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Chapter 1: Introduction 

 

1.1 General Background 

 Drugs are single or combinations of small molecules with defined composition and 

specific pharmacological effect. The process of identification of new drugs is regulated by 

legal agencies like “Food and drug administration”. This process can be divided in to the 

phases of drug discovery and drug development. Drug discovery process involves the 

application of different conceptual strategies to obtain novel protein activity modulators, 

deduction of the mechanism of these compounds, lead demonstration and optimisation, in 

vivo proof of concept and simultaneous demonstration of a therapeutic index. Drug 

development begins when the drug molecule is put in phase I clinical trials.  

 On an average the time from conception of the targeting strategy to the grant of 

approval by a regulatory authority for a new drug molecule is 10-15 years. It is estimated 

majority of drug candidates fail along the way. This results in huge loss for consumers 

(pharmacy companies pass their loss to patients)  as the cost of bringing a new drug to 

market is close to a billion dollars (Dimasi et al, 2000). Hence the a number of approaches 

have been adopted to help distinguish the druggable targets from non-druggable ones. One of 

the major goals of computational chemistry, or the rational design of compound libraries, is 

to maximise diversity, to enhance the potential of finding active compounds in the initial 

rounds of virtual screening programs. Drug discovery has traditionally required testing of 

hundreds of individually synthesized and characterized chemicals; the new techniques of 

virtual synthesis in computational chemistry, and virtual screening (VS) offer the possibility 

of rapidly preparing and examining hundreds of compounds. This increased screening ability 

dramatically increases the probability of finding a lead compound with the proper balance of 

activity, specificity, safety, bioavailability, and stability to result in a successful new drug. 

The process is generally termed as computer aided drug design. 
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1.2 Computer-Aided Drug Design 

Computer-Aided (Assisted) Drug Design (CADD) is a generic term used to address 

various computer-based drug design strategies. This field can broadly be divided into two 

categories (1) Ligand-Based Drug Design (LBDD) exploiting information of known actives 

and (2) Structure-Based Drug Design (SBDD) carried out in the presence of a protein 

structure. The important background relating to protein-ligand interactions is discussed 

below. Since the application of computational techniques have the objective of designing the 

small molecules and this we designed inhibitors for the disruption of REP:GGTase-II 

interaction, the general aspects of protein-protein interaction followed by concepts in current 

understanding about kinetic and thermodynamic aspects of protein-ligand binding are 

discussed. The general methods used in the process of CADD are discussed next i.e. virtual 

screening (VS), docking, and de novo drug design.  

 

1.3 Protein-protein interaction: general aspects 

Protein-protein interaction is the fundamental process for the functioning of the huge 

number of processes in the living cells. Malfunctioning of any part of protein turnover 

machinery can cause occurrence of non-native interactions that may lead to pathological 

disorders such as Alzheimer’s disease. The regulation of protein-protein interaction is 

mediated either through control of external conditions (such as pH and ionic strength) or by 

the activity of other cellular proteins (example enzymes). An important feature of protein-

protein interaction is the variety in their interaction modes. The types of pits, grooves, voids 

and pockets that can possibly be generated by the arrangement of amino acid side chains are 

extremely diverse. Current approach for rational drug design involves the targeting the active 

sites in a protein which leads to broad spectrum of effects. Moreover the targeting of enzyme 

active sites by this approach is under effective as the mutations in active site coupled with 

natural selection is able to overcome such inhibition (for example HIV protease). On the 

other hand targeting of protein-protein interaction interfaces can be more effective because 

the system needs to alter both interacting surfaces to overcome such inhibition. Some 

protein-protein interactions are tissue specific and targeting these is potentially more 

beneficial than targeting the active sites of enzyme. 

The potential problem in any such approach is the versatility in protein–protein 

interactions. Proteins may interact in extremely diverse range of concentrations. More over 
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the cellular process have an inbuilt redundancy and alternative pathways generally can 

compensate the inhibition. In addition the knowledge about any starting compound for the 

inhibitor design is not straight forward as unlike the enzymes there is no small molecular 

substrate. 

 

1.4 Protein-protein contacts: Composition and nature of interactions 

Protein-protein interactions typically bury 1600Å2 of the surface area at the interface 

(Buckingham, 2004). The interface is potentially rich in arginine, histidine, asparagine, 

tryptophan, tyrosine and serine (Davies, D.R. et al, 1996). Analysis of secondary structures 

in the interface areas showed that the random coil comprises 47% of the protein-protein 

interaction interface; 36% α-helix; 17% β-sheet (Nissinov, R 1997). The interaction forces 

are van der Waals, hydrophobic and electrostatic in nature. The degree of surface 

complementarity between interacting interfaces is dependent on the strength of complex. 

Permanent complexes interfaces have a high surface complementarity whereas temporary 

complexes have less interfacial complementarity. (Jones S et al 1996). 

 

1.5 Thermodynamics and kinetics of protein-ligand interactions 

Protein-ligand interactions can be experimentally measured under thermodynamic 

equilibrium conditions from which the inhibition constant Ki can be obtained (Equation 1.2). 

The inhibition (or dissociation) constant describes the strength of protein-ligand binding as 

mole/l. A ligand binds stronger to the receptor when the Ki is small (e.g. nanomolar). If there 

is less ligand present than the value of Ki, then only a small proportion of the protein will be 

associated with the ligand and a biological effect may be difficult to measure. IC50 term gives 

the ligand concentration at which the enzyme activity decreases to 50%. It is shown that both 

IC50 and Ki characterise protein-ligand interactions in a similar way, so that the easily 

measurable IC50 values can be used to compare ligands with each other (Gohlke and Klebe, 

2002).  

The binding process is driven by the standard Gibb’s free energy of binding ΔG˚ which is 

related to Ki (Equation 1.3). At 25˚C, a Ki of 1 nM would be equivalent to -12.2 kcal/mole. 

Changing the Ki by one order of magnitude will shift ΔG˚ by -1.4 kcal/mole. Inhibition 

constants usually take values between 10-2 and 10-12 M, which are equivalent to -2.4- to -16.7 

kcal/mole at 25˚C (Boehm and Klebe, 1996). The binding energy ΔG˚ comprises enthalpic 
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(ΔH˚) and entropic contributions (TΔS˚) which can be measured experimentally by 

Isothermal Titration Calorimetry (ITC) or van’t Hoff analysis (Holdgate and Ward, 2005). 

These experiments have shown that ΔG˚ and ΔH˚ are not directly correlated, thus enthalpy 

alone is not an adequate measure for binding affinity (Boehm and Klebe, 1996). Receptor 

[R] and ligand [L] associate and form a non-covalent, reversible receptor-ligand complex 

[LR] in solution under thermodynamic equilibrium conditions. 

 ][][][ RLLR ↔+  1.1 

 

The experimentally determined inhibition constant (Ki) or dissociation constant (KD) or 

reciprocal association constant (KA) describes the relationship between bound and unbound 

molecules.  

 

 
][
]][[1

RL
LR

K
KK

A
Di ===  1.2 

 

The Gibb’s free energy of binding (ΔG˚) comprises an enthalpic (ΔH˚) and an entropic term 

(TΔS˚) where T is the temperature in Kelvin and R is the gas constant (1.987 cal /(K mole)). 

 ΔG˚ = -RT ln KA = RT ln Ki = ΔH˚ - TΔS˚ 1.3 

 

 

1.6 Molecular mechanics-based scoring functions 

Computational methods such as docking are applied to identify the correct orientation 

of the ligand in the binding site and estimate ligand binding affinities. These docking 

protocols comprise of an algorithm for searching the conformational space to identify the 

most probable orientation of a molecule in the binding pocket and a scoring function which 

is used to quantify the strength of interaction a molecule can make in a particular orientation. 

The aim of a scoring function is to correctly predict the experimental binding free energy in 

addition to predicting the most probable conformation of the ligand in concurrence with the 

crystallographic orientation. Most scoring functions report scores in arbitrary units, some 

scoring functions were particularly designed to estimate the Gibbs free energy changes of 

binding and are reportedly able to predict these within 1.7-2.4 kcal/mole (Bissantz et al., 

2000). Scoring functions can be classified in three main categories: (1) molecular mechanics 

or force field methods (e.g. AutoDock, GoldScore), (2) empirical free energy or regression-
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based functions (e.g. ChemScore, X-Score) or (3) knowledge-based potentials (e.g. PMF, 

DrugScore). These different types of scoring functions will be reviewed in the following 

sections. 

 

1.7 Molecular mechanics-based scoring function 

Molecular Mechanics (MM)-based scoring functions (also termed force field or first 

principle based methods) approximate binding affinity by summing individual contributions 

in a master equation. The terms used for different interaction types are based on 

physicochemical theory and should not be cross correlated with each other. These terms are 

often combined with solvation and entropic terms. 

An example in terms of docking is the original DOCK 3.0 score (Meng et al., 1992). It is one 

of the earliest scoring functions and covers the principal contributions to binding: shape and 

electrostatics accounted for in terms of a van der Waals term and an electrostatic potential 

term. These separable terms are combined into a grid-based AMBER force-field scoring 

function which is computed at specific grid points according to the field generated by the 

receptor. The overall score is then calculated as the sum of ligand atom interactions at the 

grid points (using a interpolation scheme) assuming additivity of individual terms (Tame, 

1999).  

In contrast to time-consuming quantum mechanics methods, that describe molecules based 

on their electron distribution by ab-initio or semi-empirical approaches, force fields or 

molecular mechanics describe molecules reduced to their atoms and bonds i.e. as charged 

atom centres, with masses assigned according to atomic weight connected by springs. They 

usually comprise two energy components, one for the protein-ligand interaction and another 

for the internal (conformational/strain) energy of the ligand (and sometimes the protein). The 

protein conformational energy is often left out as usually only a single conformation is 

considered during docking. MM-based scoring methods most often assume a common 

functional form; however they derive the parameters in slightly different ways. For example, 

the CHARMM force field uses an empirical energy function to describe the forces on atoms 

in a molecule and the molecule’s potential energy. This function is the sum of many 

individual energy terms and comprises bonded and pairwise non-bonded interaction terms 

listed in Equation 1.4 (Brooks et al., 1983).  
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 Potential Energy = Ebond + Eangle + Edihedral + Eelec + Evdw 

(bonded)            (non-bonded) 

 

1.4 

 

The total energy of a conformation comprises several energy terms (Brooks et al., 1983). 

 

1.7.1 Bonded energy terms 

 The bonded energy terms comprise the bond (Ebond), bond angle (Eangle), dihedral 

(Edihedral) and improper torsional potentials (Eimpr), all together referred to as the bonded 

interactions (Equation 1.5). The bond and angle deformations (Ebond, Eangle) are generally 

small. As such, deviations from equilibrium bond and angle values are treated with large 

energy penalties. The dihedral angle is defined by four atoms, with the torsion angle about 

the axis of the middle pair of atoms. The improper torsion potential is necessary to maintain 

chirality. 

 

Ebonded =  ∑ kb(r - r0)2  +  ∑ kθ(θ - θ0)2  +  ∑ |kφ| - kφcos(nφ)   

 bond                     angle                 dihedral             

 

1.5 

 

Internal energy terms kb, kθ, kφ are constants, r =bond length between two atoms (A, B), θ = 

bond angle between three atoms (A, B, C), φ = torsion angle between two planes defined by 

four atoms (A, B, C and B, C, D), n = number of least points at 360˚ rotation of B-C bond, r0, 

θ0 are the equilibrium values of these variables. 

 

1.7.2 Non-bonded energy term 

Van der Waals energy (Eelec) 

The van der Waals energy calculation is calculated by the Lennard-Jones potential 

energy function, an approximation also called the “6-12 potential”, where the attractive force 

is treated as being proportional to 1/r6 and the repulsive force as being proportional to 1/r12 

(where r is the distance between two atoms). 
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Electrostatic energy (Evdw) 

The electrostatic energy calculation is based on partial atomic charges. It can be 

calculated by applying Coulombs law. Setting the dielectric constant (ε) proportional to r is a 

standard procedure to mimic electrostatic shielding by solvent when it is not included 

explicitly (the calculation of additional solvent is CPU intensive). In the presence of solvent, 

a dielectric constant of 1 is used (i.e. the relative permittivity of free space). The 

experimentally derived dielectric constant is a bulk solvent property and depends on the 

polarisability of solvent molecules. It increases with highly polarisable solvents like water (ε 

=80), reducing greatly the electrostatic interaction. In protein simulations without explicit 

solvent it usually takes as a value between 2 and 10, or 4r (known as a distance dependent 

dielectric). 

The calculation of the non-bonded energy terms (Equation 1.6) takes up the majority of 

computing time for energy evaluation because it is proportional to n2 and not n, as for other 

terms in Equation 1.6. It can be decreased by using a non-bonded cut-off radius at which the 

energy becomes zero. In this case, only atom pairs within the cut-off contribute to the 

calculated interaction energy. A switching function near the cut off distance is used to avoid 

discontinuity in the energy function and possible instability of the calculated energy.  

 

 
Enon-bonded  = 
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1.6 

 

Non-bonded energy terms. qi, qj = point charges of a non-bonded atom pair, εr = distance 

dependent dielectric constant, rij = distance between atom pair ij, A, B =  adjustable Van der 

Waals repulsion and attraction parameters for atom pairs ij. 

 

1.8 Empirical scoring functions 

The second type of scoring functions are developed more specifically for protein-

ligand docking by fitting experimental binding affinities using a training set of protein-ligand 

complexes and are thus dependent on their training set. The free energy of binding is 

approximated by summing up individual energy terms, which are often simpler but related to 

molecular mechanics energy terms. Weights or coefficients for each term are derived by 
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regression analysis. Different functions implement various types of energy terms and can 

include entropic and desolvation terms (albeit these are still approximations). ChemScore 

(Eldridge et al., 1997) is given as an example in Equation 1.7. It comprises four simple 

terms: two contact terms for lipophilic and metal interactions, a hydrogen bonding and a 

penalty term depending on the number of rotatable bonds. The weights were derived by 

regression based on a training set of 82 protein-ligand complexes with known binding 

affinity and their robustness assessed by cross validation. The design concept involved 

reduction of the total number of terms and exclusion of those that showed inter-correlation. 

In addition, all terms and coefficients should be physics based and interpretable. The scoring 

function was later applied to de novo designed compounds that were synthesised and tested 

(Murray et al., 1998). The scoring function was found to be valuable, however, it 

overestimated binding affinity in several cases and subtle changes between close analogues 

were not predicted with accuracy. 

 

 

1.7 

 

Free energy of binding (ΔGbind) for ChemScore H-bond = hydrogen bonding, metal = metal 

interaction, lipo = lipophilic, rotor = rotational entropy, ΔR = distance term, Δα = angular 

term, ΔG0 = regression constant, ΔG = regression coefficients for each term, Pnl = penalty 

(dependent on number rotatable bonds and their environment). 

 

1.9 Knowledge-based scoring functions 

 Knowledge-based scoring functions are derived by statistical analysis of the 

frequency distributions within a set of protein-ligand structures from which pairwise atomic 

interaction potentials are deduced. As such they reproduce observed preferences of 

functional group binding i.e. experimental structures rather than binding affinities. Like 

empirical scoring functions, these functions try to overcome the problem of insufficient 

description of a complex binding event due to the lack of explicit parameters. Well known 

examples are PMF (Muegge and Martin, 1999) and DrugScore (Gohlke and Klebe, 2001), 

and their generic functional form is outlined in Equation 1.8. With the increase in available 

crystal structures (and therefore knowledge) these scoring functions are expected to further 

improve in the future. The scoring functions differ in respect to their chosen reference 
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distribution (gref), an important term influencing the distance-dependent pair potentials. PMF 

sets the cut off at 12Å for sampling atom pair contacts but DrugScore at 6 Å (Gohlke and 

Klebe, 2001). The larger PMF cut off value was chosen to include implicit solvation effects, 

whereas specific interactions are considered by DrugScore. Additionally, DrugScore 

incorporates Solvent Accessible Surface singlet potentials. DrugScore correctly identified the 

best ligand pose in 75% of cases for 160 complexes (Gohlke et al., 2000). 

 

ref

ij
ij g

rg
rW

)(
ln)( −=Δ  

1.8 

 

Where, gij(r) =frequency (probability distribution) of atom pair ij separated by a distance r, 

gref = reference distribution. ΔWij(r) =pair-(pseudo-) potentials of atom pair ij. 

 

1.10 Treatment of divalent ions (such as zinc) in scoring function 

Zinc is essential for the catalytic function of metalloenzymes and coordinated in a 

number of distinct geometries (Alberts et al., 1998). Zinc binding groups in protein-ligand 

complexes can be classified according to their coordination geometry such as tetrahedral for 

thiolates and sulfonamides, distorted trigonal bipyramidal for hydroxamates, carboxylates, 

phosphonates and phosphinates (Hu et al., 2004). Recreating the correct coordination 

geometry is essential for successful docking (Hu et al., 2004), however modelling of ligand 

binding to zinc is challenging due to multiple coordination geometries (Figure 1.1), as well 

as polarisation, charge-transfer and inadequate force fields (Jain & Jayaram, 2007). Zinc can 

be modelled in a classic energy function by treating it as either bonded (e.g. GOLD) or non-

bonded (e.g. DOCK). The first integrates angle and bond terms in the potential function 

whereas the latter simply treats it with electrostatic and vdW terms.  
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Figure 1.1 Zinc coordination geometries in protein-ligand complexes (Alberts et al., 1998).  

 

1.11 Virtual screening 

A widely used application of both structure and ligand based design methods is 

virtual screening, where large compound libraries are screened in silico as opposed to 

experimental high-throughput screening (HTS) where compounds are screened against a 

target using a bioassay. Experimental HTS is the standard technique used in the 

pharmaceutical industry for lead discovery, but a costly approach due to its random nature 

and expense in screening large numbers of compounds. In virtual screening, structural 

descriptors are used as filters to retrieve active compounds that can provide new leads. Many 

different virtual screening methodologies exist, taking into account ligand or protein 

information ranging from 1D (e.g. molecular weight) to 2D (e.g. topology or substructure) 

and 3D (e.g. shape similarity, 3D pharmacophore or protein structure) properties. Ligand-

based VS approaches have recently been reviewed by Eckert and Bajorath (2007). 

