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Chapter 1

Introduction

This chapter defines the problem treated in this thesis: the surface (re-)construction problem, and
illuminates different aspects of this problem. Then the contributions of the thesis are summarized.
Finally an overview of the organization of the thesis is given.

1.1 The Problem

The problem treated in this thesis is

Surfaces from scattered point data:
Input: A set P of points in space which are sampled from a surface.

Output: A surfaceM so that the points aP lie on or close ta\/.

There is a wide range of applications for which surface construction from scattered point data is
important. In particular, scanning of 3D shapes reaching from bodies to landscapes, directly accessible
or not, with tactile, optical, ultrasonic, tomographic, and other sensors, is a rich source of data for
the problem. The construction of surfaces is necessary because many methods and systems require
surface data for further processing. Surfaces also open the application of the wide-spread surface-
oriented visualization and rendering techniques. For example, surfaces may be used for visualizing
other information e.g. coded in textures (data textures or real textures) mapped on the surface.

The given formulation of the surface construction problem is not very precise and lets many degrees
of freedom of interpretation. From an application-based point of view,dategories of tasksan be
distinguished: data analysis and surface reconstructita analysismeans that nothing is known
about the surface from which the data originate. The task is to find the most reasonable solutions
among usually several or even many possibiliti®grface reconstructiomeans that the surface from
which the data are sampled is known, say in form of a real model, and the goal is to get a computer-
based description of exactly this surface. This knowledge may be used in the selection of a favorable
algorithm.

A proper reconstruction of the desired surface in the latter case can only be expected if it is suffi-
ciently sampled. Sufficiency depends on the particular method of surface reconstruction. It might be
formulated as sampling theoremvhich should give sufficient conditions that can be easily checked.
This aspect was neglected in research up to now, and little is known for most existing reconstruction
algorithms on this aspect.

If surfaces are improperly sampled, a reconstruction method may cause artifacts which have to be
dealt with. Like in classical sampling theory, pre-filtering e.g. in the sense of low-pass filtering may

3



4 Chapter 1: Introduction

help to reduce artifacts at the costs of loss of details. Another possibility is interactive correction by
the user which may be helpful if artifacts occur at some few isolated locations.

The opposite of insufficient sampling is that the sample data are unnecessarily dense. This happens
in particular if a surface is sampled with uniform density. In that case the sample density required
at fine details of the surface causes too many data points in regions of only minor variation. Several
approaches tdata reductiorwere proposed in literature [HDD3]. We do not treat this topic here,

but only give the hint that data reduction should consider the power of the reconstruction algorithm
expressed in sampling theorems, a fact that also was not explicitly obeyed in the past.

The challenge of surface reconstruction is to find methods of reconstruction which cover a wide range

of shapes, or, for a given area of application, to find a method of reconstruction which covers the shapes
of this class reasonably. The challenge of data analysis is to find efficient enumeration algorithms

yielding those of all feasible surfaces that come closest to the desired one. In particular, ways must be
found to express which of the possible solutions are favorable.

The wide range of applications from which the data may emerge implies that the data can have quite
differentpropertieswhich may be considered at the solution of the surface interpolation problem. For
example, the data may be sampled from surfaces that lie unique over a plane. In that case, a wide
range of methods were developed which mainly focus on geometric properties like smoothness of the
constructed surface [HL93].

Reconstruction may become more specific if the surface is captured in multiple samples (multiple
view range images) that have to be fus8dmple fusingnay need data transformation and fitting. We
exclude these aspects from further discussion and refer e.g. to [TL94, CL96, SF97].

Sample data may contaadditional information on structure A typical example are tomographic

data. In that case the points on a slice may be already connected by polygonal contour chains. Another
example is that normal vectors are available at the data points. These additional informations may give
additional hints on the unknown surface which may be considered in the construction algorithm. In
particular, for interpolation or approximation of contour data, a variety of methods were developed
[MK93]. In the following, no additional structural information is expected.

Finally, themathematical and data structural representatioinithe derived surface has to be consid-

ered. The most common representation is the polygonal or triangular mesh representation. Because
the representation by triangular meshes allows to express the topological properties of the surface, and
because this is the most difficult sub-problem of surface construction, most known algorithms use this
sort of representation. If higher smoothness than just continuity is required, either the parametric or the
implicit surface representation may be used. Triangular meshes can be seen as a surface composed by
parametrically represented linear surface patches. For surfaces of higher continuity patches of higher
order are required. One way to obtain such surfaces is to start from a triangular mesh. For that reason,
we have chosen the representation by triangular meshes for this thesis, and refer to literature for the
problem of deriving smooth surfaces, for instance to [EH96, Guo97, FCGA97] in which smoothing of
surfaces obtained from sample data is particularly emphasized.

1.2 The Contributions

In this thesis, a new surface reconstruction algorithm is presented which works well in practice, as has
been demonstrated by application of an implementation to numerous data sets. Its particular features
are

(1) reconstruction of open surfaces with boundaries of arbitrary genus as well as non-orientable
surfaces,
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(2) treatment of coarse sample sets of variable density,
(3) treatment of sharp edges, that is, locations of infinite curvature, like e.g. at the edges of a cube.

The algorithm can also be used for dense sample sets with a high number of points. Because of (2)
efficiency can be gained by applying the algorithm to a sub-sample. This approach saves time and
yields a lower number of triangles than for the original data.

We give formal arguments which explain why the algorithm works well. They consist of a rigorous
definition of "reconstruction”, and the demonstration of existence of sampling sets for which the algo-
rithm is successful with high heuristic probability. This analysis focuses on compact closed surfaces
with bounded curvature.

For the general case of surfaces with boundaries and sharp edges, we present heuristic arguments
which contain potential for further work in direction of "provable” heuristics.

Further contributions are

(1) the application of the surface reconstruction algorithm for interactive shape design,
(2) a smoothing procedure for noise elimination in point clouds sampled from a surface.

The first contribution uses the property of the algorithm that already small point sets lead to reasonable
surfaces. In this application, the sample points are used as control points for shape design. Addition-
ally, the algorithm is capable of reconstructing surfaces out of arbitrary surface skeletons consisting
of sets of surface edges between the sample points. As a result of these properties, the algorithm can
be used very easily for user-defined locally restricted reconstructions with only little interaction.

The main advantage of the second contribution is that point smoothing is achieved without requiring
a perfect interpolating surface.

The emphasis of this thesis lies on the reconstruction performance of the algorithm and on the demon-
stration of its practical performance, not on worst-case efficient algorithmic solution. Some hints
on algorithmic aspects are given which have been shown useful during the implementation of the
algorithm. For many computational subproblems worst-case efficient solutions are known in compu-
tational geometry.

1.3 Outline

The thesis is organized as follows.

In Chapter 2 an extensive survey of the state of the art of surface reconstruction algorithms is given.
The existing algorithms are categorized according to their methodic approach, and advantages and
disadvantages are discussed at the end of the chapter.

Chapter 3 introduces the basic structure of the algorithm, and explains in more detail than this chapter
how the description of the algorithm and its analysis are organized.

The algorithm consists of two main phases, the construction of a skeleton graph or surface description
graph, and the construction of a triangulation based on this graph. Chapters 4 and 5 are devoted to the
first phase in that they present graph types well suited to the first phase.

Chapter 6 presents the definition of surface reconstruction and surface approximation on which the
analysis of the algorithm is based. Chapter 7 analyzes the first phase of the algorithm.

The second phase, triangulation, is described in Chapter 8. It is analyzed in Chapter 9.

The application of the reconstruction algorithm to interactive geometric modeling is described in
Chapter 10. Chapter 11 shows that the neighborhood information present in the developed graph
types of Chapter 5 can be used in order to smooth noisy data sets.
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Chapter 2

State of the Art

The surface construction problem has found considerable interest in the past, and is still an important
topic of research. The purpose of this chapter is to find unifying basic methods common to indepen-
dently developed solutions, coupled with a survey of existing algorithms. The identified basic classes
are constructions based on spatial subdivision (Section 2.1), on distance functions (Section 2.2), on
warping (Section 2.3), and on incremental surface growing (Section 2.4). In Section 2.5 the aspect is
treated that an object represented in a sample data set may consist of several connected components.
The survey closes with a discussion and categorization of our approach (Section 2.6).

2.1 Spatial Subdivision

Common to the approaches that can be characterized by "spatial subdivision” is that a bounding box of
the setP of sample points is subdivided into disjoint cells. There is a variety of spatial decomposition
techniques which were developed for different applications [LC87]. Typical examples are regular
grids, adaptive schemes like octrees, or irregular schemes like tetrahedral meshes. Many of them can
also be applied to surface construction.

The goal of construction algorithms based on spatial subdivision is to find cells related to the shape
described byP. The cells can be selected in roughly two ways: surface—oriented and volume—oriented.

2.1.1 Surface-Oriented Cell Selection
The surface—oriented approach consists of the following basic steps.

Surface—oriented cell selection:

1. Decompose the space in cells.
2. Find those cells that are traversed by the surface.
3. Calculate a surface from the selected cells.

The Approach of Algorri and Schmitt

An example for surface—oriented cell selection is the algorithm of Algorri and Schmitt [AS96]. For
the first step, the rectangular bounding box of the given data set is subdivided by a regular "voxel
grid”. "Voxel” stands for "volume element” and denotes a spatial cell of the grid.

In the second step, the algorithm extracts those voxels which are occupied by at least one point of
the sample seP. In the third step, the outer quadrilaterals of the selected voxels are taken as a first
approximation of the surface. This resembles the cuberille approach of volume visualization [HL79].

7



8 Chapter 2: State of the Art

In order to get a more pleasant representation, the surface is transferred into a triangular mesh by
diagonally splitting each quadrilateral into two triangles. The cuberille artifacts are smoothed using
a low—pass filter that assigns a new position to each vertex of a triangle. This position is computed
as the weighted average of its old position and the position of its neighbors. The approximation of
the resulting surface is improved by warping it towards the data points. For more on that we refer to
Section 2.3.2.

The Approach of Hoppe et al.

Another possibility of surface—oriented cell selection is based on the distance function approach of
Hoppe [HDD"92, HDD" 93, Hop94].

The distance function of the surface of a closed object tells for each point in space its minimum signed
distance to the surface. Points on the surface of course have distance 0, whereas points outside the
surface have positive, and points inside the surface have negative distance. The calculation of the
distance function is outlined in Section 2.2.1.

The first step of the algorithm again is implemented by a regular voxel grid. The voxel cells selected

in the second step are those which have vertices of opposite sign. Evidently, the surface has to traverse
these cells. In the third step, the surface is obtained by the marching cubes algorithm of volume
visualization [LC87]. The marching cubes algorithm defines templates of separating surface patches
for each possible configuration of the signs of the distance values at the vertices of a voxel cell.
The voxels are replaced with these triangulated patches. The resulting triangular mesh separates the
positive and negative distance values on the grid.

A similar algorithm has been suggested by Roth and Wibowoo [RW97]. It differs from the approach
of Hoppe et al. in the way the distance function is calculated, cf. Section 2.2.1. Furthermore, the
special cases of profile lines and multiple view range data are considered besides scattered point data.

A difficulty with these approaches is the choice of the resolution of the voxel grid. One effect is that
gaps may occur in the surface because of troubles of the heuristics of distance function calculation.

The Approach of Bajaj, Bernardini et al.

The approach of Bajaj, Bernardini et al. [BBX95] differs from the previous ones in that spatial decom-
position is now irregular and adaptive.

The algorithm also requires a signed distance function. For this purpose, a first approximate surface
is calculated in a preprocessing phase. The distance to this surface is used as distance function. The
approximate surface is calculated usiagsolids which will be explained in Section 2.1.2.

Having the distance function in hand, the space is incrementally decomposed into tetrahedra starting
with an initial tetrahedron surrounding the whole data set. The tetrahedra traversed by the surface are
found by inspecting the sign of the distance function at the vertices. For each of those tetrahedra, an
approximation of the traversing surface is calculated. For this purpose, a BernsgierBivariate

implicit approximant is used. The approximation error to the given data points is calculated. A bad
approximation induces a further refinement of the tetrahedrization. The refinement is performed by in-
crementally inserting the centers of tetrahedra with high approximation error into the tetrahedrization.
The process is iterated until a sufficient approximation is achieved.

In order to keep the shape of the tetrahedra balanced, an incremental tetrahedrization algorithm is
used so that the resulting tetrahedrizations are always Delaunay tetrahedrizations. A tetrahedrization
is aDelaunay tetrahedrizatioif none of its vertices lies inside the circumscribed sphere of any of its
tetrahedra [PS85].
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The resulting surface is composed of tri-variate implicit Bernste@ei® patches. AC'-smoothing
of the constructed surfaces is obtained by applying a Clough—Tocher subdivision scheme.

In Bernardini et al. [BBCS97, Ber96] an extension and modification of this algorithm is presented
[BBX97, BB97]. The algorithm consists of an additional mesh simplification step in order to reduce
the complexity of the mesh represented by dgheaolid [BS96]. The reduced mesh is used in the last
step of the algorithm for polynomial—patch data fitting using Bernstedzid® patches for each trian-

gle by interpolating the vertices and normals and by approximating data points in its neighborhood.
Additionally, the representation of sharp features can be achieved in the resulting surface.

Edelsbrunner’s and Micke’s a—shapes

Edelsbrunner and Mtke [EM94, Ede92] also use an irregular spatial decomposition. In contrast to
the previous ones, the given sample points are part of the subdivision. The decomposition chosen for
that purpose is the Delaunay tetrahedrization of the giveiPs#tsample points. A tetrahedrization

of a setP of spatial points is a decomposition of the convex hullfofinto tetrahedra so that all
vertices of the tetrahedra are pointsita It is well known that each finite point set has a Delaunay
tetrahedrization which can be calculated efficiently [PS85]. This is the first step of the algorithm.

The second step is to remove tetrahedra, triangles, and edges of the Delaunay tetrahedrization using
so—calleda—balls as eraser sphere with radius Each tetrahedron, triangle, or edge of the tetra-
hedrization whose corresponding minimum surrounding sphere does not fit into the eraser sphere is
eliminated. The resulting so—called-shapeis a collection of points, edges, faces, and tetrahedra.

In the third step, triangles are extracted out of éheshape which belong to the desired surface, using
the following rule. Consider the two possible spheres of radittsrough all three points of a triangle

of the a—shape. If at least one of these does not contain any other point of the point set, the triangle
belongs to the surface.

A problem of this approach is the choice of a suitableSincea is a global parameter the user is not
swamped with many open parameters, but the drawback is that a variable point density is not possible
without loss of detail in the reconstruction. dfis too small, gaps in the surface can occur, or the
surface may become fragmented.

Guo et al. [GMW97] also use—shapes. They propose a so—calggibility algorithm for extracting
those triangles out of the—shape which represent the simplicial surface.

Another approach using the principle efshapes has been presented by Teichmann et al. [TC98].
Here, the basia—shape algorithm is extended #gnsity scalingind byanisotropic—shapingDensity
scaling is used to vary the value @faccording to the local density of points in a region of the data site.
Anisotropic—shaping changes the form of theball which is based on point normals. Theballs
become “ellipsoidal” that allows a better adaption to the flow of the surface. Using these principles
the adaptiveness af—shapes could be improved.

Attali's Normalized Meshes

In the approach of Attali [Att97], the Delaunay tetrahedrization is also used as a basic spatial decom-
position. Attali introduces so—called normalized meshes which are contained in the Delaunay graph.
It is formed by the edges, faces and tetrahedra whose dual element of the Voronoi diagram intersects
the surface of the object. Théronoi diagramof a point setP is a partition of the space in regions

of nearest neighborhood. For each pginih P, it contains the region of all points in space that are
closer top than to any other point aP.

In two dimensions, the normalized mesh of a curv@nsists of all edges between pairs of points of
the given sef’ of sample points on which induce an edge of the Voronoi diagramfothat intersects
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c. The nice property of normalized meshes is that for a wide class of curves of bounded curvature, the
so—calledr—regular shapes, a bound on the sample density can be given within which the normalized
mesh retains all the topological properties of the original curve.

For reconstruction of, the edges belonging to the reconstructed mesh are obtained by considering
the angle between the intersections of the two possible circles around a Delaunay edge. The angle
between the circles is defined to be the smaller of the two angles between the two tangent planes at
one intersection point of the two circles. This characterization is useful because Delaunay discs tend
to become tangent to the boundary of the object. The reconstructed mesh consists of all edges whose
associated Delaunay discs have an angle smallefthiithe sample density is sufficiently high, the
reconstructed mesh is equal to the normalized mesh.

While in two dimensions the normalized mesh is a correct reconstruction of shapes having the property
of r—regularity, the immediate extension to three dimensions is not possible. The reason for that is that
some Delaunay spheres can intersect the surface without being approximately tangent to it. Therefore,
the normalized mesh in three dimensions does not contain all faces of the surface.

To overcome this problem, two different heuristics for filling the gaps in the surface structure have been

introduced. The first heuristic is to triangulate the border of a gap in the triangular mesh by considering

only triangles contained in the Delaunay tetrahedrization. The second heuristic is volume-based. It
merges Delaunay tetrahedra to build up the possibly different solids represented in the point set. The
set of mergeable solids is initialized with the Delaunay tetrahedra and the complement of the convex
hull. The merging step is performed by processing the Delaunay triangles according to decreasing
diameters. If the current triangle separates two different solids in the set of mergable solids, they are
merged if the following holds:

e no triangle from the normalized mesh disappears,

e merging will not isolate sample points inside the union of these objects, i.e. the sample points
have to remain on the boundary of at least one object.

The surface finally yielded by the algorithm is formed by the boundary of the resulting solids.

Weller's Approach of Stable Voronoi Edges

Let P be a finite set of points in the plané> is ane—perturbationof P if d(p;,p}) < e holds for

alp, e P,p, € Pl,i=1,...,n. An edgep;p; of the Delaunay triangulation is callesfableif

the perturbed endpoints, p;- are also connected by an edge of the Delaunay triangulation of the
perturbed point seP'.

It turns out that for intuitively reasonably sampled curves in the plane, the stable edges usually
are the edges connecting two consecutive sample points on the curve, whereas the edges connect-
ing non—-neighboring sample points are instable. The stability of an edge can be checked in time
O(#Voronoi neighbors), cf. [Wel97].

The extension of this approach to 3D—surfaces shows that large areas of a surface can usually be
reconstructed correctly, but still not sufficiently approximated regions do exist. This resembles the
experience reported by Attali [Att97], cf. Section 2.1.1. Further research is necessary in order to make
stability useful for surface construction.

The Voronoi Filtering Approach of Amenta and Bern

The idea of the/oronoi filteringapproach [ABK98, AB98] is to extract a so—calledist out of the
set of Voronoi vertices combined with the original point set.
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In two dimensions the algorithm can be described as follows. First the Delaunay triangulation of
P UV is determined wher¥ is the set of its Voronoi vertices of the Voronoi diagramfofFrom the
resulting Delaunay triangulation the so—call@dstis extracted which consists of the Delaunay edges
connecting points oP.

An interesting observation is that the crust is also part of the Delaunay triangulation of the input point
set P. The additional Voronoi vertices are needed to eliminate undesired edges from the Delaunay
triangulation, by the property of the Delaunay edges that their circumcircles are empty of points in
P U V. This process is calledoronoi filtering

A sampling theorem based on the medial axis has been formulated for this algorithm. "Sampling
theorem” means a characterization of sample point sets for which an algorithm yields a correct surface.
The medial axis consists of all points which are centers of spheres that touch a given surface in at least
two points.

A difficulty with the extension of this algorithm to three dimensions is that, while in two dimensions
the Voronoi vertices of a sufficiently dense data set are located near the medial axis, this is not neces-
sarily the case in three—dimensional space. In order to cope with this difficulty, for each sample point
p the following calculations are performed:

e If p does not lie on the convex hull @f then the Voronoi vertex™ of the Voronoi cellV,, of p

is computed which is the farthest from The vectom™ ::p_vJF points in the direction fronp
tov'.

e If p lies on the convex hull then™ is taken as the average of the outer normals of the adjacent
triangles. v~ is defined as the Voronoi vertex &f, with negative projection om™ that is
farthest fromp.

The pointsv— andv™' are denoted apoles The setl/ of the poles takes over the role of the $&t

of Voronoi vertices of the two—dimensional algorithm. This means that the Delaunay tetrahedrization
DT of P UV is computed, and acfust’ is extracted which is defined by all trianglesIil'(P U V')

for which all three vertices are sample pointsiof

The crust usually does not describe a piecewise linear manifold. It may contain additional triangles
which have to be removed in a further filtering phase. In [AB98] so—caltathal filteringhas been
suggested where all triangles are eliminated which have normals deviating too muchi fosm—.

Still existing superfluous triangles are eliminated in a final post—processing step.

The Short Crust Algorithm of Amenta and Choi

In a more recent approach [AC99, ACDLOO], callglort crust algorithm Amenta et al. replace the
normal filteringby a simpler algorithm with just a single Voronoi diagram computation.

The algorithm starts by computing a normal at each sample point. The normal is estimated by using
“poles” as in their first approach [AB98]. For each Voronoi dgll the Voronoi vertex farthest from

the sample poinp is taken as a pole. The line throughand its polev is almost normal t&5 and is

called theestimated normal linatp. For an anglé theco—coneatp is computed. The co—cone is the
complement of the double cone with apexnaking an angle ofr/2 — 6 with the estimated normal

line atp. Then those Voronoi edges are determined which intersect the co—cones of all three sample
points inducing the Voronoi regions incident to the edge. The dual triangles of these edges form a
candidate seft'.

A subsequenmmanifold extraction steglerives a piecewise linear manifold frof by recursively
removing any triangle ifi” adjacent to @harp edgeA sharp edge is one for which the angle between
two adjacent triangles is sharp, that is, in circular order is greater3thA4h In practice this recursive
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deletion of triangles might be problematic because it can remove sucessively all trian@lesfof
heuristic calledumbrella checks used in order to prevent this problem: triangles at sharp edges are
only deleted if their three vertices all hauebrellas A vertexv is called to have an umbrella if there
exists a set of triangles incident Yowhich form a topological disc and no two consecutive triangles
around the disc meet at a dihedral angle less fhanmore than3'2—”. The dihedral angle is the smaller
one of the two angles between the planes of the triangles at their line of intersection.

Umbrella Filter Algorithm by Adamy, Giesen, and John

The so—called umbrella filter algorithm of Adamy et al. [AGJ00, AGJ01] starts with the Delaunay
tetrahedrization of the sample point g&t Then at each poim € P an "umbrella” is computed. An
umbrella is a sequence of triangles incident to a point which is homeomorphic to a two—dimensional
closed disc and which does not hgvas a point of its border. After that, all triangles that do not belong

to an umbrella are deleted. From the resulting set of triangles, superfluous triangles are eliminated in a
topological clean—up phase, in order to get a manifold. Possibly occuring holes in the mesh are closed
in a final hole—filling phase.

An umbrella is formed over special triangles call@dbriel triangles The triangles are chosen with
increasing value of their lower—interval bound until the set of chosen triangles contains an umbrella.
The A—interval boundaries\y and )\, of a trianglet are calculated by := diam(t)/diam(t;),

i = 1,2, wheret; are the two incident tetrahedra bin the Delaunay triangulation (if is on the
convex hull the values of the missing tetrahedron is s@}.td he interval boundaries are the minimum
and the maximum ok; and\s.

The topological clean up is performed by distinguishing between three types of triangles which hurt
the umbrella condition. Each type is treated by a deletion procedure.

Holes are filled by formulating topological surface conditions and boundary constraints as linear in-
equalities so that the solution with integer values specifies a topologically correct surface filling the
hole.

2.1.2 \Volume-Oriented Cell Selection

Volume—oriented cell selection also consists of three steps which at a first glance are quite similar to
those of surface—oriented selection:

Volume—oriented cell selection:

1. Decompose the space in cells.
2. Remove those cells that do not belong to the volume bounded by the sampled surface.

3. Calculate a surface from the selected cells.

The difference is that a volume representation, in contrast to a surface representation, is obtained.

Most implementations of volume—oriented cell selection are based on the Delaunay tetrahedrization
of the given sef” of sample points. The algorithms presented in the following differ in how volume—
based selection is performed. Some algorithms eliminate tetrahedrons that are expected to be out-
side the desired solid, until a description of the solid is achieved [Boi84, IBS97, Vel94]. Another
methodology is the use of the Voronoi diagram in order to describe the constructed solid by a "skele-
ton” [SB97, Att97].
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Boissonnat’s Volume—Oriented Approach

Boissonnat's volume—oriented approach starts with the Delaunay triangulation of the giverofet
sample points. From this triangulation of the convex hull, tetrahedra having particular properties are
successively removed. First of all, only tetrahedra witio faces, five edges and four poitisone

face, three edges and three poiots the boundary of the current polyhedron are eliminated. Because
of this elimination rule only objects without holes can be reconstructed, cf. Figure 2.1. Tetrahedra

(N

>

Figure 2.1 Boissonnat's volume—oriented approach. An example for a tetrahedron which cannot be removed by the elimi-
nation rule of Boissonnat. The tetrahedron in the hole of the torus has four faces on the boundary.

of this type are iteratively removed according to decreasiegision values The decision value is

the maximum distance of a face of the tetrahedron to its circumsphere. This decision value is useful
because flat tetrahedra of the Delaunay tetrahedrization usually tend to be outside the object and cover
areas of higher detail. The algorithm stops if all points lie on the surface, or if the deletion of the
tetrahedron with highest decision value does not improve the sum taken over the decision values of all
tetrahedra incident to the boundary of the polyhedron.

The Extended Gabriel Hypergraph Approach of Attene and Spagnuolo

The algorithm of [AS00] starts with the generation of the Delaunay tetrahedrizatib(P) of the

given point setP. Then, similar to Boissonnat's approach [Boi84], tetrahedra are iteratively removed
from the polyhedron until all vertices lie on the boundary of the polyhedron. This process is called
sculpturing.

Sculpturing can either beonstrainedor non—constrainedFor non—constrained sculpturing a tetrahe-
dront is removable if it fulfills the criteria of removal of Boissonat’s approach [Boi84].

Constraint sculpturing uses so—caldended Gabriel hypergraphs (EGHN EGH is constructively
derived from the Gabriel grapEG(P). The Gabriel graph (GG) consists of all edgEsbetween
pointsp, g of P for which the smallest diameter sphere does not contain any other pdmtioitially
EGH(P) = (P,Egcy,T) whereT := (. Then,Egqp is successively extended by edggsfor
which incident edges; = pg,es = Pr in Eggy exist which are not collinear and for which the
smallest diameter ball arourmd g, r does not contain any other point 8f This process is iterated
until no further edge can be addedfp . Any cycle of three edges dfgq g defines a triangle of
T.

For constraint sculpturing, a tetrahedrbis removable if the following two rules are satisfied:

e if ¢ has just one fac¢ on the boundary thefi must not belong t&#/GH (P).
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e if ¢ has two faced, f» on the boundary theffy, f» must not belong to the EGH. Additionally,
the common edge of f;, fo must not belong t&ZM ST(P).

The sculpturing process starts with constraint sculpturing, and tetrahedra having the longest edge on
the boundary are removed first. The reason is that the connection between very distant vertices is
less probable than that of two very close points. If the goal that all vertices are on the boundary is
not achieved by constraint sculpturing, what may be the case for badly sampled points, constrained
sculpturing is followed by non—constrained sculpturing.

In order to recover holes, a processmain—constrained sculpturing with EMST restrictifoilows.

This happens if not all edges of the EMST are on the boundary. The process is similan-to
constrained sculpturingput is restricted to all removable tetrahedra whose removal adds an EMST
edge to the boundary. Afterwardshale recovering proceds applied. Its task is to remove so—called
pseudo—prismsA pseudo—prism is a set of three adjacent tetrahedra which remain in the region of a
hole because each one of them cannot be classified as removable with the above criterions.

The Approach of Isselhard, Brunnett, and Schreiber

The approach of [IBS97] is an improvement of the volume—oriented algorithm of Boissonnat [Boi84].
While Boissonnat cannot handle objects with holes, the deletion procedure of this approach is modified
so that construction of holes becomes possible.

As before, the algorithm starts with the Delaunay triangulation of the point set. An incremental tetra-
hedron removal procedure is then performed on tetrahedra at the boundary of the polyhedron, as in
Boissonnat’s algorithm. The difference is that more types of tetrahedra can be removed, namely those
with one face and four verticesr three facesor all four faceson the current surface provided that no
point would become isolated by elimination.

The elimination process is controlled by alimination function The elimination function is defined

as the maximum decision value (in the sense of Boissonnat) of the remaining removable tetrahedra. In
this function, several significant jumps can be noticed. One of these jumps is expected to indicate that
the desired shape is reached. In practice, the jump before the stabilization of the function on a higher
level is the one which is taken. This stopping point helps handling different point densities in the
sample set which would lead to undesired holes caused by the extended set of removable tetrahedra in
comparison to Boissonnat’s algorithm [Boi84].

If all data points are already on the surface, the algorithm stops. If not, more tetrahedra are eliminated
in order to recover sharp edges (reflex edges) of the object. For that purpose the elimination rules are
restricted to those of Boissonnat, assuming that all holes present in the data set have been recovered at
this stage. Additionally, the decision value of the tetrahedra is scaled by the radius of the circumscribed
sphere as a measure for the size of the tetrahedron. In this way, the cost of small tetrahedra is increased
which are more likely to be in regions of reflex edges than large ones. The elimination continues until

all data points are on the surface and the elimination function does not decrease anymore.

The y—indicator Approach of Veltkamp

In order to describe the method of Veltkamp [Vel94, Vel95] some terminology is requireg— A
indicator is a value associated to a sphere through three boundary points of a polyhedron which is
positive or negative. Its absolute value is computedl as;, wherer is the radius of the surrounding

circle of the boundary triangle arf@the radius of the surrounding sphere of the boundary tetrahedron.
For~y—indicator the value is taken negative if the center of the sphere is on the inner side, and positive
if the center is on the outer side of the polyhedron. Note, thattiredicator is independent of the size
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of the boundary triangle (tetrahedron, respectively). Therefore, it adapts to areas of changing point
density. Aremovable facés a face with positivey—indicator value.

The first step of the algorithm is to calculate the Delaunay tetrahedrization. In the second step, a
heap is initialized with removable tetrahedra which are sorted according toytHedicator value.

The removable tetrahedra are of the same boundary types as in Boissonnat’s volume—oriented ap-
proach [Boi84]. The tetrahedron with the largesindicator value is removed and the boundary is
updated. This process continues until all points lie on the boundary, or no further removable tetrahedra
exist.

The main advantage of this algorithm is the adaptation of+thiedicator value to variable point
density. Like Boissonnat’s approach, the algorithm is restricted to objects without holes.

The Approach of Schreiber and Brunnett

The approach of Schreiber and Brunnett [Sch97, SB97] uses properties of the Voronoi diagram of the
given sample point set for tetrahedra removal. One property is that the Voronoi diagram is dual to the
Delaunay tetrahedrization of a given point set. Each vertex of the Voronoi diagram corresponds to the
center of a tetrahedron of the tetrahedrization. Edges of the Voronoi diagram correspond to neighbor-
ing faces of the tetrahedra dual to its vertices. The same observation holds for Voronoi diagrams in the
plane which are used in the following explanation of the 2D—version of the algorithm.

In the first step, the Delaunay triangulation and the Voronoi diagram arfe determined. The second

step, selection of tetrahedra, uses a minimum spanning tree of the Voronoi graplordiei graphis

the graph induced by the vertices and edges of the Voronoi diagraninifnum spanning tre@ST)

of a graph is a subtree of the graph which connects all vertices and has minimum summed edge length.
Edge length in our case is the Euclidean distance of the two vertices of the edge. A pruning strategy
is applied which possibly decomposes the tree into several disjoint subtrees. Each subtree represents
a region defined by the union of the triangles dual to its vertices.

Two pruning rules have been developed for that purpose:

1. All those edges are removed for which no end point is contained in the circumcircle of the dual
Delaunay triangle of the other end point.

2. An edge is removed if its length is shorter than the mean value of the radii of both circumcircles
of the dual Delaunay triangles of its Voronoi end points.

The number of edges to be eliminated is controlled by using the edge length as a parameter.

The resulting regions are then distinguished into inside and outside. In order to find the inside regions,
we add the complement of the convex hull as further region to the set of subtree regions. The algorithm
starts with a point on the convex hull which is incident to exactly two regions. The region different
from the complement of the convex hull is classified "inside”. Then the label "inside” is propagated

to neighboring regions by again considering points that are incident to exactly two regions. After
all regions have been classified correctly, the boundary of the constructed shape is obtained as the
boundary of the union of the region labeled "inside”. An adaptation of this method to three dimensions
is possible.

The a—solids of Bajaj, Bernardini et al.

Bajaj, Bernardini et al. [BBX95, BBX97, BB97, BBCS97] calculate so—calledolids While a—

shapes are computed by using eraser spheres at every point in space, the eraser spheres are now applied
from outside the convex hull, like in Boissonnat's approach [Boi84]. In order to overcome the approx-
imation problems inherent to—shapes a re—sculpturing scheme has been developed. Re—sculpturing
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roughly follows the volumetric approach of Boissonnat in that further tetrahedra are removed. The
goal is to generate refined structures of the object provided-tshape approach has correctly recog-
nized the coarse structures of the shape.

2.2 Surface Construction with Distance Functions

The distance function of a surface gives the shortest distance of any point in space to the surface. For
closed surface the distances can be negative or positive, depending on whether a point lies inside or
outside of the volume bounded by the surface. In the preceding section, we have already described an
algorithm which uses the distance function for the purpose of surface construction, but the question of
distance function calculation has been left open. Solutions are presented in the next subsection.

Besides marching cubes construction of surfaces as explained in Section 2.1.1, distance plays a major
role in construction of surfaces using the medial axis of a volume. The medial axis of a volume consists
of all points inside the volume for which the maximal sphere inside the volume and centered at this
point does not contain the maximal sphere of any other point. Having the medial axis and the radius
of the maximum sphere at each of its points, the given object can be represented by the union taken
over all spheres centered at the skeleton points with the respective radius. An algorithm for surface
construction based on medial axes is outlined in Section 2.2.1.

A further application of the distance function [BBX95] is to improve the quality of a reconstructed
surface.

2.2.1 Calculation of Distance Functions

The Approach of Hoppe et al.

Hoppe et al. [HDD 92, Hop94] suggest the following approach. At the beginning, for each paint
estimated tangent plane is computed. The tangent plane is obtained by fitting the best approximating
plane in the least square sense [DH73] into a certain nurhb@r points in the neighborhood of

p,. In order to get the sign of the distance in the case of closed surfaces, a consistent orientation of
neighboring tangent planes is determined by computingRileenannian graph The vertices of the
Riemannian graph are the centers of the tangent planes which are defined as the centroids of the
points used to calculate the tangent plane. Two tangent plane centgrare connected with an
edgeo;0; if one center is in thé—neighborhood of the other center. By this construction, the edges

of the Riemannian graph can be expected to lie close to the sampled surface. Each edge is weighted
by 1 minus the absolute value of the scalar product between normals of the two tangent plane centers
defining the edge. The orientation of the tangent planes is determined by propagating the orientation at
a starting point by traversing the minimum spanning tree of the resulting weighted Riemannian graph.

Using the tangent plane description of the surface and their correct orientations, the signed distance is
computed by first determining the tangent plane center nearest to the query point. Its amount is given
by the distance between the query point and its projection on the nearest tangent plane. The sign is
obtained from the orientation of the tangent plane.

The Approach of Roth and Wibowoo

The goal of the algorithm of Roth and Wibowoo [RW97] is to calculate distance values at the vertices
of a given voxel grid surrounding the data points. The data points are assigned to the voxel cells into
which they fall. An "outer” normal vector is calculated for each data point by finding the closest
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two neighboring points in the voxel grid, and then using these points along with the original point to
compute the normal.

The normal orientation which is required for signed distance calculation is determined as follows.
Consider the voxel grid and the six axis directidqdse, -y, +-z). If we look from infinity down each

axis into the voxel grid, then those voxels that are visible must have their normals point towards the
viewing direction. The normal direction is fixed for these visible points. Then the normal direction is
propagated to those neighboring voxels whose normals are not fixed by this procedure. This heuristic
only works if the non-empty voxels define a closed boundary without holes.

The value of the signed distance function at a vertex of the voxel grid is computed as the weighted
average of the signed distances of every point in the eight neighboring voxels. The signed distance of
a point with normal is the Euclidean distance to this point, with positive sign if the angle between the
normal and the vector towards the voxel vertex excés

Bittar’s et al. Surface Construction by Medial Axes

The approach of Bittar et al. [BTG95] consists of two steps, the calculation of the medial axis and the
calculation of an implicit surface from the medial axis.

The medial axis is calculated from a voxelization of a bounding box of the given set of points. The
voxels containing points of the given point détare assumed to be boundary voxels of the solid to be
constructed. Starting at the boundary of the bounding box, voxels are successively eliminated until all
boundary voxels are on the surface of the remaining voxel volume. A distance function is propagated
from the boundary voxels to the inner voxels of the volume, starting with distancethe boundary
voxels. The voxels with locally maximal distance value are added to the medial axis.

The desired surface is calculated by distributing centers of spheres on the medial axis. The radius of
a sphere is equal to the distance assigned to its center on the medial axis. For each sphere, a field
function is defined which allows to calculate a scalar field value for arbitrary points in space. A field
function of the whole set of spheres is obtained as sum of the field functions of all spheres. The
implicit surface is defined as an iso—surface of the field function, that is, it consists of all points in
space for which the field function has a given constant value.

In order to save computation time, a search strategy is applied which restricts the calculation of the
sum to points with suitable positions.

The shape of the resulting surface is strongly influenced by the type of field function. For exam-
ple, asharpfield function preserves details whilesaftfunction smoothes out the details. Also the
connectness of the resulting solid can be influenced by the shape function.

Because of the voxelization, a crucial point is tuning the resolution of the medial axis. If the resolution
of the axis is low, finer details are not represented very accurately. If it is high, the detail construction
is improved, but the surface may fall into pieces if the resolution is higher than the sample density.

The Power Crust Algorithm of Amenta and Choi

The latest reconstruction algorithm of Amenta al. [ACKO01], fmaver crust algorithmuses an ap-
proximation of the medial axis transformation of volumes. The approximation is defined by the union
of polar ballswhich are a subset of the Voronoi balls of the sample poinPséthepolesq, 0, of a
sample poinp are the two vertices of its Voronoi cell farthest frganone on either side of the surface.
The corresponding polar balls are the Voronoi bélls ,,, B, ,, With p; = d(0;,p).

The polar balls belong to two sets from which one is more or less filling up the inside of the object,
and the other the outside.
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The main part of the algorithm is to divide the set of polar balls into a set of inner balls which is
filling up the inside of the object, and a set of outer polar balls which are outside the surface. A
weighted Voronoi diagram, theower diagramfor the polar balls is used for that purpose. The power
diagram divides the space into polyhedral cells, each cell consisting of the poiRisciosest to

a particular ball, under a special distance function, calledpth&er distance The power diagram
induces an adjacency relation between polar balls in that two balls are adjacent which have adjacent
power diagram cells. The inside and outside sets of balls are obtained by a labeling procedure which
uses this adjacency.

Finally, the piecewise—linear surface separating the cells of the power diagram belonging to inner
polar balls from the cells belonging to outer polar balls is determined. This so—paieer crustis
the result of the algorithm.

2.3 Surface Construction by Warping

Warping—based surface construction means to deform an initial surface so that it gives a good approx-
imation of the given point seP. For example, let the initial shape be a triangular surface. To some

or all of its vertices, corresponding pointsihare determined to which the vertices have to be moved

in the warping process. When moving the vertices of the mesh to their new locations, the rest of the
mesh is also deformed and yields a surface approximation of the poifits in

Surface construction by warping is particularly suited if a rough approximation of the desired shape is
already known. This simplifies detection of corresponding points.

Several methods of describing deformable surfaces have been developed in the past. Muraki suggested
a "blobby modé€lin order to approximate 2.5-D range images [Mur91]. Terzopoulos, Witkin and
Kass [TM91, TWK88] made use afeformable superquadrioshich have to fit the input data points.

Miller et al. [MBL"91] extract a topologically closed polyhedral model from a volume data set. The
algorithm starts with a simple polyhedron that is already topologically closed. The polyhedron is de-
formed by growing or shrinking it so that it adapts to the object in the volume without changing its
topology, according to a set of constraints. A function is associated with every vertex of the polyhe-
dron, which associates costs with local deformation adherent to properties of simple polyhedra, and the
relationship between noise and feature. By minimizing these constraints, an effect similar to inflating
a balloon within a container or collapsing a piece of shrink wrap around the object is achieved.

A completely different approach to warping is modeling witiented particlessuggested by Szeliski

and Tonnesen [ST92]. Each particle owns several parameters which are updated during the modeling
simulation. By modeling the interaction between the particles themselves the surface is being modeled
using forces and repulsion. As an extension Szeliski and Tonnesen describe how their algorithm can
be extended for automatic 3D reconstruction. At each sample location one particle with appropriate
parameters is generated. The gaps between the sample points (particles, respectively) are filled by
growing particles away from isolated points and edges. After having a rough approximation of the
current surface the other particles are rejusted to smooth the surface.

In the following three subsections three approaches are outlined which stand for basically different
methodologies: a purely geometric approach, a physical approach, and a computational intelligence
approach.

2.3.1 Spatial Free Form Warping

The idea of spatial free—form warping is to deform the whole space in which an object to be warped is
embedded in, with the effect that the object is warped at the same time. Space deformation is defined
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by a finite set of displacement vectors consisting of pairs of initial and target point, from which a spatial
displacement vector field is interpolated using a scattered data interpolation method. A considerable
number of scattered data interpolation methods is known in literature, cf. e.g. [HL93], from which
those are chosen which yield the most reasonable shape for the particular field of application.

The resulting displacement vector field tells for each point in space its target point. In particular, if the
displacement vector field is applied to all vertices of the initial mesh, or of a possibly refined one, the
mesh is warped towards the given data points [RM95].

The advantage of spatial free form warping is that usually only a small number of control displace-
ment vectors located at points with particular features like corners or edges is necessary. A still open
guestion is how to find good control displacement vectors automatically.

2.3.2 The Approach of Algorri and Schmitt

The idea of Algorri and Schmitt [AS96] is to translate a given approximated triangular mesh into a
physical model. The vertices of the mesh are interpreted as mass points. The edges represent springs.
Each nodal mass of the resulting mesh of springs is attached to its closest point in the giFesf set
sample points by a further spring. The masses and springs are chosen so that the triangular mesh is
deformed towards the data points.

