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Abstract: We study a porous medium with saturated, un-
saturated, and dry regions, described by Richards’ equation
for the saturation s and the pressure p. Due to a degener-
ate permeability coefficient k(x, s) and a degenerate capillary
pressure function pc(x, s), the equations may be of elliptic,
parabolic, or of ODE-type. We construct a parabolic regu-
larization of the equations and find conditions that guarantee
the convergence of the parabolic solutions to a solution of the
degenerate system. An example shows that the convergence
fails in general. Our approach provides an existence result for
the outflow problem in the case of x-dependent coefficients
and a method for a numerical approximation.

1 Introduction

We study the motion of fluids in porous materials, e.g. the flow of water
in soil or in artificial porous media. We are interested in the case that a
second fluid, e.g. air, is present and that the two fluids do not mix. In this
situation, water occupies one part of the pore space and air occupies the
remaining pore space. Modelling the flow of both fluids leads to the two-
phase flow equations, neglecting the motion of air by assuming a constant
air pressure leads to the unsaturated flow or Richards’ equation that we
study here. To fix notations we denote the region occupied by the porous
material by Ω ⊂ R

n and describe the physical situation in the medium at
a point x ∈ Ω at time t ∈ [0, T ) with two variables, the saturation s(x, t)
and the pressure p(x, t). Here, s : Ω × [0, T ) → [0, 1] is the volume fraction
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of pore space occupied by water, p : Ω × [0, T ) → R is the pressure of the
water. One assumes that the (macroscopic) velocity v of the water is given by
Darcy’s law as v(x, t) = −k(x, s(x, t))∇p(x, t) for some permeability k(x, s),
and that pressure and saturation are coupled through the capillary pressure
as p(x, t) = p̃c(x, s(x, t)). We recall that, once the maximal saturation s = 1
is achieved, also any higher pressure can be realized with the same saturation
s = 1. We therefore regard pc as the multi-valued graph with pc(s) = {p̃c(s)}
for s < 1, and pc(1) = [p̃c(1),∞). Normalizing physical coefficients as the
density and assuming the incompressibility of water, the law of conservation
of mass with sources f reads ∂ts + div v = f . Inserting from above, the
problem takes the form

∂ts = ∇ · (k(s)∇p) + f, p ∈ pc(s). (1.1)

In this equation we regard k and pc as given coefficient functions, k non-
negative and pc monotone, and have thus, at least formally, a single evolution
problem for s. The boundary conditions for the equation are described below.
The first difficulty in the analytical treatment of (1.1) is that both coefficient
functions are degenerate. We refer to Figure 1 for typical shapes of the coef-
ficient functions, the graphs on the left correspond to a hydrophilic material,
the graphs on the right to a material with hydrophilic and hydrophobic parts.
The function pc(s) may as well remain finite at s = a or have finite slope at
s = 1. The number a ≥ 0 is the residual saturation. Since the permeability
vanishes below saturation s = a, flow processes are interrupted and no fur-
ther water extraction is possible. We call a subset {x ∈ Ω|s(x, t) < a} a dry
region at time t. We emphasize that, in this terminology, a dry region does
contain water, but not enough to induce a positive permeability.

The second difficulty lies in the outflow boundary condition. In order to
model the situation that the porous material is in contact with open space
(occupied by air), one imposes boundary conditions in the form of variational
inequalities. In the easiest case one imposes

v · n ≥ 0 and p ≤ 0 and (v · n) · p = 0. (1.2)

In words: (i) Water cannot enter, since outside there is no water (ii) the
capillary pressure cannot be positive (iii) water can exit only if the capillary
pressure is p = 0. For further details on the derivation of these equations
we refer to [9]. Regarding the analytical treatment of (1.2) we note that the
pressure is not defined in dry regions, i.e. in points (x, t) with s(x, t) < a.
This fact already demands for a modification of the boundary condition.
Furthermore, it is a difficult task to give sense to the product of traces in the
last equality.
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Figure 1: Possible shapes of the functions pc(s) and k(s). On the left, a
purely hydrophilic medium, on the right, a medium with hydrophilic and
hydrophobic parts. On the left, pc is multivalued, pc(1) = [0,∞).

Outline of this contribution. In this article we analyze a regularization
procedure for (1.1), (1.2) and derive the existence of weak solutions. We
replace the coefficient functions k and pc by smooth functions kδ and ρδ

with kδ strictly positive and ρδ strictly increasing. Furthermore, we replace
the outflow condition by a Dirichlet-to-Neumann condition. This defines a
regularized problem which is a standard parabolic boundary value problem
with a unique solution (sδ, pδ).

One checks easily that the approximation of the coefficients must con-
firm to certain conditions, for example that the convergence kδ → 0 must be
faster than ρδ → −∞ on (0, a), since otherwise the approximate solutions
(sδ, pδ) will, in general, not converge to a solution of problem (1.1). We find
conditions on the approximations which, instead, guarantee the convergence
of the approximate solutions to a solution of the original problem. This, in
particular, implies a new existence result for the doubly degenerate equa-
tion. We thus transfer known existence results to the case of x-dependent
coefficient functions.

The most intricate part in the proof is the verification of the weak coun-
terpart of the boundary condition (1.2). We use the method of compensated
compactness to show that (v ·n) ·p coincides with a non-negative defect mea-
sure. Due to the first two conditions of (1.2), this is formally equivalent with
the equality.
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1.1 Comparison with existing literature

Most articles in the field consider the case of x-independent coefficient func-
tions k and pc. This simplifies the system considerably since, after a suitable
transformation of the problem, the elliptic operator becomes linear.

The global pressure. The Baiocchi transformation (or Kirchhoff trans-
formation) introduces a global pressure function as

Φ̃(s) :=

∫ pc(s)

0

k(pc
−1(q)) dq, Φ(s) :=

{

{Φ̃(s)} if s < 1,

[Φ̃(1),∞) if s = 1.

In the case of x-independent coefficients k = k(s) and pc = pc(s), given a

s1a
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Figure 2: Possible shapes of Φ. On the left, Φ is multivalued, Φ(1) = [u1,∞).

sufficiently smooth solution (s, p) of (1.1), the global pressure

u(x, t) :=

{

Φ̃(s(x, t)) if s(x, t) < 1,

Φ̃(1) + k(1)(p(x, t)− p̃c(1)) if s(x, t) = 1,

satisfies ∇u = k(s)∇p. Hence equation (1.1) now reads

∂ts = ∆u+ f, u ∈ Φ(s). (1.3)

Results for unsaturated porous media. A fundamental theorem that
initiated much of the later research is due to Alt, Luckhaus, and Visintin
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[3]. It provides the existence of a weak solution (s, u) of equation (1.3) with
outflow boundary conditions on Ω× [0, T ), for f = 0. The result allows quite
general coefficient functions, in particular, Φ can have vanishing slope on
(0, a) and can be multi-valued in s = 1. An approximate solution sequence is
constructed with a time-discretization of (1.3) in which a variational inequal-
ity is solved in each time step. The proof of convergence of the approximate
solution sequence exploits the idea of compensated compactness and uses a
very weak solution concept. The authors were interested in applications to
groundwater flow where no sources are present, hence f = 0.

More is known in the case without an outflow condition: In [5] dry regions
are studied, the existence of solutions and the continuity of the free bound-
aries saturated/unsaturated and unsaturated/dry is shown. Many results
are known on numerical approximations in this case (see [12] and references
therein). All the above results regard x-independent coefficients.

The fundamental contribution of [11], obtained by adapting methods of
[10], is a uniqueness result for the outflow problem. It provides the uniqueness
of the weak solution in the sense of [3], and does not assume the additional
regularity ∂ts ∈ L1(ΩT ). It is not necessarily applicable to our problem,
since, e.g., b = Φ−1 can be extended to a continuous function on R only in
the case a = 0. We nevertheless note that in our contribution ∂ts /∈ L1(ΩT )
in general, and that, for x-independent coefficients, our solutions are also
solutions in the sense of [3].

Results for two-phase flow. One of the first existence results appeared in
[8]. The restriction of this result is that the initial saturation is assumed to be
bounded away from the critical values, and it is exploited that this property
remains valid for all times. Another existence result is that of [1], where the
capillary pressure function is assumed to be non-singular. Both restrictions
are removed in [6], where also x-dependent coefficients are studied. We note
that in [6] the situation with a = 0 is studied and that the outflow condition
is not included.

Our research was motivated also by questions of homogenization. We refer
to [4] for some results concerning the averaging of two-phase flow equations
and further references. Again, it must be assumed that the saturation is
bounded away from the critical values.

1.2 Concepts and results of this contribution.

We are interested in including f 6= 0 and x-dependent coefficients. The
first is interesting if drying or condensation becomes important as e.g. in
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fuel cells. It adds a new quality to the system, since, for f 6= 0, in dry
regions we have to solve an infinite family of ordinary differential equations
∂ts(x, t) = f(x, t, s(x, t)). Allowing for x-dependent coefficients is important
in applications and necessary in order to tackle homogenization questions.
The generalization is non-trivial since the description with the help of the
global pressure fails. Another reason for working in the primary variables
would be the inclusion of capillary hysteresis as in [4], [13].