Pharmacophores represent key interactions between ligand and proteins and can be ligand 

and/or protein based. The general concept and different pharmacophore generation methods 

were recently described by Khedkar et al. (2007). We will return to more specific detail of 

the methods used (Chapter 2) and their application to ACE2 (Chapter 5) later. 

The most common approach for structure-based virtual screening, however, is by protein-

ligand docking. Success in virtual screening is judged on enrichment - i.e. the retrieval of 

known actives from a set of inactives. The enrichment factor is calculated as (Ah/Th)/(A/T), 
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where Ah is the number of active compounds found in a selected subset of the ranked 

database (Th), A is the total number of actives and T is the total database size. Many 

validation studies have been undertaken, comparing ligand and protein structure-based 

methods with docking for their effectiveness in VS (Chen et al., 2006, Hawkins et al., 2007, 

McGaughey et al., 2007) and a plethora of comparative docking (enrichment) studies exist 

(Perola et al., 2004, Chen et al., 2006, Zhou et al., 2007). The performance of specific 

docking tools is usually dependent on the target involved but also on the preparation of the 

compound database (Knox et al., 2005). Comparison of different docking programmes is 

difficult due to non-standardised parameter settings/ligand and protein preparation (Cole et 

al., 2005). Independent investigators can arrive at conflicting results related to docking 

success for individual programmes as recently discussed by Chen et al (2006). Different 

implementation of a scoring function can also lead to different results (Wang et al., 2004). In 

conclusion, there is not a single docking programme that outperforms others in all 

circumstances.  

1.12 Docking and scoring 

In docking, a ligand is first placed into the binding site of a protein in various 

different orientations and conformations (conformational search stage) and each 

conformation (or pose) is scored by evaluation of the ligand-protein interactions according to 

a predefined scoring function. The highest ranking pose is assumed to resemble the "correct" 

binding mode and sometimes an estimate is also made of a ligand’s binding affinity. 

Docking algorithms can be classified according to their search methodology and the way 

they treat ligand flexibility. Systematic methods investigate all degrees of freedoms and 

often use incremental construction to build up ligands in a stepwise manner and use pruning 

methods to cope with the combinatorial explosion problem. FlexX (Rarey et al., 1996) or 

DOCK 4.0 (Ewing et al., 2001) are examples of these. Alternatively, in methods such as 

FLOG (Miller et al., 1994) conformations can be pre-generated and then docked rigidly to 

the protein receptor. Lastly, stochastic approaches randomly change conformations of a 

single ligand or whole ligand populations in the receptor binding site. These include Monte 

Carlo simulations e.g. QXP (Bohacek and McMartin, 1997), genetic algorithms e.g. GOLD 

(Jones et al., 1997) or AutoDock 3 & 4 (Morris et al., 1998), Monte Carlo simulated 

annealing e.g. AutoDock 1 (Goodsell and Olson, 1990) or Tabu search e.g. PRO_LEADS 

(Baxter et al., 1998). Simulation methods such as molecular dynamics or energy 

minimisation have also been applied alone or alongside other search methods (Brooijmans 
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and Kuntz, 2003, Sousa et al., 2006). Conformational sampling prior to or during docking 

and the ability to regenerate the bioactive ligand conformation is an essential part of both 

ligand- and structure-based approaches and has been analysed in a number of studies (Good 

and Cheney, 2003, Perola and Charifson, 2004, Kirchmair et al., 2005). 

Docking is primarily used as a VS tool to identify promising bioactive compounds 

(or hits), but can also be used later for lead optimisation. In both cases, the docking 

programme needs to first sample and recognise the bioactive conformation of each ligand 

and secondly reliably rank the ligands according to their predicted binding affinities. It is the 

scoring functions, responsible for prioritising compounds, which are the major weakness of 

current docking programmes rather than the conformational sampling methods (Warren et 

al., 2006). Of the many scoring functions that have been developed to address this issue, so 

far, none have consistently proven superior for all protein targets (Wang et al., 2003, Wang 

et al., 2004). Target dependency is a general issue in docking and scoring as ligand binding 

can be either dominated by enthalpic or entropic contributions which need to be captured in 

the scoring functions, however, the latter effect is poorly treated or neglected completely. 

Consensus scoring is often applied and was shown to reduce the number of false positives in 

VS (Charifson et al., 1999). In contrast, Wang et al. (2004) found that a number of scoring 

functions were more correlated to each other than to experimental binding affinities, but that 

consensus scoring improved the determination of the correct binding mode. This finding was 

supported by Yang et al. (2005) who concluded that consensus scoring enhanced enrichment 

if individual scoring functions performed well and were distinct. 

 

1.13 Predicting Ligand binding sites 

The function of a protein is dependent on the nature of molecules it can interact with. 

Even though the number of known structures of proteins has grown rapidly in the recent 

years (Tagari, Tate et al. 2006)  a large number of protein-ligand interaction sites remain 

uncharacterised (Laurie and Jackson 2005) . A number of approaches have been adopted to 

make predictions about the function of a protein from its structure (Laskowski, Watson et al. 

2005). Some methods look for secondary structural arrangement patters such as motifs or 

domains associated with specific functions (Laskowski, Watson et al. 2005), others tend to 

look for characteristic arrangement of functionally important or conserved residues 

(Burgoyne and Jackson 2006). The function of a protein depends upon the nature of ligand it 

can interact with, hence identification of the ligand binding sites and assignment of the 
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nature of the putative ligand that can interact is important for the prediction of function to the 

protein structure as well as for rational structure-based drug design.  

 Carbohydrate binding proteins play an important role in cellular systems. 

Carbohydrate binding is involved in energy metabolism, intercellular communication and 

adhesion (Brandley and Schnaar 1986). Ligand binding sites are very diverse in structure and 

function (Bertozzi and Kiessling 2001). Only a few of them are druggable. Carbohydrate 

binding sites are increasingly being considered as putative drug targets (Bertozzi and 

Kiessling 2001) because of their role in intra and inter-cellular communication. Carbohydrate 

binding sites have been extensively studied (Weis and Drickamer 1996) in the past. 

However, only a few approaches developed for the prediction of carbohydrate binding sites 

(Taroni, Jones et al. 2000), (Shionyu-Mitsuyama, Shirai et al. 2003) and (Malik and Ahmad 

2007). But these methods have not been very successful. 

In the third chapter of the thesis development of a new computational method for 

predicting carbohydrate binding sites is presented. The overall aim was to develop a new 

computational method for predicting carbohydrate binding sites with high accuracy. The 

method differs from the previous carbohydrate binding site prediction methods in two 

important aspects. Firstly it uses 375 non-covalent protein-carbohydrate complexes for the 

derivation of amino acid propensity scores. This is more than used in calculation of amino 

acid propensities in the previous methods.  Secondly it uses a two-step procedure to identify 

sites.  In step one; it uses a grid-based approach to identify sites on the protein with a high 

probability of being a binding site, using the recently proposed method of Laurie and 

Jackson, 2005. In step two; it uses these sites and amino acid propensity scores to predict the 

location of carbohydrate binding sites. The ultimate aim of the project was to produce a 

method that could both locate likely binding sites and then distinguish the nature of the 

binding site, to ascertain if the site has the ability to preferentially bind a carbohydrate 

ligand. 
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1.14 Predicting protein-ligand affinity 

The success of in silico approaches for SBDD depend on the application of the principles 

governing the dynamics of ligand-protein interactions (Rauh, Klebe et al. 2004). The current 

approach of docking involves generating favourable ligand orientations in the protein 

binding site, by sampling conformational space, followed by scoring these by their predicted 

interaction energy (Klebe 2006). The limitation in the scoring step stems from the time 

needed to score each potential solution and the level of accuracy required for the calculation 

of the interaction energy, or at the very least, the correct discrimination of active from 

inactive compounds. A number of simplified scoring functions have been developed which 

are fast and easy to apply but provide only moderate levels of accuracy.  Hence continued 

efforts are needed to improve upon existing scoring functions. 

Current, scoring functions used to estimate ligand-protein affinity can be classified into 

three categories: first-principle methods, knowledge-based methods and finally, regression-

based scoring functions (Zentgraf, Steuber et al. 2007). Knowledge-based scoring functions 

are derived from the quantification of frequencies of interacting atomic pairs observed in 

protein-ligand complexes (Gohlke and Klebe 2001). The process of atomic-pair-interaction-

frequency quantification has been based on a number of mathematical relationships. The 

earliest example of such a function was in the field of protein folding where Boltzmann’s 

law was used to derive the potential of mean force for interacting residue (Tanaka and 

Scheraga 1976; Hendlich, Lackner et al. 1990; Sippl 1990). Later, similar functions were 

developed for scoring ligand-protein interactions. Wallqvist et al. (Wallqvist, Jernigan et al. 

1995) studied a dataset of 38 complexes, calculating the frequencies of atomic interactions at 

the protein-protein interface and converted these into an atom-atom preference score using 

the ratio of fraction of the total interface area contributed by each pair to the product of the 

fraction of their respective contributions to the surface of respective protein. For a set of 30 

proteases-inhibitor complexes, Verkhivker et al. (Verkhivker, Appelt et al. 1995) used the 

inverse Boltzmann law to develop distance-dependent pair potentials from interacting atoms 

in combination with conformational entropic (Pickett and Sternberg 1993) and hydrophobic 

(Sharp, Nicholls et al. 1991) terms. Using this scoring function they could estimate the 

affinity of HIV-1 proteases for several different inhibitors. SMoG-Score was developed from 

109 crystal structures using statistical mechanics (DeWitte and Shakhnovich 1996). 

Potentials of mean force were derived by Muegge et al. using the inverse Boltzmann law by 

converting the distance dependent number density of interacting atom pairs from a dataset of 
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697 protein-ligand complexes into their respective Helmholtz interaction free energies 

(Muegge and Martin 1999; Muegge, Martin et al. 1999). Mitchell et al. developed BLEEP 

using a dataset of 820 protein-ligand complexes with hydrogen atoms added (using HBPlus 

(McDonald and Thornton 1994)) and used the inverse Boltzmann law (Mitchell et al. 1999). 

A semi-empirical pair-potential for Ne-Ne was used as a reference state. They further 

derived BLEEP-II by including interactions of protein and ligand with water molecules 

(explicitly added using Aquarius2 (Pitt and Goodfellow 1991)). Gohlke et al (Gohlke, 

Hendlich et al. 2000) derived DrugScore using distance-dependent pair-potentials from a 

dataset of 6026 protein-ligand complexes and incorporated solvent accessible surface area 

based solvation potentials from a database of 1376 protein-ligand complexes. Cline et al 

(Cline, Karplus et al. 2002) used an information theoretic relationship of mutual information 

to quantify information in amino-acid contact potentials for protein structure prediction. 

They studied the contribution of amino-acid character in terms of hydropathy, charge, 

disulphide bonding and residue burial to the mutual information.  

The Boltzmann law is very useful for determining the interaction energy values from a 

database of the observed frequencies of joint occurrences. The variation in temperature 

factors for the protein-ligand atoms (Finkelstein, Gutin et al. 1995) give rise to heterogeneity 

in the interaction database which complicates the application of the inverse Boltzmann law. 

However, even though knowledge-based methods are susceptible to the artefacts in data 

collection they have performed surprisingly well, often better than force-field based scoring 

functions (Sternberg, Bates et al. 1999; Wang, Lu et al. 2004).  

In the fourth chapter of the thesis the development of a novel knowledge-based scoring 

function: ScoreJE - derived from the ligand-protein interacting atomic pairs is presented. Our 

approach differs from the previous scoring functions in two important aspects. Firstly, it uses 

over 3,000 structurally non-redundant protein-ligand complexes. This is more complexes 

than used in constructing previous knowledge-based scoring functions, the only exception 

being DrugScore, which uses a 30% sequence identity cut-off for the creation of the protein 

non-redundant dataset. Secondly in using the mathematical relationship of joint entropy for 

deriving the atomic contact preferences it bypasses the problems implicit in the application 

of the inverse Boltzmann law, eliminating the need for a reference state. These preferences 

are derived for describing the energetics of short-range atomic interactions. A Single-body 

Solvation Potential (SSP) is developed using the joint entropy of protein-water atom contact 

probabilities and is combined with ScoreJE to obtain SIScoreJE (SSP included ScoreJE). 
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These functions were tested for their ability to predict the binding energies of test datasets 

containing 100 protein-ligand complexes.  

The overall aim was to develop a novel knowledge-based scoring function for predicting 

protein-ligand interaction energy. The main objective was to calculate a non-redundant set of 

atomic contact preferences for the protein-ligand and protein-water interactions and to use 

these to develop a scoring function using information theory. A secondary aim was to 

evaluate the potential of using information theory and new atom type classification schemes 

(alongside popular atom-type classification schemes currently in use) to optimally describe 

protein-ligand interactions.  

 

1.15 Aims and objectives 

GGTase-II is important enzyme in the membrane trafficking regulation system. 

GGTase-II prenylates the small GTPases from Rab family by transferring geranylgeranyl (a 

20 carbon atom lipid molecule) from its pyrophosphate form to the C-terminal cysteine 

residues. This covalent modification allows RabGTPases to localise on the membranes 

where “Guanine nucleotide exchange factors” interacts and induces the exchange the GDP 

from Rab-GDP complex by GTP. GTP bound Rabs interact with a plethora of effector 

protein molecules and mediate vesicular transport. In metastasis cancer protease enzymes are 

released by exocytosis for dissolution of collagen matrix so that the metastatic ells can 

invade other tissues. Inhibition of the Rab prenylation reaction could result in shut down the 

Rab mediated vesicular trafficking hence GGTase-II is an important, target for cancer 

therapeutics.  Our objective was to disrupt REP:GGTase-II interaction. 

Even though a number of programs for ligand binding site identification are available 

the existing methods do not specifically identify carbohydrate or drug-like compound 

binding sites. A new approach was our objective for the assignment of the character to the 

ligand binding sites. 

 Another aspect of computational tools that need improvement is the estimation 

protocols for fast estimating the binding affinity between the ligand and its cognate protein 

receptor. Our objective in this regard was to use the information theoretic relationships to 

create the scoring function for estimation of the binding affinity. The information theoretic 

approach was considered better than the existing ones like inverse Boltzmann’ s law as there 

was no assumption in our model. 
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1.16 Thesis outline 

The remainder of this thesis is structured with in chapters, three results chapters and a 

general conclusions chapter. The results chapters include a chapter on structure based drug 

design and two methods development chapters. The first results chapter (chapter 2) presents 

the development of REP-GGTase-II interaction inhibitor. Chapter 3 describes a development 

of a tool for the identification of ligand binding sites and determination of the nature of the 

ligand that shall bind the predicted site. Chapter 4 presents the development of information 

theory based novel scoring function for the estimating the binding affinity between the 

ligand and its cognate receptor. Finally, general conclusions are drawn regarding this work in 

chapter 5. 
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Chapter 2: Structure-based pharmacophore design and targeting REP-

GGTase-II interaction interface 
 

2.1 Abstract 

A structure-based approach was applied to identify novel inhibitors for inhibiting the 

GGTase-II (Geranylgeranyltransferase-II) and Rab escort protein (REP) interaction. REP and 

GGTase-II interaction is bimodal and limited to an area of 650Å2. Structure-based inhibitor 

design approaches were used to model molecules for targeting the hydrophobic interactions 

in REP-GGTase-II interaction interface site. These molecules were screened by docking to 

the targeted site followed by evaluation using consensus scoring. The virtual molecules thus 

modelled were used to create pharmacophore hypothesis for virtual screening. Volume 

exclusion features were added to the ligand derived pharmacophore hypothesis from the 

structure of targeted site. Using catalyst the ZINC database was screened using the modified 

pharmacophore hypothesis. The molecules were evaluated by docking and consensus 

scoring.  Out of 27 top hits 9 molecules (which were available) were tested. A novel inhibitor 

was identified with IC50 values in the range of 7.0. The binding mode of inhibitor molecule 

and its probable inhibitory mechanism were analysed via retrospective docking. 
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2.2 Introduction 

Protein-protein interactions are fundamental to the functioning of biological systems - 

from cell division to programmed cell death - and therefore represent a large and important 

class for human therapeutics (Martin, 1998; Arkin, 2004). Protein-protein interactions can be 

of obligate and non-obligate nature. Proteins forming non-obligate complexes can fold and 

exist independently. The formation of these transient, non-obligate protein-protein 

complexes can be driven by concentration (e.g. Sperm Lysin protein dimmer formation) or 

covalent modification (e.g. Phosphorylation of cyclins drives its complexation with cyclin 

dependent kinases) or change in effector molecule structure (e.g. upon GTP hydrolysis in Gα 

proteins Gβγ bind to it). These transient complexes are important targets for human 

therapeutics.  

However targeting protein-protein interaction interface (PPII) in tricky business. 

Often the starting point for the inhibitor design is missing. The interaction interfaces 

comprise of mostly planar surface which is very difficult to target. Very few examples of 

naturally occurring compounds that target protein-protein interaction interfaces are known. 

The apparent surface complementarity in PPII involves significant conformational changes 

making it harder to identify the transient small molecule binding sites. In spite of the 

difficulties success has been achieved in some cases (Arkin and Wells 2004). One approach 

for targeting the PPII include mapping of the epitope structure of the interacting proteins on 

the small peptide surface (Arkin, Randal et al. 2003). Random screening for compounds has 

also yielded molecules that can target PPII such as certain alkaloids which affect the 

polymerisation of tubulin (Nooren and Thornton 2003). In the absence of larger libraries of 

known protein-protein interaction inhibitors the research has remained focused on structure, 

virtual screening and fragment-based discovery. In this project, strategy of structure based 

rational inhibitor design was used to target protein-protein interaction interface of 

geranylgeranyltransferase-II (GGTase-II) and Rab escort protein (REP).  
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2.3 Biological perspective 

Vesicular trafficking is a very tightly controlled process of transport of proteins and 

membrane components from the site of synthesis/modification to the site of functionality. A 

number of proteins interact to keep the process tightly regulated. The regulators of vesicle 

trafficking: select cargo proteins during vesicle assembly, control vesicle formation at donor 

membrane, direct transport direction, brings about the anchorage of vesicle near the acceptor 

membrane compartment, initiate and drive the fusion of the vesicle with the acceptor 

membrane. Any abnormality in the components of vesicle trafficking regulatory machinery 

leads to pathological state. Rab proteins, which are central regulators of the vesicular 

trafficking, are known to cause diseases, when defective. Mutations in Rab27a are known to 

cause type II Griscelli syndrome in humans. Griscelli syndrome is autosomal recessive 

condition characterized by hypo-pigmentation of skin. People suffering from this disorder 

also develop haemophagocytic syndrome characterized by uncontrolled T lymphocyte and 

macrophage activation (Rak, Pylypenko et al. 2004). Over expression of Rab25 is known to 

occur in cancers of ovary and prostate. Its expression is also upregulated in invasive breast 

cell tumor, and transitional cell carcinoma. Rab5a and Rab7 are found to be over expressed 

in thyroid-associated adenomas. Cancerous cells are thought to have increased vesicle 

trafficking as compared to normal cells as these invasive cells need to secrete proteolytic 

enzymes to escape the physical barrier of tissue structure. Increased expression of these 

vesicle trafficking regulators is considered to be the part of overall upregulation of the entire 

trafficking machinery. 

