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The possible ground states of an extended Hubbard model in the atomic limit, augmen- 
ted by an additional nearest neighbour Ising-like interaction and an external magnetic 
field, are rigorously determined for arbitrary values of the coupling parameters and 
arbitrary chemical potential. The method used requires only simple convexity argu- 
ments and the examination of all possible configurations of small clusters of lattice sites, 
which may be done by computer. The results are valid for all lattices of AB type (two 
interpenetrating sublattices). The types of order found are ferromagnetic, antiferromag- 
netic, and charge density wave. Perturbation theory suggests that for finite band width 
there may be a state showing both a charge density wave and ferromagnetic order. 

I. Introduction 

More than twenty years after its invention, the Hub- 
bard model [1], introduced originally to describe 
electron correlation phenomena in narrow-band sys- 
tems, is still being very actively investigated, as re- 
cent publications [2-4] show. The model, describing 
electrons in a simple tight-binding band interacting 
by an on-site Coulomb repulsion between electrons 
of opposite spin, was later augmented by a repulsion 
between electrons at nearest-neighbour sites; this 
model is usually called "extended Hubbard model" 
(see Eq.(1) below). The atomic limit (zero band 
width) was treated by Bari [5] who determined the 
ground states exactly for equal numbers of electrons 
and lattice sites and found a "Mot t  state" with one 
electron at each lattice site and a charge ordered 
state with vacant and doubly occupied sites in an 
alternating fashion. Bari also investigated a possible 
phase transition by a mean-field approximation. The 
same model was treated by J~drzejewski [3] who 
proved the existence of a phase transition and de- 
rived a lower bound to the critical temperature by 
rigorous methods of statistical mechanics. Later the 
same author [4] treated this model on a square 
lattice for a general number of electrons. In addition 
to the ground state configurations mentioned above 
(and the trivial "completely filled" and "completely 

empty" states), he found a charge-ordered state with 
singly and doubly occupied sites in an alternating 
fashion and a similar one consisting of singly oc- 
cupied and vacant sites. Furthermore, he proved the 
existence of several corresponding kinds of long 
range order for finite temperatures. The states dis- 
cussed in [4] did not show any spin order, and 
J~drzejewski raised the question how an additional 
magnetic interaction might change this situation. A 
model of this kind (with a nearest-neighbour Ising- 
like interaction between spins) was treated by Rob- 
aszkiewicz [6] in a mean-field approximation; Lo- 
renz [7] gave a mean-field treatment of the finite 
band width case and found no coexistence of spin 
order (antiferromagnetism) and charge order. 
In this paper, we determine the possible ground 
state configurations of an extended Hubbard model 
in the atomic limit, with an additional nearest-neigh- 
bour Ising-like interaction and an external magnetic 
field, for arbitrary interaction parameters and arbi- 
trary chemical potential. We determine the regions 
of stability in parameter space for these various 
states and discuss the effects of a non-zero band 
width. 
In Sect. II we introduce the model and transform it 
to an Ising system. In Sect. III we describe the meth- 
od used to determine the possible ground state con- 
figurations. The method is based on simple energy 
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and correlation arguments and is a variant of the 
one introduced in [8]; it permits us to find the 
ground states of the infinite lattice Hamil tonian by 
making a computer examine the finitely many con- 
figurations of a small cluster of lattice sites. 
Section 4 contains the main results, namely the pos- 
sible ground state configurations for all lattices of 
the AB-type (two interpenetrating sublattices) and 
their regions of stability, i.e. "ground state phase 
diagrams". It turns out that the introduction of the 
magnetic interaction does not create fundamentally 
new states but just removes some degeneracies in the 
states of [4]. There is no ground state in which a 
charge density wave (CDW) coexists with magnetic 
order, except at "phase boundaries". Some of the 
results of [6] obtained by a mean-field approxima- 
tion are compared to our results. Finally, in Sect. V 
we use perturbation theory to lowest order in the 
band width to discuss how the ground state phase 
diagrams obtained in Sect. IV will be modified if the 
atomic limit is left. We conjecture that several disor- 
dered regions will show up in the phase diagram 
and that there may be a ferromagnetically ordered 
CDW phase, in contrast to the atomic limit. 