Another aim was the construction of a regularized equation. This leads
to a new existence result, but it is also desirable for the design of a numerical
scheme. With the help of the global pressure one easily sees that not every
regularization of the physical coefficients provides a correct approximation of
solutions. Our goal was to give sufficient conditions on the approximations
kδ and pδ that assure the correct limit. The compactness results for the
regularized sequence are derived with methods inspired by [2].

Our solution concept uses the primal variables s and p, with the difficulty
that p is not defined in dry regions. We must understand v = −k(s)∇p in
the sense that v = 0 wherever s ≤ a. We demand p(x, t) ∈ pc(s(x, t)) almost
everywhere on {s > a}, and interpret the evolution equation in (1.1) in the
distributional sense. In the outflow condition (1.2) we introduce an artificial
factor k(x, t) in order to deal with functions with well-defined traces.

Note on the proofs. Testing the equation yields estimates for ∇p, but
only with a weight. To be precise, we can expect from the equations estimates
for the integrals

∫

Ω

k(s)∇p · ∇s ∼
∫

Ω

k(s)pc
′(s)|∇s|2.

In particular, we cannot read off compactness of sequences sδ or of sequences
pδ from this estimate. Furthermore, for pδ → p, kδ(sδ) → k, and vδ → v,
with the convergence of pδ in the sense of the above estimate, it is not
clear how to identify the limiting relation v = −k∇p. Again, we will intro-
duce an additional factor k and derive the relation in the distributional sense.

Gravity. Our model allows to include gravity. For a constant porosity of
the medium, up to a factor, Darcy’s law with gravity reads

v = −k(s)(∇p+ geN).

Since we allow for an x-dependent coefficient function pc, it suffices to set
p̄c(x, s) := pc(x, s) + gx · eN .
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Notation. Constants C may change from one line to the next, we write
∇ for spatial gradients, e.g. ∇[k(s)] for the gradient of the function x 7→
k(x, s(x)) and ∇xk(s) for the evaluation of the partial x-derivatives of k in
the points s(x). The lower indices ± denote positive and negative parts of a
function, f = (f)+ + (f)−.

2 Regularization of the outflow problem in

the case of constant coefficients

In this section we prove an existence and a convergence result for the dou-
bly degenerate evolution equation in the case of constant coefficients; the
boundary conditions are verified in section 3. The methods carry over to the
case of non-constant coefficients, as we will show in section 4. The proof is
based on a careful analysis of regularized problems. We collect assumptions
on how the regularized problems must be constructed in order to have the
convergence of the solutions to a solution of the original problem. Loosely
speaking, we will see the following: if kδ and ρδ generate a global pressure
function Φδ that approximates the degenerate global pressure function Φ,
then also the corresponding solutions converge.

Assumptions on the coefficient functions

The precise assumptions on the degenerate coefficients k and pc are as follows.

Assumption 1 (Degenerate coefficients). There exist a ∈ (0, 1) and c0 > 0
such that the following holds. The permeability

k ∈ C1([0, 1], [0,∞)) is monotonically non-decreasing

with k(s) = 0 iff s ∈ [0, a]. The capillary pressure pc : (a, 1] → {0, 1}R is a
monotone graph given by a function

p̃c ∈ C1((a, 1),R), monotonically increasing.

In the case p̃c(s)→∞ for s→ 1 we identify pc with p̃c. In the opposite case
we extend p̃c continuously to (a, 1] and set pc(s) = {p̃c(s)} for s ∈ (a, 1) and
pc(1) = [p̃c(1),∞). We assume that p̃c has a zero a0 ∈ (a, 1], p̃c(a0) = 0.
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With the intermediate value ā = (a+ 1)/2 we make the following quanti-
tative assumption. For some c0 > 0 there holds

∂spc(s) ≥ 1/c0 ∀s ∈ (a, 1),

|∂sk(s)|2 ≤ c0k(s) ∀s ∈ (a, 1),

k(s)|pc(s)|+
√

k(s)∂spc(s) ≤ c0 ∀s ∈ (a, ā),

(1− s)
√

∂spc(s) ≤ c0 ∀s ∈ (ā, 1),
∫ 1

ā

pc(s) ds ≤ c0.

Regarding the generality of our assumptions we emphasize that: (i) we
allow finite and infinite capillary pressure pc(1), (ii) we allow finite and infinite
derivative pc

′(1), (iii) we allow finite pc(a) and pc(a) = −∞. The quantitative
assumptions are all satisfied for a quadratic permeability k(s) ∼ (s− a)2

+, if
the capillary pressure function does not degenerate too fast.

Choice of regularized coefficient functions

In order to replace the degenerate system by a family of regular parabolic
problems, we approximate, for a sequence δ ց 0, the degenerate coefficients
k and pc by functions kδ and ρδ.

Assumption 2 (Regularized coefficients). The regularized coefficients satisfy

kδ ∈ C1([0, 1], (0,∞)), ρδ ∈ C0([0, 1],R) piecewise C1,

both monotonically increasing. For δ → 0 we have the convergences kδ ց k
uniformly on [0, 1], ρδ → pc uniformly on compact subsets of (a, 1), and
kδ = δ2 on [0, a].

We assume
⋃

δ ρδ([0, 1]) = R and, for simplicity, pc(ā) = ρδ(ā). Further-
more, all the quantitative statements of Assumption 1 shall hold with k and
pc replaced by kδ and ρδ and with the point a ∈ [0, 1) replaced by 0.

Example 1. Let Assumption 1 be satisfied and assume c1(s− a)2 ≤ k(s) ≤
c2(s − a)2 on (a, 1) for constants 0 < c1 ≤ c2. Then, for small δ > 0, a
regularization satisfying Assumption 2 is given by

kδ(s) := δ2 + k(s) ∀s ∈ [0, 1],

ρδ(s) :=











pc(a+ δ) + (s− (a+ δ))/δ ∀s ∈ [0, a+ δ],

pc(s) ∀s ∈ (a + δ, 1− δ],
pc(1− δ) + (s− (1− δ))/δ2 ∀s ∈ (1− δ, 1].
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The approximations allow to introduce a regularized global pressure func-
tion,

Φδ(s) =

∫ ρδ(s)

0

kδ(ρ
−1
δ (q)) dq.

Assumptions 1 and 2 guarantee that Φδ is bounded from below and that
Φδ → Φ uniformly on compact subsets of [0, 1). Furthermore, Ψδ → Ψ
uniformly on compact subsets of (pc(a),∞) for

Ψ(p) =

∫ p

0

k(pc
−1(q)) dq, Ψδ(p) =

∫ p

0

kδ(ρ
−1
δ (q)) dq.

The Ψ-functions will be used in the inflow boundary condition.
For later use we set ua := Φ(0), the minimal global pressure for the

degenerate system. Typical shapes of ρδ and Φδ are depicted in Figure 3.

s1a

k (s)

ρ (s)
δ

δ

s1a

(s)

au

Φδ

Figure 3: Typical shapes of ρδ, kδ, and Φδ.

Geometry and boundary conditions

We assume that the porous material occupies a bounded set Ω ⊂ R
N with

boundary ∂Ω of class C1, with exterior normal n. Let Σin,ΣN ,Σout ⊂ ∂Ω be
three relatively open, pairwise disjoint N − 1-dimensional C1-manifolds such
that ∂Ω is the union of the closure of the three manifolds. Here, Σin 6= ∅



10 Ben Schweizer

is an inflow boundary on which we prescribe the pressure, p = pin, ΣN is
an impenetrable boundary with Neumann condition, v · n = 0. Along Σout,
the porous medium is in contact with free space occupied by the gas phase
and we impose the above outflow boundary condition (1.2). We assume that
inflow and outflow boundary are nowhere in contact, Σ̄out ∩ Σ̄in = ∅. For
Ω,Σi ⊂ R

N we write ΩT and Σi,T for Ω× (0, T ) and Σi × (0, T ).
The initial condition is given by the initial saturation s0 ∈ L2(Ω). We

demand
s(x, 0) = s0(x) a.e. in Ω.

Assumptions on the data

We assume that f : ΩT × [0, 1] → R, f : ((x, t), s) 7→ f(x, t, s), is bounded
and Lipschitz continuous, and that f satisfies f(x, t, 1) ≤ 0, f(x, t, 0) ≥ 0
for all (x, t) ∈ ΩT . We furthermore assume that s 7→ f(x, t, s) is affine on
(0, a) for all (x, t) ∈ ΩT . With minor changes also fixed f : ΩT → R may be
considered; the results then hold on the time interval where 0 < s < 1 holds.

The initial data shall be given by a function s0 : Ω→ [0, 1]. We emphasize
that there are two problems concerning the initial values. (i) s0 ∈ H1 does
not imply Φ(s0) ∈ H1, since Φ has an unbounded derivative. (ii) s0 = 1
does not specify uniquely a corresponding pressure. We impose the following
compatibility condition: Let the initial saturation s0 ∈ H1(Ω) satisfy

∃p0 : Ω→ R, p0 ∈ pc(s0) a.e. on {k(s0) > 0}, (p0)+ bounded,

k(s0)
2p0 ∈ H1(Ω), s0|Σout

≤ a0, (k(s0)
2p0)|Σin

= k(s0)
2 pin.

We assume that the boundary data pin are continuous and that pin ≥ pc(ā).
We furthermore assume that pin and ∂tpin are traces of L2((0, T ), H1(Ω)) ∩
L∞(ΩT )-functions.