Hence, Rab proteins are lucrative targets for the disruption of the vesicle trafficking. 

Functionality of Rab proteins is dependent upon its prenylation which is carried out by an 

enzyme called GGTase-II and is mediated through another protein REP. Targeting the 

GGTase-II enzyme should halt the vesiclular trafficking as Rab proteins shall not be able to 

localize on the membrane in the absence of prenyl moiety on it C-terminus tail. 
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2.4 Understanding the enzyme system of Rab prenylation 

2.4.1 Rab proteins 

Rab proteins are membrane anchored, small GTPases (of molecular weight 23-26 

kDa) that are central to the regulation of vesicular transport. Rab proteins are membrane 

anchored by virtue of a 20 carbon atom (Figure 2.1), tetra-unsaturated lipid molecule, 

covalently attached to the cysteine in C-terminus tail via thioester bond. There are over 60 

Rab proteins in human genome which exist in GTP and GDP bound states. In GTP bound 

form, Rab proteins interact and recruit a number of effectors which trigger a chain of events 

including change in curvature of the membrane of Rab location, packaging of cargo, 

pinching-off of the vesicle, transport towards a specific target membrane, loose tethering and 

finally docking of the cargo packed vesicle to the target membrane (Figure 2.2). The 

hydrolysis of the GTP changes the profile of Rab interacting partners. During the fusion of 

the vesicle with the acceptor compartment, membrane bound “GTPase activating proteins” 

(GAPs) interact with RabGTPases and increase the rate of GTP hydrolysis to GDP. After the 

fusion of vesicle the GDP bound Rab is extracted from the membrane by another protein 

called GDP dissociation inhibitor (GDI). GDI delivers the Rab to the source membrane 

where membrane bound GDP exchange factors (called GEFs) catalyse the exchange of GDP 

for GTP (Itzen, Pylypenko et al. 2006). This triggers the chain of events as outlined above 

and results in continuous packaging and delivery of cargo proteins and lipids.  

The anchorage of Rabs on the membranes is critical to their functioning. Unsaturated, 

aliphatic geranylgeranyl isoprenoids molecules are post-translationally attached to conserved 

cysteine residues in the hypervariable C-terminus tail of Rab proteins by GGTase-II (also 

referred as RabGGTase in literature). 
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Figure 2.1 Geranylgeranylpyrophosphate. 

 

 

 
Figure 2.2 The functional cycle of Rab proteins 
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2.4.2 GGTase-II 

GGTase-II is a heterodimer comprising of two subunits (α and β). The molecular 

mass of α and β subunits is ca. 60 and 40 kDa respectively. It belongs to the family of 

prenyltransferases. Members of this family include Farnesyltransferase (FTase) and GGTase-

I (Figure 2.3a and Figure 2.3b). While FTase transfers 15 carbon-atom, unsaturated 

hydrocarbon (called farnesyl) to the C-terminus cysteine of RasGTPases/Lamins/transducin-

γ subunit, GGTase-I transfers 20 carbon atom, geranylgeranyl moiety on the C-terminus 

cysteine of Rac/RhoGTPAses/trimericGα. FTase and GGTase-I are functionally similar as 

they recognise CaaX motif in C-terminus as substrate for prenylation. CaaX stands for 

prenylatable cysteine residue (C), followed by two aliphatic residues (a) followed by an 

“enzyme-determining” residue X. The carboxyl-terminal amino acid (X) discriminates FTase 

targets from those of the GGTase-I, as FTase can transfer sequences that have X = Gln, Met, 

Ser, Ala whereas for geranylgeranylation by GGTase-I X could be either leucine or 

phenylalanine (Ohkanda, Lockman et al. 2001). The C-terminus Rab sequences recognised 

by GGTase-II as prenylation substrate are more diverse and cysteine residues in CC, CXC, 

CCX, CCXX, CCXXX sequences can be prenylated (Pylypenko, 2003).  

 

 

αα  αα  

ββ  ββ  
  

Figure 2.3a Farnesyl transferase (1qbq) Figure 2.3b GGTase-I (1tnu) 
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αα  

ββ  

 
Figure 2.4 GGTase-II. 

 

 
Figure 2.5a GGTase-II Chain B with Lipid in the binding pocket (1ltx) 

 

 

 
Figure 2.5a GGTase-II Chain A (Solid Surface) interacting with REP (Ribbon)  (1ltx) 
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GGTase-II prenylates Rab GTPases by transferring the geranylgeranyl (GG) group 

from its pyrophosphate conjugate to the C-terminus cysteine residues. Unlike FTase and 

GGTase-I, GGTase-II interact indirectly (via Rab Escort Protein) with the protein substrate 

(RabGTPase) (Figure 2.4). Chain B of GGTase-II harbours a lipid binding pocket of ca. 490 

Å3 wherein binds a single molecule of GGpp (Figure 2.5a). Chain A of GGTase-II has REP 

binding site (Figure 2.5b). GGTase-II and REP interaction interface is ca. 650 Å2 and 

involves bimodal interaction patches. GGTase-II also has a small hydrophobic patch 

(consisting of Ser249, Ala252, Phe254) which is probably involved in anchoring the C-

terminus tail of Rab proteins thus increasing the activity (effective concentration) of 

prenylatable cysteine residues near the active site. 

 

 

2.4.3 Rab Escort Protein 

Rab escort protein or REP is 75 kDa protein organised in two domains: larger 

domain-I consists of 4 β-sheets and 6 α-helices and a smaller domain-II comprising of 5 α-

helices (Figure 2.6). It can form transient complex with RabGTPases and GGTase-II-GGpp. 

The function of REP is to present the RabGTPases for prenylation followed by delivering it 

to the membrane.  

 

                     
Figure 2.6 Domain arrangement of Rab Escort Protein (1ltx) 

Domain II 

Domain I 
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2.4.4 Rab-REP interface 

REP interacts with Rab proteins via domain-I (Figure 2.7a). The REP surface 

involved in interaction with RabGTPases is called as Rab binding platform (RBP). The Rab-

REP interaction interface is modular with patches of hydrogen bond making residues 

interspersed with hydrophobic patches and is ca 1075 Å2 in size. It is quite unique in the 

absence of any major hydrophobic groove or pocket.  

As the Rab proteins show considerable sequence diversity, interactions of Rab7 with 

REP are discussed. The interaction interface consists of Arg79 of Rab7 which makes a 

number of hydrogen bonds with the Asn225 and Glu379 of RBP. Asp44 and Asp63 residues 

of Rab7 also form hydrogen bonds with Arg386 of RBP. A number of hydrophobic residues 

in the switch II region of Rab7 interact with hydrophobic residues of RBP. However these 

hydrophobic residues are present either in shallow sites or on protein surface. 

 

                               
Figure 2.7a Rab7 (blue) interacting with REP (Black) (1vg9) 

 

 30

Clic
k t

o buy N
OW!

PDF-XChange

w
ww.docu-track.comClic

k t
o buy N

OW!
PDF-XChange

w
ww.docu-track.com

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/


2.4.5 REP-GGTase-II interface 

GGTase-II interaction with REP happens via the α-subunit of GGTase-II and domain 

II of REP (Figure 2.8a). The REP-GGTase-II interaction interface is very small ca. 690 Å2. 

The interaction interface can be divided into a hydrophobic pocket and a hydrophilic patch. 

The hydrophilic patch on the surface of GGTase-II interacts with Arg290 of REP and a 

hydrophobic groove on the surface of GGTase-II harbours the side chain of Phe279 of REP 

near its opening (Figure 2.8b). This groove is not present on the surface of apo-GGTase-II 

structure (1dce) indicating that binding of GGpp in the lipid binding site in β-subunit of 

GGTase-II triggers its formation (Figure 2.8c) (Pylypenko, 2006). 

The structure of GGTase-II alone (in the absence of lipid molecule) differs slightly 

from its structure in “GGpp bound GGTase-II”-REP complex. In the α-subunit, the 

differences are limited to the arrangement of residues of α-helices (8 and 10) which, along 

with helices (10 and 12) form the REP interacting interface, and in β-subunit conformational 

states of residues Tyr241, Trp244 and His190 differ in two states. The residues (Tyr241, 

Trp244 and His190) in the β-subunit form the lipid binding pocket in the GGTase-II. Hence 

the conformational change could be considered as the effect of the approach and binding of 

GGpp. However the shift in the position of α-helices (8) in α-subunit facing REP is 

considered to be necessary for the generation of deep hydrophobic pocket which interacts 

with Phe279 of REP by forming CH/pi interaction.  
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Figure 2.8a GGTase-II:REP 

 

  

Figure 2.8b REP interaction interface of GGTase-II in complex with GGpp. (REP 

Side chains that interact with GGTase-II are represented by sticks and the GGTase-II 

interface is solid surface) 
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Figure 2.8c REP interacting interface of apoGGTase-II (1dce) 
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2.5 Targeting the enzyme system 

 

2.5.1 Putative targets in the enzyme system 

 

2.5.1.1 Ligand binding sites 

The RabGTPase-REP-GGTase-II enzyme system interacts with lipid molecule. The 

lipid binding site in GGTase-II could be targeted and was being investigated by another 

group in the institute.  

 

2.5.1.2 Selection of target site 

Targeting REP-Rab interaction: Prenylation of Rab proteins is dependent on its 

interaction with REP; hence, the inhibition of REP-Rab protein interaction could disrupt the 

process. More over the RBP on the surface of REP seems to be conformationally stable and 

does not appear to undergo any major changes during its interaction with Rab hence 

targeting a hydrophobic pocket on RBP will not have to contend with any drastic 

conformational changes. Unfortunately, the RBP does not have any major hydrophobic 

pocket or groove and this eliminates the possibility for choosing REP-Rab interaction 

interface as potential targeting candidate. 

Targeting REP-GGTase-II interaction: GGTase-II-REP interaction interface 

appears more suitable for targeting because even though the interface is small (690Å2), the 

affinity of REP for GGTase-II-GGpp binary complex is ca. 10nM (Rak, Pylypenko et al. 

2004). Majority of interactions is mediated through Arg290 of REP which forms a number of 

hydrogen bonds with the GGTase-II. Inspite of presence of this Arg290-interacting 

hydrophilic patch on the surface of the apo-GGTase-II surface the affinity of apo-GGTase-II 

for REP is ca. 2 orders of magnitude less than the affinity between REP and GGTase-

II:GGpp. Apparently the hydrophobic groove on the surface of GGTase-II:GGpp which 

interacts with Phe279 of REP is responsible for the higher affinity. Detailed analysis of the 

hydrophobic pocket on the REP-GGTase-II interaction interface revealed some of interesting 

structural features. The hydrophobic pocket on its REP-proximal end is mostly hydrophobic. 

The various methyl groups present in this part make CH/pi interactions with the Phe279 of 

REP. The REP-distal end of the hydrophobic pocket is rich in hydrogen bond acceptors. 

However, the absence of high resolution structure (crystal structure of REP-GGTase-II 

complex structure (1ltx) is of 2.75 Å resolution whereas the conventional accepted practice is 
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to consider the structures with resolution better than 2.5Å) and the absence of any starting 

compound for targeting the site makes it a difficult choice.  

 

 

2.6 Methods 

 

2.6.1 Protocol used for epitope-linking using LigBuilder  

LINK module of LigBuilder (See Appenndix-2.10.2) was used for interlinking the 

REP molecule’s GGTase-II interacting epitopes. A MOL2 file containing seed structure 

comprising of the side chains of Phe279, Arg290 and Lys325 of the REP molecule was 

prepared using AstexViewer2.0. Addition of hydrogen atoms and assignment of ionisation 

states was done using molcharge program of OpenEye software. Terminal hydrogen atoms 

of these side chains were marked for linking process. The “population size” and “number of 

generations” for the linking the epitopes was fixed at 1000 members and 30,000 cycles 

respectively. The default values of growing probability, linking probability, and mutation 

probability (1.0, 1.0, 0.5) were not altered. The Tripos force field parameters were used for 

the linker generation. The program was run on a desktop computer having RAM - 1GB and 

processor clock time of 2.2 GHz.  

1000 different molecules were produced by interlinking the epitopes (see section 

2.6.1). From this library top 250 compounds were docked in the targeted site and the results 

were subjected to the RMSD filter. 

 

 

2.6.2 Protocol for growing molecule using LigBuilder  

In the hydrophobic groove of GGTase-II which is part of REP interaction interface 

novel ligand molecules were grown on the docked structure of guanidine using GROW 

module of LigBuilder. The MOL2 file of the seed structure of guanidine in the site was 

prepared using AstexViewer2.0. Hydrogen atoms were added and ionisation states were 

assigned using molcharge program of OpenEye. The “population size” and “number of 

generations” for the growing the hydrophobic tail of guanidine was fixed at 3000 members 

and 20 cycles respectively. The number of parents and similarity cut-off were fixed at 200 

and 0.90. The values of growing probability, linking probability, and mutation probability 

(1.0, 1.0, 0.60) were used. The Tripos force field parameters were used for the growing the 

molecules. The program was run on a desktop computer having RAM - 1GB and processor 
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clock time of 2.2 GHz. 3000 molecules were obtained after one growth event. These were 

docked and the top 300 molecules were subjected to the RMSD filter. The process was 

repeated 32 times and in the end the library of selected top grown molecules consisted of 

9600 molecules. After the docking solutions for each of these molecules was subjected to 

RMSD filter. 

 

 

2.6.3 Protocol for diversification of the hydrophobic part of lead_molecule_1 

The cyclo-hexane part of lead_molecule_1 was marked for mutation and subjected to 

repeated growth cycles. The values of growth probability, linking probability and mutation 

probability was fixed at 0.5, 0.5 and 0.95 respectively. The fragment library from which 

LigBuilder selects molecular fragment for incremental construction was reorganized by 

retaining only hydrophobic and aromatic ring structures (for example benzene, anthracene 

etc). This reorganized fragment library contained around 100 fragments. After 30 cycles a 

diversification library of 9000 top structures was created. These structures were docked 

using GOLD in the targeted site and subjected to RMSD filter.  

 

 

2.6.4 Pharmacophore generation and virtual screening 

Selected molecules from diversified library passed through the RMSD filter and were 

used in generation of pharmacophore hypothesis using catalyst (see Appendix-2.10.3). Using 

CONFIRM program from the catalyst package conformation for the members of ZINC 

database of drug-like chemically available structures was created. This conformational 

database was then screened using the pharmacophore hypothesis. The selected compounds 

were subjected to the docking analysis. Compounds that passed RMSD filter with both 

GoldScore and ChemScore were purchased and assayed. 

 

 

2.6.5 Drug-likeness Filter 

The compounds designed during the process of epitope linking and guanidine tail 

growth were subjected to a drug-likeness filter. The filter comprised of a set of ranges for 

molecular weight, number of heavy atoms, lipophilicity, number of hydrogen bond donors 

and acceptors.  

Molecular weight from 160 to 480 
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Number of heavy atoms from 20 to 70 

Lipophilicity from 40 to 130 

Number of hydrogen bond donors from 4 to 7 

Number of hydrogen bond acceptors from 8 to 12 

Only those molecules that conformed to the above mentioned criteria were selected for 

evaluation by docking. 

 

 

2.6.6 GOLD docking protocol  

All of the docking runs were carried out using the default parameters of GOLD 

program. For each molecule docking runs were carried out twice, once using GoldScore and 

second using ChemScore. Only top 10 docking solutions were considered.  

 

 

2.6.7 RMSD stability Filter 

For the top 10 docking solutions for each molecule average RMSD was calculated. 

Mathematically, 

 AveRMSD = (Σij√((xij - X)2 + (yij - Y)2 + (zij - Z)2))/(10N) 2.1 

 

Where, i subscript range for all of the 10 poses and j subscript ranges for all of the atoms in 

the molecule. The X, Y and Z are the average values for X, Y and Z coordinates for the top 

ranked docking solution. N is the number of atoms in the molecule. The molecules having 

average RMSD less than 2.0Å were selected as being stable in the target site. 
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2.7 Results and discussion 

 

2.7.1 Linking epitope 

None of the 250 compounds had average RMSD below 2.0Å. Visual examination of 

the individual structures revealed presence of more than 10 single bonds in each of the 

structures. One of the examples of the docked structure is shown in Figure 2.9. 

 

               
Figure 2.9 Side chains of Phe279 and Arg290 were linked using LINK module of 

LigBuilder and docked in the Phe279 interacting groove on GGTase-II surface 

 

2.7.2 Docking based identification of stable “anchor” fragment for growing molecules 

Ammonia, benzene, guanidine, methanol and methanoic acid were docked using 

GOLD program in the targeted site. The docking solution for each of small molecule 

fragment was subjected to RMSD filter. Except for guanidine docking solutions of the rest of 

the molecules had average RMSD above 2.0Å. The highest scoring docking pose of 

guanidine in the targeted site is shown in Figure 2.10. 

 

 38

Clic
k t

o buy N
OW!

PDF-XChange

w
ww.docu-track.comClic

k t
o buy N

OW!
PDF-XChange

w
ww.docu-track.com

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/


                          
Figure 2.10 Docking solutions for Guanidine molecule in the site were stable in terms 

of RMSD and formed multiple hydrogen bonds with the hydrogen bond acceptors at 

the base of the cavity 

 

 

2.7.3 Molecules generated by growing the guanidine tail 

Only 23 molecules in the library of 9600 grown molecules had average RMSD less 

than 2.0Å. After visual analysis of the docking results only one was selected. As seen in 

Figure 2.11 the guanidine head makes multiple hydrogen bonds with the oxygen bond 

acceptors with the side chains of residues Ser227, Asp225, and main chain carbonyl group of 

Asn174 at the base of the targeted site. The hydrophobic cyclo-hexane part makes 

hydrophobic interactions with the hydrophobic side chains of Ile171, Ala218 and Leu214. 