II. The Model  

We study a model defined by the Hamil tonian 

H = H H + H u (1) 

where 

H..-= - t  Z Z (c; % + c?oc.) 
<r= "[, ]. ( i , j )  

+UZni tn i ,  +V Z n, n j - # Z n i  (la) 
i ( i , j )  i 

denotes the usual extended Hubbard  model, and 
where 

HM. .=-J  ~ (nit-ni+)(njt-ni+) 
( i , j )  

--B ~ (ni, r --ni+ ) ( lb)  
i 

is an additional magnetic term. By i = l  . . . .  , N we 
denote the sites of a "simple cubic" lattice with 
dimension d = 2  or d=3 .  On each site we have two 
pairs of fermion creation and annihilation operators 
c~, ci~ (a = I", ;), furthermore 

ni,~:=c+~ci,~, and ni:=nit-t-ni,. 

denotes summation over all nearest-neighbour 
( i , j )  

pairs, where each pair is counted once. 

The first term in H H describes two degenerate tight- 
binding bands of width 4dr. We shall assume t = 0  
(atomic limit) for most of the remainder of this paper; 
only Sect. V shall be devoted to the effects of non- 
vanishing band width. U and V characterize the 
intra-atomic and inter-atomic Coulomb energies, re- 
spectively. The chemical potential has been incorpo- 
rated into the Hamiltonian because we wish to study 
systems of various electron densities between n = 0  
and n = 2  electrons per site. The first term of H M 
describes an Ising-like interaction between spin den- 
sities at neighbouring sites, and B is an external 
magnetic field. (A I-Ieisenberg-like interaction, al- 
though physically more appropriate [9] is too com- 
plicated to be treated exactly.) Although U and V 
are positive by their physical nature, we wish to 
stress that our method is by no means restricted to 
this case. The ground state of the Hamiltonian (1) 
may be obtained for arbitrary values of the various 
parameters, as long as t = 0. 
For t = 0 the model Hamil tonian (1) loses its quantum 
mechanical nature and there remain only the purely 
classical occupation numbers n~. We are thus left 
with two interacting lattice gases, or equivalently, 
with two Ising models, one for each possible value 
of a. For reasons of convenience we introduce two 
copies of the original lattice and place the "up"  and 
"down"  subsystems on different lattices. Of course 
there are interactions between the two lattices as 
well as within each lattice. The Hamil tonian (1) is 
transformed to a double Ising model by introducing 
two sorts of Ising spin variables 

a~u~=nit - 1 / 2 ;  aid:=ni~ - 1 / 2  (2) 

corresponding to the "up"  and "down"  occupation 
numbers, respectively. The Hamil tonian thus may be 
written in the form 

H 
N =  JII q- J• -t- Js - B .  - B  a -Bum u --Barnd 

-J [ I  Cll -J•  -Jscs. (3) 

The various quantities occurring in (3) are defined as 
follows: 

1 1 ~ 2 aia (4) m , : = ~ 2 a i ,  and md:=~ i 

are the relative magnetizations of the u and d sub- 
systems, respectively. The corresponding magnetic 
fields turn out to be 

B, ,= �89  (5a) 

and 

Bd=�89 # - B  - z  V -  U/2), (5b) 
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where z is the coordination number  of the lattice. 
The spin correlation between sites on the two Ising 
lattices corresponding to the same site of the orig- 
inal lattice is given by 

1 ~ 4 a l  ~ (6a) 
C •  i (Tid~ 

the corresponding coupling constant is 

J• = - U/4.  (6 b) 

The nearest-neighbour correlation within the two 
Ising lattices is defined by 

4 
2 (qiu aju d- tTia qjd), (7 a) c N ' - - N z  <i,j> 

accordingly 

JII = - z ( V - J ) / 4 .  (7b) 

The "diagonal"  correlation between sites of the two 
Ising lattices corresponding to nearest-neighbour 
sites of the original lattice is 

4 
C s . - g z  ~ (ai, ,aid+aldaj,,),  (8a) 

(i ,j} 

and finally 

�9 Is: = - z ( V + J ) / 4 .  (8b) 

The Ising model magnetizations and correlations are 
all normalized to the interval [ - 1 ,  1]. 

III.  The Method 

After the transformation described in the preceding 
section, the ground states of the model may be 
found by a method similar to the one developed in 
[8]. In order to fully understand the method, let us 
briefly recall the basic steps of the analysis in [8]. 
Every configuration of the Ising model corresponds 
to a point 

P: =(mu, m d, cll, c • Cs) 

of IR 5. The set S of all these points is convex in the 
thermodynamic limit, because the components of 
N P  are extensive quantities. 
In order to determine the shape of the set S more 
precisely, linear inequalities of the form 

Q-P>=b (9) 

may be derived. These inequalities define a convex 
polyhedron (a simplex) which contains the desired 
set S. 