The regularized problem

We consider the regularized problem

∂tsδ = ∆uδ + fδ, uδ = Φδ(sδ) (2.1)

with the pressure pδ = ρδ(sδ) and the right hand side fδ(x, t) =
f(x, t, sδ(x, t)). On the boundary Σin we impose uδ = Ψδ(pin), on ΣN the
Neumann condition ∇uδ · n = 0. On the outflow boundary Σout we impose,
with vδ = −∇uδ, the mixed boundary condition

vδ · n =
1

δ
kδ(sδ)(pδ)+ , (2.2)
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where we recall that (pδ)+ vanishes for pδ ≤ 0 and otherwise coincides with
pδ. The initial condition is replaced by

sδ(x, 0) = sδ
0(x) :=

{

ρ−1
δ (p0(x)) if s0(x) > ā,

s0(x) if s0(x) ≤ ā,
(2.3)

for all x ∈ Ω. Our assumptions on the initial values s0 guarantee the uniform
boundedness of Φδ(s

δ
0) ∈ H1(Ω) since, for sδ

0 ≥ ā, we have Φδ(s
δ
0) = Ψδ(p0).

Our first theorem shows that the solutions of the regularized problems
approximate a solution of the degenerate system. With the existence part
of this theorem we essentially rediscover the Theorem of Alt, Luckhaus and
Visintin, in our case allowing for f 6= 0. Our regularity assumptions on the
data are stronger, hence we can also use a stronger solution concept. We add
the information that the solutions of the regularized problems (instead of
time-discrete solutions) approximate the solution of the degenerate system.

Theorem 1. Let T > 0, pin and s0 as above, let k = k(s) and pc = pc(s)
satisfy Assumption 1 and let kδ and ρδ satisfy Assumption 2. Let (sδ, pδ) be
the solutions of the regularized problems. Then, for a subsequence δ → 0 and
appropriate limiting functions u : ΩT → R and s : ΩT → [0, 1], there holds

sδ → s weakly-* in L∞(ΩT ), (2.4)

uδ → u weakly in L2((0, T ), H1(Ω)). (2.5)

The limits satisfy with v = −∇u

∂ts = −div v + f(., s) in D′(ΩT ), (2.6)

u ∈ Φ(s) a.e. in ΩT , (2.7)

and s(t = 0) = s0 in the weak sense. On the boundary ∂Ω with normal vector
n there holds u = Ψ(pin) on Σin,T , v · n = 0 on ΣN,T , and

v · n ≥ 0 on Σ̄out,T ∪ ΣN,T (2.8)

u ≤ Φ̃(a0) and k2(s)s− k2(a0)a0 ≤ 0 on Σout,T (2.9)

(v · n) · (k2(s)s− k2(a0)a0) ≥ 0 on Σout,T . (2.10)

The traces in (2.8)–(2.10) exist in the sense of distributions.

We recall that pc(a0) = 0 and that s 7→ k2(s)s and s 7→ pc(s) are mono-
tone functions. Therefore (2.8)–(2.10) is formally equivalent with (1.2), since
either a0 < 1 or p̃c(1) = 0.
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Proof. We have to study the approximate solutions sδ, pδ = ρδ(sδ), uδ =
Φδ(sδ), vδ = −∇uδ = −kδ(sδ)∇pδ. These solutions exist on (0, T ) and they
satisfy

sδ : ΩT → [0, 1], ‖uδ‖L∞(ΩT ) + ‖uδ‖L2((0,T ),H1(Ω)) ≤ C,
∫

ΩT

kδ(sδ) |∇sδ|2 ≤ C,

with a constant C independent of δ. We refer to section 5 for these a priori
estimates for the regular parabolic problem.

Choosing a subsequence δ → 0 we find s ∈ L∞(ΩT ) and u ∈
L2((0, T ), H1(Ω)), such that sδ → s weakly-* in L∞ and uδ → u weakly
in L2H1, hence (2.4) and (2.5) and, in particular, s : ΩT → [0, 1]. The
sequence fδ is bounded in L∞(ΩT ), we can therefore assume weak L2(ΩT )-
convergence to a limit f and find (2.6) as the distributional limit of (2.1).
Here, the fact that f(x, t, .) is affine on (0, a) assures the convergence
χ{s≤a}f(sδ) ⇀ χ{s≤a}f(s). On the remaining set {s > a} ⊂ ΩT , the con-
vergence χ{s>a}f(sδ) ⇀ χ{s>a}f(s) is a consequence of the compactness of sδ

on this set (see below).
The last of the a priori estimates can be used to find bounds for gradients

of kδ(sδ) or its products with sδ. Indeed, by Assumption 2,

|∇kδ|2 = |k′δ(sδ)∇sδ|2 ≤ c0kδ(sδ)|∇sδ|2

is uniformly bounded in L1(ΩT ). We can therefore assume
∇[kδ(sδ)] ⇀ ∇[k(s)] in L2(ΩT ), and similarly ∇[kδ(sδ)

jsδ] ⇀ ∇[k(s)js] for
j = 1 and j = 2. Here, the identification of the limit functions exploits that
k = 0 holds on {s ≤ a} and the compactness of sδ on sets {s ≥ a+ ε}.

Compactness. In order to verify (2.7) we need compactness results for
the families uδ and sδ. We start with the sequence uδ and note that the
unboundedness of Φ′

δ does not allow to conclude from estimates for ∂tsδ

estimates for ∂tuδ. For this reason, we only aim at compactness away
from regions with maximal saturation. We assume in the following that
sup{s∈(0,1)} Φ(s) = u1 <∞, the other case is simpler by the a priori estimate
for the pressure.

We use a sequence ε → 0 and a corresponding sequence of cut-off func-
tions αε ∈ C∞

0 (Ω, [0, 1]) with αε(x) = 1 for all x ∈ Ω with dist(x, ∂Ω) ≥ ε.
We claim that, for fixed ε > 0 and with ηε(ξ) = (ξ − u1 + ε)−, the family
αε · ηε(uδ) is compact in L2(ΩT−ε), and that, for a subsequence δ → 0, there
holds

αε · ηε(uδ)→ αε · ηε(u) in L2(ΩT−ε) as δ → 0. (2.11)
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As a consequence, by taking successively subsequences, we may assume
that the above convergence holds for all ε with a single sequence δ → 0.
In particular we may assume the convergence pointwise almost everywhere
ηε(uδ)→ ηε(u) for δ → 0 and any ε > 0.

In order to prove (2.11), we study finite time differences. For a function
t 7→ w(t) and h > 0 we introduce the expression ∆hw(t) = w(t+ h)− w(t).
We integrate, for fixed t, the equation ∂tsδ = ∆uδ + fδ over the interval
(t, t+ h) to find

∆hsδ(t) =

∫ t+h

t

{∆uδ(τ) + fδ(τ)} dτ.

Multiplication with αε ∆huδ(t) and an integration over space and time yields

∫ T−h

0

∫

Ω

∆hsδ(t) · αε ∆huδ(t)

=

∫ T−h

0

∫

Ω

∫ t+h

t

{∆uδ(τ) + fδ(τ)} αε ∆huδ(t) dτ dx dt

≤
∫ T−h

0

∫

Ω

∫ t+h

t

|∇uδ(τ)| (|∇(αεuδ(t))|+ |∇(αεuδ(t+ h))|) dτ dx dt

+

∫ T−h

0

∫

Ω

∫ t+h

t

|fδ(τ)| (|αεuδ(t)|+ |αεuδ(t+ h)|) dτ dx dt ≤ Ch.

The monotonicity of Φδ implies that the expression ∆hsδ · ∆huδ is non-
negative, hence we conclude the L1(ΩT−ε)-convergence αε∆hsδ · ∆huδ → 0
for h→ 0, uniformly in δ > 0.

We now restrict our attention to uδ-values away from u1. The uniform,
strict monotonicity of Φ−1

δ in the interval ξ ∈ (Φδ(0), u1− ε) allows to find a
number κε > 0 such that

|ηε(ξ2)− ηε(ξ1)|2 ≤ κε (ξ2 − ξ1) (Φ−1
δ (ξ2)− Φ−1

δ (ξ1)). (2.12)

In particular, we have the uniform (in δ) L2-convergence αε∆h[ηε(uδ)] → 0
for h→ 0.

For spatial finite differences we find a similar bound by the uniform
L2((0, T ), H1(Ω))-estimate for uδ. The Riesz characterization of compact
sets in L2 implies the compactness of the family αεηε(uδ) in L2(ΩT ) and thus
(2.11).

Similar to the above reasoning, we can conclude compactness for sδ in
regions with sδ > a. This time, we use the cut-off function σε : R → R,
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σε(ζ) = (ζ−a−ε)+. Regarding temporal differences of the family of functions
αεσε(sδ) we exploit that, by Φ′

δ ≥ κ̄ε > 0 on s ∈ [a+ ε, 1),

|σε(ζ2)− σε(ζ1)|2 ≤ κ̄−1
ε (ζ2 − ζ1) (Φδ(ζ2)− Φδ(ζ1)). (2.13)

For spatial gradients we find a bound exploiting ∇σε(sδ) = ∇sδ χ{sδ>a+ε}.
Hence we can conclude for a subsequence δ → 0 that

αεσε(sδ)→ αεσε(s) (2.14)

in L2(ΩT−ε) and pointwise almost everywhere.