The model can be expressed as a linear differential equation of degree 2. This equation is solved
iteratively. Efficiency is gained by embedding the data points and the approximate triangular mesh
into a regular grid of voxels, like that one already yielded by the surface construction algorithm of the
same authors, cf. Section 2.1.1.

2.3.3 Kohonen Feature Map Approach of Baader and Hirzinger

The Kohonen feature map approach of Baader and Hirzinger [BH93, BH94, Baa95] can be seen as
another implementation of the idea of surface construction by warping. Kohonen's feature map is a
two—dimensional array of units (neurons). Each wnibas a corresponding weight vectey. In the
beginning these vectors are randomly chosen with length equal to

During the reconstruction or training process the neurons are fed with the input data which affect their
weight vectors (which resemble their position in 3D space). Each input ve@gresented to the
unitsu; which produce an outpu; of the form

0j = wWj * 1,

which is the scalar vector product @f andi. The unit generating the highest responsie the center
of the excitation area. The weights of this unit and a defined neighborhood are updated by

wi(t+1) = w;(t) + ¢ - (1 —w;(t)).

After updating the weight vectors are normalized again. The value 7 - h; contains two values,
the learning rate) and the neighborhood relationship Units far away from the center of excitation
are only slightly changed.

The algorithm has one additional difficulty. If the input point data do not properly correspond to the
neuron network it is possible that some neurons might not be moved sufficiently towards the desired
surface. Candidates are neurons which have not been in any center of excitation so far, and therefore
have been updated just by neighborhood update which usually is not sufficient to place units near the
real surface. Having this in mind, Baader and Hirzinger have introduced a kireverse training

Unlike thenormal trainingwhere for each input point a corresponding neural unit is determined and
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updated, the procedure in the intermedigeerse trainings reciprocal. For each unif the part of
the input data with the highest influence is determined and used for updating

The combination of normal and reverse training completes the training algorithm of Baader and
Hirzinger.

2.4 Incremental Surface—Oriented Construction

The idea of incremental surface—oriented construction is to build up the interpolating or approximating
surface directly on surface—oriented properties of the given data points.

For example, surface construction may start with an initial surface edge at some location of the given
point setP, connecting two of its points which are expected to be neighboring on the surface. The edge
is successively extended to a larger surface by iteratively attaching further triangles at boundary edges
of the emerging surface. The surface—oriented algorithms of Boissonnat [Boi84] and of Gopi [GKS00]
sketched in the following work according to this scheme. As the algorithm of Gopaltepivoting
algorithm of Bernardini et. al. [BIMT99] follows the advancing—front paradigm, but it assumes that
normals are given at the sampling points.

Another possibility is to calculate an initial global wire frame of the surface which is augmented
iteratively to a complete surface. This is the idea of the approach presented in this thesis, and earlier
versions published in [Men95, MM98a, MM98D].
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Figure 2.2 Pointp,, sees the boundary edgeinder the largest angle. The points are projected onto the local tangent plane
of points in the neighborhood &f

Boissonat’s Surface—Oriented Approach

Boissonnat’s surface oriented contouring algorithm [Boi84] usually starts at the shortest connection
between two points of the given point get In order to attach a new triangle at this edge, and later on

to other edges of the boundary, a locally estimated tangent plane is computed based on the points in
the neighborhood of the boundary edge. The points in the neighborhood of the boundary edge are then
projected onto the tangent plane. The new triangle is obtained by connecting one of these points to the
boundary edge. That point is taken which maximizes the angle at its edges in the new triangle, that is,
the point sees the boundary edge under the maximum angle, cf. Figure 2.2. The algorithm terminates
if there is no free edge available any more. The behavior of this algorithm can be seen in Figure 2.3.
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Figure 2.3 This figure shows the behavior of a contouring algorithm like Boissonnat's [Boi84] during the reconstruction of
a torus. The picture sequence was not reconstructed by the original software (which was not available).

Reconstruction with Lower Dimensional Localized Delaunay Triangulation

In [GKSO00] an approach using lower dimensional localized Delaunay triangulation is used for sur-
face construction. It consists of mainly four steps: normal computation, candidate points selection,
Delaunay neighbor computation and triangulation.

The normal of each sample point is computed by a silkphearest-neighbor approach. The normals

of neighboring points are oriented consistently, so that an orientable manifold can be represented.
Candidate point selection generates a set of pdhtwhich might be connected to a poiptin the

final triangulation, by a conglomerate of estimation functions. Delaunay neighbor computation is
performed in the projection df, onto an estimated tangent plafg of p.

In the final step, an advancing front algorithm is applied. The process starts with an initial point
and all triangles that surround it are taken as initial mesh. In general, boundary points of the current
triangulations and the Delaunay neighborhood information are used to extend the mesh until it is
complete.

2.5 Clustering

It may happen that more than one connected shape is represented in a sample data set. In that case,
most of the methods described up to now may have troubles. The difficulty can be overcome by
segmentingr clusteringthe sample point sd? into subsets of points which are likely to belong to the

same component. The following approach of Fua and Sander [FS91, FS92a, FS92b] is an example of
how clustering can be performed.

The Approach of Fua and Sander

The approach of Fua and Sander [FS91, FS92a, FS92b] consists of three steps. In the first step, a
quadric surface patch is iteratively fitted to a local environment of every data point, and then the data
point is moved onto the surface patch. An additional effect of this step besides yielding a set of local
surfaces is smoothing of the given sample data.
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In the second step, the sample points together with their local surface patches are moved onto positions
on a regular grid.

In the third step, a surface-oriented clustering is performed. A graph is calculated which has the
corrected sample points of the previous step as vertices. An edge is introduced between two vertices
if the quadrics assigned to them are similar. A measure of similarity and a threshold are defined for
that purpose. The connected components of the graph define the clusters of the surface in the data set.

Each of these clusters can now be treated by one of the reconstruction algorithms of the previous
sections.

2.6 Discussion and Categorization of the New Approach

The strength of volume-oriented cell selection is the topological feasibility of the constructed volume.
A disadvantage of the approach is that it is less suited for surface pieces not bounding a volume.
Surface-oriented cell selection may be sensitive to grid resolution (voxel grid, MC surface extraction),
or may cause difficulties by filtering out the right triangles from a superset of triangles obtained in a
first phase, in order to achieve manifold surfaces.

Distance function approaches can be seen as a special case of the volume-oriented approach. They
have similar properties.

Surface warping approaches are reliable with respect to surface topology, but the definition of the
warping function is still a problem.

Incremental surface-oriented construction is suitable for surfaces not bounding a volume, which also
may have boundaries and holes. Its difficulty lies in the decision which points have to be connected.
Often this task is performed locally according to the advancing front scheme which may cause troubles
for not very dense sample sets.

A difficulty with all solutions is that almost no characterization of point sets has been given up to now
for which an algorithm is successful. Recent exceptions are the work of Amenta et al. [ABK98, AB98,
AC99, ACDL00, ACKO1] and Adamy et al. [AGJO01]. Successful reconstruction can be characterized
by the quality of approximation of the original surface by the reconstructed surface. The quality of
approximation has the aspect of correct topology and the aspect of geometric proximity. For the case
of curves which has been mainly treated up to now, the derivation of "sampling theorems” is possible
in a quite straightforward way. For surfaces the problem is more severe. Recently the nearest-neighbor
image has been discovered as a useful concept for describing surface approximation. This concept is
also used in this thesis. For the characterization of the necessary density of sample points, the concept
of the medial axis of a surface has shown to be useful.

The algorithm presented in the thesis can be categorized as surface-oriented. One of its particular
advantages is that arbitrary manifold surfaces with boundaries can be constructed. They need not to
be the surface of a volume. The algorithm constructs the surface incrementally, controlled by a surface-
skeleton which is determined in a first step. The skeleton reduces the above-mentioned difficulty of
surface-oriented approaches to decide which points have to be connected. Furthermore, in contrast
to most other approaches, the new algorithm is always on the "save side”, that is it does not have to
remove superfluous surface elements.

We demonstrate the existence of sample sets for the case of surfaces of bounded curvature without
boundaries, for which a reliable behavior of the algorithm can be expected. The extension to surfaces
with boundaries seems possible but is not done here. Additionally, we give intuitive explanations for
the good behavior of the algorithm which can be noticed also at locations of infinite curvature, that is
sharp edges.



Part Il

The Surface Reconstruction Algorithm

23






Chapter 3

Outline of the Algorithm

The algorithm presented in this thesis has the following interface:

Input: A finite setP = {p,,...,p,} of points in 3D space.

Output: A straight-line manifold 2D cell complex which has the pointsroés vertices.

A manifold 2D cell complex and related concepts are defined as follows.

Definition 3.1 (2D cell complex) A 2D cell complex (CC) (V, E, F') is given by a seV” of vertices,
asetk CV x Vofedges,andasdi CV x V x V of triangles. The elements &f, £, and F' are
also calledcells.

(1) A CCismanifold (MCC) if at most two triangles share a common edge.

(2) A CC isconnected if for every pair of pointg,q there is a sequence of points starting with
and ending withg in which each pair of consecutive vertices define an edge of the CC.

(3) ACCis agraph if F' = ().
(4) A CCis amesh if every vertex and every edge has an incident triangle.

(5) A CCisnot sdf-intersecting if the intersection of any two cells is either empty or again a cell
of the CC.

(6) A CC is calledgeometric if the vertices are points, the edges are curves, and the triangles
are surfaces ind-dimensional space for somke> 1. It is straight-line if the curves are line
segments.

An assumption of the algorithm is that the given point Betonsists of points belonging to a surface

S in 3D space. The suspected surface needs not necessarily to be connected, and thus the resulting
surface has to be neither. The goal is that the application of the algorithm yields a straight-line mesh
which is not self-intersecting iP is a "reasonable sample” of a non-self-penetrating surface.

The algorithm consists of two main phases. In the first phase, a so-salitate description graph
(SDQG) is calculated.

A type of graph which can in principle be used as SDG is the Euclidean Minimum Spanning Tree
(EMST) of the given point seP. The EMST is a (geometric) tree witR as vertices so that the

sum of the Euclidean lengths of its edges is minimum over all trees conndetirighe example in

Figure 3.1 shows that the edges of the EMST follow the expected surface quite reasonably. More on
EMSTs is presented in Chapter 4.

Other favorable types of graphs are thenvironment graphg3(EGs). Figure 3.2 shows an example.

The advantage gf-EGs is that they are more dense than the EMST, but still have the property of a
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L e ey

Figure 3.1 The point set and the EMST of a skull data set.

favorable surface approximation for reasonable sets of sampling points. The density can be controlled
by the value of3. The 5-EGs and their properties are described in Chapter 5.

Unfortunately, the EMST and th&-EG may contain edges unfavorable for reconstruction. For that
reason, they need to be slightly modified by eliminating so-cdiléthe edges

Figure 3.3 shows bridge edges connecting the two tori, but bridge edges can also be noticed for the
B-EG of Figure 3.2 if the non-clusterggtenvironment graph is compared with its clustered variant.

//%J/<

< | e -
Figure 3.3 Thes-environment graph of two randomly sampled tori fbe= 1 without the clustering approach.

The modification applied in order to avoid bridge edges is described in Chapter 5.

In the second phase, the SDG of the first phase is embedded in space and successively augmented
by edges and triangles in order to get a cell complex defining the desired reconstruction. Embedding
means arranging the edges incident to every vertex into an ordered cycle. The embedding is partial in
the sense that the cycle is only determined up to orientation. The sectors induced by two consecutive
edges of the ordered cycles are checked for whether they can be closed to form a triangle. In many
cases this is indeed possible, and the resulting triangle is reported as part of the desired manifold.
However, sometimes a triangle cannot be constructed in this manner, and an alternative procedure is
applied in order to complete the manifold. Figure 3.4 shows snapshots of the triangulation of the skull
data set. The triangulation algorithm is described in detail in Chapter 8.
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Figure 3.4 The reconstruction for the skull data set: intermediate stages of the reconstruction and the final result.

The overall approach of the algorithm follows the general principle of augmenting an initial SDG

by edges and triangles so that at any time the resulting cell complex is a reasonable fitting into the
data point sef?. We have previously presented other solutions based on the same principle [Men95,
MM98a]. There, a longer sequence of graphs has been constructed before the algorithm has switched
to triangles. The advantage of the algorithm presented here is that the sequence of graphs has been
reduced to one graph, due to a quite general concept of environment graphs.

The algorithm is complemented by an analysis of its reconstruction behavior. For this purpose we
first give a precise definition of “reconstruction”. The definition is based on the concept of nearest-
neighbor (NN) image. It roughly tells that a mesh is a reconstruction of a given surfaeif the
NN-image of M on S is non-self-intersecting. Then, conditions on the sample point sets are derived
which are favorable in order that the mesh constructed by our algorithm is a reconstruction. These
conditions are used to demonstrate that a given sample set can be augmented to a sample set for which
our algorithm yields a reconstruction for closed surfaces without boundary of limited curvature, with
high heuristic probability.

The philosophy of NN-embedding is subject of Chapter 6. The analysis is described in Chapter 7 for
the SDG-phase, and in Chapter 9 for the phase of triangulation. Additional heuristic arguments for the
favorable behavior of the algorithm in interactive modeling environments are presented in Chapter 10.
Chapter 11 shows that the neighborhood information of the SDG can be used to smooth noisy data
sets.
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Chapter 4

The Euclidean Minimum Spanning Tree

In this chapter a number of properties of the EMST are compiled which underline the observation
that theEuclidean minimum spanning trédEMST) is a useful skeleton for surface-oriented interpo-
lation of surfaces from a set of scattered points, as illustrated in Figure 4.1. Furthermore, algorithmic
considerations concerning the calculation of the EMST are presented.

4.1 The Euclidean Minimum Spanning Tree — Definition and Properties

In the following we assume that the reader is familiar with the basic terminology of graph theory, like
itis e.g. described in [PS85, Ede87]. Briefly, a grdph= (V, E') consists of a se¥’ of vertices and

a setF of edges. The edges are defined as pairs of vertices. A path in a §raph sequence of
different vertices so that any two consecutive vertices are connected by an edge. A graph is connected
if there is a path between any two of its vertices. A cycle is a closed path, that is, its first and last
vertices coincide. A tree is an acyclic connected graph, that is, a graph without cycles.

The Euclidean minimum spanning tree is defined as follows.

Definition 4.1 (Euclidean minimum spanning tree) Let P = {p,,...,p,,} be a finite set of points
in d-dimensional space. Theuclidean minimum spanning tree (EMST) ofP is a tree that connects
all points of P with edges so that the sum of its Euclidean edge lengths is minimum.

The set of all minimum spanning treesidfs denoted b MST (P).

Theorem 4.2 (Uniqueness of the EMST)If the Euclidean distances between the points of a given
finite point setP are pairwise distinct, then the EMST is unique, that§s\IST (P)| = 1.

Proof: For simplicity, let in the following the union of a grapghi = (P, ) with an edge:, H U e, be
defined ag P, E' U {e}). The differenceld — e is defined analogously.

Now, letH = (P, E) and K = (P, E') be two different EMSTs of’. The edges i{ and K are

sorted in order increasing edge length.

Let e be the first of these edges that is in one EMST and not in the other. W.l.oeg- betin A but

not in K. This means, that every edge with edge length less ¢hqas in both or neither of the trees

H, K.

Consider the tred{ U ey . Adding an edge to a tree always creates a cycle, soRhatey must
contain at least one cycle. By removing any edge of this cycle we again get a tree. By definition both
treesH, K do not contain any cycles. This means that there must be at least oneceidgée cycle

of K U ery which was inK but not in H. We remove that edge, from K U ey so that we get a new
treelL := KUeyg — exk.

Because:;; was the shortest edge in one tree but not in the other, and because all distances between
the points are pairwise distinaty is longer tharey and cannot be of equal length.
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Figure 4.1: EMSTs of various point sets. The approximation of the surface is quite natural.
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This means thak has an edge length sum lower thBnbecause a longer edge has been replaced
by a shorter edgey. But becausd( is already an EMSTL cannot exist. Thusd and K must be
equal. "

A case for which the EMST is not unique is displayed in Figure 4.2.

(@) (b) (€) (d)

Figure 4.2 An example of four possible EMSTSs for a set of points arranged in a square.

Theorem 4.3 (EMST property of subtrees) Let P = {p,,...,p,,} be a set of points irl-dimen-
sional space and7 = (P,E) € EMST(P). LetG = (P',E’) be the graph with a connected
subset of edge®’ C F and P’ C P the set of points that is connected by edged”/of Then,
G=(P,E") € EMST(P).

Proof: Let G’ = (P', E') be a connected subgraph @f= (P, E) with P C P andE’' C E. If
G' = (P',E') is not an EMST then there exists a possibility to connect the poinf3 with edges
of a setE"” with shorter edge length sum. Then, becausé”off P andE’ C F there is also a
possibility to connect the point8 with edges of a seb"*" := (E — E’) U E” so that the sum of its
edge lengths is lower than ii. Consequently = (P, E') is not an EMST which is a contradiction.

In the following, letd(p;, p;) denote the Euclidean distance between two pqints; in d-dimensional

space.

One important property of the EMST is that it connects neighboring points as stated in the next theo-
rem.

Theorem 4.4 (Nearest neighbor property of the EMST)Let p; be an arbitrary point of a finite
point setP in d-dimensional space which has a unique nearest neigihqr, , that is, there is
no other pointp,, € P for whichd(p;, p,m(i)) = d(p;,P,,)- Then the edgp;P,,,; is part of every
EMST ofP.

Proof: Follows immediately from the minimality property of the EMST in Definition 4.1. "

Theorem 4.4 implies that each pojtis connected with its nearest neighbor. If there is more than
one nearest neighbor with the same distang®, tilhenp, is connected with one of them in the EMST,

cf. also Figure 4.2. In practice of EMST calculation, the resulting EMST in such cases depends on the
numerical precision (of the processor) and/or on the order of appearance of the given points during the
computation.

Theorem 4.5 (Leaves of the EMST)Let P be a finite point set iW-dimensional space. Lg € P
be a leaf point o2 M ST'(P), that is, a point with exactly one incident edge in the EMSTp|.et P
be the point that is connected with Thenp; is the nearest neighbor @f.

Proof: Follows immediately from Theorem 4.4 and the connectness of EMSTS. "
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The consequence of Theorems 4.4 and 4.5 is that each leaf point of an EMST is connected with its
nearest neighbor.

The opposite of Theorem 4.4 is not true. If two points are connected by an EMST edge, the points are
not necessarily the nearest neighbors of each other, as proven in Theorem 4.6.

pnn(i) P pnn(j)
]

pi

Figure 4.3 Point p, is connected withp; in the EMST but no point of{p,;, p;} is the nearest neighbor of the

other one. Note thap;p; is the nearest neighbor edge between the EMST subl®sp,,,, )}, {PiP.n(;)}) and

({PjsPaniy b AP Prn -

Theorem 4.6 (Property of EMST edges)Let p;p,; be an edge of the EMST @f. Thenp; is not
necessarily the nearest neighbormfand vice versa.

Proof: Figure 4.3 shows a 2D configuration where a pgjnis connected witip; but is not its nearest
neighbor. "

Although Theorem 4.6 holds, all edges of an EMST connect subtrees of the EMST. These EMST edges
represent the nearest neighbor connection between these subtrees. In fact, each edge of the EMST is
in some sense a nearest neighbor edge (between subtrees) where single points can be considered as
trivial subtrees of the EMST (cf. Theorem 4.7 and Algorithm 4.1).

Theorem 4.7 (Prim [Pri57]) LetG = (P, E) be a graph with weighted edges and {&¢t, P, } be a
partition of the setP. Then there is a minimum spanning tregzbWhich contains the shortest among
the edges with one end point iy and the other ink,.

Proof: See [Pri57] or [PS85]. "

The preceding theorems show that the edges of an EMST connect points that lie close together in
space. On the other hand, it can be expected for a reasonably sampled surface that the point density
on the surface is higher than anywhere else in the surrounding space. In particular for non-convex
surfaces and objects consisting of more than one component, points lying far apart from each other
in space are unlikely to be neighboring on the surface. Furthermore, if it is necessary to reconstruct
very small and detailed surface structures, the point density at those areas should be higher than at
parts with less detail. With respect to these considerations the EMST turns out to be very suitable as
a surface-approximating skeleton. Figure 4.1 illustrates this observation at several examples. We can
observe at these examples that the EMST follows the shape of the object in a quite natural manner.

Another type of graph having the property of short edges are the Nearest-Neighbor Graphs (NNG)
[Vel94]. The nearest neighbor graph of a finite point Betonnects each of its points to its nearest
neighbor(s). According to Theorem 4.4, the NNG is a subgraph of the EMST. A disadvantage of the
NNGs is that, in contrast to the EMST, they are in general not connected.

Since we here investigate the properties of EMSTSs as surface approximants it is necessary to determine
the sharpest possible turn between two consecutive edges. For this purpose we calculate the minimum
angle between two adjacent edges in the EMST. In order to do this we first need a consideration on
the angles inside a triangle which is analyzed in the following theorem.
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Theorem 4.8 (Longest edge property in a triangle)Let ¢ be a triangle with edges,, ¢;, e. where
a =l(e,),b =1(ep),c = l(e.) are the lengths of these edges. Furthermoreqlgt, v be the angles
that are opposite to the edges e;, e.. We assume that = max(«, 3, ) is the largest angle in the
triangle. Theng = max(a, b, ¢) ande, is the longest edge in

Proof: From the sine theorem [BS87] we know that

a b c
sin(a)  sin(B)  sin(y)’ 4.1)

Additionally, we know that fof® < § < 180°, the equation
sin(180° — d) = sin(6) (4.2)

holds.

W.l.0.g. we assume thatwith v = max(a, 3, 7) is the largest angle. We have to show that in that
casec > a andc > b holds. It is sufficient to show that> « because the sequence of equationgfor
will be the same. Using Equation 4.1 we have

sin(y)
sin(a)

Obviously, because df80° = « + S + « holds, the valuey must be larger or equal #(F if v =
max(a, 3, 7). After these considerations we can make a case distinction.
For60° <« < 90° we obtain
sin(7)
sin(a) —
becausey > «a, o < 90° andsin(vy) > sin(a).
In the case 00° < v < 180° we get

_sin(y) _ . sin(180° — (@ + f)) _ . sin(a + f)
sin(«) sin(«) sin(«)

by using Equation 4.2 and becausgef+ ) < 90° andsin(a + ) > sin(«). Therefore,

sin(a + )

> 1
sin()  —

implying ¢ > a. The same cases appear for the comparisagnvoth c. n

A result of Theorem 4.8 is that the EMST maximizes the angles between adjacent edges because of
its minimum length property.
Using the result of the previous theorem, the minimum angle in an EMST can now be calculated.

Theorem 4.9 (Minimum angle in the EMST) Let P be a finite point set inl-dimensional space.
The minimum angle between two adjacent edgdsdiST' (P) at an arbitrary pointp € P is 60°.

Proof: LetG = (P, FE) = EMST(P) be the EMST of a finite point sé¢. Consider two arbitrary
edgese; = p,;p;, e2 = P; P, of G that are incident to an arbitrary poipt € P. If e, es enclose

an angley less than6(°, then it is not the largest angle in the triangle= A(p;, p;, p;) because

180° = a + B + v whereqa, 8 are the angles that are oppositeetoes in t. From Theorem 4.8

we know that the largest angle iris opposite to the longest edge. Therefore, eithar e, is the
longest edge it. This means that the points, p;, p,, can be connected with two other edges that
have a lower edge length sum thign, ) + [(e2). The consequence is that there also exists an edge set
E' with lower edge length sum thafi that connects all points dP. This is a contradiction because

G = (P,E) is an EMST. .
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In fact, the maximum turn of a surface that can be represented by an EMST is usually largéF than
and depends strongly on the distribution of points which influence the length of adjacent EMST graph
edges.

Figure 4.4: A 2D cross section through the surface of an object. The surface is drawn dotted. (a) The edges correspond to
the surface structure but they are not equal to the EMST. The desired reconstruction of this surface turn would be described
by the edge®a ab. (b) The EMST of the points,b,c connects the wrong points in comparison to the real surface. The
surface is not properly sampled and the EMSTdj, c does not follow the surface accurately. (c) The surface is sampled
properly so that the EMST of the shown points can follow the real surface turn. (d) The angle between the tga,edges

is high enough so that the EMST of the poia{®, c describes a correct surface turn.

Taking the EMST as a surface skeleton results in the fact that the properties of the EMST are also
transferred to the type of surface that can be reconstructed. Therefore, the precision of the EMST as
stated in Theorem 4.9 affects the distribution of points that is allowed in order to properly describe a

surface by a surface graph.

A concrete example for a surface portion with a sharp edge at a surface point where the EMST preci-
sion has an effect is depicted in Figure 4.4. We see that it is crucial to scan the points at the correct
areas of the surface in order to avoid wrong structures of the EMST.

Another issue which is important for computational efficiency, is the number of edges that can be
incident to a point of an EMST. For the case of a point set in the plane we know the following.

Theorem 4.10 (Number of incident EMST edges to a point in 2D)The maximum number of edges
incident to a point of an EMST of a finite point set in the plane is 6.

Proof: Consider the optimal configuration in Figure 4.5. From Theorem 4.9 we know that the smallest
possible angle for an EMST &)°. That results |n36‘i)—0 = 6 neighbors in the plane. Now, we have to
prove that all points must have the same distance to achieve the maximum number 6 for the possible
connected neighbors. Consider two consecutive edgespipkj, ez = PiPy,,,- We know that the
longest edge in a triangle through Pr; Py, for example, is always opposite the largest angle in

the triangle, cf. Theorem 4.8. If one of the two edgess would be longer than the other one then it
would be the longest edge in the whole triangle and therefore be not part of the EMST. The other edge

es = Py, Py, cannot be longer than the other two edges because the opposite gmgje S ST
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L)

5 6

Figure 4.5 The maximum number of EMST edges around a point of the given planar point set is 6. The distances between
consecutive pointp, ., P, are equal tel(p;, pki) fori € {1,...,6}. Provided that the distances to the middle point are
smaller only for numerical reasons, this EMST graph is the optimal structure. On the other hand, the shown EMST graph is
one of the possible EMST graphs for this point set.

is still 60°, and at least one of the angles in the (new possible) triangle induced by egdgesith
non-equal length would have to be larger tiééh Therefore, all pointspkj must have equal distance

In three dimensions the number of possible EMST edges around an arbitrary pbibf #7'( P) can
be higher.

Theorem 4.11 (Number of incident EMST edges to a point in 3D)The largest vertex degree, that
is, the number of incident edges of an EMST in 3D space is 12.

Proof: We place a number of edges,. .., e, with arbitrary length at an arbitrary poim with
pairwise angles of minimuri0°. W.l.0.g. lete; be the shortest edge jt with scaled length 1. We

place spheres of radit%sat p, and at each so-callehchor pointone, .. ., e, with distance 1 tg,;.
Because each pairwise angle is at miniméih the spheres cannot penetrate each other. They can
only touch each other which is the case if the angle of two neighboring edges is eadiiycep;,

and the two anchor points form an equally-sided triangle (see Figure 4.6). The number of edges with
spheres at their anchor points that can be placed angumithout penetrating each other corresponds

to the problem of how many spheres with equal rad'tu%] can be placed at a center spherg,at

This problem is solved in [SvdW53, Lee56, CS88] and its number is limited tb 12.

Now, we have to show that there exists at least one configuration of edgewlsth is an EMST.

If all edges are replaced with edges that connect only the anchor pointg witis is at least one
possible configuration which is an EMST. This is because each anchor point has at least a distance of
1 to each other anchor point, the same distance @s fbherefore, the edges pf represent one of

the possible EMSTs for the anchor points amd "

In Theorem 4.11 the maximum number of edges around a ppintthe EMST has been computed.
In the ideal case this value is 12 but in practice it can be expected to be much lower. Especially, if the

!The oldest proofs appeared in the nineteenth century [Ben74, HopM®5E " Other approaches can be found in
[Boe52] and [Was78]. The whole problem area is also known akitiseng number problentf. [CS88].
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anchor point

Figure 4.6. The edges that can be placed aropndan have arbitrary length. At; and on each edge with distance 1 to
p; a sphere of radiu§ is placed. This picture shows the situation where two edges form an angle that is éRactil
spheres are touching each other becaused the two anchor points form an equally-sided triangle.

set of points describes a two-dimensional surface in three-dimensional space, the boundary for the 2D
case, which is equal to 6, applies more than for the 3D case.

Figure 4.7: The case of four incident EMST edges (solid lines) to a point on a sphere and their corresponding surface curves
(dashed lines). The nearer the points are to each other the more the situation for vertex degrees of the EMST resembles the
case in the plane than the case in 3D space.

Let us consider the case of sample points that are scattered over a sphere of radius 1. If more points
are present on the sphere, then the edges between the points on the sphere surface adapt better to the
3D distance between them. Therefore, the more points are scattered over the sphere the better is the
correspondence of the 3D case to the 2D case. Thus, the restrictions for the 2D case apply for the
number of edges around a popt An example is shown in Figure 4.7.

Table 4.1 shows the statistics of vertex degrees for the points sets of Figure 4.1. The maximum of
six edges around a single poigtis never reached, and even five edges around the point have never
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# of vertices of degreg in the EMST

torus| cup | head] skull | puppet| cap| pharaoh tori
[#points| 310 | 2650] 1487] 698 | 695 | 371] 2286 | 620]
k=1 76 325 | 262 | 167 177 83 446 145
k=2 163 | 2020| 975 | 379 356 | 211| 1413 | 337
k=3 68 287 | 240 | 139 149 73 410 133
k=4 3 18 10 13 13 4 17 5

[ #edges]| 309 | 2649] 1486] 697 | 694 | 370] 2285 | 619

Table 4.1 Statistics of vertex degrees for the EMSTs of our example point sets. The vertex degree is much lower than the
theoretic upper bound of 3D EMSTs. Even the bound of 6 for the vertex degree of the 2D case is not reached.

occurred in all of our examples. The maximum value here has been four, and in average we can expect
approximately two or three edges at a point.

However, for reasons of complexity the worst case has to be considered anyway. Here, if the max-
imum of 12 edges occurs then all surrounding points cannot have the same maximum vertex degree
[SvdW53]. There are several papers on this topic in which bounds are derived from the theory of
spherical packings in three-dimensional space which can be found in [CS88].

As a result, the number of EMST edges that are in average around a point can be expected equal to or
less than 4.

4.2 Computational Issues

The calculation of the EMST is a classical problem of computational geometry, and efficient algo-
rithms are known for it.

object | # points computation times in seconds
DT(P) | EMST(P)
torus 310 1 0.03
cup 2650 11 0.32
head 1487 6 0.18
skull 698 3 0.08
puppet 695 3 0.08
cap 371 2 0.04
pharaoh| 2286 10 0.29
tori 620 1 0.07

Table 4.2 The computation times of the Delaunay triangulation and the subsequent EMST calculation for our examples in
seconds on an SGI Octane R10000 at 250 MHz with 384 MByte of memory.

A frequent approach is to calculate the EMST out of the Delaunay triangulation of the point set,
because the EMST is a subgraph of the Delaunay graph [PS85]. The worst case time complexity
of the Delaunay triangulation i©(n?) in 3D space [Joe89, Joe91]. The computation of the EMST
out of a supergraph requir€3(|E|log n) operations, wheréZ| denotes the number of edges in the
supergraph. The number of edges in the 3D Delaunay triangulation c@t/Bgin the worst case,

which results in0(n? log n) for the EMST computation out of the Delaunay triangulation. Calculation
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of the EMST is possible by using one of the optimal spanning tree algorithms of graph theory, for
example that of Kruskal [PS85].

The computation times for our examples can be found in Table 4.2. For the calculation of the Delaunay
triangulation the software of Mtke has been used [M93b, Mic93a, EM94].

Algorithm 4.1 Computation ofE M ST'(P)

Input: Point setP = {p;,...,p,}

Operation: Compute theZ M ST of P.

LetG; := ({p;},0) be the initial one-node-trees for=1,...,n.

LetG := {Gy,...,Gy} be the set of all trees.

while (|G| > 1) do

foreach(G; e Gwithj e {1,...,|G| } ) do

Determine the nearest neighbor trég € G of G;.
Letp,p, be the shortest connecting edge betwégand G ;.
G = Gj U ({prv ps}v {prps}) U G.
G:= (6 -{G;,Gr}) V{G'}

end
end
Output: EMST(P).

Another possibility is to calculate the EMST directly. A particularly suited spanning tree algorithm
for that purpose is that of Bavka. According to Ottmann & Widmayer [OW90] the algorithm of
Bortivka [Bor26] is reported to be the historically first algorithm for the computation of a minimum
spanning tree. It is shown in Algorithm 4.1. The union of graphs= (P, E5) andGy = (P», Es)

used in the algorithm is defined é5:= (P, U P, E;1 U E5). At the beginning of the algorithm, an

initial forest of one-node-trees is established. Each verteR défines one tree of that forest. Then

for each tre€; its nearest neighbor tre€, is computed, which is the tree that contains the ppjnt

not in G; which has the shortest Euclidean distance to the nearestpahty;. Both trees are then
merged into one single tree, so that the number of all trees is decreased by one. This tree merging
process is repeated until the set of these trees has reduced to one tree.

Prim’s algorithm [Pri57] is a special case of the algorithm of Bda. There, the process starts with

a single tree defined by an arbitrary vertex node. This initial tree is then sequentially extended by its
nearest neighbor connection to a new vertex, that is not already part of the current tree. As before, the
process is finished if all vertices have been connected to one tree.

4.3 Discussion

This chapter has dealt with the properties which make the EMST useful as an initial skeleton of a
surface. Experimental examples have demonstrated the favorable behavior of the EMST. Furthermore,
algorithmic aspects concerning the calculation of the EMST have been treated.



Chapter 5

Environment Graphs

In the previous chapter we have seen that the EMST can serve as a good surface approximation.
However, in Figure 5.1 we can notice that the torus ring is not closed with edges because of the
minimum length property of the EMST (cf. Chapter 4). As consequence, in this chapter we consider
more dense graph schemes, the so-called environment graphs which extend the concept of the EMST
and preserve to a large extent the favorable surface approximation properties of the edges which we
could observe for the EMST. Furthermore, we cope with the problem of bridge edges which may
connect parts of a surface over a large distance in an undesirable manner, as could be noticed for
example for the double torus in the preceding chapter, cf. Figure 4.1.

Figure 5.1 The point set and the EMST of a torus that consists of rings of points.

5.1 Environment Graphs

The following definition describes a very general concept of environment graphs which can be spe-
cialized to several known classes of graphs.

Definition 5.1 (Environment graph (EG)) Letl/ be a function that assigns to every line segnsént
the d-dimensional spac®? a setl/(s) of environments of. Thel/-edge-environment graph (U/-EG)

of a finite set of points iflR? is a graph with vertex seP, whose edge set consists of all those line
segments induced by pairs of points i for which there exists afi (e) € U(e) withU(e) N P = (),
that is, the-environment oé does not contain any point at.

A typical example of an EG is the Delaunay graph whose edges are just those line segments of its
vertex set which have an empty surrounding sphere [PS85, Ede87]. In thal/¢ases the set of all

surrounding spheres of

39



40 Chapter 5: Environment Graphs

Definition 5.2 (Euclidean minimum spanning environment (EMSE)) For any pair of point, q €

R¢, the Euclidean minimum spanning environment (EMSE) of their connecting line segmestis
the intersection of the closed ball touchigcand centered ap, with the closed ball touching and
centered af. The EMSE is denoted ¥ /5:(s).

Let P be a set of points ilR?. The EMSE-graph of is thel/-EG withiA(s) := {Ugrsp(s)} for

every line segment

The reason for introducing the EMSE lies in the following theorem.

Theorem 5.3 (EMSE-property) Letp,q,r € R¢, s the line segment connectimgandg.
(1) sbelongs to an Euclidean minimum spanning tre@cf {p, q,r} ifand only ifr ¢ Ugarse(s).

(2) For any finite sef of points inR?, the EMSTSs oP are subgraphs of the EMSE-graph Bf

Proof:

(1) By definition ofUgarse(s) there is no point inside the spheres of radigg, q) aroundp,q so
that one of the pointp,q is the nearest neighbor of the other onejJn By Theorem 4.4 we
know that nearest neighbors are part of an EMST.

(2) Each line segment of the EM ST (P) with s = pq does not have a pointinside (and not
on the border of) the intersection of the spheres arqumdwith radiusd(p, q) which is the
condition for each edge of the EMSE-graph. Let us assume such arpsold exist forp, g.
W.l.0.g. there exists a path from(or g) to r that does not contain the poigt(or p). Obviously,
we know thatd(qg,r) < d(p,q). If we modify the EM ST (P) by removingpg and adding the
edgeqr we get a connected graph with lower edge length sum. This cannot be true because the
EMST(P) is of minimal length.

The EMSE-graph in general has more edges than an EMST which, according to the previous theorem,
is in some sense a "lower bound” of the EMSE-graph. An "upper bound” is given by the next theorem.

Theorem 5.4 (Delaunay property of the EMSE-graph) Let P be a finite set of points ilR?. The
EMSE-graph ofP is a subgraph of the Delaunay graph Bf

Proof: The EMSE of a line segmentcomprehends an empty surrounding sphere. of "
The following corollary is an immediate consequence of this theorem.

Corollary 5.5 (Planarity of the EMSE-graph) Let P be a finite set of points in the plane. The points

are assumed in general position, that is, no four of them are co-cyclic. Then the EMSE-gil@p$ of

a planar graph.

Proof: The Delaunay graph of points in general position is a planar graph. Because the EMSE-graph
is a subgraph of the Delaunay graph, the EMSE-graph is planar, too. "

Another property of the EMSE-graph which is an immediate consequence of the EMSE-property is
stated in Theorem 5.6.

Theorem 5.6 (Cycle length of the EMSE-graph)If a cycle of the EMSE-graph has length 3 then its
vertices define an equal-sided triangle.

Proof: The only case that all edges of a triangle have an empty EMSE-environment is the equal-sided
triangle. "
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An implication of the theorem is that EMSE-graphs should be triangle-free with high probability.
Several properties of the EMST which are of local nature can also be found for the EMSE-graph.

Theorem 5.7 (Local EMSE-graph properties) Let P be a finite point set ilR? andp, q € P.

(1) Letp be a leaf point of the EMSE-graph &f, that is, a point with exactly one incident edge,
which is connected with a poiat Thenq is the nearest neighbor @f

(2) Letpq be an edge of the EMSE-graphBf Thenp is not necessarily the nearest neighboigof
and vice versa.

(3) The minimum angle between two adjacent EMSE-graph edges at an arbitraryppoirthe

graph is60°.
(4) The maximum number of edges incident to a point of an EMSE-graph of a point set in the plane
is 6.
(5) The largest vertex degree, that is, the number of incident edges, of an EMSE-graph in 3D space
is12.
Proof: Analogously to the EMST case, cf. Chapter 4. "

The suitability of the EMSE-graph as a framework of surface interpolation lies in the fact that the
EMSE is not able to "escape” into the empty space as the surrounding spheres of the Delaunay tri-
angulations can. Figures 5.2 and 5.3, left column, show the Delaunay triangulation of our series of
sample data sets. In the second column from the left, the corresponding EMSE-graphs are depicted.
Here the question arises for environment graphs induced by spheres which are prevented to escape.
An immediate possibility is that the corresponding environment of an edge is bounded by the unique
sphere having the edge as its diameter. This type of graph is well-knoWalargel graph[GS69]

which has been preferably used in the plane. Both graph classes, the EMSE-graphs and the Gabriel
graphs, can be seen in the much wider framework given by the concgptmfironment graphs.

Definition 5.8 (3-environment graph (3-EG)) Lete = pq, p,q € R? be a line segment, anH a
plane inR? containinge.
For 8 > 0, letp’, ' be points on the line induced byocated symmetrically with respect to its center
m:= %(p—{—q),thatis ,

p =pp+(1-p)m,

q' =pq+ (1 - p)m.
Let E}j(e) be the intersection of the disc i with centerp’ throughq with the disc ind with center
q’ throughp, cf. Figure 5.4 (left).

For B8 < 0, letp’, g’ be points on the perpendicular line fifi through the centem of an edgee =pq
located symmetrically with respect to its center, with

Ip" = m|| =||q' —m|| = -8 |lq - pll,

where|| - || denotes the Euclidean norm. The environmgjtte) is defined as the intersection of the
disc with centep’ throughp andq with the disc with centeqf throughp andq, cf. Figure 5.4 (right).
Let Es(e) be the set of points obtained by rotatifg(e) arounde. Ej(e) is called thes-environment

of e. The environment graph withrenvironments as environments is calle@nvironment graph. In
2D spacefd is replaced with the 2D space arig(e) := Ej(e).
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Figure 5.2 From left to right: the Delaunay triangulatiddT’(P), the 3-environment graph fo = 1,1, 0. Note, that the
EMSE-graph corresponds tgsaenvironment graph witl = 1.
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Figure 5.3 From left to right: the Delaunay triangulatiddT (P), the 3-environment graph fof = 1, ,0. Note, that the
EMSE-graph corresponds tggaenvironment graph witly = 1.

Sometimes we also will usBg(p,q) = F3(e) as another notation of thé-environment of an edge

e = pq.

In 2D space, the valug = 0 yields the Gabriel graph, in 2D and 3D spate-= 1 yields the EMSE-

graph.

In two dimensions, th&-environment graphs fg8 > 0 correspond to thkune-based neighborhood
graphsof Kirkpatrick and Radke for theif > 1, for 8 < 0 to theircircle-based neighborhood graphs

for their 5 betweer( and1 [KR85, Rad88]. Recently, Rao [Ra098] has independently generalized the
neighborhood graphs to higher dimensions. Up totkgarameterization, oys-environment graphs

are the same as his lune-based neighborhood graphs.

Figures 5.2 and 5.3 sho@g-EGs fors = 1, % and0 of our sample data sets. We can notice that

also in the 3D-case the resulting graph yields a reasonable, almost planar approximation. The number
of "crossing” edges is very small, and decreases with incregsingigure 5.5 shows the edges of
B-environment graphs fg = —% which additionally are Delaunay edges. Even with this restriction,
many edges useless for reconstruction are delivered. On the other hand, the chance seems to be good
that the desired mesh is a subset of this graph. Based on this observation it might be possible to find a
surface reconstruction algorithm that works by eliminating the superfluous edges from the graph.

As we can see from our examples, the number of edges iB#86& decreases with increasirty

Some statistics of vertex degrees, that is, the number of pointskviiittident edges in thg-EGs for

B =1,%,0are shown in Tables 5.1, 5.2, 5.3.

An interesting observation is th@&tenvironment graphs have a hierarchical structure.

