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MULTIPLE SELFDECOMPOSABLE LAWS ON
VECTOR SPACES AND ON GROUPS: THE
EXISTENCE OF BACKGROUND DRIVING

PROCESSES

WILFRIED HAZOD

INTRODUCTION

Self-decomposable laws or class L—laws were introduced by P. Lévy
within the frame of limit distributions of normalized sums of indepen-
dent (not necessarily identically distributed) random variables. In the
past various types of distributions which are well-known in statistical
applications turned out to be self-decomposable. See e.g. Z. Jurek
[14], K. Sato[20] for a survey. Recently the self-decomposability prop-
erty and the related additive processes — one- and multidimensional
— turned out to be important for model building in Mathematical Fi-
nance. See e.g., [3] for a survey and for references.

K. Urbanik [25] extended the concept of self-decomposability to finite
dimensional vector spaces V with operator normalization. See also [21]
or the monograph [12], and the literature mentioned there.

Closely related to self-decomposability are generalized Ornstein—Uh-
lenbeck processes and Mehler semigroups of transition operators and,
on the other hand, stable hemigroups and M-semigroups of probabili-
ties. (For details and hints to the literature see e.g., [12, 5, 7, 9, 10, 22,
1,19].) Let (X;),», be a stochastically continuous additive process tak-
ing values in V then the distributions v(s, t) of the increments X ' X},
s < t, form a continuous convolution hemigroup, i.e. (s,t) — v(s,t) is
continuous and

v(s,t)xv(t,r) =v(s,r) fors<t<r (H)

A hemigroup (v(s,t)),, is called stable w.r.t. a continuous one-para-
meter group of vector space automorphisms T = (7;),.p € GL(V) if
for all r, for all s <t

T.(v(s,t)) =v(s+rt+r), v(st)="Tsw0,t—2s)) (S)
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Put v(s) :=v(0,s), s > 0. Then, as easily verified,

vis+t)=v(s)x Ty(v(t)), 0<s<t (M)
Continuous families (v(s)),, of probabilities satisfying (M) are called
M-semigroups or skew semigroups. (The corresponding transition op-

erators are generalized Mehler semigroups.)
p € MY (V) is called (operator) self-decomposable w.r.t. T if V¢ > 0

1= T,(p) » v(t) for some v(t) € M* (V) (SD)

v(t) is called cofactor. Stable hemigroups and M-semigroups are inter-
esting objects of investigation in their own right. Furthermore, we have:
If p is self-decomposable (w.r.t. T) then the cofactors (v(t)),s, form
a M-semigroup and (Ts(v(t — s))),, is a stable hemigroup. Hence in
view of the above mentioned connections, self-decomposable laws with
contracting T are limits of (generalized) Ornstein—Uhlenbeck processes
(resp. of the corresponding M-semigroups). (Cf. [22], see also [10]).

K. Urbanik [26] introduced multiple self-decomposability defining nes-
ted classes of self-decompsable laws L(™(T) inductively: LO(T) :=
MY(V), LM(T) the set of self-decomposable laws,

L D(T)
= {p:p= Ty(p)*v(t) with v(t) € L™(T), t > 0} (MSD)

See also e.g., [4, 21, 23]. The concepts of self-decomposability, M-
semigroups, stable hemigroups generalize to contractible (hence sim-
ply connected nilpotent) Lie groups G, where T C Aut(G) denotes a
subgroup of automorphisms. The afore mentioned defining equations
(H),(S),(SD) are used verbatim in this more general situation. See
e.g., [5, 7, 10, 8, 19]. For self-decomposable laws on groups in con-
nection with limit theorems see e.g. [24]. In particular, also multiply
self-decomposability (M SD) and the classes L™ (T) make sense in the
group case.

For vector spaces V, self-decomposable laws p and their cofactors
v(t) are infinitely divisible. Hence for any fixed s > 0 there exists a

Lévy process <Zt(s)> such that Z\ is distributed according to v(s).
>0

But the interesting objects are additive processes (X;),., with — in
general non-stationary — increments (X;'X;),_, distributed according
to v(s,t) with (H) and (S). There exist hidden Lévy processes (Y;),s,
(uniquely determined up to equivalence) driving (X;),, i-e., we have
a random integral representation

t
X, = / T.dY,, t>0 (RI)
0
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(Y;), is called background driving Lévy process. See e.g. [14, 12, 20, 2].