This molecule was named as lead_molecule_1. 

 

                           
Figure 2.11 Virtual lead compound. 
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2.7.4 Diversification of the hydrophobic part of lead_molecule_1; Pharmacophore 

generation; Virtual screening and Assay results 

Out of 9000 members of diversified library only 73 could pass the RMSD filter. A 

pharmacophore query was built from these 73 compounds as shown in Figure 2.12.  

                          
Figure 2.12 Pharmacophore has 3 Hydrophobic regions (cream spheres) and one 

positively charged feature (blue sphere) The grey spheres are the exclusion volume 

region.  

 

9883 compounds conformed to the pharmacophore hypothesis. These molecules were 

visually inspected to remove molecules with possible steric clashes near the hydrogen bond 

donor fragment. Only 41 compounds had no clashes. After the docking analysis of these 41 

compounds only 27 that could pass the RMSD filter were ordered Figure 2.13(a-d). 9 

compounds (Figure 2.14) could be purchased and assayed. The assay was carried out by 

Yao-Wen Wu in the Department of Physical Biochemistry, Max Planck Institute for 

Molecular Physiology. Compound named as MK_INH_X21985 was found to have IC50 

value of 7.0µM. The compound is non-competitive for the lipid substrate as per the results of 

competitive assay.   
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Figure 2.13a Docked poses of Compound 

MK_INH_X16156 

Figure 2.13b Docked poses of Compound 

MK_INH_X16156 in the target site  

   

 
Figure 2.13c Docked poses of Compound 

MK_INH_X16188 

Figure 2.13d Docked poses of Compound 

MK_INH_X16188 in the target site 
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2.8 Conclusions 

The IC50 of the compound MK_INH_X21986 is below 10µM and hence by 

convention it is classified as active. This compound was assayed earlier for inhibition of 

RNAseH and was found to be inactive hence the compound is not a chelator of divalent ions 

or a non specific protein poison. The compound is noncompetitive with the lipid substrate 

and this excludes the possibility of its binding in the lipid binding pocket. The docking 

analysis of the compound for the peptide binding site shows poor stability. The docking 

analysis of the compound in the sites of GGTase-II along with available wet lab results 

indicates that the compound is targeting REP interaction site. However, in the absence of 

conclusive assay the mechanism of inhibition is still an open question. 

Rational drug design has been the ultimate aim of the structural bioinformatics. The 

targeting of protein-protein interaction on the basis of knowledge about the receptor structure 

is difficult. However the successful targeting of GGTase-II activity by MK_INH_X21986 

once again underlines the possibilities in this field. Here, it must be noted that later the 

compound was also found to inhibit the homologs of GGTase-II. Careful docking analysis 

predicted FTase inhibition due to the competition of peptide substrate with the 

MK_INH_X21986. This was indeed found to be the case in wet lab experiments. The cross 

reactivity question was not addressed when the molecule was being designed as it was 

assumed that the shape of REP interacting hydrophobic groove on GGTase-II surface is 

unlikely to find anything similar in the homologous structures. This was a mistake. The 

strategy for targeting protein-protein interaction interface must be such that only unique 

druggable sites are chosen in the first place. Alternatively targeting a site which may have 

close resemblances on the surface of homologous proteins can be done through substractive 

docking. This strategy was indeed used in the later process and a virtual library of molecules 

was created that targeted only the GGTase-II hydrophobic groove.The validity of the model 

is yet to be tested. 
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2.10 Appendices 

 

2.10.1 GOLD 

 

2.10.1.1 Algorithm overview 

GOLD (Genetic Optimisation for Ligand Docking) uses a genetic algorithm (GA) to 

explore the conformational search space and a molecular mechanics like scoring function 

(see section 2.9.1.3) to evaluate and rank generated docking solutions(Eldridge et al, 1997). 

Genetic algorithms are widely used as search algorithms for optimisation problems. During 

optimisation they use evolution as model and adapt and improve the solution by using the 

strategy of mutation and selection. The existing solutions are changed randomly and then 

selected by filtering out less fit solutions based on a scoring function (Goldberg et al , 1989). 

It does this by manipulating so called chromosomes, which are represented as strings that 

can undergo reproduction, crossover and mutation. Just as the total set of chromosomes 

makes up the genotype of a species, a collection of strings or in the most simple case just one 

string are termed the structure of an artificial system. This structure encodes a set of 

parameters or points in solution space, similar to the genotype encoding the phenotype of an 

organism. Chromosomes are a collection of genes, each represented by an allele and 

location, whereas strings comprise features, each associated with a value and location.  

In terms of GOLD docking, each chromosome represents a possible solution to the 

ligand-docking problem. Chromosomes are treated as individuals and as part of a population 

(of fixed population size) where each member is evaluated for fitness. Parent chromosomes 

are then randomly chosen but biased towards fitness and subjected to reproduction operators, 

producing child chromosomes. Their fitness is evaluated and if novel, they replace the least 

fit individual in the population. The whole process including operator and parent selection is 

repeated unless an acceptable solution is found. In the extended version of the algorithm, 

populations are split into sub-populations and additional genetic operator migration is 

introduced, allowing individuals to move across sub-populations. Crossover recombines two 

parent chromosomes whereas mutation changes a value at random. “Survival of the fittest” is 

achieved over time, moving the population to the best solution for the docking problem. The 

fitness function plays an essential role in the selection process and determines how 

accurately it can predict the binding conformation. Starting ligand poses (chromosomes) are 

generated at random. Each chromosome contains protein-ligand mappings of interaction 

 45

Clic
k t

o buy N
OW!

PDF-XChange

w
ww.docu-track.comClic

k t
o buy N

OW!
PDF-XChange

w
ww.docu-track.com

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/


points (hydrogen bonds, hydrophobic points, conformation around rotatable bonds) and is 

given a fitness score according to evaluation of the scoring function.  

Irrespective of the stochastic (random or probabilistic) nature of the algorithm, it is 

generally highly reproducible but with some targets it is target-dependent, requiring more or 

longer GA runs to obtain a match to the crystallographic binding mode (Kirchmair et al, 

2006).  

 

2.10.1.2 Handling metal ions in GOLD 

GOLD uses coordination geometry templates which are mapped onto the metal 

coordinating protein residues in order to establish its coordination geometry. Fitting points 

are then created for unoccupied sites which are used in docking for ligand acceptor 

matching. The metal-ligand interaction is treated as pseudo-hydrogen bonding, where ligands 

are acceptors and the metal competes with hydrogen bond donors for ligand binding. The 

significance of metal treatment for this study is discussed in section 1.2.2.4. 

 

2.10.1.3 Scoring functions in GOLD 

Two scoring functions are implemented in GOLD, the force-field based GoldScore  

and the regression-based ChemScore. In addition, there is the option to use a user-specific 

scoring function. The GOLD implementation of ChemScore (ChemScoreGOLD) differs 

from the original scoring function (Kurogi et al 2001), since a clash penalty and an internal 

torsion term are added to the final score to penalise bad contacts and poor conformations. 

The GOLD scoring function GoldScore uses a set of empirical parameters from a modifiable 

parameter file. Some correlation was found with experimental binding affinities (Li et al 

2000), although it was originally designed for optimal pose selection (Okhanda et al 2001). 

The function uses a 6-12 potential Lennard-Jones function for the intra-molecular (internal) 

vdW score and a “soft” 4-8 for the intermolecular (external) score.  

 

 

 

2.10.2 LIGBUILDER 

LigBuilder (wang et al 2001) is structure -based drug design software. On the basis of 

the 3-dimensional structure of the target protein, it builds ligand molecules within the 

binding pocket. The program identifies the key interaction sites by analyzing the binding 

pocket of the target protein. For the identified sites a pharmacophore model is built which 
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could be applied to 3-dimensional database search for finding novel ligand molecules. 

Molecules are constructed using incremental construction and the minimization of 

conformation is performed during the building-up procedure. While the target protein is kept 

rigid, flexibility of the ligand molecules is considered. Molecules can be built in the site by 

growing or linking strategy. Built molecules are evolved by Genetic Algorithm. The fitness 

score of a molecule is evaluated by considering its chemical viability as well as binding 

affinity. Chemical rules are adopted for evaluating "drug-likeness" of the resultant 

molecules. Chemical stability, synthesis feasibility, and toxicity can also be taken into 

account by defining "forbidden structure" libraries. 

 

2.10.2.1 Growing strategy and linking strategy 

The central function of LigBuilder is constructing ligand molecules within the 

constraints of the target protein. LigBuilder supports two strategies to do this, i.e. growing 

strategy and linking strategy. To apply the growing strategy, you need to provide a pre-

placed "seed" structure inside the binding pocket and LigBuilder will subsequently add 

fragments onto it to build molecules. This strategy may be helpful when you have got an 

interesting lead compound and want to develop its derivatives to improve the bioactivity 

(lead optimization). To apply the linking strategy, you also need to provide a starting 

structure, which consists of several separated chemical fragments. These fragments should 

be pre-placed inside the binding pocket and would better to form favorable interactions with 

the target protein. Then LigBuilder will try to build molecular frameworks to link those 

fragments into integrated molecules. This strategy may be helpful when you try to find novel 

lead compounds (lead discovery).  
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Illustration of growing strategy and linking strategy 

 
 

2.10.2.2 Overall structure of LigBuilder 

LigBuilder has four main functional modules, i.e. POCKET, GROW, LINK, and 

PROCESS. POCKET is designed to analyze the binding pocket of the given protein and 

prepare the data necessary to run GROW or LINK. GROW is designed for performing 

growing strategy while LINK for linking strategy. The ligands generated by GROW or LINK 

will be collected in a data file and read by PROCESS to give the final viewable results.  
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2.10.3 Catalyst 

Catalyst provides a platform for pharmacophore generation and database searching 

(Olsen et al 2001). The pharmacophore is an important concept in medicinal chemistry and 

aids interpretation of structure activity relationships of a series of compounds for the 

identification of novel ligands. Pharmacophore models (also called hypotheses) comprise 

chemical features mapped to a coordinate point with a given tolerance sphere. These features 

represent hydrogen bond donors or acceptors, aliphatic or aromatic groups and positive or 

negative ionisable groups among others. The model can be made more specific by including 

exclusion volume spheres as steric constraints (representing regions in the protein) that must 

not be occupied by a ligand atom. In addition, a shape pharmacophore model can be 

constructed based on a ligand’s shape and used on its own or merged with the chemical 

feature model. The pharmacophore model can then be used to screen a compound database 

for compounds with matching features (Smellie et al, 1995).  

 

2.10.3.1 Pharmacophore model generation 

Feature-based pharmacophore models can be constructed manually based on a known 

bioactive conformation or in an automated fashion. Two algorithms are provided for 

quantitative and qualitative model generation. In the first case, the HypoGen algorithm 

requires a set of 15-25 diverse molecules with activities spanning at least 4 orders of 

magnitudes, which were determined under comparable assay conditions (Toba et al, 2006). 

These models can be used to predict affinity of screening hits. The HipHop algorithm 

(Verdonk et al, 2003) generates a common feature-based pharmacophore model based on 

two or more highly active and structurally diverse compounds. The model allows 

distinguishing between active and inactive compounds. A number of chemical features can 

be specified for automated hypothesis generation or new, customised features generated such 

as a zinc binding feature. Selection of an adequate training set is critical for successful 

predictions. Conformational models of the training set compounds can be created using a 

Monte Carlo approach to exhaustively cover conformational space by providing a diverse set 

of low energy conformers. Two methods exist, the fast method which is ideally used for 

database generation and the best method which implements the poling algorithm and should 

be used for hypothesis building. Poling promotes the generation of dissimilar conformers and 

removes redundancy by penalising close conformations. It can be combined with any 

conformational analysis method that seeks local minimisation of a penalty or energy 

function. It is implemented by adding an extra term to the energy function. Conformational 
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variation can be enforced for a set of interesting features or dissimilar parts in structurally 

related compounds. The number of generated conformers is molecule dependent, but a 

maximum of 50 conformers per ligand was suggested for database generation using the fast 

method.  

 

2.10.3.2 Database searching 

A number of 1D filters such as activity keywords or Molecular Weight can be 

specified in addition to the pharmacophore hypothesis for database screening. A pre-

generated multi-conformer compound database is mapped against the features specified in 

the pharmacophore hypothesis. Resulting hit compounds are evaluated by calculating a 

geometric “best fit” score which analyses the quality of matching features. Two algorithms 

can be applied for the search, either the fast flexible or best flexible methods. The fast 

algorithm uses only pre-generated conformers, whereas the best algorithm can slightly 

modify the conformers in order to achieve a fit.  

It handles conformational flexibility by pre-generating a representative set of diverse and low 

energy conformations with the poling algorithm and storing those conformations in the 

database. This multi-conformer database can be searched rigidly or flexibly, indicated by the 

fast or best search option. The fast algorithm only considers existing conformers and 

interrupts a search as soon as a pharmacophore matching conformation is found, whereas the 

best algorithm additionally ‘tweaks’ bond distances, angles and dihedral angles of pre-

generated conformers on the fly to achieve the best matches. Hit molecules can be ranked by 

their geometric fit values which indicate how well the chemical substructures were mapped 

onto the hypothesis feature location constraints and their distance deviation from the feature 

centres. High fit values indicate good matches with the maximum fit value set by the original 

ligand used to create the pharmacophore. 
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Chapter 3: InCa-SiteFinder: A method for structure based prediction of carbohydrate 

binding sites on proteins 

 

 

3.1 Abstract 

We present the development and optimisation of a new method called InCa-

SiteFinder to predict inositol and carbohydrate binding sites on the surface of the protein 

structures. It uses the van der Waals energy of a protein-probe interaction and amino acid 

propensities to predict carbohydrate binding sites. The protein surface is searched for regions 

that correspond to a favourable energy for a protein-probe interaction using a grid approach. 

These regions of favourable interaction energy are subsequently analysed to demarcate 

regions of high cumulative propensity for binding a carbohydrate moiety based on calculated 

amino acid propensity scores. These scores were obtained for carbohydrate binding sites 

using a Non-Redundant Dataset (NRD) of 375 protein structures.  In order to optimise the 

predictive capacity of the method an independent training set of 50 protein-carbohydrate 

complexes was retained to optimise thresholds values for the protein-probe energy and 

amino acid propensity. The optimised InCa-SiteFinder was tested on a test set of 80 protein-

ligand complexes. It efficiently identifies carbohydrate binding sites with high specificity 

and sensitivity. It was also tested on a second test set of 80 members containing 40 known 

carbohydrate binders (having 40 carbohydrate binding sites) and 40 known drug-like 

compound binder proteins (having 58 known drug-like compound binding sites) for the 

prediction of the location of the carbohydrate binding sites and to distinguish these from the 

drug-like compound binding sites. At 72.5% sensitivity the method showed 98.3% 

specificity. Almost all of the carbohydrate and drug-like compound binding sites were 

correctly identified with an overall error rate of 12.2%.   
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3.2 Introduction 

The functionality of a protein is closely controlled by the nature of molecules it can 

interact with. Even though the number of known structures of proteins has grown rapidly in 

the recent years (Tagari, Tate et al. 2006)  a large number of protein-ligand interaction sites 

remain uncharacterised (Laurie and Jackson 2005) . A number of approaches have been 

developed to make predictions about the function of a protein from its structure (Laskowski, 

Watson et al. 2005). Some methods look for motifs or domains associated with specific 

functions (Laskowski, Watson et al. 2005), others tend to look for characteristic arrangement 

of functionally important or conserved residues (Burgoyne and Jackson 2006). The function 

of a protein depends upon the nature of ligand it can interact with, hence demarcation of the 

ligand binding sites and identification of the type of ligand that can interact is important for 

the assignment of function to the protein structure as well as for rational structure-based drug 

design.  

 Carbohydrate binding proteins play an important role in cellular systems. 

Carbohydrate binding is involved in energy flow, cellular recognition and adhesion 

(Brandley and Schnaar 1986). Carbohydrate binding proteins are very diverse in structure 

and function (Bertozzi and Kiessling 2001). They are increasingly being considered as 

putative drug targets (Bertozzi and Kiessling 2001) because of their role in intra and inter-

cellular communication. Carbohydrate binding sites have been extensively studied (Weis and 

Drickamer 1996) in the past. However, only a few approaches developed for the prediction 

of carbohydrate binding sites (Taroni, Jones et al. 2000), (Shionyu-Mitsuyama, Shirai et al. 

2003) and (Malik and Ahmad 2007). Taroni et al used amino acid propensity for 

carbohydrate binding and identified the patches on the protein surface having an average 

propensity score above a specific threshold. Shionyu-Mitsuyama et al developed a set of 

rules from a dataset of 80 protein-carbohydrate binding sites that depicted, on a 3-

dimensional grid the probable positions of carbohydrate-interacting protein atoms. Using a 

set of only 10 atom types a 3-dimensional probability density map was created. Each point 

on this map represented the probability of occurrence of a protein atom which could interact 

with a carbohydrate. Using these interaction maps they predicted the carbohydrate binding 

sites. Malik et al trained a neural network using amino acid propensities for the prediction of 

carbohydrate binding sites. The training set comprised of 40 protein-carbohydrate complexes 

and the level of redundancy was reduced by removing protein sequences with more than 

50% sequence identity.  
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Here the development of a new computational method for predicting carbohydrate binding 

sites is presented. The overall aim was to develop a new computational method for 

predicting carbohydrate binding sites with high accuracy. The method differs from the 

previous carbohydrate binding site prediction methods in two important aspects. Firstly it 

uses 375 non-covalent protein-carbohydrate complexes for the derivation of amino acid 

propensity scores. This is more than used in calculation of amino acid propensities in the 

previous methods.  Secondly it uses a two-step procedure to identify sites.  In step one; it 

uses a grid-based approach to identify sites on the protein with a high probability of being a 

binding site, using the recently proposed method of Laurie and Jackson, 2005. In step two; it 

uses these sites and amino acid propensity scores to predict the location of carbohydrate 

binding sites. The ultimate aim of developing InCa-SiteFinder was to produce a method that 

could both locate likely binding sites and then distinguish the nature of the binding site, to 

ascertain if the site has the ability to preferentially bind a carbohydrate ligand. 
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3.3 Methods 

 

3.3.1 Construction of dataset for propensity calculation 

 Nearly 30,000 protein-ligand complexes present in PDBSUM (Laskowski, 

Hutchinson et al. 1997; Laskowski 2001; Laskowski, Chistyakov et al. 2005) with structural 

information were extracted from the PDB (Berman, Westbrook et al. 2000).  From these only 

protein-carbohydrate complexes having experimentally determined x-ray crystal structures 

with a resolution greater than 2.5Å were retained. In addition, complexes having either, a 

covalently bound ligand or involving a drug-like compound ligand or metallic ions or not 

having a classification in SCOP (version 1.69) (Murzin, Brenner et al. 1995) were further 

removed. A ligand was classified as non-covalently bound to the protein if none of its atom 

was within the covalent interaction distance. The covalent interaction distance for a specific 

pair of protein and ligand atom was the sum of their atomic radii plus a 10% tolerance limit.  