Then one may find spin configurations correspond- 
ing to the extremal points (corners) of the simplex, 
thus showing that the set S coincides with the sim- 
plex. As the energy (3) is a linear function of the 
components of P, it assumes its extremal values at 
the corners of the simplex S which are thus shown 
to correspond to possible ground state configura- 
tions of the system. We wish to stress that it is by 
no means certain that S has to be a simplex with 
finitely many corners for an Ising system with finite- 
range interactions; at least we are not aware of a 
general proof of such a statement. 
In [8] the necessary inequalities were proved 
analytically, a procedure which may become rather 
tiresome because it is not clear from the outset 
whether a given inequality will turn out to be rele- 
vant or not. To avoid this procedure, an algorithm 
was developed which generates a set of inequalities 
by inspection of all configurations of a cluster con- 
taining only a few spins. We shall now sketch this 
algorithm. 
The procedure rests on the observation that the 
possible values of the correlations within a small 
cluster are less restricted than those of the infinite 
lattice. To make this more explicit, let us consider as 
an example three fixed sites i, j, k of the original 
lattice, where i and k are nearest neighbours to j. As 
an analogue to the vector P introduced earlier, we 
define a vector pc by its components 

c 2 
mu: = 5(a iu  ~- r ju ~- aku) 

c. 2 
rod" --  5 (ff ld + a jd + akd) 

c .__ C• 

c; : = 2(a  j .  akd + ak~ a ~e ) 

Obviously pc can assume only finitely many points 
in IRs; the convex hull of these points is a simplex 
S c. We now show that S c contains the set S defined 
above. To this end we consider an arbitrary (but 
fixed) configuration of the infinite lattice and calcu- 
late the vector P of this configuration in the follow- 
ing way. We translate (and rotate) the cluster (i, j ,  k) 
through the whole lattice, determine pc for each 
possible position (and orientation) of the cluster, and 
take the average to obtain P. Thus every point P 
may be represented as a convex combination of 
points from S c, which was to be shown. (On the 
other hand, S c may be considerably larger than S: it 
is easy to construct spin configurations of the cluster 
(i,j,  k) yielding 
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which is obviously impossible for the infinite lattice.) 
The inequalities defining the cluster simplex S c thus 
apply to the set S. 
This way of deriving inequalities by computer offers 
a considerable amount of freedom which may be 
used to optimize the inequalities. Firstly, the size 
and shape of the cluster may be varied, and se- 
condly, one may give different weights to the sites 
and bonds of the cluster. Part of these weights may 
even be negative, as long as their sum remains nor- 
malized. 
As an output we obtain a list of inequalities and a 
list of points, both describing the simplex S r We 
may then try to construct a configuration of the 
infinite lattice the P-vector of which is equal to a 
corner of S C, thereby determining a possible ground 
state of the system. If necessary, we may repeat the 
procedure with another type of cluster to gain more 
inequalities. 

IV. Results 

The methods introduced in the preceding section 
may be easily applied to the model given by Eqs. (3- 
8). It suffices to consider the simplest conceivable 
cluster, namely two nearest-neighbour sites i and j, 
defining 

c . _ _  ~ _ ( T j u  ' c . ~ t T i d _ ~ t T j  d D~ u . - -  G i u  H'I d �9 

C~l: = 2 ( a l .  a j .  + aid (Tie) 

ca  . = 2 ( a i .  (T id -1- (T ju (T je) 

c~ : = 2 ( a i ,  a jd + ale a j , ) .  

With very little numerical effort one then obtains 
the simplex S C, the corners of which are listed in 
Table 1. The corresponding configurations of the in- 
finite lattice will be discussed below. 

Table 1. The corners of the simplex S c 

Corner No. m , ,  m d C Ih C•  C s Configuration 

1 1 1 1 1 1 i) 
2 - 1  - 1  1 1 1 i') 
3 1 0 0 0 0 ii) 
4 0 1 0 0 0 ii) 
5 0 - 1 0 0 0 ii') 
6 - 1 0 0 0 0 ii') 
7 1 - 1  1 - 1  - 1  iiia) 
8 - 1  1 1 - 1  - 1  ilia) 
9 0 0 - 1  - 1  1 iiib) 

10 0 0 - 1 1 - 1 iv) 

The inequalities defining the simplex S c may all be 
written in the form 

P.  Q>__ - 1  (9') 

with the Q vectors given in Table 2. 
In the last column we have listed those corners from 
Table 1 which fulfill the inequality (9') as an equali- 
ty. 

Table 2. The inequalities defining the faces of the simplex S c (see 
main text for details) 

Inequality Components of Q Configurations 
no. 

