping the pressure pout of the outside water below
the air pressure pg = 0 will result in a constant outflow of air and in a gradient in
the air pressure. In this case, the two-phase flow equations must be used.

3. Existence result via regularization. In this section we refer to results ob-
tained in [11] and sketch in a simplified form the idea for the derivation of the
outflow boundary condition. We assume that k = k(s) and pc = pc(s) satisfy ap-
propriate assumptions, which are met e.g. if k grows quadratically on s ∈ [a, 1] and
pc does not grow too fast. We furthermore assume that kδ ≈ k and ρδ ≈ pc below
are chosen appropriately. Here, the main condition is that the convergence kδ → k

is fast.

Theorem 1. Let T > 0, let the boundary ∂Ω be decomposed in a Neumann boundary
ΣN , a Dirichlet boundary ΣD, and an outflow boundary Σ, and let the data pin and
s0 satisfy appropriate assumptions. Let (sδ, pδ) be the solutions of the regularized
problem (21). Then, for a subsequence δ → 0 and appropriate limiting functions,
there holds with ΩT = (0, T )× Ω

sδ → s weakly-* in L∞(ΩT ), (12)

vδ → v weakly in L2(ΩT ), (13)

k2
δ (sδ)pδ → k2(s)p weakly in L2(ΩT ), (14)
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The limits satisfy

∂ts = −div v + f(., s) in D′(ΩT ), (15)

k2(s)v = −k3(s)∇p in D′(ΩT ), and on {k = 0} holds v = 0, (16)

p ∈ pc(s) a.e. in ΩT , (17)

and s(t = 0) = s0 in the weak sense. The limits satisfy the original boundary
conditions on ΣN and ΣD, and on the outflow boundary ΣT = (0, T )×Σ, with sout

chosen to satisfy pc(sout) = 0, the outflow condition

v · n ≥ 0, (18)

k2(s)p ≤ 0, (19)

(v · n) · (k2(s)s − k2(sout)sout) ≥ 0. (20)

The traces in (18)–(20) exist in the sense of distributions.

We remark that the Theorem does not yield quite the desired result in the second
outflow condition. The result is formally equivalent to p ≤ 0 and vn · (s− sout) = 0.
This, in turn, coincides with our outflow condition in the case of mixed materials
and for hydrophilic materials with pc(1) = [0,∞). In cases with a strict inclusion
[0,∞) ⊂ pc(1) we have formally only the implication vn 6= 0 ⇒ s = sout = 1, and
not the equality of the pressures.

The regularized problem. We consider the regularized problem

∂tsδ = −∇ · vδ + fδ, vδ = −kδ(sδ)∇pδ, pδ = ρδ(sδ), (21)

with fδ(x, t) = f(x, t, sδ(x, t)). On the boundary Σin we impose pδ = pin, on ΣN

the Neumann condition vδ · n = 0. On the outflow boundary Σout we impose the
mixed boundary condition

vδ · n =
kδ(sδ)

δ
(pδ)+ , (22)

with (a)+ = max{a, 0} denoting the positive part.
Energy estimates. Testing the equation with u yields estimates for ∇u, but only

with a weight. To be precise, we can expect from the equations estimates for the
integrals ∫

Ω

k(s)∇p · ∇s ∼

∫
Ω

k(s)p′c(s)|∇s|2.

Divergence estimate. Loosely speaking, testing the equation with k∂tp ∼ kp′c∂ts

yields L2-estimates for k div v, that is, divergence estimates for v in a weighted
L2-space.

We now sketch the principal idea for the derivation of inequality (20).

Lemma 1. With K(ξ) := k(ξ)2ξ we find

K(sδ)div vδ ⇀ K(s)div v in L2(ΩT ). (23)

Sketch of proof. Let us first recall why the above statement has a precise meaning.
The divergence of v is defined as a distribution, and, moreover, also K(s)div v is
defined as a distribution, since ∇[K(s)] is an L2 function. The claim is that this dis-
tribution is in fact representable as an L2-function and that the above convergence
holds.

