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Chapter 1

Introduction

This chapter defines the problem treated in this thesis: the surface (re-)construction problem, and
illuminates different aspects of this problem. Then the contributions of the thesis are summarized.
Finally an overview of the organization of the thesis is given.

1.1 The Problem

The problem treated in this thesis is

Surfaces from scattered point data:

Input: A set� of points in space which are sampled from a surface.

Output: A surface� so that the points of� lie on or close to� .

There is a wide range of applications for which surface construction from scattered point data is
important. In particular, scanning of 3D shapes reaching from bodies to landscapes, directly accessible
or not, with tactile, optical, ultrasonic, tomographic, and other sensors, is a rich source of data for
the problem. The construction of surfaces is necessary because many methods and systems require
surface data for further processing. Surfaces also open the application of the wide-spread surface-
oriented visualization and rendering techniques. For example, surfaces may be used for visualizing
other information e.g. coded in textures (data textures or real textures) mapped on the surface.

The given formulation of the surface construction problem is not very precise and lets many degrees
of freedom of interpretation. From an application-based point of view, twocategories of taskscan be
distinguished: data analysis and surface reconstruction.Data analysismeans that nothing is known
about the surface from which the data originate. The task is to find the most reasonable solutions
among usually several or even many possibilities.Surface reconstructionmeans that the surface from
which the data are sampled is known, say in form of a real model, and the goal is to get a computer-
based description of exactly this surface. This knowledge may be used in the selection of a favorable
algorithm.

A proper reconstruction of the desired surface in the latter case can only be expected if it is suffi-
ciently sampled. Sufficiency depends on the particular method of surface reconstruction. It might be
formulated as asampling theoremwhich should give sufficient conditions that can be easily checked.
This aspect was neglected in research up to now, and little is known for most existing reconstruction
algorithms on this aspect.

If surfaces are improperly sampled, a reconstruction method may cause artifacts which have to be
dealt with. Like in classical sampling theory, pre-filtering e.g. in the sense of low-pass filtering may

3



4 Chapter 1: Introduction

help to reduce artifacts at the costs of loss of details. Another possibility is interactive correction by
the user which may be helpful if artifacts occur at some few isolated locations.

The opposite of insufficient sampling is that the sample data are unnecessarily dense. This happens
in particular if a surface is sampled with uniform density. In that case the sample density required
at fine details of the surface causes too many data points in regions of only minor variation. Several
approaches todata reductionwere proposed in literature [HDD�93]. We do not treat this topic here,
but only give the hint that data reduction should consider the power of the reconstruction algorithm
expressed in sampling theorems, a fact that also was not explicitly obeyed in the past.

The challenge of surface reconstruction is to find methods of reconstruction which cover a wide range
of shapes, or, for a given area of application, to find a method of reconstruction which covers the shapes
of this class reasonably. The challenge of data analysis is to find efficient enumeration algorithms
yielding those of all feasible surfaces that come closest to the desired one. In particular, ways must be
found to express which of the possible solutions are favorable.

The wide range of applications from which the data may emerge implies that the data can have quite
differentpropertieswhich may be considered at the solution of the surface interpolation problem. For
example, the data may be sampled from surfaces that lie unique over a plane. In that case, a wide
range of methods were developed which mainly focus on geometric properties like smoothness of the
constructed surface [HL93].

Reconstruction may become more specific if the surface is captured in multiple samples (multiple
view range images) that have to be fused.Sample fusingmay need data transformation and fitting. We
exclude these aspects from further discussion and refer e.g. to [TL94, CL96, SF97].

Sample data may containadditional information on structure. A typical example are tomographic
data. In that case the points on a slice may be already connected by polygonal contour chains. Another
example is that normal vectors are available at the data points. These additional informations may give
additional hints on the unknown surface which may be considered in the construction algorithm. In
particular, for interpolation or approximation of contour data, a variety of methods were developed
[MK93]. In the following, no additional structural information is expected.

Finally, themathematical and data structural representationof the derived surface has to be consid-
ered. The most common representation is the polygonal or triangular mesh representation. Because
the representation by triangular meshes allows to express the topological properties of the surface, and
because this is the most difficult sub-problem of surface construction, most known algorithms use this
sort of representation. If higher smoothness than just continuity is required, either the parametric or the
implicit surface representation may be used. Triangular meshes can be seen as a surface composed by
parametrically represented linear surface patches. For surfaces of higher continuity patches of higher
order are required. One way to obtain such surfaces is to start from a triangular mesh. For that reason,
we have chosen the representation by triangular meshes for this thesis, and refer to literature for the
problem of deriving smooth surfaces, for instance to [EH96, Guo97, FCGA97] in which smoothing of
surfaces obtained from sample data is particularly emphasized.

1.2 The Contributions

In this thesis, a new surface reconstruction algorithm is presented which works well in practice, as has
been demonstrated by application of an implementation to numerous data sets. Its particular features
are

(1) reconstruction of open surfaces with boundaries of arbitrary genus as well as non-orientable
surfaces,
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(2) treatment of coarse sample sets of variable density,

(3) treatment of sharp edges, that is, locations of infinite curvature, like e.g. at the edges of a cube.

The algorithm can also be used for dense sample sets with a high number of points. Because of (2)
efficiency can be gained by applying the algorithm to a sub-sample. This approach saves time and
yields a lower number of triangles than for the original data.
We give formal arguments which explain why the algorithm works well. They consist of a rigorous
definition of ”reconstruction”, and the demonstration of existence of sampling sets for which the algo-
rithm is successful with high heuristic probability. This analysis focuses on compact closed surfaces
with bounded curvature.
For the general case of surfaces with boundaries and sharp edges, we present heuristic arguments
which contain potential for further work in direction of ”provable” heuristics.
Further contributions are

(1) the application of the surface reconstruction algorithm for interactive shape design,

(2) a smoothing procedure for noise elimination in point clouds sampled from a surface.

The first contribution uses the property of the algorithm that already small point sets lead to reasonable
surfaces. In this application, the sample points are used as control points for shape design. Addition-
ally, the algorithm is capable of reconstructing surfaces out of arbitrary surface skeletons consisting
of sets of surface edges between the sample points. As a result of these properties, the algorithm can
be used very easily for user-defined locally restricted reconstructions with only little interaction.
The main advantage of the second contribution is that point smoothing is achieved without requiring
a perfect interpolating surface.
The emphasis of this thesis lies on the reconstruction performance of the algorithm and on the demon-
stration of its practical performance, not on worst-case efficient algorithmic solution. Some hints
on algorithmic aspects are given which have been shown useful during the implementation of the
algorithm. For many computational subproblems worst-case efficient solutions are known in compu-
tational geometry.

1.3 Outline

The thesis is organized as follows.
In Chapter 2 an extensive survey of the state of the art of surface reconstruction algorithms is given.
The existing algorithms are categorized according to their methodic approach, and advantages and
disadvantages are discussed at the end of the chapter.
Chapter 3 introduces the basic structure of the algorithm, and explains in more detail than this chapter
how the description of the algorithm and its analysis are organized.
The algorithm consists of two main phases, the construction of a skeleton graph or surface description
graph, and the construction of a triangulation based on this graph. Chapters 4 and 5 are devoted to the
first phase in that they present graph types well suited to the first phase.
Chapter 6 presents the definition of surface reconstruction and surface approximation on which the
analysis of the algorithm is based. Chapter 7 analyzes the first phase of the algorithm.
The second phase, triangulation, is described in Chapter 8. It is analyzed in Chapter 9.
The application of the reconstruction algorithm to interactive geometric modeling is described in
Chapter 10. Chapter 11 shows that the neighborhood information present in the developed graph
types of Chapter 5 can be used in order to smooth noisy data sets.
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Chapter 2

State of the Art

The surface construction problem has found considerable interest in the past, and is still an important
topic of research. The purpose of this chapter is to find unifying basic methods common to indepen-
dently developed solutions, coupled with a survey of existing algorithms. The identified basic classes
are constructions based on spatial subdivision (Section 2.1), on distance functions (Section 2.2), on
warping (Section 2.3), and on incremental surface growing (Section 2.4). In Section 2.5 the aspect is
treated that an object represented in a sample data set may consist of several connected components.
The survey closes with a discussion and categorization of our approach (Section 2.6).

2.1 Spatial Subdivision

Common to the approaches that can be characterized by ”spatial subdivision” is that a bounding box of
the set� of sample points is subdivided into disjoint cells. There is a variety of spatial decomposition
techniques which were developed for different applications [LC87]. Typical examples are regular
grids, adaptive schemes like octrees, or irregular schemes like tetrahedral meshes. Many of them can
also be applied to surface construction.

The goal of construction algorithms based on spatial subdivision is to find cells related to the shape
described by� . The cells can be selected in roughly two ways: surface–oriented and volume–oriented.

2.1.1 Surface–Oriented Cell Selection

The surface–oriented approach consists of the following basic steps.

Surface–oriented cell selection:

1. Decompose the space in cells.

2. Find those cells that are traversed by the surface.

3. Calculate a surface from the selected cells.

The Approach of Algorri and Schmitt

An example for surface–oriented cell selection is the algorithm of Algorri and Schmitt [AS96]. For
the first step, the rectangular bounding box of the given data set is subdivided by a regular ”voxel
grid”. ”Voxel” stands for ”volume element” and denotes a spatial cell of the grid.

In the second step, the algorithm extracts those voxels which are occupied by at least one point of
the sample set� . In the third step, the outer quadrilaterals of the selected voxels are taken as a first
approximation of the surface. This resembles the cuberille approach of volume visualization [HL79].

7
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In order to get a more pleasant representation, the surface is transferred into a triangular mesh by
diagonally splitting each quadrilateral into two triangles. The cuberille artifacts are smoothed using
a low–pass filter that assigns a new position to each vertex of a triangle. This position is computed
as the weighted average of its old position and the position of its neighbors. The approximation of
the resulting surface is improved by warping it towards the data points. For more on that we refer to
Section 2.3.2.

The Approach of Hoppe et al.

Another possibility of surface–oriented cell selection is based on the distance function approach of
Hoppe [HDD�92, HDD�93, Hop94].

The distance function of the surface of a closed object tells for each point in space its minimum signed
distance to the surface. Points on the surface of course have distance 0, whereas points outside the
surface have positive, and points inside the surface have negative distance. The calculation of the
distance function is outlined in Section 2.2.1.

The first step of the algorithm again is implemented by a regular voxel grid. The voxel cells selected
in the second step are those which have vertices of opposite sign. Evidently, the surface has to traverse
these cells. In the third step, the surface is obtained by the marching cubes algorithm of volume
visualization [LC87]. The marching cubes algorithm defines templates of separating surface patches
for each possible configuration of the signs of the distance values at the vertices of a voxel cell.
The voxels are replaced with these triangulated patches. The resulting triangular mesh separates the
positive and negative distance values on the grid.

A similar algorithm has been suggested by Roth and Wibowoo [RW97]. It differs from the approach
of Hoppe et al. in the way the distance function is calculated, cf. Section 2.2.1. Furthermore, the
special cases of profile lines and multiple view range data are considered besides scattered point data.

A difficulty with these approaches is the choice of the resolution of the voxel grid. One effect is that
gaps may occur in the surface because of troubles of the heuristics of distance function calculation.

The Approach of Bajaj, Bernardini et al.

The approach of Bajaj, Bernardini et al. [BBX95] differs from the previous ones in that spatial decom-
position is now irregular and adaptive.

The algorithm also requires a signed distance function. For this purpose, a first approximate surface
is calculated in a preprocessing phase. The distance to this surface is used as distance function. The
approximate surface is calculated using�–solids which will be explained in Section 2.1.2.

Having the distance function in hand, the space is incrementally decomposed into tetrahedra starting
with an initial tetrahedron surrounding the whole data set. The tetrahedra traversed by the surface are
found by inspecting the sign of the distance function at the vertices. For each of those tetrahedra, an
approximation of the traversing surface is calculated. For this purpose, a Bernstein–B´ezier trivariate
implicit approximant is used. The approximation error to the given data points is calculated. A bad
approximation induces a further refinement of the tetrahedrization. The refinement is performed by in-
crementally inserting the centers of tetrahedra with high approximation error into the tetrahedrization.
The process is iterated until a sufficient approximation is achieved.

In order to keep the shape of the tetrahedra balanced, an incremental tetrahedrization algorithm is
used so that the resulting tetrahedrizations are always Delaunay tetrahedrizations. A tetrahedrization
is aDelaunay tetrahedrizationif none of its vertices lies inside the circumscribed sphere of any of its
tetrahedra [PS85].
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The resulting surface is composed of tri-variate implicit Bernstein–B´ezier patches. A��-smoothing
of the constructed surfaces is obtained by applying a Clough–Tocher subdivision scheme.

In Bernardini et al. [BBCS97, Ber96] an extension and modification of this algorithm is presented
[BBX97, BB97]. The algorithm consists of an additional mesh simplification step in order to reduce
the complexity of the mesh represented by the�–solid [BS96]. The reduced mesh is used in the last
step of the algorithm for polynomial–patch data fitting using Bernstein–B´ezier patches for each trian-
gle by interpolating the vertices and normals and by approximating data points in its neighborhood.
Additionally, the representation of sharp features can be achieved in the resulting surface.

Edelsbrunner’s and Mücke’s�–shapes

Edelsbrunner and M¨ucke [EM94, Ede92] also use an irregular spatial decomposition. In contrast to
the previous ones, the given sample points are part of the subdivision. The decomposition chosen for
that purpose is the Delaunay tetrahedrization of the given set� of sample points. A tetrahedrization
of a set� of spatial points is a decomposition of the convex hull of� into tetrahedra so that all
vertices of the tetrahedra are points in� . It is well known that each finite point set has a Delaunay
tetrahedrization which can be calculated efficiently [PS85]. This is the first step of the algorithm.

The second step is to remove tetrahedra, triangles, and edges of the Delaunay tetrahedrization using
so–called�–balls as eraser sphere with radius�. Each tetrahedron, triangle, or edge of the tetra-
hedrization whose corresponding minimum surrounding sphere does not fit into the eraser sphere is
eliminated. The resulting so–called�–shapeis a collection of points, edges, faces, and tetrahedra.

In the third step, triangles are extracted out of the�–shape which belong to the desired surface, using
the following rule. Consider the two possible spheres of radius� through all three points of a triangle
of the�–shape. If at least one of these does not contain any other point of the point set, the triangle
belongs to the surface.

A problem of this approach is the choice of a suitable�. Since� is a global parameter the user is not
swamped with many open parameters, but the drawback is that a variable point density is not possible
without loss of detail in the reconstruction. If� is too small, gaps in the surface can occur, or the
surface may become fragmented.

Guo et al. [GMW97] also use�–shapes. They propose a so–calledvisibility algorithm for extracting
those triangles out of the�–shape which represent the simplicial surface.

Another approach using the principle of�–shapes has been presented by Teichmann et al. [TC98].
Here, the basic�–shape algorithm is extended bydensity scalingand byanisotropic–shaping. Density
scaling is used to vary the value of� according to the local density of points in a region of the data site.
Anisotropic–shaping changes the form of the�–ball which is based on point normals. The�–balls
become “ellipsoidal” that allows a better adaption to the flow of the surface. Using these principles
the adaptiveness of�–shapes could be improved.

Attali’s Normalized Meshes

In the approach of Attali [Att97], the Delaunay tetrahedrization is also used as a basic spatial decom-
position. Attali introduces so–called normalized meshes which are contained in the Delaunay graph.
It is formed by the edges, faces and tetrahedra whose dual element of the Voronoi diagram intersects
the surface of the object. TheVoronoi diagramof a point set� is a partition of the space in regions
of nearest neighborhood. For each point� in � , it contains the region of all points in space that are
closer to� than to any other point of� .

In two dimensions, the normalized mesh of a curve	 consists of all edges between pairs of points of
the given set� of sample points on	 which induce an edge of the Voronoi diagram of� that intersects
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	. The nice property of normalized meshes is that for a wide class of curves of bounded curvature, the
so–called
–regular shapes, a bound on the sample density can be given within which the normalized
mesh retains all the topological properties of the original curve.

For reconstruction of	, the edges belonging to the reconstructed mesh are obtained by considering
the angle between the intersections of the two possible circles around a Delaunay edge. The angle
between the circles is defined to be the smaller of the two angles between the two tangent planes at
one intersection point of the two circles. This characterization is useful because Delaunay discs tend
to become tangent to the boundary of the object. The reconstructed mesh consists of all edges whose
associated Delaunay discs have an angle smaller than�

� . If the sample density is sufficiently high, the
reconstructed mesh is equal to the normalized mesh.

While in two dimensions the normalized mesh is a correct reconstruction of shapes having the property
of 
–regularity, the immediate extension to three dimensions is not possible. The reason for that is that
some Delaunay spheres can intersect the surface without being approximately tangent to it. Therefore,
the normalized mesh in three dimensions does not contain all faces of the surface.

To overcome this problem, two different heuristics for filling the gaps in the surface structure have been
introduced. The first heuristic is to triangulate the border of a gap in the triangular mesh by considering
only triangles contained in the Delaunay tetrahedrization. The second heuristic is volume–based. It
merges Delaunay tetrahedra to build up the possibly different solids represented in the point set. The
set of mergeable solids is initialized with the Delaunay tetrahedra and the complement of the convex
hull. The merging step is performed by processing the Delaunay triangles according to decreasing
diameters. If the current triangle separates two different solids in the set of mergable solids, they are
merged if the following holds:

� no triangle from the normalized mesh disappears,

� merging will not isolate sample points inside the union of these objects, i.e. the sample points
have to remain on the boundary of at least one object.

The surface finally yielded by the algorithm is formed by the boundary of the resulting solids.

Weller’s Approach of Stable Voronoi Edges

Let � be a finite set of points in the plane.�� is an�–perturbationof � if ��p�
p
�
�� � � holds for

all p� � � , p�� � � �, � � �
 � � � 
 �. An edgep�p� of the Delaunay triangulation is calledstable if
the perturbed endpointsp��, p�� are also connected by an edge of the Delaunay triangulation of the
perturbed point set� �.

It turns out that for intuitively reasonably sampled curves in the plane, the stable edges usually
are the edges connecting two consecutive sample points on the curve, whereas the edges connect-
ing non–neighboring sample points are instable. The stability of an edge can be checked in time
�������	�
 	�
�
�����, cf. [Wel97].

The extension of this approach to 3D–surfaces shows that large areas of a surface can usually be
reconstructed correctly, but still not sufficiently approximated regions do exist. This resembles the
experience reported by Attali [Att97], cf. Section 2.1.1. Further research is necessary in order to make
stability useful for surface construction.

The Voronoi Filtering Approach of Amenta and Bern

The idea of theVoronoi filteringapproach [ABK98, AB98] is to extract a so–calledcrust out of the
set of Voronoi vertices combined with the original point set.
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In two dimensions the algorithm can be described as follows. First the Delaunay triangulation of
� � � is determined where� is the set of its Voronoi vertices of the Voronoi diagram of� . From the
resulting Delaunay triangulation the so–calledcrust is extracted which consists of the Delaunay edges
connecting points of� .

An interesting observation is that the crust is also part of the Delaunay triangulation of the input point
set� . The additional Voronoi vertices are needed to eliminate undesired edges from the Delaunay
triangulation, by the property of the Delaunay edges that their circumcircles are empty of points in
� � � . This process is calledVoronoi filtering.

A sampling theorem based on the medial axis has been formulated for this algorithm. ”Sampling
theorem” means a characterization of sample point sets for which an algorithm yields a correct surface.
The medial axis consists of all points which are centers of spheres that touch a given surface in at least
two points.

A difficulty with the extension of this algorithm to three dimensions is that, while in two dimensions
the Voronoi vertices of a sufficiently dense data set are located near the medial axis, this is not neces-
sarily the case in three–dimensional space. In order to cope with this difficulty, for each sample point
p the following calculations are performed:

� If p does not lie on the convex hull of� then the Voronoi vertexv� of the Voronoi cell�� of p
is computed which is the farthest fromp. The vectorn� ��

�

pv� points in the direction fromp
to v�.

� If p lies on the convex hull thenn� is taken as the average of the outer normals of the adjacent
triangles. v� is defined as the Voronoi vertex of�� with negative projection onn� that is
farthest fromp.

The pointsv� andv� are denoted aspoles. The set� of the poles takes over the role of the set�
of Voronoi vertices of the two–dimensional algorithm. This means that the Delaunay tetrahedrization
DT of � � � is computed, and a ”crust” is extracted which is defined by all triangles in���� � � �
for which all three vertices are sample points of� .

The crust usually does not describe a piecewise linear manifold. It may contain additional triangles
which have to be removed in a further filtering phase. In [AB98] so–callednormal filteringhas been
suggested where all triangles are eliminated which have normals deviating too much fromn� or n�.
Still existing superfluous triangles are eliminated in a final post–processing step.

The Short Crust Algorithm of Amenta and Choi

In a more recent approach [AC99, ACDL00], calledshort crust algorithm, Amenta et al. replace the
normal filteringby a simpler algorithm with just a single Voronoi diagram computation.

The algorithm starts by computing a normal at each sample point. The normal is estimated by using
“poles” as in their first approach [AB98]. For each Voronoi cell��, the Voronoi vertexv farthest from
the sample pointp is taken as a pole. The line throughp and its polev is almost normal to� and is
called theestimated normal lineatp. For an angle� theco–coneatp is computed. The co–cone is the
complement of the double cone with apexp making an angle of��� � � with the estimated normal
line atp. Then those Voronoi edges are determined which intersect the co–cones of all three sample
points inducing the Voronoi regions incident to the edge. The dual triangles of these edges form a
candidate set� .

A subsequentmanifold extraction stepderives a piecewise linear manifold from� by recursively
removing any triangle in� adjacent to asharp edge. A sharp edge is one for which the angle between
two adjacent triangles is sharp, that is, in circular order is greater than����. In practice this recursive
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deletion of triangles might be problematic because it can remove sucessively all triangles of� . A
heuristic calledumbrella checkis used in order to prevent this problem: triangles at sharp edges are
only deleted if their three vertices all haveumbrellas. A vertexv is called to have an umbrella if there
exists a set of triangles incident tov which form a topological disc and no two consecutive triangles
around the disc meet at a dihedral angle less than�

� or more than��� . The dihedral angle is the smaller
one of the two angles between the planes of the triangles at their line of intersection.

Umbrella Filter Algorithm by Adamy, Giesen, and John

The so–called umbrella filter algorithm of Adamy et al. [AGJ00, AGJ01] starts with the Delaunay
tetrahedrization of the sample point set� . Then at each pointp � � an ”umbrella” is computed. An
umbrella is a sequence of triangles incident to a point which is homeomorphic to a two–dimensional
closed disc and which does not havep as a point of its border. After that, all triangles that do not belong
to an umbrella are deleted. From the resulting set of triangles, superfluous triangles are eliminated in a
topological clean–up phase, in order to get a manifold. Possibly occuring holes in the mesh are closed
in a final hole–filling phase.

An umbrella is formed over special triangles calledGabriel triangles. The triangles are chosen with
increasing value of their lower�–interval bound until the set of chosen triangles contains an umbrella.
The �–interval boundaries�� and �� of a triangle� are calculated by�� �� ����������������,
� � �
 �, where�� are the two incident tetrahedra of� in the Delaunay triangulation (if� is on the
convex hull the values of the missing tetrahedron is set to�). The interval boundaries are the minimum
and the maximum of�� and��.

The topological clean up is performed by distinguishing between three types of triangles which hurt
the umbrella condition. Each type is treated by a deletion procedure.

Holes are filled by formulating topological surface conditions and boundary constraints as linear in-
equalities so that the solution with integer values specifies a topologically correct surface filling the
hole.

2.1.2 Volume–Oriented Cell Selection

Volume–oriented cell selection also consists of three steps which at a first glance are quite similar to
those of surface–oriented selection:

Volume–oriented cell selection:

1. Decompose the space in cells.

2. Remove those cells that do not belong to the volume bounded by the sampled surface.

3. Calculate a surface from the selected cells.

The difference is that a volume representation, in contrast to a surface representation, is obtained.

Most implementations of volume–oriented cell selection are based on the Delaunay tetrahedrization
of the given set� of sample points. The algorithms presented in the following differ in how volume–
based selection is performed. Some algorithms eliminate tetrahedrons that are expected to be out-
side the desired solid, until a description of the solid is achieved [Boi84, IBS97, Vel94]. Another
methodology is the use of the Voronoi diagram in order to describe the constructed solid by a ”skele-
ton” [SB97, Att97].
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Boissonnat’s Volume–Oriented Approach

Boissonnat’s volume–oriented approach starts with the Delaunay triangulation of the given set� of
sample points. From this triangulation of the convex hull, tetrahedra having particular properties are
successively removed. First of all, only tetrahedra withtwo faces, five edges and four pointsor one
face, three edges and three pointson the boundary of the current polyhedron are eliminated. Because
of this elimination rule only objects without holes can be reconstructed, cf. Figure 2.1. Tetrahedra
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Figure 2.1: Boissonnat’s volume–oriented approach. An example for a tetrahedron which cannot be removed by the elimi-

nation rule of Boissonnat. The tetrahedron in the hole of the torus has four faces on the boundary.

of this type are iteratively removed according to decreasingdecision values. The decision value is
the maximum distance of a face of the tetrahedron to its circumsphere. This decision value is useful
because flat tetrahedra of the Delaunay tetrahedrization usually tend to be outside the object and cover
areas of higher detail. The algorithm stops if all points lie on the surface, or if the deletion of the
tetrahedron with highest decision value does not improve the sum taken over the decision values of all
tetrahedra incident to the boundary of the polyhedron.

The Extended Gabriel Hypergraph Approach of Attene and Spagnuolo

The algorithm of [AS00] starts with the generation of the Delaunay tetrahedrization�� �� � of the
given point set� . Then, similar to Boissonnat’s approach [Boi84], tetrahedra are iteratively removed
from the polyhedron until all vertices lie on the boundary of the polyhedron. This process is called
sculpturing.

Sculpturing can either beconstrainedor non–constrained. For non–constrained sculpturing a tetrahe-
dron� is removable if it fulfills the criteria of removal of Boissonat’s approach [Boi84].

Constraint sculpturing uses so–calledextended Gabriel hypergraphs (EGH). An EGH is constructively
derived from the Gabriel graph���� �. The Gabriel graph (GG) consists of all edgespq between
pointsp
q of � for which the smallest diameter sphere does not contain any other point of� . Initially
����� � � ��
���� 
 � � where� �� �. Then,���� is successively extended by edgesqr for
which incident edges�� � pq
 �� � pr in ���� exist which are not collinear and for which the
smallest diameter ball aroundp
q
 r does not contain any other point of� . This process is iterated
until no further edge can be added to���� . Any cycle of three edges of���� defines a triangle of
� .

For constraint sculpturing, a tetrahedron� is removable if the following two rules are satisfied:

� if � has just one face� on the boundary then� must not belong to����� �.
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� if � has two faces��
 �� on the boundary then��
 �� must not belong to the EGH. Additionally,
the common edge� of ��
 �� must not belong to���� �� �.

The sculpturing process starts with constraint sculpturing, and tetrahedra having the longest edge on
the boundary are removed first. The reason is that the connection between very distant vertices is
less probable than that of two very close points. If the goal that all vertices are on the boundary is
not achieved by constraint sculpturing, what may be the case for badly sampled points, constrained
sculpturing is followed by non–constrained sculpturing.

In order to recover holes, a process ofnon–constrained sculpturing with EMST restrictionfollows.
This happens if not all edges of the EMST are on the boundary. The process is similar tonon–
constrained sculpturingbut is restricted to all removable tetrahedra whose removal adds an EMST
edge to the boundary. Afterwards, ahole recovering processis applied. Its task is to remove so–called
pseudo–prisms. A pseudo–prism is a set of three adjacent tetrahedra which remain in the region of a
hole because each one of them cannot be classified as removable with the above criterions.

The Approach of Isselhard, Brunnett, and Schreiber

The approach of [IBS97] is an improvement of the volume–oriented algorithm of Boissonnat [Boi84].
While Boissonnat cannot handle objects with holes, the deletion procedure of this approach is modified
so that construction of holes becomes possible.

As before, the algorithm starts with the Delaunay triangulation of the point set. An incremental tetra-
hedron removal procedure is then performed on tetrahedra at the boundary of the polyhedron, as in
Boissonnat’s algorithm. The difference is that more types of tetrahedra can be removed, namely those
with one face and four vertices, or three faces, or all four faceson the current surface provided that no
point would become isolated by elimination.

The elimination process is controlled by anelimination function. The elimination function is defined
as the maximum decision value (in the sense of Boissonnat) of the remaining removable tetrahedra. In
this function, several significant jumps can be noticed. One of these jumps is expected to indicate that
the desired shape is reached. In practice, the jump before the stabilization of the function on a higher
level is the one which is taken. This stopping point helps handling different point densities in the
sample set which would lead to undesired holes caused by the extended set of removable tetrahedra in
comparison to Boissonnat’s algorithm [Boi84].

If all data points are already on the surface, the algorithm stops. If not, more tetrahedra are eliminated
in order to recover sharp edges (reflex edges) of the object. For that purpose the elimination rules are
restricted to those of Boissonnat, assuming that all holes present in the data set have been recovered at
this stage. Additionally, the decision value of the tetrahedra is scaled by the radius of the circumscribed
sphere as a measure for the size of the tetrahedron. In this way, the cost of small tetrahedra is increased
which are more likely to be in regions of reflex edges than large ones. The elimination continues until
all data points are on the surface and the elimination function does not decrease anymore.

The �–indicator Approach of Veltkamp

In order to describe the method of Veltkamp [Vel94, Vel95] some terminology is required. A�–
indicator is a value associated to a sphere through three boundary points of a polyhedron which is
positive or negative. Its absolute value is computed as�� �

� , where
 is the radius of the surrounding
circle of the boundary triangle and the radius of the surrounding sphere of the boundary tetrahedron.
For�–indicator the value is taken negative if the center of the sphere is on the inner side, and positive
if the center is on the outer side of the polyhedron. Note, that the�–indicator is independent of the size
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of the boundary triangle (tetrahedron, respectively). Therefore, it adapts to areas of changing point
density. Aremovable faceis a face with positive�–indicator value.

The first step of the algorithm is to calculate the Delaunay tetrahedrization. In the second step, a
heap is initialized with removable tetrahedra which are sorted according to their�–indicator value.
The removable tetrahedra are of the same boundary types as in Boissonnat’s volume–oriented ap-
proach [Boi84]. The tetrahedron with the largest�–indicator value is removed and the boundary is
updated. This process continues until all points lie on the boundary, or no further removable tetrahedra
exist.

The main advantage of this algorithm is the adaptation of the�–indicator value to variable point
density. Like Boissonnat’s approach, the algorithm is restricted to objects without holes.

The Approach of Schreiber and Brunnett

The approach of Schreiber and Brunnett [Sch97, SB97] uses properties of the Voronoi diagram of the
given sample point set for tetrahedra removal. One property is that the Voronoi diagram is dual to the
Delaunay tetrahedrization of a given point set. Each vertex of the Voronoi diagram corresponds to the
center of a tetrahedron of the tetrahedrization. Edges of the Voronoi diagram correspond to neighbor-
ing faces of the tetrahedra dual to its vertices. The same observation holds for Voronoi diagrams in the
plane which are used in the following explanation of the 2D–version of the algorithm.

In the first step, the Delaunay triangulation and the Voronoi diagram of� are determined. The second
step, selection of tetrahedra, uses a minimum spanning tree of the Voronoi graph. TheVoronoi graphis
the graph induced by the vertices and edges of the Voronoi diagram. Aminimum spanning tree(MST)
of a graph is a subtree of the graph which connects all vertices and has minimum summed edge length.
Edge length in our case is the Euclidean distance of the two vertices of the edge. A pruning strategy
is applied which possibly decomposes the tree into several disjoint subtrees. Each subtree represents
a region defined by the union of the triangles dual to its vertices.

Two pruning rules have been developed for that purpose:

1. All those edges are removed for which no end point is contained in the circumcircle of the dual
Delaunay triangle of the other end point.

2. An edge is removed if its length is shorter than the mean value of the radii of both circumcircles
of the dual Delaunay triangles of its Voronoi end points.

The number of edges to be eliminated is controlled by using the edge length as a parameter.

The resulting regions are then distinguished into inside and outside. In order to find the inside regions,
we add the complement of the convex hull as further region to the set of subtree regions. The algorithm
starts with a point on the convex hull which is incident to exactly two regions. The region different
from the complement of the convex hull is classified ”inside”. Then the label ”inside” is propagated
to neighboring regions by again considering points that are incident to exactly two regions. After
all regions have been classified correctly, the boundary of the constructed shape is obtained as the
boundary of the union of the region labeled ”inside”. An adaptation of this method to three dimensions
is possible.

The �–solids of Bajaj, Bernardini et al.

Bajaj, Bernardini et al. [BBX95, BBX97, BB97, BBCS97] calculate so–called�–solids. While �–
shapes are computed by using eraser spheres at every point in space, the eraser spheres are now applied
from outside the convex hull, like in Boissonnat’s approach [Boi84]. In order to overcome the approx-
imation problems inherent to�–shapes a re–sculpturing scheme has been developed. Re–sculpturing
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roughly follows the volumetric approach of Boissonnat in that further tetrahedra are removed. The
goal is to generate refined structures of the object provided the�–shape approach has correctly recog-
nized the coarse structures of the shape.