1 0 0 - 1  1 --1 1 2 7 8 9 
2 0 0 - 1  - 1  1 1 2 7 8 10 
3 1 --1 0 0 - 1  1 2 4 6 8 9 
4 - 1  1 0 0 - 1  1 2 3 5 7 9 
5 - 1  1 1 - 1  - 1  1 2 3 5 9 10 
6 1 - 1  1 - 1  - 1  1 2 4 6 9 10 
7 - 1  - 1  0 1 0 1 3 4 7 8 9 
8 1 1 0 1 0 2 5 6 7 8 9 
9 - 1  --1 1 0 0 1 3 4 9 10 

10 1 1 1 0 0 2 5 6 9 10 
11 --1 - 1  1 1 1 3 4 7 8 9 i0 
12 1 1 1 1 1 5 6 7 8 9 10 
13 1 - 1  1 0 0 4 6 8 9 10 
14 - 1  1 1 0 0 3 5 7 9 10 
15 1 - 1  0 - 1  0 1 2 4 6 8 10 
16 - 1  1 0 - 1  0 1 2 3 5 7 10 
17 - 1  - 1  0 0 1 1 3 4 7 8 10 
18 1 1 0 0 1 2 5 6 7 8 10 

The fact that the simplex S may be determined by 
using a two-site cluster has a very important con- 
sequence. It means that the ground states (as given 
by the macroscopic quantities making up the vector 
P) are not only the same for the square and simple 
cubic lattices, but are also identical for al l  lattices 
which may be divided into two sublattices A and B 
with every A-site being surrounded by B sites and 
vice versa ( A B  lattices), for example honeycomb (d 
=2) or bcc (d=3) lattices. (One may consider even 
more general networks, provided that the coordi- 
nation number is the same for all vertices of the 
network, and that all closed paths consist of an even 
number of elementary steps.) 
We now consider the corners listed in Table 1. Ob- 
viously, to every corner with non-vanishing m, or m e 
there exists a "mirror image" (marked by a prime) 
with reversed signs of both rn u and me, due to the 
spin reversal symmetry of the Ising model. Another 
symmetry operation of this point set is the inter- 
change of mu and me, corresponding to spin reversal 
in the original extended Hubbard model. The in- 
finite lattice configurations corresponding to the cor- 
ners from Table 1 are all determined uniquely, up to 
symmetry operations. This is trivial for configura- 
tions of types i) and iiia), which are completely de- 
termined by the values of m, and me. For configura- 
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tions iiib) and iv), c ll = -  1 implies that every bond 
within each of the u and d subsystems connects 
oppositely oriented spins; c a =  _+1 characterizes the 
two possible ways in which the two generalized 
checkerboard patterns generated by cll = -  1 may be 
"stacked". The uniqueness of the configurations of 
type ii) may be derived from those inequalities 
which are fulfilled as equalities by these corners. 
(Obviously, the corners of the simplex S are defined 
by the fact that sufficiently many inequalities be- 
come equalities.) Considering corner no. 3 of Ta- 
ble 1, we see that m ,=  1 fixes the u subsystem. Fur- 
thermore this corner fulfills the inequality 

Im,+ma[< l +cll +cl  Wc s (10) 

(nos. 11/12 of Table 2) as an equality. We now prove 
(t0) analytically to see what this inequality implies 
for the spin configuration. To this end we consider a 
lattice site i and one of its nearest neighbours, j, say 
to the right of i. We then have 

1 
m,+rne=~ ~(ai,,+aju+aie+ajd ). (11) 

Using the triangle inequality and the inequality 

tnl < n 2 (12) 

valid for integer n, we obtain 

tm,+mel< 1 ~(a~, + ~rj,+ ale+ aje); (13) 

from which (10) follows by collecting terms of the 
square expression (and repeating the argument for 
different possible directions of the bond between i 
and j). For (10) to become an equality, both the 
triangle inequality and (12) have to become equal- 
ities. This means that the terms of the sum (11) are 
only allowed to assume the values zero and + 1 and 
that they must have the same sign throughout the 
lattice. In combination with the given values of m, 
and m e this fixes the configuration corresponding to 
corner no. 3 of Table 1. 
The resulting five different types of configuration for 
the Hubbard model may be characterized as follows: 

i) is a homogeneously charged unmagnetic state; all 
sites of the Hubbard lattice are doubly occupied (n 
= 2 ) .  

ii) is a spin-polarized charge-density wave (CDW) 
state, consisting of doubly and singly occupied sites 
in an alternating fashion (n=3/2); the spins of the 
singly occupied sites are aligned. 

ilia) is a homogeneously charged ferromagnetic 
state, consisting of singly occupied sites (n= 1) with 
all spins parallel. 

iiib) is a homogeneously charged antiferromagnetic 
state, consisting of singly occupied sites (n= 1) with 
adjacent spins antiparallel. 

iv) is an unmagnetic CDW state consisting of dou- 
bly occupied and vacant sites in an alternating fash- 
ion. 