The a priori L2 estimate is contained in the divergence estimate, since K(ξ) ≤
Ck(ξ) with C independent of δ. We therefore find a weakly convergent subsequence.
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In order to identify the weak limit, we must exploit the evolution equation. We
note that we can write the above term as

K(sδ)div vδ = ∂t[K̄(sδ)],

where K̄ is a primitive of K. Taking distributional limits is possible for total
derivatives. To make the argument rigorous, a smoothing procedure is used to
derive the equality for the limit functions.

Proposition 1. In the sense of distributions, the boundary conditions satisfy

(K(sδ) vδ · n)|ΣT
⇀ (K(s) v · n)|ΣT

+ µ in D′(ΣT ) (24)

for a signed measure µ ∈ M(ΣT ), µ ≤ 0.

Proof. We first clarify the meaning of the boundary values. We write the application
to a test-function ϕ ∈ C∞

0 (ΩT ∪ ΣT ) as∫
ΣT

vδ · n [K(sδ)] ϕ =

∫
ΩT

vδ ∇[K(sδ)] ϕ +

∫
ΩT

K(sδ) divvδ ϕ +

∫
ΩT

vδ K(sδ) ∇ϕ.

The same definition can be used for δ = 0, since the integrands on the right hand
side are all identified with L2 functions.

It turns out that the problems arise from the first integral, since it contains the
functions vδ and ∇[K(sδ)], both converging weakly. We exploit that both sequences
are bounded in L2(ΩT ), hence the product is bounded in L1(ΩT ). We therefore find
a subsequence δ → 0 and a measure ν such that

∇[K(sδ)] · vδ ⇀ ν in M(Ω̄T ). (25)

We claim that the limiting measure coincides in the interior of ΩT with the
distribution ∇[K(s)] · v. Indeed, for ϕ ∈ C∞

0 (ΩT ) we calculate

0 =

∫
ΩT

vδ ∇[K(sδ)] ϕ +

∫
ΩT

K(sδ) div vδ ϕ +

∫
ΩT

vδ K(sδ) ∇ϕ

→

∫
ΩT

ϕ(x, t) dν(x, t) +

∫
ΩT

K(s) div v ϕ +

∫
ΩT

v K(s) ∇ϕ

=

∫
ΩT

ϕ(x, t) dν(x, t) −

∫
ΩT

∇[K(s)] · v ϕ.

Here, the first equality is an immediate consequence of ϕ = 0 on Σ, in the con-
vergence we have used Lemma 1. We conclude that ν = ∇[K(s)] · v + µ for some
defect measure µ ∈ M(Ω̄T ). The above calculation shows that µ is concentrated
on the boundary, therefore µ ∈ M(ΣT ). Regarding the sign of µ we recall that the
measure ν is generated by

∇[K(sδ)] · vδ = ∂sK(sδ)∇sδ · (−kδ(sδ)∂sρδ(sδ)∇sδ) ≤ 0.

This sign condition implies that also the singular part µ of the measure ν is non-
positive, µ ≤ 0. We can now derive equation (24) for the boundary values with a
function ϕ ∈ C∞

0 (Ω̄ × (0, T )).∫
ΣT

K(sδ) vδ · n ϕ

=

∫
ΩT

∇[K(sδ)] · vδ ϕ +

∫
ΩT

K(sδ) div vδ ϕ +

∫
ΩT

K(sδ) vδ ∇ϕ
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→

∫
ΩT

ϕ dν +

∫
ΩT

K(s) div v ϕ +

∫
ΩT

K(s) v∇ϕ

=

∫
ΩT

∇[K(s)] v ϕ +

∫
ΣT

ϕdµ +

∫
ΩT

K(s) div v ϕ +

∫
ΩT

K(s) v∇ϕ

=

∫
ΣT

(K(s) v · n)|ΣT
ϕ +

∫
ΣT

ϕdµ.

This proves (24).

Main step in the proof of of inequality (20). We can take distributional limits of
the boundary values to find

0 ≤ (K(sδ) − K(sout)) vδ · n

⇀ K(s)v · n + µ − K(sout)v · n

≤ (K(s) − K(sout)) v · n.

This was the claim in (20).
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