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Abstract

Recent investigations of M. Rösler [13] and M. Voit [16] provide ex-
amples of hypergroups with properties similar to the group- or vector
space case and with a sufficiently rich structure of automorphisms, pro-
viding thus tools to investigate the theory limits of normalized random
walks and the structure of the corresponding limit laws. The investiga-
tions are parallel to corresponding investigations for vector spaces and
simply connected nilpotent Lie groups.

Introduction

Let Πd denote the cone of positive semidefinite linear operators on Kd, with
coefficient field K = R or K = C. The locally compact space K := Πd ⊆ Kd2

is endowed with a convolution structure ?µ : M b(K)×M b(K) → M b(K) such
that (K, ?µ) is a hypergroup. These convolution structures (K, ?µ) , µ > ρ−1,
were investigated by M. Rösler [13] and M. Voit [16]. (There µ, ρ denote real
parameters. We omit details.) In the following we do not need the analytical
detailes, which are found in [13], [16]. We only use certain particular properties
of these hypergroup structures listed up in Section 0.1 below. Throughout we
fix a convolution (K, ?µ) and use the abbreviation (K, ?). For d = 1 these
hypergroups are just the Bessel-Kingman hypergroups, therefore we mostly
assume w.l.o.g. d ≥ 2. For basic facts on hypergroups the reader is referred
e.g. to the monograph W. Bloom, H. Heyer [2].

In fact, in analogy to Bessel-Kingman hypergroups on R+, these convolu-
tion structures on the matrix cones Πd have group like properties, and therefore
many well-known features of probabilities on vector spaces and on (certain)
groups generalize to to these convolution structures.

Our aim is to sketch a survey of investigations of limit distributions of nor-
malized random walks on these hypergroups parallel to the well-known results
in the ’classical’ situation. Also the proofs are – as far as possible – close to
the classical ones. This survey is of course far from being complete: it just
shows the power of the methods. In fact, drawing a cross-section of the theory
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of limit distributions of operator-normalized random walks on finite dimen-
sional vector spaces (in short: operator limit distributions), we concentrate on
results and structures which were already generalized in the past to locally
compact groups with sufficiently nice automorphism groups, in particular to
homogeneous nilpotent Lie groups. Therefore, the emphasis is laid on char-
acterizations of stable, semistable and (semi-) self-decomposable laws. Taking
into account that the matrix cone hypergroups (K, ?) possess a sufficiently rich
structure of automorphisms we have the means to investigate the analogues of
operator limit distributions on these hypergroups.

Let us mention that for one-dimensional hypergroups, in particular for
Sturm Liouville hypergroups, the structure of automorphisms is considerably
poor: Either Aut(K) is trivial or – for Bessel-Kingman structures – isomorphic
to homothetical transformations, hence Aut(K) ≡ R∗

+ . In this case limit
theorems had been investigated e.g. by Hm. Zeuner, see in particular [18], [19],
[15], see also the monograph [2] and the literature mentioned there. In a more
general context, limit laws, in particular semistability, had been investigated
by S. Menges [11], [12], however at this time only a few concrete examples
beyond the one-dimensional case were available. The afore mentioned results
[16], [13] provide now examples of hypergroups and their automorphisms which
motivate systematic investigations of the structure of operator limit laws.

The paper is organized as follows: At the beginning we collect for the
hypergroups under consideration the main features which are important for
the following investigations. Then, in Section 1 we collect properties of auto-
morphisms, endomorphisms and subhypergroups. Defining a suitable class of
full measures we prove a convergence of types theorem: A crucial tool for all
investigations of limit behaviour of normalized random walks.

In Section 2 we investigate continuous convolution semigroups, in partic-
ular (semi-)stability and Ta-decomposability for Ta ∈ Aut(K), following as
close as possible the ’classical setup’: Characterization of semistability by the
decomposability group Dec(µ) and by domains of attraction and describing
self-decomposability by the Urbanik semigroup D(µ) and by Lévy processes
on space-time hypergroups. Furthermore, again as in the classical situation, it
is shown that Ta−decomposable laws are representable as infinite convolution
products of probabilities with finite logarithmic moments.

In Section 3 we investigate, following [16], squared Wishart- resp. Gaussian
distributions on K, showing that these laws are stable in the afore mentioned
sense. Firstly we examen these laws in details and construct new semistable
and self-decomposable laws by the method of subordination. In fact, the fea-
tures of Gaussian laws on K motivate to introduce cone-semigroups, i.e. con-
tinuous convolution semigroups with time parameter taking values in a cone,
and to generalize the concept of subordination to this more general class of
continuous convolution semigroups in order to obtain more examples of limit
laws.

All these examples are located in the convex hull of the Gaussian laws.
To show the power of the afore mentioned tools, we construct in addition
some explicit examples of semistable, stable and decomposable laws beyond
the Gaussian case.
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0.1 Basic properties of of the hypergroups (K, ?)
As shown in [16] the hypergroups under consideration share the following prop-
erties 0.1–0.8:

Property 0.1 (K, ?) is Hermitean, i.e. the identity id : x 7→ x̃ := x is
the involution. In particular, (K, ?) is Abelian.

Furthermore,

Property 0.2 (K, ?) is self dual, i.e. K̂ ∼= K[[
Cf. [16], Theorem 2.1

]]
Property 0.3 The operator semigroup of vector space endomorphisms Kd2

∼= End(Kd) operates on the hypergroup (K, ?) as homomorphisms w.r.t. con-
volution: In fact, for a ∈ End(Kd), Ta defined by

Πd 3 A 7→ Ta(A) := (aAA∗a∗)1/2 =
(
aA2a∗

)1/2
= ((aA)(aA)∗)1/2 ∈ Πd,

is a homomorphism of the underlying convolution structures (K, ?). In short,
we write Ta ∈ End(K).
Furthermore, the map T : End(Kd) 3 a 7→ Ta ∈ End(K) is a semigroup
homomorphism.[[

Cf. [16], Section 4, Proposition 4.3, 4.7. Note that GL(Kd) is dense in
End(Kd), hence Ta ∈ End(K, ?) for all a ∈ End(Kd).

]]
A more detailed description is given below in Section 1, cf. 1.1–1.5.

Property 0.4 Aut(K) = im(T) =
{
Ta : a ∈ GL(Kd)

}
in case K = R,

resp. Aut(K) ⊇ {im(T) ∪ {τ}} , and [Aut(K) : im(T)] = 2 in case K = C,
τ denoting the involutive mapping defined by complex conjugation.[[

Cf. [16], Theorem 4.11, 4.12.
]]

In particular, the connected component
Aut(K)0

∼= GL(Kd)0 is of finite index in Aut(K). Furthermore, there exists
k0 ∈ N such that for any τ ∈ Aut(K) the power τ k0 belongs to the range of
the exponential map.

[[
See [3], [4].

]]
Property 0.5 The proper subhypergroups H of K are H = ker(Ta) – equiv-
alently: H = im(Tb) – for some a, resp. b ∈ End(Kd).
In particular, the hypergroups K under consideration are aperiodic, i.e. there
exist no non-trivial compact subhypergroups.[[

Cf. [16], Section 4, Proposition 4.6
]]

We describe the subhypergroups in more details in 1.1, 1.2 below.

Property 0.6 K is a Godement hypergroup, i.e., 1 ∈ K̂ belongs to supp(πK),
πK denoting the Plancherel measure.
In fact, Haar measure and Plancherel measure on K resp. on K̂ (∼= K) are
equivalent to the d2-dimensional Lebesgue measure restricted to Πd.[[

Cf. [16], Theorem 2.1
]]

The main part of these investigations relies on the above-mentioned prop-
erties 0.1 – 0.6. For investigations of examples we need further particular
properties of the matrix-cone hypergroups:

3



Let || · || denote the Euclidean norm on Kd and let ||| · ||| denote the cor-
responding operator norm on End(Kd), hence defined on Πd

∼= K. Therefore,
||| · ||| fulfills the C∗-condition |||aa∗||| = |||a|||2, hence in particular we have
for x ∈ Πd: |||x2||| = |||x|||2.
Note that the Hilbert space norm ||x||∗ := (tr (x2))

1/2
used in [16] is different,

but of course equivalent. In the sequel we write || · || for an arbitrary norm,
and ||| · ||| resp. || · ||∗ if we want to emphasize the particular chosen norm.

Property 0.7 For x, y ∈ K we have || · ||∗ we have ||z||∗ ≤ ||x||∗ + ||y||∗.[[
Cf. [16], Theorem 2.1 a).

]]
Hence, for some constant C > 0,

supp(εx ? εy) ⊆ {z : |||z||| ≤ C · (|||x|||+ |||y|||)}

Therefore, for independent random variables X, Y : Ω → K we obtain

||X
Λ
+ Y ||∗ ≤ ||X||∗ + ||Y ||∗ resp. |||X

Λ
+ Y ||| ≤ C · (|||X|||+ |||Y |||) ,

where Λ denotes a concretization of the hypergroup operation: If µ, ν are the

distributions of X, Y then µ ? ν is the distribution of X
Λ
+ Y .

[[
Cf. [2]

]]
In Section 3 we make use of particular properties of the dual of the un-

derlying hypergroups: For fixed parameter µ and dimension d, we consider
the convolution structure (K, ?) = (Πd, ?µ) on Πd. (Cf. [16] Theorem 2.1 c),
Lemma 4.1, Proposition 4.3, [13], (3.15)).

Property 0.8 The elements of the dual hypergroup K̂ are representable by
matrix-Bessel functions Jµ. In fact, the characters ϕκ induced by κ ∈ Πd

∼= Π̂d

are

ϕκ(x) = Jµ

(
1

4
κx2κ

)
= Jµ

(
1

4
xκ2x

)
= ϕx(κ) (0.1)

and we have the asymptotics (for x→ 0)

Jµ (x) = 1− 1

µ
tr(x) +O(||x||2) (0.2)

Furthermore, the endomorphisms Ta act canonically on the dual hypergroup

ϕκ(Ta (x)) = ϕTa∗ (κ)(x) ∀ x ∈ Πd, κ ∈ Π̂d (0.3)

0.2 Convolutions

Recall first the definitions of convolution of measures and functions on hyper-
groups: For µ, ν ∈M1(K) and for bounded measurable f we define

〈f, µ ? ν〉 :=

∫
K

∫
K
f(x ? y)dµ(x)dν(y) (0.4)

where f(x ? y) :=

∫
K
f(z)dεx ? εy(z)

With the notations fy : z 7→ f(z ? y) resp. xf : z 7→ f(x ? z) we obtain

〈f, µ ? ν〉 =

∫
K

∫
K
fy(x)dµ(x)dν(y) =

∫
K

∫
K

xf(y)dµ(x)dν(y) (0.5)
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Sometimes it is convenient to use convolution operators

Lλ(f)(x) := 〈xf, λ〉 resp. Rλ(f)(y) := 〈fy, λ〉.

Note that Hermitean hypergroups are Abelian and the involution is the
identity. Hence Rλ = Lλ and the definition coicides with the usual one. (Cf
[2]).

For Borel-measurable B ⊆ K we obtain therefore

µ ? ν(B) = 〈1B, µ ? ν〉 (0.6)

=

∫
K

∫
K

1B(x ? y)dµ(x)dν(y) =

∫
K

∫
K

1By(x)dµ(x)dν(y)

=

∫
K

∫
K

x1B(x)dµ(x)dν(y) =

∫
K

∫
K
Lεy(1B)(x)dµ(x)dν(y)

Furthermore, sometimes we make use of the following abbreviations (cf.
e.g., [8]): Let {µ} := supp(µ), in particular, {εa} = {a}. Furthermore, we
put x ? y := {(εx ? εy)} and more generally, y ?A :=

⋃
a∈A

{(εy ? εa)} and finally

A ? B :=
⋃

a∈A, b∈B

{(εa ? εb)}. By (0.6) we obtain immediately

Proposition 0.9 For µ, ν ∈M1(K) and Borel sets B we have

µ ? ν(B) ≤
∫
µ(y ? B)dν(y)

There exist no divisors of the unit in M1(K):

Proposition 0.10 (a) Let µ, ν ∈M1(K) then µ ? ν = ε0 ⇒ µ = ν = ε0.
(b) In particular, µk = ε0 ⇒ µ = ε0, k ∈ N[[

For x ∈ supp(µ), y ∈ supp(ν) we have {x ? y} ⊆ {0}, hence εx ? εy = ε0.