We thus see that there is a spin-polarized CDW 
state, but no antiferromagnetic state with non-trivial 
charge order. (Of course there may be coexistence of 
antiferromagnetic and CDW states for special com- 
binations of the interaction parameters; see below.) 
The spin polarization of the n =~  CDW state, how- 
ever, will break down as the external magnetic field 
is turned off (see below). 
"Ground  state phase diagrams" may be easily con- 
structed by determining which of the states listed in 
Table 1 yields the lowest energy at a given point in 
coupling parameter space. The vectors Q given in 
Table 2 correspond to points of coexistence of sever- 
al phases: at the point 

(B,,, Be, Jll , "Ix, Js) = -[~l Q (14) 

at least five of the corners given in Table 1 have the 
energy per site 

H 
~- - J r l  +J•  +J~ -B~ - B  e - lel  

due to (3) and (9'), and none of the remaining cor- 
ners has a lower energy. Thus Table 2 may be used 
to find the most interesting regions in the five-di- 
mensional space of coupling parameters of the mod- 
el. In the last column of Table 2 we have listed the 
configurations which coexist at points related to a 
given Q vector by (14). 
Let us now discuss the extended Hubbard model 
without external magnetic field. This amounts to 
fixing B,,=B~ in the Ising picture, and so no new 
ground state configurations will occur. Some pairs of 
ground state configurations from Table l, however, 
will now be degenerate, namely 3 and 4, 5 and 6, 7 
and 8. The degeneracy between corners 7 and 8 is 
indeed twofold, because, c l r= l  and c •  imply 
ferromagnetic order in the Hubbard model, whereas 
the direction of the magnetization is not fixed. The 
situation is totally different for the configurations of 
type ii) (i.e. 3-6): without external field the spins of 
the singly occupied sites are not fixed; the charge 
order however remains, as the inequality (10) and its 
proof are still valid. This results in a total degenera- 

cy of 2(~+1) for each of the two surviving states ii) 
and ii'). The space of macroscopic parameters char- 
acterizing the Ising model states now is four-dimen- 
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Table 3. The inequalities for the extended Hubba rd  model  with- 
out external magnetic  field (see main text for details) 

Inequali ty no, Componen t s  of Q Configurat ions 

i 0 --1 1 - 1  i, i', iiia, i i ib 
2 0 - 1  - I  1 i, i', iiia, iv 
3 0 1 - 1  - t  i, i', iiib, iv 
4 2 1 0 0 i', ii', iii b, iv 
5 - 2  1 0 0 i, ii, iii b, iv 
6 2 0 1 0 i', ii', iii a, iii b 
7 - 2  0 1 0 i, ii, iiia, i i ib 
8 2 0 0 1 i', ii', iiia, iv 
9 - 2  0 0 1 i, ii, ilia, iv 

10 2 1 i 1 ii', ilia, iiib, iv 
11 - 2 1 1 1 ii, iii a, iii b, iv 

sional, with the coordinates 

m:= (m, + me)~2, (15) 

and cll, c 1, c s defined as before. The four-dimension- 
al Q-vectors listed in Table 3 again characterize, the 
faces of the simplex as well as the coexistence points 
in ground state phase diagrams. In Fig. 1 we have 
tried to visualize the structure of the ground-state 
phase diagram for the zero-field model. Note that 
one of the four coupling parameters of the model 
may be fixed, thus defining energy units. We have 
set B -  + l (in the Ising picture), which is equivalent 
to 

# - # o  = +1 

in the Hubbard picture. Here 

#0:= z V+ U/2 (16) 

denotes the value of chemical potential for which 
the Hamiltonian (1) shows particle-hole symmetry. 
The phase diagram for negative values of # - # o  may 
be obtained from the one given in Fig. 1 by in- 
terchanging particles and holes (and using # o - #  as 
energy unit). We have used U/(#-#o  ) and z(V 
+J) / (#-#o)  as parameters for the ground state 
phase diagram. 
In Fig. 1, each of these parameters lies in the range 
between - 1  and + 3. The resulting cube contains all 
phases which are stable for #>#0 .  The stability re- 
gion of the n = 3/2 CDW state (configuration ii) is a 
regular tetrahedron with the corners 

1 
- - ( z ( V - J ) ,  u, z(V + J)) 
# - # o  

= (2, 0, 0), (0, 2, 0), (0, 0, 2), (2, 2, 2). 