Theorem 5.9 (Subgraph hierarchy of thes-EG) For a given finite point seP in 3D space, if5 >
B2, the 8;-EG of P is subgraph of the¢,-EG of P.

Proof: The property results from the observation thag(p,q) C Fs, (p,q). .
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Figure 5.4 Left: The 3-environment of an edggq for 8 > 0 in the plane. The points for the values ®f= 0 (p’, q'),

B=13%(@",q")8=1(@p",d"). Right: Thes-environment for3 < 0 in the plane. The points for the values ®f= 0

(p',q’) and two valueg: (p”,q"), B2 (p™',q"") with B2 < 1.

Figure 5.5 The 5-environment graph restricted to the edges of the Delaunay triangulatigh #or %
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# of vertices of degreg in the 1-EG
torus| cup | head]| skull | puppet| cap| pharaoh tori
[#points]| 310 | 2650] 1487] 698 | 695 | 371 2286 | 620]
k=1 5 0 18 15 8 12 10 8
k=2 100 0 253 | 193 179 | 154 439 190
k=3 179 50 482 | 355 400 | 184| 1111 | 345
k=4 26 | 2550| 734 | 133 108 21 725 72
k=5 0 50 0 2 0 0 1 5

[ #edges]| 426 | 5300] 2453] 1004] 999 | 484] 3563 | 868

Table 5.1 The statistic of vertex degrees for= 1.

# of vertices of degreg in the3-EG
torus| cup | head| skull | puppet| cap| pharaoh tori

[#points]| 310 | 2650] 1487] 698 | 695 | 371] 2286 | 620

k=1 0 0 4 2 0 0 1 0
k=2 42 0 108 | 50 52 83 144 82
k=3 162 | 50 | 384 | 320 | 272 | 183| 767 307
k=4 92 | 2450| 918 | 295 | 294 | 92 1080 | 174
k=5 14 | 150 | 66 30 74 13 268 49
k=6 0 0 7 1 3 0 26 8

[ #edges| 504 | 5350] 2708] 1199] 1242 | 574] 4203 | 1037]

Table 5.2 The statistic of vertex degrees fér= 1.

In the following we will consider some useful properties®EGS.

Theorem 5.10 (Properties of the3-EG, 5 > 0) [g-environment graphs fg8 > 0 have the following
properties:

(1) The environmenEg(p, q) is the intersection of the ball with centprthroughp and g with the
ball with centerq' throughp andg.

(2) TheS-EG is a subgraph of the Delaunay graph.
(3) For a set of points in the plane in general position, th&G is a planar graph.

(4) If 0 < p <1thenthes-EG is aconnected graph.

Proof:
(1) By definition, £%(p, q) is the intersection of the discs i with centergd, g’ and radiid(p’, q),
d(p,q’) which is rotated around = pg. If we first rotate the discs arourgl q’ we get balls
around the points through g. The intersection of these balls&5(p, q).

(2) Forp > 0 the sphere arounch with radius% - d(p,q) is obviously contained i (p,q). It
is known from the Delaunay graph, that all Delaunay edges have at least one circumscribing
empty sphere.

(3) Thes-EG is a planar graph because it is a subgraph of the Delaunay graph which is known to
be a planar graph for points in general position.
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# of vertices of degreg in the 0-EG

torus| cup | head| skull | puppet| cap| pharaoh tori
[#points| 310 | 2650] 1487] 698 | 695 | 371] 2286 | 620
k=1 0 0 0 0 0 0 0 0

k=2 7 0 18 8 1 31 11 11
k=3 59 1 101 83 31 100 167 116
k=4 118 | 1472| 377 | 265 221 127 551 221
k=5 84 773 | 548 | 226 255 87 733 148
k=6 34 302 | 416 | 100 146 19 682 75

k=17 7 100 | 25 13 29 7 110 32
k=38 1 2 2 3 11 0 27 8
k=9 0 0 0 0 1 0 4 8
k=10 0 0 0 0 0 0 0 1
k=11 0 0 0 0 0 0 0 0
k=12 0 0 0 0 0 0 1 0

| #edges| 672 | 6142] 3637| 1585] 1715 | 734| 5759 | 1407|

Table 5.3 The statistic of vertex degrees fér= 0.

(4) From Theorem 5.9 we know that the 1-EG is a subgraph of vt with0 < g < 1. From
Theorem 5.3 we know that the EMST is a subgraph of the EMSE-graph, which is identical to

the 1-EG. Because the EMST is connected, the 1-EG and th@sEBs under consideration
are connected.
|

Theorem 5.11 (Properties of the3-EG, g < 0) S-environment graphs fof < 0 have the follow-
ing properties:

(1) Thep-EG generally is not a subgraph of the Delaunay graph.
(2) For avertex setin the plane, thieEG generally is not a planar graph.

(3) Letr be a point inEg(p,q). Then the angley at r of the line segment®p andTq satisfies
v > () = arcsin(x/l_il_w), 90° < ~(B) < 180°, with equality for the points on the

boundary ofEg(p, q).

(4) Letr be a point with an angle at the line segmeRfsandTq at r which is at least equal tg,
90° <y < 180°. Thenr is in Eg(,(p,q) with 5(v) := (cot y)/2.

Proof:
(1) As known for the Delaunay graph every edge has at least one circumscribing empty sphere.

Because of Theorem 5.9, for every edge where a poisatinside its smallest circumscribing
sphere a value smaller than 0 fércan be found so thate Ej(p,q) .

(2) Non-planar means that there can be intersections in the plane. Figure 5.6 shows an example of
ap-EG, 8 < 0, in the plane with intersecting edges.

(3) We considerE’ﬂ (p,q) in the planeH spanned by, q, andr, cf. Figure 5.7. Fop < 0, the
planar environmenE’B(p, q) consists of two disc segments of identical shape, separated by the
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Figure 5.6. A 8-EG for 8 < 0 in the plane. It shows that intersecting line segments are possible. The sthgbés the
more likely intersections become.

line segment = pq. The definitions yield a radius of

V1+452

= e

By the sine-theorem, the ratio g&|| and the sine of the angte which is opposite t@ in the
trianglep, q, r, is equal t@r, that is

el _
s =1+ 487 el

if r is on the circular boundary of the disc segment. This is just the formula of the theorem
written reciprocally. Ifr is in the inner of the disc segment,is larger than on the boundary.
Becausey > 90°, that means thatin(+y) is less than for the boundary, and thus the inequality
of the theorem holds.

Figure 5.7: The angles at points inside ti¥eenvironments.

(4) From (3) we know that the angle is equattd r is on the arc boundingy.)(p, q). Figure 5.8
depicts the situation if is outside ofEjs,)(p, q) and an edge of the triangle induced fbyg,
andr intersects the arc. In this case we get

180°=vy+a+d=¢p+ (a+d)+9,
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that is,
p=7y-d.
BecauseY > 0, the angle at is less thany.

If the edges of the triangle do not intersect the arc, it can be immediately seen, that the angle at
r is larger thany.

Thus no points outside dfy(.)(p, q) with angle equal or larger thapexist.

Figure 5.8 The angle at points that are outside thenvironment.

Corollary 5.12 (Angles at distant points) Letr be a point outside the environmehj(p, q) of an
edgee = pq, 8 < 0. Then the angle at is less than the angle satisfyingsin(y) < L

v > 90°.

Proof: The corollary is an immediate consequence of assertion (4) of the preceding Theorem 5.11.

An interesting observation for later use is that for a triangular mesh which is a subgraghBGa
for 8 < 0, the maximum angle of a triangle is less than the angterresponding t@.

5.2 Clustered Environment Graphs

As we have recognized from the examples, EMSTs and environment graphs are in principle well-
suited for reconstruction. They, however, show two difficulties which may sometimes occur. The
first difficulty is the occurrence of long "bridge edges” which could already be noticed in some of
the examples of the previous chapter. In order to avoid bridge edges, we introduce the clustered
environment graphs which are subgraphs of the environment graphs.

Another effect is that the environment graph of a surface may not be locally planar, even in the clus-
tered version. In the plane, for example, this may happen for co-cyclic points. We give heuristic
criteria in order to identify critical edges and to remove them from the graph.

5.2.1 Intersecting Edges

We can notice in the examples that the edges of the environment graphs seem to be located close to
the surface without "intersection”.
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In order to reduce the unlikely case of intersecting edges further, we use the following concept of
x-intersecting line segments generalizing the notion of intersection of line segments from the plane to
line segments in space.

This concept uses the so-calldithedral anglebetween adjacent triangles.

Definition 5.13 (Dihedral angle) Let ¢; and ¢5 be two triangles which share a common eqge

Then the intersection a@f and ¢, with a plane perpendicular to, and intersectipg consists of two

incident line segments. The smaller one of the two angles between those line segments is denoted as
thedihedral angle between; andis.

Now, y-intersecting line segments can be defined as follows.

Definition 5.14 (y-intersecting line segments)Let bex > (0°. Two line segments; = p,q; and
s9 = P20y in 3D space without common vertex are calledntersecting if they have the following
properties:

(1) Forany two triangles; = A(py, 0y, r1) andty = A(Py, Gy, F2), M1 € {P2, a2} 2 € {Py, A1},
which share a common edge, the dihedral angle betwieand, is less thany.

(2) The dihedral angles g, q; andp,q, exceed0°.

The following theorem shows that the concepiyeihtersecting edges is reasonable in the plane.

Theorem 5.15 Two line segments; = p;q;, ¢ = 1,2, in the plane intersect if and only if the are
x-intersecting fory = 0°.

Proof: If s; ands, intersect, all the pairs of triangles mentioned in (1) of the definition have a dihedral
angle of0°. This impliesy = 0°. The angles of (2) are equal 180° and thus larger thaf0°, as
demanded.

If s; and sy do not intersect, we distinguish between two cases. The first one is that each of the
segments is completely in one of the half-planes induced by the line of the other. Then the triangles
obtained by triangulating the quadrilateral spanned;t®nds, have a dihedral angle aB0°. Oth-
erwise, the line of one of the segments, sayintersects the other segment, hese Let p, be the

vertex of sy that is closer tos,. Then the triangleg\(p,, g, p;) and A(p,,q,,P,) have a dihedral

angle of180°. In both cases the condition of the theorem does not hold. "

Our experimental experience shows thét < y < 90° is a suitable choice in the case of curved
surfaces. The examples of this chapter have been constructed with a vglue 9F.

5.2.2 Clustereds-Environment Graphs

Clustereds-environment graphs are obtained by a greedy clustering scheme which yields a subgraph
of a g-environment graph without edges of exceptional length.
The greedy clustering scheme consists of three phases:

1. For every poinp, a next nearest neighbgrof p is iteratively determined in order of increasing
distance, as long as the edgg belongs to the3-environment graph. Each of these edpgs
is stored as virtually incident tp. That approach corresponds to an iterative nearest neighbor
extension of the neighborhood pfunder consideration of the empfitenvironment constraint.

For every poinp, a radius-(p) is defined.r(p) is the Euclidean length of the last edigg that
was added as virtually incident o
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Algorithm 5.1 Computation of the clustereg-environment graph

Input: Point setP = {p,,...,p,} in 3D space.
Operation: Calculation of the clustere@-environment graph:
G = (P,D).
H := (P, ).
r(p) :=0 forall p e P.
foreach(p € P) do
repeat
Search the next nearest neightwpof p.
if (the g-environment of edggq is empty) then
Store this edg@q asvirtually incident to p.
r(p) := max(r(p),d(p,q)). // update sphere radius
end
until ( pg does not have an empgrenvironmen)
end
Insert allvirtual edgesinto H.
repeat
foreach ( pair p,q € P with intersecting spheres, that is, wheilgp, q) < r(p) + r(q) ) do
if (the connectioipg has an empty-environmen) then
Storepq asvirtually incident to p andg.
r(p) := max(r(p),d(p,d)). // update sphere radii

r(d) := max(r(q),d(p, q)).

end
if (r(p) > d(p,q)) then r(q) := max(r(q),r(p) — d(p,q)) ;
g(wm>dmnnzjmrmrzmwvmxwm—dmn»:
en

Insert all new virtual edgesinto H.
until ( no edge has been memorizedvasually incident and nor(p),(q) has been updated
foreach ( virtual edgepq of H in order of increasing length do

if (the connectiompg does noty-intersect with all edges af ) then

Insertpq into G.

end
end
Output: G as clustered3-environment graph oP.

2. All those edge®q with empty S-environment are added as virtual edges for whigh, q) <
r(p) +r(a).
All radii (p) are updated with the maximum length of the virtual edges incidept to
For allq with d(p, q) < r(p), the radius is updated tgq) := max{r(q),(p) — d(p,q)}.

Step 2 is repeated until these actions do not deliver any new virtual edge and no update of any
radius occurs.

3. Then, all virtual edges are considered in order of increasing length. If a virtuapedipes not
x-intersect any edge of the current gra@hthen it is added t@:. This process is terminated if
all virtual edges have been considered.

The motivation for this clustering approach is as follows. Step 1 of the algorithm determines an intial
radius of a sphere for each pomtn which all connecting edggs to pointsq € P inside this sphere
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have an empty-environment. This radius is a first estimation for the length of edges that deliver a
good surface approximant. Therefore, all edgesvith emptyS-environment and length less than or

equal tor(p) can be stored as virtual edges.

In the second step, the radii of points in the neighborhood of each point are used to apply a controlled
enlargement of these radii. Therefore, all poiptg with intersecting spheres are updated by the
maximum ofr(p) andd(p, q) if the S-environmentEg(p, q) of the edge between them is empty of

points. Additionally, all pointg) that are inside a sphere of a pomare updated with the maximum

of r(q) and their distance to the border of the spherg.ofSince the update of some radii might

cause new intersections with other spheres, the second step is repeated until no more update takes
place. The generated radii of the second step are used to determine another set of virtual edges that are
established between poirsg with intersecting spheres and whose connecting @dgeas an empty
B-environment. Because all radii have been generated with respect to the distribution of points in the
neighborhood of each point, the total length of each virtual edge is limited. Therefore, the virtual
edges can be considered as good surface approximants. An analysis that the limitation of the length
of graph edges indeed delivers “good surface approximants” is given in the next two chapters.

The third and last step is used to determine the order how the virtual edges of all points are inserted as
final edges of the graph. Here, the edges are considered in order of increasing length, since we assume
that shorter edges are better surface approximants than longer ones.

The algorithm should work well if at a vertgxwith a bridge edge in it§-environment graph, vertices
not adjacent t@ are in a neighborhood of a radius far less than the length of the edge.

Algorithm 5.1 summarizes this procedure in pseudocode notation.
1

Figures 5.9 and 5.10 show the resulting clustefeghvironment graphs of our test casesfor 1,3,

and0. As can be noticed, the number of long edges has significantly reduced. The statistics of vertex
degrees of these graphs, that is the number of incident edges to a point, are given in Tables 5.4, 5.5,
5.6. The difference of the number of edges of the clustgrethvironment graphs in comparison to

the complete3d-environment graphs are given in Table 5.7.

5.3 Computational Issues

The computation of the planar relatives of glienvironment graphs, th&-neighborhood graphs, has

been intensively investigated in the thesis of Rao [Ra098]. Rao also has presented an approach to the
calculation of special three-dimensional cases, narfigdypvironment graphs fgf > 1.

The straightforward approach to the calculation of fhenvironment graph is to check all pairs of
points for whether they have an empty environment. This approach may be feasible for very small
point sets, but cannot be applied to larger sets. A better alternative is the filtering approach. The
filtering approach uses a reasonable supergt@pif the desired graphky, and removes those edges

from G’ which do not satisfy the empty-environment criterion.

A natural supergraph fg# > 0 is the Delaunay triangulation. The Delaunay triangulation often works
quite well, but it may have)(n?) edges in 3D space in the worst casahe number of vertices.

An idea of constructing an other type of supergraph,sthetor supergraphcan be found in the work

of Yao [Ya082, Rao98]. For every poipt the space is subdivided into pyramidal sectBnwith apex

p. If the sectors are sufficiently narrow, it can be shown that every poifthich is more distant

than a certain bound dependent on the distance of the nearest neigipbortioé sector does not have

an empty environment. The supergraghcontains all connections from to those points inR as

edges which do not satisfy this criterion. F&r> 1, Yao has shown that the sector supergraph only
containsO(n) edges. The edges of the supergraph can be determined by nearest-neighbor search as
described in Appendix B.
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Figure 5.1Q The clustered-environment graphs fof = 1, %, 0.

# of vertices of degrek in the clustered 1-EG
torus| cup | head] skull | puppet| cap| pharaoh tori

[ #points]| 310 | 2650 1487] 698 | 695 | 371 2286 | 620]

k=1 5 0 20 21 14 13 14 13
k=2 105 0 271 | 193 180 | 158| 447 211
k=3 175 | 100 | 474 | 349 | 396 | 179| 1104 | 343
k=4 25 | 2550 722 | 133 | 105 | 21 721 53
k=5 0 0 0 2 0 0 0 0

[ #edges|| 420 | 5250] 2436] 998 | 991 | 475 3552 | 838

Table 5.4 The statistics of vertex degrees for the clustdraghvironment graph.

Independent from the type of supergraph, the main remaining algorithmic task is to check the empti-
ness of the environments of the edges efficiently. An approach is to consider the set of all environments
together, and check the containment of points by e.g. space-sweeping. Another alternative is to pre-
process the points for efficient query processing with the environment of the edges. Yao has proposed
solutions for that mainly for the planar case, under the view of worst-case efficient data structures.

As a heuristic approach we propose to proceed like fokthearest neighbor search of Appendix B.

For the Delaunay triangulation as supergraph, the Delaunay triangulation can be used for the search
procedure, too.

For the sector graph, a hierarchical tetrahedrization defined as follows is useful. A hierarchical tetra-
hedrization is given by a tree. The nodes of the tree represent tetrahedra. The root tetrahedron envelops
all other tetrahedra. Every non-leaf-tetrahedrdmas succeeding tetrahedra which are defined by a
split pointp that splits the tetrahedron into four sub-tetrahedra. The tetrahedrization defined by a hier-
archical tetrahedrization consists of the tetrahedra at its leaves. The advantage of this tetrahedrization
is that it can easily be manipulated.

In order to check for emptiness, we first search for the tetrahedra incident to the edder consid-
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# of vertices of degreg in the clustered-EG
torus| cup | head]| skull | puppet| cap| pharaoh tori
[#points]| 310 | 2650] 1487] 698 | 695 | 371 2286 | 620]
k=1 0 0 4 2 1 3 1 2
k=2 47 0 112 52 53 84 147 97
k=3 159 | 100 | 384 | 318 271 | 181 774 319
k=4 91 | 2450 914 | 295 293 91 1077 | 168
k=5 13 100 66 30 74 12 261 33
k=26 1 0 7 1 3 0 26 1

[ #edges]| 500 | 5300] 2704] 1198] 1240 | 569] 4193 | 998

Table 5.5 The statistic of vertex degrees for the cIuste%eEG.

# of vertices of degreg in the clustered-EG
torus| cup | head| skull | puppet| cap| pharaoh tori
[#points|| 310 | 2650| 1487] 698 | 695 | 371] 2286 | 620
k=1 0 0 0 0 0 0 0 0
k=2 7 0 18 14 1 31 11 14
k=3 59 51 113 84 31 101 174 124
k=4 121 | 1626| 367 | 271 227 129 571 237
k=5 82 717 | 550 | 217 254 86 736 160
k=6 33 203 | 414 97 143 17 682 68

k=17 7 52 23 13 28 7 95 16
k=8 1 1 2 2 10 0 13 1
k=9 0 0 0 0 1 0 3 0
k=10 0 0 0 0 0 0 0 0
k=11 0 0 0 0 0 0 0 0
k=12 0 0 0 0 0 0 1 0

[ #edges]| 670 | 5916] 3627] 1569] 1708 | 731] 5704 | 1338]

Table 5.6 The statistic of vertex degrees for the clustebeeG.

eration. Then further tetrahedra are determined successively by using the fagigngironments to
define a distance function arouadThe vertices of the tetrahedra are checked for containment in the

environmentE(e). Search is terminated if a vertex is in the environment, or if the distance defined by
E(e) is completely exhausted.

Tetrahedrizations have also been used as auxiliary data structure for calculation of the candidate edges
of the clustered environment graph.

# of difference edges between standard and clusiere
torus| cup | head| skull | puppet| cap| pharaoh tori
[ #points|| 310 | 2650] 1487] 698 | 695 | 371] 2286 | 620]

B=1 6 | 50 [ 17 [ 6 8 9 11 30
B=1 4 50 | 4 1 2 5 10 39
B=0 2 | 226 10 | 16 7 3 55 69

Table 5.7 The difference of the number of edges of the standakis and the clustere@-EG.
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5.4 Discussion

In this chapter more comprehensive classes of graphs which are suitable as skeleton of a surface
have been defined and investigated. The problem of bridge-edges has been treated by introducing
so-called clustered environment graphs. Chapter 7 will present arguments that this approach is indeed
successful.
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Chapter 6

Approximation and Reconstruction

In this chapter, we fix the notion of a good reconstruction. We do that by considering the embeddability

of a constructed mesh onto the surface from which the finite input point set has been sampled. We
favorize a special type of embedding, calledarest—neighbor-embeddingVe show that meshes

with sufficiently short edges and triangles of not too large angles can be embedded in that sense.
Because the existence of a mesh which can be embedded is necessary in order that a reconstruction
algorithm can find an embeddable mesh at all, these investigations have implications on the choice
of the sampling sets to which a reconstruction algorithm is applied: the algorithm has to be able
to construct meshes which satisfy the recognized conditions for the existence of a nearest-neighbor
embedding.

6.1 Surface Approximation and Reconstruction

The following definition fixes the notion of approximation of a surface by a straight-line manifold
2D-CC and the notion of surface reconstruction.

Definition 6.1 (Reconstruction) Let us consider a given surfaceand a straight-line manifold 2D-
CC M with vertices onS. A geometric manifold 2D-C@/’ over the vertices of/ which are onS is
called anembedding of M into S if there is a continuous function fro¥ to S which

(1) is a one-to-one mapping betwe&hand A,
(2) is the identity on the vertices,
(3) maps edges to edges, and faces to faces.

M is calledembeddable into S if an embeddingl/’ of M into S exists. A surface is callexbcon-
structible from a finite setP of sampling points o if a straight-line manifold 2D-CQ\Vf with vertex
setP exists so thaf\/ is embeddable int®.

An example of an embedding is the nearest-neighbor embedding.
Definition 6.2 (Nearest-neighbor (NN) embedding)Let S, M, and M’ be defined like in the pre-

ceding definition. Theearest-neighbor (NN) image of M on S is the set of all pointg € S for
which a pointp € M exists so thap' is a nearest neighbor qf on S.

M’ is called anearest-neighbor (NN) embedding of M if

(1) every point on M has a unique nearest-neighbor-point on the suface

57
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(2) M'is an embedding o/ under the nearest-neighbor (NN) mapping.

Condition (1) is required because in general a point in space may have more than one nearest neighbor,
and thus the mapping a¥/ to its nearest neighbor image needs not to be a function in the sense
necessary for the definition of "embedding”.

Not all surfaces are suitable for NN-embeddings. For example, if a surface has a sharp edge, like
for example a cube, points in space arbitrarily close to the surface exist which do not have a unique
nearest neighbor. The type of surface which is subject of the following definition is favorable for the
concept of NN-embedding.

Definition 6.3 (Save-fringe (SF) surface) Let ber > 0, andS be a closed surface which possesses
a tangent plane at every point. pte S we consider the two closed balls of radiugangent taS at p.

If pis the only common point of those two balls with the surfade,calledr-save. If all pointsp € S

are r-save, the surface is calledsave-fringe (SF) surface. r is called asave-fringe (SF) radius of

S.

The set of all points of a shortest distanceSttess than or equal to > 0 is called ther-fringe of S.
If r is a save-fringe radius, then the fringe is callse.

The concept of SF-surfaces can be extended to surfaces with boundary, too, but we do not include this
case in order to keep the presentation simple. Furthermore, the constant SF-radius can be replaced
with a functionr : S — R,.. Then a poinp € S is calledr(p)-save if the two closed tangent balls

at p of radiusr(p) do just havep in their intersections wittf. In order to guarantee saveness, the
functionr(p) has to be chosen so that the balls do not reach the medial agisTdfe medial axis of a

surface is defined as the set of all points in space which have at least two closest points on the surface.
By using a function instead of a constantadaptivity to the surface behavior can be achieved. In
order to simplify the presentation, we will however restrict ourselves to the non-adaptive case.

Theorem 6.4 (Properties of SF-fringes)Let .S be a compact SF-surface without boundary and with
SF-radiusr > 0.

(1) Every point of the-fringe of S has a unique nearest neighbor 6n
(2) If the length of a line segment="pq, p,q € S, is bounded by, s is a subset of the-fringe.

(3) If the edge length of a triangle= A(p,q,r), p,q,r € S, is bounded by, ¢ is a subset of the
r-fringe.

Proof: Letq be a point in space with distance less thhdrom S. We consider the balB with center

g through a nearest neighbgrof g on S. B is tangent taS atg'. Let B, be the ball tangent af of
radiusr located on the same side Bs ThenB is a subset of3. and thus does not contain any further
points of S. Henceq' is unique, and thus (1) holds.

If the length ofs or the edge length af, respectively, is less than andp is a vertex ofs respectively

t, thens andt are completely in the open ball.(p) of radiusr and with centep. For every point

p € S, the open balB,(p) is a subset of the-fringe because all its points have distance less than
from S. Thuss andt are subsets of thefringe, that is (2) and (3) hold. "
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6.2 Sufficient Conditions for NN-Embeddable Line Segments

The following theorem gives sufficient conditions for the existence of NN-embeddings of single line
segments for SF-surfaces.

Theorem 6.5 (Sufficient condition for NN-embeddable line segmentd)et.S be a compact SF-sur-
face without boundary and with SF-radius If a line segment or a triangle ¢ is completely in
the r-fringe, then the NN-functiof (which exists by (1) of the preceeding theorem) fromnd ¢,
respectively, is continuous. In the casespf additionally is one-to-one. Thus, in that case, the image
underf is an embedding of.

Proof: In the following we treats and ¢ simultaneously, and call them “object”. The proof of
continuity of f is by contradiction. We assume that there is a paoirih our object at whickf is
not continuous. That means that a sequemce = 1,.. ., oc, of points inu with lim; ,,, U; = U
exists for which||f(u;) — f(u)|| > o for someey > 0,7 = 1...,00. BecauseS is assumed to be
compactf(u;) has an accumulation poifit with ||f* — f(u)|| > 9. That means that a subsequence
Ui, k=1,...,00, exists withlimy_,, f(u;,) = f*.

Claim: |Ju—f(u)|| = |lu — f*||.

If the claim would be wrong, thefju — f(u)|| < ||u — f*||, becausé(u) is the closest surface point.
Letey := |d(u,f*) — d(u,f(u))|/2. Thenr; > 0 exists so that for all pointg’ of our object with
[lu—u'|| <7, |Ju'=f(u)]| < |lu—f(u)||+e;. Because, exists so that for alt > ko, [|lu—u;, || < 71,

we havel|u — || = limg_yo0 | U, — F(Us,) || < limg o [Jus, — F(W)]| < [Ju—F(u)|[ + e = (|ju -

|| + |Ju — f(u)||)/2 < |lu — f*||, what cannot hold. This proves the claim.

We now have two closest surface poifits), f* of u, and hence a contradiction. This proves continuity
of f.

If f would not be one-to-one on a line segmenit pq, then two points andson s would exist which
map to the same closest pojrite S. p’ may be equal te or to g, or an intersection point of and
S. r ands are on a common line which traverggsn direction of its normal. But this means that
is part of that line. Letf be a point ofS so thats’ := p/q’ is a sub-segment af not intersectings,
cf. Figure 6.1.

Let B, be the ball tangent t§ atp’ of radiusr with center on the line induced byand on the same
side ofS like s’. Because is an SF-radiusB, is free of points ofS, and thuss completely traverses
B,. This means in particular that the centgof B, is ons’. Because of Theorem 6.4 (1, is the
unigue nearest neighbéfry) on S.

Let F' be the plane perpendicular tbthroughr,, H(p’) the open half-space induced By which
containsp’, and H (p’) the opposite open half-space, cf. Figure 6.1. Becéuseontinuous by the
first part of this theorem, an open environmefty) C s’ of ry exists so that(e(rg)) C H(p') N S.

On the other hand, becausand thus{ is assumed to be in thefringe of S, the distance of all points
of s’ to S is less than or equal ta Thus the nearest neighbors of all poirits s’ N H(p’) are located
in H(p'). The reason is that their nearest neighbors are in the difference of the ball of ralitns
centerr’ minus B,., which is a subset off (p'). But this means thd{e(ry)) contains points ir (p)
which is a contradiction to the result of the end of the preceding paragraph. "

6.3 Sufficient Conditions for NN-Embeddable Triangles

In order to give sufficient conditions for the existence of NN-embeddings for triangles, we need a
different view on surfaces:
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H(p")

Figure 6.1 lllustration of the proof of Theorem 6.5.

Definition 6.6 (Bounded curvature condition) Let .S be a compact surface without boundary and
with a unique normal direction at every point. For > 0, p € S, let Es(p) be the connected
component of the points € .S with d(p, gq) < § which containg. S satisfies théounded curvature
condition if for everya > 0° ad > 0 exists so that for all pointp in .S and all pointsg € Fz(p) the
absolute angle between the surface nornmd|s) andn(q) is less than.

The following theorem shows that SF-surfaces have the bounded curvature condition.

Theorem 6.7 (Bounded curvature condition of SF-surfaces)Compact SF-surfaces without bound-
ary satisfy the bounded curvature condition.

Proof: The theorem is proved by contradiction. We assume that there is an SF-s8réaat an
SF-radiusr for which a pointp € S, anag > 0°, and a sequence of poinpg ¢ = 1,..., 00 with
lim;_, ., p; = p exist for which the angles; between the normals gfandp; satisfyo; > «p.

We consider pointp, which are closer t@ than those points on the surface of the two balls whose
normals have an angular deviationagf/2 from the normah of p. Letn; denote the normal qf;. We
consider the intersection of the configuration with the unique plamehich containg;, p, and the
vectorn; atp,. The trace of the two balls if; are two discs (Figure 6.2). They induce two wedges in
one of whichp; is located. Let; be the common tangent of the discgah planeE;. Two cases for

n; can be distinguished: the projection mfon i; either has a positive component in directionpof

or a negative component. In the positive case, we nmaad its two tangent balls in direction of
onto the boundary of the closest ball. In the negative gasnd its balls is moved into the opposite
direction ofn;. Let p; be the resulting location gd; on the boundary.

In the positive case we consider that one of the two ballg &r which n; shows into its interior,
while for the negative case we take the ball for whiglis an outer normal. Ip; is sufficiently close

to p, the disc induced by intersecting the ball withcontainsp, and thus the ball contaims Because

of lim; ,, p; = P, a suitablep; exists. Furthermore, it can be observed {hatays in the disc, and
thus in the ball, ifp; and its balls is moved back straightlinego Thus one of the balls g contains
the surface poinp. That contradicts to the SF-property of the surface. "

A further ingredient in order to reach our goal of formulating sufficient conditions for the existence of
NN-embeddings of triangles is the behaviour of normals. The following theorems make assertions on
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Figure 6.2 lllustration for the proof of the bounded curvature condition for SF-surfaces.

that.

Theorem 6.8 (Deviation of NN-embedded triangle normals)Let S be a compact SF-surface with-
out boundary, andyy > 0°. Then a save-fringe radiug, > 0 exists so that for all triangles
t = A(p,q,r), p,q,r € S, with edge length at mosg, the deviation of the normals at the points of
the NN-embeddinf(¢) is less thamny.

Proof: Letdy > 0 andry > 0 be chosen so that

e ¢ satisfies the condition of the bounded curvature condition of Definition 6.4 feand

e 7y is an SF-radius of so thaty, = 2r.

Let h(¢) be the maximum distance of points of a triangkeom S. Becauséi(t) < ny, ro + h(t) <

ro + ro = dg. Since the edge length ofs bounded byy, the distance o to any pointf(q/), q' € ¢,

of the NN-embeddind(t) satisfies||q — f(df)|| < [|q — d'|| + h(t) < ro + h(t) < d. Thusf(t) is
completely located in the ball of radids and centeq. Becauses is an SF-surface, all points 6t)
have unique normals. Since the NN-embeddigcontinuous ort, the imagéf(¢) is connected and,
becausey = f(q) € f(¢), f(¢) is a subset ofs,(q). Thus, by the bounded curvature condition, the
deviation of the normals at the points of the NN-embeddinyis less thany. n

Theorem 6.9 (Deviation from vertex normal) LetS be a compact SF-surface without boundary and
ro be an SF-radius of. LetA(p, q,r) be a triangle and’ < ymin < 180°, ap > 0° so that

(1) the length of the edgg®] andTq is less tharl := 2r( sin(ayg) sin(252),

(2) the angley at g exceed¥min.
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(D (P
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Figure 6.3 The two cases of the location of a trianglgp, g, r) with respect to the tangent balls at a surf&ealepicted
in the slicing plane spanned by the triand\ép, g, r).

If the anglea between the surface normal qtand the normal of the triangle exceeds then the
angle~y exceedsyy.x := 180° — ymin. Equivalently, if the angley does not exceeg, ., then the
angle between the surface normalggand the normal of the triangle does not excegd

Proof: We consider a trianglé\(p, g,r), and the two tangential balls locateddgat

Let H be the plane induced b (p, g, r). The intersection of the configuration with consists of the
triangle A(p, g, r) and two discs induced by the balls. The tangent plamgirduces a tangent line at
g of the two discsp andr are outside the discs. Figure 6.3 shows the configuratiod .on

n(q)

2 s

Figure 6.4 Slice through the center of a ball along the plane spanned by the surface mégnahd the normal of a plane.

The intersection of a plane for which the normal deviates from that of the surface by amaisgie
disc of diameter
a = 2rg sin(a),

cf. Figure 6.4.
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4

Figure 6.5 Estimation of the maximum angle at a triangle of edge lergtlhh whose vertices are on the same side of the
pair of discs.

Becausey > ymin by (2), and

lo = 2rg sin(ap) sin <7n2ﬁn> < 27 sin(a) sin <7n2ﬁ“>

by (1), and the condition that exceedsy, p andr are located in different sectors of the double
wedge induced by the boundary circles of the two ballg. d&igure 6.5 illustrates the impossibility of

Figure 6.6. Mapping of the pointg andr onto the circle by rotation arourgd
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the case thap andqg are in the same sector. We rotatandr aroundq so that they are located on the
boundary of one of the discs. The rotation is chosen so that the new sector is a subsector of the sector
in which the triangle lies, cf. Figure 6.6. The angleyaif the new triangle does not exceed that of the
original one. We will show that if we use the new angle instead of the old one, the theorem is satisfied.

On the boundary of that disc, we consider three pgihtg, r’ with d(p’,q’) = 1,d(q,r’) = I. The

angley atq’ satisfies
2
(7 l
Y =4/1=(=
in(3)-y1-(2)

cf. Figure 6.7.

Figure 6.7: Calculation of the angle from [ anda.

Replacinga in that formula with the right hand side of the previous one we get

i (3) =1 (o)

If we bound the edge length liyand the anglex by og, we get

sin (%) > \/1 - (%%E(ao))z

By replacingly by its definition in (3), we get
. Y “Ymin . Ymax
2 > — ol
S1n<2> _cos( 5 > sm( 9 ),
and hencey > Ymax.

If the edge lengths are less tharthe angley increases. That implies that the angle bound holds for
all triangles with that bound on the edge length.

Because the size of the angjeof the original triangle of the surface is at least that of the modified
one, the bound holds for the triangles on the surface. This proves the assertion of the theoram.

The theorem tells us that if an angle of the triangles of a triangulation is bounded by lower and upper

constant bounds, the deviation of the triangle’s normal from the surface normals at the vertices of

the triangle is less than an arbitrary small given constant angle bound if the lengths of the edges are
sufficiently small.



6.4. Sufficient Conditions for NN-Embeddable Pairs of Triangles 65

Lemma 6.10 Let S be a compact SF-surface without boundarg, triangle with vertices orf, and
the angle between(t) and any normal on the nearest-neighbor im&ge of ¢ be less thamy < 90°.
Then the NN-imag§) of ¢ is an NN-embedding.

Proof: The condition of the lemma implies that none of the normal§#his co-linear to a vector
q —p'forp’,q €t,p’ # . Butthat means thaf andp’ cannot map to a common nearest neighbor
on S. Thus the NN-imagé(¢) of ¢ is an NN-embedding. .

Lemma 6.11 LetS be a compact SF-surface without bounda@fy< ymin < Ymax = 180° = Ymin <
180°, 0° < ap < 90°. Then an SF-radiug, > 0 of S exists so that for all triangles = A(p,q,r),
p,q,r € S, for which

(1) the edge length dfis bounded byy,
(2) the angley at g satisfieSymin < ¥ < Ymax,

the angle between the norma(t) of the trianglet and any normal offi(¢) is less thamy < 90°.

Proof: From Theorem 6.8 we know that for a giveqn > 0, an SF-radiug, of S exists so that for

all trianglest = A(p,q,r), p,q,r € S, satisfying (1) the deviation of the normals at the points of the
NN-embeddind (¢) is less thany, . We setr; := ry, ry the SF-radius of Theorem 6.8.

From Theorem 6.9 we know that for a given, anly > 0 exists so that, if (1) and (2) are satisfied,
the angle between the surface norméd) atq and the normah(¢) of the triangle does not exceed
as. We setry := [y, [y as in Theorem 6.9.

We now definey; = ag := «ay/2, 1o := min{r;,r2}. Then the angle betweert(t) and any normal
onf(t) is less thany < 90°. That is the assertion of the Lemma. .

With help of these results, we now can give conditions which are sufficient for the existence of NN-
embeddings of triangles.

Theorem 6.12 (Sufficient condition for NN-embeddable triangles)Let S be a compact SF-surface
without boundary)® < Ymin < Ymax := 180° — ymin < 180°. Then an SF-radius, > 0 of S exists
so that for all trianglest = A(p,q,r), p,qd,r € S, for which

(1) the edge length dfis bounded byy,
(2) the angley at g satisfieSymin < ¥ < Ymax,

the NN-imagé(¢) of ¢ is an NN-embedding.

Proof: The conditions of the theorem imply by Lemma 6.11 that the angle between the ndnal
of the trianglet and any normal off(t) is less thary < 90°. By Lemma 6.10 this assertion implies
that the NN-imagé(¢) of ¢ is an NN-embedding. .

6.4 Sufficient Conditions for NN-Embeddable Pairs of Triangles

The next step is to show that more than one triangle can also be embedded without intersections if
some additional constraints hold. These constraints concern the angle between triangles, the so-called
dihedral angle, which has been introduced in Definition 5.13 of Chapter 5.

Corollary 6.13 LetS be a compact SF-surface without boundary. €et ymin < Ymax := 180° —
Ymin < 180°,0° < ap < 90°, andry as in Lemma 6.11. Let andiy be two triangles which
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n(t) I]

n(t,) n(t)

Figure 6.8 Cases of the dihedral angle between two triangles.

(1) have edge lengths less than
(2) have angles in the interv@min, Ymax).

(3) share a common edge.

Then the dihedral angle betweenand ¢ is in the interval(180° — 2ay, 180°] or in the interval

[00, 20(0).

Proof: Two triangles which share a common edge also have a common yerteyx Lemma 6.11,

the anglesx(n(p),n(t;)), « = 1,2, between the surface norma(p) at p and the normals(¢;),

1 = 1,2, of the triangles are less thap. By considering the metric of shortest distances on the
unit sphere, that implies that the angdgn(t ), n(¢2))| between the normals of the triangles satisfies
la(n(t1),n(t2))] < la(n(p), n(t1))| + e(n(p), n(t2))| < 2c0.

From the two possible orientations of the normals, two cases concerning the dihedral angle arise

(cf. Figure 6.8). The bound on the normals implies the two bounds on the dihedral angles of the
corollary. "

Figure 6.9 Proof of the size of the dihedral angle by transforming the orientation of the surface to the approximating
triangle.

For a reasonable triangulation, only the case of dihedral angl@s8@h — 2«, 180°] is of interest.

Corollary 6.14 (Dihedral angle bound) Let .S be a compact SF-surface without boundary. (et
Ymin < Ymax = 180° — ymin < 180°, 0° < g < 90°, andrg as in Theorem 6.12. Lét andt, be
two triangles incident to a common edge, which

(1) have edge length less thapn
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(2) have angles in the interv@min, Ymax).
(3) are together NN-embeddable $h

Then the dihedral angle betwegnandt, at the common edge is in the inter@B0° — 2«, 180°].

Proof: The NN-embedding of the trianglesandt, on S consists of two surface triangles which are
disjoint up to parts of their boundaries. We orient the edges of the two surface triangles so that they
appear counter-clockwise oriented from the side of the surface on which the normal vector at one of
the end pointg of the common edge is directed. We transfer the orientatignaiedt,, and consider

the normal:(¢;) andn(t2) directed so that their angles with the normép) of p are less thamy.

Thent; andt, appear counter-clockwise oriented if viewed from the side of their normals. The angle
betweenn(¢;) andn(ts) is less tharRey. Figure 6.9 depicts the resulting configuration. As can be
clearly noticed the only possibility of a configuration of that type is that one with the dihedral angle in
the interval(180° — 2ayq, 180°]. .

Lemma 6.15 LetS be a compact SF-surface without boundary. Furtherlendt, be two triangles
with vertices onS, incident to a common edge, with dihedral angle larger th&f® — §, > 90°,
do > 0°, n(¢1) andn(te) the normals of; andt,, respectivelyp, € t, p, € to. Then the angle
between the vectorgs, — p; andn(t2), and betweep, — p, andn(¢;), respectively, exceed8® — dy.

Proof: The smallest angle betwegn — p, andn(ts) is achieved ifp, is on the common edge of
andty, andp, — p, perpendicular to that edge. In that case, the angle betpeerp; andn(tz) is
equal to90° — §,. The assertion fop, — p, andn(t;) holds for reasons of symmetry. "

Now we can formulate a result on intersection-free embeddings of two adjacent triangles.

Theorem 6.16 (Sufficient condition for NN-embeddable pairs of triangles)Let S be a compact SF-
surface without boundan® < vmin < Ymax := 180° — Ymin < 180°, §p > 0°. Then an SF-radius
ro > 0 of S exists so that all triangleg = A(p;,d;,r4), P;, d;,Fi € S, ¢ = 1,2, for which

(1) the edge length af andts is bounded by,
(2) the angles of; andt; atq, andq,, respectively, satiSfymin < 7 < Ymax,
(3) the dihedral angle betweenandt; along a common edge is larger thag0® — 69 > 90°,

are NN-embeddable, and their NN-imadég ) and f(¢2) are disjoint, up to the NN-image of their
common edge.