For group-valued processes only weak versions of (RI) are known:
Let (v(s,1)),., be astable hemigroup (with corresponding M-semigroup
v(t) :=v(0,t) : t > 0) then there exists a uniquely determined continu-
ous convolution semigroup (1), related to the M-semigroup (v(t)),~,
by Lie-Trotter formulas

v, = limy(1/n)" = lim v(t/n)" (LT1)
and
[nt]—1 [nt]—1
v(t) =lim X Tym(vijm), v(s,t)=lm * Tp/m(vim) (LT2)
" k=0 " k=[ns]

By (slight) abuse of language we call in the sequel the continuous
convolution semigroup (1), the background driving Lévy process of
the M-semigroup (1(t)),», resp. of the stable hemigroup (v(s,t)),,.

Let T be contracting. Then tlirgo v(t) =: p exists (and is self-de-

composable then) iff v(t) possesses finite logarithmic moments for some
— hence all — ¢ > 0. The M-semigroup of cofactors (v(t)),., possesses
finite logarithmic moments (¢ > 0) iff the background driving process
(14),50 shares this property (¢ > 0). (For vector spaces see e.g., [12],
for groups see e.g., [5, 8].)

The aim of this paper is to prove the existence of background driv-
ing processes for multiple self-decomposable laws p € L™ (T) and to
investigate the correspondences between multiple-cofactors and back-
ground driving processes in this case. In particular, to obtain ana-
logues of the Lie Trotter formulas (LT'1) and (L72) for the multiple
self-decomposable case.

The main results are new even for vector spaces. They are formu-
lated and proved for the group case (under a commutativity assump-
tion). But the proofs are written in such a way that they can easily
extended to other convolution structures, e.g., to matrix cone hyper-
groups, structures closely related to Wishart distributions. (See [6]
and the literature mentioned there.) Wishart distributions are not in-
finitely divisible w.r.t the usual convolution on the vector space of Her-
mitean matrices, but w.r.t. the new convolution structures they are
even stable, hence completely self-decomposable. So, even when the
investigations here are motivated by purely mathematical questions,
there might be statistical applications in the future.
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1. MULTIPLE SELF-DECOMPOSABILITY

Let G be a contractible (hence simply connected nilpotent) Lie group,
let T = (1}),cg be a continuous one-parameter group in Aut(G), T4, =

T,T,, t,s € R. We defined in the introduction the classes L™ (T) (cf.
(MSD)).

Proposition 1.1. Let i € LU)(T) for some m. Then for allty,... ty
€ Ry and 1 < k < m there exist v¥)(t,,... 1) € LM *D(T) C
MY(G) such that

b= Talu) Ty (PO (1)) %
* T (VD () * U () (COF)
The measures v¥)(t1, ... t;.) are called k—cofactors.

|:|: n= Tt1 (:u)*y(l)(tl) = Tl’h (M)*ﬂz (V(l)(t1>) *V(Z)(tla t2>7 since V(l)(tl)

is T3,-decompsable. Per iteration we obtain finally

noo= El(ﬂ)*(EQ (V(l)(tl)))*ﬂzs (V(z)(tth)) L
* Ty (VD (b b)) 2 0 (f ). ﬂ
For the main result, the subsequent Theorem 1.2, we assume addi-

tional conditions: The convolution factors in (COF), i.e.,
the probabilities {T;(p), ... Ty, WD (t1, ..o t)), V™ (tr, .o tm) }

1<k<m,t; € Ry commute (CCF)
For all v € LY(T) the convolution operator is injective, i.e.,
vip=vxp =p=p (Z)

(hence in particular, the cofactors are uniquely determined)

and T = (73) is contracting, i.e., Vo € (G) lim;_o T3(z) =€ (CT)
Note that (CCF) and (I) are obviously true for vector spaces: In

this case, the convolution semigroup is commutative, therefore (CCF)

is trivial, and v is infinitely divisible, hence the Fourier transform has

no zeros. Whence (/) follows. For injectivity in the group case see e.g.,

the discussion in [18].

