
Multiple selfdecomposable laws on vector

spaces and on groups: The existence of

background driving processes

Wilfried Hazod

Preprint 2008-15 Juni 2008

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund tu-dortmund.de/MathPreprints





MULTIPLE SELFDECOMPOSABLE LAWS ON
VECTOR SPACES AND ON GROUPS: THE
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Introduction

Self-decomposable laws or class L−laws were introduced by P. Lévy
within the frame of limit distributions of normalized sums of indepen-
dent (not necessarily identically distributed) random variables. In the
past various types of distributions which are well-known in statistical
applications turned out to be self-decomposable. See e.g. Z. Jurek
[14], K. Sato[20] for a survey. Recently the self-decomposability prop-
erty and the related additive processes – one- and multidimensional
– turned out to be important for model building in Mathematical Fi-
nance. See e.g., [3] for a survey and for references.

K. Urbanik [25] extended the concept of self-decomposability to finite
dimensional vector spaces V with operator normalization. See also [21]
or the monograph [12], and the literature mentioned there.

Closely related to self-decomposability are generalized Ornstein–Uh-
lenbeck processes and Mehler semigroups of transition operators and,
on the other hand, stable hemigroups and M-semigroups of probabili-
ties. (For details and hints to the literature see e.g., [12, 5, 7, 9, 10, 22,
1, 19].) Let (Xt)t≥0 be a stochastically continuous additive process tak-

ing values in V then the distributions ν(s, t) of the increments X−1
s Xt,

s ≤ t, form a continuous convolution hemigroup, i.e. (s, t) 7→ ν(s, t) is
continuous and

ν(s, t) ? ν(t, r) = ν(s, r) for s ≤ t ≤ r (H)

A hemigroup (ν(s, t))s≤t is called stable w.r.t. a continuous one-para-
meter group of vector space automorphisms T = (Tt)t∈R ⊆ GL(V) if
for all r, for all s ≤ t

Tr(ν(s, t)) = ν(s+ r, t+ r), ν(s, t) = Ts (ν(0, t− s)) (S)
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Put ν(s) := ν(0, s), s ≥ 0. Then, as easily verified,

ν(s+ t) = ν(s) ? Ts(ν(t)), 0 ≤ s ≤ t (M)

Continuous families (ν(s))s≥0 of probabilities satisfying (M) are called
M-semigroups or skew semigroups. (The corresponding transition op-
erators are generalized Mehler semigroups.)
µ ∈M1(V) is called (operator) self-decomposable w.r.t. T if ∀t ≥ 0

µ = Tt(µ) ? ν(t) for some ν(t) ∈M1(V) (SD)

ν(t) is called cofactor. Stable hemigroups and M-semigroups are inter-
esting objects of investigation in their own right. Furthermore, we have:
If µ is self-decomposable (w.r.t. T) then the cofactors (ν(t))t≥0 form
a M-semigroup and (Ts(ν(t− s)))s≤t is a stable hemigroup. Hence in
view of the above mentioned connections, self-decomposable laws with
contracting T are limits of (generalized) Ornstein–Uhlenbeck processes
(resp. of the corresponding M-semigroups). (Cf. [22], see also [10]).

K. Urbanik [26] introduced multiple self-decomposability defining nes-
ted classes of self-decompsable laws L(m)(T) inductively: L(0)(T) :=
M1(V), L(1)(T) the set of self-decomposable laws,

L(m+1)(T)

:=
{
µ : µ = Tt(µ) ? ν(t) with ν(t) ∈ L(m)(T), t > 0

}
(MSD)

See also e.g., [4, 21, 23]. The concepts of self-decomposability, M-
semigroups, stable hemigroups generalize to contractible (hence sim-
ply connected nilpotent) Lie groups G, where T ⊆ Aut(G) denotes a
subgroup of automorphisms. The afore mentioned defining equations
(H), (S), (SD) are used verbatim in this more general situation. See
e.g., [5, 7, 10, 8, 19]. For self-decomposable laws on groups in con-
nection with limit theorems see e.g. [24]. In particular, also multiply
self-decomposability (MSD) and the classes L(m)(T) make sense in the
group case.