Proof: From Theorem 6.8 we know that for a given > 0°, r{ > 0 exists so that for all triangles
t1, to satisfying (1) and (2) the deviation of the normals at the points of the NN-infaggandf(s)

is less thany,. We setry := .

From Theorem 6.9 we know that for a given > 0°, r;, > 0 exists so that, if (1) and (2) are satisfied,
the angle between the surface norméd;) atg; and the normah(¢;) of the trianglet;, i = 1,2, does
not exceedye. We setry := .

From Theorem 6.5 we know that & > 0 exists so that all triangles, ¢ satisfying (1) and (2) are
NN-embeddable. We sef := r{,.

Leta; = ag := (90° — 0¢)/2, ro := min{ry, e, r3}. For thisry, the assertion of the theorem that
andt, are NN-embeddable holds. Furthermore, the angle betwggni = 1,2, and any normal on
f(t;) is less thard0° — §p < 90°. On the other hand, by Lemma 6.15, the directions of lines between
points ont; deviate by more thaf0° — §, from n(¢;), ¢ = 1,2. This contradiction implies that none
of the lines along the normals dfy;), i = 1,2, intersects; and¢, simultaneously, except possibly
on the common edge @f and¢,. Thus the NN-embeddings are disjoint, up to the common edsge.
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6.5 Discussion

The theorems concerning the NN-embedding state that there is a chance for 2D-CCs with sufficiently
short edges that they can be embedded in compact SF-surfaces without boundary. For the choice of
the set of sampling points this means that it has to be sufficiently dense.

A reconstruction algorithm should yield a triangular manifold that can be embedded, for example that
one that is demanded to exist for the set of sampling points. The consequence of the investigations of
this section for a reconstruction algorithm is that it should yield short edges when applied to a dense
set of sampling points.



Chapter 7

Analysis of Environment Graphs

As we already know from examples, environment graphs are basically well-suited for reconstruction.
In this chapter we present formal arguments for this favorable behavior. We first prove that bridge
edges cannot be avoided in general, so th&Gs without clustering are not useful. Then we show

that any given sample set of a compact SF-surface without boundary can be extended so that all edges
of the clustere@-EG should have length less than a given bogind 0. Furthermore, we demonstrate

that subgraphs of the clustergeenvironment graphs are NN-embeddable with high probability if the
length of the edges of the subgraph is small, like it should be for the just mentioned clystefed

The chance that such a subgraph is not NN-embeddable can be made arbitrarily small if the maximum
edge length decreases @0 From these observations we then derive the main result that a given
sample set of a compact SF-surface without boundary can be extended to a finite point set so that, with
high probability, the clustered-EG,0 < g < 1, for this point set should be NN-embeddable isto

Finally, we give examples of sampling strategies which have shown favorable in practical applications.

7.1 Short Edges and non-blockable Line Segments

As we know from Chapter 3, a surface (re-)construction algorithm should yield short edges. In ten-
dency, this requirement is satisfied by theenvironment graphs. The reason is that the probability
that the large environment of a long edge contains any other point is high for a dense set of sampling
points equally distributed on the surface. However, the examples of Chapter 5 show that long edges
occur. An immediate assumption of course is that this effect might be a matter of not sufficiently dense
sampling. But as we will show in the following, it may indeed happen that the geometry of the surface
forces the occurrence of long edges, although that fortunately is not the standard case.

A set of sampling points is favorable if for any two of its points of larger distance, there is a third point
located in the environment of the line segment between the two points.

Definition 7.1 (5-blocked line segment)Let P be a set of sampling points on a surfae A line
segmens = pg, p,q € S, is S-blocked if a pointr in P exists which is in the opefi-environment
of s.

In this definition and in the rest of the chapter we assQmeg < 1, if no other specification is given.
A necessary and sufficient condition that a line segmeratn bes-blocked is that theg-environment

of s contains a sampling point at all. A line segment with that property is calleckable

Definition 7.2 (8-blockable line segment)A line segmeni between a paip, q of points of a surface
is 3-blockable if the opens-environment of has a non-empty intersection with the surface.

69
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The following theorem gives a necessary condition that a line segment is non-blockable.

Theorem 7.3 (Necessary condition for a non-blockable line segment)et S be a surface with a
unigue tangent plane everywhere. Forenvironments witl) < g < 1, a necessary condition for
a non-blockable line segmepq, p andq inner points ofS, is that the line segment is perpendicular
to the tangent planes of the surfacegpatndg.

Proof: If pq is not perpendicular to the tangent plane of the surfage(ahalogously foq), then the
planeH throughp perpendicular t@q intersects the surface. There is an inner poiah S which is

on the same side of the plane as the environnig(ip, g). We consider plané’ spanned by, q,r.
The curve of intersection &f and 2 betweerr andp intersects the open environmefif(p, q) N E.
Figure 7.1 depicts the configuration f6r= 0. Otherwise that curve would have a tangenp &i the
planeH. The same would hold for a different poiritvhose plang”’ does not intersect in a common
line. That implies thaf is tangent to the surface ptwhich contradicts to the assumption made on
H. .

Figure 7.1 The intersection of a surfacg with an environmenty(p, q), depicted in the slicing plane spanned [y
andr.

Corollary 7.4 For a surface with unique continuous normalgverywhere, a necessary condition for
a line-segmernpq to be non-blockable is

n(P)" (p—a) =In()I| - |Ip — all,

n(a)"(p—a) = |In(@)|l - [Ip —all,
where” denotes the transposition of a vector.

Proof: The first formula expresses that the scalar vector product of the normalized wvegpiend
(p—q) is equal to 1, so that the angle between the two vectdfs the second formula is analogous.
That corresponds to the assertion of Theorem 7.3. "

The event thap andq satisfy both equations of the corollary should in general occur in isolated pairs

of pointsp, g. In special cases, like for the two parallel tori of Figure 5.10, a curve-like occurrence

is possible. For two parallel planes, a surface-like occurrence emerges. Becausssumed as a
continuous function, the pairs satisfying these equalities define a closed set.

The theorem is formulated for surfaces which have a unique tangent plane everywhere. This constraint
in particular excludes boundary points. However an analogous theorem seems also to be possible for
boundary curves. We leave the treatment of boundary points open for future work.
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The stated condition is not sufficient because the environment may intersect the surface elsewhere.

If we assume the given surface not having non-blockable line segments, the following theorem shows
the existence of a sampling set for which the 0-environment graph does not have long edges.

Theorem 7.5 (Existence of length-bounding sampling sets) Let S be a compact surface without
boundary which has just blockable line segments, Brizk a finite set of sample points taken frém
Then, for every, > 0, P can be extended to a finite point g&tof points of S so that all line segments
s with lengthl(s) > Iy are 5-blocked by a point i, 0 < g < 1. P’ is called ablocking set.

Any further finite extension d¥ does not violate this property.

Proof: The proof of existence uses the theorem of finite coverings of compact sets [Ber63, Kur68].
Let M be the set of all line segments between two points of the sufacd is a compact set. We
considerMy, the set of all line segments of length less tliani/; is an open set, so thadtl, :=

M — M, is a compact set.

For every point of .S, we consider the sdi(r) of all line segments =pq of 4 for whichr lies in

the interior of the intersection of the surface with fhrenvironmentFz(p, ) of s. Note thatr # p,

r #q. E(r) is an open set.

The setsF(r) cover M, because every blockable line segment has a surface point in the interior of the
intersection of the surface with the diameter sphere.

Becauséell, is compact (it is bounded becauSeés bounded), there exists a finite coveringidf by
setsE(r). The points of these sets define a blocking d&t

Because a superset of a blocking set is a blocking set,foes= P U P” is the desired set of the
theorem. "

For a line segment = pqg with p,q € P which has to be blocked, there is a poinE P, r # p,
r # g, which blockss. The reason is that, by definitiosjs not in E(p) and not in£/(q).

Corollary 7.6 Under the conditions of Theorem 7.5, for every finite supei®ef a blocking sef”,
the edgeg of the corresponding-environment graph o’ satisfyi(e) < l.

Definition 7.7 (Samp,-property) Let bel, > 0, > 0, S a surface. A finite s&P of points ofS has
the Samp, (Io, €)-property if every line segment= pq, p,q € S, has at least one of the following
properties:

(1) i(s) < lo,

) n(p)"(p—q) > IIn(EIl-Ilp—all- (1 —¢),
n(@®(p—a) > [n@)]|-lp—all- (1 —¢).

That means thatis shorter tharl, or lies close to line segments which satisfy the necessary condition
of non-blockable segments.

Corollary 7.8 (Existence ofSamp, -sample sets)Let .S be a compact surface without boundary and
with continuous normals, which also may have non-blockable line segment#, bad finite set of
sample points taken frofi. For everyly > 0 ande > 0, P can be extended to a finite sBtwhich
has theSamp;, (o, )-property.

Proof: Let M3 be the set of line segments satisfying (2) of Definition 7.7. Thgn= M — M3 is a
compact set which just hgsblockable line segments. For that set, Theorem 7.5 can be applied which
yields the existence of a suitable blocking set. "
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Corollary 7.9 (Existence of3-EGs with length-bounded edges)Let S be a compact surface with-

out boundary and with continuous normals, which also may have non-blockable line segmerits, and
be a finite set of sample points taken fré For everyly, > 0 ande > 0, P can be extended to a
finite setP’ so that the edges = pq of the correspondingd-environment graph have at least one of
the following properties:

(1) Ue) <lo

) n(p)"(p—q) > IIn(EIl-llp—all- (1 —¢),
n(@)®(p—a) > [n@)]|-lp—all- (1 —¢).

Proof: The corollary is an immediate implication of Corollary 7.8. "

An implication of these investigations is that n@rblockable line segments cannot be avoided as
bridge edges of thg-EG, cf. Section 5.2. However, for compact surfaces a positive infirggm

of the length of its norB-blockable line segments exists. The reason is that the setbddckable
line-segments is open. We chodgef Corollary 7.8 significantly smaller thdg;,. For the sampling

setsP’ belonging tol, according to the Corollary, the edges of thé€eG of P not close to a non-
[-blockable line segment of the surface are significantly shorter than those which are close and thus
occur as bridge-edges in the graph. If we assume that there are no vertices with just bridge edges
as incident edges, the clustered environment grapR should not contain any bridge edges. We
summarize this discussion as an observation.

Observation 7.10 (Short-edge property of the clustere@-EG) Let S be a compact SF-surface
without boundary,P a finite set of points o%. Anily,;, > 0 exists so that, for ally < I, P can
be extended to a finite point set for which the clustereg-environment graph) < g < 1, of P
should only have edges of length less tfyaThe same holds trivially for every finite extensionFof
by points onS.

7.2 Intersection-free Embeddings

As we have noticed in the last chapter, fenvironment graph of a set of points in the plane is a
planar graph fos > 0. This is a consequence of the property of being a subgraph of the Delaunay
triangulation, but it can also be derived from a condition of intersection freeness which we give in the
following. We formulate the condition for curved surfaces from which the planar case is obtained by
specialization.

Definition 7.11 (Surface diameter disc)Let S be a surface, ané& be a shortest curve ofi between
two pointsp, q € S. Letr be the point on the curvewith equal surface distand¢2 to p andq, [ the
length ofk. Then the closedurface diameter disc of £ is the set of all points with surface distance
fromr less than or equal to/2.

Theorem 7.12 (Empty disc intersection criterion) Let k, ¥ be two shortest curves with end points
p,g andp’,q’, respectively, on a surface so that each closed surface diameter disc does not contain
the end points of the other curve. Then the curves do not intersect.

Proof: The proof is by contradiction, that is, we assume thand/’ intersect each other. LEtbe one
of the intersection points, cf. Figure 7.2. Lgtbe w.l.o.g. the end point of shortest distance td.et
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p1

Figure 7.2 Configuration of intersection of two surface curves.

p w.l.o.g. be the end point of shortest distanc€ tn the other curvé, that is,ds(p’,r’) < dg(p,r’).
Let c be the point ork with equal surface distance poandq. Then

ds(p’,c) <ds(p’,r') +ds(r',c) < ds(p,r') +ds(r’,c) = ds(p,c),

whereds(.,.) denotes the distance on the surface.

That means thagt’ lies in the surface diameter disc bfwhich contradicts to the assumption of the
theorem. n

In the case of reconstruction, we do not know the surface. We just see the points which can be
interconnected by line segments. In that setting, the following definition is useful.

Definition 7.13 (Conflict-free line segments)Two line segments=pq, s = p’q’ are calledconflict-
freeif each (closed) diameter ball does not contain the end points of the other line segment.

For thes-environment graphs with > 0 all edges are conflict-free in that sense. The key question is
whether it is possible to conclude intersection-freeness of an embedding, in the sense of the following
definition, from conflict-freeness of a pair of line-segments.

Definition 7.14 (NN-Intersection) Let S be a surface and be a mapping which defines an embed-
dingf(s) of a line segment into .S. Two line segments ¢ with vertices onS are calledintersection-
free under f if the curvesf(s) and f(¢) are intersection-free. If is the NN-embedding, the line
segments are calledN-intersection-free.

Unfortunately, it seems hard or even impossible to find a sampling set for a given embedding, like

e.g. the NN-embedding for which the edges of an environment graph all are intersection-free in that
sense. A hint is that e.g. two edges of equal length in a common plane which intersect at their centers
become conflict-free even if one of them is just slightly moved in space so that the intersection point

is dissolved.

A way out consists in identification and elimination of critical edges. We suggest two approaches. The
first one is based on a stronger definition of conflict-freeness, the so-eadledflict-freenessfrom

which NN-intersection-freeness can be concluded for sufficiently short edges. The second one is a
heuristic characterization of intersection, caljgéhtersectionwhich is also useful in the second part

of the algorithm.
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7.2.1 The Concept oti-Conflict-Freeness

The idea ofa-conflict-freeness is to slightly enlarge the environment which has to be point-free.

Definition 7.15 (@-conflict-freeness)Let s = pq, s = p'q’ be two line segments between points
p,q,p’,q" on an SF-surface within a saver-fringe of S, anda : S x S — R, be a non-negative
function. s and s’ are calleda-conflict-free if the enlarged closed diameter balls with rad§l$s) +
a(s) +a(s") and centers (p+q), and radius}(s') +a(s) + a(s) and center (p' + '), respectively,

do not contain the end points of the other line segment.

Figure 7.3 The case for the intersection freeness of Theorem 7.16.
The usefulness of the definition is demonstrated by the following theorem.

Theorem 7.16 (Intersection freeness) et .S be a compact SF-surface without boundary &ibe the
NN-mapping. Let = pq, s’ = p’q’ be two line segments between poipts, p’, g’ on.S completely
contained in a save fringe &, h(s) andh(¢) the largest distances afand ¢ from S, respectively,
anda(s) > h(s), a(s') > h(s'). If s and s’ are a-conflict-free then the embeddinffs) andf(4) do
not intersect.

Proof: By Theorem 6.5f(s) andf(s) are curves. We assume th&t) andf(<) intersect each other.
Letr andr’ be points ons ands’ which map undef to an intersection poirit Let w.l.0.g.p be the end
point of shortest distance anto r, andp' the end point of shortest distance émo r’. Let w.l.0.g.p’
be the shorter one of these two distances, thatds;- r’|| < ||p — r||. Letc be the point ors with
equal distance tp andq, cf. Figure 7.3. Then

"=l < [lp" = r'[[ +|Ir" =<l
< Al =rll+ I =l +]r =
< e =rll+ (" =il + i =il +[Ir =
< P =cll +hls) + hl(s)
@ + h(s) + h(s")
< is) + a(s) + a(s').

2

That means that’ lies in the enlarged diameter spherespfind thuss andd are nota-conflict-free,
in contradiction to the condition of the theorem. "
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The following definition combines the conceptwtonflictness with3-environments.

Definition 7.17 (a--environment graph) LetS be a surface and : Sx S — R, be a non-negative
function, P a finite set of points on S. The graph with vertexi3eind line segments=7pq, p,q € P,

as edges, for which the environmeitfs ,(a) := Ejs(s) U E(s, a) with E(s, a) the ball centered at
the midpoint; (p + q) of s and radiusr’(s) = 3I(s) + 2a(s), do not contain any point aP, is called

a-p-environment graph. £} ,(a) is denoted ag-3-environment.

We now derive arguments which show that fe5-environment graphs, or subgraphs of them like
clustereda-g-environment graphs which can be defined immediately, with sufficiently short edges,
the ratioa(s)/I(s) for a(s) guaranteeing intersection-freeness can be made small.

a/2

Figure 7.4 Calculation of the distanck of a chord of length: to the circle.

Figure 7.5 Estimation of the distance of a line segm@itfrom a surfaceS. The figure shows the configuration in the
slicing plane spanned kyy, g andr.
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Lemma 7.18 We consider a circle of radius, a chord of lengthu = 2a.- 7, 0 < a < 1, and the
maximum distance of a point on the chord from the circle. Thém, a% = 817

Proof: The maximum distance is reached at the centef the chord, cf. Figure 7.4. The point
an endpoint of the chord, and the center of the circle define a rectangular triangle whose edge lengths
satisfy

(r—h)? = (ar)® = 1%,

or, resolved for,

h=r(l-+vV1-a?).
Then
. h . r(1—=vV1-a?)
lim - = lim
a—0 @ a—0 4(@7’)2

lim r(1—vV1—-0a?)(1+ V1 —a?)
a—0 4(ar)?(1 +v1 - a?)

2

ra
= lim
a=0 4(ar)?(1 +v1 — a?)
_ 1
8

Theorem 7.19 (Estimation of maximum surface distance) et S be a compact SF-surface without
boundary with an SF-radius, ands = pq, p,q € S, a line segment within the-fringe, h(s) the
maximum distance of a point effrom S. Then

h(s)
=0 ()2 S &

Limy(y)

Proof: Letr’ be a point ors with maximum distance t&, andr a surface point having that distance.
We consider the trianglé (p,r,q), cf. Figure 7.5. Because the line througlandr is perpendicular

to S, the planeZ spanned by\(p,r,q) is a normal section plane, that is, it contains the normal vector
of S atr. The consequence is that the intersectioofiith the two tangent balls atwith radiusr

are two discs with radius. The endpoints of are outside of the discs. Since we are interested in
the limit, we can assume that the lengdth) of s is less tharRar for somea between 0 and 1. By
construction is betweerp and g on the intersection curvd N E. s intersects at least one of the
two discs. We take that chord whose intersection pointg, g’ with the boundary of the disc are on
different sides of on the boundary, or equivalently contaihsAs a subsegment af the length ofy

is less tharRar, too.

If the line segmentr’ is perpendicular ta’, we can immediately apply the previous lemma. Other-
wise,l(rr") < h, h the distance af’ from the surrounding circle. Hence by the preceding Lemma 7.18,
the estimation of the limit holds for that case, too. n

Now we can prove the main theorem of this section.
Theorem 7.20 (Intersection-freeness af-5-environment graphs) Let S be a compact SF-surface

without boundaryy > 0 an SF-radius ofS. For everye > 0, anl. > 0 exists so that all graphé&
which
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(1) are subgraphs of aa-3-environment graph3 > 0, a(s) = (& +¢) - I(s)?, with vertices ors,
(2) are completely inside thefringe of S,

(3) have a maximum edge length less than

are intersection-free, that is, the NN-embeddings of the edg@daf not intersect.

Proof: By Theorem 7.16, intersection-freeness can be concluded déraonflict-freeness for the
edges of a graply if (2) is satisfied forG, anda(s) > h(s). From Theorem 7.19 we know that for
eache > 0 anl. > 0 exists so thab(s) < (1/(8r)+¢)-1(s)? = a(s) fori(s) < I.. Thus, intersection
freeness of the edges 6f can be concluded from-conflict-freeness if (1), (2), and (3) hold for the
edges ofG. "

Figure 7.6: lllustration of the difference betwedHi(s,a) and E3(s). The difference sebp(s) is drawn shaded.

The theorem tells that fof-environment graphs with sufficiently short edges, a tolerance of sec-
ond order in the edge length for the emptiness of gkenvironments is sufficient in order to have
intersection-freeness of the nearest-neighbor embedding. This implies that intersection-freeness of
edges can be expected as the usual casé-&mvironment graphs with short edges.

The a-B-environment of a line segmenstis a superset of thg-environment ofs. The difference is
Dg(s,a) := E(s,a)—Eg(s). With increasing3, D3 (s, a) decreases. The following theorem analyzes

this behavior quantitatively.
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Theorem 7.21 (Difference between-53- and S-environments) Let s = pq be a line segment(s)
its length,a(s) < +(vI+2B8—1)I(s), Dg(s,a) := E(s,a) — Es(s), E(s, a) the ball centered at the
midpoint3(p + q) of s and radiusr’(s) = 1I(s) + 2a(s). Then the following holds:

(1) Dg(s,a) consists of two connected componehiss) and D, (s) which are incident tgp and
g, respectively.

(2) The maximum distance of a point 19, (s) from p is smaller than the upper boung,.x(s)
which satisfies

mas(3) = (14 ) 31(5) (s),

#(s) —arcsm(” 1598 \/g 1+0 >>> for 0<pg<1.

The same holds fab,(s) andq.

where

(3) Fora(s) := (5= +¢) - I(s)? for some constants > 0, e > 0,

dmax(s)
1(51)%0 I(s)

=0 for for0 < g < 1.

That means that the difference betweendhe-5-environment and thg-environment can be
made arbitrarily small.

Proof: Letr := %l(s). We consider a plane through the center point.ofFigure 7.6 depicts the
intersection of the spatial configuration with that plane. The boundaries of the environments are arcs.
For E(s, a) the boundary is in fact a circle of radius+ 2a, while the boundary of3(s) consists

of two symmetric arcs of radiugl + 3)r. These arcs intersect the circle if their common points are
outside the circle if

\/(1 + B)%r2 — 3272 > r + 2a.

Because this holds by the conditiafis) < (7"1”?% ona(s) of the theorem, (1) is satisfied.

In order to prove (2), let us consider Figure 7.6. The circle®¢$, ¢) and the two arcs of;(s)
intersect in four points. The differends, (and analogously the differende,) is located between
two arcs induced by the appropriate pair of intersection points. The maximum distanc¢e) is
bounded by the length of the atof F;3(s) betweenp and one of these intersection points, denoted
by i. We calculate the length of arc

For that purpose we determine the angléefining the arc as part of its circle. The cosinegois
given by

cos(4) = -

wherer := [(s)/2 andz satisfies the relations
2’ +y° = (Br)%,
(r+Br —z)* +y* = (r + 2a)%,
andy is defined as shown in Figure 7.6. From those two equations we get

2a 2a2

xzﬁr_1+ﬁ_(1+ﬁ)r’
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and thus ) 02 ) 22
a a a a
cos(¢) =1 — A+ 8B (+ppe 1— k(5)7 - k(ﬁ)ﬁ,
with .
O = ae
For the sine we get
sin(¢) = /1 — cos?(¢p) =
4 4q2 8a3 4q4
\/ K(B) %+ (K(B) — k(B)?) ~5 — k(B)® —5 — K(B)> 7,

and thus

sin(@) < \/k(ﬁ) 47“ 1 k(B) 4%‘;2 = 2/k(B) /2 (1 10 (g)) .

Because the length of the atds i(¢) = 2r¢, and because = @ we get assertion (2) of the

theorem.
(3) can be immediately proved by puttings) into the formulas of (2). .
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Figure 7.7: The test examples with random sampling.

The investigations can be summarized in the following observation.

Observation 7.22 (Intersection-freeness of clusteref-EGs) A consequence of statement (3) of The-
orem 7.21 and Theorem 7.20 is that clustefednvironment graphg) < g < 1, can be made arbi-

trarily close to intersection-freeness. Just pairs of edges for which a vertex of one of them is very close
to a vertex of the other one might intersect in the NN@gm But the lsance that this happens can be
made arbitrarily small if the maximum edge length decreasés &md it decreases jf increases.
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Figure 7.8 Empirical analysis for the randomly sampled objects (lower point density on the left and higher density on the
right) of the shortest distance of a point to the 1-environment of any edge of the clustered 1-EG. Only distances up to 100
percent of the length of the considered edge are displayed.
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In addition to the theoretic investigations an empirical analysis of the shortest distance of a point to
the g-environment of an edge of the cluster@&G for 5 = 1 has been performed on representative
smooth surfaces of different types of curvature: a semi-sphere, the inner and outer part of a torus, and
a planar square. The sample points are chosen randomly at two different densities. The number of
sample points of the case of higher density is about twice of the number of the case of lower density.
Figure 7.7 shows the cluster@denvironment graphs for those sample sets.

The samples on the semi-spheres are obtained by determining approximately equal-spaced points
located on circles in parallel to the equator. This implies that the number of points on a circle decreases
with the perimeter. Then the points are jittered by modifying their positions by random offsets along
their circles and perpendicular to it. The sample sets of the outer (and analogously of the inner) region
of the tori are analogously generated by arranging approximately equal-spaced points on circles in
parallel to the "equator” of the torus and covering the outer region. Then the points are jittered by
modifying their positions by random offsets along their circle and perpendicular to it. The square
is randomly sampled with the required number of points by a random function deliveriagd y-
coordinates scaled to the side length of the square.

The curves shown in Figure 7.8 represent the number of points for which the ratio between the short-
est distance of any other point and the edge length is at most equal to the percentage given on the
horizontal axis. The plot is restricted to distances up to 100% of the edge length. We can note that the
behavior of the curves is independent from the density of the sampling set if the number of points is
taken relatively to the total number of sample points.

7.2.2 Intersecting Edges

For the concept of-intersecting line segments of Definition 5.14 in Chapter 5 we have demonstrated
in Theorem 5.15 that this concept is equivalent to the notion of intersection if the line segments are
located in the plane. In space, the definition is reasonable, too.

Theorem 7.23 Let s; and s, be noty-intersecting fory > 90°. Furthermore, letd° < vy, <
Ymax — Ymin < 180°, and the four vertices aof, and s, so that their distances are shorter thanof
Theorem 6.16 of Chapter 6. Lgtandis be two triangles of (1) of Definition 5.14 with a dihedral
angle of at leasly.

If £, andt, each have a vertex with anglebetweeny,;, andyy,ax, then the NN-images of and s,

do not intersect.

Proof: Theorem 6.16 implies that then the NN-imageg,adindt, do not intersect, and thus and
so which are a non-common subsets of them do not, too. "

Otherwise three of the vertices ef and sy define a slim triangle with angles outside the interval
(Ymin, Ymax)- FOr @ largeymax this means that three vertices are almost co-linear what should not
happen too often.

If condition (2) of Definition 5.14 does not hold, then the NN-images of the two adjacent triangles
should intersect, and thus the vertices of the second line segment should "lie on the same side” of the
first line segment. Thus the two line segments should not have an intersection point.

A further investigation of the possible mutual locations;ofnds,, omitted here, might yield further
constraints which reduce the probability of configurations of NN-intersection further which cannot be
decided by the criterion of-intersection.

Table 7.1 shows the result of an empirical investigation of the clustérevironment graphs of our
examples forg = 0, % and 1, andy = 90°. We can notice that even for this generous bound, the
number ofy-intersecting edges is usually neglectably small, in particular for higher valués lof

fact, for the value® € {1, 1} even no intersection did occur.
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# of eliminated intersecting edges in the clustefeBG
torus| cup | head] skull | puppet| cap| pharaoh tori

[ #points]| 310 | 2650] 1487] 698 | 695 | 371 2286 | 620]

B=1] 0] 0 ] 0] O 0 [0 0 0
f=2 ] 0 ] 0] 0] o0 0 |0 0 0
B=0] 0 | 275 0 | 8 5 | 3| 16 | 1

Table 7.1 The number ofy-intersecting edges of the cluster@eenvironment graphgi € {0, %, 1}, for the example data
sets.
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Figure 7.9 The 0-environment graph and the 1-environment graph of a surface scanned by the MC-algorithm.

7.3 Discussion
The investigations of this chapter can be summarized in the following observation.

Observation 7.24 (Usefulness of clusteref-EGs) Let .S be a compact SF-surface without bound-
ary. By Observations 7.10 and 7.22, applied with an edge length bound fulfilling the requirements of
Theorem 6.5, a given sample $&bn S can be extended to a finite point &so that, with high prob-
ability, the clustered3-EG, 0 < 8 < 1, of P’ should be NN-embeddable into Any finite extension

of P’ by points onS does have this property, too.

This observation makes just an assertion on the existence of favorable sample sets, but how should
sample sets be chosen in practice? Our experiments with uniform-random sample sets presented in
this section show that this type of sampling is acceptable for the reconstruction algorithm. A reason is
that with increasing sample density, the length of edges oftk& reduces because the chance that

a sample point falls into th8-environment of a long line segment increases.

The sample points need not to be distributed randomly. A grid-like surface sampling with uniformly
sampled points is at least as well suited. For surfaces not containing flat or umbilical points, lines of
minimum and maximum curvature may be used to define a mesh of curves which meet orthogonally
in their intersection points. If the mesh is chosen dense, the approximation of the curve segments
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V.V N4

Figure 7.1Q Left: the reconstruction out of the 1-environment graph. Right: the reconstruction with the marching cubes
algorithm.

between two consecutive intersection points by line segments may induce a mesh of loops with angles
of about90° at two adjacent edges. The loops of such a mesh are usually quadrilaterals, and hence
have a constant number of edges. Furthermore, the diameter discs of the edges should in many cases
be empty of vertices, so that the 0-environment graph should contain many of them. Although the
restrictions for the 1-environment graph are higher than for the 0-environment graph, this can also be
achieved for this type of graph, as it can be seen in the example of the cup in Figure 5.9 of Chapter 5.

Another observation is that the edges delivered by the marching cubes algorithm from a spatial grid
sampling of a surface, are a subset of edges reconstructed @yethironment graph. The marching-

cubes (MC) algorithm [LC87] samples closed surfaces by a rectangular spatial grid. The vertices of
the grid are classified as interior or exterior with respect to the surface. From the vertex classification
of a cube of the mesh, a configuration of intersection of the surface with the cube is derived which
consists of one or more surface loops. These loops, or a triangulation of them are reported as a surface
approximation.

The MC-algorithm can also be seen as an edge-scan algorithm. The edges of the grid intersecting the
surface are determined. A sampling grid is proper if every edge contains at most one intersection point
with the surface. These intersection points define the loop configuration of a cube. The advantage of
that view is that the surfaces need neither be closed nor orientable. If the sampling is restricted to
cubes not traversed by the boundary of the surface, the MC algorithm yields an approximation of the
surface.

For SF-surfaces, due to their bounded curvature, the sampling grid of the marching cubes algorithm
can be chosen so dense that configurations with more than two sample points on an edge of a square
do not occur. Furthermore, the sampling grid can be chosen so dense that MC-configurations with
disconnected traversals or tubes do not occur, that is, every cube defines a single loop.

The diameter disc of an edge in the scan square in which the edge is located does not contain any
sampling point. The reason is that it only may intersect edges of the square, but those edges do not
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contain any other sampling points than those inducing the edge, due to the chosen sampling grid with
just one surface traversal.

Further, the diameter disc of an edge in the scan square of the edge does not contain any of the
vertices of the square in its interior. Thus the diameter ball does not intersect any edge of the scan
grid perpendicular to the square. Hence the diameter ball does not contain any sampling point in its
interior. Thus the edge is in the 0-environment graph.

Hence if the intersection curves with the plane are scanned by the grid on that plane so that all edges
have an empty diameter circle, all edges of the marching cubes algorithm belong to the 0-environment
graph.

The number of edges on a surface loop of an MC-mesh is at most seven. That means that we have the
desired property of surface loops with a bounded number of edges.

By increasing the resolution of the sampling grid, the sampling points can be made arbitrarily dense
on the surface. That means that the clustered environment graph has a good chance not containing
non-blockable bridge edges if the density is chosen sufficiently high.

Figure 7.9 shows the 0-environment graph and the 1-environment graph of a surface scanned by the
MC-algorithm. The reconstruction result out of the 1-environment graph is depicted in Figure 7.10.

For g-environment graphs witfi > 0 the argument concerning the emptiness of the diameter ball of
an edge does not hold. This means that not all MC-edges belong to the graph. In thelcasg &f 1

a scan grid with regular triangles as faces might help. A difficulty in finding a suitable scan grid is
that the angle between a face and an incident non-face edge should be 8€l@astrder that the
B-environment does not intersect edges incident to the face of the considered edge.

If we summarize our investigations, we can conclude that a choiée<ofs < 1 is reasonable for an
appropriately sampled surface. However, fox 1 slightly stronger restrictions on the quality of the
surface sampling have to be made thanfoe 1. The depicted examples in Figure 5.9 of Chapter

5 show that a value of = 1 adapts very well to high point density changes as well as to regions
with strong curvature. A reason is that f6r= 1 the clustered3-environment graph has the same
desired reconstruction precision as the EMST, cf. Chapter 4. As consequence, if nothing is known on
the surface sampling a value 6f= 1 is a good choice for the clustergdenvironment graph.
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Triangulation

This chapter describes the second phase of the reconstruction algorithm, the triangulation, together
with new definitions required for its formulation.

8.1 The Algorithm

Algorithm 8.1 summarizes the approach of triangulation. The algorithm consists of two main steps, the
generation of a partial embedding, indicated by (1), and a phase of incremental triangulation, indicated
by (2). The goal of step 1 is the generation of very local embeddings of the surface description graph
G obtained from phase 1 of the reconstruction algorithm. Each local embedding concerns a vertex and
its incident edges iid7. A local embedding of this type is achieved by defining a sorted arrangement

of the incident edges of the vertex. The local surface into which the vertex and its edges are embedded
is the “umbrella” of triangles obtained by closing every sector defined by two consecutive edges of
the arrangement by a chord. Usually the union of those local embeddings will not yield a manifold
surface, so that we do not necessarily use these triangles. A detailed investigation has to be performed
in order to decide whether a triangle of this type is used as part of the reconstructed surface. This
investigation is subject of step 2.

Step 2 processes the sectors obtained in step 1 according to a suitable priority. Depending on the
opening angle and the location of points and edges in the environment of the sectors, the algorithm
iteratively inserts new edges into graghand adds triangles to the initially empty manifdid which

finally defines the reconstructed surface, remember Figure 3.4 of Chapter 3.

The details of the two steps are described in the following sections.

8.2 Generation of a Partial Embedding

In the first step, the originally purely combinatorial graph is partially embedded. Embedding of a
graph in principle means to find a surface in space of which the graph is a part. From combinatorial
topology we know that an embedding is uniquely defined by the sorted arrangement of the incident
edges at every vertex. Intuitively, if an embedding is given, two consecutive edges of the arrangement
at a vertex lie on a common face of the surface into which the graph is embedded. If sorted edge
arrangements at the vertices are given, the rule of face and thus of surface construction depends on
whether the embedded manifold should be orientable or not [Whi73].

In combinatorial topology the goal usually is to find a topological embedding so that the genus of the
embedding is minimized. In our setting, we can use the geometric information on the location of the
vertices in space for the definition of the arrangemertis. The goal is to determine an optimally

flat arrangement of the incident edges of a vertex. Flatness is in principle measured by considering

85
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Algorithm 8.1 Triangulation of the surface description graph

Input: The SDGG from phase 1 of the reconstruction algorithm.
Parameters:

Line segment candidate regi@r(s).
Triangle candidate regiol,(t).
Boundary control angle/.
Dihedral angle controb,.

e Line segment intersection control angle
Operation:

(1) For every vertey of G, determine an optimal dihedral arrangement of its incident edges.
(2) Insert the sectors induced by the arrangement into a priority qugue
repeat
Take the first sectow = (pqy, pgy) from @ and remove it front).
(A) if (the angle ofw at p is less thany, ) then
(B) if (avertexq € C.(t(w)), t(w) the triangle induced by the sectar, exists)
then
Insertpq into G whereq is a vertex
for whichpq does not intersect any edge@f
Ise
© if (e3 := 17,0 is not an edge of7 )
then
(D) if (a suitable poingg € C.(e3) different fromp exists so that
the quadrilateralCd(p, g,, d, q,) does not fold-over and
pq does not intersect an edge Gf)
then
Determine the triangulation of the four points, q;, 9,, q),
for which the maximum angle of the triangles is minimized.
if (the newly introduced edge does not intersect an edge )of
then
Insert the new edge int@.
if (e3 is the new edge of the triangulatign
theninsert trianglet(w) into M.

else
if (e3 does not intersect an edge @f)
theninsertes into G; insert trianglet(w) into M.
elseinsert trianglet(w) into M;
until ( no more candidates can be fouhd
Output: A triangulation M.

the dihedral angles between the induced triangles of two neighboring sectors of an arrangement. The
following definition specifies the meaning of an optimal dihedral arrangement precisely.

Definition 8.1 (Optimal dihedral arrangement)

Let
e G = (P, E) be a geometric graph,

¢ II(p) be the set of all cyclic arrangements of the edges at vertekere edgepq, pr for which
the edgqyr is in E are consecutive in the cycle of arrangement,
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e 180° > 6, > 0°.
Then

e Z(m(p)) denotes the maximum number of consecutive edges so that the triangles induced by
every subsequent pair of them have a dihedral anglg.ir80°].

denotes the maximum &fover all cyclic arrangements if(p):
= max{ Z(n(p)) | =(p) € II(p) }.

)
(p) :=
e Znax(p) is the set of cyclic arrangements which achieve the maximum:
(p) :=
)

max(

max p

Zmax(P) = { 7(p) [ Z(7(P)) = Zmax(p) and=(p) € TI(p) }-

e Q(w(p)) denotes the sum of all dihedral angles between the triangles induced by every subse-
quent pair of edges.

={7(p) | Q(r(P)) = Qmax(P) @and7w(p) € Z1az(P) }-

e V(w(p)) denotes the variance of all dihedral angles between the triangles induced by every
subsequent pair of edges.

e Vhin(p) is the minimum of the variandé over all permutations that maximizeg:
Vinin (p) := min{ V(7 (p)) | 7(p) € Qmaz(P) }-
e Viin(p) is the set of cyclic arrangements which achieve the minimum:
(p) :={ 7(p) | V((P)) = Vimin(p) andm(p) € Qmaz(P) }.

vmin p
The arrangements ib,,;,(p) are calledoptimal dihedral arrangements.

The reason for including the variance is to reduce the set of solutions if more than one optimal ar-
rangement is found. It is not really necessary and can be omitted for the benefit of faster computation.
Ties can be broken by arbitrary selection of one of the solutions.

Figures 8.1 and 8.2 show examples of optimal dihedral arrangements for a rather non-planar case of
edges.

d d a,b,c

Figure 8.1 An example for an optimal dihedral arrangement (Definition 8.1) of a point at a sharp edge. Lefta patint
its edges. Middle: the optimal dihedral arrangement. Right: view from sidg € are collinear).

For graphs with vertex sets in the plane, this definition implies the canonical planar embedding.
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B > B |

Figure 8.2 Examples of optimal dihedral arrangements for five, six, and eight incident edges to a point

For vertices of degree higher than 3 there are two possibilities of orientation of the cyclic arrangement:
clockwise and counter-clockwise. For a topological embedding, one of them has to be chosen. In our
algorithm, that task is performed later-on as a side-effect of triangulation. For that reason we call the
result of step 1 gartial embedding

The search for an optimal dihedral arrangement can be performed by systematic enumeration. Because
of the usually small vertex degrees of the used SDGs (Chapters 4 and 5) this approach is sufficiently
efficient.

In the second phase of the algorithm, further edges may occur at a vertex, and it might happen that
the resulting number of edges may increase computation time. Algorithm 8.2 achieves a speed-up by
inserting so-called non-1-environment sectors around the consideredpplogibre it computes the
optimal dihedral arrangement according to Definition 8.1.

Definition 8.2 (Non-1-environment sector) Let p be the center of a sectar with edges,; := pq;
and ey := PQ,. w IS anon-1-environment sector if g, is in the 1-environment @ic, or g, is in the
1-environment opq; in the sense of Definition 5.8.

This approach is reasonable, because the induced triangles of these non-1-environment sectors, or
some kind of re-triangulation of them, can be already considered as a part of the correct surface mesh.
If the edges of each non-1-environment sector would not belong to the surface mesh, then its sector
edges would induce a surface turn that is sharper than the precision of the EMST which directly
corresponds to the precision of the 1-environment graph (cf. also Figure 4.4 of Chapter 4). This
knowledge is also used to determine the order how the sectors are considered for insertion as shown
in Section 8.3.

8.3 Sector Priority

In the second stefty is extended edge by edge, and suitable triangles identified during edge insertion
are added to the initially empty triangulatidd. For that purpose the sectors are processed according
to some priority. For the following it is useful to introduce the definition of sector edges.

Definition 8.3 (Denotation of sector edges) etw be a sector of the cyclic arrangement of the edges
incident to a vertex. Then

p denotes the vertex at which the sector is attached,

g, andqg, denote the second endpoints of the two edges defining the sector,
e1 = Ppqy, ez = pay,

t(w) denotes the trianglé\(p, q,, d,) induced by the sector.
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Algorithm 8.2 Computation of the optimal dihedral arrangement

Input: Pointp with incident edges and faces.
Operation: Calculation of an optimal dihedral arrangement:
(1) E := all current incident edges qd.
(2) F := all current incident faces qgb.
(3) Initialize T'(p) := (E, F') as the current triangulation gp.
(4) Compute the seX C F of edges with at most one incident face.
(5) Compute the sé¥" of possible sectors = (pq;, PJ3)
with edges inX so thatq, is in the 1-env. opq;, or g is in the 1-env. opq;.
foreach ( sectorw = (pqy, pq,) of W) do
Sett as the induced face af.
if (¢ does not cause iff(p) a dihedral angle smaller thaf (default: 60°) ) then
Addt to T'(p).
UpdateW according to the new adjacencies.
end
end
Compute the optimal dihedral arrangement according to Definition 8.1 with resp&dtptp
Output: The optimal dihedral arrangement for

As we already know, the trianglgw) should not have a too flat angle, and the dihedral angles with
its adjacent triangles should not be too small. For these reasons we choose the sectors according to a
value based on those two parameters.

Definition 8.4 For the cyclic arrangement of the edges incident to a veptese define:
arctri(w) : the angle between the edggsande, of a sectorw.

arcdih(e;) : the dihedral angle between the two triangles incidens tehich are induced by the two
neighboring edgeg ande; of ¢; in the dihedral arrangement @f.

arcdih(w, d.) : if arcdih(e;) > . andarcdih(eg) > 4., for the edges oy, thenarcdih(w, é,) is the
average ohircdih(e; ) andarcdih(ez).
If arcdih(e;) > 4. for just onei, arcdih(w, é.) := arcdih(e;). Otherwisearcdih(w, é.) := 0.

b(w) : if w is a non-1-environment sector théfw) := 1, andb(w) := 0 else.