Theorem 1.2. Let u € L"™(T). Assume (CCF), (I) and (CT). Then

there exists a uniquely determined continuous convolution semigroup

(Vt(m)> . the m™-background driving Lévy process, such that the k-
>0

cofactors, 1 < k < m, and pu are uniquely determined by <Vt(m)>

Furthermore, l/t(m) possesses finite log'' () ~moments for all t > 0.

t>0



MULTIPLE SELFDECOMPOSABLE LAWS 5

Hence — under (CCF), (1) and (CT) — there exists a bijective map-
ping between Lévy processes with finite log”'(-)-moments and m-self-

decomposable laws. (To simplify notations we write v, = I/t(m).)
For m = 2 the result can be formulated in the following way: For

a continuous convolution semigroup (Vt = Vt(2)> with finite logi(-)f
>0

moments there exists a uniquely determined 2-self-decomposable law p

with cofactors vV (s), v (s,t), s,t >0, such that

[Nt]—1[Ms]—1

v (s,t) =limlim * S T, (VL.L)
NoM- g p=o  MTNN NN

and
v(s) = v (s) = lim v (s,1), = lim v(s)
Conversely, let iy be 2-self-decomposable, let (V(Q)(S’t))st€R+ be cor-

responding 2-cofactors, then there exists a continuous convolution semi-

group (I/T = 1/52)) , uniquely determined by p, such that forr =s-t,
r>0

r,s,t >0

( )N-M

) B ) B P . 2
v, =¥ =% —h]{znhj\gn(y( ) (s/M,t/N)

The proof will be carried out only for m = 2, the general case follows
along the same lines by induction. It relies on a space-time enlargement
I' = G x R, a semidirect extension of G by the real line via the auto-
morphism group T. The construction provides the means to investigate
multi-parameter-analogues of M-semigroups (V(m) (t1,... ,tm)) 130 the

m-cofactors of u € L™ (T). Multi-parameter M-semigroups are — via
space-time continuous convolution semigroups and Lie-Trotter formu-
las — related to multi-parameter continuous convolution semigroups,
the m*™-background driving Lévy processes.

2. THE TOOLBOX

We consider as afore mentioned the space-time group I' = G x R, a
semidirect product with group operation (z,s) (y,t) = (zTs(y), s + 1),
z,y € G,s,t € R. Let M}(T) :={p®e,:pe M(G),r € R}, a closed
subsemigroup of M!(T'). For probabilities in M}(T), convolution has a
considerably simple form:

(p®es) *(p @ey) = (pxTs(p)) ® Estsr

where * denotes convolution on I' and x denotes convolution on G.
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If (p(t)),~o is a M-semigroup on G then (N, := u(t) ® g;),5, is a
continuous convolution semigroup, the space-time semigroup, and con-
versely, for a continuous convolution semigroup (A\; := p(t) ® &;),5, of
probabilities on I' the space-component (u(t)),s, is a M-semigroup. A
continuous convolution semigroup (A¢), is characterized by the gen-
erating functional A := %/\thzo which has for (A(t)),5, € M) a
pleasant form:

A=B®ey+e. P (LT)
where B := %,u(t)h:g and P is a differential operator of 1% order. In
particular, B := %,u(t)hzo exists for any M-semigroup, and B is the

generating functional of a continuous convolution semigroup, (i),
say. This semigroup is called background driving Lévy process, as afore
mentioned. Applying the Lie-Trotter formula for generating functionals
to the decomposition (LT') we obtain

n—1 [nt] —1

plt) = lim & Top (o) = lim % 7o (s (LT1)

o0 k=0 o0 k=0 "

and conversely,
e = lim p(t/n)" = lim p(1/n)" (LT2)

Convergence is uniform on compact subsets of R, .

For the background of probabilities on groups the reader is referred
to, e.g., [11, 5], for details concerning (LT), see e.g. [5, 10].

Putting things together we obtain

Proposition 2.1. a) Let (u(t)),sq € MY(G) be a continuous M-
semigroup. Then (LT2) defines a (uniquely determined) continuous
convolution semigroup (f1r),5o € M (G).

b) Conversely, let (u;),~, be a continuous convolution semigroup
then (LT1) defines a (uniquely determined) continuous M-semigroup

(N(t))tZO'

In the sequel we shall tacitly make use of the following well-known
result. (We formulate a version which is adapted to our situation):

Lemma 2.2. a) Let G be a second countable locally compact group

and let Ry >t — a§”) € MY(G) be a sequence of functions which

are assumed (1) to be weakly continuous, (2) ¥t > 0 there exists

lim o\ = o, € MY(G), where (3) ()5, satisfies the semigroup

n—oo

condition g1y = g%, S,t > 0.
Then (o)~ %5 a continuous convolution semigroup.
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b) As a corollary we obtain: Let G be a contractible Lie group, let
T = (T;) € Aut(G) be contracting as before. Let (1)t — al™(t) €
MY(G) be continuous and (2) assume Tim. a™(t) =: a(t) € MYG) to
exist. Assume further (3) (a(t)),s, to satisfy the M-semigroup condi-
tion a(s +1t) = a(s) * Ty (a(t)), s,t > 0.