For vector spaces V, self-decomposable laws µ and their cofactors
ν(t) are infinitely divisible. Hence for any fixed s ≥ 0 there exists a

Lévy process
(
Z

(s)
t

)
t≥0

such that Z
(s)
1 is distributed according to ν(s).

But the interesting objects are additive processes (Xt)t≥0 with – in

general non-stationary – increments (X−1
s Xt)s≤t distributed according

to ν(s, t) with (H) and (S). There exist hidden Lévy processes (Yt)t≥0

(uniquely determined up to equivalence) driving (Xt)t≥0, i.e., we have
a random integral representation

Xt =

∫ t

0

TudYu , t ≥ 0 (RI)
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(Yt)t≥0 is called background driving Lévy process. See e.g. [14, 12, 20, 2].
For group-valued processes only weak versions of (RI) are known:

Let (ν(s, t))s≤t be a stable hemigroup (with corresponding M-semigroup
ν(t) := ν(0, t) : t ≥ 0) then there exists a uniquely determined continu-
ous convolution semigroup (νt)t≥0 related to the M-semigroup (ν(t))t≥0

by Lie-Trotter formulas

νt = lim
n
ν(1/n)[nt] = lim

n
ν(t/n)n (LT1)

and

ν(t) = lim
n

[nt]−1

?
k=0

Tk/n(ν1/n), ν(s, t) = lim
n

[nt]−1

?
k=[ns]

Tk/n(ν1/n) (LT2)

By (slight) abuse of language we call in the sequel the continuous
convolution semigroup (νt)t≥0 the background driving Lévy process of
the M-semigroup (ν(t))t≥0 resp. of the stable hemigroup (ν(s, t))s≤t.

Let T be contracting. Then lim
t→∞

ν(t) =: µ exists (and is self-de-

composable then) iff ν(t) possesses finite logarithmic moments for some
– hence all – t > 0. The M-semigroup of cofactors (ν(t))t≥0 possesses
finite logarithmic moments (t > 0) iff the background driving process
(νt)t≥0 shares this property (t > 0). (For vector spaces see e.g., [12],
for groups see e.g., [5, 8].)

The aim of this paper is to prove the existence of background driv-
ing processes for multiple self-decomposable laws µ ∈ L(m)(T) and to
investigate the correspondences between multiple-cofactors and back-
ground driving processes in this case. In particular, to obtain ana-
logues of the Lie Trotter formulas (LT1) and (LT2) for the multiple
self-decomposable case.

The main results are new even for vector spaces. They are formu-
lated and proved for the group case (under a commutativity assump-
tion). But the proofs are written in such a way that they can easily
extended to other convolution structures, e.g., to matrix cone hyper-
groups, structures closely related to Wishart distributions. (See [6]
and the literature mentioned there.) Wishart distributions are not in-
finitely divisible w.r.t the usual convolution on the vector space of Her-
mitean matrices, but w.r.t. the new convolution structures they are
even stable, hence completely self-decomposable. So, even when the
investigations here are motivated by purely mathematical questions,
there might be statistical applications in the future.
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1. Multiple self-decomposability

Let G be a contractible (hence simply connected nilpotent) Lie group,
let T = (Tt)t∈R be a continuous one-parameter group in Aut(G), Tt+s =

TtTs, t, s ∈ R. We defined in the introduction the classes L(m)(T) (cf.
(MSD)).