Whence – since y = ỹ – {x} ∩ {y} 6= ∅. Hence x = y and therefore ε2
x = ε0

follows. I.e., {x, 0} is a compact subhypergropup. But K is aperiodic according

to Property 0.5, therefore x = y = 0. Thus µ = ν = ε0.
]]

In fact, we prove a generalization of 0.10 (b): No non-trivial point-measure
is divisible.

Proposition 0.11 Let k ∈ N\{1} and assume µk = εz. Then z = 0 and
µ = ε0[[

Let k = 2.

Hence µ2 = εz. Hence for all x ∈ supp(µ) we observe – since x = x̃ – that
0 ∈ {x ? x} = {z} and therefore z = 0. Hence µ = ε0 according to Proposition
0.10(b).
Let k = 2l, l ∈ N.
µ2l = εz, hence ν2 = εz where ν := µl. According to the first step we obtain
ν = ε0, i.e., µl = ε0. Therefore, again using Proposition 0.10 above, µ = ε0

follows.
Let k = 2l + 1, l ∈ N.
For all x ∈ supp(µ) we have: {x} ? {x ? x} . . . {x ? x} ⊆ {z}. Since 0 ∈ {x ? x}
we conclude {x} ⊆ {z}, hence x = z. I.e., {x} ? {x ? x} . . . {x ? x} = {x}
Hence {x ? x} ? {x ? x} . . . {x ? x} ⊆ {x ? x} for k factors, k ≤ l+ 1. Therefore,

{x ? x} is a compact subhypergroup, hence trivial. Whence x = 0 follows.
]]
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0.3 Uniform tightness and shift compactness

Shift compactness is an essential tool for investigations in limit theorems on
vector spaces and on groups. Therefore we recall shift-compactness properties
for hypergroups:

Proposition 0.12 (Shift-compactness )
Let {µn, νn, λn := µn ? νn, n ∈ N} be sequences of probabilities on the hyper-
group K.
(a) Assume {λn} to be uniformly tight. Then there exist sequences {xn},
{yn} ⊆ K such that {µn ? εxn} and {εyn ? νn} are uniformly tight. Furthermore
– since the hypergroup is Abelian – {εxn ? εyn} is uniformly tight too.
(b) If any two of the sequences {µn}, {νn}, {λn} are uniformly tight, then
so is the third one.
(c) If {λn} is uniformly tight then {µ2

n} and {ν2
n} are uniformly tight.

(d) Let {λn} be uniformly tight. Then – with the the notations of (a) –
{
ε2

xn

}
and

{
ε2

yn

}
are uniformly tight.

For a Proof of (a) and (b) see [2], 5.1.14 ff.
Proof of (c):

K is Hermitean, hence the Fourier-transforms
{
µ̂2

n = µ̂n
2
}

and
{
ν̂2

n = ν̂n
2
}

are

non-negative. Therefore the Godement-property 0.5 yields that {µ2
n} and {ν2

n}
are uniformly tight. (Cf. [2], 5.1.1)
(d) follows immediately by (a) and (c). �

We need the following Corollary.

Corollary 0.13 (a) Let {µn} be a sequence of probabilities with µn → µ
and λn := µn ? εxn → λ for some sequence {xn} ⊆ K. Then {µn} is relatively
compact. And for all accumulation points x of {xn} we have λ = µ ? εx.
(b) Let {νn}, {λn} be sequences of probabilities with νn → ε0. Assume that
νn ? λn → λ. Then λn → λ.[[

Shift-compactness, 0.12, applied to νn := εxn implies uniform tightness of

{εxn}, whence (a) follows.
To prove (b) note that again shift compactness (cf. Proposition 0.12(b)) im-
plies uniform tightness of {λn}. For all converging subsequences λn → λ′

therefore continuity of convolution yields νn ? λn → λ′. Hence by assumption,

λ = λ′ follows.
]]

1 Hypergroup automorphisms and Convergence

of types

1.1 Aut(K) and End(K)

In 1.1 we study in more details the underlying matrix cones Πd
∼= K and

the corresponding endomorphisms and automorphisms: As already mentioned
(Properties 0.3– 0.5), for a ∈ End(Kd) the operator Ta : A 7→ (aAA∗a∗)1/2 =

((aA)(aA)∗)1/2 is a convolution homomorphism of (K, ?), the kernels resp. im-
ages of which determine the subhypergroups. We now describe more explicitly
ker(Ta) and im(Ta):
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Consider the polar decomposition a = up with unitary u and p ∈ Πd. We
obtain an orthogonal decomposition Kd = U ⊕ V with ker(p) = V , hence
p = p1 ⊕ 0 with positive definite p1 : U → U . Recall the notation T : a 7→ Ta.
We have (cf. [16], Section 4, in particular Proposition 4.6, Remark 4.10):

Proposition 1.1 (a) ker(Ta) = ker(Tp) = {A = 0⊕ γ with γ positive semi-
definite on V }. In other words, with respect to the decomposition Kd = U ⊕V
(defined by the positive semidefinite part p of a) we obtain

ker(Ta) =

{
A =

(
0 0
0 γ

)
, γ positive semidefinite

}
(b) a ∈ GL(Kd) iff ker(Ta) = {0}. Hence T(GL(K)) ⊆ Aut(K).
(In fact, as afore mentioned in 0.4, in [16] it is shown that equality holds for
K = R).[[

(a) For a = up and A ∈ ker(Ta) we have:

0 = Ta(A)2 = aA2a∗ = upA2pu∗ = u(pA)(pA)∗u∗ ⇔ 0 = (pA)(pA)∗ = Tp(A)2.
Hence ker(Ta) = ker(Tp).

Let, with respect to the above mentioned decomposition, p = p1 ⊕ 0 and

A =

(
α β∗

β γ

)
. Then, considering pA2p = 0 we obtain p1α

2p1 +p1β
∗βp1 = 0.

Both summands are positive semidefinite, whence p1α
2p1 = (p1α)(p1α)∗ = 0

and p1β
∗βp1 = (p1β

∗)(p1β
∗)∗ = 0 follow. This yields p1α = 0 and p1β

∗ = 0.
But p1 : U → U is injective by assumption, whence α = β = 0.

(b) is now obvious.
]]

With the afore mentioned notations we obtain analogously the following
description of im(Tb):

Proposition 1.2 Let b ∈ End(Kd), consider the polar decomposition b = uq
with corresponding orthogonal decomposition Kd = U1 ⊕ V1, q = 0 ⊕ q1 with
q1 : V1 → V1 positive definite.

Then im(Tb) =

{
B = u

(
0 0
0 δ

)
u∗ : δ positive semidefinite on V1

}
.[[

Since im(Tb) is a subhypergroup it has the above mentioned representation

according to Proposition 1.1.
To prove the converse, let b = u(0 ⊕ q1). u defines an isometry u : V1 →
im(q) = u(V1) =: V .

Let A ∈ im(Tb), A = A∗ =

(
α β∗

β γ

)
w.r.t. the orthogonal decomposition

Kd = U1 ⊕ V1. Let y = y1 + y2, y1 ∈ U, y2 ∈ V , let z := u∗(y) = z1 + z2

with z1 ∈ U1, z2 ∈ V1. Then Tb(A)2(y) = (bA)(bA)∗(y) = uqA2qu∗(y) =
u ((qA)(qA)∗) (z) = u ((qA)(qA)∗) (z1+z2) = u (((q1ββ

∗q1) + (q1γ
2q1)) (z2)) =:

uδu∗(y2) ∈ u(V1). Hence, B = Tb(A) has the asserted representation.
]]

Proposition 1.3 The above mentioned map T : a 7→ Ta, End(Kd) → End(K)
is an isometry with respect to the above mentioned norms. In fact,

|||a||| := sup
x∈Kd: ||x||≤1

||a(x)|| = sup
A∈Πd: |||A|||≤1

|||Ta(A)||| =: |||Ta|||
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Proof: Observe first that |||Ta(A)||| = ||| ((aA)(aA)∗)1/2 ||| = |||aA||| accord-
ing to the C∗-property of ||| · |||. Hence |||Ta(A)||| ≤ |||a||| · |||A|||. Whence
|||Ta||| ≤ |||a|||.

To prove the converse inequality, define for x ∈ Kd\{0} the operator Px

by Px(y) := 〈y, x〉 · x. For normalized x, Px is an orthogonal projection,
hence for all x 6= 0 we observe that Px = ||x||2 · Px/||x|| belongs to Πd. For
a ∈ End(Kd) we have Ta(Px) = (P(a(x)))

1/2, therefore for ||x|| = 1 we have
Ta(Px) = ||a(x)|| · P a(x)

||a(x)||
. Note that |||P a(x)

||a(x)||
||| = 1. Hence |||Ta(Px)||| =

||a(x)||.
Whence by definition, |||a||| ≤ |||Ta||| follows. �

Definition 1.4 A linear operator a ∈ End(Kd) is called contracting if an(x) →
0 for all x ∈ Kd. Analogously, Ta ∈ End(K) is contracting if T n

a (A) → 0 for
all A ∈ Πd

∼= K, i.e., T n
a → T0.

Clearly, a is contracting iff ρ(a) < 1, ρ denoting the spectral radius. Further-
more, by Proposition 1.3 we have

Corollary 1.5 a ∈ End(Kd) is contracting iff Ta ∈ End(K) is contracting.

1.2 Properties of full measures

Next we define as in the vector space- or group case the class of full probabil-
ities. (Full measures are sometimes also called non-degenerate).

Definition 1.6 Full probabilities are defined as
F := {µ ∈M1(K) : not concentrated on a proper subhypergroup}.

Obviously, we have in view of Property 0.4 resp. Proposition 1.1, 1.2

F =
{
µ ∈M1(K) : µ {ker(Ta)} 6= 1 ∀ Ta ∈ End(K)\ {T0}

}
=

{
µ ∈M1(K) : µ {im(Tb)} 6= 1 ∀ Tb ∈ End(K)\ {Aut(K)}

}
=

{
µ ∈M1(K) : Ta(µ) 6= ε0 ∀ Ta ∈ End(K)\ {T0}

}
As for vector spaces and groups we observe

Proposition 1.7 F is open in M1(K).

Proof: (Cf. [5], p. 126). The subset H := {Ta ∈ End(K) : |||Ta||| = 1} is
compact. W := M1(K)\ {ε0} is open. F : M1(K)×H →M1(K), F (µ, Ta) :=
Ta(µ) is continuous. Consequently, T−1

a (W) is open for all Ta.
Hence F =

⋂
Ta∈H

T−1
a (W) is open. �

The last step of the proof relies on the following well-known Lemma:

Lemma 1.8 Let H,K, S denote Hausdorff spaces, H compact. Let O ⊆ S be
open. Let F : H ×K → S be continuous. For h ∈ H define Fh : K → S, k 7→
F (h, k).

Then U :=
⋂

h∈H

F−1
h (O) is open in K.
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[[
We sketch a proof:

Let C(H,S) denote the space of continuous functions H → S endowed with
the compact-open topology. Hence a neighbourhood basis is given by UL,W :=
{φ : H → S : with φ(L) ⊆ W}, where L and W denote the compact subsets
in H and open subsets in S respectively.

For L = H, W = O therefore W := {φ ∈ C(H,S) : φ(h) ∈ O ∀ h ∈ H} is
open in C(H,S).

The map Φ : K 3 k 7→ F k ∈ C(H,S), F k : H 3 h 7→ F (h, k) is con-
tinuous, since F is simultaneously continuous. Hence Φ−1(W) is open, i.e.

{k ∈ K : F (h, k) ∈ O ∀ h ∈ H} is open in K.
]]

Proposition 1.9 (a) F is an ideal in the convolution semigroup M1(K),
i.e., for µ ∈ F and all ν ∈M1(K) we have µ ? ν ∈ F .
(b) If µk ∈ F for some k ∈ N then µ ∈ F .[[

Assume µ ? ν /∈ F . Then by definition, we have Ta(µ ? ν) = ε0 for some

Ta 6= T0. Hence Ta(µ) ? Ta(ν) = ε0. Therefore, according to Proposition 1.3,
Ta(µ) = Ta(ν) = ε0 follows. In particular, µ /∈ F . Hence (a) is proved.