Then (a(t)),~, s a continuous M-semigroup.

To prove a) consider the convolution operators acting on C.(G) C

Co(G)NLA(G): R, f(x) = [ flay)duly), Luf(z) == [ flyx)du(y). Let
fyg € C.(G). Then

(Ruf.q) = / R, f(o)ga)doc(a) = [ / F () dyu() g (@) dws ()
— [ [ Hans@idus(e)duty) = (Lot.n)

where wg denotes a Haar measure and v := g - wg denotes the measure
with density §g. Applying this formula to u = aﬁ") and to ay, we
obtain that t — (R,, f, g) is measurable for all f, g € C.(G). A density
argument shows that (Ra,),s, is a Cy contraction semigroup on L*(G),
measurable w.r.t. the weak operator topolgy. Since L?(G) is separable
by assumption, continuity (in the strong operator topology) follows.
Then, as well known and easily verified, weak continuity of ¢ +—
follows.

To prove b) we notice that (5; := a(t) ® £;),5, € M (T) satisfies the
assumptions of a). Hence continuity of ¢ — 3, follows, and therefore

t — «(t) is continuous. ﬂ

Definition 2.3. a) A family (v(s,t)), ;50 S M'(G) is called 2-M-
semigroup if for fited s > 0 resp. t > 0, t +— v(s,t) resp. s —
v(s,t) are continuous M-semigroups. (Analogously, m-M-semigroups
are defined for m > 2.)

b) A family (Vss), o C MY(G) is called continuous 2-semigroup if
for fized s > 0 resp. t > 0, t Vgt TESP. S k> Vgy are continuous
convolution semigroups.

In the following we assume throughout (in view of (CCF')) that
{T, (v(s,t)), 7,s,t >0} commute (&)
Applying Proposition 2.1 for fixed s resp. for fixed ¢ we obtain

Proposition 2.4. Let (v(s, t))S’t20 be a 2-M-semigroup. Then for fized
s > 0 resp. t > 0, there exist continuous convolution semigroups
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<p§8)> resp. (agt)> such that for fixed t > 0 resp. s >0 s+ pgs)
>0 5>0

and t +— agt) are continuous M-semigroups. The correspondence is
given by the Lie-Trotter formulas (LT1) and (LT2):

pi? = limu(st/n)", o =limu(s/m,t)"

and conversely (MS)
[nt]—1 [ms]—1

v(s,t) = lim * T/ (pg/n) —hm * T /m (agt/)m>

[[ Continuity follows since convergence in (L7T'1) and (L7'2) is uniform

on compact subsets. Alternatively, this follows by Lemma 2.2. To

prove the M-semigroup property of e.g., <p£s)> , note that for ¢t >
s>0

0, s1, 89 > 0 we have
pgsﬁ”) = limv(s; + s9,t/n)" = lim (v(sy,t/n) * Ty, (v(s9,t/n)))"

9D tim v(sy,t/n)" * Ty, (lim V(827t/n)n> pi * Ty, (pg ))

The other assertions are proved analogously. ﬂ

Proposition 2.5. Let, as in Proposition 2.4, (v(s,t)), o be a 2-M-
semigroup. Define for s,t > 0:

Vst = hm (o (t/”)) = limlim (v (s/m,t/n))"™"
and (25G)
Vg = lim (pgt/”))n = limlim (v (s/m,t/n))"™

Then we have:
(s,t) ¥ vst and (s,t) — Tsy are continuous 2-semigroups (cf. Defi-
nition 2.3).

[[ Continuity follows by Lemma 2.2. We have to show the 2-semigroup
property:

s o is a continuous convolution semigroup for all u, therefore
also s — v,, is a continuous convolution semigroup for all fixed ¢.
(Recall that we assumed that all convolution factors commute (C)).