2.2 Surface Construction with Distance Functions

The distance function of a surface gives the shortest distance of any point in space to the surface. For
closed surface the distances can be negative or positive, depending on whether a point lies inside or
outside of the volume bounded by the surface. In the preceding section, we have already described an
algorithm which uses the distance function for the purpose of surface construction, but the question of
distance function calculation has been left open. Solutions are presented in the next subsection.

Besides marching cubes construction of surfaces as explained in Section 2.1.1, distance plays a major
role in construction of surfaces using the medial axis of a volume. The medial axis of a volume consists
of all points inside the volume for which the maximal sphere inside the volume and centered at this
point does not contain the maximal sphere of any other point. Having the medial axis and the radius
of the maximum sphere at each of its points, the given object can be represented by the union taken
over all spheres centered at the skeleton points with the respective radius. An algorithm for surface
construction based on medial axes is outlined in Section 2.2.1.

A further application of the distance function [BBX95] is to improve the quality of a reconstructed
surface.

2.2.1 Calculation of Distance Functions

The Approach of Hoppe et al.

Hoppe et al. [HDD�92, Hop94] suggest the following approach. At the beginning, for each pointp� an
estimated tangent plane is computed. The tangent plane is obtained by fitting the best approximating
plane in the least square sense [DH73] into a certain number� of points in the neighborhood of
p�. In order to get the sign of the distance in the case of closed surfaces, a consistent orientation of
neighboring tangent planes is determined by computing theRiemannian graph. The vertices of the
Riemannian graph are the centers of the tangent planes which are defined as the centroids of the�
points used to calculate the tangent plane. Two tangent plane centerso�
o� are connected with an
edgeo�o� if one center is in the�–neighborhood of the other center. By this construction, the edges
of the Riemannian graph can be expected to lie close to the sampled surface. Each edge is weighted
by � minus the absolute value of the scalar product between normals of the two tangent plane centers
defining the edge. The orientation of the tangent planes is determined by propagating the orientation at
a starting point by traversing the minimum spanning tree of the resulting weighted Riemannian graph.

Using the tangent plane description of the surface and their correct orientations, the signed distance is
computed by first determining the tangent plane center nearest to the query point. Its amount is given
by the distance between the query point and its projection on the nearest tangent plane. The sign is
obtained from the orientation of the tangent plane.

The Approach of Roth and Wibowoo

The goal of the algorithm of Roth and Wibowoo [RW97] is to calculate distance values at the vertices
of a given voxel grid surrounding the data points. The data points are assigned to the voxel cells into
which they fall. An ”outer” normal vector is calculated for each data point by finding the closest



2.2. Surface Construction with Distance Functions 17

two neighboring points in the voxel grid, and then using these points along with the original point to
compute the normal.

The normal orientation which is required for signed distance calculation is determined as follows.
Consider the voxel grid and the six axis directions��!
�"
�#�. If we look from infinity down each
axis into the voxel grid, then those voxels that are visible must have their normals point towards the
viewing direction. The normal direction is fixed for these visible points. Then the normal direction is
propagated to those neighboring voxels whose normals are not fixed by this procedure. This heuristic
only works if the non-empty voxels define a closed boundary without holes.

The value of the signed distance function at a vertex of the voxel grid is computed as the weighted
average of the signed distances of every point in the eight neighboring voxels. The signed distance of
a point with normal is the Euclidean distance to this point, with positive sign if the angle between the
normal and the vector towards the voxel vertex exceeds��Æ.

Bittar’s et al. Surface Construction by Medial Axes

The approach of Bittar et al. [BTG95] consists of two steps, the calculation of the medial axis and the
calculation of an implicit surface from the medial axis.

The medial axis is calculated from a voxelization of a bounding box of the given set of points. The
voxels containing points of the given point set� are assumed to be boundary voxels of the solid to be
constructed. Starting at the boundary of the bounding box, voxels are successively eliminated until all
boundary voxels are on the surface of the remaining voxel volume. A distance function is propagated
from the boundary voxels to the inner voxels of the volume, starting with distance� on the boundary
voxels. The voxels with locally maximal distance value are added to the medial axis.

The desired surface is calculated by distributing centers of spheres on the medial axis. The radius of
a sphere is equal to the distance assigned to its center on the medial axis. For each sphere, a field
function is defined which allows to calculate a scalar field value for arbitrary points in space. A field
function of the whole set of spheres is obtained as sum of the field functions of all spheres. The
implicit surface is defined as an iso–surface of the field function, that is, it consists of all points in
space for which the field function has a given constant value.

In order to save computation time, a search strategy is applied which restricts the calculation of the
sum to points with suitable positions.

The shape of the resulting surface is strongly influenced by the type of field function. For exam-
ple, asharpfield function preserves details while asoft function smoothes out the details. Also the
connectness of the resulting solid can be influenced by the shape function.

Because of the voxelization, a crucial point is tuning the resolution of the medial axis. If the resolution
of the axis is low, finer details are not represented very accurately. If it is high, the detail construction
is improved, but the surface may fall into pieces if the resolution is higher than the sample density.

The Power Crust Algorithm of Amenta and Choi

The latest reconstruction algorithm of Amenta al. [ACK01], thepower crust algorithm, uses an ap-
proximation of the medial axis transformation of volumes. The approximation is defined by the union
of polar ballswhich are a subset of the Voronoi balls of the sample point set� . Thepoleso�
o� of a
sample pointp are the two vertices of its Voronoi cell farthest fromp, one on either side of the surface.
The corresponding polar balls are the Voronoi balls$��	
� 
 $��	
� with %� � ��o�
p�.

The polar balls belong to two sets from which one is more or less filling up the inside of the object,
and the other the outside.



18 Chapter 2: State of the Art

The main part of the algorithm is to divide the set of polar balls into a set of inner balls which is
filling up the inside of the object, and a set of outer polar balls which are outside the surface. A
weighted Voronoi diagram, thepower diagram, for the polar balls is used for that purpose. The power
diagram divides the space into polyhedral cells, each cell consisting of the points in��� closest to
a particular ball, under a special distance function, called thepower distance. The power diagram
induces an adjacency relation between polar balls in that two balls are adjacent which have adjacent
power diagram cells. The inside and outside sets of balls are obtained by a labeling procedure which
uses this adjacency.

Finally, the piecewise–linear surface separating the cells of the power diagram belonging to inner
polar balls from the cells belonging to outer polar balls is determined. This so–calledpower crustis
the result of the algorithm.

2.3 Surface Construction by Warping

Warping–based surface construction means to deform an initial surface so that it gives a good approx-
imation of the given point set� . For example, let the initial shape be a triangular surface. To some
or all of its vertices, corresponding points in� are determined to which the vertices have to be moved
in the warping process. When moving the vertices of the mesh to their new locations, the rest of the
mesh is also deformed and yields a surface approximation of the points in� .

Surface construction by warping is particularly suited if a rough approximation of the desired shape is
already known. This simplifies detection of corresponding points.

Several methods of describing deformable surfaces have been developed in the past. Muraki suggested
a ”blobby model” in order to approximate 2.5–D range images [Mur91]. Terzopoulos, Witkin and
Kass [TM91, TWK88] made use ofdeformable superquadricswhich have to fit the input data points.

Miller et al. [MBL�91] extract a topologically closed polyhedral model from a volume data set. The
algorithm starts with a simple polyhedron that is already topologically closed. The polyhedron is de-
formed by growing or shrinking it so that it adapts to the object in the volume without changing its
topology, according to a set of constraints. A function is associated with every vertex of the polyhe-
dron, which associates costs with local deformation adherent to properties of simple polyhedra, and the
relationship between noise and feature. By minimizing these constraints, an effect similar to inflating
a balloon within a container or collapsing a piece of shrink wrap around the object is achieved.

A completely different approach to warping is modeling withoriented particles, suggested by Szeliski
and Tonnesen [ST92]. Each particle owns several parameters which are updated during the modeling
simulation. By modeling the interaction between the particles themselves the surface is being modeled
using forces and repulsion. As an extension Szeliski and Tonnesen describe how their algorithm can
be extended for automatic 3D reconstruction. At each sample location one particle with appropriate
parameters is generated. The gaps between the sample points (particles, respectively) are filled by
growing particles away from isolated points and edges. After having a rough approximation of the
current surface the other particles are rejusted to smooth the surface.

In the following three subsections three approaches are outlined which stand for basically different
methodologies: a purely geometric approach, a physical approach, and a computational intelligence
approach.

2.3.1 Spatial Free Form Warping

The idea of spatial free–form warping is to deform the whole space in which an object to be warped is
embedded in, with the effect that the object is warped at the same time. Space deformation is defined
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by a finite set of displacement vectors consisting of pairs of initial and target point, from which a spatial
displacement vector field is interpolated using a scattered data interpolation method. A considerable
number of scattered data interpolation methods is known in literature, cf. e.g. [HL93], from which
those are chosen which yield the most reasonable shape for the particular field of application.

The resulting displacement vector field tells for each point in space its target point. In particular, if the
displacement vector field is applied to all vertices of the initial mesh, or of a possibly refined one, the
mesh is warped towards the given data points [RM95].

The advantage of spatial free form warping is that usually only a small number of control displace-
ment vectors located at points with particular features like corners or edges is necessary. A still open
question is how to find good control displacement vectors automatically.

2.3.2 The Approach of Algorri and Schmitt

The idea of Algorri and Schmitt [AS96] is to translate a given approximated triangular mesh into a
physical model. The vertices of the mesh are interpreted as mass points. The edges represent springs.
Each nodal mass of the resulting mesh of springs is attached to its closest point in the given set� of
sample points by a further spring. The masses and springs are chosen so that the triangular mesh is
deformed towards the data points.

The model can be expressed as a linear differential equation of degree 2. This equation is solved
iteratively. Efficiency is gained by embedding the data points and the approximate triangular mesh
into a regular grid of voxels, like that one already yielded by the surface construction algorithm of the
same authors, cf. Section 2.1.1.

2.3.3 Kohonen Feature Map Approach of Baader and Hirzinger

The Kohonen feature map approach of Baader and Hirzinger [BH93, BH94, Baa95] can be seen as
another implementation of the idea of surface construction by warping. Kohonen’s feature map is a
two–dimensional array of units (neurons). Each unit&� has a corresponding weight vector��. In the
beginning these vectors are randomly chosen with length equal to�.

During the reconstruction or training process the neurons are fed with the input data which affect their
weight vectors (which resemble their position in 3D space). Each input vector� is presented to the
units&� which produce an output'� of the form

'� � �� 	 �

which is the scalar vector product of�� and�. The unit generating the highest response'� is the center
of the excitation area. The weights of this unit and a defined neighborhood are updated by

����� �� � ����� � (� 
 ����������

After updating the weight vectors are normalized again. The value(� �� ) 
 *� contains two values,
the learning rate) and the neighborhood relationship*� . Units far away from the center of excitation
are only slightly changed.

The algorithm has one additional difficulty. If the input point data do not properly correspond to the
neuron network it is possible that some neurons might not be moved sufficiently towards the desired
surface. Candidates are neurons which have not been in any center of excitation so far, and therefore
have been updated just by neighborhood update which usually is not sufficient to place units near the
real surface. Having this in mind, Baader and Hirzinger have introduced a kind ofreverse training.
Unlike thenormal trainingwhere for each input point a corresponding neural unit is determined and
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updated, the procedure in the intermediatereverse trainingis reciprocal. For each unit&� the part of
the input data with the highest influence is determined and used for updating&� .

The combination of normal and reverse training completes the training algorithm of Baader and
Hirzinger.

2.4 Incremental Surface–Oriented Construction

The idea of incremental surface–oriented construction is to build up the interpolating or approximating
surface directly on surface–oriented properties of the given data points.

For example, surface construction may start with an initial surface edge at some location of the given
point set� , connecting two of its points which are expected to be neighboring on the surface. The edge
is successively extended to a larger surface by iteratively attaching further triangles at boundary edges
of the emerging surface. The surface–oriented algorithms of Boissonnat [Boi84] and of Gopi [GKS00]
sketched in the following work according to this scheme. As the algorithm of Gopi, theball–pivoting
algorithm of Bernardini et. al. [BJMT99] follows the advancing–front paradigm, but it assumes that
normals are given at the sampling points.

Another possibility is to calculate an initial global wire frame of the surface which is augmented
iteratively to a complete surface. This is the idea of the approach presented in this thesis, and earlier
versions published in [Men95, MM98a, MM98b].
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Figure 2.2: Pointp� sees the boundary edgeeunder the largest angle. The points are projected onto the local tangent plane

of points in the neighborhood ofe.

Boissonat’s Surface–Oriented Approach

Boissonnat’s surface oriented contouring algorithm [Boi84] usually starts at the shortest connection
between two points of the given point set� . In order to attach a new triangle at this edge, and later on
to other edges of the boundary, a locally estimated tangent plane is computed based on the points in
the neighborhood of the boundary edge. The points in the neighborhood of the boundary edge are then
projected onto the tangent plane. The new triangle is obtained by connecting one of these points to the
boundary edge. That point is taken which maximizes the angle at its edges in the new triangle, that is,
the point sees the boundary edge under the maximum angle, cf. Figure 2.2. The algorithm terminates
if there is no free edge available any more. The behavior of this algorithm can be seen in Figure 2.3.
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Figure 2.3: This figure shows the behavior of a contouring algorithm like Boissonnat’s [Boi84] during the reconstruction of

a torus. The picture sequence was not reconstructed by the original software (which was not available).

Reconstruction with Lower Dimensional Localized Delaunay Triangulation

In [GKS00] an approach using lower dimensional localized Delaunay triangulation is used for sur-
face construction. It consists of mainly four steps: normal computation, candidate points selection,
Delaunay neighbor computation and triangulation.

The normal of each sample point is computed by a simple�-nearest-neighbor approach. The normals
of neighboring points are oriented consistently, so that an orientable manifold can be represented.
Candidate point selection generates a set of points�� which might be connected to a pointp in the
final triangulation, by a conglomerate of estimation functions. Delaunay neighbor computation is
performed in the projection of�� onto an estimated tangent plane�� of p.

In the final step, an advancing front algorithm is applied. The process starts with an initial point
and all triangles that surround it are taken as initial mesh. In general, boundary points of the current
triangulations and the Delaunay neighborhood information are used to extend the mesh until it is
complete.

2.5 Clustering

It may happen that more than one connected shape is represented in a sample data set. In that case,
most of the methods described up to now may have troubles. The difficulty can be overcome by
segmentingor clusteringthe sample point set� into subsets of points which are likely to belong to the
same component. The following approach of Fua and Sander [FS91, FS92a, FS92b] is an example of
how clustering can be performed.

The Approach of Fua and Sander

The approach of Fua and Sander [FS91, FS92a, FS92b] consists of three steps. In the first step, a
quadric surface patch is iteratively fitted to a local environment of every data point, and then the data
point is moved onto the surface patch. An additional effect of this step besides yielding a set of local
surfaces is smoothing of the given sample data.
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In the second step, the sample points together with their local surface patches are moved onto positions
on a regular grid.

In the third step, a surface–oriented clustering is performed. A graph is calculated which has the
corrected sample points of the previous step as vertices. An edge is introduced between two vertices
if the quadrics assigned to them are similar. A measure of similarity and a threshold are defined for
that purpose. The connected components of the graph define the clusters of the surface in the data set.

Each of these clusters can now be treated by one of the reconstruction algorithms of the previous
sections.

2.6 Discussion and Categorization of the New Approach

The strength of volume-oriented cell selection is the topological feasibility of the constructed volume.
A disadvantage of the approach is that it is less suited for surface pieces not bounding a volume.
Surface-oriented cell selection may be sensitive to grid resolution (voxel grid, MC surface extraction),
or may cause difficulties by filtering out the right triangles from a superset of triangles obtained in a
first phase, in order to achieve manifold surfaces.

Distance function approaches can be seen as a special case of the volume-oriented approach. They
have similar properties.

Surface warping approaches are reliable with respect to surface topology, but the definition of the
warping function is still a problem.

Incremental surface-oriented construction is suitable for surfaces not bounding a volume, which also
may have boundaries and holes. Its difficulty lies in the decision which points have to be connected.
Often this task is performed locally according to the advancing front scheme which may cause troubles
for not very dense sample sets.

A difficulty with all solutions is that almost no characterization of point sets has been given up to now
for which an algorithm is successful. Recent exceptions are the work of Amenta et al. [ABK98, AB98,
AC99, ACDL00, ACK01] and Adamy et al. [AGJ01]. Successful reconstruction can be characterized
by the quality of approximation of the original surface by the reconstructed surface. The quality of
approximation has the aspect of correct topology and the aspect of geometric proximity. For the case
of curves which has been mainly treated up to now, the derivation of ”sampling theorems” is possible
in a quite straightforward way. For surfaces the problem is more severe. Recently the nearest-neighbor
image has been discovered as a useful concept for describing surface approximation. This concept is
also used in this thesis. For the characterization of the necessary density of sample points, the concept
of the medial axis of a surface has shown to be useful.

The algorithm presented in the thesis can be categorized as surface-oriented. One of its particular
advantages is that arbitrary manifold surfaces with boundaries can be constructed. They need not to
be the surface of a volume. The algorithm constructs the surface incrementally, controlled by a surface-
skeleton which is determined in a first step. The skeleton reduces the above-mentioned difficulty of
surface-oriented approaches to decide which points have to be connected. Furthermore, in contrast
to most other approaches, the new algorithm is always on the ”save side”, that is it does not have to
remove superfluous surface elements.

We demonstrate the existence of sample sets for the case of surfaces of bounded curvature without
boundaries, for which a reliable behavior of the algorithm can be expected. The extension to surfaces
with boundaries seems possible but is not done here. Additionally, we give intuitive explanations for
the good behavior of the algorithm which can be noticed also at locations of infinite curvature, that is
sharp edges.
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Chapter 3

Outline of the Algorithm

The algorithm presented in this thesis has the following interface:

Input: A finite set� � �p�
 � � � 
p�� of points in 3D space.

Output: A straight-line manifold 2D cell complex which has the points of� as vertices.

A manifold 2D cell complex and related concepts are defined as follows.

Definition 3.1 (2D cell complex) A 2D cell complex (CC) ��
�
 + � is given by a set� of vertices,
a set� 
 � � � of edges, and a set+ 
 � � � � � of triangles. The elements of� ,�, and+ are
also calledcells.

(1) A CC ismanifold (MCC) if at most two triangles share a common edge.

(2) A CC isconnected if for every pair of pointsp,q there is a sequence of points starting withp
and ending withq in which each pair of consecutive vertices define an edge of the CC.

(3) A CC is agraph if + � �.
(4) A CC is amesh if every vertex and every edge has an incident triangle.

(5) A CC isnot self-intersecting if the intersection of any two cells is either empty or again a cell
of the CC.

(6) A CC is calledgeometric if the vertices are points, the edges are curves, and the triangles
are surfaces in�-dimensional space for some� , �. It is straight-line if the curves are line
segments.

An assumption of the algorithm is that the given point set� consists of points belonging to a surface
� in 3D space. The suspected surface needs not necessarily to be connected, and thus the resulting
surface has to be neither. The goal is that the application of the algorithm yields a straight-line mesh
which is not self-intersecting if� is a ”reasonable sample” of a non-self-penetrating surface.

The algorithm consists of two main phases. In the first phase, a so-calledsurface description graph
(SDG) is calculated.

A type of graph which can in principle be used as SDG is the Euclidean Minimum Spanning Tree
(EMST) of the given point set� . The EMST is a (geometric) tree with� as vertices so that the
sum of the Euclidean lengths of its edges is minimum over all trees connecting� . The example in
Figure 3.1 shows that the edges of the EMST follow the expected surface quite reasonably. More on
EMSTs is presented in Chapter 4.

Other favorable types of graphs are the�-environment graphs (�-EGs). Figure 3.2 shows an example.
The advantage of�-EGs is that they are more dense than the EMST, but still have the property of a
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Figure 3.1: The point set and the EMST of a skull data set.

favorable surface approximation for reasonable sets of sampling points. The density can be controlled
by the value of�. The�-EGs and their properties are described in Chapter 5.

Unfortunately, the EMST and the�-EG may contain edges unfavorable for reconstruction. For that
reason, they need to be slightly modified by eliminating so-calledbridge edges.

Figure 3.3 shows bridge edges connecting the two tori, but bridge edges can also be noticed for the
�-EG of Figure 3.2 if the non-clustered�-environment graph is compared with its clustered variant.

Figure 3.2: The�-environment graph of a skull for� � � (left) and its corresponding clustered variant (right).

Figure 3.3: The�-environment graph of two randomly sampled tori for� � � without the clustering approach.

The modification applied in order to avoid bridge edges is described in Chapter 5.

In the second phase, the SDG of the first phase is embedded in space and successively augmented
by edges and triangles in order to get a cell complex defining the desired reconstruction. Embedding
means arranging the edges incident to every vertex into an ordered cycle. The embedding is partial in
the sense that the cycle is only determined up to orientation. The sectors induced by two consecutive
edges of the ordered cycles are checked for whether they can be closed to form a triangle. In many
cases this is indeed possible, and the resulting triangle is reported as part of the desired manifold.
However, sometimes a triangle cannot be constructed in this manner, and an alternative procedure is
applied in order to complete the manifold. Figure 3.4 shows snapshots of the triangulation of the skull
data set. The triangulation algorithm is described in detail in Chapter 8.
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Figure 3.4: The reconstruction for the skull data set: intermediate stages of the reconstruction and the final result.

The overall approach of the algorithm follows the general principle of augmenting an initial SDG
by edges and triangles so that at any time the resulting cell complex is a reasonable fitting into the
data point set� . We have previously presented other solutions based on the same principle [Men95,
MM98a]. There, a longer sequence of graphs has been constructed before the algorithm has switched
to triangles. The advantage of the algorithm presented here is that the sequence of graphs has been
reduced to one graph, due to a quite general concept of environment graphs.

The algorithm is complemented by an analysis of its reconstruction behavior. For this purpose we
first give a precise definition of “reconstruction”. The definition is based on the concept of nearest-
neighbor (NN) image. It roughly tells that a mesh� is a reconstruction of a given surface� if the
NN-image of� on� is non-self-intersecting. Then, conditions on the sample point sets are derived
which are favorable in order that the mesh constructed by our algorithm is a reconstruction. These
conditions are used to demonstrate that a given sample set can be augmented to a sample set for which
our algorithm yields a reconstruction for closed surfaces without boundary of limited curvature, with
high heuristic probability.

The philosophy of NN-embedding is subject of Chapter 6. The analysis is described in Chapter 7 for
the SDG-phase, and in Chapter 9 for the phase of triangulation. Additional heuristic arguments for the
favorable behavior of the algorithm in interactive modeling environments are presented in Chapter 10.
Chapter 11 shows that the neighborhood information of the SDG can be used to smooth noisy data
sets.
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Chapter 4

The Euclidean Minimum Spanning Tree

In this chapter a number of properties of the EMST are compiled which underline the observation
that theEuclidean minimum spanning tree(EMST) is a useful skeleton for surface-oriented interpo-
lation of surfaces from a set of scattered points, as illustrated in Figure 4.1. Furthermore, algorithmic
considerations concerning the calculation of the EMST are presented.

4.1 The Euclidean Minimum Spanning Tree – Definition and Properties

In the following we assume that the reader is familiar with the basic terminology of graph theory, like
it is e.g. described in [PS85, Ede87]. Briefly, a graph� � ��
�� consists of a set� of vertices and
a set� of edges. The edges are defined as pairs of vertices. A path in a graph� is a sequence of
different vertices so that any two consecutive vertices are connected by an edge. A graph is connected
if there is a path between any two of its vertices. A cycle is a closed path, that is, its first and last
vertices coincide. A tree is an acyclic connected graph, that is, a graph without cycles.
The Euclidean minimum spanning tree is defined as follows.

Definition 4.1 (Euclidean minimum spanning tree) Let � � �p�
 � � � 
p�� be a finite set of points
in �-dimensional space. TheEuclidean minimum spanning tree (EMST) of� is a tree that connects
all points of� with edges so that the sum of its Euclidean edge lengths is minimum.

The set of all minimum spanning trees of� is denoted by���� �� �.

Theorem 4.2 (Uniqueness of the EMST)If the Euclidean distances between the points of a given
finite point set� are pairwise distinct, then the EMST is unique, that is,����� �� �� � �.

Proof: For simplicity, let in the following the union of a graph� � ��
�� with an edge�,� � �, be
defined as��
� � ����. The difference� � � is defined analogously.
Now, let� � ��
�� and- � ��
��� be two different EMSTs of� . The edges in� and- are
sorted in order increasing edge length.
Let �� be the first of these edges that is in one EMST and not in the other. W.l.o.g. let�� be in� but
not in-. This means, that every edge with edge length less than�� is in both or neither of the trees
�,-.
Consider the tree- � �� . Adding an edge to a tree always creates a cycle, so that- � �� must
contain at least one cycle. By removing any edge of this cycle we again get a tree. By definition both
trees�,- do not contain any cycles. This means that there must be at least one edge�� in the cycle
of- � �� which was in- but not in�. We remove that edge�� from- � �� so that we get a new
tree. �� - � �� � �� .
Because�� was the shortest edge in one tree but not in the other, and because all distances between
the points are pairwise distinct,�� is longer than�� and cannot be of equal length.
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Figure 4.1: EMSTs of various point sets. The approximation of the surface is quite natural.
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This means that. has an edge length sum lower than- because a longer edge�� has been replaced
by a shorter edge�� . But because- is already an EMST,. cannot exist. Thus,� and- must be
equal.

A case for which the EMST is not unique is displayed in Figure 4.2.

(b) (c) (d)(a)

Figure 4.2: An example of four possible EMSTs for a set of points arranged in a square.

Theorem 4.3 (EMST property of subtrees) Let � � �p�
 � � � 
p�� be a set of points in�-dimen-
sional space and� � ��
�� � ���� �� �. Let�� � �� �
 ��� be the graph with a connected
subset of edges�� 
 � and � � 
 � the set of points that is connected by edges of��. Then,
� � �� �
 ��� � ���� �� ��.

Proof: Let �� � �� �
 ��� be a connected subgraph of� � ��
�� with �� 
 � and�� 
 �. If
�� � �� �
 ��� is not an EMST then there exists a possibility to connect the points of�� with edges
of a set��� with shorter edge length sum. Then, because of�� 
 � and�� 
 � there is also a
possibility to connect the points� with edges of a set��
� �� �� ���� � ��� so that the sum of its
edge lengths is lower than in�. Consequently,� � ��
�� is not an EMST which is a contradiction.

In the following, let��p�
p�� denote the Euclidean distance between two pointsp�
p� in �-dimensional
space.
One important property of the EMST is that it connects neighboring points as stated in the next theo-
rem.

Theorem 4.4 (Nearest neighbor property of the EMST)Let p� be an arbitrary point of a finite
point set� in �-dimensional space which has a unique nearest neighborp����� , that is, there is
no other pointp� � � for which��p�
p������ � ��p�
p��. Then the edgep�p����� is part of every
EMST of� .

Proof: Follows immediately from the minimality property of the EMST in Definition 4.1.

Theorem 4.4 implies that each pointp� is connected with its nearest neighbor. If there is more than
one nearest neighbor with the same distance top�, thenp� is connected with one of them in the EMST,
cf. also Figure 4.2. In practice of EMST calculation, the resulting EMST in such cases depends on the
numerical precision (of the processor) and/or on the order of appearance of the given points during the
computation.

Theorem 4.5 (Leaves of the EMST)Let� be a finite point set in�-dimensional space. Letp� � �
be a leaf point of���� �� �, that is, a point with exactly one incident edge in the EMST. Letp� � �
be the point that is connected withp�. Thenp� is the nearest neighbor ofp�.

Proof: Follows immediately from Theorem 4.4 and the connectness of EMSTs.
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The consequence of Theorems 4.4 and 4.5 is that each leaf point of an EMST is connected with its
nearest neighbor.

The opposite of Theorem 4.4 is not true. If two points are connected by an EMST edge, the points are
not necessarily the nearest neighbors of each other, as proven in Theorem 4.6.
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Figure 4.3: Point p� is connected withp� in the EMST but no point of�p�, p�� is the nearest neighbor of the

other one. Note thatp�p� is the nearest neighbor edge between the EMST subtrees��p�� p������� �p�p������� and

��p� � p������� �p�p�������.

Theorem 4.6 (Property of EMST edges)Let p�p� be an edge of the EMST of� . Thenp� is not
necessarily the nearest neighbor ofp� and vice versa.

Proof: Figure 4.3 shows a 2D configuration where a pointp� is connected withp� but is not its nearest
neighbor.

Although Theorem 4.6 holds, all edges of an EMST connect subtrees of the EMST. These EMST edges
represent the nearest neighbor connection between these subtrees. In fact, each edge of the EMST is
in some sense a nearest neighbor edge (between subtrees) where single points can be considered as
trivial subtrees of the EMST (cf. Theorem 4.7 and Algorithm 4.1).

Theorem 4.7 (Prim [Pri57]) Let� � ��
�� be a graph with weighted edges and let���
 ��� be a
partition of the set� . Then there is a minimum spanning tree of� which contains the shortest among
the edges with one end point in�� and the other in��.

Proof: See [Pri57] or [PS85].

The preceding theorems show that the edges of an EMST connect points that lie close together in
space. On the other hand, it can be expected for a reasonably sampled surface that the point density
on the surface is higher than anywhere else in the surrounding space. In particular for non-convex
surfaces and objects consisting of more than one component, points lying far apart from each other
in space are unlikely to be neighboring on the surface. Furthermore, if it is necessary to reconstruct
very small and detailed surface structures, the point density at those areas should be higher than at
parts with less detail. With respect to these considerations the EMST turns out to be very suitable as
a surface-approximating skeleton. Figure 4.1 illustrates this observation at several examples. We can
observe at these examples that the EMST follows the shape of the object in a quite natural manner.

Another type of graph having the property of short edges are the Nearest-Neighbor Graphs (NNG)
[Vel94]. The nearest neighbor graph of a finite point set� connects each of its points to its nearest
neighbor(s). According to Theorem 4.4, the NNG is a subgraph of the EMST. A disadvantage of the
NNGs is that, in contrast to the EMST, they are in general not connected.

Since we here investigate the properties of EMSTs as surface approximants it is necessary to determine
the sharpest possible turn between two consecutive edges. For this purpose we calculate the minimum
angle between two adjacent edges in the EMST. In order to do this we first need a consideration on
the angles inside a triangle which is analyzed in the following theorem.
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Theorem 4.8 (Longest edge property in a triangle)Let � be a triangle with edges��
 ��
 �� where
� � /����
 0 � /����
 	 � /���� are the lengths of these edges. Furthermore, let�
 �
 � be the angles
that are opposite to the edges��
 ��
 ��. We assume that� � �����
 �
 �� is the largest angle in the
triangle. Then,	 � �����
 0
 	� and�� is the longest edge in�.

Proof: From the sine theorem [BS87] we know that

�

�
	���
�

0

�
	���
�

	

�
	���
� (4.1)

Additionally, we know that for�Æ � Æ � ���Æ, the equation

�
	����Æ � Æ� � �
	�Æ� (4.2)

holds.
W.l.o.g. we assume that� with � � �����
 �
 �� is the largest angle. We have to show that in that
case	 � � and	 � 0 holds. It is sufficient to show that	 � � because the sequence of equations for0
will be the same. Using Equation 4.1 we have

	 � � 
 �
	���

�
	���
�

Obviously, because of���Æ � � � � � � holds, the value� must be larger or equal to��Æ if � �
�����
 �
 ��. After these considerations we can make a case distinction.
For��Æ � � � ��Æ we obtain

�
	���

�
	���
� �

because� � �, � � ��Æ and�
	��� � �
	���.
In the case of��Æ 1 � � ���Æ we get
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by using Equation 4.2 and because of��� �� � ��Æ and�
	��� �� , �
	���. Therefore,

�
	��� ��

�
	���
� �

implying 	 , �. The same cases appear for the comparison of0 with 	.

A result of Theorem 4.8 is that the EMST maximizes the angles between adjacent edges because of
its minimum length property.
Using the result of the previous theorem, the minimum angle in an EMST can now be calculated.

Theorem 4.9 (Minimum angle in the EMST) Let � be a finite point set in�-dimensional space.
The minimum angle between two adjacent edges of���� �� � at an arbitrary pointp� � � is ��Æ.

Proof: Let� � ��
�� � ���� �� � be the EMST of a finite point set� . Consider two arbitrary
edges�� � p�p� , �� � p�p� of � that are incident to an arbitrary pointp� � � . If ��
 �� enclose
an angle� less than��Æ, then it is not the largest angle in the triangle� � ��p�
p�
p�� because
���Æ � � � � � � where�
 � are the angles that are opposite to��
 �� in �. From Theorem 4.8
we know that the largest angle in� is opposite to the longest edge. Therefore, either�� or �� is the
longest edge in�. This means that the pointsp�
p�
p� can be connected with two other edges that
have a lower edge length sum than/���� � /����. The consequence is that there also exists an edge set
�� with lower edge length sum than� that connects all points of� . This is a contradiction because
� � ��
�� is an EMST.
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In fact, the maximum turn of a surface that can be represented by an EMST is usually larger than��Æ

and depends strongly on the distribution of points which influence the length of adjacent EMST graph
edges.
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Figure 4.4: A 2D cross section through the surface of an object. The surface is drawn dotted. (a) The edges correspond to

the surface structure but they are not equal to the EMST. The desired reconstruction of this surface turn would be described

by the edgesca� ab. (b) The EMST of the pointsa,b,c connects the wrong points in comparison to the real surface. The

surface is not properly sampled and the EMST ofa� b� c does not follow the surface accurately. (c) The surface is sampled

properly so that the EMST of the shown points can follow the real surface turn. (d) The angle between the two edgesca� ab

is high enough so that the EMST of the pointsa� b� c describes a correct surface turn.