To prove (b), assume µ /∈ F . Hence again Ta(µ) = ε0 for some Ta 6= T0.

Then Ta(µ
k) = Ta(µ)k = ε0 for all k. Whence (b) follows.

]]
Now we are ready to prove a convergence of types theorem for matrix cone

hypergroups K :

Theorem 1.10 Let {µn, νn, n ∈ N, µ, ν} be probabilities, let {an, n ∈ N} ⊆
End(K), such that νn = Tan(µn). (In short, νn belongs to the type of µn.)
(a) Assume (1) µn → µ (2) νn = Tan(µn) → ν and (3) µ ∈ F .
Then {Tan} is relatively compact (equivalently: {an} is relatively compact in
End(Kd)) and for any accumulation point Ta we have: ν = Ta(µ).
(b) Assume (1) µn → µ (2) νn = Tan(µn) → ν (3’) ν ∈ F and
(4) an ∈ GL(Kd), n ∈ N.
Then

{
T−1

an

}
is relatively compact (equivalently: {a−1

n } is relatively compact in
End(Kd)) and for any accumulation point Tb of

{
T−1

an

}
we have: µ = Tb(ν).

(c) Together: Assume (1), (2), (3”) µ, ν ∈ F and (4).
Then {Tan} is relatively compact in Aut(K) (equivalently: {an} is relatively
compact in GL(Kd)) and for any accumulation point Ta of {Tan} we have:
µ = Ta(ν) and ν = T−1

a (µ).

Proof. We adapt a standard proof for vector spaces (cf. e.g., [5], § 1.13) :
To show that {|||an|||} is uniformly bounded, assume w.l.o.g. that |||an||| → ∞.

Decompose an = (|||an||| · I)
(

1
|||an||| · an

)
=: αnβn. There exists a subsequence

(n′) such that βn → β ∈ End(Kd) with |||β||| = 1, n ∈ (n′). Therefore,
λn := Tβn(µn) → Tβ(µ) =: λ, n ∈ (n′). On the other hand, νn = Tαn(λn) → ν
by assumption.

But α−1
n → 0, therefore Tα−1

n
(λn) → ε0, hence λ = ε0 follows. Consequently,

Tβ(µ) = ε0, whence µ /∈ F , a contradiction.
(a) is proved.

To prove (b) apply the preceding step to {bn := a−1
n } , {µn = Tbn(νn)}.

Then uniform boundedness of {|||a−1
n |||} follows.
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(c) follow immediately by (a) and (b) �

Again as in the vector space- or group-case we obtain a characterization of
full measures via the invariance group. (Cf. e.g., [5], e.g., 2.2.5 ff.)

Definition 1.11 The invariance group of µ ∈M1(K) is defined as

Inv(µ) := {Ta ∈ End(K) : Ta(µ) = µ}

Obviously Inv(µ) is a closed subsemigroup of End(K). For full measures µ ∈ F
it is immediately seen that Inv(µ) is a closed subgroup of Aut(K). In fact, we
obtain the following characterization of full measures:

Proposition 1.12 µ ∈ F iff Inv(µ) is a compact subgroup of Aut(K).

Proof: As afore mentioned, for full measures, Inv(µ) is a closed subgroup
of Aut(K). The convergence of types theorem 1.10 (c) yields compactness of
Inv(µ) in Aut(K).

Conversely, assume µ /∈ F . Hence µ(ker(Ta)) = 1 for some a ∈ End(Kd).

According to Proposition 1.1 for a = p ∈ Πd, and ker(Ta) =

{(
0 0
0 c

)}
(with

respect to an orthogonal decomposition Kd = U ⊕V , and positive semidefinite

c ∈ End(V )) we obtain

{
B =

(
α 0
0 IdV

)
: α ∈ End(U)

}
⊆ Inv(µ). This

set is not bounded, hence Inv(µ) is not compact. �

1.3 S-full measures and convergence of types theorems
with shifts

On vector spaces full measures are usually defined as measures not concen-
trated on proper hyperplanes, hence not concentrated on kernels of proper
affine maps. Already in the case of (non Abelian) groups it turned out to
be necessary to distinguish between fullness w.r.t. endomorphisms and w.r.t.
affine transformations respectively. Therefore we sketch briefly this concept in
the case of hypergroups, though it will not be needed in the sequel.

Note that for vector spaces (and for groups) there exist various equivalent
definitions of full measures. (See e.g. [5], § 1.13, 2.2.5 ff, [10]). Generalizing
the vector space case, it seems at first natural to define S-full measures as

F1 := {µ : µ ? εz ∈ F for all z ∈ K}
However it is easily shown that for the class of hypergroups considered here

we have F = F1.[[
Obviously, F1 ⊆ F . On the other hand, F is an ideal (cf. 1.9 ), hence, if

µ ∈ F then µ ? εz ∈ F for all z. Whence F ⊆ F1 follows.
]]

Hence we use an other definition, which is equivalent to the previous one
in the vector space case:

Definition 1.13 S-full measures are defined as

SF := {µ : ∀ z ∈ K, ∀Ta ∈ End(K)\ {T0} : Ta(µ) 6= εz}

We observe
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Proposition 1.14 (a) SF ⊆ F
(b) SF is open in M1(K)[[

Let F∗ := M1(K)\ {ε0} and SF∗ := M1(K)\ {εz, z ∈ K}. Then F =⋂
|||a|||=1

T−1
a (F∗) ⊇

⋂
|||a|||=1, z∈K

T−1
a (M1(K)\ {εz}) = SF . Whence (a) follows.

To prove (b) represent SF as
⋂

|||a|||=1

T−1
a (SF∗) and note that SF∗ is open.

According to Lemma 1.8, SF is open.
]]

Proposition 1.15 (a) µ ∈ F ⇒ µk ∈ SF , k ∈ N\ {1}
(b) However, µk ∈ SF does in general not imply µ ∈ SF
(c) In general, SF

⊂
6= F[[

Assume µk /∈ SF , hence Ta(µ
k) = Ta(µ)k = εz for some z ∈ K, a 6= 0 and

k ≥ 2. Therefore, according to 0.10, Ta(µ) = ε0 = εz. Hence µ /∈ F .
Concerning (b) and (c) consider the case dim(K) = d = 1. (Note that in

this case, End(K) ∼= K.)
Let µ = εz for some z 6= 0. Hence Ta(µ) 6= ε0 ∀a 6= 0, hence µ ∈ F but

µ /∈ SF . This proves (c).
But for k ≥ 2, µk = εk

z 6= εu for all u ∈ K (cf. 0.11). It follows, µ /∈ F , but

µk ∈ SF . Whence (b) is proved.
]]

Next we prove a convergence-of-types-theorem for S-full measures:

Theorem 1.16 Let {µn, νn, n ∈ N, µ, ν} be probabilities, let {an, n ∈ N} ⊆
End(K), {xn} ⊆ K such that νn = Tan(µn) ? εxn. (In short, νn belongs to the
S-type of µn.)
(a) Assume (1) µn → µ (2) νn = Tan(µn)?εxn → ν and (3) µ ∈ F .
Then {Tan} and {xn} are relatively compact and for any accumulation point
(Ta, x) we have: ν = Ta(µ) ? εx.
(b) Assume (1) µn → µ (2) νn = Tan(µn) ? εxn → ν (3’) ν ∈ SF
and (4) an ∈ GL(Kd), n ∈ N.
Then

{
T−1

an

}
and

{
yn := T−1

an
(xn)

}
are relatively compact and for any accumu-

lation point (Tb, y) of
{(
T−1

an
, yn

)}
we have: µ ? εy = Tb(ν).

(c) Together: Assume (1), (2), (3”) µ ∈ F , ν ∈ SF and (4).
Then {Tan}, {xn}, {yn := Tan

−1(xn)} are relatively compact and for any ac-
cumulation point (Ta, x, y) of {(Tan , xn, yn)} in Aut(K) × K × K we have:
ν = Ta(µ) ? εx and µ ? εy = T−1

a (ν).

Sketch of the Proof. It is similar to the proof of the corresponding result
Theorem 1.10 without shifts:
(a) Assume |||an||| → ∞. Decompose again as in the proof of Theorem 1.10
Tan = TαnTβn with βn → β 6= 0 (along a subsequence) and α−1

n → 0.
Hence λn := Tβn(µn) → Tβ(µ) =: λ. Therefore, νn = Tαn (Tβn (µn) ? εyn)

with yn defined as above. νn → ν (by assumption) yields T−1
αn

(νn) → ε0, hence
λn ? εyn → ε0, and λn → λ.
Shift-compactness (cf. 0.12) yields relative compactness of {yn}. Hence, ac-
cording to Corollary 0.13 , λ ? εy = ε0 for all accumulation points y of {yn}.
But there are no divisors of ε0 (see 0.10) , hence λ = ε0 and y = 0 follow. A
contradiction.
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Hence, |||an||| is bounded and thus {Tan} and hence {Tan(µn)} are relatively
compact.
Since in addition Tan(µn) ? εxn → ν, again by shift-compactness, {xn} is
relatively compact. (a) is proved.

To prove (b), assume |||a−1
n ||| → ∞. Decompose

a−1
n =: bn = (|||a−1

n ||| · I)
(

1
|||a−1

n ||| · a
−1
n

)
=: α̃nβ̃n, where β̃n → β̃ 6= 0 and

α̃−1
n → 0.
νn = Tan(µn) ? εxn yields Ta−1

n
(νn) = Tα̃−1

n
(µn) ? εyn , yn = a−1

n (xn). Hence

Tβ̃n
(νn) = Tα̃−1

n
(µn) ? εzn =: λn ? εzn (with zn = α̃−1

n (yn) = β̃n(xn)).

We have Tβ̃n
(νn) → Tβ̃(ν) along a subsequence and λn → ε0 (since α̃−1

n → 0),

hence β̃n(xn) → z for some z.
Hence we conclude Tβ̃(ν) = εz, i.e., ν /∈ SF , a contradiction.

Hence {a−1
n } is relatively compact, therefore Ta−1

n
(νn) → Tb(ν) for any

accumulation point b. (Convergence along a subsequence.) Shift-compactness
yields relative compactness of

{
yn = Ta−1

n
(xn)

}
and therefore Tb(ν) = µ ? εy

for any accumulation point.
(c) follows immediately by (a) and (b). �

Remarks 1.17 Note the crucial differences between the hypergroups (K, ?)
and the vector space case:
(1) Shifts are not invertible, hence the condition ν = Ta(µ) ? εx (for some
x ∈ K) is no more equivalent to µ = Ta−1(ν) ? εz (for some z ∈ K)
(2) In Theorem 1.16 the assumptions are not symmetric: We assume µ ∈
F , ν ∈ SF .
(3) Note that for vector spaces V and simply connected nilpotent Lie groups
the results 1.15 a), b) are not valid.
(4) Furthermore, in contrast to Proposition 1.9, for vector spaces F is not
an ideal. On the other hand, the characterization of S−full measures on vector
spaces µ ∈ SF iff µ ? µ̃ ∈ F is not valid for the hypergroups K.

2 Semistability and Selfdecomposability

2.1 Continuous convolution semigroups

Continuous convolution semigroups are defined as usual:

Definition 2.1 (a) A family {µt, t ≥ 0} ⊆M1(K) is called continuous con-
volution semigroup if t 7→ µt is weakly continuous and µt ?µs = µt+s ∀ t, s ≥ 0.
A probability measure µ ∈M1(K) is called embeddable if there exists a contin-
uous convolution semigroup (µt)t≥0 with µ1 = µ.

(b) A sequence of convolution powers
(
µk
)

k∈Z+
with µ0 := ε0 is called discrete

convolution semigroup.

Remarks 2.2 (a) µ0 is an idempotent, hence, since K is aperiodic, we al-
ways have µ0 = ε0.
(b) Let µ be embeddable. Then, since the Fourier-transforms µ̂t are non-
negative, the continuous convolution semigroup (µt)t≥0 is uniquely determined
by µ = µ1.
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(c) Discrete convolution semigroups are the distributions of random walks
on K, whereas continuous convolution semigroups are the distributions of Lévy
processes on K.