Relation (2.7). Based on the above compactness results we can now verify
the constitutive relation. We choose β > 0 and consider first the “good” set
Gβ := {ua + β ≤ u ≤ u1 − β} ⊂ ΩT . On almost all points (x, t) of Gβ

we have the convergence uδ(x, t)→ u(x, t). Furthermore, uniform positivity
of Φ′

δ allows, for small δ > 0, to find uniformly continuous inverse maps
Φ−1

δ : [ua + β, u1 − β] → (0, 1), which converge uniformly. We conclude
that, pointwise a.e. in Gβ, also sδ(x, t) → s(x, t). The uniform convergence
Φδ → Φ on compact subsets of (0, 1) yields u = Φ(s) on Gβ. Since β > 0 is
arbitrary, we have u = Φ(s) for almost every (x, t) with ua < u(x, t) < u1.

In order to study points (x, t) with u(x, t) = ua, we consider the set
Eβ := {u < ua + β} ⊂ ΩT . The uniform strict monotonicity of Φδ on
compact subsets of (a, 1) implies that for some ωβ > 0, ωβ = o(1) and
δβ > 0, δβ = o(1) for β → 0, for all δ ≤ δβ

sδ > a+ ωβ ⇒ uδ > ua + 2β.

We can therefore calculate for Eβ
δ := {(x, t) ∈ Eβ : sδ > a+ ωβ}

|Eβ
δ | ≤ |{(x, t) ∈ Eβ : uδ > ua + 2β}| → 0 for δ → 0,

the latter by the strong convergence αεηε(uδ) → αεηε(u) on Eβ . The weak
L2-convergence sδ ⇀ s yields, with characteristic functions χE of Eβ and χEδ

of Eβ
δ , the L2-weak convergences

sχE ↼ sδχE = sδ(χE − χEδ
) + sδχEδ

≤ a+ ωβ + χEδ
⇀ a+ ωβ

for δ → 0. Since β > 0 is arbitrary, we conclude that, almost everywhere,
u(x, t) ≤ ua implies s ≤ a, hence u = Φ(s).

With the same methods we finally study the set F β := {u > u1−β} ⊂ ΩT .
Again, for some ωβ > 0, ωβ = o(1) for β → 0, we find that the exceptional

set F β
δ := {(x, t) ∈ F β : sδ < 1− ωβ} satisfies

|F β
δ | ≤ |{(x, t) ∈ F β : uδ < u1 − 2β}| → 0 for δ → 0,
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the latter by the strong convergence αεηε(uδ) → αεηε(u) = 0 for ε ≤ β. We
calculate with the characteristic functions χF of F β and χFδ

of F β
δ ,

sχF ↼ sδχF = sδ(χF − χFδ
) + sδχFδ

≥ (1− ωβ)(χF − χFδ
) ⇀ (1− ωβ)χF

for δ → 0. We conclude that u(x, t) ≥ u1 implies s(x, t) = 1 for almost every
(x, t) ∈ ΩT , hence u = Φ(s) also in this case. We have thus verified (2.7).

Initial condition. The weak convergences allow to calculate for a test-
function ϕ ∈ C∞

0 (Ω× [0, T ))

0 =

∫

ΩT

{sδ ∂tϕ+ vδ · ∇ϕ+ fδ ϕ}+

∫

Ω

sδ
0 ϕ(., 0)

→
∫

ΩT

{s ∂tϕ+ v · ∇ϕ + f ϕ}+

∫

Ω

s0 ϕ(., 0).

The initial condition is satisfied in this weak sense.

Boundary conditions. Along the Dirichlet boundary Σin we can take the
weak L2(Σin,T ) limit

0 = uδ −Ψδ(pin) ⇀ u−Ψ(pin),

since uδ converges weakly together with its trace, and Ψδ converges uniformly
to Ψ on compact subsets of R.

Regarding the normal velocity at the boundary we find the convergence
vδ ·n→ v ·n in the sense of distributions on ∂Ω× (0, T ) with the help of the
equation as in (3.1). In particular, on the Neumann boundary ΣN we can
take the distributional limit 0 = vδ · n→ v · n.

Inequality (2.8) is satisfied by the non-negativity of vδ ·n in the regularized
boundary condition (2.2). Concerning (2.9) we can calculate with C > 0
independent of δ on Σout

(k2
δ(sδ)sδ − k2

δ (a0)a0)+ ≤ Ckδ(sδ) · (sδ − a0)+

≤ Ckδ(sδ)(pδ)+ +O(δ)

= Cδ vδ · n+O(δ)→ 0 in D′(Σout,T ).

We conclude that the H1/2-weak limit of the left hand side vanishes, which
is the desired non-positivity result. A similar calculation can be performed
with (uδ − Φ̃(a0))+ ≤ C(pδ)+ +O(δ).

It remains to verify (2.10). This inequality is shown in Proposition 1 of
the next section.
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Failure of the approximation process

With the above theorem we show that, if Assumption 2 is satisfied, the
approximate solutions converge to solutions of the degenerate problem. We
wish to mention at this point what can be said if the assumption fails in one
of the estimates. If the regularizations do not satisfy ∂spc ≥ 1/c0, we have no
uniform estimate for div vδ. If the regularizations do not satisfy |∂sk|2 ≤ c0k,
we have no uniform H1-bound for kδ(sδ). In both cases we cannot derive the
limiting equations and even the formulation of boundary conditions becomes
a problem.

The most interesting case is that the regularizations fail to confirm to
the third estimate which imposes, in a rigorous sense, that the convergence
kδ → 0 is faster than that of −ρδ → ∞. The assumption fails, e.g., if
ρδ(0) ∼ −1/kδ(0). In this case we may still consider limits (s, u) of the
approximate solutions, and we may still derive

u ∈ Φ̂(s), Φ̂ = lim
δ→0

Φδ.

But, in general, Φ̂ will be different from Φ. In this case, we approximate a
solution of the wrong equation.

3 Boundary conditions: compensated com-

pactness and defect measures

In this section we analyze boundary values such as v ·n or k(s)v ·n on ΣT =
∂Ω× (0, T ), where n is the exterior normal vector to Ω. Before analyzing the
limiting relations, we note that the boundary values v · n are a well-defined
distribution on ΣT . Indeed, on the basis of the limiting equation we may
define the boundary values by setting, for arbitrary ϕ ∈ C∞

0 (Ω̄× (0, T )),

∫

ΣT

v · n ϕ Def
=

∫

ΩT

{s ∂tϕ+ f ϕ+ v∇ϕ} .

Additionally, by the analogous calculation, in the sense of distributions

vδ · n ⇀ v · n in D′(∂ΩT ). (3.1)

Lemma 1 (Divergence estimate). Let (sδ, uδ) be a sequence of approximate
solutions, k and pc independent of x and let the assumptions of Theorem 1 be
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satisfied. Then, for some C > 0 independent of δ, the sequence ∂tsδ satisfies
the uniform bound

∫ T

0

∫

Ω

kδρ
′
δ|∂tsδ|2 ≤ C. (3.2)

As a consequence, the sequence vδ has its divergence bounded in a weighted
L2-space,

∫ T

0

∫

Ω

kδ|div vδ|2 ≤ C. (3.3)

Proof. The lemma concerns only the approximate solutions, we therefore
omit the index δ in the expressions sδ, kδ, ρδ, Φδ, Ψδ, etc. None of the degen-
erate limiting functions is meant in this proof. We start by a multiplication
of the equation with ∂tu,

∂ts = ∆u+ f
/

∂tu = ∂sΦ(s) ∂ts

An integration over ΩT yields, with vn = v · n = −∇u · n,

∫

ΩT

∂sΦ(s) |∂ts|2 +

∫

ΩT

1

2
∂t|∇u|2

=

∫

ΩT

f · ∂tu−
∫

Σin,T

vn ∂tΨ(pin)−
∫

Σout,T

vn ∂tu.

The left hand side is non-negative and contains the expression of (3.2). We
have to analyze the right hand side. Exploiting the Lipschitz assumption on
f and Assumption 2 we write

∫

ΩT

f · ∂tu ≤
∫

ΩT

f(x, t, 1) · ∂tu(x, t) dx dt+ C

∫

ΩT

|(1− s)∂sρ(s) k(s)∂ts|

≤ C + C

∫

ΩT

|∂tf(., 1) · u|+ C

∫

ΩT

|
√

∂sρ(s)k(s)∂ts|

≤ ε

∫

ΩT

∂sΦ(s) |∂ts|2 + Cε,

for arbitrary ε > 0 and Cε independent of δ. This allows to absorb the first
term into the left hand side of our estimate.

In the first boundary integral, by the assumption on pin, we can
find a bounded function q ∈ L2((0, T ), H1(Ω)) which takes the values
(∂t[Ψ(pin)])/k(ρ−1(pin)) = ∂tpin on Σin,T and vanishes on Σout,T . We can
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write

−
∫

Σin,T

vn ∂tΨ(pin) = −
∫

ΩT

div(k(s)v q)

= −
∫

ΩT

∇[k(s)]v q + k(s)div v q + k(s)v∇q

≤ ε

∫

ΩT

k(s)|div v|2 + Cε,

for arbitrary ε > 0. Again, the first term can be absorbed in the left hand
side of our inequality. We finally study

−
∫

Σout,T

vn ∂tu = −
∫

Σout,T

k(s)

δ
(p)+∂sΦ(s) ∂ts.