The sectorsw are processed in lexicographic order according to the(keyrcdih(w, ), arctri(w)).

The first and second components are processed in largest first order, and the third in smallest first
order.

The reason for consideririgis that the surface cannot curve along two adjacent edges which do not
form an EMST for their three vertices, cf. the explanation of Chapter 4 and the related Figure 4.4.

The sorting order of the second key prefers sectors with flat environment. The intuition is that the
favorable regions of the surface are preferably treated. This approach is in particular of advantage if
the surface has sharp edges or ridges.

The priority queuer) stores the current candidate sectors. It is initialized with all sectors, and is
updated by removing old and inserting new sectors emerging in the course of the algorithm if an edge
is inserted inta7. Thus the operations whidl has to support efficiently are access to the sector with
the smallest key, insertion of an arbitrary sector, and deletion of an arbitrary sector.

In the following we describe the different cases (A to D) of Algorithm 8.1 in more detail.
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8.4 Edge and Triangle Creation: Case A

If the angle of the triangleé(w) at p is larger than a given global angle boufid0° < ~. < 180°,
processing of the current sector is terminated without any further aefiana parameter controlling

the algorithm and is usually chosen large. That part of the algorithm is responsible for creating bound-
aries in the case that the desired surface is not closed. The mechanism of boundary generation caused
by this part of the algorithm is described in Section 9.6. of Chapter 9.

8.5 Edge and Triangle Creation: Case B

Based on the current sector, the algorithm tries to find an edge for insertion irf0 Two main
cases are distinguished by considering the trianglg. If a point of P lies overt(w), then the lines
betweerp andq is inserted as an edge inf& whereq is one of those points in the triangle for which
s does not intersect any edge alreadyxinlf no point of P is overt(w), the algorithm continues with
the else-case.

8.5.1 Candidate Points

Ideally, a pointp € P should be in the candidate regi6h(t(w)) if and only if p is in the NN-image

of ¢(w). Because the NN-image is not known, a selection strategy of candidate points is required
which should yield a set of candidate points which comprehends the desired points. In the following
we suggest a definition of a candidate region of triangles which has turned out to be sufficient in order
to treat data sets successfully in practice. In Chapter 9 another definition of candidate region will be
presented for which we will prove for SF-surfaces that it comprehends all poiftsmathe NN-image

of the triangle, but also possibly some more.

The candidate region is defined as follows.

Definition 8.5 (Flat points over a sector) Let w be a sector. A poingj is called to beflat over w if
the three largest dihedral angles in the tetrahedron= <(t(w), q) are at the edgesp, Qq, g0,
that is, all angles are between triangles that are adjacery.to

Thecandidate region C(w) of flat points over a sector w is the region of all points in space which
are flat overw.

Let P be a set of sample points of a surface. TH(w) := CF(w) N P denotes theandidate set
of flat sample points over atriangle w.

The background of this definition is that triangles adjacent @ X' (w) which satisfy the definition
should fit well into the surrounding manifold because the dihedral angles should be large.

8.5.2 Point Selection

The required point inP! (w) is algorithmically determined by projecting’” (w) orthogonally onto

t(w). From the definition o?! (w) it is immediately clear that all projected points are in the interior

of t(w). A point g with the property is selected that a line in paralleffq, throughq exists so that

the triangle/A(p, d}, g5) cut off by this line from¢(w) does not contain any of the projected points in

its interior. Evidently, such a line exists. fij does noty-intersect any edge a¥ thenq is taken as

the desired point. If the unlikely case of an intersection happens then the overall algorithm continues
with the next sector.
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8.5.3 Edge Insertion

The main task of the insertion procedure for the candidate ecdgepq is to find locations foe in the
cyclic arrangements qf andg. For that purpose, an optimal dihedral arrangement is recalculaged at
andqg under consideration of the new edgeausing Algorithm 8.2. This procedure yields the location
of e in the arrangements.

Furthermoree is tested for existence of an intersection with a triangl&finThe intersection test with

the triangle is performed in order to keép definitively intersection-free, although the probability that

e intersects a triangle should be small for properly sampled surfaces. If no intersection is fouad then
is inserted intal/.

For both verticep andg, the sectors which have been destroyed by this operation are removed from
the priority queud), and the newly created sectors are inserted, according to their keys.

8.6 Edge and Triangle Creation: Case C

If e5 is an edge of7 then the triangle(w) is a candidate for insertion intd/. ¢(w) is tested for
whether it intersects an edge@f in order to guarantee intersection-freeness of the resulting manifold.
For properly sampled surfaces this case should not happen but this test additionally enfordés that
is intersection-free. lf(w) is intersection-free then it is inserted inté.

If e is not an edge off then the algorithm continues with the then-case. The g€aphd the priority
gueue remain unchanged.

8.7 Edge and Triangle Creation: Then-Case D

One purpose of case D is to extend the current triangulation in a "non-convex” manner by including
further points not yet covered by the "hull” of the already existing triangulation, as it is done for the
points that are flat over a triangle. This strategy is crucial for the algorithm. The idea is to check
at a possible new boundary edgegiven by an edge closing a sector to a triangle) whether the
boundary can be extended instead of being "closed”. The candidate sample points are found in the
candidate environment ef.

Another purpose is to avoid triangles with large angles from which we know from Chapter 6 that
they are unfavorable for NN-embeddability. A large angle may occur if an edge oitygmserted
although a vertexj is close to it. In this case the edgg usually is a better candidate.

8.7.1 Candidate Region of a Line Segment

The definition of a candidate region of a line segment used by the algorithm is based Bn the
environment of Definition 5.8. Its definition is preceded by a further definition required for its for-
mulation.

Definition 8.6 (5-close point) Let s be a line segment anplbe a point.p is called3-close to s if p
is in thes-environment of (cf. Definition 5.8).

If s does not hav@-close points then is called8-line segment.

Definition 8.7 (8.-candidate region of a sector)Let w be a sector. A point is called to beg.-
before w if
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(1) qis B.-close toes,

(2) g projects orthogonally outside ofw), on the opposite side pfwith respect to the line through
€3.

The S.-candidate region C’fﬁr(w) before a sector w is the region of all points in space which are
Be-beforew.

Let P be a set of sample points of a surface. Tlfém(s) = Cﬁ;(w) N P denotes theg.-candidate
set before w.

A pointqis called to bes.-close over w if

(1) gis B.-close toes,
(2) q projects orthogonally int@(w), and

(3) gis not flat overw.

Thecandidate region Cff_(w) of 3.-close points over a sector w is the region of all points in space
which aref,-close ovenw.

Let P be a set of sample points of a surface. Tlﬁgﬂ (w) == Cff_ (w) N P denotes theandidate set

of SB.-close points over w.

The/.-candidate region of a sector w is defined by’?: := C’;f;(w) UCff, (w), and thes,.-candidate
set of a sector w by P (w) := Pf;(w) U Pfc_ (w).

The indexc of 8. indicates thap, is one of the control parameters of the algorithm. TBhased for
the candidate environment can be that one of the clusiereavironment graph of the first phase of
the reconstrucion algorithm. As we will see later on, smaller valugs,dhcluding negative ones,
also may be used if the sample set is suitable chosen. Later examples will shgivthat0.5 is a
suitable value for surfaces without sharp edges or ridges.

8.7.2 Point Selection

The candidate setB’:(s), ng_(s), andec_(s) are further restricted by the condition of step D to
those points which do not cause a fold-over quadrilateral.

Definition 8.8 (Fold-over quadrilateral) Letw be a sector, and] be a vertex. The quadrilateral
O(p,dy,d, q,) has afold-over if the dihedral angle between the trianglégp, g, q,) andA(p,q;,q)
or A(p, ds,q) is larger than the dihedral angle between the triangle§, g, q) and A(p, d,, ).

Definition 8.9 (Fold-over-free candidate sets)The fold-over-free candidate setsT’fC(s), F’ff+(s),

and?’ff,(s) are defined as the restrictions of the candidate $gtgs), Pf,i(s), andei(s) to those
points which do not cause a fold-over quadrilateral.

The point selection procedure consists of two search steps. The second search step depends on the
result of the first step.
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Search step 1:
A proper point of the candidate sﬁfc is selected as follows. From all pointsﬁ‘fc the one
enclosing the largest angle witijq, is taken. If thel-environmentE; (p,q) is not empty
of points of?ff_(w), thenq is replaced by the point QTDB,C_ (w) N E1(p,q) nearest top.
This process is repeated for the ngvwith the edgepq until no further update is possible.
Because the distance of the investigated points foam elements of the-environment of their
predecessor decreases strictly, termination is guaranteed.

Search step 2, inside case:
If the projection ofq falls inside oft(w), the line segmenpq is checked fory.-intersection
with an already existing graph edge. If an intersection is found then the poﬁf§_imvhich
are closer tg thanq are processed in order of increasing distance fpnif a pointd is
found for whichpg’ does noty.-intersect an already existing graph edge tt{déa taken forq.
Otherwise the selection of a suitalgdails and the else-case-D is executed.

Search step 2, outside case:
If the projection ofg falls outside of(w), then the edges of tygr; org,rs already incident to
g, andqg,, respectively, are investigated. Among them, one is taken which encloses the smallest
angle atg, (q,) with the edgéy, g, and for which the orthogonal projection Qf(r3) onto the
plane oft(w) falls onto the opposite side @f with respect to the line throughj andg,. If
the angle of the chosen edge Wi, atq, (d,) is less than that of; q (G,q), then the point
q is updated by that one of andr, which yields the larger of the anglesc(riq;,71q;) and

arc(F20y, T203)-

If g has been modified in the final search and if a point of th@é"et— {q',r1,ra}isin the 1-
environment opq or in the double cone which results by rotation of the edggg[q, around
the edg&y, 03, then the search for a propghas not been successful, whefés the previous
“old” unmodified g. The same holds if the new poigtis not an element of the candidate set

F’fc. If this happens then the else-case D is executed.

If a suitableq has been found then the quadrilateral inducegjoyg, ,q, has to be triangulated. The
details are described in the next subsection.

The background of the described selection strategy is as follows. The goal is to extend the set of
vertices adjacent tp by a vertex of the candidate sﬁf The evidently best suited point is the one
which is "closest” to edges. However, if a sharp edge occurs close to the sector, it can be useful to
consider further points, too. Let us look at Figure 8.3. The figure shows a side view of a sector in
which g, andq, fall onto one anotherq is in the 1-environment gbq. The selection opqg would

yield a surface which goes fromoverq to . This surface, however, has a higher curvature than a
surface fronp overq' to q. The search step 1 takes this observation into account and sgliedtsis
situation.

The search step 2, inside case, is executed in order to avoid intersecting edges. In our empirical
investigations this case never occurred up to now.

The search step 2, outside case, takes into account the current mesh structure “in front” of the tri-
angle. If adjacent points;, rq atd;,q, are already present, it might be that they induce triangles
A(Q9y,099,71), 2A(Qq, 0, F2) With the edgeq; g, for which the current candidate poigt“is behind

them” with respect to the edgegry, g,r2. In Figure 8.4 (left), the poing “is behind” the trian-

gle A(q,,0,, r2) because it induces a larger anglegatvith g;q, thanr, does. However, insertion

of the edgees = §;Q, would induce a relatively small dihedral anglecgd], between the triangles
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Figure 8.3 The side view of a configuration in whid is selected instead of.

A(qy,09y,r2) andA(qy,q,, P), cf. Figure 8.4 (right). Therefore it makes sense to consider the quadri-
lateralO(p, q,,q,,r2) to determine the correct triangulation. In order to do thiseplaces as the
lineWH q.

/

Figure 8.4 The pointq “is behind” the edgé&y,T> (left). The side view (right) shows that it makes sense to consigder
as new candidate point because the other triangulation of the quadril@tgral, , q,, r=) with the edgepr; could yield a
smaller dihedral angle.

8.7.3 Triangulation

The four pointsp,q,,9,,9 are triangulated according to the min-max triangulation, that is the maxi-
mum angle of the resulting triangles is minimized [HL92].

An alternative approach might be to take that triangulation for which the dihedral angle between the
resulting triangles is greater, and, in the case of equality (which happens in particular if the four points
are co-planar), the min-max triangulation. We did try this possibility, too, and did not recognize a
significant different behavior.

Another alternative is to take the environment of the four vertices in the current surface mesh and
graph into account, with the goal to keep the surrounding mesh smooth. The idea is to maximize the
occurring dihedral angles. The edges of the two possible triangulatiqgns}0fy, q, are virtually in-

serted into the current surface mesh, and the dihedral angles of the two resulting meshes are estimated
by taking the current dihedral angles at the five edges in the optimal dihedral arrangement of each of
the four vertices. From those of the resulting 10 values which exgeld average is taken. Then the
triangulation ofp, g, g, q with the greater average is chosen, and that line segment aptpagd

0,0 is chosen as candidate edge for insertion which belongs to the selected triangulation.
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Figure 8.5 shows two examples for triangulation by min-max edge selection and edge selection under
consideration of the environment. The second version follows the surface more accurately.

It may also make sense to combine the two versions. In Chapter 9 we will see that it is important that
the algorithm avoids edges for which sample points exist which form a large angle with them. Thus,
if g forms a large angle withs, @0, should become the candidate edge which is best achieved by
applying the version based on min-max triangulation. Otherwise priority can be given to the dihedral
smoothness of the mesh by applying the version which takes the neighborhood into consideration.

Figure 8.5 Left: a triangulation obtained with the min-max edge selection. Right: a triangulation obtained by taking the
environment into account. The second version yields an improved reconstruction at the sharp edge.

8.7.4 Edge Insertion

The rest of the insertion procedure of a candidate edge ofayp@q is the same as in Section 8.5.3.
For a candidate edgg the insertion procedure has to find proper locations for the new edge in the
cyclic edge arrangements of its vertiagsandq,. This is achieved by applying Algorithm 8.2. The
results yield the location af in the arrangements.

Furthermoregs is tested for existence of an intersection with a triangléZn The intersection test

with the triangle is performed in order to kedpp definitively intersection-free, although the proba-
bility that e3 intersects a triangle should be small for properly sampled surfaces. If no intersection is
found thenes is inserted intal/.

For both verticep andq, the sectors which have been destroyed by this operation are removed from
the priority queue?), and the newly created sectors are inserted, according to their keys.

If e3 could be inserted int@ then the insertion procedure for the trianglev) is executed which
works as described in Section 8.6.

8.8 Edge and Triangle Creation: Else-Case D

In the else-case D, the edgghas to be checked for intersection with an already existing graph edge
using they.-intersection test. It is unlikely that an intersection is really found. If no intersection has
been determined; is inserted with the same procedure as described in Section 8.%4ddfld be
inserted inta then the insertion procedure for the triangle) is executed which works as described

in Section 8.6.

8.9 Examples

Figures 8.6 and 8.7 show the results of reconstruction of our example data sets. The 1-environment
graph has been used as surface description graph. Several reconstructed surfaces have boundaries,
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object | # points computation times in minutes and seconds
DT(P) | clustered 1-EG reconstruction
torus 310 0:01 0:01 0:03
cup 2650 0:11 0:06 0:25
head 1487 0:06 0:03 0:14
skull 698 0:03 0:01 0:05
puppet 695 0:03 0:01 0:07
cap 371 0:02 0:01 0:02
pharaoh| 2286 0:10 0:05 0:20
tori 620 0:01 0:02 0:06

Table 8.1 The calculation times of the reconstruction algorithm for the examples on an SGI Octane R10000 at 250 MHz
with 384 MByte of memory.

and the skull additionally has holes which have been properly reconstructed. The parameters used are
listed in the caption of the figures. The calculation times are compiled in Table 8.1. The Delaunay
triangulationDT'(P) has been used as basic data structure for the nearest neighbor queries during the
computation (see Appendix B).

Figure 8.8 shows a sequence of snapshots of the triangulation phase for the cldster@enment

graph withg = 1 as initial surface description graph for the triangulation.

8.10 Computational Issues

The implementation of the basic data structures of the reconstruction system is basliutany af
template classesThe template classes offer data structures which are used at different locations of
the implementation. In the following section we give a brief survey on these classes. Then the data
structure of the partially ordered surface description graph is described. That data structure supports
the combinatorial requirements of the algorithm, as does the priority queue of sectors to which a
subsection is devoted, too. Finally some aspects of geometric processing, required in particular for the
edge feasibility tests are treated.

8.10.1 A Library of Template Classes

Sorting and containment testan be carried out with afVL tree template clas3he implementation

of aset clasdor simple set arithmetics is also based on AVL trees [Wir86].

Whenever sorting is required where the number of objects is not known and whertherflyst k
elementof a set have to be extracted theap template classan be chosen. As AVL trees, it has

a run time proportional t@(n logn), but for sorting only subsets of elemeititsapsare the better
choice.

Of coursetemplate arraysre also part of the library as well as simpé templatesqueue templates
stack templatesandstandard string classes

One interesting part of the library is the integration of so-caliedh list classesHere, the number

of elements to be inserted and thash functioncan be adjusted by the programmer and the system
automatically generates an appropriatesh table sizeThen, elements can be inserted in this list or
the position of an element can be extracted in constant time.

Space subdivisiorfer intersection testdor example, can be realized using several implemespade
subdivision template classeBhe basic idea common to all schemes is to subdivide a bounded space
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Figure 8.6: Results of the reconstruction algorithm. From left to right: the point set, the clustered 1-environment graph and

the reconstruction result. Parameter valugs= 135°, 3. = 1, x. = 75°, 6. = 60°. An exception is the skull. In order to
reconstruct even the hole of the nose and not just the eyeholes, a boundary detectionyatud 26° has been used.
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Figure 8.7: Results of the reconstruction algorithm. From left to right: the point set, the clustered 1-environment graph and
the reconstruction result. The parameter values wgee 135°, 8. = 1, x. = 75°, §. = 60°.
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Figure 8.8 Snapshots of the process of triangulation of the puppet. From left to right: the point set, the clastered
environment graph, and the intermediate reconstruction results with 300, 600, 1100 triangles, and the final reconstruction
result.
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filled with geometric objects recursively into sub-cells. To every leaf cell, its intersecting objects
are assigned. This data structure can be used to answer incidences of a query object with the given
geometric object. The query is processed by traversing the hierarchy for those leaves which intersect
the query object. Then the incidence test is executed with the objects of the leaves found.

Our library contains aoctree template classnd amedian cut tree template clagsrking according

to that scheme. Other subdivision schemes can be derived very easily from the base implementation.
Using these classes the programmer must only provide a so-¢aitefinction which specifies for

each query in the tree whether it was successful or not. Sdirfddunctioncan for instance be a
simpleintersection test

8.10.2 Data Structure of the Partially Embedded Surface Description Graph

The data structure of the partially embedded surface description graph has to support the following
basic operations:

e initialization,

e output of the coordinates of a vertex,

¢ |ocation of an existing edge in a cycle of edges of a vertex,

e ordered edge insertion behind or before a given edge in the cycle of edges of a vertex,
e re-arrangement of the cycle of edges incident to a vertex,

e output of the cycle of edges incident to a vertex,

e next/preceding edge on the cycle of edges of a vertex,

e surface triangle insertion,

e incident surface triangles of an edge,

output of all surface triangles.

As we can see from this list of operations, the data structure also contains the resulting surface trian-
gles, in addition to the usual graph information. That in particular means that we do not need a separate
data structure for the resulting manifold. Its triangles can be accessed by the operation "output of all

surface triangles”.

For the data structure of the partially embedded surface description graph we use the incidence list
representation as basic framework. The incidence list representation consists of a list of vertex ele-
ments. Every vertex element refers to a list of edge elements. The elements of the edge list of a vertex
are arranged in sorted order of the edge cycle of the vertex. They refer to the two vertex list elements
of their two vertices.

The surface triangles are stored in another list. Every element of the edge lists refers to at most two
triangles that are incident to the edge. A triangle element refers to the edge list elements of its three
edges.

Every vertex, edge, and triangle element stores an identifier which uniquely describes the represented
item.
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8.10.3 Periority Queue of Sectors

The algorithm processes relevant sectors in sorted order according to a key which has been described
earlier. The data structure of the set of sectors still to be processed has to support the following
operations:

e get and remove the first element in sorted order according to its key,
e insert a sector according to its key,

e remove an arbitrary sector specified by an identifier.

The first two operations are those of a classical priority queue and any of the well-known data struc-
tures is used. The last operation is required if an update of the surface description graph by a new edge
is performed. The access required for that operation is implemented by a pointer referring from the
element of the first edge of a sector in cyclic order to its sector element in the priority queue.

8.10.4 Geometric Tests

The geometric tests to be performed and the corresponding computational solutions are as follows.

8.10.4.1 y-intersecting edges

The task is to find edges of the surface description graph which are close to a given Eliggeness

of two edges is measured by considering dihedral angles between certain triangles of the tetrahedron
spanned by the four vertices of the two edges. In order to restrict search space, we consider a ball
around the center of every edge. The radii of the balls are at least half of the edge length. That means
that the vertices of the edge are within the closed ball. For a given €dge only consider those

graph edgeg’ which do not have both of the following properties:

(1) The ball ofe’ does not contain any of the verticeseof

(2) The ball ofe does not contain any of the verticeseof

The background of this discussion is the definition of conflict-freeness of Section 7.2. A pair of edges
satisfying (1) and (2) is conflict-free in that sense. Furthermoreisthalf of the length of the longer

one of the two edges, and we takg = ¢ - r as ball radius, then the distance of the two edges is at
leastrp — 3r = (¢ — 3) - r. The reason is that the edges are in the same balls of radius the large

balls of radius g do not completely cover the small balls because otherwise (1) or (2) is satisfied. If

¢ > 3 is chosen sufficiently large, the dihedral angles between the triangles under consideration are
far from 180° if (1) and (2) hold.

In order to test the negation of (1) efficiently, for every veneaf the graph the set of all edges is
stored whose ball contains For an edge, these vertices can be determined-bgarest-neighbor
search. Then for the query edgethe candidate edges are immediately obtained from the lists of the
vertices ofe.

The edgeg’ not satisfying (2) are found by/anearest-neighbor search around the centenvalfiich

is terminated if the radius of the ball efis reached. Fok-nearest-neighbor search, the approach of
Section B.1 of Appendix B is used.

If the edges are short, as can be expected in our application, (1) and (2) yield a significant restriction
of search space.
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8.10.4.2 Paints flat over a triangle

The main task is to restrict the set of points for which the criterion of flatness over a triangle has to be
evaluated. This problem is solved by using theearest-neighbor search for the pgindf a sector

w, SO that the search space covers the NN-image of the triangle. An estimation of this search space is
discussed in Section 9.5.2 of Chapter 9.

8.10.4.3 p-close points of an edge

The task is to find the verticgs possibly located in atiz(e)-environment of a given edge This
problem also has occurred for the calculationfeénvironment graphs, and is solved as outlined in
Section 5.3 of Chapter 5.

8.10.4.4 Intersecting triangles

The task is to find out for a given triangle between graph vertices whether it intersects an edge of the
graph, and for a line segment between two graph vertices whether it intersects a triangle of a given
set of triangles between graph vertices. These problems are solved by using one of the spatial sub-
division schemes for answering incidence queries of our template library, outlined in Section 8.10.1.
Another possibility for the intersection test is to apply a similar approach ag-fietersecting edges

in Section 8.10.4.1 in order to reduce the search space. However, if a line segment intersects a tri-
angle it usually also intersects an edge of the triangle so that this task is usually covered by the edge
intersection tests.

8.11 Discussion

The algorithm of triangulation presented in this chapter is the second phase of the reconstruction
algorithm. The computational examples have shown that it works well. In the next chapter, arguments
will be given which show that the favorable behavior is not surprising. Chapter 10 will show that
the triangulation algorithm can also be applied usefully to graphs different from the type of surface
description graphs used in the first phase of the algorithm.
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Chapter 9

Analysis of Triangulation

In the following we investigate the usefulness of the triangulation algorithm. We first introduce a
characterization of suitable sample sets and prove the existence of sample sets satisfying this condition.
Then we show for the flat case that sample sets fulfilling this condition exist for which the probability
that

(1) triangles with inner angles larger tharoccur,

(2) edges of the triangulation become longer than a given bound,

is rather low. "Probability” means the portion of all configurations for which an assertion holds. This
means that we assume that every configuration may occur with equal probability.

Afterwards we argue that the same holds in space, too. Finally, by applying theorems of Chapter 6, we
can show that the probability that the algorithm yields a reconstruction in the sense of the mentioned
chapter should be high.

Details of the theoretical analysis are confirmed by empirical investigations on random sample sets.

9.1 Characterization of Sample Sets Suitable for Triangulation

According to the results of Chapter 6 on the NN-embeddability of triangulations, a sample set is
considered suitable if the triangulation algorithm does not yield long edges, and if the angles of the
generated triangles do not become too large. In the following we combine both aspects in order to
characterize a class of favorable sample sets. For that purpose, the following terminology is useful.

Definition 9.1 (y-line segment andy-edge) A pointr is -y-close to a line segment = Ty if the
angle of triangleA(ry,r,ro) at vertexr is larger thany, 90° < v < 180°.

An edge of a graph is called-gedge if it does not have g-close vertex in the graph. A line segment
between two vertices of the graph is calleg-tine segment if it does not have g-close vertex in the
graph.

This terminology is closely related to the terminology which has been use@-&mvironments,

cf. e.g. Definition 5.8. This is not surprising because we know from Theorem 5.11 that the vertices
v-close tos are just those which arg()-close tos with 5(y) := (cotvy)/2, 9® < v < 180°.
Vice-versa, forg < 0, the verticesg-close tos are just those which arg(3)-close tos for

v(B) = arcsin(m), 90° < v(B) < 180°.

The idea behind the following characterization of suitable sample sets is as follows. If for long line
segments between points of the sampleyselose sample points would exist, and if the algorithm

103
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would yield a triangulation which does not contain triangles with angles largemthiéren the algo-
rithm would not yield long edges. Because the triangulation algorithm is designed to avoid triangles
with large angles, long edges should be avoided by it, too.

For the initial SDG no special constraints have to be defined for the sample sets.

Theorem 9.2 (y-edge property of 3-graphs) The edges of #-EG,0 < g < 1, and thus the edges
of the SDG resulting from step 1 of the reconstruction algorithmaeglges fo¥ < v < 180°.

Proof: From Theorem 5.11 we know that the vertieeslose tos are just those in thg-environment
of s with 3(vy) := (coty)/2, 90° < v < 180°. Because th&(-y)-environments fob0° < vy < 180°
are subsets of thg-environments fod < g < 1, and thes-environment ofs-EG-edges is free of
points, the edges of th& EG do not havey-close points. "

For the subsequent triangulation, we proceed as follows.

Theorem 9.3 (3-blocking sampling)
Let S be a compact SF-surface without boundaryo < 5 < 1.

(1) Anlj, > 0 exists so that every line segment pq, p,q € S, I(s) < [, has ag-close point on
S.

(2) Letbe0 < Iy < [, P afinite set of points o¥. Then a finite extensioR of P by points on
S exists so that for every line segmentpq, p,q € S, Iy < I(s) < I, apointr’ in P’ exists
which isg-close tos. Every further extension d? by points onS has this property, too.

Proof:

(1) Letbem := i(p + @), andE,(m) be the open ball with maximum radigygs) and centem
which is a subset of thé-environment ok. By Theorem 7.19 and Theorem 6/4;> 0 exists so
that the maximum distance of every pointsofand thus ofn, to S is less thary(s) if I(s) < .
Thus the nearest neighbore S of m satisfies the requirements of (1).

(2) Let L be the set of all line segmentsbetween points of with [ < I(s) < lj. Becauses is
compact,L is compact.

For pointsr € S, let E(r) be the set of alk € L which containr in their opens-environment.
E(r) contains an open subset. The reason is that the function which sitapthe angle of

in the triangleA(p, r, q) is continuous. By (1), the sefs(r), r € S, coverL. By the finite-
covering theorem of topology, a finite st exists so that the sefs(r), r € P, coverL, too.

P’ := P U P" has the property desired in (2). Trivially, every further extension does have this
property, too.

Definition 9.4 (Samp,-property) Let be0 < Iy < If,, andS be a surface. A finite sé? of points on
S has theSamps (1o, I())-property if for every line segment =pq, p,q € S, iy < I(s) < 1), a pointr
in P exists which igi-close tos.

Corollary 9.5 (Existence ofSamp,-sample sets)Let S be a compact SF-surface without boundary,
—oo0 < < 1, and P be a finite set of points if. Thenl; and a finite extensiod” of P by points on
S exist so thatP" has theSamp, (ly, Ij,) property for everyy with 0 < Iy < 1j).

Proof: The corollary is an immediate implication of Theorem 9.3. "
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In the following we formalize the idea concerning the edge length bounds outlined at the beginning of
the section.

Observation 9.6 (Existence of edge length bounding sample setsgt S be a compact SF-surface
without boundary90° < v < 180°, P a finite set of points o$. Thenl > 0 exists so that for all
lo with0 < Iy < Ij, P can be augmented by points &hto a finite sample seP’ with the property
that the graphg constructed by the algorithm should have edge length lessithas long as the
triangulation algorithm just inserty-edges.

Argumentation: By Corollary 9.5, and a finite extensio® of P by points onS exist so that
P’ has theSamps (lo, I) property for3(vy), for everyly with 0 < I < [f,, and so does every finite
superset”’.

By Observation 7.10,,;, > 0 exists so that, for ally, 0 < Iy < Imin, P can be extended to a finite
point setP, for which the clustered@-environment graph) < g < 1, of P should only have edges
of length less that, and so does every finite supergét

Thenl{ := min{l{), lmin} and P’ := P U P, fulfill the requirements of the observation. .

The implication of this observation is that all theorems which demand short edges in order to achieve
a property can be applied & and M, as long as the triangulation algorithm just insertsdges.

9.2 General Edge Length Bounds

In Section 9.1 we have seen that sample sets exist by which a given edge length bound is achieved. In
this section we investigate the behavior of edge lengths for the case of arbitrary, unconstraint sample

sets, in order to see to what extent proper sampling is indeed necessary. It turns out that in many cases
the length of a newly inserted edge is not longer than edges already in the graph.

For inserted edges of typg, not too much special can be told. In the worst case, the lengthoain
come close to the sum of the lengthsepfand e, where the minimum possible difference depends
on the choice ofy.. The initial SDG in form of a clustered-environment graph) < g < 1, may
contain triangles, although fgr = 1 the probability of triangles is low (Theorem 5.6). The worst case
of length forez occurs forg = 0 wherel(es) < \/I(e1)? + [(e2)?. The reason is that in the worst case
p is on the diameter sphere @f so that the trianglé\(p, g, , g-) is rectangular. A favorable situation
may occur ifeg is the edge inserted by the min-max triangulation of the then-case of D.

The following theorem gives an estimation of the length of edges ofgpeependent on the shape
of a sectomw. These estimations are independent from the condition@ldes only contair-edges.

Theorem 9.7 (Length bound forpQq)
Let be

e w a sector,

H the plane spanned byw),

HT the open half-plane off bounded by the line througy in whichp lies,

g y-close toesz with v > 120°,

to the unique equal-sided triangle incidentdpand located infH+.
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Then the lines through the edgesiptlifferent fromes decomposé? ™ into four regions (Figure 9.1).
Region 1 isty, region 2 that one which shares just one vertex vjthand regions 3 and 4 the two
remaining ones. Regions 3 and 4 are symmetric and are treated in the same manner.

Let (P1), (P2) and (P3) be properties defined as

(P1) I(pq) < max{l(pqy),!(P0y)}-

(P2) I(0,0,) < max{l(pqy),!(P0y)}-

(P3) I(qdy) < max{i(pay),(P0z)}, 1(T0,) < max{l(Pqy),l(PTy)}
Then

(A0) (P2) implies (P3).

(A1) Inregion 1, (P1) and not (P2).

(A2) Inregion 2, (P2) and not (P1).

(A3) In regions 3 and 4, (P1) holds. For the subregion of region 3 outside the disc apurfd
radius/(es), and for the subregion of region 4 outside the disc arogndf radiusi(es), also
(P2) holds.

Proof: The radius of the circular arcs betwegrandqg, which bound the region of poini(°-close

to e3 is equal to the length af;. The regions fory > 120° are subsets of this region.

If g isin the plane spanned bythe assertions can be immediately concluded from Figure 9.1. A hint
concerning (P1) is that the region ti(°-close points is a subset of one of the discs bounded by the
circle centered gb and running througly, or throughag,. This can be seen by considering the mutual
locations of the bounding circular arc and the mentioned circlgsatqs.

If g is not in the plane spanned bythe length opyq is less than the length @ij whereq' is obtained

by rotatingq aroundes (Figure 9.2). "

An implication of the theorem is that the edge lengtipafmay become larger than the lengths of the
edges already in the graghonly in the case of region 2.
If gis notv-close, but in thes.-environment ok;, the edge length can be estimated as follows.

Theorem 9.8 (Length bound forpQ)
Let be
e w a sector,

e H the plane spanned byw),
e H™ the open half-plane off bounded by the line through in whichp lies,
e ( fS.-close toes with —1 < g, < 1.
Thenl(p, q) < min{/(pqy), /(PT)} + L(T,T;) < min{l(pqy),I(Pdz)} + 1(PAy) + {(PTy)-
Proof: The first inequality follows from
l(p;a) = lla —pll < [lp = q;l| + [la; —all < 1(PT;) + {([@ W),

withi € {1,2}. The relation|q—oa;|| < !(q,0y) required in this inequality follows from € Fjs_(e3).
The second inequality of the theorem follows from the observation that the length of an edge of a
triangle does not exceed the sum of the lengths of the other two edges of the triangle. "

The theorem tells that in the case gfacloseq which is noty-close, the length of a possibly inserted
edgepq does increase by at most a factor of 3.
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Figure 9.1 Analysis of the length of edges of tyjBg with respect to a sector. The edges of an equal-sided trigngle
partition the half-plangd* into four regions foig with different properties of the length o.

Figure 9.2 The length ofq is less than the length betwepq’ whereq' is obtained by rotating aroundes.

9.3 ~v-Edges in the Flat Case

In the following we investigate the probability that a step of incremental edge insertion
e does not lead to the insertion of an edge at all, and
e does not yield a-edge,

in the case that the NN-images of all items involved in a decision fall into a flat part of the surface
S, that is the NN-image of a line segment is the line segment itself, and all points involved are in a
common plane. The importance of this case comes from the observation that for sufficiently short
edges the environment of the surface which is involved in a decision is approximately flat.

For that purpose we analyze the different cases of edge insertion. The cases of the algorithm where
edges may be inserted are the then-case B, the then-case D, and the else-case D.

9.3.1 Then-Case B

In the flat case, the candidate $&t(w) of a sectorw consists of those sampling points which are in
the interior of the trianglé(w). The reason is that in this case the dihedral angles at the ggges
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qq,, andqg; are180°, and those at any other edge equdlftoThis property satisfies Definition 8.5.

Theorem 9.9 (Then-Case B)Let S be a surface,P be a sample set . Let the current graph
G only consist ofy-edges which additionally are NN-intersection-free. kebe a sector for which
the NN-images of all items involved into the test of the then-case B fall into a flat p&rt bfthe
candidate sef’"(w) contains at least one point then a pompte P"(w) is found by the algorithm
(Section 8.5.2) for which := pq does not NN-intersect any edge@®@fande is a-y-edge.

Proof: Because all items involved in the test fall into a flat part of the surface, the poiftq af) are
identical with their projection on(w), that is, they are located #fw). Furthermore X' (w) contains
all sample points located it{w).

Let g be the point selected by the algorithm. BecaGsis NN-intersection-free, no edge 6f NN-
intersects:; ande,. Because the regian= A(p, q}, q5) of t(w), 4}, g5 defined as in Section 8.5.2, is

free of points, no edge is contained in this region. Thus no edge exists which might be NN-intersected
by e, and thus: is NN-intersection-free.

Because:; ande;y are~y-edges, noy-close point fore can be found outside dfw). In order that a
v-close point can exist at all, the(-y)-environment ofe has to have a non-empty intersection with
the regiont’ := t(w) — ¢. This implies that one of the angles betwggEnandd, g}, atq is less than
180° — ~, and the other one is at leagt Let w.l.o.g.A(p, g, d)) be the triangle with angle atq.
This implies that in the trianglé\(p, g, ¢, ) the angle ag is at leasty, too. But this means that is
~-close toe;. This is a contradiction to the assumption thais ay-edge. "

9.3.2 Then-Case D

In the flat case, the then-case D becomes significantly simpler. The candidﬂfé, gej of 3.-close
points over a sectar becomes empty because all points in the interiaf(of) belong toP" (w). This
implies that the algorithm works as follows.

Step 1:
A candidate poing € I_fo+(w) is selected which encloses the largest angle with

Step 2, inside case:
This step is never entered because the candidate set is empty.

Step 2, outside case:
The final search is performed as in the original algorithm.

In the following we distinguish between the case that the candidate gagny-close tog, and the
opposite case thatis not-y-close toes.

For the case thaj is y-close toe; we will first show that the probability that a fold-over occurs should

be rather low. This observation implies that the pajnéelected during step 1 is the one with the
largest enclosing angle wi#, with high probability. Then we will show that under this condition the
line segment := Pq is intersection-free. This result implies that a replacemeigtiofsearch step 2,
outside case, does not take place. The implication is that the gaiglected in the condition of case

D is a point with largest angle wité, with high probability.

The selected poing is used in the then-case D in order to decide which edge should be taken as
candidate edges or e3. We will show that the probability that is the candidate edge is lowdf is

not ay-edge. Furthermore we show that the probability thatnot ay-edge is low, ifg is y-close to

€3.
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An implication of the discussion is that fgt. := [(v) the probability is high that the resulting
triangulation is NN-embeddable.

For the case that is not-y-close toe; it turns out thak; is ay-edge with high probability. The reason

for possibly not using; is the intention to reconstruct sharp edges or ridges. In thatgasa be

chosen between 0 and 1 so th&90°) =0 < 8. < 1.

If the surface is assumed free of such features, the cliptee () will "switch off” this not required
possibility. We do not investigate the case of sharp edges in detail because they do not occur for the
SF-surfaces on which we have based our analysis.

9.3.2.1 Existence of fold-overs

In the plane, fold-over quadrilaterals can be characterized as follows.

Lemma 9.10 (Characterization of fold-over quadrilaterals) Letw be a sector, and| ¢ t(w) be a
point in the plane spanned hy. Then the quadrilaterad(p, g, q,q,) is fold-over in the sense of
Definition 8.8 if and only if the points, q;, g, g, do not form a convex polygonal chain.

Proof: The dihedral angles of interest for Definition 8.8 are eitt&P or 0°. The assertion of the
theorem can easily be derived from this observation. "

Two types of fold-over quadrilaterals can be distinguished.

Definition 9.11 (Types of fold-over quadrilaterals) A fold-over quadrilaterald(p, q;, g, qs) in the
plane has arin-front fold-over if g and p are on different sides of the line throughandq,. (Fig-
ure 9.3, left). Otherwise it is denoted back-fold-over.

Figure 9.3 An in-front fold-over quadrilateral (left) and two examples of back-fold-over quadrilaterals. For the left and
middle example additionally the boundary arcs of fi{e)-environment are displayed (dotted lines).

The following theorem states that the configurations in which a back-fold-over may happgn for
v-close toez do not occur under the constraints of our investigations. iK v, where~. is the
angle bound of the algorithm controlling the generation of boundaries. This choigend 4 is
reasonable in order that the boundary detection can have a selective effect gtalldf~y) is used.

An implication of this choice ofy is thatp is not~y-close toe;, or, equivalently, thap is not in the
B(y)-environment oks.

Theorem 9.12 (Back-fold-over) Let S be a surfaceP be a sample set . Let the current grapltz
only consist ofy-edges which additionally are NN-intersection-free. Lebe a sector for which the
NN-images of all items involved into the test of the then-case D fall into a flat pa&ftloét H be the
plane spanned b¥(w), and H* be the open half-plane df bounded by the line through in which
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p lies. Letq € H™ — t bey-close toes, 90° < v < 180°. Letl; andl, be the two lines througty,
andq,, respectively, so that the angle betwéein= 1,2, andes in H™ is 180° —~. The lines induce
three regions inH ™" : a region A defined by the wedge gt betweere; and/;, a region B defined by
the wedge at}, betweeres andl,, and a regionC' which is the rest off* not covered by regiongd
and B (Figure 9.4). Then the following holds:

(1) If pisin region A or B and p is not in thes(y)-environment ok, thenq is in the B(~)-
environment of; or ey, and thus this case is impossible. 7ff < v where~. is the angle
bound of the algorithm controlling the generation of boundaries gheannot be in thes(y)-
environment oé;3.

(2) p cannot be located in regio6'.

Proof: Letp be in regionA (region B analogously). Ifp is not in thes(vy)-environment ofg, then
the part of the3(vy)-environment inH™ is a subset of the union of the trianglew) and thes(y)-
environments oé; or e,. Thus, becausg is not int(w), @ must be in the3(y)-environment ok, or
es. Bute; andey belong toG and are assumed to heedges. Thus this case is not possible.
Because sectors with angles larger thaare not treated by the algorithm,cannot be in thed(v)-
environment oks.

Let ¢ be the circular arc defining the boundary of thgy)-environment inf". Thenl; andi, are
tangent tae. If pis in C, the part of the3(y)-environment inH* is a subset of the triangléw). Thus
aq like in the theorem does not exist, apedannot be located itV "

A 180 @m 18¢° -y H

Figure 9.4: lllustration of the investigation of a back-fold-over of the quadrilatérg, q,,q, ). In this casey andp are
located on the same side of the lineegf

The event of an in-front fold-over is treated in the following theorem.

Theorem 9.13 (In-front fold-over) LetS be a surfaceP be a sample set &f. Let the current graph
G only consist ofy-edges which additionally are NN-intersection-free. Wwdte a sector for which the
NN-images of all items involved into the test of the then-case D fall into a flat pa&ftloét H be the
plane spanned bi(w), and H* be the open half-plane df bounded by the line through in which

p lies.

Letq € H — H* be~-close toes, 90° < v < 180°. Letl; andl, be the two lines througky, and
q,, respectively, so that the angle betwden= 1,2, ande; in H™ is . The lines partitionH™ into
three regions: a regiom incident toe;, and two symmetric region8 and C' (Figure 9.5). Then the
following holds:
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(1) If pisinregion A, then no fold-over occurs.

(2) If pisinregionB or C, then a fold-over may occur.