Lemma 2.3 Let (µt) be a continuous convolution semigroup. Assume µt0 ∈ F
for some t0 > 0. Then µt ∈ SF ∀ t > 0.[[

Let n, k ∈ N. We have µt0 = µn
t0/n ∈ F , whence by Proposition 1.9 (b)

µt0/n ∈ F . But then µt0 ∈ SF according to 1.15 (a), and again by 1.15(a)
µk

t0/n = µ k
n

t0
∈ SF for all k ≥ 2. Hence µr ∈ SF for all r = k

N
t, k,N ∈ N, a

dense subset of R+\{0}.
Hence for all t > 0 there exists a r < t with µr ∈ SF ⊆ F . But F is an

ideal (Propositon 1.9), hence µt = µr ? µt−r ∈ F . I.e., µt ∈ F ∀ t > 0.

Then, arguing as before, µt ∈ SF follows.
]]

Next we recall a limit theorem for random walks on Hermitean hypergroups
(in short functional limit theorem), i.e., convergence of discrete convolution
semigroups to continuous convolution semigroups.

Proposition 2.4 Let νn, n ∈ N, be a sequence of probabilities on K. Let
kn ∈ N, kn →∞.

Then νkn
n → µ implies that νn → ε0 (infinitesimality) and there exists a

continuous convolution semigroup (µt)t≥0 with µ = µ1. I.e., µ is embeddable.

Furthermore, (µt) is uniquely determined by µ and we have ν
[knt]
n → µt

uniformly for t in compact subsets of R+. (In short, ’functional convergence’)[[
See e.g. [17], [11], [12], Theorem 2.4: There it is proved uniform convergence

on compact subsets of (0,∞). But K is aperiodic and νn → ε0. Then the
assertion follows by [12], Theorem 3.5

]]
In the following we consider continuous one-parameter groups (Tat)t>0 of

automorphisms. In the context of stability we assume throughout multiplica-
tive parametrization, i.e.

t 7→ at ∈ GL(Kd) is continuous and atas = at·s for t, s > 0

Definition 2.5 (a) A probability µ ∈M1(K) is stable w.r.t. a group of auto-
morphisms (Tat)t>0 if µ is embeddable into a continuous convolution semigroup
(µt) with µ = µ1 and

Tat(µ1) = µt for all t > 0

(b) A probability µ ∈ M1(K) is semistable w.r.t. an automorphisms Ta and
c ∈ (0, 1) if µ is embeddable into a continuous convolution semigroup (µt) with
µ = µ1 and

Ta(µt) = µc·t for all t > 0

µ is called stable resp. semistable if µ is stable resp. semistable w.r.t. some
one-parameter group (Tat) resp. some (Ta, c)

Note that in the case of stability Tat(µs) = µt·s follows for all t > 0, s ≥ 0.
Analogously, for semistable laws we have Tak(µt) = µck·t for all t ≥ 0 and all
k ∈ Z.
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Note that for vector spaces usually stability and semistability are defined
in a more general way by affine normalizations:

Ta(µt) = µc·t ? εx(t) or µc·t = Ta(µt) ? εx(t) (2.1)

In analogy to the vector space situation the definitions afore should therefore be
called strict stability resp. strict semistability. However, for the hypergroups
K no examples are known fulfilling the more general defining properties (2.1).
Hence we prefer to suppress the notation strict.

2.2 Algebraic characterization of semistability

Definition 2.6 Let (µt)t≥0 be a continuous convolution semigroup with µ =
µ1. The decomposability group of µ is defined as

Dec(µ) := {Ta ∈ End(K) : ∃ c > 0, Ta(µt) = µc·t ∀ t ≥ 0}
Note that µt is uniquely determined by µ = µ1. Therefore, the definition of
the decomposability group depends on µ only.

Definition 2.7 The map ϕ defined by

ϕ : Dec(µ) 3 Ta 7→ c ∈ R+, with Ta(µt) = µϕ(a)·c =: µc·t

is called canonical homomorphism.

Proposition 2.8 The canonical homomorphism ϕ is a continuous homomor-
phism Dec(µ) → R∗

+ with kernel ker(ϕ) = Inv(µ). ( R∗
+ denoting the multi-

plicative group ((0,∞) , ·).)
In particular, Inv(µ) /Dec(µ), and we have Dec(µ)/Inv(µ) ∼= im(ϕ).

If µ ∈ F (hence µt ∈ SF for all t > 0 according to Lemma 2.3), then ϕ is
a closed map with compact ϕ−1(c) for all c > 0. Hence ϕ is a perfect map.[[

Obviously, ϕ is continuous and ker(ϕ) = Inv(µ), hence Inv(µ) is a normal

subgroup of Dec(µ). For all c ∈ im(ϕ) and Ta ∈ Dec(µ) with ϕ(Ta) = c we
have ϕ−1({c}) = Ta · Inv(µ).

Let µ ∈ F . Let cn ∈ im(ϕ), cn = ϕ(Tan) and assume cn → c. Then,
by continuity of convolution, µcn·t → µc·t. On the other hand, Tan(µt) =
µcn·t → µc·t. The convergence of types theorem 1.10 yields relative compactness
of {an} in GL(Kd). And for all accumulation points a of {an} we conclude

Ta(µt) = µc·t. I.e., Ta ∈ Dec(µ) with ϕ(Ta) = c.
]]

Theorem 2.9 Let µ, µt be as above.
(a) µ is semistable iff Dec(µ) 6= Inv(µ). This is the case, iff im(ϕ) 6= {1}
(b) µ is stable (w.r.t. some group (Tat)) iff im(ϕ) = R+.

[[
Note that ϕ is

a continuous surjective Lie group homomorphism.
]]

Assume now that µ ∈ F . Then we have in addition:
(c) µ is stable iff im(ϕ) is dense in R+.
(d) µ is properly semistable, i.e. semistable but not stable, iff im(µ) is a
discrete subsemigroup of (R+, ·).
(e) In particular, let c1, c2 ∈ im(ϕ) such that log(c1), log(c2) are not com-
mensurable. Then µ is stable.

Proof: (a) is obvious since ϕ(Inv(µ)) = {1}. Analogously, (b) is obvious.
Let µ be full. Then closedness of ϕ yields that im(ϕ) is closed. Whence (c)

follows. Now (d) and (e) are immediate consequences. �
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2.3 Domains of attraction and semistability

Next we characterize semistable laws as limit laws. First we define domains of
attraction:

Definition 2.10 Let (µt)t≥0 be a continuous convolution semigroup with µ =
µ1. The domain of attraction is defined as

DA(µ) :=
{
ν ∈M1(K) : ∃ Tan ∈ Aut(K), n ∈ N,with Tan(ν)n → µ

}
(equivalently, according to Proposition 2.4, Tan(ν)[n·t] → µt uniformly on com-
pact subsets of R+.)

The (partial) domain of semistable attraction (for some c ∈ (0, 1) ) is
defined as

DAsst, c(µ) :=
{
ν ∈M1(K) : ∃ {Tan} ⊆ Aut(K) with Tan(ν)kn → µ

}
for some sequence {kn} ⊆ N, kn → ∞, with kn/kn+1 → c. (Again this is
equivalent to Tan(ν)[kn·t] → µt, uniformly on compact subsets of R+.)

Note again, that µt is uniquely determined by µ1 = µ. Hence the domains
of attraction are determined by µ. As in the group- or vector space situation
(cf. e.g., [5], § 1.6, § 2.6) we obtain (with the notations defined before):

Theorem 2.11 (a) If µ is semistable w.r.t. c ∈ im(ϕ), then we have
DAsst, c(µ) 6= ∅. Analogously, if µ is stable, then DA(µ) 6= ∅.
(b) Conversely, let µ ∈ F . Then we have:

DAsst, c(µ) 6= ∅ ⇒ µ is semistable

DA(µ) 6= ∅ ⇒ µ is stable

The Proof is almost verbatim as in the vector space case:
(a) Let µ be semistable w.r.t. (Ta, c). Put an := an, kn := [c−n], n ∈ N.

Continuity of (a, ν) 7→ Ta(ν) and Tan

(
µ[c−n]

)
= µcn·[c−n] yield Tan(µkn) → µ.

I.e., µ ∈ DAsst, c(µ).
(b) Let ϕ : Dec(µ) → R+ be the canonical homomorphism. We have to

show: DAsst, c 6= ∅ ⇒ c ∈ im(ϕ).
We have

Tanν
[knt] =

(
TanT

−1
an+1

) (
Tan+1

(
ν

[kn+1· kn
kn+1

]
))

→ µt

According to Lemma 2.3 we have µt ∈ SF ⊆ F for all t > 0, and furthermore,

compact-uniform convergence yields Tan+1

(
ν

[kn+1· kn
kn+1

]
)
→ µc·t. Applying the

convergence of types theorem 1.10 we conclude that
{
bn := ana

−1
n+1

}
is rela-

tively compact, and for any accumulation point b =: a−1 we have Tb(µct) = µt

resp. Ta(µt) = µct.
The proof for the stable case is analogous. �

Remarks 2.12 Note that in complete analogy to the group- or vector space
situation we observe the following additional features of the set of norming
automorphisms:

15



(a) There exists some k ∈ N such that for Ta ∈ Aut(K) there exists a one-
parameter group (Tat)t>0 and some c > 0 such that Ta = Tac. Hence in inves-
tigations of semistability we may assume w.l.o.g. the norming automorphisms
to be located on one-parameter groups.
(b) If µ is full and Ta ∈ Dec(µ), then for some k ∈ N, Tb := T k

a centralizes
the invariance group, i.e., TbTu = TuTb for all Tu ∈ Inv(µ).
(c) Analogously, let µ be full. Let (Tat) ⊆ Dec(µ). Then there exists a group
(Tbt) ⊆ Dec(µ) centralizing Inv(µ), with bt = atut for ut ∈ Inv(µ).[[

a) follows immediately by Property 0.4. To prove b) c), see e.g. [5], 1.8.11,

1.8.16, 2.8.8, 2.8.16; see also [3], [4].
]]

2.4 Contraction Properties

Let (µt)t≥0 ⊆ M1(K) be semistable. Then, as for groups or vector spaces
(cf. e.g., [5], 3.4.3 ) we observe that the measures are concentrated on the
Ta−contactible part of K:

Definition 2.13 Let Ta ∈ Aut(K) = Aut(Πd). The Ta−contactible part is

defined as C+(Ta) :=
{
p ∈ Πd : Tak(p)

t→∞−→ 0
}
.

Proposition 2.14 Let (µt)t≥0 ⊆M1(K) be (Ta, c)-semistable. Then⋃
t≥0

supp(µt) ⊆ C+(Ta).

Proof: Let C(Ta) :=
{
x ∈ H ⊆ Kd2

: Tak(x)
t→∞−→ 0

}
denote the contractible

part, where Ta is considered as linear operator acting on the vector space
H := Πd − Πd of Hermitean matrices. Hence, C+(Ta) = C(Ta) ∩ Πd. In
particular, the cone C+(Ta) is closed.

The subsequent Lemma 2.15 will show that there exists g ∈ Cb(K) with
following properties:
(1) 0 ≤ g ≤ 1, (2) g(0) = 0, g(p) 6= 0 ∀p 6= 0, (3) lim

t→0

1
t
〈µt, g〉 exists and

furthermore, (4) pn → 0 iff g(pn) → 0.
Hence there exists some α > 0, such that 〈µt, g〉 ≤ α · t for t ≥ 0.
For fixed t > 0 we have therefore 〈µck·t, g〉 = 〈Tak(µt), g〉 = 〈µt, g ◦ Tak〉 ≤

α · ck · t. (Where we use again the abbreviation 〈µ, f〉 :=
∫
fdµ.)

Therefore,
∑

k〈µt, g ◦ Tak〉 < ∞, whence
∑

k g ◦ Tak < ∞ µt−a.e. Conse-
quently, g ◦Tak → 0 and therefore, according to property (4) Tak → 0, µt−a.e.
follows. Hence, since C+(Ta) is closed, Tak(p) → 0 for all p ∈ supp(µt). �

Lemma 2.15 There exists a function g ∈ Cb(K) with the afore mentioned
properties (1)–(4)[[

Let h ∈ Cc(K̂), 0 ≤ h ≤ 1, h 6= 0. Then h ? h ∈ Cc(K̂)+ and k := (h ? h)∨ =

|
∨
h |2 is positive definite and positiv. (Recall that K is Hermitean.)