In order to write the integrand as a total time derivative we define a function
H : [0, 1] → R by setting H(a0) = 0 and ∂sH(s) = k(s)(ρ(s))+∂sΦ(s). The
derivative ∂sH is non-negative and vanishes for s ∈ [0, a0], hence also H has
these properties. We conclude

−
∫

Σout,T

vn ∂tu = −
∫

Σout,T

1

δ
∂t[H(s)] = −

∫

Σout

1

δ
H(s(t))

∣

∣

∣

∣

T

t=0

.

Initially, i.e. for t = 0, we have sδ
0 ≤ a0 on Σout, hence H vanishes in t = 0.

The right hand side is therefore non-positive. This concludes the proof.

The aim of this section is the derivation of the boundary condition (2.10).
We have to analyze the product of two limit functions, which is a severe
problem for the following reason. For the term kδ(sδ)

2sδ → k(s)2s we can,
based on the estimates, expect the weak convergence of the traces in the
space H1/2(Σ). Unfortunately, the other factor, vn|Σ, converges only as a dis-
tribution. If we had the divergence estimate without the degenerate factor k,
we could hope for the convergence vδ ·n→ v ·n weakly in H−1/2 (the classical
estimate). But we do not have the divergence estimate in L2. Furthermore,
even if we had the estimate, we would still have a product of two weakly
convergent sequences in dual spaces. This does not allow a conclusion for the
product of the limit functions. We circumvent both problems by exploiting
the equation in a compensated compactness argument using defect measures.

The subsequent calculations are almost identical in the case of x-
dependent coefficient functions k = k(x, s) and pc = pc(x, s). We therefore
allow this dependence in the sequel. To shorten notation, we set

K : Ω× [0, 1]→ R, K(x, s) = k(x, s)2 s.
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We emphasize that we do not consider a family Kδ based on kδ, but only a
single function. Lemma 1 provides a uniform L2(ΩT )-bound for the sequence
K(sδ) div vδ and we may assume the weak convergence to a limit function g.
The next lemma characterizes the limit.

Lemma 2. Under the assumptions of either Theorem 1 or Theorem 2, there
exists a subsequence δ → 0 such that

K(sδ) div vδ = gδ ⇀ g = K(s) div v weakly in L2(ΩT ), (3.4)

where K(s)div v is interpreted as a distribution.

The lemma is shown below. We exploit it here to define the boundary
values of K(s)v · n by the integral

∫

ΣT

(K(s) v ·n)|ΣT
ϕ

Def
=

∫

ΩT

∇[K(s)] · v ϕ+

∫

ΩT

g ϕ+

∫

ΩT

K(s) v∇ϕ, (3.5)

for all ϕ ∈ C∞
0 (Ω̄ × (0, T )). With the following proposition we derive the

product outflow condition (2.10).

Proposition 1. Let vδ = −kδ(sδ)∇[ρδ(sδ)] with kδ, ∂sρδ ≥ 0. Let

K(sδ)→ K(s), ∇[K(sδ)] ⇀ ∇[K(s)], vδ ⇀ v in L2(ΩT ), (3.6)

and let (3.4) hold. In the case of x-dependent coefficients we additionally
assume

(∇xK)(sδ)→ (∇xK)(s) in L2(ΩT ), (3.7)

kδ(sδ)(∇xρδ)(sδ)→ k(s)(∇xpc)(s) in L2(ΩT ). (3.8)

Then, for a signed measure µ ∈ M(ΣT ), µ ≤ 0, and a subsequence δ → 0,
we find

(K(sδ) vδ · n)|ΣT
⇀ (K(s) v · n)|ΣT

+ µ in D′(ΣT ). (3.9)

As a consequence, if the approximation satisfies (K(sδ) − K(a0)) vδ · n ≥ 0
on Σout,T , then we also have

(K(s)−K(a0)) v · n ≥ 0 on Σout,T (3.10)

in the sense of distributions.
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Proof. We have to study limits of products, where both factors converge
weakly. The sequences ∇[K(sδ)] and vδ are bounded in L2(ΩT ), hence the
product is bounded in L1(ΩT ). For a subsequence δ → 0 and some measure
ν we find

∇[K(sδ)] · vδ ⇀ ν inM(Ω̄T ). (3.11)

The limiting measure coincides in the interior of ΩT with the formal limit.
Indeed, with the help of (3.4), we calculate for functions ϕ ∈ C∞

0 (ΩT )
∫

ΩT

ϕ dν ←
∫

ΩT

vδ∇[K(sδ)] ϕ = −
∫

ΩT

K(sδ) div vδ ϕ−
∫

ΩT

vδ K(sδ) ∇ϕ

→ −
∫

ΩT

gϕ−
∫

ΩT

v ·K(s)∇ϕ (3.4)
=

∫

ΩT

v · ∇[K(s)] ϕ.

We write ν = ∇[K(s)] · v + µ for some defect measure µ ∈ M(Ω̄T ). The
above shows that µ is concentrated on the boundary, µ = 0 on ΩT . The
measure ν is generated by

∇[K(sδ)] · vδ

= (∂sK(sδ)∇sδ +∇xK(sδ)) · (−kδ(sδ)∂sρδ(sδ)∇sδ − kδ(sδ)∇xρδ(sδ)).

In both factors, the second term converges strongly in L2(ΩT ) by assump-
tion. Therefore the singular part µ of the measure ν is generated by
−∂sK(sδ) kδ(sδ)∂sρδ(sδ)|∇sδ|2 ≤ 0, which provides µ ≤ 0.

We can now derive equation (3.9) for the boundary values with a function
ϕ ∈ C∞

0 (Ω̄× (0, T )).
∫

ΣT

K(sδ) vδ · n ϕ

=

∫

ΩT

∇[K(sδ)] · vδ ϕ +

∫

ΩT

K(sδ) div vδ ϕ+

∫

ΩT

K(sδ) vδ∇ϕ

→
∫

ΩT

∇[K(s)] · v ϕ+

∫

Ω̄T

ϕ dµ+

∫

ΩT

g ϕ+

∫

ΩT

K(s) v∇ϕ

=

∫

ΣT

(K(s) v · n)|ΣT
ϕ+

∫

ΣT

ϕdµ.

This proves (3.9). Inequality (3.10) follows immediately upon taking distri-
butional limits,

0 ≤ (K(sδ)−K(a0)) vδ · n ⇀ K(s)v · n+ µ−K(a0)v · n
≤ (K(s)−K(a0)) v · n.

This was the claim in (3.10).
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Identification of limits with compensated compactness.

It remains to verify Lemma 2, i.e. to identify the limit in the weak conver-
gence K(sδ) div vδ ⇀ K(s) div v. This can not be done on the basis of the
convergences alone, but we must exploit the differential equation.

Proof of Lemma 2. We start by observing that gδ = K(sδ) div vδ is bounded
in L2(ΩT ) by Lemma 1 and assumption (4.2) of Theorem 2, respectively. We
can therefore extract a weakly convergent subsequence gδ ⇀ g. We have to
verify

∫

ΩT

g ϕ = −
∫

ΩT

∇[K(s)] · v ϕ−
∫

ΩT

K(s) v∇ϕ (3.12)

for all ϕ ∈ C∞
0 (ΩT ). In the following we perform all calculations for x-

independent coefficients and note that they remain valid under the assump-
tions of Theorem 2.

We use a primitive K̄ : Ω × [0, 1] → R with ∂sK̄(x, s) = K(x, s) and
K̄(x, 0) = 0. This allows to calculate

g ↼ K(sδ)div vδ = K(sδ)[−∂tsδ + fδ] = −∂t[K̄(sδ)] +K(sδ)fδ

⇀ −∂t[K̄(s)] +K(s)f.

Here, the convergences K(sδ) → K(s) and K̄(sδ) → K̄(s) follow from the
convergence almost everywhere σε(sδ) → σε(s) for all ε > 0. We have thus
identified g = −∂t[K̄(s)] +K(s)f .

We now show that ∂t[K̄(s)] = K(s)∂ts in the distributional sense, i.e.
that for all ϕ ∈ C∞

0 (ΩT ) holds

∫

ΩT

K̄(s) ∂tϕ =

∫

ΩT

∂t[K(s)] s ϕ+

∫

ΩT

K(s) s ∂tϕ. (3.13)

This is derived by approximating the function ξ 7→ K(ξ) by Kε(ξ) := K(ξ−
ε), with the corresponding primitive K̄ε. For the smooth solutions sδ we
have the chain rule in the ordinary sense, hence

∫

ΩT

K̄ε(sδ) ∂tϕ =

∫

ΩT

∂t[K
ε(sδ)] sδ ϕ+

∫

ΩT

Kε(sδ) sδ ∂tϕ.

In this equation we first send δ → 0 and find

∫

ΩT

K̄ε(s) ∂tϕ =

∫

ΩT

∂t[K
ε(s)] s ϕ+

∫

ΩT

Kε(s) s ∂tϕ.
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In this limit we exploited the compactness of σε(sδ) and the uniform H1(ΩT )-
estimate for Kε(sδ) which follows from (3.2). We now send ε → 0 and find
(3.13).