Only the best resolution complex with a unique carbohydrate name and unique SCOP 

superfamily are further retained. These comprised a non-redundant dataset (NRD) with only 

one carbohydrate representative for each SCOP superfamily. Hydrogen atoms were added to 

these protein-carbohydrate complexes using the QuacPac software (OpenEye). The 

definition of an atomic contact was taken from DrugScore (Gohlke, Hendlich et al. 2000) in 

which two atoms are considered to be in contact if the intervening distance between the 

atoms is less than the sum of their van der Waals radii plus 1Å. The cut-off therefore 

includes only short-range interactions. 

 

 

3.3.2 Calculation of amino acid propensities 

For a non-redundant database of over 375 protein-carbohydrate complexes 

propensities for a given amino acid to occur in a carbohydrate binding sites were calculated 

as the ratio of its likelihood to contribute to the carbohydrate binding site surface to its 

likelihood to contribute to the complete protein surface. The area occupied by an amino acid 

i in the carbohydrate binding site was considered as the difference in solvent accessible 

surface area when calculated in the presence and absence of carbohydrate. The Propensity of 

an amino acid, i, to occur in carbohydrate binding site is given by: 

 

 Propi = ((ΔCBS_SASAi/Σj=1
20ΔCBS_SASAj)/(SASAi/Σj=1

20SASAj)) (3.1) 
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Where, ΔCBS_SASAi is the solvent accessible surface area buried during the binding of 

carbohydrate molecule to the cleft for a specific amino acid i. Σj=1
20ΔCBS_SASAj is the total 

solvent accessible surface area of all amino acids buried. SASAi is the solvent accessible 

surface area contributed by a specific amino acid i on the protein surface. Σj=1
20SASAj is the 

total solvent accessible surface area of all amino acids of the protein. For comparison the 

amino acid propensities of drug-like compound binding sites were also determined in the 

same way. These were calculated from a non redundant database of 358 complexes of 

protein-drug-like compounds. The ligands were considered as drug-like if they conformed to 

Lipinski’s rule of 5(Ghose, Viswanadhan et al. 1999; Viswanadhan, Ghose et al. 1999; 

Viswanadhan, Ghose et al. 1999; Lipinski, Lombardo et al. 2001) and did not contain a 

carbohydrate moiety. 

 

 

3.3.3 InCa-SiteFinder 

The process of calculating the protein-probe van der Waals interaction energy is 

described in detail in Laurie and Jackson, 2005. Briefly, the protein atom coordinates are 

extracted from a PDB file and hydrogen atoms are added to these using the method of 

Jackson et al (1998). The protein atoms are placed in a 3-dimensional box, which is divided 

into a cubic grid of resolution 0.9 Å. Using the program Liggrid the van der Waals energy of 

interaction is calculated between the protein and a methylene (-CH3) probe placed at each 

grid point. The energy is calculated using the GRID forcefield parameters as described by 

Jackson 2002. Grid points with a “protein-probe interaction” energy more favourable 

(negative) than a predetermined threshold are retained (Figure 3.1). 

For these grid points, carbohydrate binding propensity (CBP) and drug-like 

compound binding propensity (nCBP) scores are calculated by considering the identity of 

amino acid residue whose atoms fall under the interaction zone. An amino acid is considered 

to be interacting with a grid point if at least one of its atoms is within 1.6 Å of the grid point. 

The overall carbohydrate binding propensity (CBP) and drug-like compound binding 

propensity (nCBP) scores of the grid point, k, are defined as: 

 CBP Scorek = (Σi=1
20niCBPi/N) (3.2) 

 

 nCBP Scorek = (Σi=1
20(ni)*(nCBPi)/N) (3.3) 
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Where, CBP Scorek and nCBP Scorek are the carbohydrate and drug-like compound binding 

propensity scores of grid point k; ni is the number of atoms of a specific amino acid (i) within 

1.6 Å of the grid point. CBPi and nCBPi are the propensities of the amino acid (i) to occur in 

the carbohydrate or drug-like compound binding sites respectively. N is the total number of 

atoms interacting with the grid point k. 

 

Protein in Grid of points with intra point 

distance being 0.9 Å 

 
 

Figure 3.1: An initial van der Waals energy cut-off is used to retain grid points in 

energetically favourable binding regions (small filled circles). A carbohydrate binding site 

occurrence propensity score cut-off is used to remove grid points in regions of low CBP 

score (small grey circles). 

The grid points having a propensity score below a predetermined threshold values are 

removed (Figure 3.1). The remaining grid points are clustered on the basis of their spatial 

proximity. A cluster is defined as the group of grid points wherein none of the grid points has 

its centre farther than 1.0Å from the centre of the nearest grid point. For each of the clusters 

a sum of CBP and nCBP scores of the grid points are calculated according to;  

PSSBCi = Σj=1 nCBP Scorej (3.4) 

` 

` 

Protein atoms 

Grid point with propensity score less than 

the cut-off 

Grid point with propensity score greater 

than the cut-off 

Grid point with probe-protein interaction energy less 

favourable than the energy cut-off 

 56

Clic
k t

o buy N
OW!

PDF-XChange

w
ww.docu-track.comClic

k t
o buy N

OW!
PDF-XChange

w
ww.docu-track.com

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/


 

PSSBnCi = Σj=1 nnCBP Scorej (3.5) 

 

Where, PSSBCi and PSSBnCi are the propensity scores of the site, i, to bind carbohydrates 

and drug-like compounds respectively; n is the total number of the grid points in the cluster. 

The sites are then subjected to a threshold, whereby the sites having scores less than a given 

cut-off are removed. The remaining sites are ranked in order of their PSSBC. For each site a 

differential propensity score (DPS) is calculated as the difference in PSSBC and PSSBnC. 

DPS represents the overall preference of the predicted site for carbohydrate over drug-like 

compound ligands. DPS is defined as:  

 DPSi = (PSSBCi  - PSSBnCi) (3.6) 

Where, DPSi is the differential propensity of the site i. A cut-off for the DPS is applied on 

the predicted sites in order to optimally identify carbohydrate binding sites over drug-like 

compound binding sites. 

 

3.3.4 Definition of a true carbohydrate binding site 

Since InCa-SiteFinder predicts a number of potential ligand binding sites, a filter is 

considered whereby a site is identified as a true carbohydrate binding site if it is at least 

partially occupied by a carbohydrate ligand. Occupancy is defined as the percentage of the 

space of the predicted site occupied by the ligand atoms. A site was assumed to be a true 

carbohydrate binding site if the occupancy was greater than 25%. For estimating the volume 

of the predicted binding site it is placed in a cubic grid of resolution 0.5 Å. The grid points 

within 2.0 Å of the binding site points are counted and multiplied by 0.125 Å3. The method 

is based on a program called PDBVolume which has been used to estimate the volume of 

proteins within a standard deviation 3.3% of the actual volume. (Laurie and Jackson 2005) 

 

3.3.5 Optimisation of InCa-SiteFinder performance 

For the assessment of the performance of the InCa-SiteFinder a number of parameters 

were calculated. Precision is a measure of the correspondence of the predicted site and actual 

ligand volume. This parameter was calculated during the optimisation of Q-SiteFinder 

(Laurie and Jackson 2005). It was calculated by taking the percentage of the volume of the 

predicted binding site that was occupied by the ligand atoms. The second parameter 

calculated was coverage. It was calculated by taking the percentage of the ligand atoms that 
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are covered by the predicted site. Precision and coverage alone do not depict the actual 

success of the prediction method. Hence, to give a single parameter for performance 

assessment precision was multiplied by coverage (PxC) to obtain a single parameter, tau (Γ).  

The performance of InCa-SiteFinder to predict the carbohydrate binding site was 

optimised and evaluated on a training dataset of 50 protein-carbohydrate complexes (none of 

these belonged to the SCOP superfamilies of the dataset used to derive the amino acid 

propensities) by 10 fold cross validation. The optimisation of InCa-SiteFinder involved 

finding optimal cut-off values for the van der Waals energy of interaction and probe 

propensity score. Members of the training set were divided into 10 groups. For each group 

the members were classified into two subsets.  

First subset had 45 members and was used as an optimisation dataset. During the 

optimisation process the putative ligand binding sites were predicted for the members of the 

optimisation set using a range of van der Waals energy cut-offs (from -0.8 to -1.7 Kcal/mol) 

and a range of probe propensity score cut-offs (0.125 to 1.25). The incremental step for van 

der Waals energy was -0.1 Kcal/mol and for the propensity score 0.125. For each of the 

putative ligand binding sites predicted during optimisation process, Γ was calculated for all 

combinations of van der Waals energy and probe-propensity score cut-off.  

The second subset had 5 members and was used as an evaluation dataset for the 

evaluation of the performance of InCa-SiteFinder under the optimised values of the van der 

Waals energy and propensity score cut-off derived from the optimisation dataset. The cut-

offs giving the best Γ values in the optimisation set were used to predict 99 putative ligand 

binding sites for each the member of the evaluation set. These were ranked according to their 

PSSBC score. For evaluation purposes, sites which were occupied by at least 25% of ligand 

volume were considered as true carbohydrate binding sites. 

This process was repeated for all 10 groups, thus predicting the putative ligand 

binding sites for each evaluation set member once.  The results were processed to obtain 

“Receiver operating characteristic” plots by plotting Sensitivity versus 1-Specificity. 

 

3.3.6 Calculation of sensitivity and specificity 

The sensitivity was calculated by dividing the number of correctly predicted sites 

(true positives, TP) as defined in section 3.2.4, in the top ‘m’ predicted sites by the total 

number of predicted carbohydrate binding sites (true positives plus false positives, (TP + 

FP)), where the value of ‘m’ is incremented by a factor of 1 each time. False positive rate or 

one minus specificity is calculated by dividing the number of predicted sites in the top ‘m’ 
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that have less than 25% occupancy of carbohydrate like ligand (see section 3.2.4). A random 

prediction would predict 50% true positives in the top x number of sites. The true positive 

rate and false positive rate are defined as: 

 

 Sensitivity = TPR = (TP)/(TP + FN) (3.7) 

 

 1- Specificity = FPR = (FP)/(FP + TN) (3.8) 

 

The plotting of true positive rate against false positive rate produces a “Receiver Operating 

Characteristic” (ROC) curve. The efficiency of a scoring function for ranking the predicted 

ligand binding sites is reflected in the ROC curve. Area under the curve (AUC) is a measure 

of accuracy of prediction. AUC for a random predictor is 0.5. If the correlation between the 

real ligand binding sites and ranked predicted sites based on a given scoring function is 

positive, the value of AUC is greater than 0.5. If the correlation is negative the AUC value is 

less than 0.5. For perfect prediction the AUC value approaches the value of 1.0. 

 

 3.3.7 Optimisation of InCa-SiteFinder 

 

3.3.7.1 Determination of PSSBC cut-off for classifying a region as a site 

A test set of 45 protein-carbohydrate complexes having 45 carbohydrate binding sites 

was created (Appendix-III) to determine the cut-off value of PSSBC. These complexes had 

no overlap with the 50 complexes used for optimising the energy and amino acid propensity 

cut-offs. Using InCa-SiteFinder the top 30 putative ligand binding sites were predicted for 

each member of the dataset. These sites were ranked in decreasing order of their PSSBC 

values. The overall success rate for the jth ranked prediction was calculated by dividing the 

total number of correctly predicted true carbohydrate binding sites (NTCBS), as defined in 

section 3.2.4, at the jth rank, by the total number of true carbohydrate binding sites present in 

the entire database (NTBS). The value of ‘j’ is incremented by a factor of 1 each time to get 

a series of success rates for all of the 30 ranks. The success rate for rank, j, was defined as: 

  

 Success ratej = (Σi=1
nNiTCBS /NTBS)x 100 (3.9) 
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Where, NiTCBS is the number of true carbohydrate binding site correctly predicted for test 

set member i, in rank, j. n is the total number of protein-carbohydrate complexes and the 

NTBS is the number of total true carbohydrate binding sites in the dataset. In addition, an 

average site score for each rank, j, was similarly calculated as: 

 Average Site Scorej = (Σi=1
nPSSBCi )/n (3.10) 

Where, PSSBCi is the propensity score of the ith site to bind carbohydrates and n is total 

number of complexes in the dataset. A cut-off for the PSSBCi was determined (from the 

plots of the average site score and success rate of predictions versus site ranking, see Figure 

3.6) such that none of the true carbohydrate binding sites scored less than the cut-off. 

 

3.3.7.2 Determination of differential propensity score cut-off for carbohydrate binding 

site 

A second test set of 40 protein-carbohydrate complexes and 40 complexes of protein-

drug like compounds was created (Appendix-IV). This dataset did not overlap with the 

training dataset (section-4.2.5) or the first test (section-4.3.7.1). The values for the van der 

Waals energy of probe-protein interaction and the probe propensity score cut-offs of the 

training set (section-4.2.5) were used to predict the top 30 sites for each member of the 

dataset.  For each of the predicted sites a differential propensity score (DPS) was calculated 

(section-4.2.3). The success rate of the method was calculated according to the equation 3.9. 

Average score for the ranked sites were calculated as: 

 

 Average Site Scorej = (Σi=1
nDPSi )/n (3.11) 

This was used to determine an effective cut-off value for DPS which allows 

differentiation of carbohydrate and drug-like compound binding sites (section 3.4.4). 

 

 

3.3.8 Dataset for evaluation of the ability of the InCa-SiteFinder to distinguish 

between the carbohydrate binding sites and drug-like compound binding sites 

A third non-overlapping test dataset (Appendix-V) was prepared for the evaluation of 

the ability of the method to classify the carbohydrate and drug-like compound binding sites. 

It comprised of 40 protein-carbohydrate complexes and 40 protein-drug-like compound 

complexes. In order to be included in this dataset, members were not permitted to have 

SCOP superfamily representatives in the training or previously used test sets (used in 
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sections 3.2.5, 3.2.7.1 and 3.2.7.2). Also no two members of this dataset were permitted to 

belong to the same SCOP superfamily. This retains two sets; 1) 40 drug-like compound 

binders which had 58 drug-like compound binding sites and 2) 40 carbohydrate binders 

which had 40 carbohydrate binding sites. For each of the protein-ligand complexes the top 

30 sites were predicted, scored for PSSBC, PSSBnC and DPS. On the basis of DPS the sites 

were predicted to be either carbohydrate binding or drug-like compound binding. The 

predictive capacity of InCa-SiteFinder was evaluated in terms of specificity and sensitivity 

calculated according to equations 3.7 and 3.12.  

 Specificity = (TN)/(FP + TN) (3.12) 

 

 

3.4 Results and discussion 

 

3.4.1 Amino acid propensity to interact with carbohydrate molecule 

A number of statistical analyses were carried out to identify a property that has 

maximum potential for differentiating various types of ligand binding site (see Appendix I). 

The profile of amino acid propensities for occurrence in the carbohydrate binding site 

calculated as a function of solvent accessible surface area (see section-4.2.2) was very 

different from drug-like compound binding sites (Figure 3.2).  
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Figure 3.2: The propensity of amino acids to occur in the binding site of carbohydrates and 

drug-like compounds is shown.  
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The propensities of arginine, aspartic acid, cystine, glutamic acid, isoleucine, leucine, 

lysine, methionine, showed maximum differentiation for carbohydrate and drug-like 

compound binding sites. For carbohydrate binding sites and drug-like binding sites 

tryptophan has the highest propensity. The propensity profiles of carbohydrate binding sites 

and drug-like binding site are very different. In a number of studies tryptophan has been 

identified as an important residue for the ligand binding (Gao, An et al. 2005). However, for 

carbohydrate binding sites a high occurrence of arginine, lysine, glumatic and asparatic acid, 

along with the reduced presence of isoleucine, leucine and cystine is seen to be indicative 

(Figure 3.2).  

 

3.4.2 10-fold cross-validation and optimisation of InCa-SiteFinder 

The performance of InCa-SiteFinder was optimised by 10 fold cross validation (see 

methods). The results are summarised in a 2-dimensional matrix with varying protein-probe 

van der Waals interaction energy and probe’s carbohydrate binding site propensity score cut-

off values. The optimal cut-off values are tabulated in Table-3.1. The cut-off values obtained 

in the optimisation set were used to predict the carbohydrate binding sites for the evaluation 

set members. The results are plotted in a receiver operating characteristic curves (Figure 3.3).  
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Set No. Probe’s Propensity Score Protein-probe interaction Energy 

(kcal/mol) 

1 0.25 -1.0 

2 0.25 -1.0 

3 0.25 -1.1 

4 0.375 -1.0 

5 0.125 -1.0 

6 0.25 -1.1 

7 0.25 -1.0 

8 0.25 -1.0 

9 0.25 -1.0 

10 0.25 -1.0 

 

Table-3.1: The pairs of cut-offs for probe’s propensity score and protein-probe vdW 

interaction which produced best Γ values during 10 fold cross validation. 
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Figure 3.3: Receiver operating characteristic curve illustrating the success of the 

carbohydrate binding site prediction. The red curve represents the performance of the 
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method over the entire test dataset. Blue curve represents the performance of the method 

after peripheral carbohydrate binders were removed from the dataset. These peripheral 

protein-carbohydrates had only marginal atomic interactions. 