Proof: A fold-over does not occur if and only if the line efintersectss. Let ¢ be the circular arc
defining the boundary of thé(y)-environment inf — H*. Thenl; andi, are tangent te atq, and
0., respectively. Evidentlypq intersects:; if pisin A.

If pisin B (analogously forC) then the line segmerfiq, is completely inB, and thus does not
intersecte;. Becausépq; is not a tangent of atq, we can find a poing in the 3(-y)-environment,
for example in the neighborhood gf, so that the lingq does not interseet, too. "

Figure 9.5 Configuration for which edges has to be the candidate edge of the then-case D, because of a fold-over of the
quadrilateral(p, q,, 9, d,), if g andp are located on different sides of the linecaf

The results of this section can be summarized as follows.

Observation 9.14 (Occurrence of fold-over quadrilaterals)Let S be a surfaceP be a sample set

of S. Let the current grapldz only consist ofy-edges which additionally are NN-intersection-free. Let

w be a sector for which the NN-images of all items involved into the test of the then-case D fall into a
flat part of S. Letq € H — H™ be~y-close toes, 90° < v < 180°. If the quadrilaterald(p, q;, d, ds)

is fold-over, then it is in-front foldover. The probability of occurrence of such a quadrilateral is low.

Argumentation: Theorem 9.12 excludes back-fold-overs. Theorem 9.13 tells that in-front fold-over
guadrilaterals may occur. However, their occurrence is restricted to a small region of possible locations
of p which decreases towar@swith increasingy. "

9.3.2.2 Intersection-freeness

For the case thay is y-close toe; the following theorem shows that the line segmegf@nde :=p
both are intersection-free under the assumptiofi-etiges and local flatness.

Theorem 9.15 (NN-intersection-freeness in the then-case et S be a surfaceP be a sample set

of S. Let the current grapldz only consist ofy-edges which additionally are NN-intersection-free. Let

w be a sector for which the NN-images of all items involved into the test of the then-case D fall into a
flat part of S. Letq be a pointy-close toe; and with largest angle witl;. Then the edge; and the

edgee = pg do not NN-intersect any edge Gf

Proof:

Casee’ = e3: Forflat surface regions, every edge which NN-intersegthterst(w), and either ends
at a vertex int(w) or leavest(w) at edgee; or e;. But all that is impossible for the following
reasons. None of the vertices istifw) because casP is in the else-case B. Furthermore the
edgese; ande; do not NN-intersect any edge by assumption. Téls NN-intersection-free.
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Casec’ = e: By the same arguments as in the proof of Theorem 9.9, the NN-intersection of triangle
t(w) with any edge of7 is empty. Thu®qg might only be intersected in th&-y)-environment
outside oft. Becausey has been assumed to be thelose point tog with the largest angle
(Section 8.7), an NN-intersecting edgeof G intersects the boundary of that region twice, and
separates from ez (Figure 9.6). But that implies thagis v-close to¢’, in contradiction to the
assumption. "

Figure 9.6: An edgee” possibly intersecting’, intersects the circular boundary of théy)-environment ot twice. From
this configuration it can be concluded tlugis also in the3(~)-environment ot” because it is/-close toes.

9.3.2.3 Emptiness of the search of step 2, outside case

The preceding theorem is now used to show that step 2, outside case, is not executed under the restric-
tions imposed in the current discussion. Additionally, the following lemma is required.

Lemma 9.16 Let S be a surface,P be a sample set . Let the current graphG only consist of
~-edges which additionally are NN-intersection-free. kebe a sector for which the NN-images of
all items involved into the test of the then-case D fall into a flat parf.oletq be a sample point
with largest angle ta:;, which does not induce a fold-over. L&t:= ;T (analogouslyg,rF) be an
edge ofG so thatp andr are separated by the line through Thene” intersectse = pq or the angle
betweere” andes at g, is larger than the angle betweeh:= g;q andes.

Proof: Let¢’ be the angle betweahandes, and¢” be the angle betweet! andes.

Let ¢ be the arc throughy,, g5, andqg. If the ray with origing, throughr does not intersect then

¢" is clearly larger tharf’. If the ray intersectg on the segment betweep andq, then it is again
immediately clear thag” > ¢'. If the ray intersects on the segment betweenandg,, then the ray
intersectspq becausgq intersectses since fold-over-freeness is assumed. Becapisethe sample
point with largest angle, not just the ray, but also the line seg@ientersects:’, because is outside
the region bounded by andc. Figure 9.7 illustrates the discussion. "

Now we obtain another theorem.

Theorem 9.17 (Emptiness of the search of step 2, outside cadedt S be a surfaceP be a sample

set ofS. Let the current grapltz only consist ofy-edges which additionally are NN-intersection-free.
Letw be a sector for which the NN-images of all items involved into the test of the then-case D fall
into a flat part ofS. Letq be a sample poinf-close toe; and with largest angle te;, which does not
induce a fold-over. Then the search of step 2, outside case, is empty.

Proof: By Lemma 9.16pq intersects or the angles of the edges under consideration are spishat
not updated. Because intersection is excluded by Theorem 9.15 in the assumedaaselade to
es, the second alternative holds, that an update does not take place. "
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p P

Figure 9.7: The two possible configurations of a line segm@antr a candidate point for replacirgy

By using the result on the unlikeliness of fold-overs, we can derive the following observation.

Observation 9.18 (Emptiness of the search of step 2, outside cadedtS be a surfaceP be a sam-

ple set ofS. Let the current graplz only consist ofy-edges which additionally are NN-intersection-
free. Letw be a sector for which the NN-images of all items involved into the test of the then-case D
fall into a flat part of S. Letq be a sample point-close toe; and with largest angle te;. Then with

high probability the search of step 2, outside case, is empty.

Argumentation: Because with high probabilitqy does not induce a fold-over quadrilateral the as-
sertion of Theorem 9.17 which is just that of the observation, holds with high probability. =

9.3.2.4 ~-Edge Property

Reasons for the event that a ngredge might be inserted are

e c3 is the candidate edge resulting from the min-max triangulation,

e Pqis the candidate edge resulting from the min-max triangulation, and it is patdge.

In the following we describe the configurations in which these events may happen. It turns out that
they are very special and thus the probability of their occurrence is low.

Edgees is selected as candidate edge by the min-max triangulation if a fold-over occurs, or if no
fold-over occurs but the angle of the quadrilaterdp, q;, g, g,) at pointq; or at pointqs, is larger
than the angle a.

As we know from Observation 9.14 the probability of over-folding quadrilaterals is low so that we can
exclude this case from the discussion.

In order that the min-max triangulation yields the angle at poing,; or at pointg, of a non-over-
folding quadrilateral has to be larger than the anglg. ah this case we get Theorem 9.19.

Theorem 9.19 (Non-over-folding quadrilateral with large angle at ¢/q,) Let S be a surface,P

be a sample set a§. Let the current graphG only consist ofy-edges which additionally are NN-
intersection-free. Lety be a sector for which the NN-images of all items involved into the test of the
then-case D fall into a flat part of. Let H be the plane spanned hyw), and H" be the open
half-plane ofH bounded by the line throughy in whichp lies. Letq € H — H' bey-close toes,

90° < v < 180°. Letl; andl; be the two lines through;, and qg,, respectively, so that the angle
between;, i = 1,2, andes in H* is 2y — 180°. The lines partitionH* into three regions: a region

A incident toe, and two symmetric region8 and C (Figure 9.8). Then the following holds:
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(1) If pisin region A andq € H — HT, then the angle at}, or g, in the quadrilateral
O(p,d;,0,0s) is less thany, and thus less than the angleat

(2) IfpisinregionBor C,andq € H—H™, then the angle & in the quadrilateral2(p, g, 9, 95)
might be less than the angle gt or qs.

Proof: If pisinregionA andq € H — H™, then the angle at, is less than the sum of the anglejat
(9,) betweer; (I2) andes, and the angle betweep andq;q, that is less thaf2y — 180°) + (180° —

v) = 7. Because the angle qtis at leasty, assertion (1) holds.

Because the linpq; (or pq,) traverses the part of the(y)-environment inH — H™, the angle at),

or g, can be up td80°, and thus is larger than the anglegatvhich always is less thar8(F. "

Figure 9.8 Configuration for which edge; has to be the candidate edge of the then-case D, because of a non-over-folding
quadrilaterad(p, q,, g, g,) with larger angle at, or g,, than atg.

The implication of the theorem is that the probability that the min-max triangulation has to decide for
es is low because its corresponding regions BrandC'. If v increases towards3(° then the area of

B and( relative to the whole area decrease$.to

The second event is thag is reported as result of the min-max triangulation. The configurations of
this event concerning the property of being-adge can be characterized as follows.

Figure 9.9 If e := pq is not ay-edge therp is located in the wedge betwe‘eT]and;Z, or in the wedge betweeét and;g.

Theorem 9.20 (Non+-edgespq) Let S be a surfaceP be a sample set . Let the current graph
G only consist ofy-edges which additionally are NN-intersection-free. kebe a sector for which
the NN-images of all items involved into the test of the then-case D fall into a flabpéast
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Figure 9.1Q The regiore(w) (left) and the location of 5. (e) in c(w).

(1) g€ H—- H" (H, H" like in Theorem 9.19) be-close toes, with largest angle,
(2) the quadrilaterald(p, g,,9,d,) be non-fold-over,
(3) 71 and75 be the two rays af throughg, andq,, respectively,

4) ;{ and;g> be the two rays af| intersectinge; and with angley := 180° — «y to the linesqq; and
line gq,, respectively (cf. Figure 9.9).

If e := pq is not a~y-edge therp is located in the wedge betweTq’nand;{, or in the wedge between
75 andrs,.

Proof: Let+' be the angle af of the triangle/A(qy,d, ;). The unionc(w) of t(w), Eg,(e1),
Eg(y)(e2), and E () (e3) is bounded by three circular ares c2, andcs corresponding to the edges
e1, €2, andes (Figure 9.10). In the else-case ) is free of sample pointsizs ) (e1) andEg(. ) (e2)
are free of sample points because the edgeS afe y-edges. E3(,1)(e3) is free of sample points
because) has a largest angle by (1). Tha@v) is free of sample points.

Because:(w) is free of sample pointdzs (. (e) has to intersect the boundary efw), that isc, c2,
orcs.

If E5,(e) intersects; (c; can be treated analogously), we claim thais in Eg(.)(e). Furthermore
the boundary arcs afj3(,)(e) are separated from, by the raysri andr3 (Figure 9.9) because the
tangents of the two boundary arcsgglhave an angle 6§ with e, and the quadrilateral does not fold-
over. Thusg, cannot be infg,)(e) if p is in the wedge betwee_ri> and;g, or vice versap has to be
in one of the wedges of the theorem.

In order to prove the claim, we rotatg together withE ., (e1) ontoe. The arcc| of the resulting
By (pg}) does not interseat;. If we moveq) towardsp, thend, does not intersect, too. Tha
has to be moved into the opposite direction in order to repdBut the first intersection af with ¢;
which may happen is af;. The second arg, of Eg,) (p—q’1) cannot intersect; at all. Both together
proves the claim.

If p is in the wedge betweez_r‘[> and;g, the case thatig(,)(e) intersectsc; does not occur because
the bounding arcs ofs(,)(e) are separated fromy by the raysi and7; (Figure 9.9). The reason
of separation is that the tangents of the two boundary argshatve an angle of with e, and the
quadrilateral does not fold-over. Thus in order tiigt.)(e) intersectses, p has to be in one of the
wedges of the theorem. "

In summary we obtain a new observation.
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Observation 9.21 (Occurrence of nony-edges)Let S be a surface,P be a sample set of. Let

the current graphZ only consist ofy-edges which additionally are NN-intersection-free. kebe a
sector for which the NN-images of all items involved into the test of the then-case D fall into a flat part
of S. Then the following holds:

(1) The probability that a non-edgees is reported by the then-case D is low.

(2) If an edgee := pg with q y-close toes is selected by the then-case D then the probability that
e is not ay-edge is low.

Argumentation: e3 is selected if

e a fold-over occurs, or

e if no fold-over occurs and the selected painis y-close toe;.

The probability of the first case is low according to Observation 9.14, and the probability of the second
case is low by Theorem 9.19. Thus (1) holds.

(2) is an immediate implication of Theorem 9.20. "

9.3.3 Else-Case D
The else-case D becomes active if

e the candidate s&®’(w) is empty, or

e the candidate s&®’(w) consists just of pointg which induce a fold-over quadrilateral, or for
which e = pq intersects an already existing edge.

In the first case we get the following lemma.

Lemma 9.22 Let S be a surface,P be a sample set &f. Let the current graph only consist of
~-edges which additionally are NN-intersection-free. 1wdte a sector for which the NN-images of all
items involved into the test of the else-case D fall into a flat pag.ofet the candidate saP(w)

be empty. Then the edgegis a-y-edge and does not NN-intersect any edgé& of

Proof: e3 is ay-edge because the candidate B&t(w) is empty. For intersection-freeness egfit
can be argued as in the proof of Theorem 9.15. "

In the second case we get Observation 9.23.

Observation 9.23 Let S be a surface P be a sample set &f. Let the current graplz only consist
of v-edges which additionally are NN-intersection-free. kebe a sector for which the NN-images
of all items involved into the test of the else-case D fall into a flat pai§.oLet the candidate set
P5<(w) consist just of pointg which induce a fold-over quadrilateral, or for whieh="pg intersects
an already existing edge. Then with high probabilifyis a y-edge and does not NN-intersect any
edge ofG.

Argumentation: We know from Observation 9.14 that the probability of an over-folding quadrilateral
can be considered as low. Furthermorez ifitersects an already existing edge tlipoannot bey-
close toes with largest angle (Theorem 9.15). In order that suchveould not have been selected in
the then-case D,
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e the point with largest angle would not have beenlose,

¢ or the point with largest angle would have begnlose but causing a fold-over.

The probability of the second case is low by Observation 9.14. Thus the only case which remains is
the first one which means thaf does not have a-close point with high probability.

For intersection-freeness ef it can be argued as in the proof of Theorem 9.15. "
The following observation summarizes these results.

Observation 9.24 ¢-edge property of else-case D) et .S be a surfaceP be a sample set f. Let

the current graphZ only consist ofy-edges which additionally are NN-intersection-free. kebe a
sector for which the NN-images of all items involved into the test of the else-case D fall into a flat part
of S. Then with high probabilitye; is a-y-edge and does not NN-intersect any edgé€ of

Argumentation: Because the two conditions at the beginning of the section cover the possibilities
that the then-case D is entered, Lemma 9.22 and Observation 9.23 imply this observation. =

9.3.4 Summary

The investigations of this section can be summarized as follows.

Observation 9.25 Let .S be a surfaceP be a sample set . Let the current grapldz only consist of
~v-edges90° < v < 180°, which additionally are NN-intersection-free. Letbe a sector for which

the NN-images of all items involved into the tests of the then-case B, the then-case D, and the else-case
D fall into a flat part of S. Lets. := S(7).

(1) The only reason that no edge might be inserted by the algorithm is that the candidate edge
intersects an already existing edge@®@f This event does not occur.

(2) For the then-case B the candidate edge is alwayseglge. For the other cases the probability
that the candidate edge isxaedge is high.

Argumentation:
(1) summarizes Theorems 9.9, 9.15, and 9.24.

(2) is a conclusion from Theorem 9.9 and the Observations 9.21 and 9.24. "

9.4 ~-Edges in the Curved Case

The idea of the analysis of the curved case is to compare the treatment of awemtahe given
set P of sampling points and the current graghwith the treatment of the sector in the orthogonal
projection of P andG in a local environment ofy onto the tangent plane of the surface at the sector
centerp. The environment comprehends the partbivhich is relevant for processing. We will
argue that the projection is a one-to-one mapping between the current matifoldspace and its
projection, thatG and its projection have the same behavior with respeet-éalges, and that the
algorithm behaves in the same manner in both cases, all this with high probability.

The background of this approach is that for a sufficiently small environment of a paintan SF-
surfaceS, the deviation between the tangent planesddt p and the surfacé is very small. This is
quantified in the following Lemma which shows that perturbations of vertices caused by projection on
a suitable plane are small.
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Figure 9.11: lllustration of the proof of Lemma 9.26.

Lemma 9.26 (Approximation by tangential planes)Let.S be a compact SF-surface without bound-
ary with an SF-radiug-, H(p) the tangential plane at a poirg € S. Leti(p,q) be the Euclidean
distance of a poing € .S fromp, h(p, q) the Euclidean distance offrom H(p). Then

lim h(p,q)
I(pa)—0 (P, Q)2

IA

1
-
Equivalently, for every > 0 ad > 0 exists so that fot(p,q) < ¢, p # q,

h(p,q)
< —+4e.
I(p,q)? ~ r

Additionally, § can be chosen globally independent frpm

[a—y

Proof: BecauseS is an SF-surface, a pair of tangential spheres exisfs & is located between
those spheres and does not intersect them. Furthermore, the spheres are tangé(ipl Thus the

distance of a poing € S close top from H(p) is at most the distance of a poidton one of the

spheres which orthogonally projects onto the same gfiioh H (p) asq,

h(p.a) =1(a,q") <U(d',q"),
cf. Figure 9.11. The distance of a poafiton the sphere fron#f (p) is

0, q") =r—/r? = 1(p,q")?
wherer is the radius of the sphere. The distance{ofrom p is at most the distance offrom p,

1(p,q") < i(p,q).

From these relations we get

! " "
i h(p,q)2 < fim M99 2U(p.9") _1
lpa)—0 1(P, )

1 — —_—
o —0 1(p, A2 ima")0 2U(p, q") /12 — U, q")2 7

The re-formulation witke andJ is just the definition of the limit.
0 is global because if is chosen so that




9.4. v-Edges in the Curved Case 119

for [(p,q") < 4, thend is independent from the location pfon the surface: it just depends on the
surface-independent configuration depicted in Figure 9.11. Be¢gusg) < I(p, q) we get

h(p,q) 1(9',9") 1
< < —+4e¢
I(p,9)? — I(p,9")? — r

fori(p,q) < 4. .

A crucial concept for the following is the tangent plane environment of points which is defined as
follows (Figure 9.12).

p H(p)
@

s S S

Figure 9.12 Depiction of the tangent-plane environment (TPEyof

Definition 9.27 (Tangent plane environment (TPE))LetS be a compact SF-surface without bound-
ary with SF-radius-, I(p, q) be the distance of a poit € S fromp, ande > 0.

Then the £-)tangent plane environment (TPE) of g with respect t@ is defined as the closed sphere
of radius (% + &)I(p, )>.

Corollary 9.28 (Tangent plane intersection property of TPEs)Let S be a compact SF-surface
without boundary with SF-radius, H(p) be the tangential plane at a poipt € S, I(p,q) be the
distance of a poing € S fromp, ande > 0. Then aj > 0 exists so that fot(p,q) < ¢ thee-TPE of
q intersectsH (p).

Proof: The corollary is a re-formulation of Lemma 9.26 using the preceding definition. "

In the following, statements are made, using this corollary, which hold under the condition of “a
sufficiently small environmenE(p) of p, and for sufficiently small edge lengths of the manifold”.

The reason of the condition is to guarantee that the vertices of the part of the(giapblved in the
treatment of a sector by the algorithm satisfy the corollary. The details are as follows. The “sufficiently
small environment” is the one of aff € S with [(p,q) < ¢ in the sense of the corollary. The
“sufficiently small edge lengths” are edge lengths which are less dhanwhere0 < ¢ < 1is a
constant factor. The factor has the property that all vertices or edges involved in the treatment of a
sectorw centered ap by the algorithm are contained ifi(p). Because the distances of all single
vertices and all vertices of edges involved from the sector triarfgl¢ can be expected to be less than

a constant factor of the edge length bound. The edge length bound multiplied by a constant factor has
to be bounded by in order to have all involved edges and verticeifp). But this means that the

edge lengths are bounded by a constant fractiof.

The observations made in the following usually hold "with high probability”. In the argumentation the
problematic cases are reduced to special configurations of points. One special configuration consists
of three points which are approximately co-linear. Another example are three points on a circle which
has an additional constraint on the radius. In the space of all configurations of triples of points these
configurations have the measure zero if all configurations are equally weighted. This can be expected
if the sampling points are uniformly distributed. It also can be achieved if the sampling strategy
is chosen so that sampling points close to each other do not have these special patterns, similar to
conditions "no three input points are co-linear” or "no four points a co-circular” often imposed on the
input of geometric algorithms.
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Observation 9.29 Let .S be a compact SF-surface without boundai(p) be the tangent plane ¢f

atp € S, P be a finite sampling sefy/ be an intermediate manifold constructed by the algorithm
without x.-intersecting edges and points flat over a triangle. Then for a sufficiently small environment
E(p) of p, and for sufficiently small edge lengths of the manifold, the projeclibjy,, of the
restriction M|,y of M to E(p) does not have self-overlappings, with high probability.

Argumentation: We assume that!’|(,,y has a self-overlapping, that is two of its objects (edges or
faces) intersect. Two such objects of the planar manifdlf; ) intersect if two edges intersect or
one of the objects is completely contained in the other object.

If the edge lengths are small, then the TPEs of the involved vertices are small compared to the length
of the involved edges. Furthermore, by definition, all TPEs intersect the tangential plane. Thus, if two
projected edges intersect, then either the original edges can be assugéddcsect, or three of the

four involved original vertices are approximately co-linear. Since the triangulation algorithm avoids
Xc-intersecting edges, and thus such edges are excluded in the formulation of the observation, and the
probability of three co-linear vertices can be considered as low, two projected edges cannot intersect
with high probability.

If an edge is a subset of a second edge, the four original vertices are approximately co-linear, because
their TPEs all intersect the projection plane. Because the probability of this event can be assumed as
low, this case does not occur with high probability.

If a projected triangle is a subset of an other triangle, one of its original vertices is flat over the second
original triangle, or one of its original vertices is co-linear with the vertices of an original edge of the
second triangle. The reason is that TPEs intersect the projection plane. Because the first case should
be avoided by the algorithm and thus is excluded in the formulation of the observation, and because
the probability of the second case can be assumed as low, this case does not happen, too.

Thus the assumption of the observation holds. "

Observation 9.30 (Preservation ofy-edge property under projection) Let S be a compact SF-
surface without boundaryf (p) be the tangent plane & atp € S, P be a finite sampling set,

G be an intermediate graph constructed by the algorithm. Then for a sufficiently small environment
E(p) of p, and for sufficiently small edge lengths(@fthe projection| (., of the restrictionG| g,

of G, the projection of ay-edge ofG| () is a-y-edge of the projectiol¥| (), with high probability.

Argumentation: We assume that an edge-= Ts exists which is a-edge ofG|g(;,) but a nony-edge

of G'|g(p) in its projectione. In the following we show that in this case a sampling paiekists

so thatr, s, andt are approximately on a common circle of a radius dependent. dBecause the
probability of this event can be considered low, the probability that the assumption holds is low, and
thus the probability of the assertion of the observation is high.

Because’ is not ay-edge, a sampling poiritexists whose projectiotiis in the 3(-y)-environment

of ¢ = r’s. On the other hand, becausés ay-edge,t is outside thed(~y)-environment ok. If the

radii of the TPEs are small compared to the lengtle,athis implies thatt has a distance from the
boundary of thes(+)-environment which is bounded by a small constant of the largest of these radii
(Figure 9.13). But this means thiais approximately on a circle in the plane spanned bs; andt,
throughr ands, and the radius of the circles of the definition of they)-environment. Thus these
three points are approximately on a common circle with a specific radius. "

The following observation states the equivalence of the intersection status of line segments in the
spatial and the projected case, so that results on this aspect in the locally flat case can be immediately
transferred to the spatial case, and thus can be excluded from further analysis of the algorithm.
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r s
re e s
Figure 9.13 lllustration of the argumentation of Observation 9.3%, andt are approximately on a common circle of a
radius determined by.

Observation 9.31 (Preservation of intersection properties of edged)et S be a compact SF-
surface without boundaryf (p) be the tangent plane & atp € S, P be a finite sampling set.
Then for a sufficiently small environmeh{p) of p, and for sufficiently small edge lengths, two line
segments: and ! in E(p) with vertices inP x.-intersect if and only if their projection& and !’
intersect, with high probability.

Argumentation: Becausek and! are subsets of/(p), the TPE-environments of the vertices fof

and! intersectH (p). k£ and!l are obtained by slight perturbation of the verticeg@nd!’, within a
distance bounded by the diameters of the TPEs of these vertidéanid!’ intersect, a danger that

and/ do not intersect only arises if a vertex Kfor I’ is close tol’ or k', respectively (Figure 9.14).
Closeness is determined by the TPE-diameters and the definitigrimfersection. But this means

that the mentioned vertex and the vertices of the mentioned line are approximately co-linear. But this
event should have low probability.

Figure 9.14 lllustration of the argumentation of Observation 9.31. The left configuration has an intersection in the original
and in the projected case. The right configuration has an intersection in the original case, but not in the projected case. In
the second situation these points are approximately co-linear.

If £’ and!’ do not intersectk and! may be recognized ag-intersecting only if a vertex of or!’ is
close tol’ or &/, respectively. As before, this means that the mentioned vertex and the vertices of the
mentioned line are approximately co-linear. But this event should have low probability. "

Observation 9.32 {-edge behavior of the algorithm) Let S be a compact SF-surface without
boundary, P be a finite sampling set. Let the current gra@honly consist ofy-edges90 < v <
180°, which additionally arey.-intersection-free. Let all points d? which are flat overt(w) be in

the NN-image of(w). Letf,. := B(v). If the lengths of the edges constructed by the algorithm are
sufficiently small then the following holds:

(1) The algorithm has the same behavior, with respect to edge selection, in space and in the projec-
tion onto the tangent plane of the sector cengef w.

(2) The only reason that no edge might be inserted by the algorithm is that the candidate edge
Xc-intersects an already existing edge@®@f The probability of this event is low.
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(3) The candidate edge always igygedge, with high probability.

Argumentation: The following argumentation requires that all items involved in the tests of the then-
case B, the then-case D, and the else-case D fall into an envirorghof p for which the TPEs of

the involved points with respect to the tangent planp ate small in comparison to the edge length.

But as we already know this can be achieved for a sufficiently small environBigntof p, and for
sufficiently small edge lengths of the manifold. The environment is defined by théemma 9.26

which is independent gf, as we also already know. The edge length is defined by a constant factor
which also is independent @f. Thus the required condition is satisfied if the lengths of the edges
constructed by the algorithm are limited by a sufficiently small global upper bound, as demanded in
the observation. In Chapter 9.1 we have discussed the existence of edge-length bounding sampling
sets.

For (1):

The two preceding observations state that the projected current manifold does not have mgre non-
edges than the original one, and that self-overlapping does not occur in the projected manifold if the
manifold in space is without self-overlapping. Becatsdoes not have non-edges by assumption,
thusG’ does not have such edges neither. Thus we have the same starting situation for the projection
like for the analysis of the flat case of Section 9.3.

In the following we compare the behavior of the then-case B, the then-case D, and the else-case D for
the locally flat case which has been described in Section 9.3 with the situation on curved SF-surfaces.

Then-Case B:

The curved case is treated in the orthogonal projection of the relevant gadmb the plang? (w) of
the sectorw. Thus we have to compare the situation in the projectioti¢mw) for the given surface,
and in the projection on the tangential plaki¢p) for the projected case (Figure 9.15).

Figure 9.15 lllustration of the argumentation of (1) of Observation 9.82v) is drawn with solid linest(w') with dashed
lines, andl’(w) with dotted lines. The configuration is presented in top- and side-view.

The first question to be asked is whether the candidate sets of the spatial and the projected configu-
ration are the same, up to projection. The candidate?§¢tv) consists of all sampling points flat

over the sector trianglgw). We argue that the candidate sets are the same with high probability by
showing that

(1) the projections of sampling points flat ovét) should also be in(«f), and

(2) sampling points which project intd«/) should be flat ovet(w), both with high probability.

For the discussion of (1) we use the assumption that all pgifitg overt(w) are in the NN-image

of t(w). Aspects of this assumption will be discussed in Section 9.5.2. Under this assumption, the
TPE ofsintersects the tangent plane. If the intersection of the TPE with the tangent plane is a subset
of t(w'), thensis in t(w'). Otherwisesis close to an edge @fw). This implies that there are three
approximately co-linear points what should occur with only low probability.
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For (2) we consider a projected sampling paiim ¢(«/). LetT'(w) be the convex hull of the TPEs of

the three vertices of(w), cf. Figure 9.15. Becausgw) andt(u/) are subsets df'(w), and because

the TPE ofs intersectsI’(w), sis flat over¢(w) or close to an edge a{w). The latter case causes
three approximately co-linear points what should occur with only low probability.

Thus (1) and (2) hold, and the two candidate sets can be considered as equivalent, with high probabil-
ity.

The second question is whether the same pistselected in space and in the projection. According

to Section 8.5.2 the algorithm selecfgs an extremal point in the projection of the candidate points
onto the triangle(w). g is a point whose projection has largest distance from the line of qdge

We assume that the orthogonal projectgprof g onto the tangent plane does not have this property.
We show that under this assumption another candidate pehxists so that the line segmemjis and

7,0, are approximately parallel if the edge lengths of the configuration are small. But the probability
of parallelism can be considered as low, so that the probability of the assumption is low, and that the
probability is high that the same poigtis selected in space and in the projection.

Figure 9.16 Definition of the sector plane environment (SPE) in a 2D representation. The SPE dfawn as dashed
circle, the TPE as solid circle, like the TPEaf

For the candidate pointswe consider the closed balls centered atith their distance front(w) as
radius (Figure 9.16). We call these badksctor plane environmen{SPE. From the above discussion
of (1) we know that the intersections of the TPEs@fith the tangent plane are subsetg(af) with
high probability. Becausg«/) andt(w) are subsets df (w), the TPEs of the pointsintersectl’(w),
too. Thus the distance of the pogitrom ¢(w) is at most the radius of the TPE ®plus the maximum
of the distances of the TPEs of the verticeg(@#). Thus the radius of the SPE of artan be made
small, analogous to that of the TPE.

Let g be the point selected by the algorithm for the curved case. Thus the projgatioepis a point

of largest distance from the line of edggy,. Letr be the sampling point whose projectidron the
tangent plane would be selected by the algorithm for the projection on the tangentfpiaagoint

of largest distance from the line of edggy), of ¢(w’). We consider the plan# of the points, ,T,,q,7

and the plangd’ of the pointsq},d5,q’,r’. If q # r thenq is farer from the line ofj; andq, thanr

in H, andr’ is farer from the line ofy; andg}, thang’ in H’, and we consider an arbitrary continuous
motion of the plandd to the plane’ so that the plane permanently intersects curves connecting the
corresponding pointg/d, F/r’, 9;/d}, andd;/q) which deviate from the straight-line connection

just by a small constant multiple of the maximum radii of the TPEs and SPEs. The intersection of the
moving plane with the line segments induces vertigegs,q*,r*. For at least one locatiom® and

r* have equal distance to the line gjif andq3. Because of the condition of deviation on the curves,

the line segmenig, g, andqr are approximately parallel, if the TPEs and SPEs are sufficiently small,
what can be expected for sufficiently small edge lengths.

For the proof of existence of the desired curves we consider the line of intersection of the planes
H and H'. This line partitions the planes into half-planes. If the points on every plane all fall into
the same half-plane, we choose the straight-line connection between corresponding points as curve
(Figure 9.17, left). Otherwise we take the straight-line connections as connecting curves only if they
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*

Figure 9.17 Construction of a configuration of pointg,g;.r*,q” in whichr* andq* reach a desired location. In the left

case the pairs of points are connected by straight lines. In the right emstr’ are connected by a circular arc which has a
point in common with the intersection & and H'.

traverse the wedge with the smaller angle (Figure 9.17, right). For the other pairs of points, for in-
stancer andr’ in the figure, we take a poimton the intersection line off and H' so that the triangle
A(F,r',i) maximizes the angle aemong all those triangles. We take the circular arc definad by

i as connecting curve. Because the angle of the trianglésatt least9(, the length of the circular

arc is bounded by a constant multiple of the length of the line segment betwastr’. Because

the length of this line segment is bounded by a constant multiple of the maximum of the radii of the
TPEs and SPEs, and because the circular arc is completely in the two wedges of smaller angle, the
connecting curve fulfills these requirements.

Then-Case D:

The first question to be treated here is whether the points of the candidat§f§at$dec_ defined in

Section 8.7.1 correspond to the same original points in the original curved case and in the flat projected
case. We argue that this holds with high probability.

By definition of the candidate sets, the answer is positive if

(1) the sets ofs.-close points are the same in both cases,

(2) the points project onto the same side with respect to the line thrgugh the sector plane
H(w) in both cases, and

(3) the pointgg causing a fold-over are the same in both cases,

with high probability.

If (1) would not hold, then &,.-close point would exist in one of the cases which isfetlose in the

other one 5.-closeness in the projection refers to projected points. Analogously to the argumentation
of Observation 9.30 which also works for other environments tharthg-environment used there,

it can be shown that this is impossible with high probability.

For the argumentation for (2), we distinguish between two cases (Figure 9.18). The first case is that
a pointq exists which is inPfi for the original case, but whose projectighis not in Pff, for

the projected case. Under this assumption, the TP iotersects the tangent plane withili{w).

Thus the intersection of the TPE with the tangent plane is a subsétfofor q is close to an edge

of ¢(w). Because the first case is not possible for the assumed relﬁt'&ﬁrPfC_ , the second case
holds. This implies that there are three approximately co-linear points what should occur with only
low probability. Thus the assumption is impossible with high probability.

The second case is that a poinéxists whose projectiod is not in Pff+ for the projected case, bgt
isin Pfjc+ for the original case. Becaus%é?i is empty in the locally flat case] has to be inP! (w'),



9.4. v-Edges in the Curved Case 125

Figure 9.18 lllustration of the argumentation of Observation (1) of the then-case D in Observation 9.32. The left configu-
ration shows the case that a poingxists which is inPfi for the original case, but whose projectighis not inPf;. The

right configuration represents the case of a pgimthose projection is not irPfjr, butqis in Pf,jr for the original case.
Additionally, ' projects outside(w).

w' the projected sector, or is on the same side of the line through the projected; edgenot in

t(w').

If the former holds, becaugéw) andt(w/) are subsets df'(w), and because the TPE gfintersects

T (w), q is flat overt(w) or close to an edge a{w). But the first alternative is a contradiction to

the assumption of this case. The second alternative leads to three co-linear points whose occurrence
should only have low probability.

If the latter holds thertf is in the difference offjg(,)(e5) minust(w'). The area of this region is
small so that it is not very likely to find there. Ifq’ nevertheless is in this region then the distance
to the plane ofw should be small, in the order of the radius of the TPEs of the vertices dfthus
the projectiong on this plane can have a distance from the ling;oh the order of the TPEs of the
vertices ofw. But this additionally means thatis close to the line o, with high probability. This
causes three approximately co-linear points what should occur with only low probability.

The argumentation for (3) is the following. If the projectidrof a pointq causes a fold-over in the
projected case but not in the original case, or vice versa, heast be close to the line through
andq,. But this event should happen only with low probability.

The second question is whether the result of point selection is the same in the curved and the projected
flat case. In the following we argue that this holds with high probability.

From the discussion of the candidate sets we can concludéﬁhas empty with high probability
because this set is empty in the flat case. This means that step 2, inside case, of Section 8.7.2 is never
executed, with high probability.

For search step 1, the candidate pajn¢ TDf+ selected by the algorithm in the locally flat case is

one which encloses the largest angle witt{Section 9.3.2). We give arguments that the same holds

in the curved case, with high probability. Since we assume surfaces without edges and ridges, we
again set3. = f(y), as in Section 9.3.2. Under this assumption, the candidate pointg-close

to e3. The candidate poing initially found by the algorithm in search step 1 has the largest angle.

If g is ~y-close toes, the probability thaty causes a fold-over is low. If a fold-over would occur in
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space but not in the corresponding projection, then it can be seeq, thatindg, are approximately
co-linear (Figure 9.3). But the probability of this event should be low. Because we already know from
Section 9.3.2 that the probability of a fold-over in the locally flat case is low, the probabilitygthat
causes a fold-over in the curved case is low, too. Because the probability-imidaiced fold-over is

low, g is not replaced with any other sampling point. Thus the candidate gaetected in search
step 1 has indeed the largest angle with

In the projected case we know from the locally flat case that a projected sampling point with largest
angle is selected. Létbe its corresponding original point. If both poirgsandd would be different,

it can be seen by using Corollary 9.28 tlgf g,, g, andg are approximately on a common circle.

The probability of this event should be low. Thus in both cases the algorithm selects the same original
point with high probability.

Search step 2, outside case, is entered with a candidategdoirthe original case whose projectidn

is also the candidate point for the projected case. For search step 2, outside case, we have recognized
in Section 9.3.2. for the locally flat case agd/-close toe; thate = pq is intersection-free, and that

this observation implies that a replacementjafoes not take place. In order to compare the original
case with the flat projected case we give arguments that the following observations hold with high
probability:

(1) e = pg is xc-intersection-free if and only if its projectio# = p’q’ is intersection free in the
flat projection.

(2) For all sampling points with G;T € G the relation of the sizes of the angles betwegy, and
g;q’ and betweeny; g}, andq)r’, where' indicates the projection of the corresponding points,
is the same as for the sizes of these angles between the original line segments.

(1) is an immediate consequence of Observation 9.31.

Figure 9.19 lllustration of the tolerances on angles between lines imposed by the radius of the TPEs of thepgints
andqg. A perturbation of the locations of the points within the TPEs does not change the relation of the sizes of the angles
of interest.

For (2) we consider the cases of Figure 9.7. With high probaliligndr’ have a distance larger than

two times the maximum of the radii of the TPEsafandq’/r’ from the line ofe;. Otherwise the

vertices ofes andg/r would be approximately co-linear what should be an event of low probability. We
assume a configuration of this type (Figure 9.19)/ Has a distance larger than twice the maximum

of the radii of the TPEs of andq’ from the line throughy}, andq’, andq’ has a distance larger than

twice the maximum of the radii of the TPEs dfandq’ from the line throughy; andr’, then the

angles have the same relation in the projected and in the original case. The reason is that perturbation
within an environment of the size of a TPE is not sufficient to change the relation. The worst case
is that the points are moved within the projection plane. Thus, if the relation changeslose to
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the line ofq,q, or q is close to the line ofj;T. In both cases we have three approximately co-linear
vertices. But this event has low probability. Thus the probability that the relation of the two angles is
the same in both cases is high.

Else-Case D:

The only action of the algorithm is to inse# into G if e3 does not intersect an edge Gf But by
Observation 9.31 the status @fin the original case and the projectiépof e in the projected case

is the same with respect jg-intersection. Thus the algorithm has the same behavior in both cases.

For (2):

From Observation 9.25 we know that in the locally flat case the event that the candidate edge inter-
sects an already existing edge @fdoes not occur. Because the projected case is locally flat, the
candidate edge of the projection does not intersect an already existing edge. Because for both cases
the algorithm has the same behavior, the candidate edge of the original case is the corresponding edge
of the projected edge. By Observation 9.31 this original edge has the same behavior with respect to
xe-intersection for the original case like the projected edge with respect to intersection for the pro-
jected case, with high probability. Thus the candidate edge of the original cgsisrsection-free

with high probability.

For (3):

From Observation 9.25 we know that in the locally flat case the candidate edge alwgysdgea, with

high probability. Because the projected case is locally flat, the candidate edge of the projectjen is a
edge with high probability. Because for both cases the algorithm has the same behavior, the candidate
edge of the original case is the corresponding edge of the projected edge. By Observation 9.30 this
original edge has the same behavior with respect teythdge property for the original case like the
projected edge with respect to intersection for the projected case, with high probability. Thus the
candidate edge of the original case ig-adge with high probability. "

9.5 NN-Embeddability

NN-embeddability of a triangular manifolt! into a surface5 means that the nearest-neighbor image

of M maps one-to-one t& under the nearest-neighbor assignment. In the following we present
observations which show that tiié constructed by the algorithm should have this property with high
probability if the sample set is chosen so that the maximum angle of the triangles is boungled by
the edges are sufficiently short, and the dihedral angles between neighboring triangles are sufficiently
large. We know from previous sections that sample sets with this property exist.

9.5.1 General Observation

The purpose of this section is to give arguments for the following observation which also summarizes
the investigations performed up to now.

Observation 9.33 (Reconstruction property of the triangulation algorithm) Let S be an SF-sur-
face. Then a sampling sét exists so that with high probability the triangular mesf delivered
by the triangulation algorithm is NN-embeddable, provided that for all sectorsccurring during
execution of the algorithm the candidate s&f§(w) and P comprehend with high probability all
points of P which have an NN-image falling into the triangl@w).

Argumentation: We distinguish between two cases, local NN-embeddability and global NN-embed-
dability.
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Local NN-embeddabilitglenotes the NN-embeddability of every sub-mesh consisting of a pair of
triangles sharing a common edge. Local NN-embeddability should be guaranteed by the strategy of
the triangulation algorithm

(1) to generate-edges and thus triangles with maximum angles less{hameferably,

(2) to select sectors with large dihedral angles with their neighboring sectors in their umbrella
preferably (Section 8.3).

Triangles satisfying (1) are NN-embeddable if their edge length is sufficiently small (Theorem 6.12).

By (2), if the §.-bound of the algorithm on the dihedral angle of two adjacent triangles is sufficiently
large, and if one of two adjacent triangles is known to be oriented close to the normal vectors of the
surface, then the other should be, too, and the NN-images of the pair of triangles should be disjoint.
This holds if both triangles are NN-embeddable and have sufficiently short edges (Theorem 6.16).

For sample sets with th8amp,-property, the edge length can be held small with high probability
(Observations 9.6 and 9.32). Thus local NN-embeddability should be achieved with high probability
by the algorithm.

Global NN-embeddabilityneans that the NN-images of any two triangles do not intersect. Global
NN-embeddability should be guaranteed by the strategies of the triangulation algorithm

(1) to treat the points over a triangle in case B,
(2) to treat intersecting edges by

(a) construction in case B of the algorithm,
(b) explicit y.-intersection tests in the other cases of edge insertion.

Two non-adjacent triangles may NN-intersect if a vertex of one of the triangles is in the interior of the
other one, or if the two triangles have NN-intersecting edges. Both cases are covered by (1) and (2).

The complete treatment of points over a triangle in (1) is stated as a condition of this observation.
More on this subject is told in Section 9.5.2.

The x-intersection tests of (2) should yield the correct result with respect to NN-intersection with
high probability, cf. Theorem 7.23 and the subsequent argumentation. "

9.5.2 A Candidate Environment Covering the NN-Image of a Triangle

In Section 8.5.1 the candidate environment of flat sample points over a triangle has been defined as an
intuitive type of candidate environment. This definition is sufficient in the flat case because exactly
the sample points in the interior of a triangle are covered by it. The sample points falling on an edge
of the triangle are in an edge environment and are treated in the then-case D.