After this preparation, we can now show (3.4). We mollify the limit
functions K = K(s) and v by convolution with a Dirac sequence (for any
continuation across the boundary), and find smooth functions Kε → K lo-
cally in H1(ΩT ) and vε → v locally in L2(ΩT ). For arbitrary ϕ ∈ C∞

0 (ΩT )
we find, for ε→ 0,

−
∫

ΩT

∇K · v ϕ← −
∫

ΩT

∇Kε · vε ϕ

=

∫

ΩT

Kε div vε ϕ+

∫

ΩT

Kε vε · ∇ϕ

=

∫

ΩT

Kε (−∂ts + f)ε ϕ+

∫

ΩT

Kε vε · ∇ϕ

=

∫

ΩT

∂tKε sε ϕ+

∫

ΩT

Kε sε ∂tϕ+

∫

ΩT

Kε fε ϕ+

∫

ΩT

Kε vε · ∇ϕ

→
∫

ΩT

∂tK sϕ+

∫

ΩT

K s∂tϕ+

∫

ΩT

K f ϕ+

∫

ΩT

K v · ∇ϕ

= −
∫

ΩT

∂tK̄ ϕ+

∫

ΩT

K f ϕ+

∫

ΩT

K v · ∇ϕ

=

∫

ΩT

g ϕ +

∫

ΩT

K v · ∇ϕ.

This proves the claim.

4 Outflow problem for non-constant coeffi-

cients

In this section we transfer the previous results to x-dependent coefficient
functions k(x, s) and pc(x, s). The precise assumptions on k, pc and their
regularizations are collected in Assumption 3. They are not optimized with
respect to regularity properties.

Assumption 3. We assume that for some function a ∈ C1(Ω̄, (0, ā)), ā ∈
(0, 1), the coefficients k(x, s) and p̃c(x, s) satisfy

k ∈ C1(Ω̄× [0, 1],R), p̃c ∈ C1({(x, s)|x ∈ Ω, a(x) < s < 1},R),
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and we set pc(1) = [p̃c(1),∞) if p̃(x, .) can be continued continuously to
(a(x), 1]. We assume

k ≥ 0, ∂sk ≥ 0, k(x, a(x)) = 0, k∇xp̃c bounded,

and that the estimates of Assumption 1 hold pointwise for all s and all x.
On the approximations we assume kδ ց k in C1 and kδ = δ2 for s ≤ a(x),
ρδ → p̃c in C1 on compact subsets of {(x, s)|x ∈ Ω, a(x) < s < 1}, and√
kδ∇xρδ →

√
k∇xpc uniformly on {(x, s)|x ∈ Ω̄, a(x) ≤ s ≤ 1}. Further-

more, the estimates of Assumption 1 shall hold pointwise for kδ and ρδ.
To simplify the notations we additionally assume that we have globally

only one bahavior of the capillary pressure curve: either a(x) < 1 for all x,
or ∂sρδ uniformly bounded for s → 1, or a ≡ 1 and ∂sρδ → ∞ for s → 1,
uniformly on Ω.

The assumptions on f , s0, and pin ≥ pc(., ā) are as in section 2. We formu-
late the theorem with an assumption concerning estimates of the divergence
of vδ. The assumption is verified in Lemma 1 for constant coefficients, and,
under different assumptions, in Lemma 5 for non-constant coefficients.

We use here again the regularized outflow condition with pressure driven
velocity (2.2) which was

vδ · n =
1

δ
kδ(sδ)(pδ)+ . (4.1)

Theorem 2. Let T > 0, let Assumption 3 hold, and let (sδ, pδ) be solutions
of the regularized problems with vδ = −kδ∇pδ and boundary condition (4.1).
We assume the divergence estimate

∫ T

0

∫

Ω

kδ∂sρδ|∂tsδ|2 ≤ C (4.2)

with C independent of δ. Then, for a subsequence δ → 0 and appropriate
limiting functions, there holds

sδ ⇀ s weakly-* in L∞(ΩT ), (4.3)

vδ ⇀ v weakly in L2(ΩT ), (4.4)

kδ(sδ)→ k(s) weakly in H1(ΩT ), strongly in L2(ΩT ), (4.5)

k2
δ (sδ) pδ ⇀ k2(s) p weakly in L2(ΩT ), (4.6)

and p(x, t) ∈ pc(x, s(x, t)) almost everywhere on {(x, t)|k(x, s(x, t)) > 0}.
The limits satisfy

∂ts = −div v + f in D′(ΩT ), (4.7)

k2 v = −k3∇p in D′(ΩT ), (4.8)
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and v = 0 almost everywhere on {k = 0}. On the boundary ∂Ω with
normal vector n the limiting functions satisfy v · n = 0 on ΣN,T and
k3 p = k3 (p−1

c (pin)) pin on Σin,T . On Σout holds

v · n ≥ 0 on Σ̄out,T ∪ ΣN,T , (4.9)

k2(s)p ≤ 0 and k2(s)s− k2(a0)a0 ≤ 0 on Σout,T , (4.10)

(v · n) · (k2(s)s− k2(a0)a0) ≥ 0 on Σout,T . (4.11)

The traces above exist in the sense of distributions.

Proof. Estimates, convergences, and definition of limit functions. The funda-
mental a priori estimates are shown in section 5. They provide boundedness
of the saturation sδ, an upper bound for the pressure pδ, and an L2 estimate
for the velocity vδ. In particular, we find limits s and v and a subsequence
with (4.3) and (4.4). In order to derive (4.5), it suffices to calculate for the
gradients

∇kδ = ∂skδ · ∇sδ +∇xkδ.

The assumption ∂skδ ≤ C
√
kδ together with the L2-bound for

√
kδ|∇sδ| of

the energy estimate yield the boundedness of ∇kδ ∈ L2(ΩT ). Additionally,
time derivatives of kδ are bounded due to (4.2). Together, we can assume
kδ ⇀ k in H1(ΩT ) and (4.5). For the proof we additionally assume the
convergence pointwise almost everywhere. The identification of the limit
k = k(s) relies on the compactness result below.

The uniform upper bound for pδ together with the uniform bound for
kδρδ implies that the family ψδ := k2

δ (sδ)pδ is uniformly bounded. We may
therefore assume ψδ = k2

δpδ ⇀ ψ in L2(ΩT ) for some function ψ. We now
define the limiting pressure by p(x, t) := ψ(x, t)/k(x, t)2 wherever k(x, t) is
positive. Since kδpδ is bounded and kδ → k pointwise almost everywhere,
k2

δpδ → 0 on {k = 0}. Therefore, this construction of p implies (4.6). Note
that we have not defined a pressure on {k = 0}, and for the sequel we set
k2p = 0 on this set.

Compactness. In order to derive the constitutive relation p(x, t) ∈
pc(x, s(x, t)) we need a compactness result. Loosely speaking, we want that
the convergence ψδ → ψ is strong. For spatial derivatives of ψδ we calculate

∇ψδ = k2
δ ∇pδ + 2kδ∂skδ∇sδ pδ + 2kδ∇xkδ pδ,
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and find a uniform estimate in L2(ΩT ). In order to control temporal varia-
tions of ψδ we integrate the ∂tsδ-equation over a time interval (t, t + h) to
find

sδ(t+ h)− sδ(t) =

∫ t+h

t

∇ · (kδ∇pδ) + fδ.

In order to avoid the boundary integrals we use again a sequence of cut-off
functions αε ∈ C∞

0 (Ω, [0, 1]) with αε(x) = 1 for all x with dist(x, ∂Ω) > ε.
We multiply with (kδ · sδ)(t + h) − (kδ · sδ)(t) and αε and integrate over
Ω× (0, T − h) to find

∫

Ω×(0,T−h)

αε[sδ(t+ h)− sδ(t)] · [(kδ · sδ)(t+ h)− (kδ · sδ)(t)]

≤
∫

Ω×(0,T−h)

∫ t+h

t

kδ(τ)∇pδ(τ) · ∇[αε(kδ · sδ)]
t+h
t + Ch ≤ C ′h.

In particular, we have uniform interior bounds for finite differences of kδsδ.
We now have to distinguish two cases. The case that either pc(x, s)→∞

for s→ 1 or that ∂sρδ is uniformly bounded for s→ 1 is the easy case. By the
uniform upper bound for the pressure functions pδ, in this case, the functions
kδ(sδ)∂sρδ(sδ) are uniformly bounded. The reasoning below remains valid
without the cut-off argument, i.e. for ηε = id.

The second possibility is that pc(., 1) = 0 with ∂sρδ(s) → ∞ for s → 1,
uniformly on Ω. For a sequence Cε → +∞ for ε→ 0 we introduce a limiting
value function

mε ∈ C1(Ω,R), mε(x) ≤ 0,

kδ∂sρδ ≤ 2Cε if k2
δρδ ≤ mε, kδ∂sρδ ≥ Cε if k2

δρδ ≥ mε,

and the nonlinear cut-off function

ηε(x, ζ) := (ζ −mε(x))− .