Taking the EMST as a surface skeleton results in the fact that the properties of the EMST are also
transferred to the type of surface that can be reconstructed. Therefore, the precision of the EMST as
stated in Theorem 4.9 affects the distribution of points that is allowed in order to properly describe a
surface by a surface graph.

A concrete example for a surface portion with a sharp edge at a surface point where the EMST preci-
sion has an effect is depicted in Figure 4.4. We see that it is crucial to scan the points at the correct
areas of the surface in order to avoid wrong structures of the EMST.

Another issue which is important for computational efficiency, is the number of edges that can be
incident to a point of an EMST. For the case of a point set in the plane we know the following.

Theorem 4.10 (Number of incident EMST edges to a point in 2D)The maximum number of edges
incident to a point of an EMST of a finite point set in the plane is 6.

Proof: Consider the optimal configuration in Figure 4.5. From Theorem 4.9 we know that the smallest
possible angle for an EMST is��Æ. That results in���

Æ

��Æ � � neighbors in the plane. Now, we have to
prove that all points must have the same distance to achieve the maximum number 6 for the possible
connected neighbors. Consider two consecutive edges�� � p�p�� , �� � p�p���� . We know that the
longest edge in a triangle throughp�
p��p���� , for example, is always opposite the largest angle in
the triangle, cf. Theorem 4.8. If one of the two edges��
 �� would be longer than the other one then it
would be the longest edge in the whole triangle and therefore be not part of the EMST. The other edge
�� � p��p���� cannot be longer than the other two edges because the opposite angle atp�p�� , p�p����
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Figure 4.5: The maximum number of EMST edges around a point of the given planar point set is 6. The distances between

consecutive pointsp�� � p���� are equal to��p�� p��
� for � � ��� � � � � ��. Provided that the distances to the middle point are

smaller only for numerical reasons, this EMST graph is the optimal structure. On the other hand, the shown EMST graph is

one of the possible EMST graphs for this point set.

is still ��Æ, and at least one of the angles in the (new possible) triangle induced by edges��
 �� with
non-equal length would have to be larger than��Æ. Therefore, all pointsp�� must have equal distance
to p�.

In three dimensions the number of possible EMST edges around an arbitrary point in���� �� � can
be higher.

Theorem 4.11 (Number of incident EMST edges to a point in 3D)The largest vertex degree, that
is, the number of incident edges of an EMST in 3D space is 12.

Proof: We place a number of edges��
 � � � 
 �� with arbitrary length at an arbitrary pointp� with
pairwise angles of minimum��Æ. W.l.o.g. let�� be the shortest edge atp� with scaled length 1. We
place spheres of radius�� at p� and at each so-calledanchor pointon ��
 � � � 
 �� with distance 1 top�.
Because each pairwise angle is at minimum��Æ the spheres cannot penetrate each other. They can
only touch each other which is the case if the angle of two neighboring edges is exactly��Æ sincep�
and the two anchor points form an equally-sided triangle (see Figure 4.6). The number of edges with
spheres at their anchor points that can be placed aroundp� without penetrating each other corresponds
to the problem of how many spheres with equal radius (� �

� ) can be placed at a center sphere atp�.
This problem is solved in [SvdW53, Lee56, CS88] and its number is limited to 12.�

Now, we have to show that there exists at least one configuration of edges atp� which is an EMST.
If all edges are replaced with edges that connect only the anchor points withp� this is at least one
possible configuration which is an EMST. This is because each anchor point has at least a distance of
1 to each other anchor point, the same distance as top�. Therefore, the edges atp� represent one of
the possible EMSTs for the anchor points andp�.

In Theorem 4.11 the maximum number of edges around a pointp� in the EMST has been computed.
In the ideal case this value is 12 but in practice it can be expected to be much lower. Especially, if the

�The oldest proofs appeared in the nineteenth century [Ben74, Hop74, G¨un75]. Other approaches can be found in
[Boe52] and [Was78]. The whole problem area is also known as thekissing number problem, cf. [CS88].
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60 degrees

anchor point

anchor point

p
i

Figure 4.6: The edges that can be placed aroundp� can have arbitrary length. Atp� and on each edge with distance 1 to

p� a sphere of radius�
�

is placed. This picture shows the situation where two edges form an angle that is exactly��Æ. All

spheres are touching each other becausep� and the two anchor points form an equally-sided triangle.

set of points describes a two-dimensional surface in three-dimensional space, the boundary for the 2D
case, which is equal to 6, applies more than for the 3D case.

Figure 4.7: The case of four incident EMST edges (solid lines) to a point on a sphere and their corresponding surface curves

(dashed lines). The nearer the points are to each other the more the situation for vertex degrees of the EMST resembles the

case in the plane than the case in 3D space.

Let us consider the case of sample points that are scattered over a sphere of radius 1. If more points
are present on the sphere, then the edges between the points on the sphere surface adapt better to the
3D distance between them. Therefore, the more points are scattered over the sphere the better is the
correspondence of the 3D case to the 2D case. Thus, the restrictions for the 2D case apply for the
number of edges around a pointp�. An example is shown in Figure 4.7.

Table 4.1 shows the statistics of vertex degrees for the points sets of Figure 4.1. The maximum of
six edges around a single pointp� is never reached, and even five edges around the point have never
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# of vertices of degree� in the EMST
torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 76 325 262 167 177 83 446 145
� � � 163 2020 975 379 356 211 1413 337
� � � 68 287 240 139 149 73 410 133
� � � 3 18 10 13 13 4 17 5

# edges 309 2649 1486 697 694 370 2285 619

Table 4.1: Statistics of vertex degrees for the EMSTs of our example point sets. The vertex degree is much lower than the

theoretic upper bound of 3D EMSTs. Even the bound of 6 for the vertex degree of the 2D case is not reached.

occurred in all of our examples. The maximum value here has been four, and in average we can expect
approximately two or three edges at a point.

However, for reasons of complexity the worst case has to be considered anyway. Here, if the max-
imum of 12 edges occurs then all surrounding points cannot have the same maximum vertex degree
[SvdW53]. There are several papers on this topic in which bounds are derived from the theory of
spherical packings in three-dimensional space which can be found in [CS88].

As a result, the number of EMST edges that are in average around a point can be expected equal to or
less than 4.

4.2 Computational Issues

The calculation of the EMST is a classical problem of computational geometry, and efficient algo-
rithms are known for it.

computation times in seconds
object # points

���� � ���� �� �

torus 310 1 0.03
cup 2650 11 0.32
head 1487 6 0.18
skull 698 3 0.08
puppet 695 3 0.08
cap 371 2 0.04
pharaoh 2286 10 0.29
tori 620 1 0.07

Table 4.2: The computation times of the Delaunay triangulation and the subsequent EMST calculation for our examples in

seconds on an SGI Octane R10000 at 250 MHz with 384 MByte of memory.

A frequent approach is to calculate the EMST out of the Delaunay triangulation of the point set,
because the EMST is a subgraph of the Delaunay graph [PS85]. The worst case time complexity
of the Delaunay triangulation is����� in 3D space [Joe89, Joe91]. The computation of the EMST
out of a supergraph requires�����  �� �� operations, where��� denotes the number of edges in the
supergraph. The number of edges in the 3D Delaunay triangulation can be����� in the worst case,
which results in����  �� �� for the EMST computation out of the Delaunay triangulation. Calculation
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of the EMST is possible by using one of the optimal spanning tree algorithms of graph theory, for
example that of Kruskal [PS85].

The computation times for our examples can be found in Table 4.2. For the calculation of the Delaunay
triangulation the software of M¨ucke has been used [M¨uc93b, Müc93a, EM94].

Algorithm 4.1 Computation of���� �� �

Input: Point set� � �p�
 � � � 
p��.
Operation: Compute the���� of � .
Let�� �� ��p��
 �� be the initial one-node-trees for� � �
 � � � 
 �.
Let� �� ���
 � � � 
 ��� be the set of all trees.
while ( ��� , � ) do

foreach ( �� � � with 2 � � �
 � � � 
 ��� � ) do
Determine the nearest neighbor tree�� � � of�� .
Let p�p� be the shortest connecting edge between�� and��.
�� �� �� � ��p�
p��
 �p�p��� ���.
� �� �� � ��� 
 ���� � ����.

end
end
Output: ���� �� ��

Another possibility is to calculate the EMST directly. A particularly suited spanning tree algorithm
for that purpose is that of Bor˚uvka. According to Ottmann & Widmayer [OW90] the algorithm of
Borůvka [Bor26] is reported to be the historically first algorithm for the computation of a minimum
spanning tree. It is shown in Algorithm 4.1. The union of graphs�� � ���
 ��� and�� � ���
 ���
used in the algorithm is defined as� �� ��� � ��
 �� � ���. At the beginning of the algorithm, an
initial forest of one-node-trees is established. Each vertex of� defines one tree of that forest. Then
for each tree�� its nearest neighbor tree�� is computed, which is the tree that contains the pointp�
not in�� which has the shortest Euclidean distance to the nearest pointp� of �� . Both trees are then
merged into one single tree, so that the number of all trees is decreased by one. This tree merging
process is repeated until the set of these trees has reduced to one tree.

Prim’s algorithm [Pri57] is a special case of the algorithm of Bor˚uvka. There, the process starts with
a single tree defined by an arbitrary vertex node. This initial tree is then sequentially extended by its
nearest neighbor connection to a new vertex, that is not already part of the current tree. As before, the
process is finished if all vertices have been connected to one tree.

4.3 Discussion

This chapter has dealt with the properties which make the EMST useful as an initial skeleton of a
surface. Experimental examples have demonstrated the favorable behavior of the EMST. Furthermore,
algorithmic aspects concerning the calculation of the EMST have been treated.
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Environment Graphs

In the previous chapter we have seen that the EMST can serve as a good surface approximation.
However, in Figure 5.1 we can notice that the torus ring is not closed with edges because of the
minimum length property of the EMST (cf. Chapter 4). As consequence, in this chapter we consider
more dense graph schemes, the so-called environment graphs which extend the concept of the EMST
and preserve to a large extent the favorable surface approximation properties of the edges which we
could observe for the EMST. Furthermore, we cope with the problem of bridge edges which may
connect parts of a surface over a large distance in an undesirable manner, as could be noticed for
example for the double torus in the preceding chapter, cf. Figure 4.1.

Figure 5.1: The point set and the EMST of a torus that consists of rings of points.

5.1 Environment Graphs

The following definition describes a very general concept of environment graphs which can be spe-
cialized to several known classes of graphs.

Definition 5.1 (Environment graph (EG)) Let� be a function that assigns to every line segment3 in
the�-dimensional space��� a set��3� of environments of3. The�-edge-environment graph (�-EG)
of a finite set of points in��� is a graph with vertex set� , whose edge set consists of all those line
segments� induced by pairs of points in� for which there exists an4��� � ���� with4����� � �,
that is, the4 -environment of� does not contain any point of� .

A typical example of an EG is the Delaunay graph whose edges are just those line segments of its
vertex set which have an empty surrounding sphere [PS85, Ede87]. In that case,��3� is the set of all
surrounding spheres of3.

39
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Definition 5.2 (Euclidean minimum spanning environment (EMSE)) For any pair of pointsp
q �
���, the Euclidean minimum spanning environment (EMSE) of their connecting line segment3 is
the intersection of the closed ball touchingq and centered atp, with the closed ball touchingp and
centered atq. The EMSE is denoted by4�����3�.

Let� be a set of points in���. The EMSE-graph of� is the�-EG with��3� �� �4�����3�� for
every line segment3.

The reason for introducing the EMSE lies in the following theorem.

Theorem 5.3 (EMSE-property) Let p
q
 r � ���, 3 the line segment connectingp andq.

(1) 3 belongs to an Euclidean minimum spanning tree of5 � �p
q
 r� if and only ifr �� 4�����3�.

(2) For any finite set� of points in���, the EMSTs of� are subgraphs of the EMSE-graph of� .

Proof:

(1) By definition of4�����3� there is no point inside the spheres of radius��p
q� aroundp,q so
that one of the pointsp,q is the nearest neighbor of the other one in5. By Theorem 4.4 we
know that nearest neighbors are part of an EMST.

(2) Each line segment3 of the���� �� � with 3 � pq does not have a pointr inside (and not
on the border of) the intersection of the spheres aroundp
q with radius��p
q� which is the
condition for each edge of the EMSE-graph. Let us assume such a pointr would exist forp
q.
W.l.o.g. there exists a path fromp (or q) to r that does not contain the pointq (or p). Obviously,
we know that��q
 r � 1 ��p
q�. If we modify the���� �� � by removingpq and adding the
edgeqr we get a connected graph with lower edge length sum. This cannot be true because the
���� �� � is of minimal length.

The EMSE-graph in general has more edges than an EMST which, according to the previous theorem,
is in some sense a ”lower bound” of the EMSE-graph. An ”upper bound” is given by the next theorem.

Theorem 5.4 (Delaunay property of the EMSE-graph)Let � be a finite set of points in���. The
EMSE-graph of� is a subgraph of the Delaunay graph of� .

Proof: The EMSE of a line segment3 comprehends an empty surrounding sphere of3.

The following corollary is an immediate consequence of this theorem.

Corollary 5.5 (Planarity of the EMSE-graph) Let� be a finite set of points in the plane. The points
are assumed in general position, that is, no four of them are co-cyclic. Then the EMSE-graph of� is
a planar graph.

Proof: The Delaunay graph of points in general position is a planar graph. Because the EMSE-graph
is a subgraph of the Delaunay graph, the EMSE-graph is planar, too.

Another property of the EMSE-graph which is an immediate consequence of the EMSE-property is
stated in Theorem 5.6.

Theorem 5.6 (Cycle length of the EMSE-graph)If a cycle of the EMSE-graph has length 3 then its
vertices define an equal-sided triangle.

Proof: The only case that all edges of a triangle have an empty EMSE-environment is the equal-sided
triangle.
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An implication of the theorem is that EMSE-graphs should be triangle-free with high probability.

Several properties of the EMST which are of local nature can also be found for the EMSE-graph.

Theorem 5.7 (Local EMSE-graph properties) Let� be a finite point set in��� andp
q � � .

(1) Let p be a leaf point of the EMSE-graph of� , that is, a point with exactly one incident edge,
which is connected with a pointq. Thenq is the nearest neighbor ofp.

(2) Letpq be an edge of the EMSE-graph of� . Thenp is not necessarily the nearest neighbor ofq
and vice versa.

(3) The minimum angle between two adjacent EMSE-graph edges at an arbitrary pointp of the
graph is��Æ.

(4) The maximum number of edges incident to a point of an EMSE-graph of a point set in the plane
is 6.

(5) The largest vertex degree, that is, the number of incident edges, of an EMSE-graph in 3D space
is 12.

Proof: Analogously to the EMST case, cf. Chapter 4.

The suitability of the EMSE-graph as a framework of surface interpolation lies in the fact that the
EMSE is not able to ”escape” into the empty space as the surrounding spheres of the Delaunay tri-
angulations can. Figures 5.2 and 5.3, left column, show the Delaunay triangulation of our series of
sample data sets. In the second column from the left, the corresponding EMSE-graphs are depicted.

Here the question arises for environment graphs induced by spheres which are prevented to escape.
An immediate possibility is that the corresponding environment of an edge is bounded by the unique
sphere having the edge as its diameter. This type of graph is well-known asGabriel graph[GS69]
which has been preferably used in the plane. Both graph classes, the EMSE-graphs and the Gabriel
graphs, can be seen in the much wider framework given by the concept of�-environment graphs.

Definition 5.8 (�-environment graph (�-EG)) Let � � ��, �
� � ��� be a line segment, and� a
plane in��� containing�.

For � � �, let��, �� be points on the line induced by� located symmetrically with respect to its center
� �� �

� ��� ��, that is
�� � ��� ��� ���


�� � ��� ��� ����

Let������ be the intersection of the disc in� with center�� through� with the disc in� with center
�� through�, cf. Figure 5.4 (left).

For � 1 �, let��, �� be points on the perpendicular line in� through the center� of an edge� � ��

located symmetrically with respect to its center, with

���� ���� � ���� ���� � �� 
 ���� ���

where� 
 � denotes the Euclidean norm. The environment������ is defined as the intersection of the
disc with center�� through� and� with the disc with center�� through� and�, cf. Figure 5.4 (right).

Let����� be the set of points obtained by rotating������ around�. ����� is called the�-environment
of �. The environment graph with�-environments as environments is called�-environment graph. In
2D space� is replaced with the 2D space and����� �� ������.
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Figure 5.2: From left to right: the Delaunay triangulation�� �� �, the�-environment graph for� � �� �
�
� �� Note, that the

EMSE-graph corresponds to a�-environment graph with� � �.
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Figure 5.3: From left to right: the Delaunay triangulation�� �� �, the�-environment graph for� � �� �
�
� �� Note, that the

EMSE-graph corresponds to a�-environment graph with� � �.

Sometimes we also will use���p
q� � ����� as another notation of the�-environment of an edge
� � pq.
In 2D space, the value� � � yields the Gabriel graph, in 2D and 3D space� � � yields the EMSE-
graph.
In two dimensions, the�-environment graphs for� � � correspond to thelune-based neighborhood
graphsof Kirkpatrick and Radke for their� � �, for � � � to theircircle-based neighborhood graphs
for their� between� and� [KR85, Rad88]. Recently, Rao [Rao98] has independently generalized the
neighborhood graphs to higher dimensions. Up to the�-parameterization, our�-environment graphs
are the same as his lune-based neighborhood graphs.
Figures 5.2 and 5.3 show�-EGs for� � �, �

� , and� of our sample data sets. We can notice that
also in the 3D-case the resulting graph yields a reasonable, almost planar approximation. The number
of ”crossing” edges is very small, and decreases with increasing�. Figure 5.5 shows the edges of
�-environment graphs for� � ��

� which additionally are Delaunay edges. Even with this restriction,
many edges useless for reconstruction are delivered. On the other hand, the chance seems to be good
that the desired mesh is a subset of this graph. Based on this observation it might be possible to find a
surface reconstruction algorithm that works by eliminating the superfluous edges from the graph.
As we can see from our examples, the number of edges in the�-EG decreases with increasing�.
Some statistics of vertex degrees, that is, the number of points with� incident edges in the�-EGs for
� � �
 �� 
 � are shown in Tables 5.1, 5.2, 5.3.
An interesting observation is that�-environment graphs have a hierarchical structure.

Theorem 5.9 (Subgraph hierarchy of the�-EG) For a given finite point set� in 3D space, if�� ,
��, the��-EG of� is subgraph of the��-EG of� .

Proof: The property results from the observation that����p
q� � ����p
q�.
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Figure 5.4: Left: The�-environment of an edgepq for � � � in the plane. The points for the values of� � � (p�� q�),

� � �
�

(p��� q��), � � � (p���� q���). Right: The�-environment for� � � in the plane. The points for the values of� � �

(p�� q�) and two values�� (p��� q��), �� (p���� q���) with �� 	 ��.

Figure 5.5: The�-environment graph restricted to the edges of the Delaunay triangulation, for� � � �
� .
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# of vertices of degree� in the 1-EG
torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 5 0 18 15 8 12 10 8
� � � 100 0 253 193 179 154 439 190
� � � 179 50 482 355 400 184 1111 345
� � � 26 2550 734 133 108 21 725 72
� � ! 0 50 0 2 0 0 1 5

# edges 426 5300 2453 1004 999 484 3563 868

Table 5.1: The statistic of vertex degrees for� � �.

# of vertices of degree� in the�
� -EG

torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 0 0 4 2 0 0 1 0
� � � 42 0 108 50 52 83 144 82
� � � 162 50 384 320 272 183 767 307
� � � 92 2450 918 295 294 92 1080 174
� � ! 14 150 66 30 74 13 268 49
� � � 0 0 7 1 3 0 26 8

# edges 504 5350 2708 1199 1242 574 4203 1037

Table 5.2: The statistic of vertex degrees for� � �
� .

In the following we will consider some useful properties of�-EGs.

Theorem 5.10 (Properties of the�-EG, � � �) �-environment graphs for� � � have the following
properties:

(1) The environment���p
q� is the intersection of the ball with centerp� throughp andq with the
ball with centerq� throughp andq.

(2) The�-EG is a subgraph of the Delaunay graph.

(3) For a set of points in the plane in general position, the�-EG is a planar graph.

(4) If � � � � � then the�-EG is a connected graph.

Proof:
(1) By definition,����p
q� is the intersection of the discs in� with centersp�
q� and radii��p�
q�,

��p
q�� which is rotated around� � pq. If we first rotate the discs aroundp�
q� we get balls
around the points throughp
q. The intersection of these balls is���p
q�.

(2) For� � � the sphere aroundm with radius�� 
 ��p
q� is obviously contained in���p
q�. It
is known from the Delaunay graph, that all Delaunay edges have at least one circumscribing
empty sphere.

(3) The�-EG is a planar graph because it is a subgraph of the Delaunay graph which is known to
be a planar graph for points in general position.
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# of vertices of degree� in the�-EG
torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 0 0 0 0 0 0 0 0
� � � 7 0 18 8 1 31 11 11
� � � 59 1 101 83 31 100 167 116
� � � 118 1472 377 265 221 127 551 221
� � ! 84 773 548 226 255 87 733 148
� � � 34 302 416 100 146 19 682 75
� � " 7 100 25 13 29 7 110 32
� � � 1 2 2 3 11 0 27 8
� � � 0 0 0 0 1 0 4 8
� � �� 0 0 0 0 0 0 0 1
� � �� 0 0 0 0 0 0 0 0
� � �� 0 0 0 0 0 0 1 0

# edges 672 6142 3637 1585 1715 734 5759 1407

Table 5.3: The statistic of vertex degrees for� � �.

(4) From Theorem 5.9 we know that the 1-EG is a subgraph of every�-EG with � � � � �. From
Theorem 5.3 we know that the EMST is a subgraph of the EMSE-graph, which is identical to
the 1-EG. Because the EMST is connected, the 1-EG and thus all�-EGs under consideration
are connected.

Theorem 5.11 (Properties of the�-EG, � 1 �) �-environment graphs for� 1 � have the follow-
ing properties:

(1) The�-EG generally is not a subgraph of the Delaunay graph.

(2) For a vertex set in the plane, the�-EG generally is not a planar graph.

(3) Let r be a point in����
��. Then the angle� at � of the line segments�� and �� satisfies
� � ���� �� ��#�
	� ��

��	��
�, ��Æ � ���� 1 ���Æ
 with equality for the points on the

boundary of����
��.

(4) Let r be a point with an angle at the line segments�� and�� at r which is at least equal to�,
��Æ � � 1 ���Æ. Then� is in�������
�� with ���� �� �#�$ ����.

Proof:

(1) As known for the Delaunay graph every edge has at least one circumscribing empty sphere.
Because of Theorem 5.9, for every edge where a pointr is inside its smallest circumscribing
sphere a value smaller than 0 for�� can be found so thatr � ����p
q� .

(2) Non-planar means that there can be intersections in the plane. Figure 5.6 shows an example of
a�-EG,� 1 �, in the plane with intersecting edges.

(3) We consider�����
�� in the plane� spanned by�, �, and�, cf. Figure 5.7. For� 1 �, the
planar environment�����
�� consists of two disc segments of identical shape, separated by the
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qp

s r

Figure 5.6: A �-EG for � 	 � in the plane. It shows that intersecting line segments are possible. The smaller� gets the

more likely intersections become.

line segment� � ��. The definitions yield a radius of


 �

�
� � ���

�

 ������

By the sine-theorem, the ratio of����� and the sine of the angle� which is opposite to� in the
triangle�, �, �, is equal to�
, that is

�����
�
	���

�
�

� � ��� 
 �����


if � is on the circular boundary of the disc segment. This is just the formula of the theorem
written reciprocally. If� is in the inner of the disc segment,� is larger than on the boundary.
Because� , ��Æ, that means that�
	��� is less than for the boundary, and thus the inequality
of the theorem holds.

||p

γ

r
||.β q 

r

p q

Figure 5.7: The angles at points inside the�-environments.

(4) From (3) we know that the angle is equal to� if r is on the arc bounding�������
��. Figure 5.8
depicts the situation ifr is outside of�������
�� and an edge of the triangle induced byp, q,
andr intersects the arc. In this case we get

���Æ � � � �� Æ � 6� ��� ��� � Æ
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that is,
6 � � � ���

Because�� , �, the angle atr is less than�.

If the edges of the triangle do not intersect the arc, it can be immediately seen, that the angle at
r is larger than�.

Thus no points outside of�������
�� with angle equal or larger than� exist.

||p||.β q 

α
α’

ϕ γ

r

δp q

r

Figure 5.8: The angle at points that are outside the�-environment.

Corollary 5.12 (Angles at distant points) Let � be a point outside the environment����
�� of an
edge� � ��, � � �. Then the angle at� is less than the angle� satisfying�
	��� � ��

��	��
,

� � ��Æ.

Proof: The corollary is an immediate consequence of assertion (4) of the preceding Theorem 5.11.

An interesting observation for later use is that for a triangular mesh which is a subgraph of a�-EG,
for � 1 �, the maximum angle of a triangle is less than the angle� corresponding to�.

5.2 Clustered Environment Graphs

As we have recognized from the examples, EMSTs and environment graphs are in principle well-
suited for reconstruction. They, however, show two difficulties which may sometimes occur. The
first difficulty is the occurrence of long ”bridge edges” which could already be noticed in some of
the examples of the previous chapter. In order to avoid bridge edges, we introduce the clustered
environment graphs which are subgraphs of the environment graphs.

Another effect is that the environment graph of a surface may not be locally planar, even in the clus-
tered version. In the plane, for example, this may happen for co-cyclic points. We give heuristic
criteria in order to identify critical edges and to remove them from the graph.

5.2.1 Intersecting Edges

We can notice in the examples that the edges of the environment graphs seem to be located close to
the surface without ”intersection”.
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In order to reduce the unlikely case of intersecting edges further, we use the following concept of
7-intersecting line segments generalizing the notion of intersection of line segments from the plane to
line segments in space.
This concept uses the so-calleddihedral anglebetween adjacent triangles.

Definition 5.13 (Dihedral angle) Let �� and �� be two triangles which share a common edgepq.
Then the intersection of�� and �� with a plane perpendicular to, and intersectingpq consists of two
incident line segments. The smaller one of the two angles between those line segments is denoted as
thedihedral angle between�� and��.

Now,7-intersecting line segments can be defined as follows.

Definition 5.14 (7-intersecting line segments)Let be7 , �Æ. Two line segments3� � p�q� and
3� � p�q� in 3D space without common vertex are called7-intersecting if they have the following
properties:

(1) For any two triangles�� � ��p�
q�
 r �� and�� � ��p�
q�
 r ��, r� � �p�
q��, r� � �p�
q��,
which share a common edge, the dihedral angle between�� and�� is less than7.

(2) The dihedral angles atp�q� andp�q� exceed��Æ.

The following theorem shows that the concept of7-intersecting edges is reasonable in the plane.

Theorem 5.15 Two line segments3� � p�q�, � � �
 �, in the plane intersect if and only if the3� are
7-intersecting for7 � �Æ.

Proof: If 3� and3� intersect, all the pairs of triangles mentioned in (1) of the definition have a dihedral
angle of�Æ. This implies7 � �Æ. The angles of (2) are equal to���Æ and thus larger than��Æ, as
demanded.
If 3� and 3� do not intersect, we distinguish between two cases. The first one is that each of the
segments is completely in one of the half-planes induced by the line of the other. Then the triangles
obtained by triangulating the quadrilateral spanned by3� and3� have a dihedral angle of���Æ. Oth-
erwise, the line of one of the segments, say3�, intersects the other segment, here3�. Let p� be the
vertex of3� that is closer to3�. Then the triangles��p�
q�
p�� and��p�
q�
p�� have a dihedral
angle of���Æ. In both cases the condition of the theorem does not hold.

Our experimental experience shows that��Æ � 7 � ��Æ is a suitable choice in the case of curved
surfaces. The examples of this chapter have been constructed with a value of7 � ��Æ.

5.2.2 Clustered�-Environment Graphs

Clustered�-environment graphs are obtained by a greedy clustering scheme which yields a subgraph
of a�-environment graph without edges of exceptional length.
The greedy clustering scheme consists of three phases:

1. For every pointp, a next nearest neighborq of p is iteratively determined in order of increasing
distance, as long as the edgepq belongs to the�-environment graph. Each of these edgespq
is stored as virtually incident top. That approach corresponds to an iterative nearest neighbor
extension of the neighborhood ofp, under consideration of the empty-�-environment constraint.

For every pointp, a radius
�p� is defined.
�p� is the Euclidean length of the last edgepq that
was added as virtually incident top.
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Algorithm 5.1 Computation of the clustered�-environment graph

Input: Point set� � �p�
 � � � 
p�� in 3D space.
Operation: Calculation of the clustered�-environment graph:
� �� ��
 ��.
� �� ��
 ��.

�p� �� � for all p � � .
foreach ( p � � ) do

repeat
Search the next nearest neighborq of p.
if ( the�-environment of edgepq is empty) then

Store this edgepq asvirtually incident to p.

�p� �� ����
�p�
 ��p
q��. // update sphere radius

end
until ( pq does not have an empty�-environment)

end
Insert all virtual edges into�.
repeat

foreach ( pair p
q � � with intersecting spheres, that is, where��p
q� � 
�p� � 
�q� ) do
if ( the connectionpq has an empty�-environment) then

Storepq asvirtually incident to p andq.

�p� �� ����
�p�
 ��p
q��. // update sphere radii


�q� �� ����
�q�
 ��p
q��.
end
if ( 
�p� , ��p
q� ) then 
�q� �� ����
�q�
 
�p�� ��p
q�� ;
if ( 
�q� , ��p
q� ) then 
�p� �� ����
�p�
 
�q�� ��p
q�� ;

end
Insert all new virtual edges into�.

until ( no edge has been memorized asvirtually incident and no
�p�
 
�q� has been updated)
foreach ( virtual edgepq of� in order of increasing length) do

if ( the connectionpq does not7-intersect with all edges of� ) then
Insertpq into�.

end
end
Output: � as clustered�-environment graph of� .

2. All those edgespq with empty�-environment are added as virtual edges for which��p
q� �

�p� � 
�q�.

All radii 
�p� are updated with the maximum length of the virtual edges incident top.

For all q with ��p
q� 1 
�p�, the radius is updated to
�q� �� ����
�q�
 
�p�� ��p
q��.
Step 2 is repeated until these actions do not deliver any new virtual edge and no update of any
radius occurs.

3. Then, all virtual edges are considered in order of increasing length. If a virtual edgepq does not
7-intersect any edge of the current graph�, then it is added to�. This process is terminated if
all virtual edges have been considered.

The motivation for this clustering approach is as follows. Step 1 of the algorithm determines an intial
radius of a sphere for each pointp in which all connecting edgespq to pointsq � � inside this sphere
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have an empty�-environment. This radius is a first estimation for the length of edges that deliver a
good surface approximant. Therefore, all edgespq with empty�-environment and length less than or
equal to
�p� can be stored as virtual edges.

In the second step, the radii of points in the neighborhood of each point are used to apply a controlled
enlargement of these radii. Therefore, all pointsp
q with intersecting spheres are updated by the
maximum of
�p� and��p
q� if the �-environment���p
q� of the edge between them is empty of
points. Additionally, all pointsq that are inside a sphere of a pointp are updated with the maximum
of 
�q� and their distance to the border of the sphere ofp. Since the update of some radii might
cause new intersections with other spheres, the second step is repeated until no more update takes
place. The generated radii of the second step are used to determine another set of virtual edges that are
established between pointsp
q with intersecting spheres and whose connecting edgepq has an empty
�-environment. Because all radii have been generated with respect to the distribution of points in the
neighborhood of each point, the total length of each virtual edge is limited. Therefore, the virtual
edges can be considered as good surface approximants. An analysis that the limitation of the length
of graph edges indeed delivers “good surface approximants” is given in the next two chapters.

The third and last step is used to determine the order how the virtual edges of all points are inserted as
final edges of the graph. Here, the edges are considered in order of increasing length, since we assume
that shorter edges are better surface approximants than longer ones.

The algorithm should work well if at a vertexp with a bridge edge in its�-environment graph, vertices
not adjacent top are in a neighborhood of a radius far less than the length of the edge.

Algorithm 5.1 summarizes this procedure in pseudocode notation.

Figures 5.9 and 5.10 show the resulting clustered�-environment graphs of our test cases for� � �,�� ,
and�. As can be noticed, the number of long edges has significantly reduced. The statistics of vertex
degrees of these graphs, that is the number of incident edges to a point, are given in Tables 5.4, 5.5,
5.6. The difference of the number of edges of the clustered�-environment graphs in comparison to
the complete�-environment graphs are given in Table 5.7.

5.3 Computational Issues

The computation of the planar relatives of our�-environment graphs, the�-neighborhood graphs, has
been intensively investigated in the thesis of Rao [Rao98]. Rao also has presented an approach to the
calculation of special three-dimensional cases, namely�-environment graphs for� � �.

The straightforward approach to the calculation of the�-environment graph is to check all pairs of
points for whether they have an empty environment. This approach may be feasible for very small
point sets, but cannot be applied to larger sets. A better alternative is the filtering approach. The
filtering approach uses a reasonable supergraph�� of the desired graph�, and removes those edges
from�� which do not satisfy the empty-environment criterion.

A natural supergraph for� � � is the Delaunay triangulation. The Delaunay triangulation often works
quite well, but it may have����� edges in 3D space in the worst case,� the number of vertices.