Proposition 1.1. Let µ ∈ L(m)(T) for some m. Then for all t1, . . . , tm
∈ R+ and 1 ≤ k ≤ m there exist ν(k)(t1, . . . , tk) ∈ L(m−k+1)(T) ⊆
M1(G) such that

µ = Tt1(µ) ? Tt2

(
ν(1)(t1)

)
? · · ·

? Ttm

(
ν(m−1)(t1, . . . , tm−1)

)
? ν(m)(t1, . . . , tm) (COF )

The measures ν(k)(t1, . . . , tk) are called k−cofactors.[[
µ = Tt1(µ)?ν(1)(t1) = Tt1(µ)?Tt2

(
ν(1)(t1)

)
?ν(2)(t1, t2), since ν(1)(t1)

is Tt2-decompsable. Per iteration we obtain finally

µ = Tt1(µ) ? (Tt2

(
ν(1)(t1)

)
) ? Tt3

(
ν(2)(t1, t2)

)
? · · ·

· · · ? Ttm

(
ν(m−1)(t1, . . . , tm−1)

)
? ν(m)(t1, . . . , tm).

]]
For the main result, the subsequent Theorem 1.2, we assume addi-

tional conditions: The convolution factors in (COF ), i.e.,
the probabilities

{
Tt(µ), . . . Ttk(ν

(k−1)(t1, . . . , tk)), ν
(m)(t1, . . . , tm)

}
1 ≤ k ≤ m, ti ∈ R+ commute (CCF )
For all ν ∈ L(1)(T) the convolution operator is injective, i.e.,
ν ? ρ = ν ? ρ′ ⇒ ρ = ρ′ (I)

(hence in particular, the cofactors are uniquely determined)
and T = (Tt) is contracting, i.e., ∀x ∈ (G) limt→∞ Tt(x) = e (CT )

Note that (CCF ) and (I) are obviously true for vector spaces: In
this case, the convolution semigroup is commutative, therefore (CCF )
is trivial, and ν is infinitely divisible, hence the Fourier transform has
no zeros. Whence (I) follows. For injectivity in the group case see e.g.,
the discussion in [18].

Theorem 1.2. Let µ ∈ L(m)(T). Assume (CCF), (I) and (CT). Then
there exists a uniquely determined continuous convolution semigroup(
ν

(m)
t

)
t≥0

, the mth-background driving Lévy process, such that the k-

cofactors, 1 ≤ k ≤ m, and µ are uniquely determined by
(
ν

(m)
t

)
t≥0

.

Furthermore, ν
(m)
t possesses finite logm

+ (·)–moments for all t > 0.
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Hence – under (CCF), (I) and (CT) – there exists a bijective map-
ping between Lévy processes with finite logm

+ (·)–moments and m-self-

decomposable laws. (To simplify notations we write νt := ν
(m)
t .)

For m = 2 the result can be formulated in the following way: For

a continuous convolution semigroup
(
νt = ν

(2)
t

)
t≥0

with finite log2
+(·)–

moments there exists a uniquely determined 2-self-decomposable law µ
with cofactors ν(1)(s), ν(2)(s, t), s, t ≥ 0, such that

ν(2)(s, t) = lim
N

lim
M

[Nt]−1

?
j=0

[Ms]−1

?
k=0

T k
M

+ j
N

(
ν 1

N
· 1
M

)
and

ν(s) = ν(1)(s) = lim
t→∞

ν(2) (s, t) , µ = lim
s→∞

ν(s)

Conversely, let µ be 2-self-decomposable, let
(
ν(2)(s, t)

)
s,t∈R+

be cor-

responding 2-cofactors, then there exists a continuous convolution semi-

group
(
νr = ν

(2)
r

)
r≥0

, uniquely determined by µ, such that for r = s · t,
r, s, t ≥ 0

νr = ν(2)
r = ν

(2)
s·t = lim

N
lim
M

(
ν(2) (s/M, t/N)

)N ·M
The proof will be carried out only for m = 2, the general case follows

along the same lines by induction. It relies on a space-time enlargement
Γ = G o R, a semidirect extension of G by the real line via the auto-
morphism group T. The construction provides the means to investigate
multi-parameter-analogues of M-semigroups

(
ν(m)(t1, . . . , tm)

)
ti≥0

, the

m-cofactors of µ ∈ L(m)(T). Multi-parameter M-semigroups are – via
space-time continuous convolution semigroups and Lie-Trotter formu-
las – related to multi-parameter continuous convolution semigroups,
the mth-background driving Lévy processes.