We claim that the sequence αεηε(ψδ) is compact in L2 and that for a subse-
quence δ → 0

αεηε(ψδ) = αεηε(k
2
δpδ)→ αεηε(k

2p) in L2(ΩT ) (4.12)

for all ε > 0 from a sequence ε→ 0. Indeed, the partial derivative

∂[ηε(k
2
δpδ)]

∂sδ
·
(

∂[kδsδ]

∂sδ

)−1

= χ{k2

δ
pδ<mε}

2kδ∂skδpδ + k2
δ∂sρδ

kδ + ∂skδsδ
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is uniformly bounded by the assumptions. Therefore the above interior
bound for temporal finite differences of kδsδ implies the analogous bound
for ηε(k

2
δpδ). This implies the strong convergence of the left hand side of

(4.12), since the partial derivatives ∇xηε are bounded.
In order to conclude (4.12), it remains to identify the strong limit qε

of the sequence αεηε(ψδ). On the set {qε < 0} the function qε is also a
pointwise a.e. limit for a subsequence; this allows to conclude the pointwise
a.e. convergence k2

δpδ → η−1
ε (qε/αε) and the weak limit must coincide with

this limit. On the set {qε = 0} we have, by convexity of −ηε and the weak
convergence k2

δpδ → k2p the inequality 0 = qε ≤ αεηε(k
2p) ≤ 0, hence

qε = αεηε(k
2p) also on this set and (4.12) is shown.

Bulk equations. Based on the compactness result it is now easy to verify
the constitutive relation p ∈ pc(s) for almost all (x, t) with k(x, t) > 0.
Indeed, on almost all points (x, t) with k(x, t) > 0 and k2p ≤ mε for some ε,
we have the pointwise convergences of sδ(x, t) and of pδ(x, t). This implies
p(x, s) ∈ pc(s(x, t)), since ρδ → pc uniformly on compact sets. On the other
hand, for points (x, t) with k2p ≥ mε for all ε, we have p(x, t) ≥ p̃c(x, 1) and
thus, again, p(x, s) ∈ pc(x, s(x, t)).

Regarding the limiting equation (4.7) it suffices to take the distributional
limit on both sides of ∂tsδ = −div vδ + fδ.

Concerning relation (4.8) we claim that, for an arbitrary vector field ϕ ∈
C∞

0 (ΩT ,R
N), there holds

∫

ΩT

k2
δpδ∇kδ · ϕ→

∫

ΩT

k2p∇k · ϕ. (4.13)

Once this is shown we can calculate
∫

ΩT

k2 v · ϕ← −
∫

ΩT

k2
δ kδ∇pδ · ϕ =

∫

ΩT

pδ

{

3k2
δ∇kδ · ϕ+ k3

δ∇ · ϕ
}

→
∫

ΩT

p
{

3k2∇k · ϕ+ k3∇ · ϕ
} Def

= −
∫

ΩT

k3∇p ϕ

and find (4.8). In order to prove (4.13) we decompose, for arbitrary ε > 0,
the integral as
∫

ΩT

k2
δpδ∇kδ · ϕ =

∫

ΩT

k2
δpδ∇kδ · ϕχ{k2

δ
pδ<mε} +

∫

ΩT

k2
δpδ∇kδ · ϕχ{k2

δ
pδ≥mε}

→
∫

ΩT

k2p∇k · ϕχ{k2p<mε} +

∫

ΩT

k2p∇xk · ϕχ{k2p≥mε} + oε(1),
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for δ → 0. In the convergence of the first integral we used the strong con-
vergence of αεηε(ψδ), in the convergence of the second integral we used the
strong convergence ∇xkδ(sδ) → ∇xk(s), which follows from the strong con-
vergence sδ → s (on this set) and the uniform convergence ∇xkδ → ∇xk.
The error term oε(1) → 0 for ε → 0 is induced by boundary layer integrals
(factor αε), and the term

∫

ΩT

k2
δpδ ∂skδ∇sδ · ϕχ{k2

δ
pδ≥mε}.

In this integral, k2
δpδ and ∂skδ are uniformly bounded, and χ∇sδ = χ (∇pδ−

∇xρδ)/∂sρδ is small in L2(ΩT ) by the energy bound (5.1) for ∇pδ and by
1/∂sρδ ≤ 1/Cε. In the above expression we now take the limit ε → 0 and
find

∫

ΩT

k2
δpδ∇kδ · ϕ→

∫

ΩT

k2p∇k · ϕχ{s<1} +

∫

ΩT

k2p∇xk · ϕχ{s=1}.

Since ∇k χ{s=1} = (∇xk)(s) χ{s=1} by the chain rule for Sobolev functions,
we have shown (4.13) and thus (4.8).

Regarding v = 0 on {k = 0} it suffices to use the energy estimate (5.1)
in the form

∫

ΩT

1√
kδ

|vδ|2 ≤
∫

ΩT

kδ√
kδ

kδ(sδ)|∇pδ|2χ{sδ≥ā}

+

∫

ΩT

kδ∂sρδ√
kδ

kδ(sδ)∂sρδ(sδ)|∇sδ|2χ{sδ<ā} + C ≤ C ′,

where in C we collected terms generated by kδ∇xρδ. The estimate implies
that every weak L2 limit of |vδ| vanishes on the set, where the strong L2

limit of (kδ)
1/4 vanishes. This yields the result.

Boundary relations. Based on the equation, the velocity v has a trace in
the distributional sense, and, additionally, vδ ·n→ v ·n in the distributional
sense on the boundary. This provides the Neumann condition along ΣN,T .
Concerning the inflow condition on Σin,T , it suffices to check the distribu-
tional convergence of k3

δpδ. Let ϕ be a vector field, ϕ ∈ C∞(Ω̄T ,R
N),

∫

ΣT

k3
δpδ ϕ · n =

∫

ΩT

{

3k2
δ∇kδ pδ · ϕ+ k3

δ ∇pδ · ϕ+ k3
δpδ∇ · ϕ

}

→
∫

ΩT

{

3k2∇k p · ϕ− k2 v · ϕ+ k3p∇ · ϕ
}

=

∫

ΣT

k3p ϕ · n,
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where we exploited again (4.13).
The outflow boundary condition (4.10) is verified with a calculation as in

Theorem 1. The product inequality (4.11) was derived in Proposition 1 of
section 3 for general coefficient functions. It suffices to check the assumptions
of Proposition 1. The convergences of (3.6) and (3.7) follow for a subsequence
from the pointwise a.e. convergence of sδ on {a(x)+ ε < sδ(x, t) < 1− ε} for
all ε > 0. The limit (3.8) is a consequence of our assumption on the uniform
convergence of kδ∇xρδ.

5 Estimates

In this section we collect, for x-dependent coefficients kδ and ρδ, the funda-
mental estimates for solutions of the regularized equation

∂tsδ = ∇ · (kδ(sδ)∇[ρδ(sδ)]) + fδ,

with boundary condition (2.2) and initial data sδ
0. We impose the general

assumptions of subsection 2 and Assumption 3 for the coefficients. We find a
solution sδ : ΩT → [0, 1] in two steps. 1) Extending the coefficient functions
to all s ∈ R, we find a solution sδ of the parabolic problem by local existence
theory and the energy estimate below. 2) The parabolic maximum principle
provides the bounds s(x, t) ∈ [0, 1].

Another application of a maximum principle yields additionally an upper
bound for pδ.

Lemma 3 (Maximum principle). There exists pMAX < ∞ independent of
δ > 0 such that pδ(x, t) ≤ pMAX for almost all (x, t) ∈ ΩT and all δ > 0.

Proof. We recall that pmax = max{pin(x, t)|x ∈ Σin, t ∈ [0, T ]} is a finite
number. Furthermore, by the compatibility condition on the initial values
and the construction of the initial date for the regularized problem, we have
bounded initial values. For some pM > 0 we find ρδ(s

δ
0) ≤ p0 ≤ pM .

For bounded coefficient x 7→ kδ(x, s̄) we may solve the following elliptic
problem for H : Ω→ R, H = Hδ,s̄,

−∇ · (kδ(., s̄)∇H) = 1, H = 0 on Σin, ∇H · n = −1 on ΣN ∪ Σout.

We vary the parameter s̄ in the set [ā, 1] so that the coefficients kδ are uni-
formly non-degenerate. Hδ,s̄(x) and its derivatives depend continuously on
δ ∈ [0, δ0] and s̄.
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We choose ε > 0 so small that ∂skδ(x, s)(∂sρδ(x, s))
−1|∇Hδ,s̄(x)|2 ≤

(2ε)−1 for all x, s, s̄, and δ, and then choose s̄ ∈ (0, 1) close to 1 (speci-
fied below, independent of δ) and enlarge pM such that ρδ(x, s) > pM implies
s > s̄ independent of x and δ.

We compare the solution pδ of the regularized problem with pM +εHδ,s̄(x).
Let t be the first time instance such that pδ(x, t) = pM + εH(x) for some
x ∈ Ω̄. Necessarily, (x, t) is an inner point of ΩT . Exploiting ∇pδ(x, t) =
ε∇H(x) and ∆pδ(x, t) ≤ ε∆H(x), and thus

∇xkδ(x, s̄)∇pδ(x, t) + kδ(x, s̄)∆pδ(x, t) ≤ −ε.

We can calculate in the point (x, t)

∂tsδ = ∇ · (kδ(sδ)∇pδ) + fδ

= (∇xkδ)(x, sδ)∇pδ + (∂skδ)(x, sδ)∇sδ∇pδ + kδ(sδ)∆pδ + fδ

= [(∇xkδ)(x, sδ)− (∇xkδ)(x, s̄)]∇pδ + [kδ(sδ)− kδ(s̄)]∆pδ

+ (∂skδ)(x, sδ)∇sδ∇pδ − ε+ fδ

≤ Cε(1− s̄) + (∂skδ) · (∂sρδ)
−1ε2|∇H(x)|2 − ε+ CL|1− s̄|,

where CL is the Lipschitz constant of f . Choosing s̄ < 1 such that 1 −
s̄ is small compared to ε, we find that the time derivative is negative, a
contradiction.