On each of the faces of the tetrahedron the type-ii- 
phase  coexists with one of the four remaining types 
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.~ "" ~ ' J ; ,  ....................... ~ "'" -" ~-'-" ~, 

. . . . . . . . . . . . . . . . . . . . .  ~ . J "  
z(V-J  } 
tx-~.o 

Fig. 1. Ground  state phase d iagram of the extended Hubba rd  
model.  Each of the variables ranges from - 1  to + 3 

zJ 

Y 
i 

zV 
~-~ 

Fig. 2. Ground  state phase d iagram for U/(#- go)=  3/2, # > #o 

of configuration. The six coexistence planes between 
any two of these four phases touch one of the edges 
of the tetrahedron and cut one of the faces of the 
cube along its diagonal. (The face diagonals of the 
cube have been omitted in Fig. 1 for the sake of 
clarity.) The six coexistence planes meet at four "tri- 
ple lines" along body diagonals of the cube. The 
various phases in Fig. 1 have been characterized by 
their particle densities n (average number of elec- 
trons per site) and the types of charge or spin order. 
(AFM and FM d.enote antiferromagnetic and mag- 
netic order, respectively.) Figure 2 shows a typical 
section of Fig. 1 (at U/(#-#o)=3/2),  however, with 
rotated axes in order to represent the Hubbard 
model parameters more directly. 
The phase diagram derived in [4] for J = 0  cannot 
be obtained directly as a two-dimensional section of 
Fig. 1, because in [4], V was chosen as energy unit, 
but of course our results reduce to those of [4] for J 
=0.  Comparing our results to those of [4], we see 
that the magnetic interaction d changes the highly 
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a) zJ 
U 

bl 

�9 

zJ 
IUI nF=~ ~ 

@ 
zV 

Fig. 3a  and b. Ground  state phase diagram for # = # o ;  a :  U > 0 ,  
b: U < 0  

ca) zJ zJ 
b) IU~ 

1 - lUl 

Fig. 4.a and b. Ground  state phase diagram for V = 0 ;  a:  U > 0 ,  
b: U < 0  

degenerate spin-disordered n = l  phase into two 
magnetically ordered phases. The spin-disordered n 
=3/2 CDW phase, however, is not affected by J, 
because in this phase the spin density vanishes 
identically on one of the two sublattices. Only a 
magnetic field can align the spins of the singly oc- 
cupied sites, leading to the two spin-polarized CDW 
states (3 and 4 of Table 1) mentioned earlier. How- 
ever, it would be misleading to call these states 
ferromagnetic, as their polarization is enforced by an 
external field. We thus see that for vanishing mag- 
netic field coexistence of magnetic order and charge 
density waves can only occur at boundaries in the 
phase diagram, i.e. on certain planes in Fig. 1. (See 
however Sect. V for the effects of a finite band 
width.) 
It is of some interest to compare our results to the T 
=0  parts of the results of Robaszkiewicz [6] who 
studied the present model in a mean-field approxi- 
mation. Let us first study the system at the point of 
particle-hole symmetry, ~=~0.  Figures 3a, b show 
the ground state phase diagrams for this case, with 
positive and negative U, respectively. 
For positive values of V these diagrams agree with 
the results of [6]; the region of coexistence between 
the n =0  and n = 2 phases, however, is not discussed 
there. These two coexisting phases will separate in 
space, as the nearest neighbour attraction V <0  fa- 
vours the clustering of doubly occupied sites. Only 
at V = 0  and U < 0  a disordered state (a random 
mixture of doubly occupied and vacant sites) may 
occur for [zJ[<lU[. 
The foregoing argument may be generalized to dis- 
cuss the type of coexistence (spatially separated 
phases or mixture) for other points of degeneracy be- 
tween different phases. We have seen earlier that 
every possible ground state of the system is charac- 

terized by some conditions which every nearest- 
neighbour pair of sites has to fulfill. Thus a point of 
coexistence between different structures may be 
understood as a point of coexistence between dif- 
ferent sorts of nearest-neighbour pair configurations. 
Now, if it is possible to construct an interface be- 
tween two coexisting structures without introducing 
forbidden pair configurations, then the two phases 
will easily mix, otherwise they will not. By this argu- 
ment we see immediately that the ferromagnetic and 
antiferromagnetic states will mix at coexistence, 
forming a paramagnetic state, whereas the two de- 
generate ferromagnetic phases will not mix but rath- 
er form polarized domains. Similarly we see that the 
two magnetically ordered states will not mix with 
any of the remaining states of Fig. 3 (which contain 
no singly-occupied sites). 
Let us now turn to the case V=0.  The correspond- 
ing phase diagrams are displayed in Figs. 4a, b. The 
possible ground states are those with n =0 ,  n=2 ,  
and the ferromagnetic and antiferromagnetic n = l  
states. A paramagnetic state exists for U > 0 ,  J = 0  
and 0 < # <  U, a charge-disordered state (mixture of 
doubly occupied and vacant sites) exists for ~ =  U/2, 
JzJl<=-U (U<0).  At the remaining phase bound- 
aries, spatial phase separation occurs. 
From the phase boundaries one may easily derive 
the results for the chemical potential which are sum- 
marized in the following table: 