An idea of constructing an other type of supergraph, thesector supergraph, can be found in the work
of Yao [Yao82, Rao98]. For every pointp, the space is subdivided into pyramidal sectors with apex
p. If the sectors are sufficiently narrow, it can be shown that every point in which is more distant
than a certain bound dependent on the distance of the nearest neighbor ofp in the sector does not have
an empty environment. The supergraph�� contains all connections fromp to those points in as
edges which do not satisfy this criterion. For� � �, Yao has shown that the sector supergraph only
contains���� edges. The edges of the supergraph can be determined by nearest-neighbor search as
described in Appendix B.
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Figure 5.9: The clustered�-environment graphs for� � �, �
� , and�.
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Figure 5.10: The clustered�-environment graphs for� � �� �
� � ��

# of vertices of degree� in the clustered 1-EG
torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 5 0 20 21 14 13 14 13
� � � 105 0 271 193 180 158 447 211
� � � 175 100 474 349 396 179 1104 343
� � � 25 2550 722 133 105 21 721 53
� � ! 0 0 0 2 0 0 0 0

# edges 420 5250 2436 998 991 475 3552 838

Table 5.4: The statistics of vertex degrees for the clustered�-environment graph.

Independent from the type of supergraph, the main remaining algorithmic task is to check the empti-
ness of the environments of the edges efficiently. An approach is to consider the set of all environments
together, and check the containment of points by e.g. space-sweeping. Another alternative is to pre-
process the points for efficient query processing with the environment of the edges. Yao has proposed
solutions for that mainly for the planar case, under the view of worst-case efficient data structures.

As a heuristic approach we propose to proceed like for the�-nearest neighbor search of Appendix B.
For the Delaunay triangulation as supergraph, the Delaunay triangulation can be used for the search
procedure, too.

For the sector graph, a hierarchical tetrahedrization defined as follows is useful. A hierarchical tetra-
hedrization is given by a tree. The nodes of the tree represent tetrahedra. The root tetrahedron envelops
all other tetrahedra. Every non-leaf-tetrahedron� has succeeding tetrahedra which are defined by a
split pointp that splits the tetrahedron into four sub-tetrahedra. The tetrahedrization defined by a hier-
archical tetrahedrization consists of the tetrahedra at its leaves. The advantage of this tetrahedrization
is that it can easily be manipulated.

In order to check for emptiness, we first search for the tetrahedra incident to the edge� under consid-
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# of vertices of degree� in the clustered�� -EG
torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 0 0 4 2 1 3 1 2
� � � 47 0 112 52 53 84 147 97
� � � 159 100 384 318 271 181 774 319
� � � 91 2450 914 295 293 91 1077 168
� � ! 13 100 66 30 74 12 261 33
� � � 1 0 7 1 3 0 26 1

# edges 500 5300 2704 1198 1240 569 4193 998

Table 5.5: The statistic of vertex degrees for the clustered�
� -EG.

# of vertices of degree� in the clustered�-EG
torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 0 0 0 0 0 0 0 0
� � � 7 0 18 14 1 31 11 14
� � � 59 51 113 84 31 101 174 124
� � � 121 1626 367 271 227 129 571 237
� � ! 82 717 550 217 254 86 736 160
� � � 33 203 414 97 143 17 682 68
� � " 7 52 23 13 28 7 95 16
� � � 1 1 2 2 10 0 13 1
� � � 0 0 0 0 1 0 3 0
� � �� 0 0 0 0 0 0 0 0
� � �� 0 0 0 0 0 0 0 0
� � �� 0 0 0 0 0 0 1 0

# edges 670 5916 3627 1569 1708 731 5704 1338

Table 5.6: The statistic of vertex degrees for the clustered�-EG.

eration. Then further tetrahedra are determined successively by using the family of�-environments to
define a distance function around�. The vertices of the tetrahedra are checked for containment in the
environment����. Search is terminated if a vertex is in the environment, or if the distance defined by
���� is completely exhausted.

Tetrahedrizations have also been used as auxiliary data structure for calculation of the candidate edges
of the clustered environment graph.

# of difference edges between standard and clustered�-EG
torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 6 50 17 6 8 9 11 30
� � �

� 4 50 4 1 2 5 10 39
� � � 2 226 10 16 7 3 55 69

Table 5.7: The difference of the number of edges of the standard�-EG and the clustered�-EG.
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5.4 Discussion

In this chapter more comprehensive classes of graphs which are suitable as skeleton of a surface
have been defined and investigated. The problem of bridge-edges has been treated by introducing
so-called clustered environment graphs. Chapter 7 will present arguments that this approach is indeed
successful.
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Chapter 6

Approximation and Reconstruction

In this chapter, we fix the notion of a good reconstruction. We do that by considering the embeddability
of a constructed mesh onto the surface from which the finite input point set has been sampled. We
favorize a special type of embedding, callednearest–neighbor–embedding. We show that meshes
with sufficiently short edges and triangles of not too large angles can be embedded in that sense.
Because the existence of a mesh which can be embedded is necessary in order that a reconstruction
algorithm can find an embeddable mesh at all, these investigations have implications on the choice
of the sampling sets to which a reconstruction algorithm is applied: the algorithm has to be able
to construct meshes which satisfy the recognized conditions for the existence of a nearest-neighbor
embedding.

6.1 Surface Approximation and Reconstruction

The following definition fixes the notion of approximation of a surface by a straight-line manifold
2D-CC and the notion of surface reconstruction.

Definition 6.1 (Reconstruction) Let us consider a given surface� and a straight-line manifold 2D-
CC� with vertices on�. A geometric manifold 2D-CC�� over the vertices of� which are on� is
called anembedding of� into � if there is a continuous function from� to � which

(1) is a one-to-one mapping between� and��,

(2) is the identity on the vertices,

(3) maps edges to edges, and faces to faces.

� is calledembeddable into � if an embedding�� of � into � exists. A surface is calledrecon-
structible from a finite set� of sampling points on� if a straight-line manifold 2D-CC� with vertex
set� exists so that� is embeddable into�.

An example of an embedding is the nearest-neighbor embedding.

Definition 6.2 (Nearest-neighbor (NN) embedding)Let �, � , and� � be defined like in the pre-
ceding definition. Thenearest-neighbor (NN) image of � on � is the set of all pointsp� � � for
which a pointp �� exists so thatp� is a nearest neighbor ofp on�.

� � is called anearest-neighbor (NN) embedding of� if

(1) every point on M has a unique nearest-neighbor-point on the surface�,

57
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(2) � � is an embedding of� under the nearest-neighbor (NN) mapping.

Condition (1) is required because in general a point in space may have more than one nearest neighbor,
and thus the mapping of� to its nearest neighbor image needs not to be a function in the sense
necessary for the definition of ”embedding”.

Not all surfaces are suitable for NN-embeddings. For example, if a surface has a sharp edge, like
for example a cube, points in space arbitrarily close to the surface exist which do not have a unique
nearest neighbor. The type of surface which is subject of the following definition is favorable for the
concept of NN-embedding.

Definition 6.3 (Save-fringe (SF) surface) Let be
 , �, and� be a closed surface which possesses
a tangent plane at every point. Atp � � we consider the two closed balls of radius
 tangent to� at p.
If p is the only common point of those two balls with the surface,p is called
-save. If all pointsp � �
are 
-save, the surface is called asave-fringe (SF) surface. 
 is called asave-fringe (SF) radius of
�.

The set of all points of a shortest distance to� less than or equal to
 , � is called the
-fringe of �.
If 
 is a save-fringe radius, then the fringe is calledsave.

The concept of SF-surfaces can be extended to surfaces with boundary, too, but we do not include this
case in order to keep the presentation simple. Furthermore, the constant SF-radius can be replaced
with a function
 � � � ���. Then a pointp � � is called
�p�-save if the two closed tangent balls
at p of radius
�p� do just havep in their intersections with�. In order to guarantee saveness, the
function
�p� has to be chosen so that the balls do not reach the medial axis of�. The medial axis of a
surface is defined as the set of all points in space which have at least two closest points on the surface.
By using a function instead of a constant
, adaptivity to the surface behavior can be achieved. In
order to simplify the presentation, we will however restrict ourselves to the non-adaptive case.

Theorem 6.4 (Properties of SF-fringes)Let� be a compact SF-surface without boundary and with
SF-radius
 , �.

(1) Every point of the
-fringe of� has a unique nearest neighbor on�.

(2) If the length of a line segment3 � pq, p
q � �, is bounded by
, 3 is a subset of the
-fringe.

(3) If the edge length of a triangle� � ��p
q
 r �, p
q
 r � �, is bounded by
, � is a subset of the

-fringe.

Proof: Let q be a point in space with distance less than
 from �. We consider the ball$ with center
q through a nearest neighborq� of q on�. $ is tangent to� at q�. Let$� be the ball tangent atq� of
radius
 located on the same side as$. Then$ is a subset of$� and thus does not contain any further
points of�. Henceq� is unique, and thus (1) holds.

If the length of3 or the edge length of�, respectively, is less than
, andp is a vertex of3 respectively
�, then3 and� are completely in the open ball$��p� of radius
 and with centerp. For every point
p � �, the open ball$��p� is a subset of the
-fringe because all its points have distance less than

from �. Thus3 and� are subsets of the
-fringe, that is (2) and (3) hold.
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6.2 Sufficient Conditions for NN-Embeddable Line Segments

The following theorem gives sufficient conditions for the existence of NN-embeddings of single line
segments for SF-surfaces.

Theorem 6.5 (Sufficient condition for NN-embeddable line segments)Let� be a compact SF-sur-
face without boundary and with SF-radius
. If a line segment3 or a triangle � is completely in
the 
-fringe, then the NN-functionf (which exists by (1) of the preceeding theorem) from3 and �,
respectively, is continuous. In the case of3, f additionally is one-to-one. Thus, in that case, the image
underf is an embedding of3.

Proof: In the following we treat3 and � simultaneously, and call them “object”. The proof of
continuity of f is by contradiction. We assume that there is a pointu in our object at whichf is
not continuous. That means that a sequenceu�, � � �
 � � � 
�
 of points inu with  
���� u� � u
exists for which��f�u�� � f�u��� � �� for some�� , �, � � � � � � 
�. Because� is assumed to be
compact,f�u�� has an accumulation pointf� with ��f� � f�u��� � ��. That means that a subsequence
u�� , � � �
 � � � 
�, exists with 
���� f�u��� � f�.

Claim: ��u� f�u��� � ��u� f���.
If the claim would be wrong, then��u � f�u��� 1 ��u � f���, becausef�u� is the closest surface point.
Let �� �� ���u
 f�� � ��u
 f�u�����. Then
� , � exists so that for all pointsu� of our object with
��u�u��� 1 
�, ��u��f�u��� 1 ��u�f�u������. Because�� exists so that for all� , ��, ��u�u�� �� 1 
�,
we have��u � f��� �  
���� ��u�� � f�u����� �  
���� ��u�� � f�u��� � ��u � f�u��� � �� � ���u �
f���� ��u� f�u������ 1 ��u� f���, what cannot hold. This proves the claim.

We now have two closest surface pointsf�u�, f� of u, and hence a contradiction. This proves continuity
of f.
If f would not be one-to-one on a line segment3 � pq, then two pointsr andson3 would exist which
map to the same closest pointp� � �. p� may be equal top or to q, or an intersection point of3 and
�. r ands are on a common line which traversesp� in direction of its normal. But this means that3
is part of that line. Letq� be a point of� so that3� �� p�q� is a sub-segment of3 not intersecting�,
cf. Figure 6.1.

Let$� be the ball tangent to� at p� of radius
 with center on the line induced by3� and on the same
side of� like 3�. Because
 is an SF-radius,$� is free of points of�, and thus3� completely traverses
$�. This means in particular that the centerr� of $� is on3�. Because of Theorem 6.4 (1),p� is the
unique nearest neighborf�r�� on�.

Let + be the plane perpendicular to3� throughr�, ��p�� the open half-space induced by+ which
containsp�, and��p�� the opposite open half-space, cf. Figure 6.1. Becausef is continuous by the
first part of this theorem, an open environment��r�� 
 3� of r� exists so thatf���r��� 
 ��p�� � �.

On the other hand, because3 and thus3� is assumed to be in the
-fringe of�, the distance of all points
of 3� to � is less than or equal to
. Thus the nearest neighbors of all pointsr� � 3����p�� are located
in ��p��. The reason is that their nearest neighbors are in the difference of the ball of radius
 with
centerr � minus$�, which is a subset of��p��. But this means thatf���r��� contains points in��p��
which is a contradiction to the result of the end of the preceding paragraph.

6.3 Sufficient Conditions for NN-Embeddable Triangles

In order to give sufficient conditions for the existence of NN-embeddings for triangles, we need a
different view on surfaces:
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Figure 6.1: Illustration of the proof of Theorem 6.5.

Definition 6.6 (Bounded curvature condition) Let � be a compact surface without boundary and
with a unique normal direction at every point. ForÆ , �, p � �, let �Æ�p� be the connected
component of the pointsq � � with ��p
q� 1 Æ which containsp. � satisfies thebounded curvature
condition if for every� , �Æ a Æ , � exists so that for all pointsp in � and all pointsq � �Æ�p� the
absolute angle between the surface normalsn�p� andn�q� is less than�.

The following theorem shows that SF-surfaces have the bounded curvature condition.

Theorem 6.7 (Bounded curvature condition of SF-surfaces)Compact SF-surfaces without bound-
ary satisfy the bounded curvature condition.

Proof: The theorem is proved by contradiction. We assume that there is an SF-surface� and an
SF-radius
� for which a pointp � �, an�� , �Æ, and a sequence of pointsp�, � � �
 � � � 
� with
 
���� p� � p exist for which the angles�� between the normals ofp andp� satisfy�� � ��.
We consider pointsp� which are closer top than those points on the surface of the two balls whose
normals have an angular deviation of���� from the normaln of p. Letn� denote the normal ofp�. We
consider the intersection of the configuration with the unique plane�� which containsp�, p, and the
vectorn� atp�. The trace of the two balls in�� are two discs (Figure 6.2). They induce two wedges in
one of whichp� is located. Let/� be the common tangent of the discs atp in plane��. Two cases for
n� can be distinguished: the projection ofn� on /� either has a positive component in direction ofp,
or a negative component. In the positive case, we movep� and its two tangent balls in direction ofn�
onto the boundary of the closest ball. In the negative case,p� and its balls is moved into the opposite
direction ofn�. Let p�� be the resulting location ofp� on the boundary.
In the positive case we consider that one of the two balls atp�� for which n� shows into its interior,
while for the negative case we take the ball for whichn� is an outer normal. Ifp� is sufficiently close
to p, the disc induced by intersecting the ball with�� containsp, and thus the ball containsp. Because
of  
���� p� � p, a suitablep� exists. Furthermore, it can be observed thatp stays in the disc, and
thus in the ball, ifp�� and its balls is moved back straightline top�. Thus one of the balls atp� contains
the surface pointp. That contradicts to the SF-property of the surface.

A further ingredient in order to reach our goal of formulating sufficient conditions for the existence of
NN-embeddings of triangles is the behaviour of normals. The following theorems make assertions on
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Figure 6.2: Illustration for the proof of the bounded curvature condition for SF-surfaces.

that.

Theorem 6.8 (Deviation of NN-embedded triangle normals)Let� be a compact SF-surface with-
out boundary, and�� , �Æ. Then a save-fringe radius
� , � exists so that for all triangles
� � ��p
q
 r �, p
q
 r � �, with edge length at most
�, the deviation of the normals at the points of
the NN-embeddingf��� is less than��.

Proof: Let Æ� , � and
� , � be chosen so that

� Æ� satisfies the condition of the bounded curvature condition of Definition 6.6 for��, and

� 
� is an SF-radius of� so thatÆ� � �
�.

Let *��� be the maximum distance of points of a triangle� from �. Because*��� � 
�, 
� � *��� �

� � 
� � Æ�. Since the edge length of� is bounded by
�, the distance ofq to any pointf�q��, q� � �,
of the NN-embeddingf��� satisfies��q � f�q���� � ��q � q��� � *��� � 
� � *��� � Æ�. Thusf��� is
completely located in the ball of radiusÆ� and centerq. Because� is an SF-surface, all points off���
have unique normals. Since the NN-embeddingf is continuous on�, the imagef��� is connected and,
becauseq � f�q� � f���, f��� is a subset of�Æ��q�. Thus, by the bounded curvature condition, the
deviation of the normals at the points of the NN-embeddingf��� is less than��.

Theorem 6.9 (Deviation from vertex normal) Let� be a compact SF-surface without boundary and

� be an SF-radius of�. Let��p
q
 r � be a triangle and�Æ 1 �
�� 1 ���Æ, �� , �Æ so that

(1) the length of the edgespq andrq is less than/� �� �
� �
	���� �
	����	
� �,

(2) the angle� at q exceeds�
��.
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Figure 6.3: The two cases of the location of a triangle��p� q� r � with respect to the tangent balls at a surface
, depicted

in the slicing plane spanned by the triangle��p� q� r �.

If the angle� between the surface normal atq and the normal of the triangle exceeds��, then the
angle� exceeds�

� �� ���Æ � �
��. Equivalently, if the angle� does not exceed�

�, then the
angle between the surface normal atq and the normal of the triangle does not exceed��.

Proof: We consider a triangle��p
q
 r �, and the two tangential balls located atq.
Let� be the plane induced by��p
q
 r�. The intersection of the configuration with� consists of the
triangle��p
q
 r� and two discs induced by the balls. The tangent plane atq induces a tangent line at
q of the two discs.p andr are outside the discs. Figure 6.3 shows the configuration on�.

q

α

(   )

a

r2 0

α

S

n q

Figure 6.4: Slice through the center of a ball along the plane spanned by the surface normaln�q� and the normal of a plane.

The intersection of a plane for which the normal deviates from that of the surface by an angle� is a
disc of diameter

� � �
� �
	���,

cf. Figure 6.4.
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Figure 6.5: Estimation of the maximum angle at a triangle of edge length� �� whose vertices are on the same side of the

pair of discs.

Because� , �
�� by (2), and
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by (1), and the condition that� exceeds��, p and r are located in different sectors of the double
wedge induced by the boundary circles of the two balls atq. Figure 6.5 illustrates the impossibility of
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Figure 6.6: Mapping of the pointsp andr onto the circle by rotation aroundq.
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the case thatp andq are in the same sector. We rotatep andr aroundq so that they are located on the
boundary of one of the discs. The rotation is chosen so that the new sector is a subsector of the sector
in which the triangle lies, cf. Figure 6.6. The angle atq of the new triangle does not exceed that of the
original one. We will show that if we use the new angle instead of the old one, the theorem is satisfied.

On the boundary of that disc, we consider three pointsp�
q�
 r � with ��p�
q�� � /
 ��q�
 r �� � /. The
angle� at q� satisfies

�
	

�
�

�

�
�

�
��

�
/

�

��



cf. Figure 6.7.
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Figure 6.7: Calculation of the angle� from � and�.

Replacing� in that formula with the right hand side of the previous one we get
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If we bound the edge length by/� and the angle� by ��, we get

�
	

�
�

�

�
�
�

��
�

/�
�
� �
	����

��
�

By replacing/� by its definition in (3), we get
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and hence� � �

�.

If the edge lengths are less than/, the angle� increases. That implies that the angle bound holds for
all triangles with that bound on the edge length.

Because the size of the angle� of the original triangle of the surface is at least that of the modified
one, the bound holds for the triangles on the surface. This proves the assertion of the theorem.

The theorem tells us that if an angle of the triangles of a triangulation is bounded by lower and upper
constant bounds, the deviation of the triangle’s normal from the surface normals at the vertices of
the triangle is less than an arbitrary small given constant angle bound if the lengths of the edges are
sufficiently small.
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Lemma 6.10 Let� be a compact SF-surface without boundary,� a triangle with vertices on�, and
the angle betweenn��� and any normal on the nearest-neighbor imagef��� of � be less than�� 1 ��Æ.
Then the NN-imagef��� of � is an NN-embedding.

Proof: The condition of the lemma implies that none of the normals inf��� is co-linear to a vector
q��p� for p�
q� � �, p� �� q�. But that means thatq� andp� cannot map to a common nearest neighbor
on�. Thus the NN-imagef��� of � is an NN-embedding.

Lemma 6.11 Let� be a compact SF-surface without boundary,�Æ 1 �
�� 1 �

� �� ���Æ��
�� 1
���Æ, �Æ 1 �� 1 ��Æ. Then an SF-radius
� , � of � exists so that for all triangles� � ��p
q
 r �,
p
q
 r � �, for which

(1) the edge length of� is bounded by
�,

(2) the angle� at q satisfies�
�� 1 � 1 �

�,

the angle between the normaln��� of the triangle� and any normal onf��� is less than�� 1 ��Æ.

Proof: From Theorem 6.8 we know that for a given�� , �, an SF-radius
� of � exists so that for
all triangles� � ��p
q
 r �, p
q
 r � �, satisfying (1) the deviation of the normals at the points of the
NN-embeddingf��� is less than��. We set
� �� 
�, 
� the SF-radius of Theorem 6.8.

From Theorem 6.9 we know that for a given��, an /� , � exists so that, if (1) and (2) are satisfied,
the angle between the surface normaln�q� at q and the normaln��� of the triangle does not exceed
��. We set
� �� /�, /� as in Theorem 6.9.

We now define�� � �� �� ����, 
� �� �
	�
�
 
��. Then the angle betweenn��� and any normal
on f��� is less than�� 1 ��Æ. That is the assertion of the Lemma.

With help of these results, we now can give conditions which are sufficient for the existence of NN-
embeddings of triangles.

Theorem 6.12 (Sufficient condition for NN-embeddable triangles)Let� be a compact SF-surface
without boundary,�Æ 1 �
�� 1 �

� �� ���Æ � �
�� 1 ���Æ. Then an SF-radius
� , � of � exists
so that for all triangles� � ��p
q
 r �, p
q
 r � �, for which

(1) the edge length of� is bounded by
�,

(2) the angle� at q satisfies�
�� 1 � 1 �

�,

the NN-imagef��� of � is an NN-embedding.

Proof: The conditions of the theorem imply by Lemma 6.11 that the angle between the normaln���
of the triangle� and any normal onf��� is less than�� 1 ��Æ. By Lemma 6.10 this assertion implies
that the NN-imagef��� of � is an NN-embedding.

6.4 Sufficient Conditions for NN-Embeddable Pairs of Triangles

The next step is to show that more than one triangle can also be embedded without intersections if
some additional constraints hold. These constraints concern the angle between triangles, the so-called
dihedral angle, which has been introduced in Definition 5.13 of Chapter 5.

Corollary 6.13 Let� be a compact SF-surface without boundary. Let�Æ 1 �
�� 1 �

� �� ���Æ �
�
�� 1 ���Æ, �Æ 1 �� 1 ��Æ, and
� as in Lemma 6.11. Let�� and�� be two triangles which
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Figure 6.8: Cases of the dihedral angle between two triangles.

(1) have edge lengths less than
�,

(2) have angles in the interval��
��
 �

��,

(3) share a common edge.

Then the dihedral angle between�� and �� is in the interval����Æ � ���
 ���Æ% or in the interval
&�Æ
 ����.

Proof: Two triangles which share a common edge also have a common vertexp. By Lemma 6.11,
the angles��n�p�
n�����, � � �
 �, between the surface normaln�p� at p and the normalsn����,
� � �
 �, of the triangles are less than��. By considering the metric of shortest distances on the
unit sphere, that implies that the angle���n����
n������ between the normals of the triangles satisfies
���n����
n������ � ���n�p�
n������� ���n�p�
n������ 1 ���.

From the two possible orientations of the normals, two cases concerning the dihedral angle arise
(cf. Figure 6.8). The bound on the normals implies the two bounds on the dihedral angles of the
corollary.
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Figure 6.9: Proof of the size of the dihedral angle by transforming the orientation of the surface to the approximating

triangle.

For a reasonable triangulation, only the case of dihedral angles in����Æ � ���
 ���Æ% is of interest.

Corollary 6.14 (Dihedral angle bound) Let� be a compact SF-surface without boundary. Let�Æ 1
�
�� 1 �

� �� ���Æ � �
�� 1 ���Æ, �Æ 1 �� 1 ��Æ, and
� as in Theorem 6.12. Let�� and �� be
two triangles incident to a common edge, which

(1) have edge length less than
�,
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(2) have angles in the interval��
��
 �

��,

(3) are together NN-embeddable in�.

Then the dihedral angle between�� and�� at the common edge is in the interval����Æ � ���
 ���Æ%.

Proof: The NN-embedding of the triangles�� and�� on� consists of two surface triangles which are
disjoint up to parts of their boundaries. We orient the edges of the two surface triangles so that they
appear counter-clockwise oriented from the side of the surface on which the normal vector at one of
the end pointsp of the common edge is directed. We transfer the orientation to�� and��, and consider
the normalsn���� andn���� directed so that their angles with the normaln�p� of p are less than��.
Then�� and�� appear counter-clockwise oriented if viewed from the side of their normals. The angle
betweenn���� andn���� is less than���. Figure 6.9 depicts the resulting configuration. As can be
clearly noticed the only possibility of a configuration of that type is that one with the dihedral angle in
the interval����Æ � ���
 ���Æ%.

Lemma 6.15 Let� be a compact SF-surface without boundary. Further, let�� and�� be two triangles
with vertices on�, incident to a common edge, with dihedral angle larger than���Æ � Æ� , ��Æ,
Æ� , �Æ , n���� and n���� the normals of�� and ��, respectively,p� � ��, p� � ��. Then the angle
between the vectorsp��p� andn����, and betweenp��p� andn����, respectively, exceeds��Æ�Æ�.
Proof: The smallest angle betweenp� � p� andn���� is achieved ifp� is on the common edge of��
and��, andp� � p� perpendicular to that edge. In that case, the angle betweenp� � p� andn���� is
equal to��Æ � Æ�. The assertion forp� � p� andn���� holds for reasons of symmetry.

Now we can formulate a result on intersection-free embeddings of two adjacent triangles.

Theorem 6.16 (Sufficient condition for NN-embeddable pairs of triangles)Let� be a compact SF-
surface without boundary,�Æ 1 �
�� 1 �

� �� ���Æ � �
�� 1 ���Æ, Æ� , �Æ. Then an SF-radius

� , � of � exists so that all triangles�� � ��p�
q�
 r ��, p�
q�
 r � � �, � � �
 �, for which

(1) the edge length of�� and�� is bounded by
�,

(2) the angles of�� and�� at q� andq�, respectively, satisfy�
�� 1 � 1 �

�,

(3) the dihedral angle between�� and�� along a common edge is larger than���Æ � Æ� , ��Æ,

are NN-embeddable, and their NN-imagesf���� and f���� are disjoint, up to the NN-image of their
common edge.

Proof: From Theorem 6.8 we know that for a given�� , �Æ, 
�� , � exists so that for all triangles
��, �� satisfying (1) and (2) the deviation of the normals at the points of the NN-imagesf���� andf����
is less than��. We set
� �� 
��.
From Theorem 6.9 we know that for a given�� , �Æ, 
�� , � exists so that, if (1) and (2) are satisfied,
the angle between the surface normaln�q�� atq� and the normaln���� of the triangle��, � � �
 �, does
not exceed��. We set
� �� 
��.
From Theorem 6.5 we know that an
�� , � exists so that all triangles��, �� satisfying (1) and (2) are
NN-embeddable. We set
� �� 
��.
Let �� � �� �� ���Æ � Æ����, 
� �� �
	�
�
 
�
 
��. For this
�, the assertion of the theorem that��
and�� are NN-embeddable holds. Furthermore, the angle betweenn����, � � �
 �, and any normal on
f���� is less than��Æ � Æ� 1 ��Æ. On the other hand, by Lemma 6.15, the directions of lines between
points on�� deviate by more than��Æ � Æ� from n����, � � �
 �. This contradiction implies that none
of the lines along the normals onf����, � � �
 �, intersects�� and�� simultaneously, except possibly
on the common edge of�� and��. Thus the NN-embeddings are disjoint, up to the common edge.
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6.5 Discussion

The theorems concerning the NN-embedding state that there is a chance for 2D-CCs with sufficiently
short edges that they can be embedded in compact SF-surfaces without boundary. For the choice of
the set of sampling points this means that it has to be sufficiently dense.

A reconstruction algorithm should yield a triangular manifold that can be embedded, for example that
one that is demanded to exist for the set of sampling points. The consequence of the investigations of
this section for a reconstruction algorithm is that it should yield short edges when applied to a dense
set of sampling points.



Chapter 7

Analysis of Environment Graphs

As we already know from examples, environment graphs are basically well-suited for reconstruction.
In this chapter we present formal arguments for this favorable behavior. We first prove that bridge
edges cannot be avoided in general, so that�-EGs without clustering are not useful. Then we show
that any given sample set of a compact SF-surface without boundary can be extended so that all edges
of the clustered�-EG should have length less than a given bound/� , �. Furthermore, we demonstrate
that subgraphs of the clustered�-environment graphs are NN-embeddable with high probability if the
length of the edges of the subgraph is small, like it should be for the just mentioned clustered�-EG.
The chance that such a subgraph is not NN-embeddable can be made arbitrarily small if the maximum
edge length decreases to�. From these observations we then derive the main result that a given
sample set of a compact SF-surface without boundary can be extended to a finite point set so that, with
high probability, the clustered�-EG,� � � � �, for this point set should be NN-embeddable into�.
Finally, we give examples of sampling strategies which have shown favorable in practical applications.

7.1 Short Edges and non-blockable Line Segments

As we know from Chapter 3, a surface (re-)construction algorithm should yield short edges. In ten-
dency, this requirement is satisfied by the�-environment graphs. The reason is that the probability
that the large environment of a long edge contains any other point is high for a dense set of sampling
points equally distributed on the surface. However, the examples of Chapter 5 show that long edges
occur. An immediate assumption of course is that this effect might be a matter of not sufficiently dense
sampling. But as we will show in the following, it may indeed happen that the geometry of the surface
forces the occurrence of long edges, although that fortunately is not the standard case.

A set of sampling points is favorable if for any two of its points of larger distance, there is a third point
located in the environment of the line segment between the two points.

Definition 7.1 (�-blocked line segment)Let � be a set of sampling points on a surface�. A line
segment3 � pq, p
q � �, is �-blocked if a point r in � exists which is in the open�-environment
of 3.

In this definition and in the rest of the chapter we assume� � � � �, if no other specification is given.

A necessary and sufficient condition that a line segment3 can be�-blocked is that the�-environment
of 3 contains a sampling point at all. A line segment with that property is calledblockable.

Definition 7.2 (�-blockable line segment)A line segment3 between a pairp
q of points of a surface
is �-blockable if the open�-environment of3 has a non-empty intersection with the surface.

69
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The following theorem gives a necessary condition that a line segment is non-blockable.

Theorem 7.3 (Necessary condition for a non-blockable line segment)Let � be a surface with a
unique tangent plane everywhere. For�-environments with� � � � �, a necessary condition for
a non-blockable line segmentpq, p andq inner points of�, is that the line segment is perpendicular
to the tangent planes of the surfaces atp andq.

Proof: If pq is not perpendicular to the tangent plane of the surface atp (analogously forq), then the
plane� throughp perpendicular topq intersects the surface. There is an inner pointr on� which is
on the same side of the plane as the environment���p
q�. We consider plane� spanned byp
q
 r .
The curve of intersection of� and� betweenr andp intersects the open environment���p
q� ��.
Figure 7.1 depicts the configuration for� � �. Otherwise that curve would have a tangent atp in the
plane�. The same would hold for a different pointr� whose plane�� does not intersect in a common
line. That implies that� is tangent to the surface atp which contradicts to the assumption made on
�.

p r

q

Figure 7.1: The intersection of a surface
 with an environment���p� q�, depicted in the slicing plane spanned byp� q

andr .

Corollary 7.4 For a surface with unique continuous normalsn everywhere, a necessary condition for
a line-segmentpq to be non-blockable is

n�p�� �p� q� � ��n�p��� 
 ��p� q��

n�q�� �p� q� � ��n�q��� 
 ��p� q��


where� denotes the transposition of a vector.

Proof: The first formula expresses that the scalar vector product of the normalized vectorsn�p� and
�p�q� is equal to 1, so that the angle between the two vectors is�Æ, the second formula is analogous.
That corresponds to the assertion of Theorem 7.3.

The event thatp andq satisfy both equations of the corollary should in general occur in isolated pairs
of pointsp
q. In special cases, like for the two parallel tori of Figure 5.10, a curve-like occurrence
is possible. For two parallel planes, a surface-like occurrence emerges. Becausen is assumed as a
continuous function, the pairs satisfying these equalities define a closed set.
The theorem is formulated for surfaces which have a unique tangent plane everywhere. This constraint
in particular excludes boundary points. However an analogous theorem seems also to be possible for
boundary curves. We leave the treatment of boundary points open for future work.
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The stated condition is not sufficient because the environment may intersect the surface elsewhere.

If we assume the given surface not having non-blockable line segments, the following theorem shows
the existence of a sampling set for which the 0-environment graph does not have long edges.

Theorem 7.5 (Existence of length-bounding sampling sets) Let S be a compact surface without
boundary which has just blockable line segments, and� be a finite set of sample points taken from�.
Then, for every/� , �, � can be extended to a finite point set�� of points of S so that all line segments
3 with length/�3� , /� are�-blocked by a point in��, � � � � �. � � is called ablocking set.

Any further finite extension of�� does not violate this property.

Proof: The proof of existence uses the theorem of finite coverings of compact sets [Ber63, Kur68].