Therefore, k(0) ≥ k(p) for all p (cf. [2], 4.1.3.) Assume w.l.o.g. that
k(0) = 1 and put g1 := 1− k.

Since for all characters κ ∈ K̂ the limit d+

dt
µ̂t(κ)|t=0 = lim

t→0

1
t
〈µt − ε0, κ〉

exists, as easily seen, this holds true for g1 too. And finally, according to
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the Riemann-Lebesgue Lemma (cf. [2], 2.2.4 (vii), (viii)), k ∈ C0(K), hence
g1 > 1/2 outside some compact neighbourhood V0 of 0.

Next, for all x ∈ V0 there exists a character κx ∈ K̂ such that 〈κx, x〉 > 0,
and for all x ∈ V0 there exists a neighbourhood Vx of x such that κ|Vx\{0} > 0.

There exist {x1, . . . xN} such that
⋃N

1 Vxi
⊇ V0. Hence g2 := 1− 1

N

∑N
1 κxi

has
the properties (1)–(3).
Putting finally g := 1

2
(g1 + g2) we obtain a function with properties (1)–(3).

Furthermore, g|{V0
≥ 1/4 and g|V0\{0}

>

6= 0 show, that also (4) is fulfilled.
]]

2.5 (Semi-)Selfdecomposability

We show briefly that our tools are sufficient to investigate also (semi-)self-
decomposability on the hypergroups (K, ?). For (Ta, c)-semistable laws we
obviously have: µ = Tak(µ)?µ1−ck , k ∈ N. (Recall that we assumed 0 < c < 1.)
This motivates the folowing definition of decomposability:

Definition 2.16 (Urbanik semigroup)
Let D(µ) := {Ta ∈ End(K) : µ = Ta(µ) ? ν(a) for some ν(a) ∈M1(K)}.
ν(a) is called cofactor, Cof(µ, Ta) denotes the set of cofactors.

Proposition 2.17 If µ ∈ F then D(µ) is a compact semigroup in End(K).
In fact, {(Ta,Cof(µ, Ta)) : Ta ∈ D(µ)} is compact in End(K)×M1(K).

Proof: We have for Ta, Tb ∈ Dec(µ):

µ = Ta(µ) ? ν(a) = Ta (Tb (µ) ? ν(b)) ? ν(a) = Tab(µ) ? (Ta(ν(b)) ? ν(a))

Hence Ta(ν(b)) ? ν(a) ∈ Cof(µ, Ta).
In particular, D(µ) is a semigroup.

Let µ ∈ F . Let {an} ⊆ D(µ), hence µ = Tan(µ) ? ν(an). Therefore,
µ2 = Tan(µ2)?ν(an)2. The Godement property 0.6 implies that {Tan(µ2)} and
{ν(an)2} are relatively compact (cf. 0.12.c)). µ2 ∈ F implies – according to
the convergence of types theorem 1.10 – that {Tan} is relatively compact in
End(K). Hence, along a subsequence, Tan(µ) → Ta(µ).

Shift compactness 0.12 yields that {ν(an)} is relatively compact, hence
ν(an) → ν along a subsequence. Therefore, since convolution is continuous,
µ = Ta(µ) ? ν follows. I.e., Ta ∈ D(µ) and ν ∈ Cof(µ, Ta). �

Let
(
Tb(t)

)
t≥0

⊆ End(K) be a continuous one-parameter semigroup. Here,
for investigations in self-decomposability, we use additive parametrization, i.e.
we assume b(t)b(s) = b(t+ s) for s, t ≥ 0.

Definition 2.18 (a) Assume
(
Tb(t)

)
t≥0

⊆ D(µ). (In other words, there exist

cofactors ν(t) ∈ M1(K) such that for all t ≥ 0 we have µ = Tb(t)(µ) ? ν(t).)
Then µ is called self-decomposable.
(b) µ is called Ta−decomposable if µ = Ta(µ) ? ν(a) for some cofactor ν(a) ∈
M1(K), i.e., if Ta ∈ D(µ).

For investigations in self-decomposability on vector spaces see e.g., [9] Chap.
3 – note that D(µ) is called Urbanik semigroup there – and for (nilpotent)
groups see e.g., [5], § 2.14. See also the references mentioned mentioned in
these monographs.
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If Ta is contracting we obtain the following representation of Ta−decom-
posable laws:

Proposition 2.19 Assume Ta to be contracting. Then, if Ta ∈ D(λ) with

cofactor ν ∈ Cof(λ, Ta), we obtain λ =
∞

F
k=0

T k
a (ν).

Conversely, any such probability λ is Ta−decomposable.[[
We have by assumption λ = Ta(λ) ? ν = . . . = Tak+1(λ) ?

k

F
j=0

Taj(ν). The

first factor converges to ε0, whence the assertion follows.

Conversely, assume λ =
∞

F
j=0

Taj(ν). Then Ta(λ) =
∞

F
j=1

Taj(ν), hence λ =

ν ? Ta(λ), i.e., ν ∈ Cof(λ, Ta).
]]

In order to construct random variables with given distribution it is conve-
nient to to have tools like P. Lévy’s equivalence theorem, saying that for series
of independent random variables convergence in distribution, stochastic con-
vergence and almost sure convergence are equivalent. Usually, for vector spaces
and groups, the proof relies on Kolmogorov, Skorohod- or Otiviani inequali-
ties which are not known for hypergroups. For Sturm-Liouville hypergroups
Zeuner [19], Corollary 2.7, obtained an equivalence theorem as a by-product
of a version of Kolmogorov’s three series theorem. The proof relies on moment
functions and on the local behaviour of characters. Here we present for Pon-
tryagin hypergroups H a similar result, which is however slightly weaker since
a technical condition is involved.

Let Yk, k ≥ 0, be a sequence of independent H−valued random vari-

ables with distributions ξk ∈ M1(H). Define
N

F
k=0

ξk =: λN and let SN :=

Λ−
∑N

k=0 Yk denote the corresponding random walk. (Sn) is a K−valued in-
crement process with discrete time, i.e. a Markov chain with transition kernels
P (Sn+1 ∈ A|Sn) (·) =

(
ξn ? εSn(·)

)
(A).

In particular, SN is distributed according to λN .
The randomized sums Λ−

∑N
k=0 Yk are defined via concretisations, see e.g.

[18], or the monograph [2]. In short we call (Sn) random walk though the
Markov chain need not to be time-homogeneous.

Theorem 2.20 Let (H, ?) be a (w.l.o.g. second countable) commutative hy-

pergroup with dual hypergroup Ĥ and bidual
̂̂H ∼= H.

(a) If Sn → S almost surely, then the distributions converge weakly, λn → λ,
the distribution of S.
(b) Conversely, assume that λn → λ ∈ M1(H) and assume in addition that

the complement of the set N (λ) :=
{
κ ∈ Ĥ : λ̂(κ) = 0

}
is dense in Ĥ. Then

Sn converges almost surely to a random variable with distribution λ.

Proof: The first assertion is obvious.
To prove (b), put {N (λ) =: P(λ). Note that λ̂n → λ̂ and that for κ ∈ P(λ)

we have λ̂n(κ) 6= 0, at least for sufficiently large n.
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Step 1. For all κ ∈ P(λ) the sequence ϕκ(Sn) converges a.s., where ϕκ denotes

the character induced by κ ∈ Ĥ.[[
Fix κ ∈ P(λ). The sequence of random variables

(
Φn := 1

λ̂n(κ)
· ϕκ(Sn)

)
n≥0

is a martingale w.r.t. the canonical filtration defined by (Yn) (cf. e.g., [16],

Lemma 6.6). By assumption, the sequence |λ̂n(κ)| is bounded from below
(at least for sufficiently large n), hence the martingale is uniformly bounded.
Therefore, according to the martingale convergence theorem, Φn converges a.s.

Whence a.s. convergence of
(
ϕκ(Sn) = λ̂n(κ) · Φn

)
n≥0

follows.
]]

Step 2. Let (xn) ⊆ H be a sequence. Let D be dense in Ĥ. Then xn → x ∈ H
iff ϕκ(xn) → ϕκ(x) for all κ ∈ D.[[

Obviously we have: xn → x ∈ H iff ϕκ(xn) → ϕκ(x) for all κ ∈ Ĥ. Sincê̂H = H, the sets UL,δ := { z ∈ H : |ϕκ(x)− ϕκ(z)| ≤ δ ∀κ ∈ L} is a basis of

neighbourhoods of x, where δ > 0 and L ⊆ Ĥ is compact. If D is dense in
Ĥ then obviously we have UL,δ = {z ∈ H : |ϕκ(x)− ϕκ(z)| ≤ δ ∀κ ∈ L ∩D}.
Whence the assertion immediately follows.

]]
( Note that the result in step 2 is close to Lévy’s continuity theorem for

hypergroups, [2], 4.2.4, 4.2.5., if we identify x ∈ K with εx ∈M1(K). )
Step 3. According to step 1, ϕκ(Sn)(ω) converges for all ω /∈ Nκ, where Nκ

denotes some set of probability 0. Let D be some countable subset of P(λ)

which is dense in Ĥ. ϕκ(Sn)(ω) converges for all κ ∈ D and for all ω /∈
⋃

κ∈D

Nκ.

According to step 2 therefore Sn(ω) converges for all ω /∈
⋃

κ∈D

Nκ. The

exception set is a set of probability zero. �

Applying Theorem 2.20 to Ta−decomposable laws we obtain e.g. a method
to construct random variables with given Ta−decomposable distribution λ:

Corollary 2.21 (a) Let – as before – (K, ?) be a hypergroup structure on Πd,
and let Ta denote a contracting automorphism. Let ν ∈M1(K). Let (Xk) be iid
random variables with distribution ν, and let SN := Λ −

∑N
0 Tak(Xk) denote

a corresponding random walk. Assume
N

F
n=0

Tan(ν) =: λN → λ ∈ M1(K).

Assume in addition that the Fourier-transform ν̂ never vanishes. Then Sn

converges a.s. to a random variable S with distribution
∞

F
k=0

Tak(ν) = λ.

This distribution is Ta−decomposable according to Proposition 2.19.
(b) The assertion of a) remains true under the weaker condition that N (ν)
is of first category.

Proof: a) Note that for the Ta−decomposable law λ we obtain for k ≥ 1:

λ = Tak+1(λ) ?
k

F
j=0

Taj(ν), whence N (λ) = Ta∗
k+1(N (λ)) ∪

⋃k
0 (N (Taj(ν))).

Since by assumption, N (Taj(ν)) = ∅, N (λ) = N (Tak+1(λ)) = Ta∗
k+1(N (λ))

follows. If κ ∈ N (λ),
(
Ta∗

k(κ)
)

k≥0
⊆ N (λ), a contradiction, since Ta∗

k(κ) → 0

and λ̂(0) = 1. Hence N (λ) = ∅ and Theorem 2.20 applies.
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b) Following the lines of the proof of a) we obtain : κ ∈ N (λ) iff κ ∈
N⋃
0

N
(
T k

a (ν)
)

or TN+1
a∗ (κ) ∈ N (λ) for allN ∈ N. PutN ∗ :=

∞⋃
0

N
(
T k

a (ν)
)

and

D := {N ∗. If κ ∈ N (λ) ∩D then λ̂
(
TN+1

a∗ (κ)
)

= 0 for all N , a contradiction.
Hence N (λ) = N ∗.

Furthermore, N
(
T k

a (ν)
)

is closed for all k ≥ 0, and as by assumption these
sets have no inner points, D = {N (λ) is dense in K. ( See e.g. [7], Ch. II,
Lemma (5.28). ) Therefore again Theorem 2.20 applies. �

Note that the condition of Corollary 2.21 a) is fulfilled if λ is self-decompo-
sable (cf. Definition 2.18): In this case, as easily verified, λ is representable
as a limit of an infinitesimal triangular array. Hence λ is infinitely divisible
and therefore the Fourier transform is without zeros. (See also Remarks 2.26
below.) But this is not true true for general Ta−decomposable laws. Even in
the classical situation, on the real line, the Fourier transforms of ”nouvelles
lois limites” de M. Loève may have zeros.