U < 0  U > 0  

# = - z IJI/2 0 < n < l  # = m i n ( - z [ J j / 2 ,  U / 2 )  

l < n < 2  # = max (U/2, U+zlJI/2) # = U + z lJI /2 

Thus neither the chemical potential nor the phase 
boundaries depend on n (apart from the distinction 



440 U. Brandt and J. Stolze: Ground  States of Extended Hubbard  Models 

7 V  zV Q) ~ b) 5N u 

J 

Fig. 5a  and b. Ground state phase diagram for J = 0 ;  a:  U > 0 ,  
b: U < 0  

between n > l  and n < l ) ,  in contrast to the mean- 
field results in [6]. One may speculate whether this 
failure of the mean-field approximation may be 
traced back to the assumption of translational in-. 
variance (of the average electron occupation etc.) 
within each sublattice which is obviously not fulfilled 
for phase boundaries where non-miscible phases co- 
exist. 
We now consider the case J = 0 (treated also in [4]), 
with the phase diagram shown in Figs. 5a, b. The 
paramagnetic (PM) state occurring in Fig. 5 a results 
from the degeneracy between the two magnetically 
ordered n = l  states. Disordered states may exist at 
the boundaries of the n = 1/2 and n =  3/2 CDW re- 
gions in Fig. 5a and at the boundaries of the n = 1 
CDW region in Fig. 5b. Again, the mean-field ap- 
proximation [6] for this case yields n-dependent 
phase boundaries, whereas the exact phase bound- 
aries obviously are "piecewise n-independent". 

V. Perturbation Theory for Non-Zero Band Width 

We conclude the discussion of our results by some 
qualitative considerations concerning the influence 
of a non-vanishing band width t + 0  within lowest- 
order perturbation theory. We need not consider the 
states n=2 ,  n = 0  and n = l ,  ferromagnetic, because 
these states obviously are eigenstates of the Hamil- 
tonian (with t-independent energies) also for finite 
band width. The regions of stability of these states, 
however, may be indirectly affected by a finite band 
width, because other states may become lower in 
energy as the band width increases. 
To first order in t, the remaining "pure"  ground 
states are also unaffected, because application of 
c+cj~ (if possible) to any of these states changes 
electron occupation at two mutually adjacent sites 
and thus leads to a state lacking the strictly periodic 
electron occupation characteristic of the ground 

states. The situation is different, however, with pa- 
rameter combinations allowing for coexistence of 
two or more different ground state configurations. In 
these cases of high degeneracy the ground state con- 
tains interfaces between regions of different configu- 
ration. The hopping term may have non-zero matrix 
elements between ground states differing only in 
electron occupation of two nearest-neighbour sites at 
an interface, and thus there may be a first order 
correction to the ground state energy. One may ex- 
pect a breakdown of the unperturbed ground state 
especially with those parameter combinations for 
which the coexisting phases are completely miscible, 
whereas in the immiscible cases the perturbation 
may be considered a negligible surface effect. 
We now discuss the second-order correction to the 
ground state energy for the n---1 CDW state, the n 
=3/2 CDW state and the n = l  antiferromagnetic 
state. As these states are degenerate, we have to use 
degenerate perturbation theory and thus have to 
diagonalize the matrix with elements 

(0l H 1 Iv} (vl H 1 10'} (17) 
v E o --E~ 

Here [0} and [0'} are two degenerate ground states, 
{[v}} is a basis in the space of (unperturbed) excited 
states, and the E's are unperturbed energies. It is 
easy to see that the off-diagonal elements of (17) 
vanish for all three states mentioned above and we 
are left with the usual second order expression for 
the diagonal elements always yielding a lowering of 
the ground state energy. The states Iv} contributing 
to the second order energy correction (per site) e2 
are easily constructed, yielding 