Let� be the set of all line segments between two points of the surface�. � is a compact set. We
consider��, the set of all line segments of length less than/�. �� is an open set, so that�� ��
� ��� is a compact set.

For every pointr of �, we consider the set��r � of all line segments3 � pq of�� for which r lies in
the interior of the intersection of the surface with the�-environment���p
q� of 3. Note thatr �� p,
r �� q. ��r � is an open set.

The sets��r � cover�� because every blockable line segment has a surface point in the interior of the
intersection of the surface with the diameter sphere.

Because�� is compact (it is bounded because� is bounded), there exists a finite covering of�� by
sets��r �. The pointsr of these sets define a blocking set���.

Because a superset of a blocking set is a blocking set, too,�� �� � � � �� is the desired set of the
theorem.

For a line segment3 � pq with p
q � � which has to be blocked, there is a pointr � � , r �� p,
r �� q, which blocks3. The reason is that, by definition,3 is not in��p� and not in��q�.

Corollary 7.6 Under the conditions of Theorem 7.5, for every finite super-set��� of a blocking set� �,
the edges� of the corresponding�-environment graph on��� satisfy/��� � /�.

Definition 7.7 ('��(�-property) Let be/� , �, � , �, � a surface. A finite set� of points of� has
the '��(��/�
 ��-property if every line segment3 � pq, p
q � �, has at least one of the following
properties:

(1) /�3� � /�,
(2) n�p�� �p� q� , ��n�p��� 
 ��p� q�� 
 ��� ��


n�q�� �p� q� , ��n�q��� 
 ��p� q�� 
 ��� ���

That means that3 is shorter than/�, or lies close to line segments which satisfy the necessary condition
of non-blockable segments.

Corollary 7.8 (Existence of'��(�-sample sets)Let� be a compact surface without boundary and
with continuous normals, which also may have non-blockable line segments, and� be a finite set of
sample points taken from�. For every/� , � and� , �, � can be extended to a finite set�� which
has the'��(��/�
 ��-property.

Proof: Let�� be the set of line segments satisfying (2) of Definition 7.7. Then�	 �� � ��� is a
compact set which just has�-blockable line segments. For that set, Theorem 7.5 can be applied which
yields the existence of a suitable blocking set.
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Corollary 7.9 (Existence of�-EGs with length-bounded edges)Let � be a compact surface with-
out boundary and with continuous normals, which also may have non-blockable line segments, and�
be a finite set of sample points taken from�. For every/� , � and � , �, � can be extended to a
finite set� � so that the edges� � pq of the corresponding�-environment graph have at least one of
the following properties:

(1) /��� � /�
(2) n�p�� �p� q� , ��n�p��� 
 ��p� q�� 
 ��� ��


n�q�� �p� q� , ��n�q��� 
 ��p� q�� 
 ��� ���

Proof: The corollary is an immediate implication of Corollary 7.8.

An implication of these investigations is that non-�-blockable line segments cannot be avoided as
bridge edges of the�-EG, cf. Section 5.2. However, for compact surfaces a positive infimum/
��

of the length of its non-�-blockable line segments exists. The reason is that the set of�-blockable
line-segments is open. We choose/� of Corollary 7.8 significantly smaller than/
��. For the sampling
sets� � belonging to/� according to the Corollary, the edges of the�-EG of �� not close to a non-
�-blockable line segment of the surface are significantly shorter than those which are close and thus
occur as bridge-edges in the graph. If we assume that there are no vertices with just bridge edges
as incident edges, the clustered environment graph of�� should not contain any bridge edges. We
summarize this discussion as an observation.

Observation 7.10 (Short-edge property of the clustered�-EG) Let � be a compact SF-surface
without boundary,� a finite set of points on�. An /
�� , � exists so that, for all/� 1 /
��, � can
be extended to a finite point set�� for which the clustered�-environment graph,� � � � �, of ��

should only have edges of length less than/�. The same holds trivially for every finite extension of��

by points on�.

7.2 Intersection-free Embeddings

As we have noticed in the last chapter, the�-environment graph of a set of points in the plane is a
planar graph for� � �. This is a consequence of the property of being a subgraph of the Delaunay
triangulation, but it can also be derived from a condition of intersection freeness which we give in the
following. We formulate the condition for curved surfaces from which the planar case is obtained by
specialization.

Definition 7.11 (Surface diameter disc)Let� be a surface, and� be a shortest curve on� between
two pointsp
q � �� Let r be the point on the curve� with equal surface distance/�� to p andq, / the
length of�. Then the closedsurface diameter disc of � is the set of all points with surface distance
from r less than or equal to/��.

Theorem 7.12 (Empty disc intersection criterion) Let �
 �� be two shortest curves with end points
p
q and p�
q�, respectively, on a surface so that each closed surface diameter disc does not contain
the end points of the other curve. Then the curves do not intersect.

Proof: The proof is by contradiction, that is, we assume that� and�� intersect each other. Letr� be one
of the intersection points, cf. Figure 7.2. Letp� be w.l.o.g. the end point of shortest distance tor�. Let
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Figure 7.2: Configuration of intersection of two surface curves.

p w.l.o.g. be the end point of shortest distance tor� on the other curve�, that is,���p�
 r �� � ���p
 r ��.
Let c be the point on� with equal surface distance top andq. Then

���p�
 c� � ���p�
 r �� � ���r �
 c� � ���p
 r �� � ���r �
 c� � ���p
 c�


where����
 �� denotes the distance on the surface.

That means thatp� lies in the surface diameter disc of� which contradicts to the assumption of the
theorem.

In the case of reconstruction, we do not know the surface. We just see the points which can be
interconnected by line segments. In that setting, the following definition is useful.

Definition 7.13 (Conflict-free line segments)Two line segments3 � pq, 3� � p�q� are calledconflict-
free if each (closed) diameter ball does not contain the end points of the other line segment.

For the�-environment graphs with� � � all edges are conflict-free in that sense. The key question is
whether it is possible to conclude intersection-freeness of an embedding, in the sense of the following
definition, from conflict-freeness of a pair of line-segments.

Definition 7.14 (NN-Intersection) Let � be a surface andf be a mapping which defines an embed-
ding f�3� of a line segment3 into �. Two line segments3, 3� with vertices on� are calledintersection-
free under f if the curvesf�3� and f�3�� are intersection-free. Iff is the NN-embedding, the line
segments are calledNN-intersection-free.

Unfortunately, it seems hard or even impossible to find a sampling set for a given embedding, like
e.g. the NN-embedding for which the edges of an environment graph all are intersection-free in that
sense. A hint is that e.g. two edges of equal length in a common plane which intersect at their centers
become conflict-free even if one of them is just slightly moved in space so that the intersection point
is dissolved.

A way out consists in identification and elimination of critical edges. We suggest two approaches. The
first one is based on a stronger definition of conflict-freeness, the so-called�-conflict-freeness, from
which NN-intersection-freeness can be concluded for sufficiently short edges. The second one is a
heuristic characterization of intersection, called7-intersectionwhich is also useful in the second part
of the algorithm.
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7.2.1 The Concept of�-Conflict-Freeness

The idea of�-conflict-freeness is to slightly enlarge the environment which has to be point-free.

Definition 7.15 (�-conflict-freeness) Let 3 � pq, 3� � p�q� be two line segments between points
p
q
p�
q� on an SF-surface� within a save
-fringe of�, and� � � � � � ��� be a non-negative
function.3 and3� are called�-conflict-free if the enlarged closed diameter balls with radius�

� /�3� �
��3����3�� and center�� �p�q�, and radius�� /�3

�����3�����3� and center���p��q��, respectively,
do not contain the end points of the other line segment.

p

q

q’

p’

r’

r

i
c

Figure 7.3: The case for the intersection freeness of Theorem 7.16.

The usefulness of the definition is demonstrated by the following theorem.

Theorem 7.16 (Intersection freeness)Let� be a compact SF-surface without boundary andf be the
NN-mapping. Let3 � pq, 3� � p�q� be two line segments between pointsp
q
p�
q� on� completely
contained in a save fringe of�, *�3� and*�3�� the largest distances of3 and3� from�, respectively,
and��3� � *�3�, ��3�� � *�3��. If 3 and3� are �-conflict-free then the embeddingsf�3� and f�3�� do
not intersect.

Proof: By Theorem 6.5,f�3� andf�3�� are curves. We assume thatf�3� andf�3�� intersect each other.
Let r andr � be points on3 and3� which map underf to an intersection pointi. Let w.l.o.g.p be the end
point of shortest distance on3 to r , andp� the end point of shortest distance on3� to r �. Let w.l.o.g.p�

be the shorter one of these two distances, that is,��p� � r ��� � ��p � r ��. Let c be the point on3 with
equal distance top andq, cf. Figure 7.3. Then

��p� � c�� � ��p� � r ���� ��r � � c��
� ��p� r ��� ��r � � r ��� ��r � c��
� ��p� r ��� ��r � � i��� ��i � r ��� ��r � c��
� ��p� c��� *�3� � *�3��

�
/�3�

�
� *�3� � *�3��

� /�3�

�
� ��3� � ��3���

That means thatp� lies in the enlarged diameter sphere of3, and thus3 and3� are not�-conflict-free,
in contradiction to the condition of the theorem.
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The following definition combines the concept of�-conflictness with�-environments.

Definition 7.17 (�-�-environment graph) Let� be a surface and� � ��� � ��� be a non-negative
function,� a finite set of points on S. The graph with vertex set� and line segments3 � pq, p
q � � ,
as edges, for which the environments���	���� �� ���3� � ��3
 �� with ��3
 �� the ball centered at

the midpoint�� �p � q� of 3 and radius
��3� � �
� /�3� � ���3�, do not contain any point of� , is called

�-�-environment graph. ���	���� is denoted as�-�-environment.

We now derive arguments which show that for�-�-environment graphs, or subgraphs of them like
clustered�-�-environment graphs which can be defined immediately, with sufficiently short edges,
the ratio��3��/�3� for ��3� guaranteeing intersection-freeness can be made small.

a/2

r r−h

h

c

Figure 7.4: Calculation of the distance� of a chord of length� to the circle.

r

r

p p’
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S

Figure 7.5: Estimation of the distance of a line segmentpq from a surface
. The figure shows the configuration in the

slicing plane spanned byp� q andr .
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Lemma 7.18 We consider a circle of radius
, a chord of length� � �� 
 
, � 1 � 1 �, and the
maximum distance* of a point on the chord from the circle. Then 
����

�
�� � �

�� .

Proof: The maximum distance is reached at the centerc of the chord, cf. Figure 7.4. The pointc,
an endpoint of the chord, and the center of the circle define a rectangular triangle whose edge lengths
satisfy

�
 � *�� � ��
�� � 
�


or, resolved for*,
* � 
���

�
�� ����

Then
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Theorem 7.19 (Estimation of maximum surface distance)Let� be a compact SF-surface without
boundary with an SF-radius
, and 3 � pq, p
q � �, a line segment within the
-fringe, *�3� the
maximum distance of a point of3 from�. Then

 
�������
*�3�

/�3��
1

�

�

�

Proof: Let r � be a point on3 with maximum distance to�, andr a surface point having that distance.
We consider the triangle��p
 r 
q�, cf. Figure 7.5. Because the line throughr� andr is perpendicular
to�, the plane� spanned by��p
 r 
q� is a normal section plane, that is, it contains the normal vector
of � at r . The consequence is that the intersection of� with the two tangent balls atr with radius

are two discs with radius
. The endpoints of3 are outside of the discs. Since we are interested in
the limit, we can assume that the length/�3� of 3 is less than��
 for some� between 0 and 1. By
construction,r is betweenp andq on the intersection curve� � �. 3 intersects at least one of the
two discs. We take that chord3� whose intersection pointsp�
q� with the boundary of the disc are on
different sides ofr on the boundary, or equivalently containsr�. As a subsegment of3, the length of3�

is less than��
, too.

If the line segmentrr � is perpendicular to3�, we can immediately apply the previous lemma. Other-
wise,/�rr �� � *,* the distance ofr � from the surrounding circle. Hence by the preceding Lemma 7.18,
the estimation of the limit holds for that case, too.

Now we can prove the main theorem of this section.

Theorem 7.20 (Intersection-freeness of�-�-environment graphs) Let � be a compact SF-surface
without boundary,
 , � an SF-radius of�. For every� , �, an /� , � exists so that all graphs�
which
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(1) are subgraphs of an�-�-environment graph,� � �, ��3� � � ��� � �� 
 /�3��, with vertices on�,

(2) are completely inside the
-fringe of�,

(3) have a maximum edge length less than/�,

are intersection-free, that is, the NN-embeddings of the edges of� do not intersect.

Proof: By Theorem 7.16, intersection-freeness can be concluded from�-conflict-freeness for the
edges of a graph� if (2) is satisfied for�, and��3� � *�3�. From Theorem 7.19 we know that for
each� , � an/� , � exists so that*�3� 1 �����
���� 
 /�3�� � ��3� for /�3� 1 /�. Thus, intersection
freeness of the edges of� can be concluded from�-conflict-freeness if (1), (2), and (3) hold for the
edges of�.

2ar

y

βrr+

p q

i

βr

r+2a
x

φ

Figure 7.6: Illustration of the difference between��
� �� and���
�. The difference set���
� is drawn shaded.

The theorem tells that for�-environment graphs with sufficiently short edges, a tolerance of sec-
ond order in the edge length for the emptiness of the�-environments is sufficient in order to have
intersection-freeness of the nearest-neighbor embedding. This implies that intersection-freeness of
edges can be expected as the usual case for�-environment graphs with short edges.

The�-�-environment of a line segment3 is a superset of the�-environment of3. The difference is
���3
 �� �� ��3
 ������3�. With increasing�,���3
 �� decreases. The following theorem analyzes
this behavior quantitatively.
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Theorem 7.21 (Difference between�-�- and �-environments) Let 3 � pq be a line segment,/�3�
its length,��3� 1 �

	 �
�

� � �����/�3�,���3
 �� �� ��3
 ������3�,��3
 �� the ball centered at the
midpoint ���p � q� of 3 and radius
��3� � �

� /�3� � ���3�. Then the following holds:

(1) ���3
 �� consists of two connected components���3� and���3� which are incident top and
q, respectively.

(2) The maximum distance of a point in���3� from p is smaller than the upper bound�

��3�
which satisfies

�

��3� � �� � ��
�

�
/�3� 8�3�


where

8�3� �� ��#�
	

�
�

�
�

�� � ���

�
�




�
� ��

�
�




���
for � 1 � � ��

The same holds for���3� andq.

(3) For ��3� �� � �
�� � �� 
 /�3�� for some constants
 , �, � , �,

 
�
������

�

��3�

/�3�
� � for )�� � 1 � � ��

That means that the difference between the��3�-�-environment and the�-environment can be
made arbitrarily small.

Proof: Let 
 �� �
� /�3�. We consider a plane through the center point of3. Figure 7.6 depicts the

intersection of the spatial configuration with that plane. The boundaries of the environments are arcs.
For��3
 �� the boundary is in fact a circle of radius
 � ��, while the boundary of���3� consists
of two symmetric arcs of radius�� � ��
. These arcs intersect the circle if their common points are
outside the circle if �

�� � ���
� � ��
� , 
 � ���

Because this holds by the condition��3� 1
�
�

�����������
	 on��3� of the theorem, (1) is satisfied.

In order to prove (2), let us consider Figure 7.6. The circle of��3
 �� and the two arcs of���3�
intersect in four points. The difference�� (and analogously the difference��) is located between
two arcs induced by the appropriate pair of intersection points. The maximum distance�

��3� is
bounded by the length of the arc	 of ���3� betweenp and one of these intersection points, denoted
by i. We calculate the length of arc	.

For that purpose we determine the angle8 defining the arc as part of its circle. The cosine of8 is
given by

#���8� �
!

�




where
 �� /�3��� and! satisfies the relations

!� � "� � ��
��


�
 � �
 � !�� � "� � �
 � ����


and" is defined as shown in Figure 7.6. From those two equations we get

! � �
 � ��

� � �
� ���
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and thus
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For the sine we get
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Because the length of the arc	 is /�	� � �
8, and because
 � ����
� , we get assertion (2) of the

theorem.

(3) can be immediately proved by putting��3� into the formulas of (2).

Figure 7.7: The test examples with random sampling.

The investigations can be summarized in the following observation.

Observation 7.22 (Intersection-freeness of clustered�-EGs) A consequence of statement (3) of The-
orem 7.21 and Theorem 7.20 is that clustered�-environment graphs,� 1 � � �, can be made arbi-
trarily close to intersection-freeness. Just pairs of edges for which a vertex of one of them is very close
to a vertex of the other one might intersect in the NN-image. But the chance that this happens can be
made arbitrarily small if the maximum edge length decreases to�, and it decreases if� increases.
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Figure 7.8: Empirical analysis for the randomly sampled objects (lower point density on the left and higher density on the

right) of the shortest distance of a point to the 1-environment of any edge of the clustered 1-EG. Only distances up to 100

percent of the length of the considered edge are displayed.
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In addition to the theoretic investigations an empirical analysis of the shortest distance of a point to
the�-environment of an edge of the clustered�-EG for� � � has been performed on representative
smooth surfaces of different types of curvature: a semi-sphere, the inner and outer part of a torus, and
a planar square. The sample points are chosen randomly at two different densities. The number of
sample points of the case of higher density is about twice of the number of the case of lower density.
Figure 7.7 shows the clustered�-environment graphs for those sample sets.
The samples on the semi-spheres are obtained by determining approximately equal-spaced points
located on circles in parallel to the equator. This implies that the number of points on a circle decreases
with the perimeter. Then the points are jittered by modifying their positions by random offsets along
their circles and perpendicular to it. The sample sets of the outer (and analogously of the inner) region
of the tori are analogously generated by arranging approximately equal-spaced points on circles in
parallel to the ”equator” of the torus and covering the outer region. Then the points are jittered by
modifying their positions by random offsets along their circle and perpendicular to it. The square
is randomly sampled with the required number of points by a random function delivering!- and"-
coordinates scaled to the side length of the square.
The curves shown in Figure 7.8 represent the number of points for which the ratio between the short-
est distance of any other point and the edge length is at most equal to the percentage given on the
horizontal axis. The plot is restricted to distances up to 100% of the edge length. We can note that the
behavior of the curves is independent from the density of the sampling set if the number of points is
taken relatively to the total number of sample points.

7.2.2 Intersecting Edges

For the concept of7-intersecting line segments of Definition 5.14 in Chapter 5 we have demonstrated
in Theorem 5.15 that this concept is equivalent to the notion of intersection if the line segments are
located in the plane. In space, the definition is reasonable, too.

Theorem 7.23 Let 3� and 3� be not7-intersecting for7 , ��Æ. Furthermore, let�Æ 1 �
�� 1
�

� � �
�� 1 ���Æ, and the four vertices of3� and3� so that their distances are shorter than
� of
Theorem 6.16 of Chapter 6. Let�� and �� be two triangles of (1) of Definition 5.14 with a dihedral
angle of at least7.
If �� and�� each have a vertex with angle� between�
�� and�

�, then the NN-images of3� and3�
do not intersect.

Proof: Theorem 6.16 implies that then the NN-images of�� and�� do not intersect, and thus3� and
3� which are a non-common subsets of them do not, too.

Otherwise three of the vertices of3� and3� define a slim triangle with angles outside the interval
��
��
 �

��. For a large�

� this means that three vertices are almost co-linear what should not
happen too often.
If condition (2) of Definition 5.14 does not hold, then the NN-images of the two adjacent triangles
should intersect, and thus the vertices of the second line segment should ”lie on the same side” of the
first line segment. Thus the two line segments should not have an intersection point.
A further investigation of the possible mutual locations of3� and3�, omitted here, might yield further
constraints which reduce the probability of configurations of NN-intersection further which cannot be
decided by the criterion of7-intersection.
Table 7.1 shows the result of an empirical investigation of the clustered�-environment graphs of our
examples for� � �, �

� and 1, and7 � ��Æ. We can notice that even for this generous bound, the
number of7-intersecting edges is usually neglectably small, in particular for higher values of�. In
fact, for the values� � ��� 
 �� even no intersection did occur.
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# of eliminated intersecting edges in the clustered�-EG
torus cup head skull puppet cap pharaoh tori

# points 310 2650 1487 698 695 371 2286 620

� � � 0 0 0 0 0 0 0 0
� � �

� 0 0 0 0 0 0 0 0
� � � 0 275 0 8 5 3 16 1

Table 7.1: The number of�-intersecting edges of the clustered�-environment graphs,� � ��� �
�
� ��, for the example data

sets.

Figure 7.9: The 0-environment graph and the 1-environment graph of a surface scanned by the MC-algorithm.

7.3 Discussion

The investigations of this chapter can be summarized in the following observation.

Observation 7.24 (Usefulness of clustered�-EGs) Let � be a compact SF-surface without bound-
ary. By Observations 7.10 and 7.22, applied with an edge length bound fulfilling the requirements of
Theorem 6.5, a given sample set� on� can be extended to a finite point set�� so that, with high prob-
ability, the clustered�-EG,� � � � �, of � � should be NN-embeddable into�. Any finite extension
of � � by points on� does have this property, too.

This observation makes just an assertion on the existence of favorable sample sets, but how should
sample sets be chosen in practice? Our experiments with uniform-random sample sets presented in
this section show that this type of sampling is acceptable for the reconstruction algorithm. A reason is
that with increasing sample density, the length of edges of the�-EG reduces because the chance that
a sample point falls into the�-environment of a long line segment increases.

The sample points need not to be distributed randomly. A grid-like surface sampling with uniformly
sampled points is at least as well suited. For surfaces not containing flat or umbilical points, lines of
minimum and maximum curvature may be used to define a mesh of curves which meet orthogonally
in their intersection points. If the mesh is chosen dense, the approximation of the curve segments
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Figure 7.10: Left: the reconstruction out of the 1-environment graph. Right: the reconstruction with the marching cubes

algorithm.

between two consecutive intersection points by line segments may induce a mesh of loops with angles
of about��Æ at two adjacent edges. The loops of such a mesh are usually quadrilaterals, and hence
have a constant number of edges. Furthermore, the diameter discs of the edges should in many cases
be empty of vertices, so that the 0-environment graph should contain many of them. Although the
restrictions for the 1-environment graph are higher than for the 0-environment graph, this can also be
achieved for this type of graph, as it can be seen in the example of the cup in Figure 5.9 of Chapter 5.

Another observation is that the edges delivered by the marching cubes algorithm from a spatial grid
sampling of a surface, are a subset of edges reconstructed by the�-environment graph. The marching-
cubes (MC) algorithm [LC87] samples closed surfaces by a rectangular spatial grid. The vertices of
the grid are classified as interior or exterior with respect to the surface. From the vertex classification
of a cube of the mesh, a configuration of intersection of the surface with the cube is derived which
consists of one or more surface loops. These loops, or a triangulation of them are reported as a surface
approximation.

The MC-algorithm can also be seen as an edge-scan algorithm. The edges of the grid intersecting the
surface are determined. A sampling grid is proper if every edge contains at most one intersection point
with the surface. These intersection points define the loop configuration of a cube. The advantage of
that view is that the surfaces need neither be closed nor orientable. If the sampling is restricted to
cubes not traversed by the boundary of the surface, the MC algorithm yields an approximation of the
surface.

For SF-surfaces, due to their bounded curvature, the sampling grid of the marching cubes algorithm
can be chosen so dense that configurations with more than two sample points on an edge of a square
do not occur. Furthermore, the sampling grid can be chosen so dense that MC-configurations with
disconnected traversals or tubes do not occur, that is, every cube defines a single loop.

The diameter disc of an edge in the scan square in which the edge is located does not contain any
sampling point. The reason is that it only may intersect edges of the square, but those edges do not
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contain any other sampling points than those inducing the edge, due to the chosen sampling grid with
just one surface traversal.

Further, the diameter disc of an edge in the scan square of the edge does not contain any of the
vertices of the square in its interior. Thus the diameter ball does not intersect any edge of the scan
grid perpendicular to the square. Hence the diameter ball does not contain any sampling point in its
interior. Thus the edge is in the 0-environment graph.

Hence if the intersection curves with the plane are scanned by the grid on that plane so that all edges
have an empty diameter circle, all edges of the marching cubes algorithm belong to the 0-environment
graph.

The number of edges on a surface loop of an MC-mesh is at most seven. That means that we have the
desired property of surface loops with a bounded number of edges.

By increasing the resolution of the sampling grid, the sampling points can be made arbitrarily dense
on the surface. That means that the clustered environment graph has a good chance not containing
non-blockable bridge edges if the density is chosen sufficiently high.

Figure 7.9 shows the 0-environment graph and the 1-environment graph of a surface scanned by the
MC-algorithm. The reconstruction result out of the 1-environment graph is depicted in Figure 7.10.

For�-environment graphs with� , � the argument concerning the emptiness of the diameter ball of
an edge does not hold. This means that not all MC-edges belong to the graph. In the case of� 1 � � �
a scan grid with regular triangles as faces might help. A difficulty in finding a suitable scan grid is
that the angle between a face and an incident non-face edge should be at least��Æ in order that the
�-environment does not intersect edges incident to the face of the considered edge.

If we summarize our investigations, we can conclude that a choice of� � � � � is reasonable for an
appropriately sampled surface. However, for� 1 � slightly stronger restrictions on the quality of the
surface sampling have to be made than for� � �. The depicted examples in Figure 5.9 of Chapter
5 show that a value of� � � adapts very well to high point density changes as well as to regions
with strong curvature. A reason is that for� � � the clustered�-environment graph has the same
desired reconstruction precision as the EMST, cf. Chapter 4. As consequence, if nothing is known on
the surface sampling a value of� � � is a good choice for the clustered�-environment graph.



Chapter 8

Triangulation

This chapter describes the second phase of the reconstruction algorithm, the triangulation, together
with new definitions required for its formulation.

8.1 The Algorithm

Algorithm 8.1 summarizes the approach of triangulation. The algorithm consists of two main steps, the
generation of a partial embedding, indicated by (1), and a phase of incremental triangulation, indicated
by (2). The goal of step 1 is the generation of very local embeddings of the surface description graph
� obtained from phase 1 of the reconstruction algorithm. Each local embedding concerns a vertex and
its incident edges in�. A local embedding of this type is achieved by defining a sorted arrangement
of the incident edges of the vertex. The local surface into which the vertex and its edges are embedded
is the “umbrella” of triangles obtained by closing every sector defined by two consecutive edges of
the arrangement by a chord. Usually the union of those local embeddings will not yield a manifold
surface, so that we do not necessarily use these triangles. A detailed investigation has to be performed
in order to decide whether a triangle of this type is used as part of the reconstructed surface. This
investigation is subject of step 2.

Step 2 processes the sectors obtained in step 1 according to a suitable priority. Depending on the
opening angle and the location of points and edges in the environment of the sectors, the algorithm
iteratively inserts new edges into graph� and adds triangles to the initially empty manifold� which
finally defines the reconstructed surface, remember Figure 3.4 of Chapter 3.

The details of the two steps are described in the following sections.

8.2 Generation of a Partial Embedding

In the first step, the originally purely combinatorial graph is partially embedded. Embedding of a
graph in principle means to find a surface in space of which the graph is a part. From combinatorial
topology we know that an embedding is uniquely defined by the sorted arrangement of the incident
edges at every vertex. Intuitively, if an embedding is given, two consecutive edges of the arrangement
at a vertex lie on a common face of the surface into which the graph is embedded. If sorted edge
arrangements at the vertices are given, the rule of face and thus of surface construction depends on
whether the embedded manifold should be orientable or not [Whi73].

In combinatorial topology the goal usually is to find a topological embedding so that the genus of the
embedding is minimized. In our setting, we can use the geometric information on the location of the
vertices in space for the definition of the arrangements��v�. The goal is to determine an optimally
flat arrangement of the incident edges of a vertex. Flatness is in principle measured by considering

85
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Algorithm 8.1 Triangulation of the surface description graph

Input: The SDG� from phase 1 of the reconstruction algorithm.
Parameters:
� Line segment candidate region���3�.

� Triangle candidate region�����.

� Boundary control angle���.

� Dihedral angle controlÆ�.

� Line segment intersection control angle7�.

Operation:

(1) For every vertexp of�, determine an optimal dihedral arrangement of its incident edges.
(2) Insert the sectors induced by the arrangement into a priority queue5.

repeat
Take the first sector9 � �pq�
pq�� from5 and remove it from5.

(A) if ( the angle of9 at p is less than��� ) then
(B) if ( a vertexq � �����9��, ��9� the triangle induced by the sector9, exists)

then
Insertpq into� whereq is a vertex
for whichpq does not intersect any edge of�.

else
(C) if ( �� �� q�q� is not an edge of� )

then
(D) if ( a suitable pointq � ������ different fromp exists so that

the quadrilateral��p
q�
q
q�� does not fold-over and
pq does not intersect an edge of� )

then
Determine the triangulation of the four points�p
q�
q�
q�,
for which the maximum angle of the triangles is minimized.
if ( the newly introduced edge does not intersect an edge of� )
then

Insert the new edge into�.
if ( �� is the new edge of the triangulation)
then insert triangle��9� into M.

else
if ( �� does not intersect an edge of� )
then insert�� into�; insert triangle��9� into� .

elseinsert triangle��9� into� ;
until ( no more candidates can be found).

Output: A triangulation� .

the dihedral angles between the induced triangles of two neighboring sectors of an arrangement. The
following definition specifies the meaning of an optimal dihedral arrangement precisely.

Definition 8.1 (Optimal dihedral arrangement)
Let
� � � ��
�� be a geometric graph,

� *�p� be the set of all cyclic arrangements of the edges at vertexp where edgespq
pr for which
the edgeqr is in� are consecutive in the cycle of arrangement,
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� ���Æ , Æ� , �Æ.

Then

� :���p�� denotes the maximum number of consecutive edges so that the triangles induced by
every subsequent pair of them have a dihedral angle in�Æ�
 ���Æ%.

� :

��p� denotes the maximum of: over all cyclic arrangements in*�p�:

:

��p� �� ���� :���p�� � ��p� � *�p� �.
� �

��p� is the set of cyclic arrangements which achieve the maximum:

�

��p� �� � ��p� � :���p�� � :

��p� and��p� � *�p� �.
� 5���p�� denotes the sum of all dihedral angles between the triangles induced by every subse-

quent pair of edges.

� 5

��p� is the maximum of5 over all arrangements maximizing::

5

��p� �� ���� 5���p�� � ��p� � �

��p��.
�  

��p� is the set of cyclic arrangements which achieve the maximum:

 

��p� �� � ��p� � 5���p�� � 5

��p� and��p� � �����p� �.
� � ���p�� denotes the variance of all dihedral angles between the triangles induced by every

subsequent pair of edges.

� �
���p� is the minimum of the variance� over all permutations that maximize5:

�
���p� �� �
	� � ���p�� � ��p� �  ����p� �.
� !
���p� is the set of cyclic arrangements which achieve the minimum:

!
���p� �� � ��p� � � ���p�� � �
���p� and��p� �  ����p� �.

The arrangements in!
���p� are calledoptimal dihedral arrangements.

The reason for including the variance is to reduce the set of solutions if more than one optimal ar-
rangement is found. It is not really necessary and can be omitted for the benefit of faster computation.
Ties can be broken by arbitrary selection of one of the solutions.

Figures 8.1 and 8.2 show examples of optimal dihedral arrangements for a rather non-planar case of
edges.

d
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Figure 8.1: An example for an optimal dihedral arrangement (Definition 8.1) of a point at a sharp edge. Left: pointa with

its edges. Middle: the optimal dihedral arrangement. Right: view from side (a� b� c are collinear).

For graphs with vertex sets in the plane, this definition implies the canonical planar embedding.
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Figure 8.2: Examples of optimal dihedral arrangements for five, six, and eight incident edges to a pointp �.

For vertices of degree higher than 3 there are two possibilities of orientation of the cyclic arrangement:
clockwise and counter-clockwise. For a topological embedding, one of them has to be chosen. In our
algorithm, that task is performed later-on as a side-effect of triangulation. For that reason we call the
result of step 1 apartial embedding.

The search for an optimal dihedral arrangement can be performed by systematic enumeration. Because
of the usually small vertex degrees of the used SDGs (Chapters 4 and 5) this approach is sufficiently
efficient.

In the second phase of the algorithm, further edges may occur at a vertex, and it might happen that
the resulting number of edges may increase computation time. Algorithm 8.2 achieves a speed-up by
inserting so-called non-1-environment sectors around the considered pointp before it computes the
optimal dihedral arrangement according to Definition 8.1.

Definition 8.2 (Non-1-environment sector)Let p be the center of a sector9 with edges�� �� pq�
and�� �� pq�. 9 is a non-1-environment sector if q� is in the 1-environment ofpq� or q� is in the
1-environment ofpq� in the sense of Definition 5.8.

This approach is reasonable, because the induced triangles of these non-1-environment sectors, or
some kind of re-triangulation of them, can be already considered as a part of the correct surface mesh.
If the edges of each non-1-environment sector would not belong to the surface mesh, then its sector
edges would induce a surface turn that is sharper than the precision of the EMST which directly
corresponds to the precision of the 1-environment graph (cf. also Figure 4.4 of Chapter 4). This
knowledge is also used to determine the order how the sectors are considered for insertion as shown
in Section 8.3.

8.3 Sector Priority

In the second step,� is extended edge by edge, and suitable triangles identified during edge insertion
are added to the initially empty triangulation� . For that purpose the sectors are processed according
to some priority. For the following it is useful to introduce the definition of sector edges.