2. The toolbox

We consider as afore mentioned the space-time group Γ = G o R, a
semidirect product with group operation (x, s) (y, t) = (xTs(y), s+ t) ,
x, y ∈ G, s, t ∈ R. Let M1

∗ (Γ) := {ρ⊗ εr : ρ ∈M1(G), r ∈ R}, a closed
subsemigroup of M1(Γ). For probabilities in M1

∗ (Γ), convolution has a
considerably simple form:

(ρ⊗ εs) ∗ (ρ′ ⊗ εs′) = (ρ ? Ts(ρ
′))⊗ εs+s′

where ∗ denotes convolution on Γ and ? denotes convolution on G.
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If (µ(t))t≥0 is a M-semigroup on G then (λt := µ(t)⊗ εt)t≥0 is a
continuous convolution semigroup, the space-time semigroup, and con-
versely, for a continuous convolution semigroup (λt := µ(t)⊗ εt)t≥0 of
probabilities on Γ the space-component (µ(t))t≥0 is a M-semigroup. A
continuous convolution semigroup (λt)t≥0 is characterized by the gen-

erating functional A := d+

dt
λt|t=0 which has for (λ(t))t≥0 ⊆ M1

∗ (Γ) a
pleasant form:

A = B ⊕ ε0 + εe ⊕ P (LT )

where B := d+

dt
µ(t)|t=0 and P is a differential operator of 1st order. In

particular, B := d+

dt
µ(t)|t=0 exists for any M-semigroup, and B is the

generating functional of a continuous convolution semigroup, (µt)t≥0

say. This semigroup is called background driving Lévy process, as afore
mentioned. Applying the Lie-Trotter formula for generating functionals
to the decomposition (LT ) we obtain

µ(t) = lim
n→∞

n−1

?
k=0

T t
n

k

(
µ t

n

)
= lim

n→∞

[nt]−1

?
k=0

T k
n

(
µ 1

n

)
(LT1)

and conversely,

µt = lim
n→∞

µ (t/n)n = lim
n→∞

µ (1/n)[nt] (LT2)

Convergence is uniform on compact subsets of R+.
For the background of probabilities on groups the reader is referred

to, e.g., [11, 5], for details concerning (LT ), see e.g. [5, 10].
Putting things together we obtain

Proposition 2.1. a) Let (µ(t))t≥0 ⊆ M1(G) be a continuous M-
semigroup. Then (LT2) defines a (uniquely determined) continuous
convolution semigroup (µt)t≥0 ⊆M1(G).

b) Conversely, let (µt)t≥0 be a continuous convolution semigroup
then (LT1) defines a (uniquely determined) continuous M-semigroup
(µ(t))t≥0.

In the sequel we shall tacitly make use of the following well-known
result. (We formulate a version which is adapted to our situation):

Lemma 2.2. a) Let G be a second countable locally compact group

and let R+ 3 t 7→ α
(n)
t ∈ M1(G) be a sequence of functions which

are assumed (1) to be weakly continuous, (2) ∀t ≥ 0 there exists

lim
n→∞

α
(n)
t =: αt ∈ M1(G), where (3) (αt)t≥0 satisfies the semigroup

condition αs+t = αs ? αt, s, t ≥ 0.
Then (αt)t≥0 is a continuous convolution semigroup.
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b) As a corollary we obtain: Let G be a contractible Lie group, let
T = (Tt) ⊆ Aut(G) be contracting as before. Let (1) t 7→ α(n)(t) ∈
M1(G) be continuous and (2) assume lim

n→∞
α(n)(t) =: α(t) ∈ M1(G) to

exist. Assume further (3) (α(t))t≥0 to satisfy the M-semigroup condi-
tion α(s+ t) = α(s) ? Ts (α(t)) , s, t ≥ 0.