Next we shall apply these tools to obtain criteria for Ta−decomposability,
criteria similar to the well known characterizations of operator-decomposability
for vector spaces and groups (compare e.g., [5], § 2.14). However, in the
hypergroup situation we have to use extra conditions, therefore our results are
considerably weak.

Let in the following || · || be a Hilbert space norm on Πd, and ||| · |||
the corresponding operator norm. Let Ta ∈ Aut(K) be contracting. To avoid
technical details we assume 0 < β ≤ |||Ta−1|||−1, |||Ta||| ≤ α < 1. ( Such a
condition is always satisfied for a suitable power T k

a ). Hence we obtain for
x ∈ K = Πd:

βn · ||x|| ≤ ||T n
a x|| ≤ αn · ||x|| (2.2)

Let ν ∈M1(K) and let Xk, k ≥ 0, be an iid sequence distributed according to

ν. Put Yk := T k
a (Xk) and denote by Sn := Λ−

n∑
0

Yk the corresponding random

walk. Note that (ii′) Yn = T n
a Xn → 0 in distribution since Ta is contracting.

Proposition 2.22 Assume (i) ν̂(κ) 6= 0, ∀κ ∈ K̂, and (ii) T n
a (Xn) → 0

almost surely. Furthermore, assume (iii) λn :=
N

F
n=0

T n
a (ν) → λ ∈M1(K).

Then ν possesses logarithmic moments, i.e.

(iv) E(log+(||X0||) =

∫
K

log+(||x||)dν(x) <∞

The Proof runs along the steps of the ’classical’ proof for groups or vector
spaces. (However, there condition (i) is superfluous and (ii) follows by the
other assumptions.)

Condition (ii) yields that for all δ > 0 P (Limsup {||T n
a Xn|| > δ}) = 0,

hence we obtain by (2.2) e.g. for δ = 1: P (Limsup {||Xn|| > β−n}) = 0.
Whence by the Borel-Cantelli Lemma∑

n≥0

P
({
||Xn|| > β−n

})
=
∑
n≥0

P
({

log+ ||Xn|| > n · (− log β)
})

<∞
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The iid–assumption implies (with γ := − log β) that∑
n≥0

P
({

log+(||X0||) > n · γ
})

<∞

whence E(log+(||X0||)) <∞ follows. �

Remark. Note that according to Corollary 2.21 we have almost sure conver-
gence Sn → S. In the ’classical situation’ this implies condition (ii). Here we
had to assume (ii) as additional condition.

A partial converse result is contained in

Proposition 2.23 Assume as before (i) ν̂ 6= 0 and furthermore assume the
existence of logarithmic moments (iv) E(log+(||X0||)) <∞.

Then we obtain convergence (iii) λn :=
n

F
k=0

T k
a (ν) → λ ∈ M1(K), i.e.,

the distribution λ is Ta−decomposable.

Proof: E(log+ ||X0||) < ∞ implies
∑∞

0 P (log+(||X0||) > nδ) < ∞ for any
δ > 0, whence by the iid assumption

∞∑
0

P (log+ ||Xn|| > nδ) =
∞∑
0

P (||Xn||1/n > δ1/n) <∞

follows. Hence
∑∞

0 P
(
(αn||Xn||)1/n > αδ1/n

)
< ∞ and therefore, according

to (2.2) with δ = 1 we conclude
∑∞

0 P (||T n
a (Xn)|| > αn) <∞.

Applying again the Borel-Cantelli Lemma, we obtain

P (Liminf {||T n
a (Xn)|| ≤ αn}) = 1

Hence we obtain a.s. absolute convergence

∞∑
0

||T n
a (Xn)|| <∞ a.s. (2.3)

In the ’classical situation’ (2.3) implies a.s. convergence Sn → S. Here, for
hypergroups, we have to argue in a different way:

Let U :=
∑∞

0 ||T n
a (Xn)||∗. (Cf. Property 0.7). Then we obtain for all n for

the (randomized) partial sums Sn = Λ−
∑n

0 T
k
a (Xk) upper bounds ||Sn||∗ ≤ U .

Therefore in particular, for all n and K > 0 we have P (||Sn||∗ > K) ≤ P (U >
K) → 0 with K →∞. Hence the distributions λn of Sn, n ∈ Z+, are uniformly
tight. Let λ be an accumulation point of {λn}.

(2.3) implies in particular that for all sequences mn → ∞, and Mn > mn

||Λ−
Mn∑

mn+1

T k
a (Xk)||∗ ≤

Mn∑
mn+1

||T k
a (Xk)||∗ → 0 a.s., whence

Mn

F
j=mn+1

T k
a (ν) → ε0.

Equivalently, the sequence of Fourier transforms
(
λ̂n

)
n≥0

satisfies the Cauchy

condition. On the other hand, λ̂n → λ̂ along a subsequence.
Whence λ̂n

n→∞−→ λ̂, equivalently, λn
n→∞−→ λ follows. �
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2.6 Space-time processes and self-decomposability

Let µ be self-decomposable with a contracting semigroup
(
Ta(t)

)
t≥0

⊆ D(µ).

(Additive parametrization). Then, as noted above, µ = Ta(t)(µ) ? ν(t) =
Ta(t+s)(µ)?Ta(s)(ν(t))?ν(s). Repeating this decomposition with k

N
·t, t

N
instead

of s, t, we obtain in particular for all t > 0, N,M ∈ N: µ = Ta([Nt]+M)(µ) ?

[Nt]+M

F
k=0

Ta( k
N

t)

(
ν( t

N
)
)
. Since the automorphisms are contracting all factors

converge to ε0. Hence in particular, µ̂(·) > 0, and therefore the cofactors

are uniquely determined: ν̂(t)(·) = µ̂(·)/T̂a(t)(µ)(·). Furthermore, ν(t)
t→∞−→ µ.

And in addition, the cofactors depend continuously on t and fulfil the cocycle
equation

ν(s+ t) = Ta(t)(ν(s)) ? ν(t) (2.4)

Put for s < t: ν(s, t) := Ta(s) (ν(t− s)). Then

(s, t) 7→ ν(s, t) is continuous (2.5)

ν(s, t) ? ν(t, r) = ν(s, r) for s ≤ t ≤ r (2.6)

Ta(h)(ν(s, t)) = ν(s+ h, t+ h) for s ≤ t h ≥ 0 (2.7)

As in the group- or vector space case we define:

Definition 2.24 (a) A family of probabilities ν(t), t ≥ 0, satisfying the
relation (2.4) is called M-semigroup.
(b) A family of probabilities ν(s, t), 0 ≤ s ≤ t, satisfying the relations (2.5),
(2.6), (2.7) is called stable hemigroup.
(c) A family of probabilities ν(s, t), 0 ≤ s ≤ t, satisfying the relations (2.5),
(2.6) and

Ta(ν(s, t)) = ν(s+ c, t+ c) for s ≤ t (2.8)

for some contracting Ta and c > 0 is called (Ta, c)−semistable hemigroup.

Obviously, ν(t), t ≥ 0, is a M-semigroup iff ν(s, t) := Ta(s)(ν(t− s)), s ≤ t,
is a stable hemigroup.

The space-time hypergroup is defined as semi-direct product of hypergroups,
i.e., as Cartesian product Γ := K×R endowed with the convolution structure

(εx ⊗ εs) ∗ (εy ⊗ εt) :=
(
εx ? Ta(s) (εy)

)
⊗ εt+s

(∗ denoting convolution on Γ, and ? convolution on K). As easily seen, (Γ, ∗)
defines a hypergroup.

For a fixed group of automorphisms
(
Ta(t)

)
t∈R we have:

Proposition 2.25 (ν(t))t≥0 ⊆M1(K) is a M-semigroup on K w.r.t.
(
Ta(t)

)
t≥0

iff
(λ(t) := ν(t)⊗ εt)t≥0 ⊆ M1(Γ) is a convolution semigroup on the space-time

hypergroup Γ defined by
(
Ta(t)

)
t≥0

.[[
For groups and vector spaces compare e.g., [5], § 2.14 V.

]]
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Remarks 2.26 (a) Let (ν(s, t))0≤s≤t satisfy (2.5) and (2.6) (hence a ’con-
volution hemigroup’), then any probability ν(s, t) is embeddable into a contin-
uous convolution semigroup.[[

Obviously ν(s, t) is a limit of an infinitesimal triangular array, hence in-

finitely divisible and therefore embeddable. Cf. [2], 5.3.4, 5.3.11.
]]

(b) Let the convolution hemigroup (ν(s, t))0≤s≤t be (Ta, c)−semistable (cf.
Definition 2.24 (c)). Assume moreover that µ(s) := lim

t→∞
ν(s, t) exists. Then

µ(s) is Ta−decomposable with cofactor ν(s, s+ c).
If in addition (ν(s, t))0≤s≤t is

(
Tb(r)

)
−stable then µ(s) is self-decomposable

with cofactors ν(s, s+ r) ∈ Cof(µ(s), Tb(r)), r ≥ 0.
[[

Immediately verified.
]]

(c) In case b) the cofactors are continuously emeddable according to a).
Hence the Ta−decomposable limit laws µ = µ(s) defined by a semistable (resp.
stable) hemigroup fulfill the assumptions of Corollary 2.21, i.e. the Fourier
transform have no zeros. Therefore, the corresponding random walks converge
almost surely.

3 Gaussian laws, subordination and examples

of (semi-)stable and decomposable laws

3.1 Gaussian Laws

In [16], Section 5, the class of squared Wishart distributions is investigated,
playing the role of Gaussian distributions on the hypergroup K. For more
informations about Wishart distributions and different approaches the reader
is referred to the literature mentioned in [16].

The standard Gaussian is denoted by W = W (I), characterized by the

Fourier-transform Ŵ (I)(κ) = e−tr(κ2)/2, κ ∈ Πd. (Note that K̂ ∼= K.) In
general, the set of Gaussian laws {W (p2), p ∈ Πd}, is defined as the orbit of
W (I) under the action of Tp, p ∈ Πd. They are characterized by the Fourier-

transform Ŵ (p2)(κ) = e−tr(pκ2p)/2 = e−tr(p2κ2)/2, κ ∈ Πd.
[[

[16], Lemma 5.4.]]
Therefore, for a = up ∈ End(Kd), p ∈ Πd and u unitary, we have W (p2) =
W (aa∗), furthermore, W (p2) = Tp(W (I)) and for p, q ∈ Πd, Tp(W (q2)) =
W (r2) with r = (pq2p)1/2. In fact, W (pq2p) = W (qp2q). Whence

W (p2) ? W (q2) = W (p2 + q2) for p, q ∈ Πd (3.1)

follows. Therefore, for fixed p2 ∈ Πd, (µt := W (t · p2))t≥0 is a continuous
convolution semigroup with µ1 = W (p2). (µt) is called Gaussian continuous
convolution semigroup.

[[
[16], Lemma 5.5.

]]
Consequently, for fixed p ∈ Πd, let

(
cs := s1/2 · I

)
s>0

⊆ GL(Kd). Then

Tcs(µ1) = Tcs(W (p2)) = W (s · p2) = µs ∀s > 0

In other words,

3.1 The Gaussian laws (resp. squared Wishart laws) W (q2) are stable in the
afore defined sense with (Tcs) ⊆ Dec(W (q2)).
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Next we determine the invariance groups of Gaussian laws:

3.2 (a) Inv(W (I)) = Ud, the group of orthogonal (resp. unitary) matrices.
(b) Let q ∈ Πd ∩GL(Kd). Then Inv(W (q2)) = q−1Udq.
In particular we have: Inv(W (q2)) is a compact group if q is positive definite.
Hence W (q2) ∈ F for q ∈ GL(Kd).
(c) If q ∈ Πd is not invertible then W (q2) is not full and hence Inv(W (p2))
is not compact.[[

(a) Let a = up be the polar decomposition of a ∈ End(Kd). As afore

mentioned, Ta(W (I)) = W (aa∗) = W (up2u∗) = W (p2), hence Ta(W (I)) =
W (I) iff aa∗ = I, i.e., iff a ∈ Ud.