Definition 8.3 (Denotation of sector edges)Let9 be a sector of the cyclic arrangement of the edges
incident to a vertex. Then

p denotes the vertex at which the sector is attached,

q� andq� denote the second endpoints of the two edges defining the sector,

�� �� pq�
 �� �� pq�


��9� denotes the triangle��p
q�
q�� induced by the sector.
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Algorithm 8.2 Computation of the optimal dihedral arrangement

Input: Point p with incident edges and faces.
Operation: Calculation of an optimal dihedral arrangement:
(1)� �� all current incident edges ofp.
(2) + �� all current incident faces ofp.
(3) Initialize� �p� �� ��
+ � as the current triangulation atp.
(4) Compute the set; 
 � of edges with at most one incident face.
(5) Compute the set< of possible sectors9 � �pq�
pq��

with edges in; so thatq� is in the 1-env. ofpq� or q� is in the 1-env. ofpq�.
foreach ( sector9 � �pq�
pq�� of< ) do

Set� as the induced face of9.
if ( � does not cause in� �p� a dihedral angle smaller thanÆ� (default: ��Æ) ) then

Add� to � �p�.
Update< according to the new adjacencies.

end
end
Compute the optimal dihedral arrangement according to Definition 8.1 with respect to� �p�.
Output: The optimal dihedral arrangement forp.

As we already know, the triangle��9� should not have a too flat angle, and the dihedral angles with
its adjacent triangles should not be too small. For these reasons we choose the sectors according to a
value based on those two parameters.

Definition 8.4 For the cyclic arrangement of the edges incident to a vertexp we define:

��#$�
�9� � the angle between the edges�� and�� of a sector9.

��#+

���� � the dihedral angle between the two triangles incident to�� which are induced by the two
neighboring edges��� and��� of �� in the dihedral arrangement ofp.

��#+

�9
 Æ�� � if ��#+

���� � Æ� and��#+

���� � Æ�, for the edges of9, then��#+

�9
 Æ�� is the
average of��#+

���� and��#+

����.
If ��#+

���� � Æ� for just one�, ��#+

�9
 Æ�� �� ��#+

����. Otherwise,��#+

�9
 Æ�� �� �.

��9� � if 9 is a non-1-environment sector then��9� �� �, and��9� �� � else.

The sectors9 are processed in lexicographic order according to the key��
 ��#+

�9
��
 ��#$�
�9��.
The first and second components are processed in largest first order, and the third in smallest first
order.

The reason for considering� is that the surface cannot curve along two adjacent edges which do not
form an EMST for their three vertices, cf. the explanation of Chapter 4 and the related Figure 4.4.

The sorting order of the second key prefers sectors with flat environment. The intuition is that the
favorable regions of the surface are preferably treated. This approach is in particular of advantage if
the surface has sharp edges or ridges.

The priority queue5 stores the current candidate sectors. It is initialized with all sectors, and is
updated by removing old and inserting new sectors emerging in the course of the algorithm if an edge
is inserted into�. Thus the operations which5 has to support efficiently are access to the sector with
the smallest key, insertion of an arbitrary sector, and deletion of an arbitrary sector.

In the following we describe the different cases (A to D) of Algorithm 8.1 in more detail.
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8.4 Edge and Triangle Creation: Case A

If the angle of the triangle��9� at p is larger than a given global angle bound���, �Æ 1 ��� 1 ���Æ,
processing of the current sector is terminated without any further action.��� is a parameter controlling
the algorithm and is usually chosen large. That part of the algorithm is responsible for creating bound-
aries in the case that the desired surface is not closed. The mechanism of boundary generation caused
by this part of the algorithm is described in Section 9.6. of Chapter 9.

8.5 Edge and Triangle Creation: Case B

Based on the current sector9, the algorithm tries to find an edge for insertion into�. Two main
cases are distinguished by considering the triangle��9�. If a point of� lies over��9�, then the line3
betweenp andq is inserted as an edge into�, whereq is one of those points in the triangle for which
3 does not intersect any edge already in�. If no point of� is over��9�, the algorithm continues with
the else-case.

8.5.1 Candidate Points

Ideally, a pointp � � should be in the candidate region�����9�� if and only if p is in the NN-image
of ��9�. Because the NN-image is not known, a selection strategy of candidate points is required
which should yield a set of candidate points which comprehends the desired points. In the following
we suggest a definition of a candidate region of triangles which has turned out to be sufficient in order
to treat data sets successfully in practice. In Chapter 9 another definition of candidate region will be
presented for which we will prove for SF-surfaces that it comprehends all points of� in the NN-image
of the triangle, but also possibly some more.

The candidate region is defined as follows.

Definition 8.5 (Flat points over a sector) Let9 be a sector. A pointq is called to beflat over 9 if
the three largest dihedral angles in the tetrahedron= � ����9�
q� are at the edgesqp
 qq�
 qq�

that is, all angles are between triangles that are adjacent toq.

Thecandidate region � � �9� of flat points over a sector 9 is the region of all points in space which
are flat over9.

Let� be a set of sample points of a surface. Then� � �9� �� � � �9� � � denotes thecandidate set
of flat sample points over a triangle 9.

The background of this definition is that triangles adjacent top � � � �9� which satisfy the definition
should fit well into the surrounding manifold because the dihedral angles should be large.

8.5.2 Point Selection

The required point in� � �9� is algorithmically determined by projecting� � �9� orthogonally onto
��9�. From the definition of� � �9� it is immediately clear that all projected points are in the interior
of ��9�. A point q with the property is selected that a line in parallel toq�q� throughq exists so that
the triangle��p
q��
q

�
�� cut off by this line from��9� does not contain any of the projected points in

its interior. Evidently, such a line exists. Ifpq does not7-intersect any edge of� thenq is taken as
the desired point. If the unlikely case of an intersection happens then the overall algorithm continues
with the next sector.
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8.5.3 Edge Insertion

The main task of the insertion procedure for the candidate edge� �� pq is to find locations for� in the
cyclic arrangements ofp andq. For that purpose, an optimal dihedral arrangement is recalculated atp
andq under consideration of the new edge�, using Algorithm 8.2. This procedure yields the location
of � in the arrangements.

Furthermore,� is tested for existence of an intersection with a triangle in� . The intersection test with
the triangle is performed in order to keep� definitively intersection-free, although the probability that
� intersects a triangle should be small for properly sampled surfaces. If no intersection is found then�
is inserted into� .

For both verticesp andq, the sectors which have been destroyed by this operation are removed from
the priority queue5, and the newly created sectors are inserted, according to their keys.

8.6 Edge and Triangle Creation: Case C

If �� is an edge of� then the triangle��9� is a candidate for insertion into� . ��9� is tested for
whether it intersects an edge of�, in order to guarantee intersection-freeness of the resulting manifold.
For properly sampled surfaces this case should not happen but this test additionally enforces that�
is intersection-free. If��9� is intersection-free then it is inserted into� .

If �� is not an edge of� then the algorithm continues with the then-case. The graph� and the priority
queue5 remain unchanged.

8.7 Edge and Triangle Creation: Then-Case D

One purpose of case D is to extend the current triangulation in a ”non-convex” manner by including
further points not yet covered by the ”hull” of the already existing triangulation, as it is done for the
points that are flat over a triangle. This strategy is crucial for the algorithm. The idea is to check
at a possible new boundary edge�� given by an edge closing a sector to a triangle��9� whether the
boundary can be extended instead of being ”closed”. The candidate sample points are found in the
candidate environment of��.

Another purpose is to avoid triangles with large angles from which we know from Chapter 6 that
they are unfavorable for NN-embeddability. A large angle may occur if an edge of type�� is inserted
although a vertexq is close to it. In this case the edgepq usually is a better candidate.

8.7.1 Candidate Region of a Line Segment

The definition of a candidate region of a line segment used by the algorithm is based on the�-
environment of Definition 5.8. Its definition is preceded by a further definition required for its for-
mulation.

Definition 8.6 (�-close point) Let 3 be a line segment andp be a point.p is called�-close to 3 if p
is in the�-environment of3 (cf. Definition 5.8).

If 3 does not have�-close points then3 is called�-line segment.

Definition 8.7 (��-candidate region of a sector)Let 9 be a sector. A pointq is called to be��-
before 9 if



92 Chapter 8: Triangulation

(1) q is ��-close to��,

(2) q projects orthogonally outside of��9�, on the opposite side ofp with respect to the line through
��.

The��-candidate region ����	��9� before a sector 9 is the region of all points in space which are
��-before9.

Let� be a set of sample points of a surface. Then����	��3� �� ����	��9� � � denotes the��-candidate
set before 9.

A pointq is called to be��-close over 9 if

(1) q is ��-close to��,

(2) q projects orthogonally into��9�, and

(3) q is not flat over9.

Thecandidate region ����	��9� of ��-close points over a sector 9 is the region of all points in space
which are��-close over9.

Let� be a set of sample points of a surface. Then����	��9� �� ����	��9��� denotes thecandidate set
of ��-close points over 9.

The��-candidate region of a sector 9 is defined by���� �� ����	��9������	��9�, and the��-candidate

set of a sector 9 by���� �9� �� � ���	��9� � � ���	��9�.

The index	 of �� indicates that�� is one of the control parameters of the algorithm. The�� used for
the candidate environment can be that one of the clustered�-environment graph of the first phase of
the reconstrucion algorithm. As we will see later on, smaller values of��, including negative ones,
also may be used if the sample set is suitable chosen. Later examples will show that�� � ���! is a
suitable value for surfaces without sharp edges or ridges.

8.7.2 Point Selection

The candidate sets���� �3�, � ���	��3�, and����	��3� are further restricted by the condition of step D to
those points which do not cause a fold-over quadrilateral.

Definition 8.8 (Fold-over quadrilateral) Let 9 be a sector, andq be a vertex. The quadrilateral
��p
q�
q
q�� has afold-over if the dihedral angle between the triangles��p
q�
q�� and��p
q�
q�
or��p
q�
q� is larger than the dihedral angle between the triangles��p
q�
q� and��p
q�
q�.

Definition 8.9 (Fold-over-free candidate sets)The fold-over-free candidate sets �
��
� �3�, �

��
�	��3�,

and�
��
�	��3� are defined as the restrictions of the candidate sets���� �3�, � ���	��3�, and����	��3� to those

points which do not cause a fold-over quadrilateral.

The point selection procedure consists of two search steps. The second search step depends on the
result of the first step.
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Search step 1:
A proper point of the candidate set�

��
� is selected as follows. From all points of�

��
� the one

enclosing the largest angle withq�q� is taken. If the�-environment���p
q� is not empty

of points of�
��
�	��9�, then q is replaced by the point of�

��
�	��9� � ���p
q� nearest top.

This process is repeated for the newq with the edgepq until no further update is possible.
Because the distance of the investigated points fromp as elements of the�-environment of their
predecessor decreases strictly, termination is guaranteed.

Search step 2, inside case:
If the projection ofq falls inside of��9�, the line segmentpq is checked for7�-intersection

with an already existing graph edge. If an intersection is found then the points in�
��
�	� which

are closer top than q are processed in order of increasing distance fromp. If a point q� is
found for whichpq� does not7�-intersect an already existing graph edge thenq� is taken forq.
Otherwise the selection of a suitableq fails and the else-case-D is executed.

Search step 2, outside case:
If the projection ofq falls outside of��9�, then the edges of typeq�r � or q�r� already incident to
q� andq�, respectively, are investigated. Among them, one is taken which encloses the smallest
angle atq� (q�) with the edgeq�q� and for which the orthogonal projection ofr� (r�) onto the
plane of��9� falls onto the opposite side ofp with respect to the line throughq� andq�. If
the angle of the chosen edge withq�q� at q� (q�) is less than that ofq�q (q�q), then the point
q is updated by that one ofr� andr� which yields the larger of the angles��#�r�q�
 r �q�� and
��#�r�q�
 r�q��.

If q has been modified in the final search and if a point of the set�
��
� � �q�
 r�
 r �� is in the 1-

environment ofpq or in the double cone which results by rotation of the edgesqq�,qq� around
the edgeq�q�, then the search for a properq has not been successful, whereq� is the previous
“old” unmodified q. The same holds if the new pointq is not an element of the candidate set

�
��
� . If this happens then the else-case D is executed.

If a suitableq has been found then the quadrilateral induced byp,q,q�,q� has to be triangulated. The
details are described in the next subsection.

The background of the described selection strategy is as follows. The goal is to extend the set of
vertices adjacent top by a vertex of the candidate set�

��
� . The evidently best suited point is the one

which is ”closest” to edge��. However, if a sharp edge occurs close to the sector, it can be useful to
consider further points, too. Let us look at Figure 8.3. The figure shows a side view of a sector in
which q� andq� fall onto one another.q� is in the 1-environment ofpq. The selection ofpq would
yield a surface which goes fromp overq to q�. This surface, however, has a higher curvature than a
surface fromp overq� to q. The search step 1 takes this observation into account and selectsq� in this
situation.

The search step 2, inside case, is executed in order to avoid intersecting edges. In our empirical
investigations this case never occurred up to now.

The search step 2, outside case, takes into account the current mesh structure “in front” of the tri-
angle. If adjacent pointsr�
 r� at q�
q� are already present, it might be that they induce triangles
��q�
q�
 r ��, ��q�
q�
 r �� with the edgeq�q� for which the current candidate pointq “is behind
them” with respect to the edgesq�r�, q�r�. In Figure 8.4 (left), the pointq “is behind” the trian-
gle��q�
q�
 r�� because it induces a larger angle atq� with q�q� thanr� does. However, insertion
of the edge�� � q�q� would induce a relatively small dihedral angle atq�q� between the triangles
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Figure 8.3: The side view of a configuration in whichq � is selected instead ofq.

��q�
q�
 r �� and��q�
q�
p�, cf. Figure 8.4 (right). Therefore it makes sense to consider the quadri-
lateral��p
q�
q�
 r�� to determine the correct triangulation. In order to do thisr� replacesq as the
“new” q.
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Figure 8.4: The pointq “is behind” the edgeq�r� (left). The side view (right) shows that it makes sense to considerr�
as new candidate point because the other triangulation of the quadrilateral��p� q�� q�� r�� with the edgepr� could yield a

smaller dihedral angle.

8.7.3 Triangulation

The four pointsp,q�,q�,q are triangulated according to the min-max triangulation, that is the maxi-
mum angle of the resulting triangles is minimized [HL92].

An alternative approach might be to take that triangulation for which the dihedral angle between the
resulting triangles is greater, and, in the case of equality (which happens in particular if the four points
are co-planar), the min-max triangulation. We did try this possibility, too, and did not recognize a
significant different behavior.

Another alternative is to take the environment of the four vertices in the current surface mesh and
graph into account, with the goal to keep the surrounding mesh smooth. The idea is to maximize the
occurring dihedral angles. The edges of the two possible triangulations ofp
q�
q
q� are virtually in-
serted into the current surface mesh, and the dihedral angles of the two resulting meshes are estimated
by taking the current dihedral angles at the five edges in the optimal dihedral arrangement of each of
the four vertices. From those of the resulting 10 values which exceedÆ� the average is taken. Then the
triangulation ofp
q�
q�
q with the greater average is chosen, and that line segment amongpq and
q�q� is chosen as candidate edge for insertion which belongs to the selected triangulation.
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Figure 8.5 shows two examples for triangulation by min-max edge selection and edge selection under
consideration of the environment. The second version follows the surface more accurately.
It may also make sense to combine the two versions. In Chapter 9 we will see that it is important that
the algorithm avoids edges for which sample points exist which form a large angle with them. Thus,
if q forms a large angle with��, q�q� should become the candidate edge which is best achieved by
applying the version based on min-max triangulation. Otherwise priority can be given to the dihedral
smoothness of the mesh by applying the version which takes the neighborhood into consideration.

Figure 8.5: Left: a triangulation obtained with the min-max edge selection. Right: a triangulation obtained by taking the

environment into account. The second version yields an improved reconstruction at the sharp edge.

8.7.4 Edge Insertion

The rest of the insertion procedure of a candidate edge of type� � pq is the same as in Section 8.5.3.
For a candidate edge�� the insertion procedure has to find proper locations for the new edge in the
cyclic edge arrangements of its verticesq� andq�. This is achieved by applying Algorithm 8.2. The
results yield the location of�� in the arrangements.
Furthermore,�� is tested for existence of an intersection with a triangle in� . The intersection test
with the triangle is performed in order to keep� definitively intersection-free, although the proba-
bility that �� intersects a triangle should be small for properly sampled surfaces. If no intersection is
found then�� is inserted into� .
For both verticesp andq, the sectors which have been destroyed by this operation are removed from
the priority queue5, and the newly created sectors are inserted, according to their keys.
If �� could be inserted into� then the insertion procedure for the triangle��9� is executed which
works as described in Section 8.6.

8.8 Edge and Triangle Creation: Else-Case D

In the else-case D, the edge�� has to be checked for intersection with an already existing graph edge
using the7�-intersection test. It is unlikely that an intersection is really found. If no intersection has
been determined,�� is inserted with the same procedure as described in Section 8.7.4. If�� could be
inserted into� then the insertion procedure for the triangle��9� is executed which works as described
in Section 8.6.

8.9 Examples

Figures 8.6 and 8.7 show the results of reconstruction of our example data sets. The 1-environment
graph has been used as surface description graph. Several reconstructed surfaces have boundaries,
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computation times in minutes and seconds
object # points

���� � clustered 1-EG reconstruction

torus 310 0:01 0:01 0:03
cup 2650 0:11 0:06 0:25
head 1487 0:06 0:03 0:14
skull 698 0:03 0:01 0:05
puppet 695 0:03 0:01 0:07
cap 371 0:02 0:01 0:02
pharaoh 2286 0:10 0:05 0:20
tori 620 0:01 0:02 0:06

Table 8.1: The calculation times of the reconstruction algorithm for the examples on an SGI Octane R10000 at 250 MHz

with 384 MByte of memory.

and the skull additionally has holes which have been properly reconstructed. The parameters used are
listed in the caption of the figures. The calculation times are compiled in Table 8.1. The Delaunay
triangulation�� �� � has been used as basic data structure for the nearest neighbor queries during the
computation (see Appendix B).
Figure 8.8 shows a sequence of snapshots of the triangulation phase for the clustered�-environment
graph with� � � as initial surface description graph for the triangulation.

8.10 Computational Issues

The implementation of the basic data structures of the reconstruction system is based on alibrary of
template classes. The template classes offer data structures which are used at different locations of
the implementation. In the following section we give a brief survey on these classes. Then the data
structure of the partially ordered surface description graph is described. That data structure supports
the combinatorial requirements of the algorithm, as does the priority queue of sectors to which a
subsection is devoted, too. Finally some aspects of geometric processing, required in particular for the
edge feasibility tests are treated.

8.10.1 A Library of Template Classes

Sorting and containment testscan be carried out with anAVL tree template class. The implementation
of a set classfor simple set arithmetics is also based on AVL trees [Wir86].
Whenever sorting is required where the number of objects is not known and where onlythe first�
elementsof a set have to be extracted theheap template classcan be chosen. As AVL trees, it has
a run time proportional to���  �� ��, but for sorting only subsets of elementsheapsare the better
choice.
Of course,template arraysare also part of the library as well as simplelist templates, queue templates,
stack templates, andstandard string classes.
One interesting part of the library is the integration of so-calledhash list classes. Here, the number
of elements to be inserted and thehash functioncan be adjusted by the programmer and the system
automatically generates an appropriatehash table size. Then, elements can be inserted in this list or
the position of an element can be extracted in constant time.
Space subdivisionsfor intersection tests, for example, can be realized using several implementedspace
subdivision template classes. The basic idea common to all schemes is to subdivide a bounded space
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Figure 8.6: Results of the reconstruction algorithm. From left to right: the point set, the clustered 1-environment graph and

the reconstruction result. Parameter values:��� � ���Æ, �� � �, �� � 	�Æ, Æ� � ��Æ. An exception is the skull. In order to

reconstruct even the hole of the nose and not just the eyeholes, a boundary detection value of��� � �
�Æ has been used.
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Figure 8.7: Results of the reconstruction algorithm. From left to right: the point set, the clustered 1-environment graph and

the reconstruction result. The parameter values were��� � ���Æ, �� � �, �� � 	�Æ, Æ� � ��Æ.

Figure 8.8: Snapshots of the process of triangulation of the puppet. From left to right: the point set, the clustered�-

environment graph, and the intermediate reconstruction results with 300, 600, 1100 triangles, and the final reconstruction

result.
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filled with geometric objects recursively into sub-cells. To every leaf cell, its intersecting objects
are assigned. This data structure can be used to answer incidences of a query object with the given
geometric object. The query is processed by traversing the hierarchy for those leaves which intersect
the query object. Then the incidence test is executed with the objects of the leaves found.

Our library contains anoctree template classand amedian cut tree template classworking according
to that scheme. Other subdivision schemes can be derived very easily from the base implementation.
Using these classes the programmer must only provide a so-calledfind function, which specifies for
each query in the tree whether it was successful or not. Such afind functioncan for instance be a
simpleintersection test.

8.10.2 Data Structure of the Partially Embedded Surface Description Graph

The data structure of the partially embedded surface description graph has to support the following
basic operations:

� initialization,

� output of the coordinates of a vertex,

� location of an existing edge in a cycle of edges of a vertex,

� ordered edge insertion behind or before a given edge in the cycle of edges of a vertex,

� re-arrangement of the cycle of edges incident to a vertex,

� output of the cycle of edges incident to a vertex,

� next/preceding edge on the cycle of edges of a vertex,

� surface triangle insertion,

� incident surface triangles of an edge,

� output of all surface triangles.

As we can see from this list of operations, the data structure also contains the resulting surface trian-
gles, in addition to the usual graph information. That in particular means that we do not need a separate
data structure for the resulting manifold. Its triangles can be accessed by the operation ”output of all
surface triangles”.

For the data structure of the partially embedded surface description graph we use the incidence list
representation as basic framework. The incidence list representation consists of a list of vertex ele-
ments. Every vertex element refers to a list of edge elements. The elements of the edge list of a vertex
are arranged in sorted order of the edge cycle of the vertex. They refer to the two vertex list elements
of their two vertices.

The surface triangles are stored in another list. Every element of the edge lists refers to at most two
triangles that are incident to the edge. A triangle element refers to the edge list elements of its three
edges.

Every vertex, edge, and triangle element stores an identifier which uniquely describes the represented
item.
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8.10.3 Priority Queue of Sectors

The algorithm processes relevant sectors in sorted order according to a key which has been described
earlier. The data structure of the set of sectors still to be processed has to support the following
operations:

� get and remove the first element in sorted order according to its key,

� insert a sector according to its key,

� remove an arbitrary sector specified by an identifier.

The first two operations are those of a classical priority queue and any of the well-known data struc-
tures is used. The last operation is required if an update of the surface description graph by a new edge
is performed. The access required for that operation is implemented by a pointer referring from the
element of the first edge of a sector in cyclic order to its sector element in the priority queue.

8.10.4 Geometric Tests

The geometric tests to be performed and the corresponding computational solutions are as follows.

8.10.4.1 7-intersecting edges

The task is to find edges of the surface description graph which are close to a given edge�. Closeness
of two edges is measured by considering dihedral angles between certain triangles of the tetrahedron
spanned by the four vertices of the two edges. In order to restrict search space, we consider a ball
around the center of every edge. The radii of the balls are at least half of the edge length. That means
that the vertices of the edge are within the closed ball. For a given edge�, we only consider those
graph edges�� which do not have both of the following properties:

(1) The ball of�� does not contain any of the vertices of�.

(2) The ball of� does not contain any of the vertices of��.

The background of this discussion is the definition of conflict-freeness of Section 7.2. A pair of edges
satisfying (1) and (2) is conflict-free in that sense. Furthermore, if
 is half of the length of the longer
one of the two edges, and we take
! � 	 
 
 as ball radius, then the distance of the two edges is at
least
! � �
 � �	� �� 
 
. The reason is that the edges are in the same balls of radius
, but the large
balls of radius
! do not completely cover the small balls because otherwise (1) or (2) is satisfied. If
	 , � is chosen sufficiently large, the dihedral angles between the triangles under consideration are
far from���Æ if (1) and (2) hold.

In order to test the negation of (1) efficiently, for every vertexv of the graph the set of all edges is
stored whose ball containsv. For an edge, these vertices can be determined by�-nearest-neighbor
search. Then for the query edge�, the candidate edges are immediately obtained from the lists of the
vertices of�.

The edges�� not satisfying (2) are found by a�-nearest-neighbor search around the center of� which
is terminated if the radius of the ball of� is reached. For�-nearest-neighbor search, the approach of
Section B.1 of Appendix B is used.

If the edges are short, as can be expected in our application, (1) and (2) yield a significant restriction
of search space.
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8.10.4.2 Points flat over a triangle

The main task is to restrict the set of points for which the criterion of flatness over a triangle has to be
evaluated. This problem is solved by using the�-nearest-neighbor search for the pointp of a sector
9, so that the search space covers the NN-image of the triangle. An estimation of this search space is
discussed in Section 9.5.2 of Chapter 9.

8.10.4.3 �-close points of an edge

The task is to find the verticesp� possibly located in an�����-environment of a given edge�. This
problem also has occurred for the calculation of�-environment graphs, and is solved as outlined in
Section 5.3 of Chapter 5.

8.10.4.4 Intersecting triangles

The task is to find out for a given triangle between graph vertices whether it intersects an edge of the
graph, and for a line segment between two graph vertices whether it intersects a triangle of a given
set of triangles between graph vertices. These problems are solved by using one of the spatial sub-
division schemes for answering incidence queries of our template library, outlined in Section 8.10.1.
Another possibility for the intersection test is to apply a similar approach as for7-intersecting edges
in Section 8.10.4.1 in order to reduce the search space. However, if a line segment intersects a tri-
angle it usually also intersects an edge of the triangle so that this task is usually covered by the edge
intersection tests.

8.11 Discussion

The algorithm of triangulation presented in this chapter is the second phase of the reconstruction
algorithm. The computational examples have shown that it works well. In the next chapter, arguments
will be given which show that the favorable behavior is not surprising. Chapter 10 will show that
the triangulation algorithm can also be applied usefully to graphs different from the type of surface
description graphs used in the first phase of the algorithm.
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Chapter 9

Analysis of Triangulation

In the following we investigate the usefulness of the triangulation algorithm. We first introduce a
characterization of suitable sample sets and prove the existence of sample sets satisfying this condition.
Then we show for the flat case that sample sets fulfilling this condition exist for which the probability
that

(1) triangles with inner angles larger than� occur,

(2) edges of the triangulation become longer than a given bound,

is rather low. ”Probability” means the portion of all configurations for which an assertion holds. This
means that we assume that every configuration may occur with equal probability.

Afterwards we argue that the same holds in space, too. Finally, by applying theorems of Chapter 6, we
can show that the probability that the algorithm yields a reconstruction in the sense of the mentioned
chapter should be high.

Details of the theoretical analysis are confirmed by empirical investigations on random sample sets.

9.1 Characterization of Sample Sets Suitable for Triangulation

According to the results of Chapter 6 on the NN-embeddability of triangulations, a sample set is
considered suitable if the triangulation algorithm does not yield long edges, and if the angles of the
generated triangles do not become too large. In the following we combine both aspects in order to
characterize a class of favorable sample sets. For that purpose, the following terminology is useful.

Definition 9.1 (�-line segment and�-edge) A point r is �-close to a line segment3 � r�r� if the
angle of triangle��r�
 r 
 r�� at vertexr is larger than�, ��Æ � � 1 ���Æ.

An edge of a graph is called a�-edge if it does not have a�-close vertex in the graph. A line segment
between two vertices of the graph is called a�-line segment if it does not have a�-close vertex in the
graph.

This terminology is closely related to the terminology which has been used for�-environments,
cf. e.g. Definition 5.8. This is not surprising because we know from Theorem 5.11 that the vertices
�-close to3 are just those which are����-close to3 with ���� �� �#�$ ����, ��Æ � � 1 ���Æ.
Vice-versa, for� � �, the vertices�-close to3 are just those which are����-close to3 for
���� �� ��#�
	� ��

��	��
�, ��Æ � ���� 1 ���Æ.

The idea behind the following characterization of suitable sample sets is as follows. If for long line
segments between points of the sample set�-close sample points would exist, and if the algorithm
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would yield a triangulation which does not contain triangles with angles larger than�, then the algo-
rithm would not yield long edges. Because the triangulation algorithm is designed to avoid triangles
with large angles, long edges should be avoided by it, too.

For the initial SDG no special constraints have to be defined for the sample sets.

Theorem 9.2 (�-edge property of�-graphs) The edges of a�-EG, � � � � �, and thus the edges
of the SDG resulting from step 1 of the reconstruction algorithm, are�-edges for��Æ � � 1 ���Æ.

Proof: From Theorem 5.11 we know that the vertices�-close to3 are just those in the�-environment
of 3 with ���� �� �#�$ ����, ��Æ � � 1 ���Æ. Because the����-environments for��Æ � � 1 ���Æ

are subsets of the�-environments for� � � � �, and the�-environment of�-EG-edges is free of
points, the edges of the�-EG do not have�-close points.

For the subsequent triangulation, we proceed as follows.

Theorem 9.3 (�-blocking sampling)
Let� be a compact SF-surface without boundary,�� 1 � � �.

(1) An /�� , � exists so that every line segment3 � pq, p
q � �, /�3� � /��, has a�-close point on
�.

(2) Let be� 1 /� 1 /
�
�, � a finite set of points on�. Then a finite extension�� of � by points on

� exists so that for every line segment3 � pq, p
q � �, /� � /�3� � /��, a point r � in � � exists
which is�-close to3. Every further extension of�� by points on� has this property, too.

Proof:

(1) Let bem �� �
��p � q�, and�"�m� be the open ball with maximum radius>�3� and centerm

which is a subset of the�-environment of3. By Theorem 7.19 and Theorem 6.4,/�� , � exists so
that the maximum distance of every point of3, and thus ofm, to� is less than>�3� if /�3� � /��.
Thus the nearest neighborr � � of m satisfies the requirements of (1).

(2) Let. be the set of all line segments3 between points of� with /� � /�3� � /��. Because� is
compact,. is compact.

For pointsr � �, let��r � be the set of all3 � . which containr in their open�-environment.
��r � contains an open subset. The reason is that the function which maps3 to the angle ofr
in the triangle��p
 r 
q� is continuous. By (1), the sets��r �, r � �, cover.. By the finite-
covering theorem of topology, a finite set��� exists so that the sets��r �, r � � , cover., too.
� � �� � � � �� has the property desired in (2). Trivially, every further extension does have this
property, too.

Definition 9.4 ('��(�-property) Let be� 1 /� 1 /
�
�, and� be a surface. A finite set� of points on

� has the'��(��/�
 /
�
��-property if for every line segment3 � pq, p
q � �, /� � /�3� � /��, a pointr

in � exists which is�-close to3.

Corollary 9.5 (Existence of'��(�-sample sets)Let� be a compact SF-surface without boundary,
�� 1 � � �, and� be a finite set of points in�. Then/�� and a finite extension� � of � by points on
� exist so that� � has the'��(��/�
 /

�
�� property for every/� with � 1 /� 1 /

�
�.

Proof: The corollary is an immediate implication of Theorem 9.3.
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In the following we formalize the idea concerning the edge length bounds outlined at the beginning of
the section.

Observation 9.6 (Existence of edge length bounding sample sets)Let � be a compact SF-surface
without boundary,��Æ � � 1 ���Æ, � a finite set of points on�. Then/��� , � exists so that for all
/� with � 1 /� 1 /��� , � can be augmented by points on� to a finite sample set�� with the property
that the graphs� constructed by the algorithm should have edge length less than/�, as long as the
triangulation algorithm just inserts�-edges.

Argumentation: By Corollary 9.5,/�� and a finite extension� �� of � by points on� exist so that
� � has the'��(��/�
 /

�
�� property for����, for every/� with � 1 /� � /��, and so does every finite

superset� �.

By Observation 7.10,/
�� , � exists so that, for all/�, � 1 /� 1 /
��, � can be extended to a finite
point set� �� for which the clustered�-environment graph,� � � � �, of �� should only have edges
of length less than/�, and so does every finite superset��.

Then/��� �� �
	�/��
 /
��� and� � �� � �� � � �� fulfill the requirements of the observation.

The implication of this observation is that all theorems which demand short edges in order to achieve
a property can be applied to� and� , as long as the triangulation algorithm just inserts�-edges.

9.2 General Edge Length Bounds

In Section 9.1 we have seen that sample sets exist by which a given edge length bound is achieved. In
this section we investigate the behavior of edge lengths for the case of arbitrary, unconstraint sample
sets, in order to see to what extent proper sampling is indeed necessary. It turns out that in many cases
the length of a newly inserted edge is not longer than edges already in the graph.

For inserted edges of type��, not too much special can be told. In the worst case, the length of�� can
come close to the sum of the lengths of�� and�� where the minimum possible difference depends
on the choice of���. The initial SDG in form of a clustered�-environment graph,� � � � �, may
contain triangles, although for� � � the probability of triangles is low (Theorem 5.6). The worst case
of length for�� occurs for� � � where/���� �

�
/����� � /�����. The reason is that in the worst case

p is on the diameter sphere of�� so that the triangle��p
q�
q�� is rectangular. A favorable situation
may occur if�� is the edge inserted by the min-max triangulation of the then-case of D.

The following theorem gives an estimation of the length of edges of typepq dependent on the shape
of a sector9. These estimations are independent from the condition that� does only contain�-edges.