For fixed s > 0, t — ol is a M-semigroup. Hence by (LT1) and
(LT2), t — vs; is a continuous convolution semigroup. The other

assertions are proved analogously. ﬂ
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Conversely, we obtain with a similar proof:

Proposition 2.6. Let (vs;) be a continuous 2-semigroup. Define

s,t>0

[nt]—1 [ms]—1

v(s,t) = liTILnlirlr(Ln *x X T§+% (V1/m,1/n)
k=0  j=0
n—1 m—1
= limlim % *TLkJrij (Vs/m,t/n)
n m k=0 ;=0 n m

for s,t > 0. Then (vs) is a continuous 2-M-semigroup.

s,t>0

[[ Continuity follows by Lemma 2.2. Furthermore, for fixed s > 0,

t — o = lim * T /m (I/l/m’t) is a M-semigroup, and for fixed

t) . . . .
t >0, s — o\ is a continuous convolution semigroup. Moreover,

[nt]—1
(V(s,t) = lim k* Ty /n (d”’”)) is a 2-M-semigroup. ﬂ
=0 5,6>0

n

Finally, for continuous 2-semigroups we obtain the following repre-
sentation:

Proposition 2.7. Let (), ,~, be a continuous 2-semigroup. Then

there exists a uniquely determined continuous convolution semigroup
(r),>g C MYG) such that sy = sy, s,t > 0. In fact, ap = ppq =
Hiry, T 2 0.

Conversely, to any continuous convolution semigroup (OJT)T>O the
mapping (s,t) — fis1 = asy defines a continuous 2-semigroup. -

[[ For fixed ¢t > 0, s — p,, is a continuous convolution semigroup. Let

B(t) :== %,us,t\szo denote the generating functional. Hence for all test
functions f € D(G), Ry >t — (B(t), f) is measurable. Furthermore,

the semigroup property fie s, 11, = flop, * fst, yields (B(ty +t2), f) =
(B(t1), f) + (B(t2), f). Whence (B(t), f) =t-(B(1), f) follows. This
holds for any f, whence, with B := B(1) we obtain: B(t) =1t - B.

Put ﬁgt) = psy and oy = §1) = ps1. The continuous convolution
semigroup (ﬁgt)) is generated by B(t) = t- B. Whence B = gl =
s>0
o, follows. Hence, ps; = oz as asserted.

The converse is obvious. ]
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3. PROOF OF THEOREM 1.2

As afore announced, to simplify notations we shall prove Theo-
rem 1.2 for m = 2 only. Let T be a contracting group of automor-
phisms, let © € L®(T). For s,t > 0 we have ,u =T, () »vM(t) =
Ty (Ty () % v (1)) *v(s) = Typs (1) * T (v (t)) D (s). On the other
hand, = Ty, s (1) x Y (s +t). By the injectivity assumption (I) and
commutativity (CCF), we obtain v (s 4+ t) = v(s) x Ty (v (1)), i.e.,
the 1-cofactors form a M-semigroup. (Note that independently from
the the injectivity assumption, 1-cofactors (V(l)(s))s>0 may be chosen
in such a way. Cf. [7]). -

Applying these considerations to the I-cofactors v(!)(s) instead of
i we obtain for fixed s: vM(s) = T,(vW(s)) x v?(s,t),Vt > 0, and
t — v®(s,t) is a continuous M-semigroup.

Claim: For fixed ¢t > 0, s — v (s,t) is a M-semigroup. Hence the

2-cofactors (1 (s, 1)) 1> form a 2-M-semigroup (cf. Definition 2.3).
Let s1, 89,7 > 0. The injectivity assumption (/) yields uniqueness of

the cofactors, hence

1/(1)(31 +s9) =T, (1/(1)(81 + 32)) * V(Q)(Sl + S9,7)
c

© VD (sy + s9,7) % T, (l/(l)(sl + 52))

On the other hand, 1-cofactors being M-semigroups,

v (s1+ 52) = v (s1) % Ty, (V1 (s2))

(by self-decomposability of 1-cofactors)
V20 T, ( e )( )) %2 )(51,7“) *x Ty, (TT (V(l)(SQ)) *V(Q)(SQ,T>)

V(s1,7) % T, (VP (52,7))) * T (VW (51) x Ty, (VW (s52)))
V(Q)(Sl, r) % Ty, (V@ (s2,7)) x T, (VW (51 + 89))

—~
N

Again by the injectivity assumption (/) we may identify the cofactors
to obtain v (s; + s0,7) = v (s1,7) x Ty, (VP (s2,7)), 7,51, 52 > 0.