(b) follows easily since W (q2) = Tq(W (I)): In fact, we have Ta(W (q2)) =
Tq (Tq−1aq(W (I))). Hence Ta(W (q2)) = W (q2) iff Tq−1aq(W (I)) = W (I), i.e.,
iff q−1aq ∈ Ud. Whence the assertion.

(c) Let V := ker(q) and U := V ⊥. Then b := IdU ⊕α ∈ Inv(W (q2)) for all

α ∈ End(V ). Whence the assertion.
]]

Analogously we describe the decompsability group of full Gaussian laws:

3.3 Let q be invertible, hence W (q2) ∈ F . Then

Dec(W (q2)) :=
{
Ta ∈ Aut(K) : Ta(W (q2)) = W (c · q2) for some c > 0

}
=

{√
c · Inv(W (q2)) for c ∈ im(ϕ) = (0, ∞)

}
=

{√
c · q−1Udq for c ∈ im(ϕ) = (0, ∞)

}
The canonical homomorphism ϕ : Dec(W (q2)) → (0,∞) is given by

ϕ(
√
c · q−1uq) = c for unitary u.[[

In fact, Ta(W (q2)) = W (c · q2) iff T 1√
c
a(W (q2)) = W (q2). This is the case

iff 1√
c
a ∈ Inv(W (q2)) = q−1Udq. Whence the assertion follows.

]]
Concerning domains of attraction, note that in [16], Theorem 6.4, Voit

proved a central limit theorem. Hence we describe with the notations intro-
duced before:

3.4 For the domain of attraction of W (q2) we have

DA(W (q2)) ⊇
{
ν ∈M1(K) with second moment

∫
Πd

||r2||dν(r) <∞
}

In this case,
∫

Πd
r2dν(r) =: q2 ∈ Πd exists and moreover, T 1√

n
·I (νn) → W (q2).

Finally, any Gaussian distribution W (q2) is – as a stable law – self-de-
composable. We describe the decomposability semigroup resp.

3.5 Urbanik semigroup (cf Definition 2.16): Let a = up denote the polar
decomposition, then

D(W (q2)) = {Ta ∈ End(K) : q (I − p) q ∈ Πd}
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[[
a ∈ D(W (q2)) iff W (q2) = W (aq2a∗)?ν(a) for some cofactor ν(a) ∈M1(K).

This is the case iff for all κ ∈ Πd

ν̂(a)(κ) = Ŵ (q2)(κ)/ ̂W (aq2a∗)(κ) = exp

(
−1

2

(
tr
(
qκ2q

)
− tr

(
aqκ2qa∗

)))
= exp

(
−1

2

(
tr
(
qκ2q

)
− tr

(
pqκ2qp

)))
.

Hence iff tr (qκ2q)− tr (aqκ2qa∗) ≥ 0. But tr (qκ2q)− tr (pqκ2qp) = tr (q2κ2)−
tr (qp2qκ2) = tr ((q2 − qp2q)κ2) . Whence the assertion follows.

]]
3.2 Further examples

A standard way to construct semistable resp. selfdecomposable laws is the
method of subordination. Let (µt) be a continuous convolution semigroup,
i.e. a continuous semigroup homomorphism (R+,+) → (M1(K), ?), then this
homomorphism may be extended to a continuous affine convolution homomor-
phism (M1(R+), ∗) → (M1(K), ?), where ∗ on the left side denotes convolution
on R whereas on the right side ? denotes convolution on the hypergroup K.
This affine homomorphism is given by

Φ : M1(R+) 3 ξ 7→
∫

R+

µtdξ(t). (3.2)

(See e.g., [5], § 1.5 II, § 2.5 III.)[[
As well known and easily verified, we have Φ(

∑
αiξi) =

∑
αiΦ(ξi)

for αi ≥ 0,
∑
αi = 1 and Φ(ξ ∗ η) = Φ(ξ) ? Φ(η).

]]
As in the group- or vector space case we observe:

Proposition 3.6 Let (µt) ⊆ M1(K) be a continuous convolution semigroup
which is stable w.r.t. (Tat)t>0. Φ will denote the corresponding subordination
homomorphism. Let ξ, (ξt) ⊆ M1(R+), (ξt) a continuous convolution semi-
group. Let Hα : x 7→ α · x denote the homothetical transformation on R+,
α > 0. Let νs := Φ(ξs), s ≥ 0 and ν := Φ(ξ).
(a) If (ξt) is semistable w.r.t. (Hα, c) for α > 0, c ∈ (0, 1), then (νs) ⊆
M1(K) is semistable w.r.t. (Taα , c)
(b) If (ξt) is stable w.r.t. (Htα)t>0 for some α > 0. Then (νs) ⊆ M1(K) is
stable w.r.t. (Tbt), with bt := atα.
(c) If ξ is semi-self-decomposable with Hα ∈ D(ξ) and cofactors η(Hα) ∈
Cof (ξ,Hα). Then ν is semi-self-decomposable in M1(K) with Taα ∈ D(ξ)
and cofactors Φ (η(Hα)) ∈ Cof (ξ,Hα). An analogous assertion holds for self-
decomposable laws.

Sketch of a Proof: (a) We have

Taα (Φ(ξs)) =

∫
R+

Taα(νt) dξs(t) =

∫
R+

να·t dξs(t)

=

∫
R+

νt dHα (ξs) (t)) =

∫
R+

νt dξc·s(t) = Φ(ξc·s)

I.e., Taα(νs) = νc·s
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(b) Assume Htα(ξs) = ξs·t, s ≥ 0, t > 0. Then analogously, Tatα
(Φ(ξs)) =

Φ(ξs·t). I.e., defining bt := atα , we have proved that (νs) is stable w.r.t. (Tbt).
(c) Assume ξ = Hα(ξ) ∗ η(Hα) for α > 0, and cofactor η(Hα) ∈M1(R+).

Then, as before, Φ(ξ) = Taα (Φ(ξ)) ?Φ(η(Hα)). Hence ν is Taα−decomposable
with cofactor Φ(η(Hα)). �

As an example we consider Wishart resp. Gaussian distributions on K
introduced above:

Example 3.7 (µt := W (tq2))t≥0 is stable w.r.t. (Tt1/2·I)t>0. ( In fact, sta-

ble w.r.t. any group (Tat) with at = t1/2 · I u(t), u(·) denoting a group of
transformations in Inv(W (q2)). )

The Fourier-transform is given as µ̂t(κ) = e−t·tr(κ2q2). Let (ξs) denote a
semigroup of one-sided stable distributions on the half line R+, defined by
the Laplace transform Lξs(u) = e−suα

, u ≥ 0, for some (fixed) α ∈ (0, 1).
Let Φ denote the subordination map (w.r.t. (µt)). Then (Φ(ξs)) is a stable
continuous convolution semigroup. In fact, the Fourier-transform is given

by κ 7→ Φ̂(ξs)(κ) = e−s·(tr(q2κ2))
α

. This is proved by simple calculations:

Φ(ξs)(κ) =
∫

R+
µ̂(κ)dξs(t) =

∫
e−t·tr(q2κ2)/2dξs(t) = exp

(
−s (tr(q2κ2)/2)

α)
.

Hence (Φ (ξs)) is stable w.r.t. the group (Ttα/2·I)t>0.

The structure of the Gaussian resp. Wishart distributions on K is a mo-
tivation to generalize the concept of subordination in order to obtain a wider
class of examples. First we generalize the concept of continuous convolution
semigroups:

Definition 3.8 Let P denote a closed cone in a vector space Kr. A cone
semigroup is a family of probabilities (µ~t)~t∈P on a vector space V, on a group

G or on a hypergroup K respectively, such that P 3 ~t 7→ µ~t ∈ M1(K) is a
continuous semigroup homomorphism. (The definition is analogous for vector
spaces or groups.)

The cone semigroup is called semistable w.r.t. (Ta, c) ∈ Aut(K) × GL(P)
if Ta(µ~t) = µc(~t). There we define GL(P) := {c ∈ GL(Kr) with c(P) = P}.

Analogously, the cone semigroup is called stable if there exists a continuous
homomorphism φ : Aut(P) → Aut(K), α 7→ φ(α), such that φ(α)(µ~t) = µα(~t).

If we want to emphasize the homomorphism, we call the semigroup φ−stable.
(Note that for P = R+ we have Aut(R+) ∼= ((0,∞), ·), hence φ defines a one-
parameter group of operators t 7→ Tat. Hence in this case we obtain just the
usual definition of stability.)

If the hypergroup K is replaced by a group or by a vector space we define
(semi-) stability of cone-semigroups in an analogous way.

We continue the example 3.7 of Wishart distributions:

3.9 Let P be a subcone of Πd ⊆ Kd2
. Then P 3 q2 =: p 7→ µp := W (q2) is a

cone semigroup (according to (3.1) ). Furthermore, the relation

Ta(µp) = Ta(W (q2)) = W (aq2a∗) = W
(
Ta(q

2)
)

= µTa(p)

q ∈ P , Ta ∈ Aut(Πd) with Ta(P) = P

shows that the cone semigroup (µp)p∈P is stable w.r.t. the identity (restricted
to P): Aut(P) 3 Ta 7→ Ta ∈ Aut(Πd).
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The concept of subordination is easily generalized to cone semigroups. (For
a different approach to subordination of cone semigroups see e.g., [1]).

Definition 3.10 Let – with the notations introduced above – ξ ∈ M1(P).
Then the (cone-) subordination map is defined as

Φ : M1(P) 3 ξ 7→
∫
P
µ~t dξ(~t) ∈M1(K). (3.3)

As easily seen, again Φ is a continuous affine semigroup homomorphism.

Proposition 3.11 Let Π be a closed subcone of Πd. M
1(Π) is endowed with

the convolution ∗ induced by the additive structure (Π,+). We assume through-
out (µ~t)~t∈Π ⊆ M1(K) to be stable w.r.t. a fixed homomorphism φ : Aut(Π) →
Aut(K). Let Φ denote the corresponding subordination map. Let as above, P
denote a closed cone in a vector space Kr.
(a) Let (ξ~s)~s∈P ⊆ M1(Π) be semistable w.r.t. (A, b) ∈ Aut(Π) × Aut(P).
Then (ν~s := Φ(ξ~s))~s∈P ⊆M1(K) is semistable w.r.t (φ(A), b), i.e.,

φ(A)(ν~s) = νb(~s), ~s ∈ P . (3.4)

(b) Let (ξ~s)~s∈P ⊆ M1(Π) be stable w.r.t. ψ : Aut(P) → Aut(Π). Then
(ν~s := Φ(ξ~s))~s∈P ⊆M1(K) is stable w.r.t. γ := ψ ◦ φ, i.e.,

γ(b)(ν~s) = νb(~s), for all ~s ∈ P , b ∈ Aut(P). (3.5)

(c) Analogous assertions hold true for (semi-)self-decomposable laws. (We
omit the details.)[[

(a) Obviously we obtain again

φ(A) (ν~s) =

∫
Π

φ(A)(µ~t) dξ~s =

∫
Π

µA(~t) dξ~s(
~t)

=

∫
Π

µ~t dA (ξ~s) (~t) =

∫
Π

µ~t dξb(~s)
(
~t
)

= νb(~s)

I.e., φ(A) (Φ(ξ~s)) = Φ
(
ξb(~s)

)
as asserted.

(b) Let b ∈ Aut(P), A := ψ(b) ∈ Aut(Π).

γ(b) (ν~s) =

∫
Π

φ(A)(µ~t) dξ~s(~t) =

∫
Π

µA(~t) dξ~s(
~t)

=

∫
Π

µ~t dψ(b) (ξ~s) (~t) =

∫
Π

µ~t dξb(~s)
(
~t
)

= νb(~s)

I.e., γ(b) (Φ(ξ~s)) = Φ
(
ξb(~s)

)
, for all ~s ∈ P , b ∈ Aut(P) as asserted.