Theorem 9.7 (Length bound forpq)
Let be

� 9 a sector,

� � the plane spanned by��9�,

� �� the open half-plane of� bounded by the line through�� in whichp lies,

� q �-close to�� with � , ���Æ,

� �� the unique equal-sided triangle incident to�� and located in��.
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Then the lines through the edges of�� different from�� decompose�� into four regions (Figure 9.1).
Region 1 is��, region 2 that one which shares just one vertex with��, and regions 3 and 4 the two
remaining ones. Regions 3 and 4 are symmetric and are treated in the same manner.
Let (P1), (P2) and (P3) be properties defined as

(P1) /�pq� � ����/�pq��
 /�pq���.
(P2) /�q�q�� � ����/�pq��
 /�pq���.
(P3) /�qq�� � ����/�pq��
 /�pq���, /�qq�� � ����/�pq��
 /�pq���.
Then

(A0) (P2) implies (P3).

(A1) In region 1, (P1) and not (P2).

(A2) In region 2, (P2) and not (P1).

(A3) In regions 3 and 4, (P1) holds. For the subregion of region 3 outside the disc aroundq� of
radius /����, and for the subregion of region 4 outside the disc aroundq� of radius/����, also
(P2) holds.

Proof: The radius of the circular arcs betweenq� andq� which bound the region of points���Æ-close
to �� is equal to the length of��. The regions for� , ���Æ are subsets of this region.
If q is in the plane spanned by�, the assertions can be immediately concluded from Figure 9.1. A hint
concerning (P1) is that the region of���Æ-close points is a subset of one of the discs bounded by the
circle centered atp and running throughq� or throughq�. This can be seen by considering the mutual
locations of the bounding circular arc and the mentioned circles atq� or q�.
If q is not in the plane spanned by�, the length ofpq is less than the length ofpq� whereq� is obtained
by rotatingq around�� (Figure 9.2).

An implication of the theorem is that the edge length ofpq may become larger than the lengths of the
edges already in the graph� only in the case of region 2.
If q is not�-close, but in the��-environment of��, the edge length can be estimated as follows.

Theorem 9.8 (Length bound forpq)
Let be
� 9 a sector,

� � the plane spanned by��9�,

� �� the open half-plane of� bounded by the line through�� in whichp lies,

� q ��-close to�� with�� � �� � �.

Then/�p
q� � �
	�/�pq��
 /�pq���� /�q�q�� � �
	�/�pq��
 /�pq���� /�pq�� � /�pq��.

Proof: The first inequality follows from

/�p
q� � ��q� p�� � ��p� q���� ��q� � q�� � /�pq�� � /�q�q��


with � � ��
 ��. The relation��q�q��� � /�q�q�� required in this inequality follows fromq � �������.
The second inequality of the theorem follows from the observation that the length of an edge of a
triangle does not exceed the sum of the lengths of the other two edges of the triangle.

The theorem tells that in the case of a��-closeq which is not�-close, the length of a possibly inserted
edgepq does increase by at most a factor of 3.
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Figure 9.1: Analysis of the length of edges of typepq with respect to a sector. The edges of an equal-sided triangle��

partition the half-plane�� into four regions forq with different properties of the length ofpq.
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Figure 9.2: The length ofpq is less than the length betweenpq � whereq� is obtained by rotatingq around��.

9.3 �-Edges in the Flat Case

In the following we investigate the probability that a step of incremental edge insertion

� does not lead to the insertion of an edge at all, and

� does not yield a�-edge,

in the case that the NN-images of all items involved in a decision fall into a flat part of the surface
�, that is the NN-image of a line segment is the line segment itself, and all points involved are in a
common plane. The importance of this case comes from the observation that for sufficiently short
edges the environment of the surface which is involved in a decision is approximately flat.
For that purpose we analyze the different cases of edge insertion. The cases of the algorithm where
edges may be inserted are the then-case B, the then-case D, and the else-case D.

9.3.1 Then-Case B

In the flat case, the candidate set� � �9� of a sector9 consists of those sampling points which are in
the interior of the triangle��9�. The reason is that in this case the dihedral angles at the edgesqp,
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qq�, andqq� are���Æ, and those at any other edge equal to�Æ. This property satisfies Definition 8.5.

Theorem 9.9 (Then-Case B)Let � be a surface,� be a sample set of�. Let the current graph
� only consist of�-edges which additionally are NN-intersection-free. Let9 be a sector for which
the NN-images of all items involved into the test of the then-case B fall into a flat part of�. If the
candidate set� � �9� contains at least one point then a pointq � � � �9� is found by the algorithm
(Section 8.5.2) for which� �� pq does not NN-intersect any edge of�, and� is a�-edge.

Proof: Because all items involved in the test fall into a flat part of the surface, the points of� � �9� are
identical with their projection on��9�, that is, they are located in��9�. Furthermore,� � �9� contains
all sample points located in��9�.

Let q be the point selected by the algorithm. Because� is NN-intersection-free, no edge of� NN-
intersects�� and��. Because the region� � ��p
q��
q

�
�� of ��9�, q��
q

�
� defined as in Section 8.5.2, is

free of points, no edge is contained in this region. Thus no edge exists which might be NN-intersected
by �, and thus� is NN-intersection-free.

Because�� and�� are�-edges, no�-close point for� can be found outside of��9�. In order that a
�-close point can exist at all, the����-environment of� has to have a non-empty intersection with
the region�� �� ��9� � �. This implies that one of the angles betweenpq andq��q

�
� at q is less than

���Æ � �, and the other one is at least�. Let w.l.o.g.��p
q
q��� be the triangle with angle� at q.
This implies that in the triangle��p
q
q�� the angle atq is at least�, too. But this means thatq is
�-close to��. This is a contradiction to the assumption that�� is a�-edge.

9.3.2 Then-Case D

In the flat case, the then-case D becomes significantly simpler. The candidate set����	��9� of ��-close
points over a sector9 becomes empty because all points in the interior of��9� belong to� � �9�. This
implies that the algorithm works as follows.

Step 1:
A candidate pointq � ����	��9� is selected which encloses the largest angle with��.

Step 2, inside case:
This step is never entered because the candidate set is empty.

Step 2, outside case:
The final search is performed as in the original algorithm.

In the following we distinguish between the case that the candidate pointq is �-close to��, and the
opposite case thatq is not�-close to��.

For the case thatq is �-close to�� we will first show that the probability that a fold-over occurs should
be rather low. This observation implies that the pointq selected during step 1 is the one with the
largest enclosing angle with��, with high probability. Then we will show that under this condition the
line segment� �� pq is intersection-free. This result implies that a replacement ofq in search step 2,
outside case, does not take place. The implication is that the pointq selected in the condition of case
D is a point with largest angle with��, with high probability.

The selected pointq is used in the then-case D in order to decide which edge should be taken as
candidate edge:� or ��. We will show that the probability that�� is the candidate edge is low if�� is
not a�-edge. Furthermore we show that the probability that� is not a�-edge is low, ifq is �-close to
��.
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An implication of the discussion is that for�� �� ���� the probability is high that the resulting
triangulation is NN-embeddable.

For the case thatq is not�-close to�� it turns out that�� is a�-edge with high probability. The reason
for possibly not using�� is the intention to reconstruct sharp edges or ridges. In that case�� can be
chosen between 0 and 1 so that����Æ� � � � �� � �.

If the surface is assumed free of such features, the choice�� �� ���� will ”switch off” this not required
possibility. We do not investigate the case of sharp edges in detail because they do not occur for the
SF-surfaces on which we have based our analysis.

9.3.2.1 Existence of fold-overs

In the plane, fold-over quadrilaterals can be characterized as follows.

Lemma 9.10 (Characterization of fold-over quadrilaterals) Let9 be a sector, andq �� ��9� be a
point in the plane spanned by9. Then the quadrilateral��p
q�
q
q�� is fold-over in the sense of
Definition 8.8 if and only if the pointsp, q�, q, q� do not form a convex polygonal chain.

Proof: The dihedral angles of interest for Definition 8.8 are either���Æ or �Æ. The assertion of the
theorem can easily be derived from this observation.

Two types of fold-over quadrilaterals can be distinguished.

Definition 9.11 (Types of fold-over quadrilaterals) A fold-over quadrilateral��p
q�
q
q�� in the
plane has anin-front fold-over if q andp are on different sides of the line throughq� andq�. (Fig-
ure 9.3, left). Otherwise it is denoted asback-fold-over.
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q
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q q
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21

qq
21

q

Figure 9.3: An in-front fold-over quadrilateral (left) and two examples of back-fold-over quadrilaterals. For the left and

middle example additionally the boundary arcs of the����-environment are displayed (dotted lines).

The following theorem states that the configurations in which a back-fold-over may happen forq
�-close to�� do not occur under the constraints of our investigations if��� � �, where��� is the
angle bound of the algorithm controlling the generation of boundaries. This choice of� and��� is
reasonable in order that the boundary detection can have a selective effect at all if�� � ���� is used.
An implication of this choice of� is thatp is not�-close to��, or, equivalently, thatp is not in the
����-environment of��.

Theorem 9.12 (Back-fold-over) Let� be a surface,� be a sample set of�. Let the current graph�
only consist of�-edges which additionally are NN-intersection-free. Let9 be a sector for which the
NN-images of all items involved into the test of the then-case D fall into a flat part of�. Let� be the
plane spanned by��9�, and�� be the open half-plane of� bounded by the line through�� in which
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p lies. Letq � �� � � be�-close to��, ��Æ � � 1 ���Æ. Let /� and /� be the two lines throughq�
andq�, respectively, so that the angle between/�, � � �
 �, and�� in�� is ���Æ��. The lines induce
three regions in�� � a region? defined by the wedge atq� between�� and /�, a region$ defined by
the wedge atq� between�� and /�, and a region� which is the rest of�� not covered by regions?
and$ (Figure 9.4). Then the following holds:

(1) If p is in region? or $ and p is not in the����-environment of��, thenq is in the����-
environment of�� or ��, and thus this case is impossible. If��� � � where��� is the angle
bound of the algorithm controlling the generation of boundaries thenp cannot be in the����-
environment of��.

(2) p cannot be located in region�.

Proof: Let p be in region? (region$ analogously). Ifp is not in the����-environment of��, then
the part of the����-environment in�� is a subset of the union of the triangle��9� and the����-
environments of�� or ��. Thus, becauseq is not in��9�, q must be in the����-environment of�� or
��. But �� and�� belong to� and are assumed to be�-edges. Thus this case is not possible.

Because sectors with angles larger than��� are not treated by the algorithm,p cannot be in the����-
environment of��.

Let 	 be the circular arc defining the boundary of the����-environment in��. Then/� and /� are
tangent to	. If p is in�, the part of the����-environment in�� is a subset of the triangle��9�. Thus
a q like in the theorem does not exist, andp cannot be located in�.

180  −Ο γ180  −Ο γ
A BA

C

B

q
1 2

q

H+

Figure 9.4: Illustration of the investigation of a back-fold-over of the quadrilateral��p� q�� q� q��. In this caseq andp are

located on the same side of the line of�
.

The event of an in-front fold-over is treated in the following theorem.

Theorem 9.13 (In-front fold-over) Let� be a surface,� be a sample set of�. Let the current graph
� only consist of�-edges which additionally are NN-intersection-free. Let9 be a sector for which the
NN-images of all items involved into the test of the then-case D fall into a flat part of�. Let� be the
plane spanned by��9�, and�� be the open half-plane of� bounded by the line through�� in which
p lies.

Let q � � � �� be�-close to��, ��Æ � � 1 ���Æ. Let /� and /� be the two lines throughq� and
q�, respectively, so that the angle between/�, � � �
 �, and�� in �� is �. The lines partition�� into
three regions: a region? incident to��, and two symmetric regions$ and� (Figure 9.5). Then the
following holds:
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(1) If p is in region?, then no fold-over occurs.

(2) If p is in region$ or �, then a fold-over may occur.

Proof: A fold-over does not occur if and only if the line of� intersects��. Let 	 be the circular arc
defining the boundary of the����-environment in� ���. Then/� and/� are tangent to	 at q� and
q�, respectively. Evidently,pq intersects�� if p is in?.

If p is in $ (analogously for�) then the line segmentpq� is completely in$, and thus does not
intersect��. Becausepq� is not a tangent of	 at q� we can find a pointq in the����-environment,
for example in the neighborhood ofq�, so that the linepq does not intersect��, too.
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Figure 9.5: Configuration for which edge�
 has to be the candidate edge of the then-case D, because of a fold-over of the

quadrilateral��p� q�� q� q��, if q andp are located on different sides of the line of�
.

The results of this section can be summarized as follows.

Observation 9.14 (Occurrence of fold-over quadrilaterals)Let � be a surface,� be a sample set
of�. Let the current graph� only consist of�-edges which additionally are NN-intersection-free. Let
9 be a sector for which the NN-images of all items involved into the test of the then-case D fall into a
flat part of�. Letq � � ��� be�-close to��, ��Æ � � 1 ���Æ. If the quadrilateral��p
q�
q
q��
is fold-over, then it is in-front foldover. The probability of occurrence of such a quadrilateral is low.

Argumentation: Theorem 9.12 excludes back-fold-overs. Theorem 9.13 tells that in-front fold-over
quadrilaterals may occur. However, their occurrence is restricted to a small region of possible locations
of p which decreases towards� with increasing�.

9.3.2.2 Intersection-freeness

For the case thatq is �-close to�� the following theorem shows that the line segments�� and� �� pq
both are intersection-free under the assumption of�-edges and local flatness.

Theorem 9.15 (NN-intersection-freeness in the then-case D)Let� be a surface,� be a sample set
of�. Let the current graph� only consist of�-edges which additionally are NN-intersection-free. Let
9 be a sector for which the NN-images of all items involved into the test of the then-case D fall into a
flat part of�. Letq be a point�-close to�� and with largest angle with��. Then the edge�� and the
edge� � pq do not NN-intersect any edge of�.

Proof:
Case�� � ��: For flat surface regions, every edge which NN-intersects�� enters��9�, and either ends

at a vertex in��9� or leaves��9� at edge�� or ��. But all that is impossible for the following
reasons. None of the vertices is in��9� because case� is in the else-case B. Furthermore the
edges�� and�� do not NN-intersect any edge by assumption. Thus�� is NN-intersection-free.
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Case�� � �: By the same arguments as in the proof of Theorem 9.9, the NN-intersection of triangle
��9� with any edge of� is empty. Thuspq might only be intersected in the����-environment
outside of�. Becauseq has been assumed to be the�-close point to�� with the largest angle
(Section 8.7), an NN-intersecting edge��� of � intersects the boundary of that region twice, and
separatesq from �� (Figure 9.6). But that implies thatq is �-close to���, in contradiction to the
assumption.

p

q

e’’

e3

e’=e

2

q

q

1

Figure 9.6: An edge��� possibly intersecting��, intersects the circular boundary of the����-environment of�
 twice. From

this configuration it can be concluded thatq is also in the����-environment of��� because it is�-close to�
.

9.3.2.3 Emptiness of the search of step 2, outside case

The preceding theorem is now used to show that step 2, outside case, is not executed under the restric-
tions imposed in the current discussion. Additionally, the following lemma is required.

Lemma 9.16 Let � be a surface,� be a sample set of�. Let the current graph� only consist of
�-edges which additionally are NN-intersection-free. Let9 be a sector for which the NN-images of
all items involved into the test of the then-case D fall into a flat part of�. Let q be a sample point
with largest angle to��, which does not induce a fold-over. Let��� �� q�r (analogouslyq�r ) be an
edge of� so thatp andr are separated by the line through��. Then��� intersects� � pq or the angle
between��� and�� at q� is larger than the angle between�� �� q�q and��.

Proof: Let @� be the angle between�� and��, and@�� be the angle between��� and��.
Let 	 be the arc throughq�, q�, andq. If the ray with originq� throughr does not intersect	 then
@�� is clearly larger than@�. If the ray intersects	 on the segment betweenq� andq, then it is again
immediately clear that@�� , @�. If the ray intersects	 on the segment betweenq andq�, then the ray
intersectspq becausepq intersects�� since fold-over-freeness is assumed. Becauseq is the sample
point with largest angle, not just the ray, but also the line segment��� intersects��, becauser is outside
the region bounded by�� and	. Figure 9.7 illustrates the discussion.

Now we obtain another theorem.

Theorem 9.17 (Emptiness of the search of step 2, outside case)Let� be a surface,� be a sample
set of�. Let the current graph� only consist of�-edges which additionally are NN-intersection-free.
Let9 be a sector for which the NN-images of all items involved into the test of the then-case D fall
into a flat part of�. Letq be a sample point�-close to�� and with largest angle to��, which does not
induce a fold-over. Then the search of step 2, outside case, is empty.

Proof: By Lemma 9.16,pq intersects or the angles of the edges under consideration are so thatq is
not updated. Because intersection is excluded by Theorem 9.15 in the assumed case ofq �-close to
��, the second alternative holds, that an update does not take place.
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Figure 9.7: The two possible configurations of a line segmentpr , r a candidate point for replacingq.

By using the result on the unlikeliness of fold-overs, we can derive the following observation.

Observation 9.18 (Emptiness of the search of step 2, outside case)Let� be a surface,� be a sam-
ple set of�. Let the current graph� only consist of�-edges which additionally are NN-intersection-
free. Let9 be a sector for which the NN-images of all items involved into the test of the then-case D
fall into a flat part of�. Letq be a sample point�-close to�� and with largest angle to��. Then with
high probability the search of step 2, outside case, is empty.

Argumentation: Because with high probabilityq does not induce a fold-over quadrilateral the as-
sertion of Theorem 9.17 which is just that of the observation, holds with high probability.

9.3.2.4 �-Edge Property

Reasons for the event that a non-�-edge might be inserted are

� �� is the candidate edge resulting from the min-max triangulation,

� pq is the candidate edge resulting from the min-max triangulation, and it is not a�-edge.

In the following we describe the configurations in which these events may happen. It turns out that
they are very special and thus the probability of their occurrence is low.

Edge�� is selected as candidate edge by the min-max triangulation if a fold-over occurs, or if no
fold-over occurs but the angle of the quadrilateral��p
q�
q
q�� at pointq� or at pointq� is larger
than the angle atq.

As we know from Observation 9.14 the probability of over-folding quadrilaterals is low so that we can
exclude this case from the discussion.

In order that the min-max triangulation yields��, the angle at pointq� or at pointq� of a non-over-
folding quadrilateral has to be larger than the angle atq. In this case we get Theorem 9.19.

Theorem 9.19 (Non-over-folding quadrilateral with large angle at q��q�) Let � be a surface,�
be a sample set of�. Let the current graph� only consist of�-edges which additionally are NN-
intersection-free. Let9 be a sector for which the NN-images of all items involved into the test of the
then-case D fall into a flat part of�. Let� be the plane spanned by��9�, and�� be the open
half-plane of� bounded by the line through�� in which p lies. Letq � � � �� be�-close to��,
��Æ � � 1 ���Æ. Let /� and /� be the two lines throughq� and q�, respectively, so that the angle
between/�, � � �
 �, and�� in �� is �� � ���Æ. The lines partition�� into three regions: a region
? incident to�, and two symmetric regions$ and� (Figure 9.8). Then the following holds:
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(1) If p is in region ? and q � � � ��, then the angle atq� or q� in the quadrilateral
��p
q�
q
q�� is less than�, and thus less than the angle atq.

(2) If p is in region$ or�, andq � ����, then the angle atq in the quadrilateral��p
q�
q
q��
might be less than the angle atq� or q�.

Proof: If p is in region? andq � ����, then the angle atq� is less than the sum of the angle atq�
(q�) between/� (/�) and��, and the angle between�� andq�q, that is less than���� ���Æ� � ����Æ�
�� � �. Because the angle atq is at least�, assertion (1) holds.
Because the linepq� (or pq�) traverses the part of the����-environment in� ���, the angle atq�
or q� can be up to���Æ, and thus is larger than the angle atq which always is less than���Æ.
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Figure 9.8: Configuration for which edge�
 has to be the candidate edge of the then-case D, because of a non-over-folding

quadrilateral��p� q�� q� q�� with larger angle atq� or q� than atq.

The implication of the theorem is that the probability that the min-max triangulation has to decide for
�� is low because its corresponding regions are$ and�. If � increases towards���Æ then the area of
$ and� relative to the whole area decreases to�.
The second event is thatpq is reported as result of the min-max triangulation. The configurations of
this event concerning the property of being a�-edge can be characterized as follows.
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Figure 9.9: If � �� pq is not a�-edge thenp is located in the wedge between
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Theorem 9.20 (Non-�-edgespq) Let� be a surface,� be a sample set of�. Let the current graph
� only consist of�-edges which additionally are NN-intersection-free. Let9 be a sector for which
the NN-images of all items involved into the test of the then-case D fall into a flat part�. Let
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Figure 9.10: The region	�
� (left) and the location of�������� in 	�
�.

(1) q � � ��� (�,�� like in Theorem 9.19) be�-close to��, with largest angle,

(2) the quadrilateral��p
q�
q
q�� be non-fold-over,

(3)
�


� and
�


� be the two rays atq throughq� andq�, respectively,

(4)
�


�� and
�


�� be the two rays atq intersecting�� and with angle� �� ���Æ�� to the linesqq� and
line qq�, respectively (cf. Figure 9.9).

If � �� pq is not a�-edge thenp is located in the wedge between
�


� and
�


��, or in the wedge between
�


� and
�


��.

Proof: Let �� be the angle atq of the triangle��q�
q
q��. The union	�9� of ��9�, ���������,
���������, and���������� is bounded by three circular arcs	�, 	�, and	� corresponding to the edges
��, ��, and�� (Figure 9.10). In the else-case D,��9� is free of sample points.��������� and���������
are free of sample points because the edges of� are�-edges.���������� is free of sample points
becauseq has a largest angle by (1). Thus	�9� is free of sample points.
Because	�9� is free of sample points,�������� has to intersect the boundary of	�9�, that is	�
 	�,
or 	�.
If �������� intersects	� (	� can be treated analogously), we claim thatq� is in��������. Furthermore
the boundary arcs of�������� are separated fromq� by the rays

�


� and
�


� (Figure 9.9) because the
tangents of the two boundary arcs atq have an angle of� with �, and the quadrilateral does not fold-
over. Thusq� cannot be in�������� if p is in the wedge between

�


�� and
�


��, or vice versa,p has to be
in one of the wedges of the theorem.
In order to prove the claim, we rotate�� together with��������� onto �. The arc	�� of the resulting

������pq��� does not intersect	�. If we moveq�� towardsp, then	�� does not intersect, too. Thusq��
has to be moved into the opposite direction in order to reachq. But the first intersection of	�� with 	�
which may happen is atq�. The second arc	�� of ������pq��� cannot intersect	� at all. Both together
proves the claim.

If p is in the wedge between
�


�� and
�


��, the case that�������� intersects	� does not occur because
the bounding arcs of�������� are separated from	� by the rays

�


� and
�


� (Figure 9.9). The reason
of separation is that the tangents of the two boundary arcs atq have an angle of� with �, and the
quadrilateral does not fold-over. Thus in order that�������� intersects	�, p has to be in one of the
wedges of the theorem.

In summary we obtain a new observation.
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Observation 9.21 (Occurrence of non-�-edges)Let � be a surface,� be a sample set of�. Let
the current graph� only consist of�-edges which additionally are NN-intersection-free. Let9 be a
sector for which the NN-images of all items involved into the test of the then-case D fall into a flat part
of �. Then the following holds:

(1) The probability that a non-�-edge�� is reported by the then-case D is low.

(2) If an edge� �� pq with q �-close to�� is selected by the then-case D then the probability that
� is not a�-edge is low.

Argumentation: �� is selected if

� a fold-over occurs, or

� if no fold-over occurs and the selected pointq is �-close to��.

The probability of the first case is low according to Observation 9.14, and the probability of the second
case is low by Theorem 9.19. Thus (1) holds.

(2) is an immediate implication of Theorem 9.20.

9.3.3 Else-Case D

The else-case D becomes active if

� the candidate set���� �9� is empty, or

� the candidate set���� �9� consists just of pointsq which induce a fold-over quadrilateral, or for
which � � pq intersects an already existing edge.

In the first case we get the following lemma.

Lemma 9.22 Let � be a surface,� be a sample set of�. Let the current graph� only consist of
�-edges which additionally are NN-intersection-free. Let9 be a sector for which the NN-images of all
items involved into the test of the else-case D fall into a flat part of�. Let the candidate set���� �9�
be empty. Then the edge�� is a�-edge and does not NN-intersect any edge of�.

Proof: �� is a�-edge because the candidate set���� �9� is empty. For intersection-freeness of�� it
can be argued as in the proof of Theorem 9.15.

In the second case we get Observation 9.23.

Observation 9.23 Let� be a surface,� be a sample set of�. Let the current graph� only consist
of �-edges which additionally are NN-intersection-free. Let9 be a sector for which the NN-images
of all items involved into the test of the else-case D fall into a flat part of�. Let the candidate set
� ��� �9� consist just of pointsq which induce a fold-over quadrilateral, or for which� � pq intersects
an already existing edge. Then with high probability�� is a �-edge and does not NN-intersect any
edge of�.

Argumentation: We know from Observation 9.14 that the probability of an over-folding quadrilateral
can be considered as low. Furthermore, if� intersects an already existing edge thenq cannot be�-
close to�� with largest angle (Theorem 9.15). In order that such aq would not have been selected in
the then-case D,
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� the point with largest angle would not have been�-close,

� or the point with largest angle would have been�-close but causing a fold-over.

The probability of the second case is low by Observation 9.14. Thus the only case which remains is
the first one which means that�� does not have a�-close point with high probability.

For intersection-freeness of�� it can be argued as in the proof of Theorem 9.15.

The following observation summarizes these results.

Observation 9.24 (�-edge property of else-case D)Let� be a surface,� be a sample set of�. Let
the current graph� only consist of�-edges which additionally are NN-intersection-free. Let9 be a
sector for which the NN-images of all items involved into the test of the else-case D fall into a flat part
of �. Then with high probability,�� is a�-edge and does not NN-intersect any edge of�.

Argumentation: Because the two conditions at the beginning of the section cover the possibilities
that the then-case D is entered, Lemma 9.22 and Observation 9.23 imply this observation.

9.3.4 Summary

The investigations of this section can be summarized as follows.

Observation 9.25 Let� be a surface,� be a sample set of�. Let the current graph� only consist of
�-edges,��Æ � � 1 ���Æ, which additionally are NN-intersection-free. Let9 be a sector for which
the NN-images of all items involved into the tests of the then-case B, the then-case D, and the else-case
D fall into a flat part of�. Let�� �� ����.

(1) The only reason that no edge might be inserted by the algorithm is that the candidate edge
intersects an already existing edge of�. This event does not occur.

(2) For the then-case B the candidate edge is always a�-edge. For the other cases the probability
that the candidate edge is a�-edge is high.

Argumentation:
(1) summarizes Theorems 9.9, 9.15, and 9.24.

(2) is a conclusion from Theorem 9.9 and the Observations 9.21 and 9.24.

9.4 �-Edges in the Curved Case

The idea of the analysis of the curved case is to compare the treatment of a sector9 on the given
set� of sampling points and the current graph� with the treatment of the sector in the orthogonal
projection of� and� in a local environment of9 onto the tangent plane of the surface at the sector
centerp. The environment comprehends the part of� which is relevant for processing9. We will
argue that the projection is a one-to-one mapping between the current manifold� in space and its
projection, that� and its projection have the same behavior with respect to�-edges, and that the
algorithm behaves in the same manner in both cases, all this with high probability.

The background of this approach is that for a sufficiently small environment of a pointp on an SF-
surface�, the deviation between the tangent plane of� at p and the surface� is very small. This is
quantified in the following Lemma which shows that perturbations of vertices caused by projection on
a suitable plane are small.
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Figure 9.11: Illustration of the proof of Lemma 9.26.

Lemma 9.26 (Approximation by tangential planes)Let� be a compact SF-surface without bound-
ary with an SF-radius
, ��p� the tangential plane at a pointp � �. Let /�p
q� be the Euclidean
distance of a pointq � � from p, *�p
q� the Euclidean distance ofq from��p�. Then
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Equivalently, for every� , � a Æ , � exists so that for/�p
q� 1 Æ, p �� q,
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Additionally,Æ can be chosen globally independent fromp.

Proof: Because� is an SF-surface, a pair of tangential spheres exists atp. � is located between
those spheres and does not intersect them. Furthermore, the spheres are tangential to��p�. Thus the
distance of a pointq � � close top from ��p� is at most the distance of a pointq� on one of the
spheres which orthogonally projects onto the same pointq�� on��p� asq,

*�p
q� � /�q
q��� � /�q�
q���

cf. Figure 9.11. The distance of a pointq� on the sphere from��p� is
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where
 is the radius of the sphere. The distance ofq�� from p is at most the distance ofq from p,
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The re-formulation with� andÆ is just the definition of the limit.

Æ is global because ifÆ is chosen so that
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for /�p
q��� 1 Æ, thenÆ is independent from the location ofp on the surface: it just depends on the
surface-independent configuration depicted in Figure 9.11. Because/�p
q��� � /�p
q� we get

*�p
q�

/�p
q��
� /�q�
q���
/�p
q����

� �



� �

for /�p
q� 1 Æ.

A crucial concept for the following is the tangent plane environment of points which is defined as
follows (Figure 9.12).

p(  )Hp

qS

Figure 9.12: Depiction of the tangent-plane environment (TPE) ofq.

Definition 9.27 (Tangent plane environment (TPE))Let� be a compact SF-surface without bound-
ary with SF-radius
, /�p
q� be the distance of a pointq � � from p, and� , �.
Then the (�-)tangent plane environment (TPE) of q with respect top is defined as the closed sphere
of radius��� � ��/�p
q��.

Corollary 9.28 (Tangent plane intersection property of TPEs)Let � be a compact SF-surface
without boundary with SF-radius
, ��p� be the tangential plane at a pointp � �, /�p
q� be the
distance of a pointq � � from p, and� , �. Then aÆ , � exists so that for/�p
q� 1 Æ the�-TPE of
q intersects��p�.

Proof: The corollary is a re-formulation of Lemma 9.26 using the preceding definition.

In the following, statements are made, using this corollary, which hold under the condition of “a
sufficiently small environment��p� of p, and for sufficiently small edge lengths of the manifold”.
The reason of the condition is to guarantee that the vertices of the part of the graph� involved in the
treatment of a sector by the algorithm satisfy the corollary. The details are as follows. The “sufficiently
small environment” is the one of allq � � with /�p
q� 1 Æ in the sense of the corollary. The
“sufficiently small edge lengths” are edge lengths which are less than	 
 Æ where� 1 	 1 � is a
constant factor. The factor has the property that all vertices or edges involved in the treatment of a
sector9 centered atp by the algorithm are contained in��p�. Because the distances of all single
vertices and all vertices of edges involved from the sector triangle��9� can be expected to be less than
a constant factor of the edge length bound. The edge length bound multiplied by a constant factor has
to be bounded byÆ in order to have all involved edges and vertices in��p�. But this means that the
edge lengths are bounded by a constant fraction	 of Æ.
The observations made in the following usually hold ”with high probability”. In the argumentation the
problematic cases are reduced to special configurations of points. One special configuration consists
of three points which are approximately co-linear. Another example are three points on a circle which
has an additional constraint on the radius. In the space of all configurations of triples of points these
configurations have the measure zero if all configurations are equally weighted. This can be expected
if the sampling points are uniformly distributed. It also can be achieved if the sampling strategy
is chosen so that sampling points close to each other do not have these special patterns, similar to
conditions ”no three input points are co-linear” or ”no four points a co-circular” often imposed on the
input of geometric algorithms.
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Observation 9.29 Let� be a compact SF-surface without boundary,��p� be the tangent plane of�
at p � �, � be a finite sampling set,� be an intermediate manifold constructed by the algorithm
without7�-intersecting edges and points flat over a triangle. Then for a sufficiently small environment
��p� of p, and for sufficiently small edge lengths of the manifold, the projection������� of the
restriction� ����� of� to��p� does not have self-overlappings, with high probability.

Argumentation: We assume that������� has a self-overlapping, that is two of its objects (edges or
faces) intersect. Two such objects of the planar manifold������� intersect if two edges intersect or
one of the objects is completely contained in the other object.

If the edge lengths are small, then the TPEs of the involved vertices are small compared to the length
of the involved edges. Furthermore, by definition, all TPEs intersect the tangential plane. Thus, if two
projected edges intersect, then either the original edges can be assumed to7�-intersect, or three of the
four involved original vertices are approximately co-linear. Since the triangulation algorithm avoids
7�-intersecting edges, and thus such edges are excluded in the formulation of the observation, and the
probability of three co-linear vertices can be considered as low, two projected edges cannot intersect
with high probability.

If an edge is a subset of a second edge, the four original vertices are approximately co-linear, because
their TPEs all intersect the projection plane. Because the probability of this event can be assumed as
low, this case does not occur with high probability.

If a projected triangle is a subset of an other triangle, one of its original vertices is flat over the second
original triangle, or one of its original vertices is co-linear with the vertices of an original edge of the
second triangle. The reason is that TPEs intersect the projection plane. Because the first case should
be avoided by the algorithm and thus is excluded in the formulation of the observation, and because
the probability of the second case can be assumed as low, this case does not happen, too.

Thus the assumption of the observation holds.

Observation 9.30 (Preservation of�-edge property under projection) Let � be a compact SF-
surface without boundary,��p� be the tangent plane of� at p � �, � be a finite sampling set,
� be an intermediate graph constructed by the algorithm. Then for a sufficiently small environment
��p� of p, and for sufficiently small edge lengths of�, the projection������� of the restriction������

of�, the projection of a�-edge of������ is a�-edge of the projection�������, with high probability.