The claim is proved.

Applying the tools in Section 2 (Propositions 2.5 — 2.7) we obtain :
There exists a uniquely determined continuous convolution semigroup

()0 = (v7) _such that for all 7,5, > 0, r = s -1
- r>0

Vp = Vgy = li]{fnhj\l/[n (v® (s/M, t/N))N'M
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and conversely (cf. Proposition 2.6 )

[Nt]—1 [Ms]—1

v (s,t) =limlim % % Te 4 (VL.
N M g j= N M\N

)

By assumption, T is contracting. Hence v® (s, t) == v((s), Vs > 0,

g~

furthermore, v()(s) == 1 and thus lim lim v (s,t) = p.

§—00 t—00

Note that in view of the 2-M-semigroup property this yields

[Nt]-1 [Ms]—1 M,N
VAM-s,N-t)= % % Thtrjs (’/(2)(8’t>) —
k=0  j=0

These convolution products converge iff (s, t) has finite log? (-)-
moments, i.e., iff [, (log_ (||| ]))2 dv®(s,t)(z) < oo. (For vector spaces
see e.g., [4, 12, 21], for groups see [17]).

Claim: [ (10g+(||x|]))2du(g)(s,t)(x) is finite iff the 2"d-background

driving Lévy process shares this property, i.e., [, (10g+(| || |))2 dvt? ()
is finite for r > 0.
We sketch a proof in complete analogy to [5, 8] (for the case m = 1):

[{ Let ¢ : G — R, be a continuous sub-multiplicative function equiva-

lent with log? (|| - ||) and let ¢ : I' — R, be an analogous function on
the space-time group.

For fixed ¢ > 0 let (/\gt) =13 (s, 1) ® ss> be the space-time con-
s>0

tinuous convolution semigroup. Since A e ML), [oedv(s,t) < oo

iff fr ¢d)\§t) < 00. This is the case iff the Lévy measure v of (A@)

fulfills fCU dy® < oo for all neighbourhoods U of the unit in T

Since )\ﬁs) € M(T") it follows easily that this is again equivalent with
Joy ¢dn® < oo for all neighbourhoods V' of the unit in G, where ("

s>0

denotes the Lévy measure of B(t) := %ym)(s, t) |s=o-
But B(t) is the generating functional of the continuous convolution

semigroup (aﬁ”) . Hence the above integrals are finite iff fG gpdagt) <

s>0
00, 5 > 0, hence iff [, (log+(||x||))2d0§t) < oo for all t > 0.
(t)

Repeating these arguments and replacing t — v(s,t) by t — o5’ we
obtain finally:
2 . 2
J (og, (Ile[)” dv® (s,8) < oo iff [ (log, (ll]])” di < oo

(Vs,t > 0), as asserted.

Theorem 1.2 is proved. O
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Concluding Remark. At a first glance the foregoing construction
appears asymmetric: The Lie Trotter formula is applied first to s then
to t, consequently the 27¢ background process was constructed via the
family of continuous convolution semigroups oV Switching to the
space-time semigroups we obtained differentiability of (V(2)<S, t))& —
(evaluated at test functions). In particular, for fixed ¢ > 0 and for
s =0, B(t) := %V@)(S,t) ls=0 , t > 0, is the generating functional of

the continuous convolution semigroup (0@) ,l.e., %agt) ls—o = B(t).
s>0

Adopting the notation (agt) =: Exp(s- B (t))) , for t > 0, this yields
s>0

%agt)\tzo = %Exp(sB(t))]tzo =: s-C where C is the generating func-
tional of the background driving process (v;),5, i-e., v, = Exp(r - C).
In other words, — explaining the afore mentioned asymmetry — we ob-
tain

ot ot

= EEXP <%V( )(S’t)ls:o) 1o

Interchanging the role of s and ¢, <U§t)> and <p§8)> and M and
s,t2>0 t,s>0

N, we obtain analogously %pgs)]s:o =t - C, the generating functional

of a Lévy process (7)., and moreover

C

[Ms]—1 [Nt]—1

vP(s,t) =limlim * % Tr <ﬁi_i)
M N g =g N M\ NM
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