Then (α(t))t≥0 is a continuous M-semigroup.[[
To prove a) consider the convolution operators acting on Cc(G) ⊆

C0(G)∩L2(G): Rµf(x) :=
∫
f(xy)dµ(y), Lµf(x) :=

∫
f(yx)dµ(y). Let

f, g ∈ Cc(G). Then

〈Rµf, g〉 =

∫
Rµf(x)g(x)dωG(x) =

∫ ∫
f(xy)dµ(y)g(x)dωG(x)

=

∫ ∫
f(xy)g(x)dωG(x)dµ(y) =: 〈Lνf, µ〉

where ωG denotes a Haar measure and ν := g ·ωG denotes the measure

with density g. Applying this formula to µ = α
(n)
t and to αt, we

obtain that t 7→ 〈Rαtf, g〉 is measurable for all f, g ∈ Cc(G). A density
argument shows that (Rαt)t≥0 is a C0 contraction semigroup on L2(G),

measurable w.r.t. the weak operator topolgy. Since L2(G) is separable
by assumption, continuity (in the strong operator topology) follows.
Then, as well known and easily verified, weak continuity of t 7→ αt

follows.
To prove b) we notice that (βt := α(t)⊗ εt)t≥0 ⊆M1(Γ) satisfies the

assumptions of a). Hence continuity of t 7→ βt follows, and therefore

t 7→ α(t) is continuous.
]]

Definition 2.3. a) A family (ν(s, t))s,t≥0 ⊆ M1(G) is called 2-M-

semigroup if for fixed s ≥ 0 resp. t ≥ 0, t 7→ ν(s, t) resp. s 7→
ν(s, t) are continuous M-semigroups. (Analogously, m-M-semigroups
are defined for m ≥ 2.)

b) A family (νs,t)s,t≥0 ⊆ M1(G) is called continuous 2-semigroup if
for fixed s ≥ 0 resp. t ≥ 0, t 7→ νs,t resp. s 7→ νs,t are continuous
convolution semigroups.

In the following we assume throughout (in view of (CCF )) that

{Tr (ν(s, t)) , r, s, t ≥ 0} commute (C)

Applying Proposition 2.1 for fixed s resp. for fixed t we obtain

Proposition 2.4. Let (ν(s, t))s,t≥0 be a 2-M-semigroup. Then for fixed
s ≥ 0 resp. t ≥ 0, there exist continuous convolution semigroups
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ρ

(s)
t

)
t≥0

resp.
(
σ

(t)
s

)
s≥0

such that for fixed t ≥ 0 resp. s ≥ 0 s 7→ ρ
(s)
t

and t 7→ σ
(t)
s are continuous M-semigroups. The correspondence is

given by the Lie-Trotter formulas (LT1) and (LT2):

ρ
(s)
t = lim

n
ν(s, t/n)n, σ(t)

s = lim
m
ν(s/m, t)m

and conversely (MS)

ν(s, t) = lim
n

[nt]−1

?
k=0

Tk/n

(
ρ

(s)
1/n

)
= lim

m

[ms]−1

?
j=0

Tj/m

(
σ

(t)
1/m

)
[[

Continuity follows since convergence in (LT1) and (LT2) is uniform

on compact subsets. Alternatively, this follows by Lemma 2.2. To

prove the M-semigroup property of e.g.,
(
ρ

(s)
t

)
s≥0

, note that for t ≥
0, s1, s2 ≥ 0 we have

ρ
(s1+s2)
t = lim

n
ν(s1 + s2, t/n)n = lim

n
(ν(s1, t/n) ? Ts1 (ν(s2, t/n)))n

(C)
= lim

n
ν(s1, t/n)n ? Ts1

(
lim

n
ν(s2, t/n)n

)
= ρ

(s1)
t ? Ts1

(
ρ

(s2)
t

)
The other assertions are proved analogously.