The result is obtained with pMAX = max{pM + εH}.
Lemma 4 (Energy estimate). There exists C = C(T ) < ∞ independent of
δ > 0 such that, for all δ > 0,

∫ T

0

∫

Ω

kδ(sδ)|∇pδ|2χ{sδ≥ā} + kδ(sδ)∂sρδ(sδ)|∇sδ|2χ{sδ<ā} ≤ C. (5.1)

In particular, the family of velocity fields is bounded, ‖vδ‖L2(ΩT ) ≤ C.

Proof. For notational convenience in the proof we assume the existence of a
number p̄ ∈ R is such that ρδ(x, a(x)) ≤ p̄ ≤ ρδ(x, ā) for all x ∈ Ω.

The estimate (5.1) is of energy type and can be obtained by a testing
procedure. Multiplication of the equation with a function ϕ ∈ H1(ΩT ) and
an integration yields

∫ t

0

∫

Ω

∂tsδ ϕ+

∫ t

0

∫

Ω

kδ(sδ)∇pδ · ∇ϕ

+

∫ t

0

∫

Σin

vδ · n ϕ+

∫ t

0

∫

Σout

vδ · n ϕ =

∫ t

0

∫

Ω

fδ ϕ,
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with ∇pδ = ∂sρδ(sδ)∇sδ +∇xρδ(sδ).
Loosely speaking, to find estimates for the gradient of pδ, we must multi-

ply the equation with pδ. This works in regions where the saturation is large
enough. To make the method rigorous, we set η+ : R→ R, η+(ζ) = (ζ − p̄)+

and use the bounded function p̃in ∈ H1(ΩT ) that continues the boundary
values on Σin and vanishes on the outflow boundary Σout, existing by the
assumption on pin. We insert above ϕ = η+(pδ)− p̃in and exploit the uniform
boundedness of |ϕ| (due to the upper bound for pδ), vδ · n ≥ 0 and ϕ ≥ 0 on
Σout, ϕ = 0 on Σin, and fδ ≤ Cf , to find

∫ t

0

∫

Ω

∂tsδ η+(pδ) +

∫ t

0

∫

Ω

kδ(sδ)∇pδ

(

∇pδ χ{pδ≥p̄} −∇p̃in

)

≤ C.

In order to analyze the first integral we introduce the functionHδ : R×Ω→ R

such that, for all x ∈ Ω, Hδ(p̄, x) = 0 and

∂ζHδ(ζ, x) =
η+(ζ)

∂sρδ(x, ρ
−1
δ (x, ζ))

.

The function Hδ vanishes on (−∞, p̄) × Ω and is uniformly bounded on
(p̄, pMAX]× Ω. Since we can write

η+(pδ)∂tsδ =
η+(pδ)

∂sρδ(ρ
−1
δ (pδ))

∂tpδ = ∂t[Hδ(pδ)],

the first integral is bounded. We arrive at

∫ t

0

∫

Ω

kδ(sδ)|∇pδ|2 χ{sδ≥ā} ≤ C +

∫ t

0

∫

Ω

kδ(sδ)∇pδ · ∇p̃in.

We next want to study the region with low saturation. To this end we
set η−(s) = (s− ā)− + ā and choose ϕ = η−(sδ). Exploiting 0 ≤ ϕ ≤ sδ ≤ 1,
vδ · n ≥ 0 on Σout, sδ ≥ ā and hence ϕ = ā on Σin, and fδ ≤ Cf , we find

∫ T

0

∫

Ω

kδ(sδ)∂sρδ(sδ)|∇sδ|2χ{sδ<ā} + ā

∫ T

0

∫

Σin

vδ · n

≤ C −
∫ T

0

∫

Ω

kδ(sδ)∇xρδ · ∇sδχ{sδ<ā}.

By the uniform boundedness of
√
kδ∇xρδ we can absorb the last integral into

the left hand side. It remains to control the net inflow through Σin. We
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choose a smooth function α ∈ C∞(Ω̄) with α = 1 on Σin and α = 0 on Σout.
We calculate

∫ T

0

∫

Σin

vδ · n =

∫ T

0

∫

Ω

div (vδ α) =

∫ T

0

∫

Ω

vδ · ∇α + α (−∂tsδ + fδ)

≤ C (1 + ‖vδ‖L2(ΩT )).

We collect the estimates and find

∫ t

0

∫

Ω

kδ(sδ)|∇pδ|2 χ{sδ≥ā} +

∫ T

0

∫

Ω

kδ(sδ)∂sρδ(sδ)|∇sδ|2χ{sδ<ā}

≤ C(1 + ‖vδ‖L2(ΩT )).

We can write vδ = −kδ∇pδ = −kδ∂sρδ∇sδ− kδ∇xρδ and use the first expres-
sion for sδ ≥ ā and the second expression for sδ < ā. Since kδ is bounded,
and kδ ∂sρδ is bounded on s ∈ [0, ā], the squared L2-norm of vδ is bounded
by the above integral and an additive constant.

Lemma 5 (Divergence estimate for non-constant coefficients). We study
k(x, s) and pc(x, s) as described in the beginning of section 4, assumptions
on initial and boundary value as before, and we additionally assume that for
some C0 the partial derivatives satisfy

|∇xkδ(x, s)| ≤ C0(1− s)kδ,

|∇xρδ(x, s)| ≤ C0,
√

kδ ∂sρδ(1− s) ≤ C0.

Then, for some C > 0 independent of δ, the sequence ∂tsδ satisfies the uni-
form bound

∫ T

0

∫

Ω

kδ∂sρδ|∂tsδ|2 ≤ C.

Proof. Once more, in this proof we omit the index δ in the expressions
kδ(x, ), ρδ(x, .), etc. We define a function Ψ(x, ξ) through ∂ξΨ(x, ξ) =
k(x, (ρ(x, .))−1(ξ)) and Ψ(x, 0) = 0. By the uniform bound p ≤ pMAX and the
assumption on k∂sρ, the functions x 7→ Ψ(x, p(x, t)) are uniformly bounded.

Multiplication of the equation

∂ts = ∇ · (k∇p) + f

/

d

dt
[Ψ(p)] = k(x, (ρ(x, p))−1(ξ)) ∂tp(x, t),
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and integration over ΩT yields

∫

ΩT

{

k ∂ts ∂tp− f
d

dt
Ψ

}

+

∫

Σin,T

vn
d

dt
[Ψ(pin)] +

∫

Σout,T

vn k∂tp

= −
∫

ΩT

(k∇p) d
dt
∇[Ψ(p)]

= −
∫

ΩT

∂t
1

2
|k∇p|2 −

∫

ΩT

k∇p d
dt

[∇xΨ(p)].

We write the last integral as

∫

ΩT

k∇p d
dt

[∇xΨ(p)] =

∫

ΩT

k∇p (∂ξ∇xΨ)(p) ∂tp

=

∫

ΩT

k∇p∇x[k(x, (ρ(x, .))
−1(ξ))]|ξ=p ∂tp

=

∫

ΩT

k∇p [∇xk(x, s)− ∂sk(x, s) · (∂sρ(x, s))
−2∇xρ(x, s)] ∂tp

≤ C

∫

ΩT

|k∇p| [(1− s)k +
√
k(∂sρ(x, s))

−2] |∂tp|

≤ C

∫

ΩT

|k∇p|
√
k(∂sρ(x, s))

−1/2 |∂tp|

= C

∫

ΩT

|k∇p| · (k∂ts ∂tp)
1/2 .

The first factor under the integral is the velocity and uniformly bounded in
L2, the second factor appears squared on the left hand side of the inequality.
We can absorb the term.

Exploiting the Lipschitz assumption on f , we write

∫

ΩT

f
d

dt
Ψ ≤

∫

ΩT

f(x, t, 1)
d

dt
Ψ + C

∫

ΩT

|(1− s)k(s)∂sρ(s) ∂ts|

≤ C +

∫

Ω

f(x, t, 1) Ψ(x, t) dx

∣

∣

∣

∣

T

t=0

+ C

∫

ΩT

|
√

∂sρ(s)k(s)∂ts|,

which can be absorbed in the left hand side.

The boundary integrals are treated precisely as in Lemma 1. By the
assumption on pin, we can find a bounded function q ∈ L2H1 which takes
the values ∂tpin = (∂t[Ψ(pin)])/k(ρ−1(pin)) on Σin,T and vanishes on Σout,T ,
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and write

−
∫

Σin,T

vn
d

dt
Ψ(pin) = −

∫

ΩT

div(k(s)v q)

= −
∫

ΩT

∇[k(s)]v q + k(s)div v q + k(s)v∇q ≤ ε

∫

ΩT

k(s)|div v|2 + Cε.

The outflow boundary integral is written as
∫

Σout,T

vn k∂tp =

∫

Σout,T

k(s)

δ
(p)+k ρ

′ ∂ts

=

∫

Σout,T

1

δ
∂t[H(s)] =

∫

Σout

1

δ
H(s)

∣

∣

∣

∣

T

t=0

,

where H : [0, 1] × Ω → R satisfies H(x, a0) = 0 and ∂sH(x, s) =
k(x, s)(ρ(x, s))+k(x, s)ρ

′(x, s). Thus H is non-negative and vanishes [0, a0],
hence, initially. We conclude that the integral is non-negative.
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