The candidate environment of flat points over a triangle also works well in practice for the curved case.

However, we do not have a proof that this environment, together with the candidate environments of its
edges, comprehends the NN-image of the triangle of the surface. In the following a type of candidate

region is defined for which we can prove this property for SF-surfaces. The environment can possibly

contain some more points, but we can show that they are in a connected environment of the NN-image
of the triangle. Thus this type of candidate sets might be a good starting point for finding the sample

points in the NN-image of the triangle reliably or at least with high probability.

The new candidate region is defined as follows.
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Definition 9.34 (NN-candidate environment of a triangle)Let ¢ = A(p,q,r) be a triangle, and
r(t) denote the length of the longest edge.ofhe nearest-neighbor (NN) candidate environment
CN (t) of t is defined as the union of the three balls of radi(s and centerg, g, andr.

For a finite setP of sample points of a surfacg P(t) = P N CY(t) is denoted adN-candidate set
of ¢.

In the following we will show that for sufficiently small trianglé¥(¢) does indeed contain all relevant
sample points.

Lemma 9.35 Letr(¢) be the length of the longest edge of a triangl@hen the following holds:

(1) Every point of is in distance less or equal P@r from one of the vertices of

(2) The NN-candidate environme@t' (¢) contains in particular all those points in space which are
in distance less or equal Eér fromz.

Proof: Every point oft is in distance less or equal @Qr from one of the vertices of. The
reason is that every point ofhas a distance of at mo?t from one of the edges af This can be
seen by considering the three rectangular quadrilaterals, each of which shares an edgeadvitie
opposite edge on the bisector between that edge and the opposite vertefk Bigure 9.20. The three

quadrilaterals cover. Hence the distance from one of the vertices is at rﬁt()%’r(t))? + (37(t)2 =
Pr(t).

5 T

Figure 9.2Q The three quadrilaterals (dashed lines) that cover the trigngle

Let q be a point in space of distance less or equa@@ to ¢, andq’ its closest point or. If ¢

is a vertex oft, d(q,q) < *Zf (t) is less tham(t), and thugg is in the ball of radius:(¢) aroundd.

If g’ is on an edge or in the inner of the triangtg( is perpendicular to the edge or to the triangle.
In both cases, a line perpendiculardantersects the ball of a triangle vertprrom whichd has

a distanced(q’,p) < ‘[ r(t) in a pointg” which has distancé(q’,q') = /r(t)2 — d(q,p)? >
r(t)? — ir(t)? = % (t) from q'. Thus ford(qg,q’) < %r( t), we getd(q”,q') > d(q,q’), and
thusq is in the closed ball aroung with radiusr (). .

Theorem 9.36 (Candidate environment containment of NN-embedded triangles)et .S be a sur-
face andt = A(p, q,r) be a triangle withp, g,r € S . Then the NN-imaggt) is a subset o€™ (¢).

Proof: Let f(p) be the unique nearest neighbor 8rof a pointp € ¢. Thend(p,f(p)) < @r(t),
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because of (1) in the preceding lemma, and because the vertitesebnS. Letd be a point oft
with closest distance dfp) to t. Thend(p/,f(p)) < d(p,f(p)) < @r(t). By (2) of the lemma that
means that(p) € CV (). .

Theorem 9.37 (SF-fringe containment of candidate environmentsjet S be a compact SF-
surface without boundary with SF-radius Lett¢ be a triangle withr(t) < r. ThenCV(t) is a
subset of the SF-fringe of radiusof S.

Proof: C™(t) is the union of three balls of radiugt) and centers o8. Thus every point irC (t)
has a distance of at mostt) from S, and thus, by definition of the-fringe, is a subset of the fringe.

Theorem 9.38 (Connected sub-surfaces)et .S be a compact SF-surface without boundary with an
SF-radiusr. Let B, /;(p) be the ball of radiug centered at a poinp € S . ThenS(p) := B, /»(p)NS
is a connected subsurface 8f

Proof: We consider the connected componenS¢f) which containg. This connected component
splits B, j»(p) into two regions so that for each of the tangent b#i$p), B2(p), the intersections
B1(p) N B, 2(p) and Bz2(p) N B,.j2(p) are in different regions. That can be seen by inspecting the
intersection of the normal planes @twith the surface and the ballg (p) and B2(p). In each of
these planes, the connected component is a curve thfugtich induces two regions each of which
contains one of the discs induced by the ball§p), B2(p). Otherwise a boundary point of the curve,
and hence of, would exist. This transfers to the separation in space, because of the continglity of
Now letq be a point inB, ;> (p) which is not on the considered connected component. We will show
thatq is not onS. But that means tha$(p) is just the connected componentmwfvhat proves the
theorem.

Forqin Bi(p) or By(p), q is not onS. Thus let us focus on the other case. We consider the closest
pointsq} andg, of g on the ballsB; (p) and Bx(p), respectively. From the geometric arrangement
it can be seen that the distané@, o) < %, 1 = 1,2. Furthermore, one of the line segmeﬂ,

i = 1,2, intersects the surface in a ponfit Thus the distance af from the surface is at most But

that means thaj is in one of the tangent balls of radiust d, and thusy cannot be orf. "

Corollary 9.39 (Connectedness of the subsurface in the candidate environmenbet S be a com-
pact SF-surface without boundary with an SF-radiusLett = A(p,q,r) be a triangle with the
length of the longest edgét) < %. ThenS’ := CN(t) N S is a connected subsurface 8f

Proof: By the preceding theoren$,(p), S(q), andS(r) are connected surfaces. Becapsq, andr
are contained in all of those three surfaces, the union of them which i§ jestonnected, too. =

Theorem 9.40 ¢-fringe containment of a triangle) LetS be a compact SF-surface without bound-
ary with an SF-radius- andt = A(p,q,r) be a triangle withp, g,r € S. If 7(t) < /2r, thent is in
ther-fringe of S.

Proof: As we know, the maximum distance of a point fofrom S is at mostgr(t). Because

@r(t) < r, all points oft have a distance of at mostfrom S. Thus, by definition of the-fringe, ¢
is in ther-fringe of S. "

Based on these observations, the following corollary formulates the usefulness of the candidate envi-
ronmentC? ().

Corollary 9.41 Let S be a compact SF-surface without boundary with an SF-radjuB be a finite
set of sample points afi, andt = A(p,q,r) be a triangle withp,q,r € S withr(t) <. Then
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(1) CN(t) contains all sample points in the NN-imatjfe) of ¢.

(2) ¢N(t) N Sis connected, that is only sample points of a connected environment a@irzde
considered.

Proof: The assertion (1) is identical to that of Theorem 9.36 about candidate environment containment
of NN-embedded triangles. (2) is the assertion of Corollary 9.39 about connectedness of the subsurface
in the candidate environment. "

9.6 Boundaries

The boundary of a triangular manifold is given by the edges to which just one triangle is incident.
Boundary edges are generated by the reconstruction algorithm if a sector is not closed to a triangle.
Let us again consider the situation in the plane.

In the plane, the boundary consists of closed polygonal chains which also may have tree-like branches
and which bound a region outside the triangulation. It is well known, that for every polygonal region at
least one sector defined by consecutive edgespq;, e = PQy, does exist which can be separated

from the region by a chorés := @, q, which is completely in the region, so that the resulting triangle

is free of points or edges. The only reason for the algorithm not having insgriethat the angle

atp exceeds the boundary control angle That means that all sectors which allow a chord have an
angle exceeding, which usually is chosen large.

If a sector does not allow a chord, its pots either a concave point with respect to the region, or it
induces a triangle which contains at least one vertex (the triangulation is assumed to be intersection-
free). But in that case, a line segment betwpeand one of those vertices would have been inserted
into the graph according to the then-case B. Thus that case does not happen.

In summary, a boundary vertex of a region induced by boundary edges either has a convex large angle,
or is concave with respect to the region.

The result of the discussion can be used in two manners. The first interpretation is that it is unlikely
that such a polygonal region does occur if the sample points are equally distributed in a surface filling
manner. The reason is that the area of a region with the described property is so large that for that case
the probability is high that one of the sample points falls into the region.

The second consequence is that the algorithm is capable of identifying intended holes or boundaries
if the surface is adequately sampled. An adequate sample locates the sample points on the boundary
so that the angles of the sector of the polygonal chain obtained by connecting consecutive sample
points exceedy.. For a continuous curve of bounded curvature that can be achieved by sufficiently
close sample points. Additionally, the sample points should be denser than the size of the hole, where
the size of the hole can be characterized by the diameter of a maximum sphere which can be moved
through the hole. The sample points in the interior close to the boundary are set with an analogous
density. For that choice, the sectors on the boundary should occur as sectors of the cycle of the
boundary vertices of the surface description graph which are not completed to a triangle because of
the large angle/. An edge between the two edges of a boundary sector is unlikely to occur in the
surface description graph. The reason is that it is unlikely to occur in the clustered environment graph,
nor as a result of edge connection with points in a triangle or edge-close points which are the only
possibilities where sectors might be splitted.

Figure 9.21 shows an example of a surface with hole. In the middle, the bptiag been so small
that the hole has been filled, whereas on the right side the hole has been reconstructed by using a
suitable large value of,..
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Figure 9.21 The detection of borders in a data site.

9.7 Empirical Investigations

Observation 9.6 states the existence of favorable extensions of a given sample set of a surface, but
does not give a concrete algorithm of construction. For that reason we have applied the algorithm to
random sample sets taken from a semi-sphere, from the outer and the inner of a torus, and from a flat
square (Figure 9.22), with approximately 500 and 1000 points which have been generated as described
at the end of Section 7.2.1. Additionally performed measurements with more points show no principle
differences, and thus are not presented here.

In all casesf = 1 has been used for the cluster8eEG which has served as input SDG for the
algorithm of triangulation. The parameteys(for 4. := /(7)) and~. have both been set t85°,

Xc Was set tar5° and the dihedral angle bound go= 60°. The reconstructions obtained from the
sample sets are shown in Figure 9.23.

Figure 9.22 The sample sets used for the empirical analysis.

Figures 9.24 to 9.31 compile the data of the measurements. The horizontal axis of every plot can be
understood as time axisrepresents théth sector treated by the algorithm.

Figure 9.24 shows the size of the sector angles. In the flat case, the sectors are processed according
to increasing angle (Definition 9.34). The reason of the scattering effect is that new sectors which
may have smaller angles are generated if an edge is insertedrinthn interesting effect is that
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Figure 9.23 The reconstructed surfaces.

nevertheless the tendency is that the angle size increases during execution of the algorithm. The plot
shows that the angles are indeed bounded33y.

In the plots of the planar square, a sorting effect can be noticed. The reason is that in that case the
sector angles, and not the dihedral angles to neighboring sectors are the sorting criterion. Another
observation is that very small angles do not occur frequently.

Figure 9.25 displays the number of occurrences of insertedges and non-edges, respectively. Al-

most all of the inserted edges areedges. The number of nopedges is between 0 and 10. This also
corresponds to the observation of Section 9.3.2. Moreover, the dihedral angles of adjacent triangles
of these nony-edges always fit smoothly into the surrounding structure. Most of the dihedral angles
between adjacent triangles at these edges exceaded the experiments. The smallest angle ever
found has been about6°. Obviously, the edge selection process chooses the configurations well, so
that a good surface mesh is generated.

Figure 9.26 presents the number of occurrences of the configurations during a reconstruction that a
sample point is "over a triangle” (case B, "over trian”), in théy)-environment of edge; (then-

case D, "near to edge”), and thatis a-y-edge or an already existing edge (else-case C and case D,
"normal”). The case "over a triangle” does practically not occur, the curve is about constant equal to
0. For the overwhelming majority of the sectors edgés taken and non-e;-edges do not occur too

often. A reason is that for the relatively short edges the probability that a random sample point falls
into the3(+y)-environment of the edge should be considerably smaller than it does not, because of the
small area of this environment compared to the area of the whole square. The curves of the case of
non-y-edgeses (then-case D, "near to edge”) increase slightly over-proportionally.

Figure 9.27 shows the number of occurrences of edge types T, 7, ande = pq over time for

the min-max triangulation of the then-case D. Here, the majority of the edges is optyp&his
corresponds to the observation of Section 9.3.2.

Figure 9.28 displays the length of the inserted edges. For comparison, the average edge length, the
standard deviation, and the maximum edge length of the initial SDG are depicted, too. The distribution
of the point density shows that the length of the majority of edges is at most twice of the average length
of the SDG, and less than the length of the maximum length of an SDG-edge.
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Figure 9.24 The size of the angle of every processed sector.
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Figure 9.25 The number of occurrences of inserte@dges and non-edges, respectively.
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Figure 9.26 The number of occurrences of the configurations "over a triangle” (case B, "over trian”)y-edgese;

(then-case D, "near to edge”), aneedgeses or an already existing edge (else-case C and case D, "normal”).



9.7. Empirical Investigations

137

60

seni - sphere

50 r

10

Pg

0 10

20

30

40

outer surface part of a torus

40
35 ¢
30
25

Pq

0 5 10

15

20

25

30

i nner surface part of a torus

35

40 .

30
25

15
10

Pq

0 5 10

15

20

square

25

30

50

40 |

30

pl anar
.

Pg

20

25

30

35

40

45

140

120

100

80

60

40

20

80

60

40

20

90
80
70
60
50
40
30
20
10

120

100

80

60

40

20

seni - sphere

P9

20 40 60

80 100 120
outer surface part of a torus

pq

10 20 30 40

50 60 70 80

inner surface part of a torus

pq i

10 20 30 40 50 60 70 80
pl anar square

pPq i

20 40 60 80 100 120

Figure 9.27 The number of occurrences of edge types= 7,0, ande = pq over time for the min-max triangulation of

the then-case of step D.



138 Chapter 9: Analysis of Triangulation

sem - sphere sem - sphere
T T T T T 4e+07 T T T T
5e+07 | length value - | length value -
SDG maxi mum edge | ength —— 3. 5e+07 r SDG mexi num edge | ength —— A
SDG aver age -o- SDG aver age &
SDG average + std. deviation -=— 3e+07 | SDG average + std. deviation —x— ]
4e+07 SDG average - std. deviation -« 7 SDG average - std. deviation -
2. 5e+07 o °
3e+07
2e+07
2e+07 1. 5e+07
£ le+07
le+07 %%
5e+06
0 L L L L L 0 L hd L L L
0 200 400 600 800 1000 0 500 1000 1500 2000
outer surface part of a torus outer surface part of a torus
5e+07 ; ; ; ; ; ; ; ; ; 4e+07 ; . . :
4. 5e+07 | length value - | length value -
. SDG mexi mum edge | ength — 3. 5e+07 SDG nmaxi mum edge | ength —— A
4e+07 SDG average = | SDG aver age -=-
SDG average + std. deviation -=— 3e+07 | SDG average + std. deviation —x— ]
3.5e+07 | SDG average - std. deviation -+ | SDG average - std. deviation -
e 0 ° ® . | 2.5e+07 1
2. T wet a0 ;g%jﬁgé’% 2e+07 1
s Q,%Oo o%oo‘% ooo%q%’ 0%, © ?& * o§) 84&
3 1. 5e+07 —
1. X ~
R SR A 1e+07 1
b % oG O Tet o8 o Foq @036, 00 . WBecS %, ogh O
NS oo 5e+06 et e . |
© ® ., o 4 og" Co ,© & o M oowzz} ° ooo ° 0%y <
0 L L L L L L L L L 0 L L °© L L
0 100 200 300 400 500 600 700 800 900 1000 0 500 1000 1500 2000
inner surface part of a torus inner surface part of a torus
5e+07 T T T T 3. 5e+07 T T T
4 5e+07 | edge length value - | I ength value -
e SDG maxi num edge | ength — 3e+07 SDG maxi num edge | ength —— |
4e+07 SDG average & | SDG aver age -=-
SDG average + std. deviation -—x- SDG average + std. deviation -
3. 5e+07 | SDG average - std. deviation —— 4 2.5e+07 SDG average - std. deviation —— 1
3e+07 r o 20407 - N |
2.5e+07 + ¢ o P . S |
26407 | 0o % o gg %8 o, gal o o%:%o ot 5 | 1.5e+07 |
[©V00 40 % 0@ O oop 3 o%oo 5
1.5e+407 by to ot o I ] 1e+07
le+07 28, % BB 1
b o 8% 0 & 600> S 05 0 o o 5e+06
5e+06 78 ° oo‘) s o‘%o& o %, ° °© R 7 f : oio§>°% L% o8 ©
0 . . . . . 0 ° . . hd ©,
0 200 400 600 800 1000 0 500 1000 1500 2000
pl anar square pl anar square
25000 . . . . . 18000 . .
edge |l ength value - I ength value -
SDG maxi num edge | ength — 16000 SDG maxi num edge | ength —— 7
20000 |- SDG average & | SDG aver age -=-
SDG average + std. deviation -x— 14000 SDG average + std. deviation -x— 1
SDG average - std. deviation —-— 12000 SDG average - std. deviation - |
15000
10000 B
8000 B
10000
6000 B
5000 4000 B
2000 AT
0 0 SRR T A T
0 100 200 300 400 500 600 700 800 900 1000 0 500 1000 1500 2000
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Figure 9.3Q The ratio of the length of the newly inserted ed@ge, and the maximum length of the already existing edges
e1, ez Of the current sector.
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Figures 9.29 and 9.30 show the ratio of the length of the newly inserted edge and the maximum length
of the already existing edges, e, of the current sector. The point density distribution shows that the
factor very often is less than2. It increases during the advance of the algorithm, but still many edges
fulfill this bound. The plot confirms the trivial upper bound2f

The edge length ratios for the planar square seem to be somewhat less than those of the other sample
sets, and less scattered. The semi-sphere also does yield less scattered ratios.

Figure 9.31 shows the location of poiptwith respect to the regions of Figure 9.1. In the majority

of casesp is located in region 1, and region 2 is used rarely This matches with the observation that
the majority of sector angles in Figure 9.24 is larger tith A somewhat surprising effect is the
non-symmetric distributions of the points falling into the symmetric regions 3 and 4.

In summary, the empirical results show that the triangulation algorithm behaves for the random sam-
ples as predicted by the analysis. It has turned out that random sampling is already a useful choice
for the algorithm. Particularly well suited would be samples arranged on an approximately uniform
guadrilateral mesh because in that case the shape of the resulting triangles would be very favorable.

9.8 Reconstruction at Ridges and Sharp Edges

The analysis performed up to now has focused on smooth surfaces. As we can see from the examples
of Figures 8.6 and 8.7 the reconstruction algorithm also shows a favorable behavior at ridges and
sharp edges. Usually, the precision of reconstruction of the algorithm depends strongly on the surface
description graph of the first phase. For clustered environment graphs, its precision can be that of the
EMST explained in Figure 4.4 of Chapter 4, that is, in theory the sharpest turn at a ridge @&n be

This value, however, is only achieved if the points of the environment have equal distances around a
ridge. In practice, the observed precision is at |88sand the average precision is betwééh and

90°. This value directly depends on the length ratio between two incident edges to a point that is on
or near to a ridge.

A good choice in order to get a favorable reconstruction of a ridge or a sharp edge is to choose sample
points directly on the ridge. The cup shown in Figure 8.6 is an example. By the remarks of the
preceding paragraph, this strategy, however, is only reasonable if the surface turn is not too sharp,
so that the structure of the environment graph can follow the surface. A further limitation of sample
points directly on a ridge is the scanning hardware because data acquisition at really sharp features
usually cause physical measuring problems with the consequence of noisy data. These problems often
occur for optical scanners.

An other strategy applicable in those cases is to sample just short before and behind aridge. Then it can
be expected that the environment graph follows the sharp surface turn with a "round” approximation.
Figure 4.4 illustrates this idea.

Random sampling at ridges and sharp edges is probably the worst approach because nothing can be
told about the position of the points and the resulting structure of the environment graph with respect
to the ridge or edge.

9.9 Discussion

The main results of this chapter are summarized in the Observations 9.6, 9.25, 9.32, and 9.33. They
demonstrate the existence of sample sets for smooth surfaces for which the algorithm shows a favor-
able behavior. Empirical investigations show that already for random sampling results similar to those
for the favorable sample sets are obtained. Furthermore, hints are given for suitable sampling at ridges
and sharp edges.
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Chapter 10

Interactive (Re-)construction

The reconstruction algorithm described in the preceding chapters is designed so that it should yield
satisfactory reconstructions if the sample set fulfills certain conditions. However, in practice such
conditions can not always be expected to hold, and in that case interactive intervention by the user
may support the algorithm. Another aspect is that the reconstruction algorithm can also be used as
modeling algorithm. In computer-aided geometric design, a widespread approach is to use control
points from which a shape is interpolated or approximated. An interesting observation is that the
reconstruction algorithm can be used for that purpose, too. In this chapter, we outline possibilities of
those two aspects, and give further examples which illustrate the behavior of our algorithm.

10.1 Aspects of Interactivity

Interactive reconstruction means to observe and influence the behavior of a reconstruction algorithm
interactively. There are at least two basic possibilities.

The first one ignteractive choice of the parameterhich control the behavior of the algorithm. The
probably most simple case of interactivity is to choose a set of parameter values, start the algorithm,
inspect the result, modify the parameters if the result is not satisfying, perform another run of the
algorithm, and iterate this process until a reasonable result is achieved.

The second possibility isteractive manipulation of the point sethat is insertion or deletion of
points. There are several interesting application scenarios of this type of interaction:

Correction in the case of not satisfying reconstruction: A reason for a not satisfying reconstruc-
tion may be unproper sample points, for example too few of them, in particular at sharp feature
lines of a surface. This deficit may be remedied by insertion of further points at critical locations.

Interactive digitization: The reconstruction algorithm is executed during interactive acquisition of
sample points, for example by tactile devices like a robot arm. The choice of sample points is
adapted to the observed requirements of the algorithm.

Surface modeling: Surface modeling is a generalization of interactive digitization, in that no physical
surface has to be present. The user just inputs 3D points which are on the virtual surface he is
designing.

In the following we will focus on the interactive manipulation of the point set.
The following degrees of interactivity can be distinguished:

1. Interactive insertion or deletion of points, and reconstruction "in batch” if the process of inser-
tion is finished.
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2. Interactive insertion or deletion of points, and online reconstruction and visualization.

From a computational point of view, the first possibility is easy because the algorithm can be used as
is. It demands some experience of the user with the reconstruction algorithm in order to know how to

set the points to avoid a high number of possibly time-consuming runs of the algorithm.

Online updating after every insertion or deletion in the second case can be performed according to two
main strategies:

1. Recalculation from scratch.

2. Update of the current graph.

From the view of interactivity the first approach is acceptable only if the calculation time is short.
Short calculation times are achieved for small point sets, but become difficult for large sets. Time
can be saved by applying a hierarchical concept. First, just the clustered 1-environment graph (1-
EG) is constructed. If the constructed surface description graph looks sufficiently well, finally the
triangulation is included. That approach is reasonable and acceptable because a good reconstruction
can only be achieved if the earlier graphs already are reasonable. In many cases triangulation from the
surface description is canonical, and no or just little further manipulation of the point set is hecessary
in order to get a satisfying result. As we already have seen in Table 8.1 of the previous chapter, the
computation of the clustered 1-environment graph needs just a few seconds if it is computed from
scratch. However, the interactive update is a slightly different task which usually means that only a
small part of the complete graph has to be recomputed. Therefore, even if the point sets get bigger the
update procedure can still have real-time behavior.

Update of the current graph means to provide a data structure which efficiently supports the following
operations:

Vertex insertion:
Given: A set of points and a reconstruction, for example an EG.

Wanted: For an arbitrary additional point, an update of the reconstruction which includes the new
point.

Vertex deletion:
Given: A set of points and a reconstruction, for example an EG.

Wanted: For an arbitrary point of the set, an update of the reconstruction without the selected point.

A simplification is possible by avoiding explicit vertex deletion. The reason is that deletion may
happen only rarely, because slight faults may also be corrected by insertion of further points. If
necessary, vertex deletion can be implemented also on a data structure which just supports insertion
[Ove83]. One approach is to store a sequence of intermediate states of the data structure, and the
sequence of insertions between two consecutive of them. The deletion can be performed by going
back to the state immediately before the insertion of the vertex to be deleted, and process a sequence
of insertions from that point, without inserting the deleted point. This approach works efficiently, if
vertices not too far in the past are eliminated.

More on dynamic data structures for surface description graphs, can be found in Section 10.4.

In the following we give two case studies of interactive modeling from scratch and interactive selective
reconstruction on a given point set.
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Figure 10.1 Construction of a triangle, a tetrahedron, a flat tetrahedron, a pyramid, a "polygonal” cone, and a cube.
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10.2 Interactive Modeling from Scratch

Modeling from scratch means to start with an empty space and to build up a triangular manifold step
by step by insertion or deletion of points, and application of the surface reconstruction algorithm on
the resulting sets of points. In the following we illustrate the possibilities of that surface modeling
approach at examples.

Figure 10.1 (a) shows the probably most simple example, the modeling of a triangle by three points. If
the three points are arranged so that the resulting triangle has an angle larger than the boundary control
parametery.. of the algorithm then no triangle is returned.

The reconstruction of a tetrahedral surface is more complicated. The reason is that it depends on the
parameteb, which bounds the dihedral angle, and like for the triangle, on the parameter

Figure 10.1 (b) shows a reconstruction of all faces of a tetrahedron.

Figure 10.2 Construction of a sphere. The figure shows the given point set, the corresparelivgyonment graph, and
the final result.

Figure 10.3 Construction of a Moebius strip: the point set, the clustdredvironment graph, and the final Moebius strip.

In contrast to the previous figure, Figure 10.1 (c) depicts a reconstruction from four points which are
almost in a common plane. Whether a closed surface without boundary is constructed depends on
the parameters of the algorithm, like the dihedral angle bakind@he canonical reconstruction is a
surface with boundary, consisting of two adjacent triangles.

The examples show that it makes sense to offer also the parameters of the algorithm at the user in-
terface for interactive manipulation. They also show that even with a very small number of points a
desired shape can be achieved. In case of troubles, more points usually help to overcome the difficul-
ties.

Figure 10.1 (d) shows the successful construction of a reasonably shaped four-sided pyramid, and
Figure 10.1 (e) presents a "polygonal” cone of similar shape. Here troubles concerning the closeness
of the surface may arise if the tip of the pyramid or the cone is close to the base.

Figure 10.1 (f) demonstrates that a cube can be constructed, too, from its eight vertices. Figure 10.2
shows the approximation of a sphere.

The application of the algorithm is not limited to orientable surfaces. Figure 10.3 shows a point set
sampled from a Moebius strip and the corresponding reconstruction by the algorithm.

Figures 10.4 and 10.5. show that sharp edges can be modeled, too. The first figure illustrates that sharp
surface edges that are randomly sampled can be reconstructed appropriatéhenvirenment graph
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Figure 10.4 Construction of an edge of changing curvature: the point set, the clustenedronment graph, and the final
result.

Figure 10.5 Construction of a sharp edge: the point set, the EMST taken as surface description graph, intermediate results
of triangulation after 1,2,3,4,8,9,10,11,12,16,17,18, and 19 inserted faces, and the final reconstruction result (bottom right).

adapts naturally with edges to the situation so that the reconstruction algorithm can set surface triangles
around the edge. For demonstration purposes, in the second figure the EMST is taken as surface
description graph. Because the EMST contains less graph edges than the clustered 1-EG it is usually
more difficult for the algorithm to treat the sharp surface turn of this example correctly. Therefore, the
reconstruction of the artificially sharp surface turn of this example can be better analyzed. We see that
no surface triangle is set in the interior of the object although the sector angle between the edges is
very small. Obviously, the greedy triangulation with its sector selection strategy prefers the insertion
of triangles that fit smoothly into the surrounding current mesh structure. This behavior has prevented
the algorithm from inserting "wrong” triangles into the surface.

As we know, the reconstruction algorithm works in two phases, construction of a surface description
graph, and triangulation of this graph. In an interactive environment it may be reasonable to replace
the environment graphs used by the algorithm by an explicitly edited arbitrary graph. The advantage
may be that the user can draw the "right” edges directly.

The reconstruction of Figure 10.6 shows that cylindrical structures can be constructed by generating

circle-like structures by just a few points, and by arranging them so that they are connected by edges of
the EMST or the environment graph. For our example, it is of course hard to say which kind of surface



150 Chapter 10: Interactive (Re-)construction

B S P —

O B> -
|
|
|
O * O
Figure 10.6 The reconstruction of cylindrical structures. Left: the point set with its clustered 1-environment graph and the
final reconstruction without user interaction. Middle: the rings of graph edges have been connected by user interaction so

that the cylindrical structure could be reconstructed. Right: the EMST has been taken as surface description graph which is

also sufficient in order to reconstruct this type of object.

is represented by the point rings. If the clustered 1-environment graph is used as surface description
graph, every point ring describes a single circular surface part, cf. Figure 10.6 (left). If the point rings
are connected by the user with two edges (magenta) as shown in Figure 10.6 (middle), the structure
for a complete cylinder is given, and the algorithm indeed constructs a complete cylinder.

Figure 10.7 Top: Two parts of a surface have been sampled individually. The reconstruction yields two disjoint surface
meshes. Bottom: Just one single edge (magenta) between points of the two parts must be inserted in order to combine both

parts to a single surface.

Additionally, this cylindrical object is also a good example to show that even the EMST itself is a
good and sufficient surface description graph. Because the EMST connects all points with graph
edges it assures that the point rings are connected with each other so that the reconstruction algorithm
can generate a connected surface, cf. Figure 10.6 (right). This example shows that in interactive
environments the EMST and the clustered 1-environment graph might be applied by the user.

Another situation of simple user interaction is shown in Figures 10.7 and 10.8 where two surfaces are
joined by inserting just a single but significant graph edge. The SDG displayed in the upper middle of

Figures 10.7 and 10.8 does vyield just edges in order to reconstruct the surfaces for the left and right
part separately. The lower middle part of both Figures shows that by inserting only one edge the two
surface parts can be joined.



10.3. Interactive Selective Reconstruction 151

Figure 10.8 A similar situation as in Figure 10.7. Top: The two surfaces are tubes which have been generated independently
by the reconstruction algorithm because they are not connected by graph edges. Bottom: The insertion of just one edge
(magenta) yields enough information for the reconstruction algorithm in order to combine the two tubes to one single tube.

10.3 Interactive Selective Reconstruction

Selective reconstruction means the restriction of the application of the reconstruction algorithm to a
subset of the set of sample points. Selective reconstruction is useful if only small parts of a large
data set are of interest. An example is that just one part of the data set is useful while other parts are

distorted by noise.

/
/

\
i
I

ol
i
V)

/)
i
N

i

i
AN
I/

N
AN
=
=
— |
=

AV

Figure 10.9 Explicit selection of a subset of points by a so-called “picking sphere”. All points inside the picking sphere

become part of the point set picked.

We distinguish between two versions of selective reconstruction which differ in the approach of selec-
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tion of the subset:

1. Explicit selection of a subset of points which is subject of reconstruction by the surface recon-
struction algorithm.

2. Design of a surface description graph by using points of the given point set, according to one of
the versions of modeling from scratch. From the surface description graph, the manifold can be
constructed by one of the following two possibilities:

(a) Direct usage of the graph for triangulation.

(b) Transformation of the graph into a feasible environment graph under consideration of the
given point set.

An interesting aspect of the first alternative is the method of interactive point selection. Clicking points
individually is tedious for larger point sets. As an alternative we uselection sphereThe selection

sphere is moved in space, and all those points are selected which have been in the interior of the sphere
during the motion. The radius of the sphere can be changed interactively so that its sensitivity can be
adapted dependent on the details of the region subject to current selection.

Figure 10.1Q Top: The point set of the head of a puppet in front and side view. Bottom: The user decides to reconstruct the
nose. The reconstruction region is determined by surrounding the area with six edges, arranged in the shape of a tetrahedron,
which take into consideration the extreme convexity of the nose.

Figure 10.9 shows snapshots of a selection process and the result of reconstruction on the selected
point set. This approach has shown quite useful in particular in combination with a stereoscopic
display and a direct 3D-input by computer-vision-based hand tracking [Blu97, Koh99, SK95].

The background of version 2 (a) is to sketch just a rough wire frame over a subset of points, and the
reconstruction algorithm fills the wire frame in its triangulation phase to a triangular manifold. The
idea behind version 2 (b) is to automatically adapt the sketched graph to the other points of the point
set which is a kind of “projection of the graph to the point set”. This might allow rough sketching,
possibly with long edges, which are then algorithmically refined into edges of an environment graph.
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Figure 10.11 The set of edges after the refinement process. The new edges are scattered over the surface.

Figure 10.12 The result of reconstruction from the refined edges. The area where the reconstruction took place is a good
approximation of the area that has been described by the user with the initial six edges, cf. Figure 10.10.

The algorithm of edge refinement works as follows. A set of candidate edges is maintained which
initially consists of all edges of the sketched graph which do not have an efmgrtyironment. The
algorithm iteratively takes edges= pq from that set. A vertex in the g-environment ofe with
smallest sum of distances to the vertipeandq of e is chosen. Thea is replaced with the two new
edgespr andqr. Those of the new edges which do not have an engpgnvironment are inserted

into the set of candidate edges. The algorithm terminates when the set is emply<FK 1, the
algorithm terminates because the new edges are shorter than the original ones.

Figures 10.10 and 10.11 show an application of the refinement algorithm to a larger point set. Figure
10.10 shows the sketched wire-frame consisting of six edges arranged in the form of a tetrahedron.
Figure 10.11 depicts the transformation into an 1-environment graph by the edge refinement algorithm.
The final result of reconstruction is displayed in Figure 10.12.

10.4 Computational Issues

Possibilities of calculation of environment graphs have been described in Section 5.3. In the following
we discuss algorithmic possibilities of updating clustered environment graphs.

The principle idea for updating the clustergeenvironment graph is to re-calculate it only in the
region where it could change its structure because of a point insertion/deletion. For this purpose, the
knowledge on its different calculation phases is taken into account.

Updating starts with an already existing clustefednvironment grapld for 5 < 1 of an initial point

setP as defined algorithmically in Section 5.2.2. The first two phases of the algorithm deliver a radius
for every vertexp in the end. Letr (p) be the radius resulting from the first phase, as(gh) the

radius of the second phase.
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Further, letr; 3(p) > r1(p) denote the first distance of a poimtto another poing with d(p,q) >
r1(p) for which theg-environmentEjs(p, ) is not empty of points. If no such poiwtfor a pointp
exists, themr; 5(p) := oo.

10.4.1 Point Insertion

In this section the update procedure for a clustefezhvironment graph is described if a new point
Phew ¢ P is added to the current point st Let P := P U {p,,,, } denote the new point set and
r1(p), 5(p) denote the new radii with respect to steps 1 and 2 of the original clustering algorithm
for pointsp € P'. Theupdate process for point insertiagronsists of three steps which are related to
those of the original clustering algorithm. Let 1',2’, and 3’ denote these new steps which are described
below:

1'. In the first step of the update procedure all ragip) that could change because of insertion of
are updated to new radi (p) as described here.

pnew

Let H be theinitial heapof points consisting of the following points:

¢ the new poinp,,,,.,
e all pointsp with p,,,,, in theirr g(p) radius, that is, for whicki(p, p,,..,) < r1,8(p).

Then, the original step 1 of the clustering algorithm is applied to all elemerissaf that each
elementp of H receives a new radiu(p).

All other pointsq € P' — H inherit their old radius of the non-updated graph, so thaf) :=
r1(d).

Then, H is extended by all pointp € P’ whose spheres of the old radiugp) containp,,..,,
that is, for whichd(p, p,,e.,) < 72(P)-

As initialization for step 2’ all radii%(p) for p € P’ are initialized tory (p) := | (p).

2'. Now, the second part of the update procedure is applied which consists of iterative application
of this step 2’ onto a changing he&puntil a certain final state is achieved.

The original step 2 of the clustering algorithm is applied under consideration of thée(adii
for all pointsp € P’ and with restriction to the elements Hf, that is, for each considered point
pair at least one point must be part Bf This results in the current new radji(p) for each
pointp € P'.

The set of elementg € P’ — H which have an intersection with a point pfe H in the way
d(p,q) < max(ra(p), 74 (p))+max(ra(q), 7(q)) is calledH . The maximum of the radiiy,

for p andq is taken in order to consider definitely all points that could induce either a radius
update or a new virtual edge.

After that, the original step 2 of the clustering algorithm is applied to the eleniént&l with
the same restrictions as before. This ensures that all elemefitsezkive a radius update not
only from points ofH but also from their other surrounding points@f

If then for all pointsp of the current sefl the new radius?(p) is equal to the old radius (p),
that isr»(p) = r4(p) for all p € H, then the update process for step 2’ is complete. Otherwise,
step 2’ is repeated again after the héddas been extended by the following points:

e all pointsq € P’ — H which are contained in the(p)-radius of elementp € H and
whoser; (q)-radius is smaller than,(p) — d(p, q),
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e all pointsq € P’ — H which fulfill the relationd(p,q) < max(r2(p),r5(p)) +
max(r2(q), r5(q)) with a pointp € H and for whichr)(q) # r2(q).

3. After the iteration process of step 2’ has taken place, all edges incident to poiifsané
deleted. Then, the virtual edges that have been generated in step 2’ are inserted in order of
increasing length using the-intersection test. If a new edggintersects an old edgej that
connects two pointp,q ¢ H, thenp,q are put ontoH, all new already inserted edges are
removed, and the iteration process of step 2’ ofupdate procedure for point insertias re-
started. This case is very unlikely, since in that cpsg usually would have been close to
points of H and therefore with probability also part &f. If only x-intersections occur with
new inserted edges of this step 3’ then the update process of the clystereitonment graph
is complete after all virtual edges have been considered.

10.4.2 Point Deletion

All points p € P with the propertyd(p, pg.;) < m2(p) + r2(pg4;) With respect to the poin,,; € P

to be deleted are put onto an initial heHp

Then, the new point sé?’ is defined by’ := P — {p,,,;} and all edges of the current graph that were
incident top,,; are deleted.

After that, the same update procedure as for point insertion is applied with respect to the different
initial heapH.

10.4.3 Tetrahedrizations for Speed-up

As in Section 5.3, tetrahedrizations are useful for speeding-up the calculation. The following tasks
have to be performed.

The tetrahedrization has to be updated with respect to the manipulated point, that is the point has
to be inserted or deleted. For the Delaunay triangulation, in practice common libraries like the
CGAL [CGA] can be used for that purpose. Unfortunately, up to now there does not seem to ex-
ist any library which handles dynamic deletion of single points from a Delaunay tetrahedrization. For
the hierarchical tetrahedrization insertion does affect just one tetrahedron. Deletion is problematic,
too. A possibility to treat the problem of point deletion is to leave deleted points in the tetrahedriza-
tion and to label them as de-activated. This approach, however, does not work for the supergraph
approach based on Delaunay triangulations mentioned in Section 5.3.

Each time a point is inserted or deleted all points that have "visited” the modified tetrahedra during
their previousk-nearest neighbor computations have to be re-initialized for this task (Appendix B).
During point insertion, the points with mutually intersecting spheres are identified by processing the
list of points having visited a tetrahedron during-aearest-neighbor query, and by comparing their
associated radii. Point deletion is performed analogously. All those points are considered for inter-
secting spheres which have visited the deleted gwintprevious nearest neighbor queries.

10.5 Discussion

The surface-oriented approach of our reconstruction algorithm makes it to a useful tool for interac-
tive surface modeling. The surface description graphs provide an efficient computable impression of
the final shape to be expected, and thus are quite useful as control structure of the shape. As sur-
face description graph, the suggested "automatically” calculated environment graphs, but also graphs
interactively designed or modified by the user can be applied.
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Another benefit is that a locally-defined reconstruction can be achieved by "projecting” graphs drawn
by the user onto the point set. This approach reduces the interaction time of the user for selection of

the desired subregion subject to reconstruction.
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Noise Elimination

A sample set is calledoisyif the sample points deviate from the surface by a small, usually random,
distance. Noise in sample sets may be caused by technical properties of the sampling device. If the
sample points deviate considerably from the surface, it might happen that a reconstruction algorithm
that is relying on criteria like the dihedral angle or on neighborhood criteria which assume the surface
to be sufficiently smooth might not longer yield reasonable results.

A powerful method of noise reduction is Laplacian smoothing of second order. This method is origi-
nally defined for distorted vertices of a triangular mesh. In our application, however, we do not have a
mesh before reconstruction. We solve this problem by defining an auxiliary mesh on the given sample
set to which the smoothing operator can be applied for noise reduction.

Figure 11.1 From left to right: The original noisy surface mesh, and the de-noised mesh after 1, 2, and 3 iterations of
Laplacian smoothing of second order. Here, the vatues0 and = 0.5 have been chosen. Note, that even after just one
iteration the de-noised mesh has significantly improved.

11.1 Laplacian Smoothing of Second Order

For meshes, the probably up-to-now best smoothing filter is Laplacian smoothing of second or-
der [Tau95, KCVS98, VMM99, Vol98]Laplacian smoothing of first orderonsiders the seidj(q) of
adjacent vertices of every vertexof the mesh, and moves it to a new locatpmhich is calculated
by averaging the vertices inlj(q),
1
p=— > d.

q’Eadj(q)

For Laplacian smoothing of second ordérasically the same procedure is applied to the differehce
between the new and the original vertex location. This is performed with the slight modification that
at iterative application both the locati@pat the current level of iteration and the locatiorof the
vertex in the original mesh are considered bynaweighted average, as it is done for the differences
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with a weightgs, too:

. 1-p /
d:= (ﬁb(Q)+ adi (@) > b(g ))

o cadj(q)
where
b(q) :=p — (@0 + (1 — a)q).
The result of Laplacian smoothing of second order of a vegtexthe sum ofp andd.

The purpose of distance correction by addihig to reduce the shrinking effect of Laplacian smooth-
ing of first order.

This formula is applied iteratively until a satisfying result is achieved.

The valuea weights the influence of the original noisy points. While this is sometimes desired when
existing surface meshes have to be smoothed, the influence of the original points during noise elim-
ination for arbitrary point sets is not favorable. Since the original point positions might have been
generated because of heavy noise the restriction to these positions does not make sense. Therefore, for
this applicationoe = 0 should be chosen. For the other parameter the valge0.5 is a good choice
[VMM99].

Figure 11.1 shows an example of an application of Laplacian smoothing of second order to an artifi-
cially noised data set, far = 0 andg = 0.5.