 

The area under the red-curve (AUC) is 81.73%. Even though InCa-SiteFinder reaches 

a sensitivity of 86% with the specificity of 81%, 7 out of 50 carbohydrate binding sites could 

not be predicted. Visual examination of the structures revealed that in all of the 7 cases the 

carbohydrate interaction with the protein receptor was limited to just a few atoms of the 

ligand molecules which occupied peripheral regions on the protein surface. One example is 

depicted in Figure 3.4. Such sites are difficult to predict and are of limited interest due to 

their small size. Functionally important sites generally occur in deep pockets with 

considerable coverage of the ligand molecule. If these proteins are excluded from the test 

dataset the performance of InCa-SiteFinder improves. The AUC increased from 81.73% to 

95.8%. The method showed absolute sensitivity at 83% specificity. The ROC curve for the 

reduced test set is shown (blue curve) in Figure 3.3. 

 
Figure 3.4: Clathrin assembly protein in complex with Inositol hexakisphosphate. 
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3.4.3 Validation of optimised InCa-SiteFinder 

The optimisation matrices calculated for identification of the best possible 

combination of protein-probe van der Waals interaction energy and the probe’s carbohydrate 

binding propensity, are very similar (see Table-3.1 and Appendix II). An average Γ-matrix 

was calculated by taking the average of 10 Γ-matrices obtained during 10-fold cross-

validation (Figure 3.5). The combination of van der Waals energy cut-off of -1.0 Kcal/mol 

and propensity score cut-off of 0.25 produced the best result (as seen in the maximum value 

for Γ (where Γ = P x C) Figure 3.5). These cut-off values were used for the prediction of 45 

ligand binding sites for the 45 members of the second validation set (see Section 3.3.7.1). 

The predicted ligand binding sites were ranked in the decreasing order of their PSSBC 

(calculated according to equation 3.4) and these values were used as the basis for 

determining the PSSBC cut-off.  

 

                                
Figure 3.5: Heat map of the average Γ value. The rows represent the variation in the van der 

Waals energy cut-off and the columns represent the propensity cut-off for amino acids to 

occur in the carbohydrate binding site. 
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3.4.4 Determination of PSSBC cut-off value 

The ranked predicted ligand binding sites success rate and the average score for each 

rank were calculated using equation 3.9 and 3.10 respectively. A plot of these values for each 

rank is given in Figure 3.6. The PSSBC cut-off was determined such that all of the true 

carbohydrate binding sites scored more than the cut-off. The success rate reaches the value 

of 100% when the average score of the predicted site is around 60. However, as the test 

dataset is small, a conservative cut-off value of 30 was chosen, to prevent losing any low 

PSSBC scoring carbohydrate binding sites. 
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Figure 3.6 Success rate (%) plotted along with average score (average PSSBC values) versus 

predicted binding site (ranked order). 

 

 

3.4.5 The importance of differential propensity score for the recognition of 

carbohydrate binding sites 

The success rate (calculated according to equation 3.9) in identifying the potential 

carbohydrate binding sites was plotted along with the average DPS values (calculated 

according to equation 3.11) for each of the top 30 sites (Figure 3.7) ranked according to 
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PSSBC the propensity score of a site to bind carbohydrates. The carbohydrate binding sites 

have more positive DPS scores and majority of the carbohydrate binding sites are 

concentrated in the top 4 ranks. Drug-like compound binding sites have more negative DP 

scores and are concentrated in the last 4 ranks. In the middle region of the DPS range both 

carbohydrate and drug-like compound binding sites were present.  

 From the Figure 3.7a and Figure 3.7b two cut-off values were determined. The sites 

having DPS of more than 10 was considered to be purely carbohydrate binding site and a site 

was considered to be drug-like compound binding site if its DPS value was less than -20. 

The sites having DPS values between 10 and -20 were considered to be of dual nature and 

able to interact with both type of ligands.  
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Figure 3.7a Success rate (%) plotted along with DPS for the determination of its cut-off 

values. 
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Figure 3.7b Success rate (%) plotted along with DPS for the determination of its cut-off 

values. 

 

3.4.6 Evaluation of DPS and threshold values 

Among the members of the DPS validation dataset (with 58 drug-like and 40 

carbohydrate binding sites) out of 98 ligand binding sites 30 are identified as carbohydrate 

binding sites and 64 site are classified as drug-like compound binding sites. For the 

remaining 4 proteins (all carbohydrate binders) no site could be identified as true 

carbohydrate binding sites or drug-like compound binding site. Among 30 sites predicted to 

be carbohydrate binding sites 29 were true carbohydrate binding sites. The remaining 1 was 

actually a drug-like compound binding site wrongly classified as a carbohydrate binding site. 

Among the sites predicted to be drug-like compound binding sites 57 out of 64 predicted 

sites were true drug-like compound binding sites and 7 were actually carbohydrate binding 

sites wrongly predicted to be drug-like compound binding sites. The overall specificity of the 

method was calculated (according to equation 3.12) to be 0.983 and the sensitivity 

(calculated according to the equation 3.7) was 0.725. 
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3.5 Some examples of site prediction 

Two examples of the correct predictions are shown in Figure 3.8. These sites show 

the variation in prediction. The precision of predicted carbohydrate binding sites depends 

upon the ligand and binding site-character. Some of the predicted sites have high precision 

and high coverage (Figure 3.8a) whereas in other cases the site may have higher coverage of 

ligand but with less precision (Figure 3.8b). Sites with high precision and low coverage are 

generally smaller sites that occupy only part of ligand binding site. Such sites are not 

considered in this method as ligand binding sites because they are removed due to the cut-off 

of PSSBC, the propensity score of a site to bind carbohydrates.  

 

 
 

Figure 3.11: (a) Galactose molecule from 5abp covered by the predicted site. 
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Figure 3.11: (b) Dideoxy-4-amino glucopyranoside from 1hx0 inside the predicted site. 

 

The average volume of all of the sites predicted for the carbohydrates on the surface of the 

test set was 142.6 Å3. The average volume of the correctly predicted sites is 920 Å3. The 

average tau value for the correctly predicted carbohydrate binding sites is 324.32.  
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3.6 Conclusions 

 

We have presented a method, InCa-SiteFinder, for the identification of carbohydrate 

binding sites by first locating the energetically favourable pockets followed by identifying 

the regions with high cumulative propensity for binding carbohydrates. It is able to correctly 

predict the carbohydrate binding site as seen in the ROC plots (Figure 3.3). This ability can 

be attributed to the application of the combination of using a van der Waals energy of 

protein-probe interaction developed in the Q-SiteFinder method (Laurie & Jackson, 2005) 

with the propensity for binding carbohydrate. The carbohydrate binding sites have been 

shown to be rich in aromatic residues like tryptophan (Gao, An et al. 2005). Presence of such 

residues in a site increases the potential for van der Waals energy of interaction due to the 

increase in planar surface area. These residues are also thought to form CH/pi interactions 

with the carbohydrates by orienting their planar surface for the stacking arrangement 

(Petrokova, Vondrackova et al. 2005). Also an increased occurrence of residues like 

arginine, lysine, and glutamic acid coupled with the relative reduced presence of residues 

like glycine, leucine and isoleucine will give the site a greater potential for making hydrogen 

bonds. Van der Waals energy alone cannot discriminate between different types of ligands, 

hence, the use of the propensity scores in combination with protein-probe interaction 

energetic criteria yields better results. The method is also able to distinguish the carbohydrate 

binding sites from drug-like compound binding sites with very high specificity (0.983) and 

sensitivity (0.725).  

The value of the differential propensity (DPS) score to distinguish the preference of 

the predicted site for carbohydrate over drug-like compound ligands is a key factor in the 

success of InCa-SiteFinder. Sites with high positive values are almost always carbohydrate 

binder. On the other hand the sites with greater negative values are mostly drug-like 

compound binding sites. This is valuable information as the carbohydrate binding sites that 

do not bind drugs-like molecules are easily identified. More remarkable still is the 

identification of drug-like binding sites with greater success than the identification of 

carbohydrate binding sites. Though our aim was the prediction of carbohydrate binding sites 

we have noted the potential use of InCa-SiteFinder in identification of drug-like binding 

sites, although we have not attempted to optimise the method for this purpose. The sites with 

dual propensity to bind carbohydrate and drug-like compounds have the DPS values between 

10 and -20. It is interesting to speculate that the tool developed here may form the basis for a 

method that could not only discriminate between different types of functional site, but also 
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facilitate the process of structure-based drug design. In the later case an ability to 

characterise sites that are amenable to binding drug-like molecules are of great interest for 

medicinal applications, including blocking protein-protein interactions and for design of 

competitive inhibitors.  
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3.8 Appendices 

Appendix I: Statistical analysis of Ligand binding sites. 

 

Secondary structure composition of ligand binding sites. 

 

Protein-carbohydrate complexes 
Protein-drug like compound 

complexes 

Helix Beta Coil Helix Beta Coil 

26.12 19.97 53.9   30.73 22.83 46.43 

 

 

Electrochemically classified amino acid composition of ligand binding sites. 

 

Protein-carbohydrate complexes 
Protein-drug like compound 

complexes 

Charged Polar Hydrophobic Charged Polar Hydrophobic 

31.13 21.6 47.26   21.94 22.59 55.46 

 

 

Amino acid frequencies 

Non-Catalytic ligand binding sites. 
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Catalytic ligand binding sites 

Catalytic site Analysis
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Carbohydrate binding sites. 

Carbohydrate binding Site Analysis
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Drug-like compound binding sites. 

Drug-like Ligands binding Site Analysis
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Appendix II: Pictures of 10 fold crossvalidation. 

 
 

Appendix-III 

1awb, 1b55, 1bdg, 1bq3, 1btn, 1bwn, 1dbo, 1djx, 1djy, 1dkp, 1dkq, 1e3z, 

1ece, 1fao, 1fgy, 1fhw, 1fhx, 1g0h, 1ga2, 1gca, 1gjw, 1gr0, 1gzq, 1h0a, 

1h10, 1hfa, 1hg2, 1hx0, 1i82, 1i9z, 1ima, 1imb, 1j8v, 1kwf, 1lbx, 1mai, 

1nu2, 1p1h, 1q6c, 1ua7, 1unq, 1w2c, 2bqp, 2nlr, 5abp. 
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Appendix-IV: Protein-carbohydrate and protein-drug-like compound complex dataset 

for the determination of DPS cut-off value 

Carbohydrate binders: 

1a78, 1af6, 1b4d, 1b8o, 1b9z, 1bb5, 1bb6, 1bb7, 1bwn, 1bwv, 1byd, 

1byk, 1c39, 1c7s, 1d0k, 1djx, 1dkp, 1dmb, 1e55, 1e8v, 1eou, 1eu8, 

1exa, 1f0p, 1f8c, 1f8d, 1f8r, 1fa2, 1fbh, 1fd7, 1fhw, 1fpd, 1g0c, 

1g97, 1gjw, 1gpe, 1gs4, 1gup, 1gx4, 1gz9 

 

Drug-like compound binders: 

13gs, 19gs, 1a0j, 1a28, 1a4k, 1a9u, 1aax, 1aqb, 1auj, 1az8, 1b11, 

1b3d, 1b8y, 1b9s, 1b9v, 1bh6, 1bj0, 1bju, 1bjv, 1bl6, 1bmk, 1bn1 

1bn3, 1bn4, 1bnn, 1bnt, 1bnu, 1bnv, 1br6, 1bu5, 1bzc, 1bzj, 1bzs 

1c3b, 1c3r, 1c84, 1cbq, 1cbs, 1cet, 1cgk. 

 

Appendix-V: Test set for determining the performance of DPS cut-off value 

Carbohydrate binders: 

1gi6, 1gii, 1gij, 1gp6, 1gwq, 1h01, 1h60, 1h62, 1h83, 1hxc, 1hy7, 

1i7g, 1i8z, 1i91, 1i9n, 1i9o, 1i9q, 1ia2, 1ia3, 1ia4, 1ie9, 1if7, 

1if8, 1if9, 1iwh, 1j3k, 1j4h, 1j4i, 1j78, 1j96, 1jcs, 1jgu, 1jho, 

1jhq, 1jio, 1jk3, 1jnq, 1jqe, 1jtv, 1k3t. 

 

Drug-like compound binders: 

1jr0, 1jvy, 1khz, 1l5k, 1l9n, 1lbf, 1llr, 1lr5, 1lwj, 1m26, 1m6p, 

1ms1, 1ms9, 1n9b, 1nb5, 1nmu, 1nnc, 1o45, 1pk9, 1pr4, 1pwb, 1q23, 

1qho, 1qi3, 1qnr, 1qw8, 1r82, 1rk2, 1rq5, 1rv0, 1s0j, 1tw3, 1u30, 

1ua3, 1ugy, 1umz, 1ur8, 1urd, 1uz8, 1v3c. 
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Chapter 4: An Information theory-based Scoring Function for the 

Structure-based Prediction of Protein-Ligand Binding Affinity 
 

 

4.1 Abstract 

 The development and validation of a new knowledge based scoring function 

(SIScoreJE) to predict binding energy between proteins and ligands is presented. SIScoreJE 

efficiently predicts the binding energy between a small molecule and its protein receptor. 

Protein-ligand atomic contact information was derived from a Non-Redundant Dataset 

(NRD) of over 3,000 x-ray crystal structures of protein-ligand complexes. This information 

was classified for individual “atom contact pairs” (ACP) which are used to calculate the 

atomic contact preferences. In addition to two schemes generated in this study we have used 

a large number of other atom-type classification schemes. The preferences were calculated 

using an information theoretic relationship of joint entropy. Among 18 different atom-type 

classification schemes “ScoreJE atom type set2” (SATs2) was found to be most suitable for 

our approach. To test the sensitivity of the method to the inclusion of solvent, Single-body 

Solvation Potentials (SSP) were also derived from the atomic contacts between the protein 

atom types and water molecules modelled using AQUARIUS2. Validation was carried out 

using an evaluation dataset of 100 protein-ligand complexes with known binding energies to 

test the ability of the scoring functions to reproduce known binding affinities. A combined 

SSP/ScoreJE (SIScoreJE) performed significantly better than ScoreJE alone. Also SIScoreJE 

and ScoreJE performed better than GOLD::GoldScore, GOLD::ChemScore, and XScore. 
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4.2 Introduction 

The success of in silico approaches for structure-based drug design depend on the 

timely application of the principles governing the dynamics of ligand-protein interactions 

(Rauh, Klebe et al. 2004). The current approach of docking involves generating favourable 

ligand orientations in the protein binding site, by sampling conformational space, followed 

by scoring these by their predicted interaction energy (Klebe 2006). The limitation in the 

scoring step stems from the time needed to score each potential solution and the level of 

accuracy required for the calculation of the interaction energy, or at the very least, the correct 

discrimination of active from inactive compounds. A number of simplified scoring functions 

have been developed which are fast and easy to apply but provide only moderate levels of 

accuracy.  Hence continued efforts are needed to improve upon existing scoring functions. 

Current, scoring functions used to estimate ligand-protein affinity can be classified 

into three categories: first-principle methods, knowledge-based methods and finally, 

regression-based scoring functions (Zentgraf, Steuber et al. 2007). Knowledge-based scoring 

functions are derived from the quantification of frequencies of interacting atomic pairs 

observed in protein-ligand complexes (Gohlke and Klebe 2001). The process of atomic-pair-

interaction-frequency quantification has been based on a number of mathematical 

relationships. The earliest example of such a function was in the field of protein folding 

where Boltzmann’s law was used to derive the potential of mean force for interacting residue 

(Tanaka and Scheraga 1976; Hendlich, Lackner et al. 1990; Sippl 1990). Later, similar 

functions were developed for scoring ligand-protein interactions. Wallqvist et al. (Wallqvist, 

Jernigan et al. 1995) studied a dataset of 38 complexes, calculating the frequencies of atomic 

interactions at the protein-protein interface and converted these into an atom-atom preference 

score using the ratio of fraction of the total interface area contributed by each pair to the 

product of the fraction of their respective contributions to the surface of respective protein. 

For a set of 30 proteases-inhibitor complexes, Verkhivker et al. (Verkhivker, Appelt et al. 

1995) used the inverse Boltzmann law to develop distance-dependent pair potentials from 

interacting atoms in combination with conformational entropic (Pickett and Sternberg 1993) 

and hydrophobic (Sharp, Nicholls et al. 1991) terms. Using this scoring function they could 

estimate the affinity of HIV-1 proteases for several different inhibitors. SMoG-Score was 

developed from 109 crystal structures using statistical mechanics (DeWitte and Shakhnovich 

1996). Potentials of mean force were derived by Muegge et al. using the inverse Boltzmann 

law by converting the distance dependent number density of interacting atom pairs from a 

dataset of 697 protein-ligand complexes into their respective Helmholtz interaction free 
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energies (Muegge and Martin 1999; Muegge, Martin et al. 1999). Mitchell et al. developed 

BLEEP using a dataset of 820 protein-ligand complexes with hydrogen atoms added (using 

HBPlus (McDonald and Thornton 1994)) and used the inverse Boltzmann law (Mitchell et 

al. 1999). A semi-empirical pair-potential for Ne-Ne was used as a reference state. They 

further derived BLEEP-II by including interactions of protein and ligand with water 

molecules (explicitly added using Aquarius2 (Pitt and Goodfellow 1991)). Gohlke et al 

(Gohlke, Hendlich et al. 2000) derived DrugScore using distance-dependent pair-potentials 

from a dataset of 6026 protein-ligand complexes and incorporated solvent accessible surface 

area based solvation potentials from a database of 1376 protein-ligand complexes. Cline et al 

(Cline, Karplus et al. 2002) used an information theoretic relationship of mutual information 

to quantify information in amino-acid contact potentials for protein structure prediction. 

They studied the contribution of amino-acid character in terms of hydropathy, charge, 

disulphide bonding and residue burial to the mutual information.  

The Boltzmann law is very useful for determining the interaction energy values from 

a database of the observed frequencies of joint occurrences. The variation in temperature 

factors for the protein-ligand atoms (Finkelstein, Gutin et al. 1995) give rise to heterogeneity 

in the interaction database which complicates the application of the inverse Boltzmann law. 

However, even though knowledge-based methods are susceptible to the artefacts in data 

collection they have performed surprisingly well, often better than force-field based scoring 

functions (Sternberg, Bates et al. 1999; Wang, Lu et al. 2004).  

Here the development of a novel knowledge-based scoring function: ScoreJE - derived from 

the ligand-protein interacting atomic pairs is presented. Our approach differs from the 

previous scoring functions in two important aspects. Firstly, it uses over 3,000 structurally 

non-redundant protein-ligand complexes. This is more complexes than used in constructing 

previous knowledge-based scoring functions, the only exception being DrugScore, which 

uses a 30% sequence identity cut-off for the creation of the protein non-redundant dataset. 