]]
Proposition 2.5. Let, as in Proposition 2.4, (ν(s, t))s,t≥0 be a 2-M-
semigroup. Define for s, t ≥ 0:

νs,t := lim
n

(
σ(t/n)

s

)n
= lim

n
lim
m

(ν (s/m, t/n))m·n

and (2SG)

νs,t := lim
n

(
ρ(t/n)

s

)n
= lim

m
lim

n
(ν (s/m, t/n))n·m

Then we have:
(s, t) 7→ νs,t and (s, t) 7→ νs,t are continuous 2-semigroups (cf. Defi-

nition 2.3).[[
Continuity follows by Lemma 2.2. We have to show the 2-semigroup

property:

s 7→ σ
(u)
s is a continuous convolution semigroup for all u, therefore

also s 7→ νs,t is a continuous convolution semigroup for all fixed t.
(Recall that we assumed that all convolution factors commute (C)).

For fixed s ≥ 0, t 7→ σ
(t)
s is a M-semigroup. Hence by (LT1) and

(LT2), t 7→ νs,t is a continuous convolution semigroup. The other

assertions are proved analogously.
]]
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Conversely, we obtain with a similar proof:

Proposition 2.6. Let (νs,t)s,t≥0 be a continuous 2-semigroup. Define

ν(s, t) := lim
n

lim
m

[nt]−1

?
k=0

[ms]−1

?
j=0

T k
n

+ j
m

(
ν1/m,1/n

)
= lim

n
lim
m

n−1

?
k=0

m−1

?
j=0

T t
n

k+ s
m

j

(
νs/m,t/n

)
for s, t ≥ 0. Then (νs,t)s,t≥0 is a continuous 2-M-semigroup.[[

Continuity follows by Lemma 2.2. Furthermore, for fixed s ≥ 0,

t 7→ σ
(t)
s = lim

m

[ms]−1

?
j=0

Tj/m

(
ν1/m,t

)
is a M-semigroup, and for fixed

t ≥ 0, s 7→ σ
(t)
s is a continuous convolution semigroup. Moreover,(

ν(s, t) = lim
n

[nt]−1

?
k=0

Tk/n

(
σ

(1/n)
s

))
s,t≥0

is a 2-M-semigroup.
]]

Finally, for continuous 2-semigroups we obtain the following repre-
sentation:

Proposition 2.7. Let (µs,t)s,t≥0 be a continuous 2-semigroup. Then
there exists a uniquely determined continuous convolution semigroup
(αr)r≥0 ⊆ M1(G) such that µs,t = αs·t, s, t ≥ 0. In fact, αr = µr,1 =
µ1,r, r ≥ 0.

Conversely, to any continuous convolution semigroup (αr)r≥0 the
mapping (s, t) 7→ µs,t := αs·t defines a continuous 2-semigroup.[[

For fixed t ≥ 0, s 7→ µs,t is a continuous convolution semigroup. Let

B(t) := d+

ds
µs,t|s=0 denote the generating functional. Hence for all test

functions f ∈ D(G), R+ 3 t 7→ 〈B(t), f〉 is measurable. Furthermore,
the semigroup property µs,t1+t2 = µs,t1 ? µs,t2 yields 〈B(t1 + t2), f〉 =
〈B(t1), f〉 + 〈B(t2), f〉. Whence 〈B(t), f〉 = t · 〈B(1), f〉 follows. This
holds for any f , whence, with B := B(1) we obtain: B(t) = t ·B.

Put β
(t)
s := µs,t and αs := β

(1)
s = µs,1. The continuous convolution

semigroup
(
β

(t)
s

)
s≥0

is generated by B(t) = t ·B. Whence β
(t)
s = β

(1)
s·t =

αs·t follows. Hence, µs,t = αs·t as asserted.