]]
As we are mainly interested in examples of continuous convolution semi-

groups, we note the following result for the particular cone P = R+:

Corollary 3.12 Let as above the cone semigroup (µ~t)~t∈Π ⊆ M1(K) be stable
w.r.t. a homomorphism φ : Aut(Π) → Aut(K) and consider P := R+. Let
(ξs)s≥0 be a continuous convolution semigroup in M1(Π). Let Φ denote the
corresponding subordination map. Then we have:
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(a) If (ξs)s≥0 ⊆ M1(Π) is a (A, c) semistable continuous convolution semi-
group, then the continuous convolution semigroup (νs := Φ(ξs))s≥0 ⊆ M1(K)
is semistable w.r.t (φ(A), c), i.e., φ(A)(νs) = νc·s, s ≥ 0.
(b) Let (ξs)s≥0 ⊆M1(Π) be an (At) stable continuous convolution semigroup
w.r.t. an one-parameter group (At)t>0 ⊆ Aut(Π). Then the continuous con-
volution semigroup (νs := Φ(ξs))s≥0 ⊆ M1(K) is stable w.r.t (φ(At))t>0, i.e.,
φ(At)(νs) = νt·s for all s ≥ 0, t > 0.

To apply this result for the construction of semistable laws on the hyper-
group K we only have to show that non-trivial examples of semistable contin-
uous convolution semigroups on cones Π of vector spaces exist. This is easily
shown by a standard construction:

Proposition 3.13 Let 0 < c < 1 and let A ∈ Aut(Π) be contracting (on the
vector space H := Π − Π), hence |||Ak||| ≤ C · βk for some C > 0, 0 < β <
1, k ∈ N. Assume β/c < 1.

As A is contracting, there exists a relatively compact Borel cross section
w.r.t. the discrete action Ak, k ∈ Z, hence there exists a relatively com-
pact Borel set Γ ⊆ {x ∈ Π : r < ||x|| ≤ 1} for some r > 0 and Πd\{0} =⋃
· k∈ZA

k(Γ).
Then for any λ ∈M1(Π) with λ({Γ) = 0 there exists an (A, c)−semistable

continuous convolution semigroup supported by Π. The Fourier-transform is
given by

κ 7→ exp

(
t ·
∑
k∈Z

c−k
(
λ̂
(
A∗k(κ)

)
− 1
))

Proof: Since Π ⊆ H we apply the standard methods for probabilities on
vector spaces:

Put η :=
∑
k∈Z

c−kAk(λ). As easily seen, η is a Lévy measure and the

bounded measures ηN :=
∑

k≤N

c−kAk(λ) converge vaguely to η. Denote by

π
(N)
t := exp (t · (ηN − ||ηN ||)) the Poisson measures. Obviously these measures

are concentrated on
⋃

k∈Z
Ak(Γ) ⊆ Π. Furthermore, note that

A(η) = c · η (3.6)

If we can show that limπ
(N)
t =: πt, t ≥ 0, exists, then, in view of the

properties (3.6) of η we conclude that A(πt) = πc·t, whence the proof follows.
(Then η is the Lévy measure of (πt).)

In order to show lim π
(N)
t =: πt, t ≥ 0, exists, we have to prove that the

function x 7→ ||x|| is locally integrable w.r.t. the Lévy measure:
In fact, this follows by∫

{||·||≤1}
||x|| dη(x) =

∑
k∈Z

c−k

∫
Ak(Γ)∩{||·||≤1}

||Ak(x)|| dλ(x)

=
∑
k≤−1

+
∑
k≥0

∫
Ak(Γ)∩{||·||≤1}

||Ak(x)|| dλ(x)

(note that the first sum vanishes)

≤
∑
k≥0

∫
Γ

Cc−kβk dλ(x) = C ·
∞∑
0

(β/c)k <∞
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As mentioned, examples of (semi-)self-decomposable laws in M1(K) can
easily be constructed in the same way via subordination of a fixed stable con-
tinuous convolution semigroup.

E.g., let (µt) be (Tas)-stable. Let ρ denote the uniform distribution on the
unit interval, ρ = λ1|[0,1]. As well known, and easily verified, ρ = λ1|[0,1] is

H1/2−decomposable, ρ =
∞

F
n=0

(
1
2
ε0 + 1

2
ε1/2n

)
=

∞

F
n=0

H 1
2n

(
β(1

2
, 1)
)
, β(p, n)

denoting the binomial distribution.

Example 3.14 Therefore by subordination, λ :=
∫ 1

0
µtdt is Ta1/2

−decompos-

able, λ =
∞

F
n=0

Ta1/2n

(
1
2
µ0 + 1

2
µ1

)
=

∞

F
n=0

(
1
2
µ0 + 1

2
µ1/2n

)
.

To obtain further examples, note that convolution products of stable laws
are self-decomposable. Precisely:

3.15 Let (Tat) be a one-parameter group of automorphisms. Let the continuous
convolution semigroups (µt) and (νt) be stable w.r.t. the groups (Tatα

)t>0 and(
Ta

tβ

)
t>0

respectively, where α, β > 0. Then, as easily verified, µt ? νt is

self-decomposable (for any t > 0), but in general not stable.

Up to now all our examples, in particular, all examples of (semi)stable
laws, are constructed via subordination of Gaussian laws, and as in 3.15, as
convolution products of such laws. Nevertheless, this method already allows to
construct a variety of new examples: Let (Tat)t>0 be a fixed group in Aut(K).
The set of (Tat)t>0−stable laws is a sub-semigroup of M1(K). Hence

3.16 Convolutions (µt ? νt) of (Tat)t>0−stable laws are (Tat)t>0−stable. In
particular, convolution products of stable laws obtained by subordination are
stable. Applying again subordination to these new stable continuous convolu-
tion semigroups we obtain e.g. that for 0 < α, β < 1

κ 7→ exp
(
−s ·

{(
tr(p2κ2)/2

)α
+
(
tr(q2κ2)/2

)α}β
)
, s ≥ 0

are Fourier-transforms of a (Tbt)t>0−stable continuous convolution semigroup,
where bt := atαβ .

Here we supposed both Gaussians W (p2) and W (q2) to be stable w.r.t. the
same group (Tat)t>0. (Note that this is also a restriction on the admissible
automorphism groups.)

In order to obtain more examples beyond the Gaussian resp. Wishart
distributions, we use the particular structure of the dual K̂ of underlying hy-
pergroups mentioned in Properties 0.8. First we construct semistable laws:

Example 3.17 Let a ∈ GL(Kd) be contracting, hence |||an||| ≤ C ·ρn for some
C > 0 and 0 < ρ < 1. Choose 0 < ρ, c < 1, such that ρ2/c < 1. Then there
exist (Ta, c)−semistable laws.
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For the Proof we repeat the construction already used in 3.13:
Let λ ∈ M1(K) and define the positive measure η :=

∑
k∈Z

c−kTak(λ). Ob-

viously, Ta(η) = c · η. We put π
(N)
t := exp (t (ηN − ||ηN || · ε0)). For N ∈ N

the measure ηN :=
∑

k≤N

c−kTak(λ) is bounded and we have ηN → η vaguely on

K\{0}.
We have to show that for suitable λ the Fourier transforms η̂N − ||ηN || · 1

converge to a continuous function, η̂ say. Then, according to Lévy’s continuity
theorem (for hypergroups), π

(N)
t → πt, t ≥ 0, a (Ta, c)−semistable continuous

convolution semigroup.
Here we prove this result for the particular law λ = εx. (Note that this

yields semistable laws which are known – for groups and vector spaces – as the
laws with extremal (semistable) Lévy measures. Cf. [5], 2.4 I.)

In fact, using the concrete representation of characters (cf. (0.1)), and
in view of the mentioned asymptotic behaviour of the characters near 0 (cf.
(0.2)), the assertion easily follows:

η̂N(κ) =
∑
k≤N

c−k
(
ε̂T

ak (x)(κ)− 1
)

=
∑
k≤N

c−k

{
Jµ

(
−1

4

(
κ
(
akx2a∗k

)
κ
))

− 1

}
=

∑
k≤N

c−k

(
− 1

4µ

(
κakx2a∗kκ

)
+Rk

)
with remainder term Rk = O(||κa∗kx2akκ||2).

Considering the power-bounded sequence ãk = 1
ρk · ak, k ≥ 0 , we ob-

tain η̂N(κ) =
∑

k≤N

(
ρ2

c

)k (
− 1

4µ

(
κãkx2ã∗kκ

)
+ R̃k

)
, with ||R̃k|| = 1

ρ2k · ||Rk|| ≤

C1||x||4||κ||4ρ2k. Hence the limit η̂(·) := limN η̂N(·) exists as a continuous
function. Hence, as mentioned, according to Lévy’s continuity theorem for
hypergroups, lim π

(N)
t =: πt exists in M1(K).

By construction, this limit is (Ta, c)−semistable. �

In a similar way we can prove that existence of stable laws w.r.t. an arbi-
trary contracting one-parameter group (Tat)t>0.

[[
Cf. [5], 2.4 II.

]]
Example 3.18 Assume w.l.o.g. that at = tE with E ∈ GL(K, d), Re(α) >
1/2 for all α ∈ Spec(E). (Else replace at by atα for suitable real α.) Let

y0 ∈ Πd and define the measure η :=
∞∫
0

εTas (y0) · s−2ds.

Claim: κ 7→ µ̂t(κ) := exp t
∫

Πd
(ϕκ(x)− 1) dη(x) is the Fourier transform

of a (Tat)−stable continuous convolution semigroup (µt).[[
Obviously, Tat(η) = t · η for all t > 0. Furthermore, we have ψ(κ) :=∫

Πd
(ϕκ(x)− 1) dη(x) =

∫∞
0

(ϕκ(Tas(y0))− 1) s−2ds. This integral converges

since the integrand is bounded by const · ||Tas(y0)||2 according to (0.8), hence
≤ const1 · s2·(α+ε) for suitable small ε.

Hence κ 7→ exp tψ(κ) is a limit of Fourier transforms of Poisson measures
(with Fourier transforms κ 7→ exp t · ψε(κ), where the exponent is defined
as ψε(κ) :=

∫∞
ε

(ϕκ(Tas(y0))− 1) ds
s2 . Therefore, according to the continuity
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theorem, κ 7→ µ̂t(κ) := exp tψ(κ) is the Fourier transform of a probability
measure µt, and since by construction ψ(T ∗at

(κ)) = t·ψ(κ), we obtain Tat(µs) =

µs·t, i.e. (µs) is (Tat)t>0−stable as asserted.
]]
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[14] Sato, K.: Lévy Processes and Infinitely divisible Distributions. Cam-
bridge Univ. Press (1999)

[15] Scheffler, H.P., Zeuner, H.M.: Domains of attraction on Sturm-
Liouville hypergroups of polynomial growth. J. Applied Analysis 5, 153–
170 (1999)

31



[16] Voit, M.: Bessel convolutions on matrix cones: Algebraic properties and
random walks. 26p. ArXiv:math CA/0603017 (2007) submitted

[17] Voit, M.: Positive and negative definite functions on the dual space of a
commutative hypergroup. Analysis 9, 371–387 (1989)

[18] Zeuner, H.M.: Domains of attraction with inner norming on Sturm-
Liouville hypergroups. J. Applied Analysis 2, 213–221 (1995)

[19] Zeuner, H.M.: Kolmogorov’s three series theorem on one-dimensional
hypergroups. Contemporary Mathematics 183, 435–441 (1995)

Wilfried Hazod,
Faculty of Mathematics, Dortmund University of Technology,
D-44221 Dortmund, Germany
E-mail: Wilfried.Hazod@math.uni-dortmund.de
or
Wilfried.Hazod@tu-dortmund.de

32



Preprints ab 2008

2008-01 Henryk Zähle
Weak approximation of SDEs by discrete-time processes

2008-02 Benjamin Fine, Gerhard Rosenberger
An Epic Drama: The Development of the Prime Number Theorem

2008-03 Benjamin Fine, Miriam Hahn, Alexander Hulpke, Volkmar
große Rebel, Gerhard Rosenberger, Martin Scheer
All Finite Generalized Tetrahedron Groups

2008-04 Ben Schweizer
Homogenization of the Prager model in one-dimensional plasticity

2008-05 Benjamin Fine, Alexei Myasnikov, Gerhard Rosenberger
Generic Subgroups of Group Amalgams

2008-06 Flavius Guiaş
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