For mesh smoothing it is of advantage to alternate the application of a surface smoothing operator
like Laplacian smoothing of second order with smoothing by edge swapping [FOG97, DLR90, BS91,
Bro91, Ham97].

Figure 11.2 From left to right: a noisy point set, the auxiliary mesh constructed from it, and the auxiliary mesh smoothed
by alternating the application of Laplacian smoothing of second order and edge swapping.

11.2 Direct Noise Elimination by Auxiliary Meshes

The difficulty in our setting is that no mesh is present with the given sample points. The idea to
cope with that problem is to construct an auxiliary mesh. The auxiliary mesh needs not to be a perfect
reconstruction of the surface, but it should reflect the neighborhood relations between the given sample
points approximately. The basic approach is as follows [VMM99]:
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1. Calculate a surface description graph (SDG) using the first phase of the reconstruction algorithm
of the previous chapters.

2. If the vertex degrees of the resulting graph are not typical for a surface mesh, augment the set
of adjacent vertices of every vertex by introducing edges up to a suitable number of vertices in
its neighborhood not yet adjacent. In order to take care of variations of the point density, an
adaptive number of nearest neighbors is used, which is estimated by using the length of incident
SDG edges as reference value for the different vertices.

3. Around each vertex a corona of faces is created on base of incident edges like a spanning um-
brella. In this manner for each face one new edge is created, if it does not already exist. These
edges are important for the connectivity of the new mesh.

4. Faces not fulfilling a given mesh quality measure are removed. A quality measure introduced
by Bank and Smith [BS97] is used for that purpose.

5. Remove triangles so that at most two triangles are incident to every edge in order to make edge
swapping applicable, under preservation of pairs of triangles with large dihedral angles. All
edges which do not have at least one incident face are removed.

Step 5 is necessary because the set of triangles generated in the previous steps may be non-manifold.

Figure 11.3 Reconstruction based on the noise-reduced set of points shown at the left.

Figure 11.2 shows a distorted sampling set of a bone, the derived auxiliary mesh, and the result of
smoothing of that mesh by an alternating application of Laplacian smoothing of second order and
edge swapping. Figure 11.3 depicts the noise-reduced point set and the reconstruction of the bone
obtained by our reconstruction algorithm from this point set.

11.3 Discussion

The approach of using an auxiliary mesh for smoothing of noisy point sets sampled from a smooth
surface has turned out to be useful in practical examples. A topic of further research might be to extend
the theoretical investigations of this thesis which assume the sampling points being on the surface, to
sampling points only close to the surface. A triangular mesh with those noisy sampling points as
vertices might be considered as reconstruction of the given surface, if it maps one-to-one under the
NN-image to a non-overlapping mesh on the surface.
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Chapter 12

Future Developments and Conclusion

We have presented a surface (re-)construction algorithm which falls into the category of surface-
oriented approaches. This category has found less interest in the past than volume-oriented ap-
proaches. A reason is that volume-oriented approaches usually can deliver well-defined surfaces that
are topologically equivalent to the surface of a polyhedron. Surface-oriented algorithms have to invest
some care on this issue, but immediately allow surfaces with boundaries.

Our algorithm consists of two steps. The first step is the construction of a surface description graph as
a spanning skeleton. The task of the second step is the derivation of a surface by introducing chords
into the surface description graph which define triangles.

A great advantage of this two-step-approach is that the basic shape can be controlled by the surface
description graph, which is a new concept for surface reconstruction. The surface description graph
can be constructed manually, automatically, or semi-automatically.

Interactive editing of the graph simplifies interactive input by the user in that less input is necessary
than if a complete mesh has to be edited. The power of interactive editing of surface description graphs
for the purpose of modeling surfaces has been demonstrated. A particular useful property in contrast
to other approaches is that the surface reconstruction can be easily restricted to only subsets of the
point set by very few modifications of the surface description graph.

We have found a suitable graph concept for automatic construction of surface description graphs: the
B-environment graphs. These graphs are rather in-sensitive to the distribution of the given sampling
points. They even work if the point set is not very dense.

The s-environment graphs can be forced to consider sharp edges and ridges by increased sampling
density at those items. Such sequences of dense points form a special pattern to whiEGhare
sensitive. A general question is whether there are other patterns and features in sampling sets which
can be used to control the setting of edges in the surface description graph, or the choice of triangles
in the subsequent triangulation, thus possibly achieving a more general graph concept.

The theoretical analysis of the algorithm is focused on the investigation of assertions for a favorable
behavior of the reconstruction approach. It is "heuristic” in that it gives mathematical arguments that
the algorithm should behave as stated. One reason for this approach is that a rigorous mathematical
treatment would be too extensive, even if it would be based on precise stochastic methods. For the
requirements of practical application this is not really necessary. A stochastic treatment would require
to model probability distributions. Usually treatable distributions do not model the real situation and
thus the relevance of a precise treatment is of limited value. Our argumentation is that unfavorable
configurations for the mathematical analysis occur rarely and even if they should appear in practice
they do not affect the quality of the reconstruction. This means that the set of those configurations usu-
ally has less than full dimension in the space of all configurations, or has full dimension but is of small
volume. This means that under the assumption of uniform distribution unfavorable configurations oc-
cur rarely. A closer look at the arguments, however, shows, that sampling sets can usually be chosen
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which are likely to avoid unfavorable situations. For example, a well-suited sampling strategy is to
choose the sampling points as vertices of a quadrilateral mesh whose faces are moderately distorted
squares. Additionally, our empirical investigations have shown that the unfavorable configurations
are only unfavorable for the mathematical analysis and not for the reconstruction in practice. In all
of our examples, the accuracy of the reconstruction in those cases is not influenced. Obviously, the
triangulation criteria always choose surface triangles with a good approximation quality. This leads
to the assumption that the triangles “inherit” their surface approximation quality from the surrounding
triangles and it can be expected that mathematical arguments for this property can be found.

The analysis has been performed only for smooth surfaces, represented by so-called SFSurfaces
The mathematical treatment of sharp edges is a problem for further research. An approach for a
solution could be the consideration of singular surface points and what kind of sampling in those areas
is needed and then extend this principle to surface ridges.

We have restricted our discussion to the existence of suitable sampling sets, not having the goal of
sampling sets of minimum cardinality. A step in this direction would be to take into consideration the
maximum possible SF-radius at every point, not just a constant radarsthe whole surface which
bounds the occurring SF-radii from below. Our investigations can be generalized in the direction by
replacing the constamtwith a functionr : S — R, for whichr(p) is at most equal to the maximum
SF-radius ap.

A further idea is to get independent from the quality of the sampling by using feature recognition in
the surface description graph [MM98a, Mai98] if the graph itself does not contain enough surface in-
formation. The feature knowledge could be used in order to modify the graph so that the triangulation
algorithm can generate a correct surface mesh even if the sampling was not sufficient. In order to
improve flexibility in this approach, the recognition capabilities can be formulated in rules that can be
also changed during run-time and interpreted by a rule evaluation system [Hei98].

As these remarks show, much has been achieved, but some interesting questions remain for future
research. In conclusion, however, we believe that the approach presented in this thesis is a particular
flexible and precise alternative to other approaches. It is well-suited for practical applications, even on
non-dense data sets, and it allows useful assertions on the requirements of sampling.
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Appendix A

Implementation

The reconstruction algorithm has been implemented in C++ using the toolkits Tcl/Tk [Ous94], Tix
[Lam93] and Openlinventor [Wer94]. These toolkits were taken because of their effectiveness in the
design of graphical user interfaces as well as in the development of complex geometry viewers.

| RecEye Reconstruction Control
Load Points | CI.1-EG | Triangulation | Al | HOST:cezanne ExilI

| Point File: |..fNI.fTest.fskuII.pts

RecEye Interaction Settings

View | Edit | Inspect | Graphs | Parameters f Options

Viewer Settings:
& RecEye Viewer

W Trace Mode

-1 Stereo Viewing

R EIEIREEd =

Stereo Settings:
( Stereo Offset: 5.0 ﬂ‘

y Display:
Point Size: |5500000 =

Set Defanlt Window try

RecEye
RecEye Menu
RecEye Viewer/Editor

RecEye Execution Loy

Save I Clearl

eacling points from file < fallTest/skull ptss .
armment in file: JALTestiskull pts ..

4 INum. of paints: B398 |
4 Reading tetrahedra from file < fAlTestiskull iz ...
|

A lrum_ of tetrahedra: 3959

| |Processed tetrahedra:3959

taph information to geomview file ——» < f&lTestfskull.sdy geoms |
4 [Reconstruction ..

Rotx Roty | NI iim

Figure A.1: A screenshot of the reconstruction systemdEYE. Left: the control panel. Right: the geometry viewer with
an intermediate reconstruction.

The graphical user interface of the reconstruction syst&oHRE is separated into a control panel
and a geometry viewer window, cf. Figure A.1.

The control panel contains three sub-windows, Reeonstruction Controlnteraction Settingsand
the Execution Logvindow.

TheReconstruction Contralontains the basic buttons for the standard usage of the systemL &%t
Pointsthe point set specified by the current file narmi ntfil e>. pts is loaded. The program
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expects an already existing tetrahedron fifi nt fi | e>. t1 which contains the Delaunay tetra-
hedrization of the point file. The first line of the file will be skipped, all other subsequent lines contain
the point indices of the tetrahedra of the Delaunay tetrahedrization. For the Delaunay tetrahedrization
the program BTRI of Mucke [Mlic93b, Mic93a] can be used. The other butt@is1-EG(Clustered

1-EG) andTriangulationbelong to the specific phases of the reconstruction algorithm. The (interme-
diate) results are saved using the geomview file format into thedflesnt fi | e>. sdg. geom for

the graph, anépoi ntfil e>. s. geom for the triangular mesh. Thoint File and Exit buttons are
self-explaining.

View | Edit | Inspect || Graphs | Parameters f Options View | Edit | inspect || Graphs | Parameters f Options
 Picking Device: = ion Mode !
# Mouse & Step by Step Mode
< GePi Hand Gesture 1 Data lnspection Made
- GePi 3D Mouse Step Forveard
— Editing Ci i Inspect Objects:
Connect Points I Inspect Point
Disconnect Points I Inspect Point Dist.
Delete Triangle I Inspect Edge Meighborhood
Build Triangle I Inspect Two Edges
— Picked Objects: _ mopectSector |
Save Picked Points I Inspect Triangle
Save UnPicked Points I Inspect Face Pair

Figure A.2: The sub-menues for the interaction settings meifigisandInspect

View | Edit | Inspect | Graphs | Parameters [ Options View | Edit | Inspect | Graphs | Parameters [ Options
Compute Different Graphs: — Algorithm Parameters {change only allowed for testing):
EMST Dihedral Angle { delta} : |50 g
= i iy l_ 1
Clustered 1 - EG Edge Intersection Angle { chi): |75 =i
Clustered 0.5 - EG Boundary Control Angle { gamna’ ) 1 |135 éll
Clustered 0 - EG Environment Control Value { beta) : |1 g
1-EG Tri .
0.5 - EG " =
|7 Number of Faces to be Reconstructed: |0 = ‘
0 -EG
[~ Optional Tri;
Graph ions Related to Locally-Restri ion: - Snapshot 1 after Number of Faces: [0 3]
|7 Project Graph onto Point Set ‘ Snapshot #2 after Number of Faces: |0 éll
General Graph i : Snapshot #3 after Number of Faces: |0 g
|7 Remove All Graph Edges ‘ Snapshot #4 after Humber of Faces: |0 i[l

Figure A.3: The sub-menues for the interaction settings mei@&raphsandParameters/Options

In the Interaction Settingshe relevant data for the user interaction can be set. The menues are subdi-
vided into 5 different categoriedfiew, Edit, Inspect Graphs andParameters/OptionsAn overview
of these menues can be found in Figures A.1, A.2, and A.3.

In the following we give a short description of these five menues.

o View:

— Viewer SettingsHere, theReconstruction Viewewrindow, theTrace Modefor the recon-
struction and stereo viewing can be switched on/off.

— Stereo SettingsThe eye distance offset of the stereo mode can be changed here.
— Geometry DisplayThe size of the points in order to simplify picking can be increased.
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— Set Default Window Geometryfhe default window geometry for both windowRéc-
Eye, the control window aloneRecEye Meny or just the reconstruction viewer window
(RecEye Viewer/Editdican be set.

o Edit:

— Picking Device:The user can switch between the standdalise the hand gesture pick-
ing (GePi Hand Gestufe and 3D movement of a picking sphere with simple mouse in-
teraction as it is supported by Openinventor [Wer94]. Picking with the simple mouse is
performed in the picking mode of Openlinventor by first clicking onto the “arrow” in the
upper right of reconstruction viewer window and then clicking on the points. In order to
being able to turn the object in the reconstruction viewer window, the “hand symbol” in
the upper right window has to be clicked. The hand gesture picking also moves a picking
sphere through the point set. The set of points that is inside the picking sphere is picked.
This hand gesture picking approach uses the libragPiGBlu97] based on the hand ges-
ture recognition systemykLopP [Koh99, SK95]. The description of the control of this
system can be found in [Blu97].

— Editing Commands#Pairs of points can be inserted as an edgenpect Pointsor their
connecting edge can be deletddigconnect Poinjs Point triplets induce the deletion
(Delete Triangl¢ and insertion Build Trianglg of triangles. For the connection/discon-
nection of points and for the triangle deletion/insertion exactly two or three points, respec-
tively, have to be picked.

— Picked ObjectsThe picked points as well as their complement can be saved into the file
<poi ntfile>. [un]picked.

e Inspect:

— Inspection Mode:The Step-by-Stepmode of the triangulation can be activated and each
time aStep Forwardoy inserting one triangle after another, the reconstruction process can
be investigated. In thBata Inspection Modeome additional information is printed which
describes the internal computations for various modules of the system.

— Inspect Objects:In this section the various objects which became important during the
development of the reconstruction algorithm can be investigated.

e Graphs:

— Compute Different Graphsfhe EMST, the clustered-EGs withg =1, =0.5,8=0
and their corresponding non-clustergeEGs can be computed. All computed edges are
added to the current graph.

— Graph Modifications Related to Locally-Restricted Reconstructidrne “graph projec-
tion approach” of Chapter 10 for locally-restricted reconstruction can be applied here.

— General Graph ModificationWith the buttonRemove All Graph Edgethe current graph
can be reset to the empty graph.

e Parameters/Options:
— Algorithm ParametersThe parameters of the triangulation algorithm can be changed here.

— Reconstruction Parameterd:he number of faces to be inserted in one triangulation step
can be modified here. If the value(ghen the complete mesh is generated.

— Optional Triangulation Snapshots:Four different values for the number of faces,
where the current triangulation mesh has to be saved into a snapshepdilet -
fil e>. shot#. s. geomin the geomview file format.



170 Appendix A: Implementation

The Execution Logwindow is used to provide the user with the relevant information for in-
teraction. The buttorSave allows to store the contained information into the fi@oi nt -
file>. receye. execl og, andCleardeletes the displayed information on the screen.



Appendix B

Efficient and Flexible Nearest Neighbor Queries

Because of their occurrence in many applications, the efficient solution of nearest-neighbor problems
has found particular interest in computational geometry in the past. Two main streams of approaches
may be distinguished. One of them is centered around the concept of Voronoi-diagrams [PS85] the
other one on more arbitrary spatial decompositions [AM91]. For solutions of the first stream, effi-
cient worst case time bounds can often be proved, whereas for second type of approaches, the worst
case behavior often is bad but they behave quite well in practice. Often, the heuristics are easier
to implement than the more sophisticated Voronoi-diagram-based approaches. The solution of the
k-nearest-neighbor problem falls in the second category.

In previous work on heuristic solutions of nearest neighbor problems [CK92,7ZMNregular space
subdivisions play an important role. These subdivisions perform well on uniformly distributed data,
but are somewhat less suited for data sets of strongly varying density. Triangulations, on the other
hand, are an irregular data structure which adapts easily to all kinds of data distributions.

B.1 k-Nearest-Neighbor Search

The aim of the following is, as a result of the above considerations, to present an algorithm for solving
the k-nearest-neighbors problem by taking advantage of a previously computed triangulatibn. A
dimensional triangulation is defined as follows.

Definition B.1 (d-dimensional triangulation) LetA be a real-affine space of dimensidnwith met-

ric d(-,-). Anm-simplex sis the convex hull ofr. + 1 points, called vertices, which are not contained
in a (m — 1)-dimensional subspace. subsimplex of sis the convex hull of a proper subset of the
vertices of. A (d—1)-subsimplex of @-simplex is called &acet. Twod-simplices are calledncident

if one of them is a subsimplex of the other. Tdvsimplices are calleddjacent if they haved vertices

in common and their intersection is a facet.

We define the distance of a simptefikom a pointp as
d(s, p) := mind(q, p)
qe€s
Let the point seP = {p,,...,p,,} C A not be contained in a proper subspacefofA triangulation
T of P is a tesselation of the convex hull Bfinto d-simplices whose vertices are ih We denote the
subsimplices of alli-simplices off’ collectively as the subsimplices Bf In particular, the points in
P are the0-subsimplices of".

The basic version of the problem we are treating is defined as follows.

171
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Definition B.2 (k-nearest-neighbors query)
Input: A vertexp, of ad-dimensional simplicial decompositidn
Output: Thek-nearest vertex tp, in T'.

Our algorithm for that problem can process multivariate data, as it functions in spaces of arbitrary finite
dimension. Furthermore, it does not assume a particular metric. Many triangulation-based algorithms
will work only with triangulations that possess certain properties, such as Delaunay triangulations.
Our algorithm makes no such requisites. Thus, it can operate on any triangulation that another module
has ‘left behind.” In determining thg nearest neighbors, our algorithm explores only a part of the
triangulation. While this part contains more vertices than justitheearest ones, it is in general
considerably smaller than the complete triangulation. The neighbor points are reported in order of
increasing distance from the query point. In some applications, this order presents useful additional
information. Implementation of the algorithm is straightforward. Apart from distance computations
and the triangulation, only standard operations and data structures are needed.

With only minor modifications, the algorithm becomes applicable to slightly different types of queries.
Thus, it is easy to find the data points lying within a certain radius from the query point. Not only
vertices of the triangulation, but arbitrary points in the respective space can be used as query points.
A query can be suspended after a certain number of neighbors have been determined, to be resumed
later if further neighbors are needed. This is particularly useful for interactive graphical techniques
where additional demand for neighborhood information arises as a result of feedback from the user.

The basic concept of our algorithm [WM96] is a ball which is centered at the query paand

whose radius increases continuously. As the ball expands, it encounters the verfitesastler of
increasing distance from. Our algorithm registers not only the vertices, but alsodtsgmplices of

T in the order in which the ball encounters them. To this end, an appropriate subset/¢fithglices

and vertices is stored in a heap, which is sorted by distance from the query point. The element closest
to p, is found at the top of the heap.

The expanding ball will, in general, encounter sevdralmplices and/or vertices simultaneously. The
algorithm, on the other hand, processes these elements one after another. At any given time during
the expansion process, we calf-@implex or vertex of" intersectingif the algorithm has determined

that it intersects the ball. All othet-simplices and vertices are calledn-intersectingeven if they

do intersect the ball. The term closest is used with respect to distance from the query point.

Lemma B.3 Letp, be contained in at least one intersectidgsimplex. Then one of the closest non-
intersectingd-simplices is adjacent to (i.e., shares a facet with) an intersectisgnplex.

Proof: Lett be a closest non-intersectingsimplex, and leg be the point oft closest tog. Since

T covers a convex volume, it must cover the line segrimnt By choice oft andq, it is clear that
each interior point ofy;q is contained in some intersectimgsimplex. Since we consider closéd
simplices,q is also contained in an intersectidgsimplex, sayf. (If the line segment has no interior
points, thenq = p; is contained in an intersecting-simplex by hypothesis.) Now consider two
interior points,p andp’, of t andt’, respectively. We choose these points sufficiently closeg ttrat
the line segmeny'p is covered byl-simplices containingj. If necessary, we perturb the points such
thatp’p does not intersect any subsimplexobf dimension less thaii — 1. At some point between
p’ andp, the line segment must pass from an intersecting into a non-interseesimgplex. This point

is interior to a faceft, which is shared by the twad-simplices. Since the non-intersectidgsimplex
containsg, it is a closest non-intersectinggsimplex. "

The algorithm starts by inserting orkesimplex incident o into the empty heap. It then keeps
processing simplices from the top of the heap until it has found thearest neighbors. If the simplex
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from the heap is a vertex, it is reported as the next neighbor. Whksiraplext is taken from the

heap, it becomes intersecting. THi@djacentd-simplices and the vertices ofare inserted into the
heap. A flag for eacli-simplex and each vertex prevents multiple insertion into the heap. The flag is
set when its corresponding simplex is inserted. A simplex whose flag is set will not be inserted again.

As mentioned above, the heap is ordered by distance from the query point. As a secondary ordering
criterion, vertices are given priority ovdrsimplices: If a vertex and d-simplex are equally distant

from p;, the vertex will appear at the top of the heap first. This prevents the algorithm from unnec-
essarily processing-simplices which are as far from as thek™ nearest neighbor. The complete
algorithm is described in Algorithm B.1.

Algorithm B.1 k-Nearest-Neighbors Query

Input: Triangulation7" of a point set” = {p,,...,p,,}, query pointp, € P, and integerk.
Operation: Computek nearest neighbor points @f :
HeapH := 0.
4 := 0./ number of neighbors found so far
Find a d-simplext which is incident tq; .
Insertt into H.
Set the flag of.
repeat
Delete simplexs from the top ofH.  // we now call s intersecting
if (sis ad-simplex) then
foreach ( vertexv of swith flag ofv not set) do
Computei(v, p;).
Insertv into H.
Set the flag o¥.
end
foreach ( d-simplext adjacent tos with flag oft not set) do
Computed(t, p;).
Insertt into H.
Set the flag of.
end
else // s is a vertex
j=3+1
Reports as the;'" neighbor.
end
until (j=F)
Output: £ nearest neighbor points @f.

Theorem B.4 Algorithm B.1 reports: nearest neighbors qf in order of increasing distance.

Proof: Let us first consider the cage= n — 1, i.e., all other vertices are requested. In this case, we
have to show that the vertices are reported in the correct order. Assume thatvisrteported before

p, butp is strictly closer tg, thang. This can only happen @ appears at the top of the heap befpre
has been inserted. There existg-simplext which is incident orp. Nowt must be non-intersecting,

or p would have been inserted into the heap. On the other hasdot further fromp thanp, and
therefore strictly closer thag. By Lemma B.3, there exists a closest non-intersecitsjmplext
which is adjacent to an intersectimgsimplex. Because of this adjacenéynust be in the heap. On
the other hand! is closer thar, a contradiction. Thereforg, cannot be reported befope To prove
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the case: < n — 1, we simply note that the algorithm runs in exactly the same way as forl
neighbors, but stops after thenearest neighbors have been found. "

N

Yy ¥%
Ayéﬁk Ayéﬁk

Figure B.1: Two phases of the algorithm as the expanding ball encounters a vertex and, simultaneously, three triangles.

Figure B.1 shows two snapshots of the algorithm working on a planar triangulation. The intersecting
triangles and vertices are drawn in white and black, respectively. The triangles and vertices in the heap
are drawn in gray. In the left diagram, the algorithm has just deleted a vertex from the heap. In the
right diagram, it has also processed the triangles that are incident on this vertex.

Concerning the analysis of the time complexity of the algorithm, we assume that the data structure of
the triangulation allows us to carry out the following operations:

e Given a vertex, find an incidemtsimplex in constant time.
e Given ad-simplex, find its vertices in timé&(d).
e Given ad-simplex, find thel + 1 adjacent-simplices in timeQ(d).

One elementary step in Algorithm B.1 is the distance computation betweéemaplex and the query

point. The time complexity of this step depends on the dimension and on the metric being used. In
d-dimensional space, it takes time proportionaf/tto determine the Euclidean distance between two
points alone. In the following, we €t denote the worst-case complexity of distance computations,
both between two points and between a point adesanplex.

Let |T'| denote the number af-simplices inT', and let|H| be the number of simplices contained in

H. We note that: € O(|T). In the planar case, we also had € O(n). In 3-dimensional space,
triangulations withT'| € O(n) exist and can be constructed@» logn) time (cf. [EPW90]).

To analyze the time complexity of the overall algorithm, let us first look at the time spent on heap
operations. An insertion or deletion tak8$log | H|) time. Each vertex and eadksimplex is inserted

into, and, likewise, deleted from, the heap at most once. Therefore, both the number of heap operations
and the heap size are bounded®¥T'|). The total time for all heap operationsd¥|7’|log|T|) in

the worst case. Distance computations are carried out only for those simplices which are inserted into
the heap, and only once per simplex. Therefore, the total time for distance computations is bounded
by O |T|).
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Next, we will look at the two for-loops. Disregarding the heap operations and distance computations,
for which we have already accounted above, the body of each for-loop consists only of setting a flag.
This can be done in constant time. Within one execution of the repeat-loop, each for-loop is run at
mostd + 1 times. The loop overhead consists of findihg 1 vertices ord-simplices and testing their

flags, which takes time proportional #b Thus, the for-loops cogP(d) time. All other steps that we

have not considered so far require constant time. Each time the repeat-loop is executed, a simplex is
deleted from the heap. This bounds the number of executions of the repeat-loaf ({@th). Thus,

the time for all executions of all constant-time steps is bounde@f¥|T’|). This results in a total
execution time of)(|T'| (d + § + log |T'|)) in the worst case.

Figure B.2: Triangulation causing worst-case behavior of the algorithm.

Figure B.2 shows a planar example which causes worst-case behavior of the algorithm. The dots in the
diagram indicate that the left and right boundaries Have vertices each, wheremay be arbitrarily

large. We consider a query with= 2 at the time when the nearest neighbompolas just become
intersecting. The heap contains the- 1 vertices left ofp;. Before the next neighbor can be found,

5 — 2 triangles and; — 1 vertices lying to the right of the nearest neighbor are inserted. Since these
new simplices are closer fp than thej — 1 vertices already contained in the heap, the summed cost
for the insertions is proportional t@logn. Note that this extreme behavior of the algorithm occurs
only if p; or its nearest neighbor is used as the query point. For any other vertex, & masigles

and7 vertices are inserted into the heap before the second neighbor is found. In fact, as toisg as
small compared ta, the time complexity averaged over all vertices depends mther than onT’|.

We conjecture that dependency bonly will be the case for most triangulations. This conjecture is
strongly supported by the experimental results which are presented next.

In order to investigate the algorithm’s behavior in practice, it was measured on various point sets. The
experiments were set up as follows. For each ppjinh a data sef’, a query for the 2000 nearest
neighbors ofp; is carried out. When the query finds t}i€ neighbor,1 < j < 2000, two quantities

are recorded: the current heap size, denotedj\p;, j), and the number of heap insertions which

the query has executed up to this point, denotegHiyp, j). Note that these quantities reflect not

only the current state of the actual query for 2000 neighbors, but also the final state of a hypothetical
query for only;j neighbors of;.

The measurements were carried out on eight two-dimensional data examples:

e three sets of uniformly distributed random points, containing 2500, 10000, and 100000 points,
e three square grids of sizé8 x 50, 100 x 100, and200 x 500, and

e two sets of 8700 and 13687 points, scanned from real objects and exhibiting strong variation in
point density due to previous data reduction.
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Figure B.3: Number of heap insertions (upper set of curves) and current heap size (lower set of curves).

In each casel’ was a Delaunay triangulation &f.

We were interested in the worst-case behavior of the algorithm on each particular data set, so the
maxima

[HI(G) = max |F|(p;. ) and #1() = max #1(p;. )
over all queries within the same data $&tvere computed. Figure B.3 shows the graph$Ffi;)
and#1(j) as functions ofj. Two observations can be made in the graphs. The first is#liéf) is
strongly correlated tg. In other words, it appears to depend plinearly. The second observation

is that, although the underlying data sets vary in size by a factor of up to 40, the corresponding
function graphs in Figure B.3 almost coincide. This indicates that, as far as our examples go, the time
complexity is in fact independent ¢f’|.

In some applications, one does not know a priori how many nearest neighbors of a query point will be
required. After looking at thé nearest neighbors, one may find that anothegighbors are necessary.

In such a situation, it is an easy matter for Algorithm B.1 to resume the query where it left off before.
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The cost for searching firgtand then the nextneighbors is the same as for searching? neighbors

in a single query. Some information must be saved in order to resume a query. This comprises the
heapH, the flags, and the numbérof previously found neighbors. We call this informatinearest
neighbor query iteratofNNQ iterato).

It is also possible to run queries in a concurrent manner, e.g.kfineighbors ofy;, thenk; neigh-

bors ofp;, then anothe¥; neighbors ofp;, etc. Multiple suspended queries require a nearest neigh-
bor iterator for each query point. Suppose that concurrent queries are carried outrforedtices,

then the space requirement for the flags is proportional |8|. However, if the average number of
neighbors computed per vertex is small, most of the flags will never be used. Storage space can be
reduced if we replace the flags by a hash table. Instead of setting a flag, we insert a pair of the form
(query point, ‘flagged’ simpley into the table. By the very nature of concurrent queries, the required
number of neighbors in a single query is not known in advance. Thus, it may be impossible to make an
appropriate choice for the size of the hash table, which has a strong influence on the table’s efficiency.
As an alternative, we can substitute a sorted tree (e.g., AVL or SBB tree, cf. [Wir86]) for each heap,
i.e., one per query. We insestinto the tree if it is not contained in the tree and was not processed
befores. Containment in the tree can be tested efficiently. Simplices are processed in order of in-
creasing distance from the query point. Thereford, i strictly closer thars, it has been processed
before, and ifs is strictly further thars, it has not been processed before. Equidistant simplices that
have been processed are stored in an auxiliary tree, and can be found there. A simplex is inserted into
the auxiliary tree as soon as it is processed. The auxiliary tree is cleared when the intersecting sphere
expands, i.e., when a simplex of greater distance is processed.

B.2 An Object-Oriented Framework for Flexible and Adaptive Nearest
Neighbor Queries

Usually, nearest neighbor queries are only considered from the algorithmical point of view and not
from the implementation view. Since the nearest neighbor task is a frequent problem in many ap-
plications we show how the implementation can be done with respect to our algorithmical solution.
The reason for this is, that our approach is so general that it allows an easy-to-follow object-oriented
approach that simplifies the implementation. Another advantage is that this framework can be ad-
justed to several similar tasks of nearest neighbor queries, for example, if using other types of spatial
subdivisions besides tetrahedrizations/triangulations.

In the following we describe the basic approach how the implementation can be done. In our ex-
ample we restrict the types of query objects to single points and the type of spatial subdivisions to
tetrahedrizations as examined in theory for kheearest neighbor search in the previous section. But
extension to arbitrary types of objects (polyhedrons) is straightforward. The only thing that has to be
considered is an appropriate distance function for the kind of object that is used as query object and the
surrounding polyhedral cells. The already reported neighbors are stored in a list that is associated with
the query point so that concurrent queries that are carried out from different positions of the program
do not repeat unnecessary computations. This means, that if the number of needed neighbors is below
the number of already computed neighbors, only the elements of the neighbor list of a query point
have to be iterated in order to complete the query task. This holds as long as the tetrahedrization is not
modified. But even if this is the case, local modifications mean only local influence on the neighbor
structure for the points in the modified regions, so that an update can be established efficiently by only
updating the points that have already “traversed” the modified region with their expanding ball.

For better understanding of the implementation be have chosen a simplified and more readable version
of C++ — like program code. This code should be comprehensible for everyone who is familiar with
object-oriented concepts in an arbitrary programming language.
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Si npl ex

I/ Boolean functions:
updat eNei ghbor Li st () ;
updat eNei ghbor sl nTree(Poi ntPtr);

Poi nt Tet r ahedr on AnySi nmpl exd ass

/I List of neighbor points:

nei ghbor Li st;

Il Sorting tree of simplices

si npl exNei ghbor Tr ee;

/I Boolean functions: /I Boolean function: /I Boolean functions:
updat eNei ghbor Li st () ; updat eNei ghbor Li st () ;
updat eNei ghbor sl nTree(Poi ntPtr); updat eNei ghbor sl nTree(Poi ntPtr); updat eNei ghbor sl nTree(Poi ntPtr);

Figure B.4: The UML class diagram of the nearest neighbor query implementation.

We assume an arbitrary tetrahedrization is already given and use this information within the nearest
neighbor query algorithm.

The UML class diagram (unified modeling languag®RJ99] of our implementation is shown in
Figure B.4. In our application we needPai nt class and det r ahedr on class that are both derived

from the classSi npl ex. Since this concept is extensible to any type of nearest neighbor queries
for each kind of simplex, there also can be implemented a nearest neighbor query for an arbitrary
simplex class which is denoted in the diagramagSi npl exCl ass. The most important parts of the
diagram are theirtual functionsupdat eNei ghbor Li st () andupdat eNei ghbor sl nTree() of

classSi npl ex that are overloaded in each implementation inside the €laisst or Tet r ahedr on.

These are the main functions needed in the realizatiorkef@arest-neighbor query algorithm. As we

see in the diagram the functiampdat eNei ghbor Li st () is only implemented for theoi nt class,

since we restrict our queries to points. But as mentioned before, arbitrary queries for other object types
than points would be possible, too. For example, if one would like to implement a nearest neighbor
query for tetrahedrons, it is sufficient to implement the functipelat eNei ghbor Li st () for the

Tet r ahedr on class.

In the following we describe how the concept of the UML class diagram can be used in order to
implement nearest neighbor queries for points. Classl t er at or delivers the frame work for

an instantiation of a nearest neighbor query iterator for a query pgiot. Figure B.5. It consists

of a pointer to a point that describes the query object, and a list iterator that iterates on the list of
nearest neighbors already found. This ghbor Li st is associated with each query point. In the
beginning thenei ghbor Li st is empty before a query has taken place for the query point. With
ther eset () function ofNngl t er at or the iterator can be set to the beginning of a neighbor query
which responds to the situation where the query ball has radius zero. In order to get a nearest neighbor
the get () function of Nnqgl t er at or is then called. Then the next point that is delivered is the
nearest neighbor of the query. Each time ¢fee () function is called a new neighbor is computed

and appended to theei ghbor Li st that is associated with the query pointBut first it is checked
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class Nnglterator

{
Poi nt Pt r a; /I pointer to query point
Li stlterator <PointPtr> listlter; /literator for ordered nearest neighbor list of already computed neighbors

public:

voi d reset() { listlter.reset(); } /lresetlistiterator; query ball radius =0
Bool ean get(PointPtr & p) /I compute next nearest neighbor

{

if ( listlter.get(p) ) /I nearest neighbor already computed ?
/I Yes, return true and reference to element
{ return TRUE;, }
/I No, then compute next nearest neighbor

else {
g—updat eNei ghbor Li st () ; // compute next neighbor

/I now, the neighbor list for the point on whi¢h st | t er iterates is updated
/l'if a new element has been added to the list,
/I then the next call of i st|ter. get (p) returns the next neighbor

/l'if a new neighbor has been found
return listlter.get(p); / return nextneighbor

Figure B.5: The listing of thenearest neighbor query iterat@tass:Nngl t er at or .

for whether there is already a next nearest neighbor iméhehbor Li st that has not been reported

so far. This is performed by calling thget () function of the list iterator with i st1ter. get().

If a neighbor is on a list the algorithm returns the valtRUE and a reference to the neighbor point
found. If this is not the case then the next nearest neighbor is computed by calling the function
g—updat eNei ghbor Li st () of the query point. This function starts the complete nearest neighbor
computation process. If a new neighbor could be found, it is appended teitlybor Li st , so that

the next call of the i st It er. get () function of the list iterator will return an element and the value
TRUE.

Now we come to the description of an update of tieé ghbor Li st of a query point, cf. Fig-

ure B.6. As described in the UML diagram the clags nt has two important member func-
tions: updat eNei ghbor Li st () andupdat eNei ghbor sl nTr ee() . The functionupdat eNei gh-

bor Li st () is needed for the initiation of a query while the relevant update procedures are called
with updat eNei ghbor si nTree(). Since we do not show here how nearest neighbor queries
can be applied to tetrahedra the class r ahedr on needs only to overload the functiomp-

dat eNei ghbor sl nTree() so that neighbor queries for points can be applied. The function
g—updat eNei ghbor Li st () returnsTRUE if a new neighbor point could be found. This is only

the case if the recursive call opdat eNei ghbor sl nTr ee() for each simplex os during theneigh-

bor update proceseesults in finding a new neighbor point.

When a neighbor list update for a query pairis applied, the functioq—updat eNei ghbor Li st ()

is called. If thenei ghbor Li st is empty, the neighbor update fqmust be intialized by putting all
adjacent tetrahedraito the tree of simplices. These simplices are stored insthepl exNei gh-

bor Tr ee that contains all points and tetrahedra that surround the “query ball”. These elements are
sorted according to their distance to the query pginfhis is done in thé or each-loop of Figure
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Bool ean Poi nt: : updat eNei ghbor Li st ()

{

if(
{

nei ghbor Li st.i sEnpty() ) //initialize the neighbor structure around this point

Tetrahedron t;
foreach ( adjacent tetrahedron t of this point instance ) do
{
put ToSi npl exNei ghbor Tree(t, di st (t,this)); //puttupel (t,dist(t,this))
/I on the sorted neighbor simplex tree
t >put ToVisitTree(this); /I mark tetrahedron t as visited from this point

}
}

Si npl ex s;

if ( getFronti nmpl exNei ghbor Tree(s) )
{ return s—updat eNei ghborsinTree(this); }
else { return FALSE; }

Figure B.6: The listing of the functiompdat eNei ghbor Li st of thePoi nt class.

B.6.

If the nei ghbor Li st has been already initialized, then the next nearest neighbor siragfmint
or tetrahedron) of the query point is taken dpt Fr onSi npl exNei ghbor (s) . Then, the function
s—updat eNei ghbor sl nTree() of this simplexsis called.

Now, two cases can occur. Eitheis a point or a tetrahedron.

We first consider the case, that the simpdag a point. In its associated functiea;updat eNei gh-
bor sl nTree() we first memorize that has been visited by by calling the functiorput ToVi si t -
Tree(), cf. the listing in Figure B.7. Then, the point is appended tontdieghbor Li st of the query
point.

Bool ean Poi nt: : updat eNei ghbor sl nTree(Poi ntPtr q)

I/
ﬁ member function call for this instance of class Point

{

/I mark this instance p;s of class Point as visited from point q

t hi s—put ToVi sit Tree(Qq); /I memorize query g in a AVL tree that this point p;,;, was visited by g
g—appendToNei ghbor Li st (this); /I append pointer to this instance p;y,;, of class Point

/I to the neighbor list of q
return TRUE;

}

Figure B.7: The listing of the functiompdat eNei ghbor sI nTr ee of thePoi nt class.

If the simplexsis a tetrahedron then its associated functonupdat eNei ghbor sl nTree() does

the following, cf. Figure B.8. First, all four points of the tetrahedron are marked as visited from the
query pointq. Second, the four points are put onto the simplex neighbor tree of the querygpoint
which sorts the simplices according to their distance ito shortest first ordering. Then, all tetrahedra

that have not been visited by the query paindre put onto the simplex neighbor tree that sorts all
simplices. Additionally, each tetrahedron that is considered in this previous step is marked as being
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already visited byg so that it is not considered again. All this is performed in tleeach-loop.
After that, the next nearest neighbor simplex (either a point or a tetrahedron) is taken from the simplex
neighbor tree and itgspdat eNei ghbor sl nTree() function is called.

This process of calling the functiost»updat eNei ghbor sl nTree() for each simpless iterates on

the si npl exNei ghbor Tr ee until the simplexs is a point so that it can be added to thei gh-

bor Li st as new nearest neighbor. If no point is found, than the whole point set has been already tra-
versed by the query fay and the process terminates. In this case the iterator fareéhghbor Li st

does not return a new neighbor. Otherwise, if a new neighbor has been foundi tisiebor Li st
increases in length by one element and the list iterator in tlagkt er at or returns a new element
ifthelistlter.get () function is called.

Bool ean Tetrahedron: : updat eNei ghbor sl nTree(Poi nt Ptr q)

I/
ﬁ this is the member function call for tetrahedron this

/I 1. mark all four points a,b,c,d of the tetrahedron this=<(a,b,c,d)
/I as visited from the query point q.

/I 2. put all four points a,b,c,d on the simplex neighbor tree of q

/I sorted according to their distance to q (shortest first).

«— [* here is the relevant program code for the two steps above */

/l put all tetrahedra that have not been visited by q onto the simplex neighbor tree
foreach( adjacent tetrahedron t of this tetrahedron instance ) do

{
if ( t—isNotContainedlnVisitTree(q) )
{
t —»put ToVisit Tree(q);
g—put ToSi npl exNei ghbor Tree(t, dist(t,q));
}
}

/I get next nearest neighbor simplex (point or tetrahedron) for point g

if ( g—get FronSi npl exNei ghbor Tree(s) )
{ return s—updat eNei ghborsinTree(q); }
else { return FALSE; }

Figure B.8: The listing of the functiompdat eNei ghbor sI nTr ee of the Tet r ahedr on class.
An example for the usage of this program framework is given in Example B.5.

Example B.5 (Usage of th&-nearest-neighbors query implementation)Let g be the query point.
Then, thek nearest neighbors can be computed very simply:

Nnglterator iter(q);

Poi nt nn;
Nunmber i=1;
Nunber k=11; // number of nearest neighbors to be computed

while ( (i < k) AND (iter.get(nn)) ) / printneighbors in order of appearence

{

cout << "Nei ghbor number " << i << ": " << nn—pointlndex() << endl;

}
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If a newNnqgl t er at or for the samey is instantiated during the program execution in order to com-
puter nearest neighbors then we have two possible cases<If, it means that the neighbors to be
delivered are taken from an already computed list of nearest neighbors. Here, no more update with
tetrahedral sorting and searching in the above mentioned data structures is necessary.

i=1;
Nunber r=8; // number of nearest neighbors to be computed

while ( (i <r) AND (iter.get(nn)) ) / printneighborsin order of appearence

{

cout << "Nei ghbor number " << i << ": " << nn—pointlndex() << endl;

}

If » > k, it means that the alreadlyycomputed neighbors are taken and that for the task neighbors
a new nearest neighbor computation is started by calling the fungtieapdat eNei ghbor Li st ().

/I as before
Nunber r=17; // number of nearest neighbors to be computed

while ( (i <r) AND (iter.get(nn)) ) / printneighborsin order of appearence

{

cout << "Nei ghbor number " << i << ": " << nn—pointlndex() << endl;

}

After » nearest neighbors are computed, thes= 17 elements are part of the nearest neighbor list
that is associated with the specific query pajnt
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