~2 = zt2/[(2 z - 1 )  J+ V -  U] (18) 

for the antiferromagnetic state, and 

~2 = zt2/[ U- (2  z - 1 )  V + J] (19) 

for the n =  1 CDW state. The energy corrections (18) 
and (19) are equal if the two states coexist, i.e. at U 
= J + V  and thus this phase boundary is not 
changed by a small finite band width. 
For the n =  3/2 CDW phase the situation is slightly 
more difficult. This phase is highly degenerate be- 
cause the spins of the N/2 singly occupied sites are 
arbitrary. The ground state energy obviously is inde- 
pendent of J, as the doubly occupied sites possess 
no spin. The intermediate states Iv} in (17) are now 
constructed by transferring one electron of spin ~r 
from a doubly occupied site to a nearest neighbour 
site occupied by one electron of spin -~r. This pro- 
cess creates z - 1  nearest-neighbour pairs with non- 
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vanishing magnetic interaction. The corresponding 
contribution to E v obviously depends on the local 
spin configuration, that is, on the choice of 10) (out 

of 2(u+t) possible states) and of Iv) (out of Nz/2  
possible states for given t0)). We tbus may write for 
the n = 3/2 CDW state 

Nz/2 
N e 2 =  2 t z /[- (z-1)V--gov J] (20) 

v= l  

where gov may assume the values _+(z-1), _+(z-3) 
etc. As the second order ground state energy cor- 
rection is not the same for all spin configurations of 
the singly occupied sublattice, we may ask whether 
the finite band width favours spin order. From Fig. 1 
we recall that the projection of the stability region 

z 
of the n=3/2 CDW phase onto the - - ( V , J ) -  

# - # o  
plane is a square with corners (0, 0), (1, I), (2, 0), and 
( - i ,  I); thus V is non-negative throughout this re- 
gion, and IJl<=V. For the state showing complete 
ferromagnetic order in the singly occupied snblattice 
all energy denominators in (20) assume the value 
- ( z - 1 ) ( V - J ) ,  yielding the lowest possible energy 
for J > 0 .  We thus see that a non-vanishing band 
width may lead to ferromagnetic order in a CDW 
phase. The second-order energy correction diverges 
for J-+V. This is not surprising, since a look at 
Fig. 1 reveals that at J = V the n = 3/2 CDW (ferro- 
magnetic) phase gives way to the n = 1 ferromagnetic 
and n = 2 phases. 
For J < 0  it is obviously unfavourable to have a 
spin-polarized sublattice of singly occupied sites. Let 
us consider for a given unperturbed ground state 10) 
those z intermediate states Iv) which are created by 
transferring an electron from a given doubly oc- 
cupied site to a nearest neighbour site; if g of these 
sites have spin a and ( z - g )  sites have spin - a ,  then 
the total contribution of the corresponding states to 
the ground state energy correction (20) is given by 

NA g2(g): = t 2 g/I(1 - z )  V - J ( z  + 1 - 2g)] 

+ tZ(z-g) / [ (1  - z )  V - J ( z +  1 - 2 ( z  -g)) ] .  (21) 

Inspection of this expression shows that its mini- 
mum is situated either at g = 1 or at g =z/2  (for even 
z), or g=(z_+1)/2 (for odd z). The minimum occurs 
at g = 1 for 

J /V  < - (z - 1)/(z + 1); (22) 

thus for sufficiently strong antiferromagnetic cou- 
pling (near the borderline to the n = 2  and n = t  
antiferromagnetic phases) and for sufficiently small 

coordination number we obtain an "almost ferro- 
magnetic" phase with one reversed spin among the z 
nearest neighbours of every doubly occupied site. 
For  weaker antiferromagnetic coupling a "locally 
balanced" paramagnetic phase results. The n = l / 2  
CDW phase may be discussed in an entirely anal- 
ogous way, with identical phase boundaries in the 
(J, V)-plane. 
Summarizing the above discussion we may draw 
some tentative conclusions about the modifications 
which will result in the phase diagram of Fig. 1 due 
to a finite band width. The n = 3/2 CDW phase will 
be modified as discussed above, leading to a coexis- 
tence of magnetic order and charge order. The faces 
of the tetrahedrical stability region of this phase 
(where in the atomic limit coexistence of miscible 
phases occurs) will broaden to form layers contain- 
ing various kinds of disordered phases. The same 
will happen at the boundaries between the ferromag- 
netic and antiferromagnetic phases and between the 
n = 2 and n = 1 CDW phases. At the boundaries be- 
tween the ferromagnetic and n =  1 CDW phases and 
between the antiferromagnetic and n = 2  phases the 
exact eigenstates of the t=t=0 Hamiltonian (i.e. the 
ferromagnetic and n =2  phases) will be pushed back, 
as their energies do not decrease with increasing 
band width. The boundaries between the ferromag- 
netic and n = 2  and between the antiferromagnetic 
and n = 1 CDW states will not change at all. 
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