The converse is obvious.
]]
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3. Proof of Theorem 1.2

As afore announced, to simplify notations we shall prove Theo-
rem 1.2 for m = 2 only. Let T be a contracting group of automor-
phisms, let µ ∈ L(2)(T). For s, t ≥ 0 we have µ = Tt (µ) ? ν(1)(t) =
Ts

(
Tt (µ) ? ν(1)(t)

)
?ν(s) = Tt+s (µ)?Ts

(
ν(1)(t)

)
?ν(1)(s). On the other

hand, µ = Tt+s (µ) ? ν(1)(s+ t). By the injectivity assumption (I) and
commutativity (CCF ), we obtain ν(1)(s + t) = ν(s) ? Ts(ν

(1)(t)), i.e.,
the 1-cofactors form a M-semigroup. (Note that independently from
the the injectivity assumption, 1-cofactors

(
ν(1)(s)

)
s≥0

may be chosen

in such a way. Cf. [7]).
Applying these considerations to the 1-cofactors ν(1)(s) instead of

µ we obtain for fixed s: ν(1)(s) = Tt(ν
(1)(s)) ? ν(2)(s, t),∀t ≥ 0, and

t 7→ ν(2)(s, t) is a continuous M-semigroup.
Claim: For fixed t ≥ 0, s 7→ ν(2)(s, t) is a M-semigroup. Hence the

2-cofactors
(
ν(2)(s, t)

)
s,t≥0

form a 2-M-semigroup (cf. Definition 2.3).[[
Let s1, s2, r ≥ 0. The injectivity assumption (I) yields uniqueness of

the cofactors, hence

ν(1)(s1 + s2) = Tr

(
ν(1)(s1 + s2)

)
? ν(2)(s1 + s2, r)

(C)
= ν(2)(s1 + s2, r) ? Tr

(
ν(1)(s1 + s2)

)
On the other hand, 1-cofactors being M-semigroups,

ν(1)(s1 + s2) = ν(1)(s1) ? Ts1

(
ν(1)(s2)

)
= (by self-decomposability of 1-cofactors)
∀r≥0
= Tr

(
ν(1)(s1)

)
? ν(2)(s1, r) ? Ts1

(
Tr

(
ν(1)(s2)

)
? ν(2)(s2, r)

)
(C)
=

(
ν(2)(s1, r) ? Ts1

(
ν(2)(s2, r)

))
? Tr

(
ν(1)(s1) ? Ts1

(
ν(1)(s2)

))
= ν(2)(s1, r) ? Ts1

(
ν(2)(s2, r)

)
? Tr

(
ν(1)(s1 + s2)

)
Again by the injectivity assumption (I) we may identify the cofactors
to obtain ν(2)(s1 + s2, r) = ν(2)(s1, r) ? Ts1

(
ν(2)(s2, r)

)
, r, s1, s2 ≥ 0.

The claim is proved.
]]

Applying the tools in Section 2 (Propositions 2.5 – 2.7) we obtain :
There exists a uniquely determined continuous convolution semigroup

(νr)r≥0

.
=
(
ν

(2)
r

)
r≥0

such that for all r, s, t ≥ 0, r = s · t

νr = νs·t = lim
N

lim
M

(
ν(2) (s/M, t/N)

)N ·M
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and conversely (cf. Proposition 2.6 )

ν(2)(s, t) = lim
N

lim
M

[Nt]−1

?
k=0

[Ms]−1

?
j=0

T k
N

+ j
M

(
ν 1

N
· 1
M

)
By assumption, T is contracting. Hence ν(2)(s, t)

t→∞−→ ν(1)(s), ∀s ≥ 0,

furthermore, ν(1)(s)
s→∞−→ µ and thus lim

s→∞
lim
t→∞

ν(2)(s, t) = µ.

Note that in view of the 2-M-semigroup property this yields

ν(2)(M · s,N · t) =
[Nt]−1

?
k=0

[Ms]−1

?
j=0

Tkt+js

(
ν(2)(s, t)

) M,N→∞−→ µ

These convolution products converge iff ν(2)(s, t) has finite log2
+(·)–

moments, i.e., iff
∫

G

(
log+(||x||)

)2
dν(2)(s, t)(x) <∞. (For vector spaces

see e.g., [4, 12, 21], for groups see [17]).