Secondly in using the mathematical relationship of joint entropy for deriving the atomic 

contact preferences it bypasses the problems implicit in the application of the inverse 

Boltzmann law, eliminating the need for a reference state. These preferences are derived for 

describing the energetics of short-range atomic interactions. A Single-body Solvation 

Potential (SSP) is developed using the joint entropy of protein-water atom contact 

probabilities and is combined with ScoreJE to obtain SIScoreJE (SSP included ScoreJE). 

These functions were tested for their ability to predict the binding energies of test datasets 

containing 100 protein-ligand complexes.  
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The overall aim was to develop a novel knowledge-based scoring function for predicting 

protein-ligand interaction energy. The main objective was to calculate a non-redundant set of 

atomic contact preferences for the protein-ligand and protein-water interactions and to use 

these to develop a scoring function using information theory. A secondary aim was to 

evaluate the potential of using information theory and new atom type classification schemes 

(alongside popular atom-type classification schemes currently in use) to optimally describe 

protein-ligand interactions.  
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4.3 Methods 

 

4.3.1 Construction of an atom pair contact database 

 Nearly 30,000 protein-ligand complexes present in PDBSUM (Laskowski, 

Hutchinson et al. 1997; Laskowski 2001; Laskowski, Chistyakov et al. 2005) with structural 

information were extracted from the PDB (Berman, Westbrook et al. 2000).  From these only 

protein-ligand complexes having experimentally determined x-ray crystal structures with a 

resolution greater than 2.5Å were retained. In addition complexes having either covalently 

bound ligand or involving co-solvents (Appendix-I) or metallic ions or not having a 

classification in SCOP (version 1.63) (Murzin, Brenner et al. 1995) were removed. A ligand 

was classified as non-covalently bound to the protein if none of its atom was within the 

covalent interaction distance. The covalent interaction distance for a specific pair of protein 

and ligand atom was the sum of their atomic radii plus a 10% tolerance limit.  

Only the best resolution complex with a unique ligand name and unique SCOP superfamily 

are further retained. These comprised a non-redundant dataset (NRD) with only one ligand 

representative for each SCOP superfamily. Hydrogen atoms were added to these protein-

ligand complexes using the QuacPac software (OpenEye). The definition of an atomic 

contact was taken from DrugScore (Gohlke, Hendlich et al. 2000) in which two atoms are 

considered to be in contact if the intervening distance between the atoms is less than the sum 

of their van der Waals radii plus 1Å. The cut-off therefore includes only short-range 

interactions. For every protein-ligand complex, the interaction information involving protein 

atoms in contact with atoms of a single molecule of a specific ligand were placed in the Pair 

Contact Database (PCD). In total there were 1.1 million atomic contacts. Information about 

atomic orientation was also stored, for each atomic contact pair. This includes the distance 

(A1), angular (∟A12), and dihedral (A12-123) relationships between the terminal ligand 

atom (A) and the ultimate (1), penultimate (2) and antepenultimate (3) atoms of the protein 

(See Figure 4.1 for definition). 
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φ 

1 

3 

2 

θ 

A

Tolerance limit 1Å 

Ligand Molecule 

Protein Receptor 

Figure 4.1: Ligand atom A is in contact with Protein atom 1. Protein atom 1 is bonded with 

non-hydrogen protein atoms 2 and 3. The interactions which are quantified: interatomic A1 

distance, planar angle (∟A12) and dihedral (A12-123). 

 

The program Vega (Pedretti, Villa et al. 2002; Pedretti, Villa et al. 2004) was used to convert 

the atom types in the atom contact pair database from Tripos to those listed in  

Table 4.1. The use of multiple atom-type sets allows the comparative study of different 

atomic forcefields, with the intention of seeing which is best suited for the information 

theoretic approach Table4.2. In addition to the available force field atom-type descriptions, 

SATs1 and SATs2 (APPENDIX-1a, 1b) were developed. 
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Classification 

Type 

Size of 

Classification 

Classification 

Type 

Size of 

Classification 

AMBER* 56 MENG* 52 

Broto, P et al* 245 MM2* 64 

BLEEP* 32 MM3* 120 

CFF91* 87 MM+* 40 

CHARMM* 79 MMFF* 58 

Crippen et al* 82 SATs1** 16 

CVFF* 66 SATs2** 24 

GRID* 62 TRIPOS* 32 

H-bond (Vega 

template)* 

9 Universal* 47 

 

Table 4.1: The different Atom type classification schemes and the resultant alphabet size. * 

For these atom-types Atom Type Descriptive Language (ATDL) templates were used as 

provided in the Vega Software. ** These atom type classification systems were designed in 

Atom Type Descriptive language. 
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Atom Type Sets Combination1 Combination2 Combination3 Combination4 

AMBER 1867 16463 15460 142434 

BLEEP 344 5103 4274 106358 

BROTO 3323 20560 19841 131204 

CFF91 2785 21683 20450 156505 

CHARMM 1876 15332 13978 142591 

CRIPPEN 3665 28626 28238 179601 

CVFF 2196 18391 17190 148097 

GRID 1862 15060 14575 132136 

HBOND 51 1028 691 46294 

MENG 918 8617 7523 131492 

MM2 1213 11093 9932 126356 

MM3 1599 13086 11884 125786 

MMFF 1410 13395 12440 136650 

MM PLUS 1040 10012 8614 129607 

SATs1 138 2697 2053 101157 

SATs2 233 4568 3573 129565 

TRIPOS 380 5300 4341 113238 

UNIV 404 5656 4758 108785 

 

Table 4.2: Increase in interacting atom-atom combinations: Combination1 – When only 

atomic character are considered, Combination2 – When interatomic A-1 distance and atomic 

character is considered, Combination3 – When dihedral (A12-123) and atomic character is 

considered, Combination4 – When interatomic A-1 distance, planar angle (∟A12), dihedral 

(A12-123) and atomic character is considered. 

 87

Clic
k t

o buy N
OW!

PDF-XChange

w
ww.docu-track.comClic

k t
o buy N

OW!
PDF-XChange

w
ww.docu-track.com

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/


 

4.3.2 Calculation of atomic contact preferences 

Mutual information and joint entropy are indicative of the extent to which the 

distributions of two variables are related. While mutual information is a measure of mutual 

dependence of two variables (Reza 1994), joint entropy is amount of uncertainty associated 

with two variables (Shannon 1948). Mathematically: 

Mutual information is defined by: 

 I(X,Y) = ΣxΣy(P(x,y)log[P(x,y)/{P(x)P(y)}]) 4.1 

 

Where, p(x,y) is the joint probability distribution function of X and Y, and P(x) and P(y) are 

the marginal probability distribution functions of X and Y respectively (Shannon 1948) 

(where, X and Y are the ligand and protein atom types respectively in an interacting atom-

atom pair). 

Joint entropy is defined by: 

 H(X,Y) = - ΣxΣy(P(x,y)log[P(x,y)]) 4.2 

 

For a given pair of interacting atoms the value of “P(x,y)log[P(x,y)/{P(x)P(y)}]” 

and “-P(x,y)log[P(x,y)]” were respectively considered as the contribution of an individual 

pair of atoms towards the obtainable amount of mutual information and joint entropy. A 

complete set of these pair-wise contributions (termed as MI-coefficients and JE-coefficients) 

for all the atom-atom contact pairs forms the ensemble of atomic contact preferences 

between a protein and a ligand in the complexed state. Mathematically: MI-coefficients and 

JE-coefficients for an atom-atom pair were respectively defined as:  

 MIcoeff(X,Y) = P(x,y)log[P(x,y)/{P(x)P(y)}] 4.3 

 

 JEcoeff(X,Y) = -P(x,y)log[P(x,y)] 4.4 

 

The coefficients are applied to the set of atomic contacts between a specific protein-ligand 

complex to obtain the amount of mutual information or joint entropy for that complex. For a 

protein-ligand complex the sum of coefficients associated with all atom contact pairs was 

considered as the ScoreMI and ScoreJE respectively: 

 ScoreMI(P:L) = ΣxΣyP(x,y)log[P(x,y)/{P(x)P(y)}] 4.5 
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 ScoreJE(P:L) = -ΣxΣyP(x,y)log[P(x,y)] 4.6 

 

Where x and y are the protein and ligand atom types respectively in an interacting atom-atom 

pair. 

 

4.3.3 Generation of a protein-water contact database and atomic solvation-

desolvation measures  

The preference of protein atoms to make contact with water atoms was calculated 

using the same approach as outline above. Coordinates of water molecules were obtained by 

modelling water molecules on the protein surface using the Aquarius2 software (Pitt and 

Goodfellow 1991). For a dataset of 999 proteins hydration shells were generated around each 

protein. QuacPac was used for the addition of protons and Vega was used to convert the 

atom-types to the correct format from which protein atom-water contact pairs were extracted. 

These contacts were used to derive SSPs using the following relationship: 

 SSPcoeff(X) = -P(x,H2O)log[P(x, H2O)] 4.7 

 

SSP coefficients for protein atom-types were added to ScoreJE coefficients to obtain 

SIScoreJE. 

 SIScoeff(P:L) = ΣxΣy(JEcoeff(X,Y) + SSPcoeff(X)) 4.8 

 

Where, SSP(X) is the Single-body solvation potential for X protein atom type. SIScoreJE 

comprised of  (JEcoeff(X,Y) + SSPcoeff(X)) values.  

 

 

4.3.4 Protein-ligand test set 

The performance of ScoreJE and SIScoreJE to predict the binding energy was 

evaluated on a dataset of 100 protein-ligand complexes. None of these was a member of our 

training dataset. Some of the complexes were obtained from a dataset of 205 protein-ligand 

complexes , others were taken from scorpio (Ladbury et al 2003) and bindDB (Bader, 

Donaldson et al. 2001). As the scores developed here consider only protein-ligand 

complexes, nucleic acid-ligand complexes were also excluded from the test set. The ligands 

in this dataset were considerably diverse in terms of number of rotatable bonds (0-24), 

molecular mass (71-824 amu), number of heavy atoms (7-62) and number of aromatic rings 

(0-4).  
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Since the training dataset has a single SCOP superfamily representative for a specific 

ligand in complex with a protein, some of the SCOP superfamilies have more members than 

others. Intuitively the SCOP superfamilies having a larger number of member proteins could 

introduce an element of over training; however, since the ligand population has no repetition 

the effect is minimal. Moreover, in order to eliminate all possible effects of due to SCOP 

superfamily representation in the training set a “tailor made” training dataset was created for 

each ligand in the test set. For each test set member the contacts were derived from the NRD 

(see above) by removing all those proteins belonging to the same SCOP superfamily as the 

test dataset member. These were then used to derive scoring functions which were unique for 

each test set member, removing any possible bias due to protein evolutionary relatedness (as 

defined by SCOP) during cross-validation.  

A dataset of 50 protein-ligand complexes was used to determine the efficiency of the 

ScoreJE in identification of near-native configurations produced during docking. Only those 

protein-ligand complexes that did not have presence of cofactor or metallic ions in the ligand 

binding site were considered. The protonation states of ligand and the protein molecules 

were determined by OpenEye software (QuacPac). For each of the test set member 100 

docking solutions were obtained using default parameters of GOLD program.  

 

 

4.4 Results 

 

4.4.1 Choice of scoring function 

 Scoring matrices for ScoreMI and ScoreJE from the Pair Contact Databases (PCDs) 

of 18 different atom-type datasets were calculated according to equation-3 and equation-4 

respectively (see methods). For the comparative evaluation of the two scoring functions 

(ScoreMI and ScoreJE) 100 protein-ligand complexes were used, for which the experimental 

binding energies were known (complete list is given in appendix-II). For each member of the 

test set, full cross validation was performed eliminating any possible bias due to protein 

evolutionary relatedness in the training set (see methods). The ScoreMI and ScoreJE for 

protein-ligand complexes were calculated by summing up the MIcoeff and JEcoeff assigned 

for each of atomic contact pair in the interaction database (see methods equation 5 and 6). 

The correlation coefficients (R2 values) between scores thus calculated (ScoreMI and 

ScoreJE) and the experimental binding energies were obtained via linear regression all 18 

different atom-type sets (see Figure 4.2). 
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Figure 4.2: Comparative study of correlation coefficients (R2) between experimental binding energies and the scores calculated using ScoreMI 

(Mutual Information) and ScoreJE (Joint Entropy) during cross-validation for 18 different atom-type schemes. 
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ScoreJE performs either better or equal to ScoreMI in all but two cases and gives the 

better correlation between calculated score and binding energies. In the subsequent work 

ScoreJE was adopted as the basal scoring function of choice.  

 

4.4.2 Choice of scoring parameters 

The best possible combination of atom-type set and orientation index was 

determined. The orientation indices include the distance the between interacting atoms, the 

angle of ∟A12 and the dihedrals of A12-123 (see methods). These indices are continuous 

for protein-ligand interacting atom pairs therefore the orientations were binned into discrete 

values with distances rounded to one decimal place, planar angles and dihedrals were binned 

in intervals of 10°. ScoreJEcoefficients were then calculated for each of orientation index for 

each of the 18 atom type datasets and the test set scored. The correlation coefficient (R2) 

values between the calculated score and experimental binding energies are given in Figure 

4.1. 
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Figure 4.3: Comparative study of correlation between experimental binding energies and the scores calculated using ScoreJE (Joint Entropy) 

when A – only atomtype contacts are considered; B – atomtype contacts and the interatomic distance is considered (A-1 from Figure 4.1); C – 

atomtype and dihedral angle (A12-123) is considered; D – atom type, interatomic distance (A-1), planar angle (A12), dihedral angle (A12-123)  

are considered. 
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As can be seen, the ScoreJE calculated for atom-type pair alone for SATs2 performed 

best. Also, in most of the cases atom-type pair alone performed better than the combinations 

of atom-type, intervening distances, angles and dihedrals. Even though the number of 

descriptors for each atom-type classification scheme increases for the atom-type orientation 

index combinations of B, C, and D, the performance in terms of the correlation coefficient 

between calculated scores and experimental binding energies remains almost the same 

relative to atom-atom pairs alone. 

 

 

4.4.3 Inclusion of Solvation effects and SIScoreJE 

 ScoreJE and SIScoreJE were obtained for atomic contact pairs for the SATs2 atom-

type classification. The calculated scores for the 100 protein-ligand complexes of the test 

dataset are plotted against the experimentally determined binding energies in Figures 4.4 and 

4.5 for ScoreJE and SIScoreJE respectively.  
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Figure 4.4: ScoreJE vs. Binding energy plot for 100 protein-ligand complexes. 
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Figure 4.5: SIScoreJE vs. Binding energy for 100 protein-ligand complexes. 
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ScoreJE includes only protein-ligand direct interactions whereas the SIScoreJE also 

includes the indirect interactions that take place with solvent molecules modelled using 

Aquarius2 (see methods). The overall SIScoreJE scores correlated slightly better with the 

experimental binding energy than those with ScoreJE. In order to understand the influence 

and utility of SIScoreJE for various functional classes of proteins the above dataset is further 

subdivided into acid proteases (31), serine proteases (12), carbohydrate binding proteins (16) 

and miscellaneous groups (41). A summary of results is given in Figure 4.6. 
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Figure 4.6: The correlation coefficient between experimental binding energies and ScoreJE 

(grey) and experimental binding energies and SIScoreJE (Black) for different functional 

classes of protein-ligand complexes. 

 

Predicting the binding energies of carbohydrates to their cognate binding proteins has 

previously been reported to be very problematic (Taylor and Burnett 2000), however, it is 

here that SIScoreJE performs significantly better than ScoreJE. For the serine proteases 

ScoreJE performs slightly better than SIScoreJE. A majority of protease binding sites have a 

predominance of hydrophobic character. Understandably, SIScoreJE is therefore less likely 

to have a significant influence in these complexes, as solvent is excluded from the ligand 

 97

Clic
k t

o buy N
OW!

PDF-XChange

w
ww.docu-track.comClic

k t
o buy N

OW!
PDF-XChange

w
ww.docu-track.com

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/


binding site to a greater extent in these cases and therefore less likely to play a dominant 

role. Whereas the carbohydrate binding sites are generally well solvated and hence, the 

correlation of SIScoreJE scores for this class improves significantly over the basal scores of 

ScoreJE.  

 

 

4.4.4 Comparison of different scoring functions 

The ability of ScoreJE and SIScoreJE to correlate with binding energy was compared 

against GoldScore, ChemScore and X-Score(Wang, Lu et al. 2004). The test set of 100 

protein-ligand complexes were re-scored using GOLD::GoldScore, GOLD::ChemScore, X-

Score. While GOLD::GoldScore provides a measure of fitness for the ligand-protein 

complex it was not found to be very effective in predicting the G of interaction in�binding 

energies. The GOLD::ChemScore estimates the  addition to the fitness score. X-Score gives 

three different scores. A consensus score (an average of the three as suggested in (Wang, Lu 

et al. 2004)) was taken as a measure for the binding energy. The degree of correlation 

between the scores and experimental binding energy for the scoring functions is given in 

Figure 4.7.   
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Figure 4.7: comparative analysis of the scoring functions. 

 98

Clic
k t

o buy N
OW!

PDF-XChange

w
ww.docu-track.comClic

k t
o buy N

OW!
PDF-XChange

w
ww.docu-track.com

http://www.docu-track.com/buy/
http://www.docu-track.com/buy/


 

 X-Score performed better than GoldScore and ChemScore which is consistent with 

the results obtained by Wang et al (Wang, Lu et al. 2004). However ScoreJE and SIScoreJE 

have the best correlation between predicted score and experimental binding energy.  