Claim:
∫

G

(
log+(||x||)

)2
dν(2)(s, t)(x) is finite iff the 2nd-background

driving Lévy process shares this property, i.e.,
∫

G

(
log+(||x||)

)2
dν

(2)
r (x)

is finite for r > 0.
We sketch a proof in complete analogy to [5, 8] (for the case m = 1):[[
Let ϕ : G → R+ be a continuous sub-multiplicative function equiva-

lent with log2
+(|| · ||) and let ψ : Γ → R+ be an analogous function on

the space-time group.

For fixed t > 0 let
(
λ

(t)
s := ν(2)(s, t)⊗ εs

)
s≥0

be the space-time con-

tinuous convolution semigroup. Since λ
(t)
s ∈ M1

∗ (Γ),
∫

G ϕdν(s, t) < ∞
iff
∫

Γ
ψdλ

(t)
s <∞. This is the case iff the Lévy measure γ(t) of

(
λ

(t)
s

)
s≥0

fulfills
∫

{U
ψdγ(t) <∞ for all neighbourhoods U of the unit in Γ.

Since λ
(s)
t ∈M1

∗ (Γ) it follows easily that this is again equivalent with∫
{V
ϕdη(t) < ∞ for all neighbourhoods V of the unit in G, where η(t)

denotes the Lévy measure of B(t) := ∂+

∂s
ν(2)(s, t) |s=0 .

But B(t) is the generating functional of the continuous convolution

semigroup
(
σ

(t)
s

)
s≥0

. Hence the above integrals are finite iff
∫

G ϕdσ
(t)
s <

∞, s > 0, hence iff
∫

G

(
log+(||x||)

)2
dσ

(t)
s <∞ for all t > 0.

Repeating these arguments and replacing t 7→ ν(s, t) by t 7→ σ
(t)
s we

obtain finally:∫ (
log+(||x||)

)2
dν(2)(s, t) <∞ iff

∫ (
log+(||x||)

)2
dν

(2)
s·t <∞

(∀s, t > 0), as asserted.
]]

Theorem 1.2 is proved. �
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Concluding Remark. At a first glance the foregoing construction
appears asymmetric: The Lie Trotter formula is applied first to s then
to t, consequently the 2nd background process was constructed via the

family of continuous convolution semigroups σ
(t)
s . Switching to the

space-time semigroups we obtained differentiability of
(
ν(2)(s, t)

)
s,t∈R+

(evaluated at test functions). In particular, for fixed t ≥ 0 and for

s = 0, B(t) := ∂+

∂s
ν(2)(s, t) |s=0 , t ≥ 0, is the generating functional of

the continuous convolution semigroup
(
σ

(t)
s

)
s≥0

, i.e., ∂+

∂s
σ

(t)
s |s=0 = B(t) .

Adopting the notation
(
σ

(t)
s =: Exp(s ·B(t))

)
s≥0

, for t ≥ 0, this yields

∂+

∂t
σ

(t)
s |t=0 = ∂+

∂t
Exp(sB(t))|t=0 =: s ·C where C is the generating func-

tional of the background driving process (νr)r≥0, i.e., νr = Exp(r · C).
In other words, – explaining the afore mentioned asymmetry – we ob-
tain

C =
∂+

∂t
Exp

(
∂+

∂s
ν(2)(s, t)

∣∣
s=0

) ∣∣
t=0

Interchanging the role of s and t ,
(
σ

(t)
s

)
s,t≥0

and
(
ρ

(s)
t

)
t,s≥0

and M and

N , we obtain analogously ∂+

∂s
ρ

(s)
t |s=0 = t · C, the generating functional

of a Lévy process (νr)r≥0, and moreover

ν(2)(s, t) = lim
M

lim
N

[Ms]−1

?
j=0

[Nt]−1

?
k=0

T k
N

+ j
M

(
ν 1

N
· 1
M

)
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