 

 

4.4.5 Identification of Near-Native Configurations 

 The effect on the performance of our scoring functions for ranking the poses 

generated during docking runs, when information on orientation indices is included in 

training of the scoring functions was further analysed. The mutual interaction preferences in 

scoring function were recalculated by considering the interacting atom-type identities along 

with information about the inter-atomic distances (version 2); planar angle (version 3); 

dihedral angle (version 4) and a combination of distances, planar angle, dihedral angle 

(version 5). For docking the GOLD(Verdonk, Cole et al. 2003) program was used to 

generate 100 docking solutions for each of the 53 protein-ligand complexes in docking test 

set (see methods). These poses were ranked according to the RMSD from the native ligand 

conformation present in the crystal structure. Conformations which had RMSD less than 2Å 

were considered as positives and the rest as negatives. The poses were also evaluated using 

our scoring functions and receiver operating characteristic (ROC) curves were plotted ( 

Figure 4.8). Ranking of the docked poses according to various scoring functions indicate that 

GoldScore(Verdonk, Cole et al. 2003) performs best followed closely by ScoreJEversion4. 
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Figure 4.8: Receiver Operating Characteristic curves for comparative study of efficiency of 

GoldScore and various versions of ScoreJE in identifying near-native docking solutions for a 

dataset of 50 protein-ligand complexes. ScoreJE version1 when – only atomtype contacts are 

considered, cersion2 – atomtype contacts and the inter-atomic distance is considered (A-1 

from Figure 4.3), version3 - atomtypes and dihedral angle (A12-123 from Figure 4.3) is 

considered, version4 – atom types, distances, angles and dihedrals are included in calculation 

of ScoreJE. 
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4.5 Discussion 

 Mutual information is a widely used statistic in several fields. Having first appeared 

in Shannon’s paper(Shannon 1948) it has gained widespread acceptance in the applications 

of information theory. Where as joint entropy (Reza 1994) measures the amount of 

uncertainty or entropy associated with two random variables, mutual information measures 

the information. The protein-ligand interaction information obtained from the 

crystallographically determined structures was converted into protein-ligand atomic contact 

preferences. These were combined with predicted solvent interactions to create solvation 

potentials in SIScoreJE.  

In our study joint entropy and mutual information coefficients were considered as 

scores representing the atomic contact preference scores. The ScoreJE for an interaction 

depends on the joint probability of occurrence of the protein-ligand interacting atom pair and 

ScoreMI depends on the marginal probabilities of the individual atom types. The success of 

joint entropy over mutual information is evident (see Figure 4.2) for almost all atom-type 

definitions. This could be attributed to the nature of these two quantities. Mutual information 

is the amount of information one can calculate for the occurrence of an event on the basis of 

knowledge about the occurrence of another related event. In protein-ligand interaction terms: 

mutual information reduces the choice of a ligand atom identity that can form an interaction 

with a given protein atom in a particular ligand binding pocket. While this is useful it does 

not provide the measure of the amount of information the system will gain once the 

interaction takes place. Joint entropy, on the other hand is a measure of uncertainty 

associated with two random variables. As information decreases in uncertainty, the joint 

entropy provides a more accurate estimate about the information the system gains once the 

ligand atom (with highest joint probability of occurrence) forms an interaction with the 

protein atom. Only when the joint probability of occurrence of the two entities is absolute 

does the mutual information becomes equal to the joint entropy. Perhaps localized regions on 

protein surface with high cumulative joint probability of occurrence have greater ligand 

binding potential. Such regions have been termed as “hotspots” on the protein 

surface(Gohlke, Hendlich et al. 2000). 

In order to quantify the effects of orientation of interacting atoms on the efficiency of 

ScoreJE additional parameters (see methods) were included in the calculation of the scoring 

function. Two interesting trends can be seen in the Figure 4.3. Firstly the basal scoring 

function (based on atom-type identity alone) performed best. This could be an artifact due to 

the nature of the test dataset (consisting of crystal structures). Addition of orientation indices 
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to the basal scoring function (calculated on the basis of atom-type identities) provides an 

enhanced ability to distinguish the stereo-chemically unfavorable interactions. However, as 

the probability of occurrence of stereo-chemically unfavorable contacts in high-resolution 

crystal structures is very low, the increased ability of the scoring function to identify 

unfavorable contacts remains unutilized. To test this hypothesis ligands were docked into 

their cognate receptor site using the GOLD program and 100 poses were generated. Since the 

docking of a ligand to its receptor site creates a number of stereo-chemically unfavorable 

atomic interactions, the dataset of docked poses was used to study whether the inclusion of 

the different orientation indices has any effect on near-native pose identification. The 

ScoreJE scoring function version5 (calculated by including the inter-atomic distances, planar 

angles and dihedrals) performed almost as well as GoldScore. The basal scoring function did 

not perform as well and demonstrates the differential ability of the expanded scoring 

functions to distinguish between the stereo-chemically unfavorable and favorable contacts in 

a docking context. The performance of the other versions of scoring function was 

comparable and not significantly worse than the basal scoring function. The number of 

interacting atom-type combinations increased dramatically ( 

Table 4.2) on inclusion of additional orientational information. As the amount of 

information in the interaction database was constant the average amount of the information 

available per interacting atom-type combination reduced. However, the effect of this reduced 

information, did not affect the ability of the scoring function to predict the binding energies 

(see Fig

tter alternative solvation models with ScoreJE, creating a more efficient 

scoring

ure 4.3). 

The development of the SSP was based on the same principle of joint entropy. As the 

number of water molecules in the crystal structures were inadequate to generate the solvation 

potentials the interaction between the protein atoms and the modelled water molecules were 

used. In order to make the single body solvation potentials free from bias 1000 proteins were 

used for modelling the water molecules using Aquarius2 (see methods). A large number of 

interactions between the ligand and protein atoms during complex formation occur as a 

consequence of the hydrophobic effect(Williams and Bardsley 1999). Inclusion of SSPs in 

ScoreJE improved the degree of correlation between the predicted scores and the 

experimental binding energies (Figure 4.4 and 4.5). However this improvement was mostly 

as a result of the carbohydrate binding proteins (Figure 4.5). This leaves room for the 

development of be

 function.  
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Evaluation of the accuracy of ScoreJE, SIScoreJE, GOLD:GoldScore, 

GOLD:ChemScore and X-Score to predict protein-ligand binding affinity was carried out 

and SIScoreJE and ScoreJE were seen to perform better than the rest. XScore is an empirical 

scoring function and has been seen to perform better than most scoring functions currently in 

use (Verdonk, Cole et al.). Similarly, ChemScore is an empirical scoring function that is 

idely applied (available in Sybyl and GOLD) in docking. That ScoreJE and SIScoreJE are 

ble to perform better than GOLD:GoldScore, GOLD:ChemScore and XScore.  

 

estigated. The ScoreJE scoring function which included 

e information of orientation along with the identities of the interacting atoms performs at 

e same level as GOLD:GoldScore. 

 

 

w

a

 

4.6 Conclusions 

This chapter describes the development of a novel, knowledge based scoring function 

designed to estimate the protein-ligand interaction energy. The ScoreJE was tested on a set 

of 100 protein-ligand complexes. The ability of the scoring function in ranking the protein-

ligand docking solutions has been inv

th

th
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4.8 Appendices 

APPENDIX-1a 

 

General Description: 

 ~~~~~~~~~~~~ 

 General atom type - Bond order - Ring indicator - Aromatic indicator 

 

 General atom types:                   Bond order: 

 ~~~~~~~~~~~~~~~~~~~                   ~~~~~~~~~~~ 

 X = Any atom                           0   = Atom not bonded 

 # = Heavy atom                        1-6 = Bond order 

 - = None                                    9   = Any bond order 

 

 Ring Indicator:                       Aromatic Indicator: 

 ~~~~~~~~~~~~~~~                       ~~~~~~~~~~~~~~~~~~~ 
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 0     = Don't check ring              0 = Don't check 

 3...6 = From 3 to 6 member ring       1 = Aromatic 

 9     = Generic ring 

 

******************************* 

****   ScoreJE Atom Type set-1  **** 

******************************* 

 Type Atm    Bonded Atoms 

==================================================================

===== 

 

  C0    C-400  (#-900 #-900 #-900 #-900) 

  C0    C-400  (H-100 H-100 H-100) 

  C0    C-400  (H-100 H-100) 

  C0    C-400  (H-100) 

  C+1   C-300  (N-300 N-300 N-300) 

  C-H   C-300  (H-100 O-100 O-100) 

  C-2   C-300  (O-100 O-100 O-100) 

  C-1   C-300  (#-900 O-100 O-100) 

  C     C-300  (O-100 #-900 #-900) 

  C3    C-300  (#-900 #-900 #-900) 

  C3    C-300  (H-100 H-100) 

  C3    C-300  (H-100 O-100) 

  C3    C-300  (H-100) 

  C4    C-200  (#-900 #-900) 

  C4    C-200  (H-100) 

  C5    C-100  (C-200) 

 

 Donors 

 

  hn   H-100  (N-400) 

  hn   H-100  (N-300) 

  ho   H-100  (O-200) 

  hf   H-100  (F-100) 
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 Acceptors 

 

  n    N-300 (C-400 C-400 C-400) 

  n    N-300 (C-400 C-400 H-100) 

  n    N-300 (C-400 H-100 H-100) 

  n    N-300 (H-100 H-100 H-100) 

  np   N-200 (#-951 #-951) 

  n    N-200 

  o    O-200 

  o    O-100 

  f    F-100 

 

  x    X-900 

 

APPENDIX-1b 

******************************* 

****   ScoreJE Atom Type set-2  **** 

******************************* 

 

 Type Atm    Bonded Atoms 

 

==================================================================

====== 

 

  C0    C-400  (#-900 #-900 #-900 #-900) 

  C0    C-400  (H-100 H-100 H-100) 

  C0    C-400  (H-100 H-100) 

  C0    C-400  (H-100) 

  C+1   C-300  (N-300 N-300 N-300) 

  C-H   C-300  (H-100 O-100 O-100) 

  C-2   C-300  (O-100 O-100 O-100) 

  C-1   C-300  (#-900 O-100 O-100) 

  C     C-300  (O-100 #-900 #-900) 
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  C3    C-300  (#-900 #-900 #-900) 

  C3    C-300  (H-100 H-100) 

  C3    C-300  (H-100 O-100) 

  C3    C-300  (H-100) 

  C4    C-200  (#-900 #-900) 

  C4    C-200  (H-100) 

  C5    C-100  (C-200) 

 

  O1    O-200 (H-100 C-300 (O-100 O-100)) 

  O1    O-200 (C-900 C-900) 

  O1    O-200 (C-900 C-991) 

  O1    O-200 (C-991 C-991) 

  O1    O-200 (C-300 (O-100)) 

  O1    O-200 (H-100 C-391) 

  O1    O-291 

  O2    O-100 (C-300 (O-100 O-100)) 

  O2    O-100 (C-200 (N-200)) 

  O2    O-100 (S-400 (N-900)) 

  O2    O-100 (N-900) 

  O2    O-100 (S-900) 

  O2    O-100 (C-991) 

  O2    O-100 (C-900) 

  O2    O-100 

 

  N1    N-400  (#-900 #-900 #-900 #-900) 

  N1    N-400  (H-100 H-100 H-100) 

  N1    N-400  (H-100 H-100) 

  N1    N-400  (H-100) 

  N2    N-391  (H-100) 

  N2    N-300  (H-100 H-100 C-300 (O-100)) 

  N2    N-300  (H-100 H-100 S-300 (O-100)) 

  N2    N-300  (H-100 H-100 C-300 (S-100)) 

  N2    N-300  (H-100 H-100 C-300 (N-200)) 

  N2    N-300  (H-100 H-100 C-300) 
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  N2    N-300  (H-100 H-100 N-200) 

  N2    N-300  (H-100 H-100 C-391) 

  N1-   N-300  (O-100 O-100 O-100) 

  N2    N-300  (H-100 C-300 (O-100)) 

  N2    N-300  (H-100 S-300 (O-100)) 

  N2    N-300  (H-100 C-300 (S-100)) 

  N2    N-300  (H-100 C-300 (N-200)) 

  N2    N-300  (#-900 #-900 #-900) 

  N2    N-300  (H-100 C-391) 

  N2    N-300  (H-100 H-100) 

  N2    N-300  (H-100) 

  N3    N-251 

  N3    N-291 

  N3    N-200  (C-300 C-300) 

  N3    N-200  (#-900 #-900) 

  N3    N-200  (H-100) 

  N3    N-200  (H-100) 

  N3    N-100  (C-300) 

  N3    N-100  (C-200) 

 

 Donors 

 

  hn   H-100  (N-400) 

  hn   H-100  (N-300) 

  ho   H-100  (O-200) 

  hf   H-100  (F-100) 

 

 Acceptors 

 

  n    N-300 (C-400 C-400 C-400) 

  n    N-300 (C-400 C-400 H-100) 

  n    N-300 (C-400 H-100 H-100) 

  n    N-300 (H-100 H-100 H-100) 

  np   N-200 (#-951 #-951) 
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  n    N-200 

  o    O-200 

  o    O-100 

  f    F-100 

 

 

  x    X-900 

 

APPENDIX-II 

Binding Energy Evaluation Test Set 

1a4k 1a9m 1aaq 1abe 1add 1ae8 1ajx 1am6 1apb 1apu 1b5g 1b6j 

1b6k 1b6l 1b6m 1bap 1bb0 1bdr 1bmn 1bra 1bv7 1c5c 1c83 1c84 

1c86 1c87 1c88 1c8k 1cbs 1cbx 1cf8 1com 1cps 1ctr 1d3p 1d4l 

1d4p 1dbb 1dbj 1dbk 1dhf 1dmp 1dog 1drf 1dwb 1eap 1fax 1fkg 

1g2k 1gno 1gpy 1hew 1hih 1hos 1hps 1hte 1htg 1hvh 1hvl 1lgr 

1mbi 1mcf 1mnc 1mtw 1nnb 1nsd 1okl 1okm 1phf 1qbt 1rgk 1rgl 

1tng 1tnh 1tnj 1tnl 1tph 1ulb 1uvs 2cpp 2ctc 2dbl 2er9 2gbp 

2ifb 2upj 2web 3cla 3ptb 4phv 4tln 5abp 5cpp 5gpb 5hvp 6abp 

7abp 7dfr 8abp 9icd 
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Chapter 5: Conclusion 
 

Rational drug design has been the ultimate aim of the structural bioinformatics. The 

targeting of protein-protein interaction on the basis of knowledge about the receptor structure 

is difficult. However the successful targeting of GGTase-II activity by MK_INH_X21986 

once again underlines the possibilities in this field. Here, it must be noted that later the 

compound was also found to inhibit the homologs of GGTase-II. Careful docking analysis 

predicted FTase inhibition due to the competition of peptide substrate with the 

MK_INH_X21986. This was indeed found to be the case in wet lab experiments. The cross 

reactivity question was not addressed when the molecule was being designed as it was 

assumed that the shape of REP interacting hydrophobic groove on GGTase-II surface is 

unlikely to find anything similar in the homologous structures. This was a mistake. The 

strategy for targeting protein-protein interaction interface must be such that only unique 

druggable sites are chosen in the first place. Alternatively targeting a site which may have 

close resemblances on the surface of homologous proteins can be done through substractive 

docking. This strategy was indeed used in the later process and a virtual library of molecules 

was created that targeted only the GGTase-II hydrophobic groove.The validity of the model 

is yet to be tested. 

Correct identification of unique druggable sites is a major challenge. If such sites 

could be identified with reasonable confidence than the task of rational drug design shall 

become easier. Identification of the putative sites that can bind ligand molecules is routine. 

However none of the existing programs are able to assign the character of the ligand 

molecules that shall target a specific site. Such a tool would be of immense value for 

computational chemists as they do not have to waste time targeting sites that bind non-drug 

like compounds (example carbohydrates). This was the aim of the second project. InCa-

SiteFinder that is created performs exceptionally well in identification of the druggable sites 

and distinguishing these from the carbohydrate binding sites. Some of the sites are classified 

as having dual propensities and these are the sites a computational chemist should be aware 

of. Targeting such sites may not be as successful as targeting purely drug-like binding sites. 

On the other hand if such a site houses the enzymatic centre of a protein interaction site then 

targeting such site also indicates the possible mechanism of the small molecule. If the 

inhibition of the enzymatic activity or protein-protein interaction is brought about by 

targeting some other site then the mechanism can be allosteric inhibition. 
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The value of the differential propensity (DPS) score to distinguish the preference of 

the predicted site for carbohydrate over drug-like compound ligands is a key factor in the 

success of InCa-SiteFinder. Sites with high positive values are almost always carbohydrate 

binder. On the other hand the sites with greater negative values are mostly drug-like 

compound binding sites. This is valuable information as the carbohydrate binding sites that 

do not bind drugs-like molecules are easily identified. More remarkable still is the 

identification of drug-like binding sites with greater success than the identification of 

carbohydrate binding sites. Though our aim was the prediction of carbohydrate binding sites 

we have noted the potential use of InCa-SiteFinder in identification of drug-like binding 

sites, although we have not attempted to optimise the method for this purpose. The sites with 

dual propensity to bind carbohydrate and drug-like compounds have the DPS values between 

10 and -20. It is interesting to speculate that the tool developed here may form the basis for a 

method that could not only discriminate between different types of functional site, but also 

facilitate the process of structure-based drug design. In the later case an ability to 

characterise sites that are amenable to binding drug-like molecules are of great interest for 

medicinal applications, including blocking protein-protein interactions and for design of 

competitive inhibitors.  

Rational drug design cannot be successful if the affinity of virtual molecules and the 

structure of the protein receptor can not be estimated in fast and accurate manner. The 

current day scoring function are not very efficient. The correct way is to solve the wave 

equations for multi-electron systems and the computational power is simply not enough. In 

such scenario knowledge based scoring functions should be a better option. However most of 

the development of such scoring functions has been done in not very scientific way. For 

instance all of the existing scoring functions are based on the training databases which were 

not made unbiased. The inherent redundancy of the information in the training set biases the 

scoring function for particular class of proteins. Towards this end our scoring function 

ScoreJE and SIScoreJE are considerable improvement. Not only they out performs some of 

the most widely used scoring functions but are fast enough to be integrated in the docking 

algorithms. 
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Future perspectives  The story has just begun…… 

 

 The completion of a tool for identification and prediction of druggable sites and a 

scoring function for the estimation of the binding affinity in silico underlines the need to 

have a third program which can analyse the predicted sites for drug-like compound binding 

and generate a varying Gaussian propensity based pharmacophore and screen the 

commercially available compounds. A pseudocode was completed but could not be 

implemented on account of the scarcity of time. Continuation and completion of the project 

demands its implementation of this third tool because without it the sitefinder and binding 

affinity scoring function are like wood and gasoline waiting for the matchbox to take shape. 

 The targeting of the GGTase-II is yet an open question. Testing of second library 

should answer some of the questions about the cross reactivity.  
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