Argumentation: We assume that an edge� � rs exists which is a�-edge of������ but a non-�-edge
of ������� in its projection��. In the following we show that in this case a sampling pointt exists
so thatr , s, and t are approximately on a common circle of a radius dependent on�. Because the
probability of this event can be considered low, the probability that the assumption holds is low, and
thus the probability of the assertion of the observation is high.

Because�� is not a�-edge, a sampling pointt exists whose projectiont� is in the����-environment
of �� � r �s�. On the other hand, because� is a�-edge,t is outside the����-environment of�. If the
radii of the TPEs are small compared to the length of�, this implies thatt has a distance from the
boundary of the����-environment which is bounded by a small constant of the largest of these radii
(Figure 9.13). But this means thatt is approximately on a circle in the plane spanned byr , s, andt,
throughr ands, and the radius of the circles of the definition of the����-environment. Thus these
three points are approximately on a common circle with a specific radius.

The following observation states the equivalence of the intersection status of line segments in the
spatial and the projected case, so that results on this aspect in the locally flat case can be immediately
transferred to the spatial case, and thus can be excluded from further analysis of the algorithm.
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Figure 9.13: Illustration of the argumentation of Observation 9.30.r ,s, andt are approximately on a common circle of a

radius determined by�.

Observation 9.31 (Preservation of intersection properties of edges)Let � be a compact SF-
surface without boundary,��p� be the tangent plane of� at p � �, � be a finite sampling set.
Then for a sufficiently small environment��p� of p, and for sufficiently small edge lengths, two line
segments� and / in ��p� with vertices in� 7�-intersect if and only if their projections�� and /�

intersect, with high probability.

Argumentation: Because� and / are subsets of��p�, the TPE-environments of the vertices of�
and/ intersect��p�. � and/ are obtained by slight perturbation of the vertices of�� and/�, within a
distance bounded by the diameters of the TPEs of these vertices. If�� and/� intersect, a danger that�
and/ do not intersect only arises if a vertex of�� or /� is close to/� or ��, respectively (Figure 9.14).
Closeness is determined by the TPE-diameters and the definition of7�-intersection. But this means
that the mentioned vertex and the vertices of the mentioned line are approximately co-linear. But this
event should have low probability.

l l’

k

k’

k

k’

l l’

Figure 9.14: Illustration of the argumentation of Observation 9.31. The left configuration has an intersection in the original

and in the projected case. The right configuration has an intersection in the original case, but not in the projected case. In

the second situation these points are approximately co-linear.

If �� and/� do not intersect,� and/ may be recognized as7�-intersecting only if a vertex of�� or /� is
close to/� or ��, respectively. As before, this means that the mentioned vertex and the vertices of the
mentioned line are approximately co-linear. But this event should have low probability.

Observation 9.32 (�-edge behavior of the algorithm) Let � be a compact SF-surface without
boundary,� be a finite sampling set. Let the current graph� only consist of�-edges,��Æ � � 1
���Æ, which additionally are7�-intersection-free. Let all points of� which are flat over��9� be in
the NN-image of��9�. Let�� �� ����. If the lengths of the edges constructed by the algorithm are
sufficiently small then the following holds:

(1) The algorithm has the same behavior, with respect to edge selection, in space and in the projec-
tion onto the tangent plane of the sector centerp of9.

(2) The only reason that no edge might be inserted by the algorithm is that the candidate edge
7�-intersects an already existing edge of�. The probability of this event is low.
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(3) The candidate edge always is a�-edge, with high probability.

Argumentation: The following argumentation requires that all items involved in the tests of the then-
case B, the then-case D, and the else-case D fall into an environment��p� of p for which the TPEs of
the involved points with respect to the tangent plane atp are small in comparison to the edge length.
But as we already know this can be achieved for a sufficiently small environment��p� of p, and for
sufficiently small edge lengths of the manifold. The environment is defined by theÆ of Lemma 9.26
which is independent ofp, as we also already know. The edge length is defined by a constant factor
which also is independent ofp. Thus the required condition is satisfied if the lengths of the edges
constructed by the algorithm are limited by a sufficiently small global upper bound, as demanded in
the observation. In Chapter 9.1 we have discussed the existence of edge-length bounding sampling
sets.

For (1):
The two preceding observations state that the projected current manifold does not have more non-�-
edges than the original one, and that self-overlapping does not occur in the projected manifold if the
manifold in space is without self-overlapping. Because� does not have non-�-edges by assumption,
thus�� does not have such edges neither. Thus we have the same starting situation for the projection
like for the analysis of the flat case of Section 9.3.

In the following we compare the behavior of the then-case B, the then-case D, and the else-case D for
the locally flat case which has been described in Section 9.3 with the situation on curved SF-surfaces.

Then-Case B:

The curved case is treated in the orthogonal projection of the relevant part of� onto the plane��9� of
the sector9. Thus we have to compare the situation in the projection on��9� for the given surface,
and in the projection on the tangential plane��p� for the projected case (Figure 9.15).
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Figure 9.15: Illustration of the argumentation of (1) of Observation 9.32.���� is drawn with solid lines,����� with dashed

lines, and� ��� with dotted lines. The configuration is presented in top- and side-view.

The first question to be asked is whether the candidate sets of the spatial and the projected configu-
ration are the same, up to projection. The candidate set� � �9� consists of all sampling points flat
over the sector triangle��9�. We argue that the candidate sets are the same with high probability by
showing that

(1) the projections of sampling points flat over��9� should also be in��9��, and

(2) sampling points which project into��9�� should be flat over��9�, both with high probability.

For the discussion of (1) we use the assumption that all pointss flat over��9� are in the NN-image
of ��9�. Aspects of this assumption will be discussed in Section 9.5.2. Under this assumption, the
TPE ofs intersects the tangent plane. If the intersection of the TPE with the tangent plane is a subset
of ��9��, thens is in ��9��. Otherwises is close to an edge of��9�. This implies that there are three
approximately co-linear points what should occur with only low probability.
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For (2) we consider a projected sampling points in ��9��. Let� �9� be the convex hull of the TPEs of
the three vertices of��9�, cf. Figure 9.15. Because��9� and��9�� are subsets of� �9�, and because
the TPE ofs intersects� �9�, s is flat over��9� or close to an edge of��9�. The latter case causes
three approximately co-linear points what should occur with only low probability.

Thus (1) and (2) hold, and the two candidate sets can be considered as equivalent, with high probabil-
ity.

The second question is whether the same pointq is selected in space and in the projection. According
to Section 8.5.2 the algorithm selectsq as an extremal point in the projection of the candidate points
onto the triangle��9�. q is a point whose projection has largest distance from the line of edgeq�q�.
We assume that the orthogonal projectionq� of q onto the tangent plane does not have this property.
We show that under this assumption another candidate pointr exists so that the line segmentsqr and
q�q� are approximately parallel if the edge lengths of the configuration are small. But the probability
of parallelism can be considered as low, so that the probability of the assumption is low, and that the
probability is high that the same pointq is selected in space and in the projection.
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Figure 9.16: Definition of the sector plane environment (SPE) in a 2D representation. The SPE ofs is drawn as dashed

circle, the TPE as solid circle, like the TPE ofq.

For the candidate pointss we consider the closed balls centered ats with their distance from��9� as
radius (Figure 9.16). We call these ballssector plane environments(SPE). From the above discussion
of (1) we know that the intersections of the TPEs ofs with the tangent plane are subsets of��9�� with
high probability. Because��9�� and��9� are subsets of� �9�, the TPEs of the pointss intersect� �9�,
too. Thus the distance of the points from ��9� is at most the radius of the TPE ofsplus the maximum
of the distances of the TPEs of the vertices of��9�. Thus the radius of the SPE of ans can be made
small, analogous to that of the TPE.

Let q be the point selected by the algorithm for the curved case. Thus the projectionq of q is a point
of largest distance from the line of edgeq�q�. Let r be the sampling point whose projectionr� on the
tangent plane would be selected by the algorithm for the projection on the tangent plane.r� is a point
of largest distance from the line of edgeq��q

�
� of ��9��. We consider the plane� of the pointsq�,q�,q,r

and the plane�� of the pointsq��,q
�
�,q

�,r �. If q �� r thenq is farer from the line ofq� andq� thanr
in �, andr � is farer from the line ofq�� andq�� thanq� in � �, and we consider an arbitrary continuous
motion of the plane� to the plane�� so that the plane permanently intersects curves connecting the
corresponding pointsq�q�, r�r �, q��q

�
�, andq��q

�
� which deviate from the straight-line connection

just by a small constant multiple of the maximum radii of the TPEs and SPEs. The intersection of the
moving plane with the line segments induces verticesq��,q

�
�,q

�,r�. For at least one location,q� and
r� have equal distance to the line ofq�� andq��. Because of the condition of deviation on the curves,
the line segmentsq�q� andqr are approximately parallel, if the TPEs and SPEs are sufficiently small,
what can be expected for sufficiently small edge lengths.

For the proof of existence of the desired curves we consider the line of intersection of the planes
� and� �. This line partitions the planes into half-planes. If the points on every plane all fall into
the same half-plane, we choose the straight-line connection between corresponding points as curve
(Figure 9.17, left). Otherwise we take the straight-line connections as connecting curves only if they
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Figure 9.17: Construction of a configuration of pointsq��,q��,r�,q� in which r� andq� reach a desired location. In the left

case the pairs of points are connected by straight lines. In the right caser andr� are connected by a circular arc which has a

point in common with the intersection of� and��.

traverse the wedge with the smaller angle (Figure 9.17, right). For the other pairs of points, for in-
stancer andr � in the figure, we take a pointi on the intersection line of� and�� so that the triangle
��r 
 r �
 i� maximizes the angle ati among all those triangles. We take the circular arc defined byr , r�,
i as connecting curve. Because the angle of the triangle ati is at least��Æ, the length of the circular
arc is bounded by a constant multiple of the length of the line segment betweenr and r�. Because
the length of this line segment is bounded by a constant multiple of the maximum of the radii of the
TPEs and SPEs, and because the circular arc is completely in the two wedges of smaller angle, the
connecting curve fulfills these requirements.

Then-Case D:

The first question to be treated here is whether the points of the candidate sets����	� and����	� defined in
Section 8.7.1 correspond to the same original points in the original curved case and in the flat projected
case. We argue that this holds with high probability.

By definition of the candidate sets, the answer is positive if

(1) the sets of��-close points are the same in both cases,

(2) the points project onto the same side with respect to the line through�� on the sector plane
��9� in both cases, and

(3) the pointsq causing a fold-over are the same in both cases,

with high probability.

If (1) would not hold, then a��-close point would exist in one of the cases which is not��-close in the
other one.��-closeness in the projection refers to projected points. Analogously to the argumentation
of Observation 9.30 which also works for other environments than the����-environment used there,
it can be shown that this is impossible with high probability.

For the argumentation for (2), we distinguish between two cases (Figure 9.18). The first case is that
a point q exists which is in����	� for the original case, but whose projectionq� is not in ����	� for
the projected case. Under this assumption, the TPE ofq intersects the tangent plane within� �9�.
Thus the intersection of the TPE with the tangent plane is a subset of��9�� or q is close to an edge
of ��9�. Because the first case is not possible for the assumed relationq� �� � ���	�, the second case
holds. This implies that there are three approximately co-linear points what should occur with only
low probability. Thus the assumption is impossible with high probability.

The second case is that a pointq exists whose projectionq� is not in����	� for the projected case, butq

is in ����	� for the original case. Because����	� is empty in the locally flat case,q� has to be in� � �9��,
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Figure 9.18: Illustration of the argumentation of Observation (1) of the then-case D in Observation 9.32. The left configu-

ration shows the case that a pointq exists which is in���
��� for the original case, but whose projectionq� is not in� ��

���. The

right configuration represents the case of a pointq whose projection is not in���
���, but q is in �

��
��� for the original case.

Additionally, q� projects outside����.

9� the projected sector, or is on the same side of the line through the projected edge��, but not in
��9��.

If the former holds, because��9� and��9�� are subsets of� �9�, and because the TPE ofq intersects
� �9�, q is flat over��9� or close to an edge of��9�. But the first alternative is a contradiction to
the assumption of this case. The second alternative leads to three co-linear points whose occurrence
should only have low probability.

If the latter holds thenq� is in the difference of�������
�
�� minus ��9��. The area of this region is

small so that it is not very likely to findq� there. Ifq� nevertheless is in this region then the distance
to the plane of9 should be small, in the order of the radius of the TPEs of the vertices of9. Thus
the projectionq on this plane can have a distance from the line of�� in the order of the TPEs of the
vertices of9. But this additionally means thatq is close to the line of��, with high probability. This
causes three approximately co-linear points what should occur with only low probability.

The argumentation for (3) is the following. If the projectionq� of a pointq causes a fold-over in the
projected case but not in the original case, or vice versa, thenq must be close to the line throughq�
andq�. But this event should happen only with low probability.

The second question is whether the result of point selection is the same in the curved and the projected
flat case. In the following we argue that this holds with high probability.

From the discussion of the candidate sets we can conclude that����	� is empty with high probability
because this set is empty in the flat case. This means that step 2, inside case, of Section 8.7.2 is never
executed, with high probability.

For search step 1, the candidate pointq � ����	� selected by the algorithm in the locally flat case is
one which encloses the largest angle with�� (Section 9.3.2). We give arguments that the same holds
in the curved case, with high probability. Since we assume surfaces without edges and ridges, we
again set�� � ����, as in Section 9.3.2. Under this assumption, the candidate points are�-close
to ��. The candidate pointq initially found by the algorithm in search step 1 has the largest angle.
If q is �-close to��, the probability thatq causes a fold-over is low. If a fold-over would occur in
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space but not in the corresponding projection, then it can be seen thatq, q�, andq� are approximately
co-linear (Figure 9.3). But the probability of this event should be low. Because we already know from
Section 9.3.2 that the probability of a fold-over in the locally flat case is low, the probability thatq
causes a fold-over in the curved case is low, too. Because the probability of aq-induced fold-over is
low, q is not replaced with any other sampling point. Thus the candidate pointq selected in search
step 1 has indeed the largest angle with��.

In the projected case we know from the locally flat case that a projected sampling point with largest
angle is selected. Let,q be its corresponding original point. If both pointsq and,q would be different,
it can be seen by using Corollary 9.28 thatq�, q�, q, and,q are approximately on a common circle.
The probability of this event should be low. Thus in both cases the algorithm selects the same original
point with high probability.

Search step 2, outside case, is entered with a candidate pointq for the original case whose projectionq�

is also the candidate point for the projected case. For search step 2, outside case, we have recognized
in Section 9.3.2. for the locally flat case andq �-close to�� that� � pq is intersection-free, and that
this observation implies that a replacement ofq does not take place. In order to compare the original
case with the flat projected case we give arguments that the following observations hold with high
probability:

(1) � � pq is 7�-intersection-free if and only if its projection�� � p�q� is intersection free in the
flat projection.

(2) For all sampling pointsr with q�r � � the relation of the sizes of the angles betweenq��q
�
� and

q��q� and betweenq��q
�
� andq��r �, where� indicates the projection of the corresponding points,

is the same as for the sizes of these angles between the original line segments.

(1) is an immediate consequence of Observation 9.31.
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Figure 9.19: Illustration of the tolerances on angles between lines imposed by the radius of the TPEs of the pointsq�,r ,

andq. A perturbation of the locations of the points within the TPEs does not change the relation of the sizes of the angles

of interest.

For (2) we consider the cases of Figure 9.7. With high probabilityq� andr � have a distance larger than
two times the maximum of the radii of the TPEs ofq�� andq�/r � from the line of���. Otherwise the
vertices of�� andq/r would be approximately co-linear what should be an event of low probability. We
assume a configuration of this type (Figure 9.19). Ifr� has a distance larger than twice the maximum
of the radii of the TPEs ofr � andq� from the line throughq�� andq�, andq� has a distance larger than
twice the maximum of the radii of the TPEs ofr� andq� from the line throughq�� and r �, then the
angles have the same relation in the projected and in the original case. The reason is that perturbation
within an environment of the size of a TPE is not sufficient to change the relation. The worst case
is that the points are moved within the projection plane. Thus, if the relation changes,r is close to
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the line ofq�q, or q is close to the line ofq�r . In both cases we have three approximately co-linear
vertices. But this event has low probability. Thus the probability that the relation of the two angles is
the same in both cases is high.

Else-Case D:

The only action of the algorithm is to insert�� into � if �� does not intersect an edge of�. But by
Observation 9.31 the status of�� in the original case and the projection��� of �� in the projected case
is the same with respect to7�-intersection. Thus the algorithm has the same behavior in both cases.

For (2):

From Observation 9.25 we know that in the locally flat case the event that the candidate edge inter-
sects an already existing edge of� does not occur. Because the projected case is locally flat, the
candidate edge of the projection does not intersect an already existing edge. Because for both cases
the algorithm has the same behavior, the candidate edge of the original case is the corresponding edge
of the projected edge. By Observation 9.31 this original edge has the same behavior with respect to
7�-intersection for the original case like the projected edge with respect to intersection for the pro-
jected case, with high probability. Thus the candidate edge of the original case is7�-intersection-free
with high probability.

For (3):

From Observation 9.25 we know that in the locally flat case the candidate edge always is a�-edge, with
high probability. Because the projected case is locally flat, the candidate edge of the projection is a�-
edge with high probability. Because for both cases the algorithm has the same behavior, the candidate
edge of the original case is the corresponding edge of the projected edge. By Observation 9.30 this
original edge has the same behavior with respect to the�-edge property for the original case like the
projected edge with respect to intersection for the projected case, with high probability. Thus the
candidate edge of the original case is a�-edge with high probability.

9.5 NN-Embeddability

NN-embeddability of a triangular manifold� into a surface� means that the nearest-neighbor image
of � maps one-to-one to� under the nearest-neighbor assignment. In the following we present
observations which show that the� constructed by the algorithm should have this property with high
probability if the sample set is chosen so that the maximum angle of the triangles is bounded by�,
the edges are sufficiently short, and the dihedral angles between neighboring triangles are sufficiently
large. We know from previous sections that sample sets with this property exist.

9.5.1 General Observation

The purpose of this section is to give arguments for the following observation which also summarizes
the investigations performed up to now.

Observation 9.33 (Reconstruction property of the triangulation algorithm) Let � be an SF-sur-
face. Then a sampling set� exists so that with high probability the triangular mesh� delivered
by the triangulation algorithm is NN-embeddable, provided that for all sectors9 occurring during
execution of the algorithm the candidate sets� � �9� and���� comprehend with high probability all
points of� which have an NN-image falling into the triangle��9�.

Argumentation: We distinguish between two cases, local NN-embeddability and global NN-embed-
dability.
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Local NN-embeddabilitydenotes the NN-embeddability of every sub-mesh consisting of a pair of
triangles sharing a common edge. Local NN-embeddability should be guaranteed by the strategy of
the triangulation algorithm

(1) to generate�-edges and thus triangles with maximum angles less than� preferably,

(2) to select sectors with large dihedral angles with their neighboring sectors in their umbrella
preferably (Section 8.3).

Triangles satisfying (1) are NN-embeddable if their edge length is sufficiently small (Theorem 6.12).

By (2), if the Æ�-bound of the algorithm on the dihedral angle of two adjacent triangles is sufficiently
large, and if one of two adjacent triangles is known to be oriented close to the normal vectors of the
surface, then the other should be, too, and the NN-images of the pair of triangles should be disjoint.
This holds if both triangles are NN-embeddable and have sufficiently short edges (Theorem 6.16).

For sample sets with the'��(�-property, the edge length can be held small with high probability
(Observations 9.6 and 9.32). Thus local NN-embeddability should be achieved with high probability
by the algorithm.

Global NN-embeddabilitymeans that the NN-images of any two triangles do not intersect. Global
NN-embeddability should be guaranteed by the strategies of the triangulation algorithm

(1) to treat the points over a triangle in case B,

(2) to treat intersecting edges by

(a) construction in case B of the algorithm,

(b) explicit7�-intersection tests in the other cases of edge insertion.

Two non-adjacent triangles may NN-intersect if a vertex of one of the triangles is in the interior of the
other one, or if the two triangles have NN-intersecting edges. Both cases are covered by (1) and (2).

The complete treatment of points over a triangle in (1) is stated as a condition of this observation.
More on this subject is told in Section 9.5.2.

The7�-intersection tests of (2) should yield the correct result with respect to NN-intersection with
high probability, cf. Theorem 7.23 and the subsequent argumentation.

9.5.2 A Candidate Environment Covering the NN-Image of a Triangle

In Section 8.5.1 the candidate environment of flat sample points over a triangle has been defined as an
intuitive type of candidate environment. This definition is sufficient in the flat case because exactly
the sample points in the interior of a triangle are covered by it. The sample points falling on an edge
of the triangle are in an edge environment and are treated in the then-case D.

The candidate environment of flat points over a triangle also works well in practice for the curved case.
However, we do not have a proof that this environment, together with the candidate environments of its
edges, comprehends the NN-image of the triangle of the surface. In the following a type of candidate
region is defined for which we can prove this property for SF-surfaces. The environment can possibly
contain some more points, but we can show that they are in a connected environment of the NN-image
of the triangle. Thus this type of candidate sets might be a good starting point for finding the sample
points in the NN-image of the triangle reliably or at least with high probability.

The new candidate region is defined as follows.
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Definition 9.34 (NN-candidate environment of a triangle) Let � � ��p
q
 r � be a triangle, and

��� denote the length of the longest edge of�. Thenearest-neighbor (NN) candidate environment
�# ��� of � is defined as the union of the three balls of radius
��� and centersp, q, andr .

For a finite set� of sample points of a surface�, � ��� � � ��#��� is denoted asNN-candidate set
of �.

In the following we will show that for sufficiently small triangles� ��� does indeed contain all relevant
sample points.

Lemma 9.35 Let 
��� be the length of the longest edge of a triangle�. Then the following holds:

(1) Every point of� is in distance less or equal to
�
�
� 
��� from one of the vertices of�.

(2) The NN-candidate environment�#��� contains in particular all those points in space which are

in distance less or equal to
�
�
� 
��� from �.

Proof: Every point of� is in distance less or equal to
�
�
� 
��� from one of the vertices of�. The

reason is that every point of� has a distance of at most�
�
��� from one of the edges of�. This can be

seen by considering the three rectangular quadrilaterals, each of which shares an edge with� and the
opposite edge on the bisector between that edge and the opposite vertex of�, cf. Figure 9.20. The three

quadrilaterals cover�. Hence the distance from one of the vertices is at most
�

���
����
� � ���
����

� �
�
�
� 
���.

Figure 9.20: The three quadrilaterals (dashed lines) that cover the triangle�.

Let q be a point in space of distance less or equal to
�
�
� 
��� to �, andq� its closest point on�. If q�

is a vertex of�, ��q
q�� �
�
�
� 
��� is less than
���, and thusq is in the ball of radius
��� aroundq�.

If q� is on an edge or in the inner of the triangle,qq� is perpendicular to the edge or to the triangle.
In both cases, a line perpendicular toq� intersects the ball of a triangle vertexp from which q� has
a distance��q�
p� �

�
�
� 
��� in a point q�� which has distance��q��
q�� �

�

���� � ��q�
p�� ��


���� � �
�
���

� �
�
�
� 
��� from q�. Thus for��q
q�� �

�
�
� 
���, we get��q��
q�� � ��q
q��, and

thusq is in the closed ball aroundp with radius
���.

Theorem 9.36 (Candidate environment containment of NN-embedded triangles)Let� be a sur-
face and� � ��p
q
 r � be a triangle withp
q
 r � � . Then the NN-imagef��� is a subset of�# ���.

Proof: Let f�p� be the unique nearest neighbor on� of a pointp � �. Then��p
 f�p�� �
�
�
� 
���,
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because of (1) in the preceding lemma, and because the vertices of� are on�. Let p� be a point of�
with closest distance off�p� to �. Then��p�
 f�p�� � ��p
 f�p�� �

�
�
� 
���. By (2) of the lemma that

means thatf�p� � �#���.

Theorem 9.37 (SF-fringe containment of candidate environments)Let � be a compact SF-
surface without boundary with SF-radius
. Let � be a triangle with
��� 1 
. Then�# ��� is a
subset of the SF-fringe of radius
 of �.

Proof: �# ��� is the union of three balls of radius
��� and centers on�. Thus every point in�#���
has a distance of at most
��� from �, and thus, by definition of the
-fringe, is a subset of the fringe.

Theorem 9.38 (Connected sub-surfaces)Let� be a compact SF-surface without boundary with an
SF-radius
. Let$�$��p� be the ball of radius�� centered at a pointp � � . Then��p� �� $�$��p���
is a connected subsurface of�.

Proof: We consider the connected component of��p� which containsp. This connected component
splits$�$��p� into two regions so that for each of the tangent balls$��p�
 $��p�, the intersections
$��p� � $�$��p� and$��p� � $�$��p� are in different regions. That can be seen by inspecting the
intersection of the normal planes atp with the surface and the balls$��p� and$��p�. In each of
these planes, the connected component is a curve throughp which induces two regions each of which
contains one of the discs induced by the balls$��p�,$��p�. Otherwise a boundary point of the curve,
and hence of�, would exist. This transfers to the separation in space, because of the continuity of�.

Now let q be a point in$�$��p� which is not on the considered connected component. We will show
that q is not on�. But that means that��p� is just the connected component ofp what proves the
theorem.

For q in $��p� or $��p�, q is not on�. Thus let us focus on the other case. We consider the closest
pointsq�� andq�� of q on the balls$��p� and$��p�, respectively. From the geometric arrangement
it can be seen that the distance��q
q��� � �

� , � � �
 �. Furthermore, one of the line segmentsqq��,
� � �
 �, intersects the surface in a pointq�. Thus the distance ofq from the surface is at most�� . But
that means thatq is in one of the tangent balls of radius
 at q�, and thusq cannot be on�.

Corollary 9.39 (Connectedness of the subsurface in the candidate environment)Let� be a com-
pact SF-surface without boundary with an SF-radius
. Let � � ��p
q
 r � be a triangle with the
length of the longest edge
��� 1 �

� . Then�� �� �#��� � � is a connected subsurface of�.

Proof: By the preceding theorem,��p�, ��q�, and��r� are connected surfaces. Becausep
q
 andr
are contained in all of those three surfaces, the union of them which is just�� is connected, too.

Theorem 9.40 (
-fringe containment of a triangle) Let� be a compact SF-surface without bound-
ary with an SF-radius
 and� � ��p
q
 r � be a triangle withp
q
 r � �. If 
��� ���
, then� is in
the
-fringe of�.

Proof: As we know, the maximum distance of a point of� from � is at most
�
�
� 
���. Because�

�
� 
��� � 
, all points of� have a distance of at most
 from �. Thus, by definition of the
-fringe, �

is in the
-fringe of�.

Based on these observations, the following corollary formulates the usefulness of the candidate envi-
ronment�#���.

Corollary 9.41 Let� be a compact SF-surface without boundary with an SF-radius
, � be a finite
set of sample points on�, and� � ��p
q
 r � be a triangle withp
q
 r � � with 
��� 1 �

� . Then
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(1) �# ��� contains all sample points in the NN-imagef��� of �.

(2) �# ��� � � is connected, that is only sample points of a connected environment aroundf��� are
considered.

Proof: The assertion (1) is identical to that of Theorem 9.36 about candidate environment containment
of NN-embedded triangles. (2) is the assertion of Corollary 9.39 about connectedness of the subsurface
in the candidate environment.

9.6 Boundaries

The boundary of a triangular manifold is given by the edges to which just one triangle is incident.
Boundary edges are generated by the reconstruction algorithm if a sector is not closed to a triangle.
Let us again consider the situation in the plane.

In the plane, the boundary consists of closed polygonal chains which also may have tree-like branches
and which bound a region outside the triangulation. It is well known, that for every polygonal region at
least one sector defined by consecutive edges�� � pq�, �� � pq�, does exist which can be separated
from the region by a chord�� �� q�q� which is completely in the region, so that the resulting triangle
is free of points or edges. The only reason for the algorithm not having inserted�� is that the angle
at p exceeds the boundary control angle���. That means that all sectors which allow a chord have an
angle exceeding��� which usually is chosen large.

If a sector does not allow a chord, its pointp is either a concave point with respect to the region, or it
induces a triangle which contains at least one vertex (the triangulation is assumed to be intersection-
free). But in that case, a line segment betweenp and one of those vertices would have been inserted
into the graph according to the then-case B. Thus that case does not happen.

In summary, a boundary vertex of a region induced by boundary edges either has a convex large angle,
or is concave with respect to the region.

The result of the discussion can be used in two manners. The first interpretation is that it is unlikely
that such a polygonal region does occur if the sample points are equally distributed in a surface filling
manner. The reason is that the area of a region with the described property is so large that for that case
the probability is high that one of the sample points falls into the region.

The second consequence is that the algorithm is capable of identifying intended holes or boundaries
if the surface is adequately sampled. An adequate sample locates the sample points on the boundary
so that the angles of the sector of the polygonal chain obtained by connecting consecutive sample
points exceed���. For a continuous curve of bounded curvature that can be achieved by sufficiently
close sample points. Additionally, the sample points should be denser than the size of the hole, where
the size of the hole can be characterized by the diameter of a maximum sphere which can be moved
through the hole. The sample points in the interior close to the boundary are set with an analogous
density. For that choice, the sectors on the boundary should occur as sectors of the cycle of the
boundary vertices of the surface description graph which are not completed to a triangle because of
the large angle���. An edge between the two edges of a boundary sector is unlikely to occur in the
surface description graph. The reason is that it is unlikely to occur in the clustered environment graph,
nor as a result of edge connection with points in a triangle or edge-close points which are the only
possibilities where sectors might be splitted.

Figure 9.21 shows an example of a surface with hole. In the middle, the bound��� has been so small
that the hole has been filled, whereas on the right side the hole has been reconstructed by using a
suitable large value of���.
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Figure 9.21: The detection of borders in a data site.

9.7 Empirical Investigations

Observation 9.6 states the existence of favorable extensions of a given sample set of a surface, but
does not give a concrete algorithm of construction. For that reason we have applied the algorithm to
random sample sets taken from a semi-sphere, from the outer and the inner of a torus, and from a flat
square (Figure 9.22), with approximately 500 and 1000 points which have been generated as described
at the end of Section 7.2.1. Additionally performed measurements with more points show no principle
differences, and thus are not presented here.

In all cases� � � has been used for the clustered�-EG which has served as input SDG for the
algorithm of triangulation. The parameters� (for �� �� ����) and��� have both been set to��!Æ,
7� was set to"!Æ and the dihedral angle bound toÆ� � ��Æ. The reconstructions obtained from the
sample sets are shown in Figure 9.23.

Figure 9.22: The sample sets used for the empirical analysis.

Figures 9.24 to 9.31 compile the data of the measurements. The horizontal axis of every plot can be
understood as time axis:� represents the�-th sector treated by the algorithm.

Figure 9.24 shows the size of the sector angles. In the flat case, the sectors are processed according
to increasing angle (Definition 9.34). The reason of the scattering effect is that new sectors which
may have smaller angles are generated if an edge is inserted into�. An interesting effect is that
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Figure 9.23: The reconstructed surfaces.

nevertheless the tendency is that the angle size increases during execution of the algorithm. The plot
shows that the angles are indeed bounded by��!Æ.

In the plots of the planar square, a sorting effect can be noticed. The reason is that in that case the
sector angles, and not the dihedral angles to neighboring sectors are the sorting criterion. Another
observation is that very small angles do not occur frequently.

Figure 9.25 displays the number of occurrences of inserted�-edges and non-�-edges, respectively. Al-
most all of the inserted edges are�-edges. The number of non-�-edges is between 0 and 10. This also
corresponds to the observation of Section 9.3.2. Moreover, the dihedral angles of adjacent triangles
of these non-�-edges always fit smoothly into the surrounding structure. Most of the dihedral angles
between adjacent triangles at these edges exceeded�"�Æ in the experiments. The smallest angle ever
found has been about�!�Æ. Obviously, the edge selection process chooses the configurations well, so
that a good surface mesh is generated.

Figure 9.26 presents the number of occurrences of the configurations during a reconstruction that a
sample point is ”over a triangle” (case B, ”over trian”), in the����-environment of edge�� (then-
case D, ”near to edge”), and that�� is a�-edge or an already existing edge (else-case C and case D,
”normal”). The case ”over a triangle” does practically not occur, the curve is about constant equal to
�. For the overwhelming majority of the sectors edge�� is taken and non-�-��-edges do not occur too
often. A reason is that for the relatively short edges the probability that a random sample point falls
into the����-environment of the edge should be considerably smaller than it does not, because of the
small area of this environment compared to the area of the whole square. The curves of the case of
non-�-edges�� (then-case D, ”near to edge”) increase slightly over-proportionally.

Figure 9.27 shows the number of occurrences of edge types�� � q�q� and� � pq over time for
the min-max triangulation of the then-case D. Here, the majority of the edges is of typepq. This
corresponds to the observation of Section 9.3.2.

Figure 9.28 displays the length of the inserted edges. For comparison, the average edge length, the
standard deviation, and the maximum edge length of the initial SDG are depicted, too. The distribution
of the point density shows that the length of the majority of edges is at most twice of the average length
of the SDG, and less than the length of the maximum length of an SDG-edge.
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Figure 9.24: The size of the angle of every processed sector.
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Figure 9.25: The number of occurrences of inserted�-edges and non-�-edges, respectively.
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Figure 9.26: The number of occurrences of the configurations ”over a triangle” (case B, ”over trian”), non-�-edges�


(then-case D, ”near to edge”), and�-edges�
 or an already existing edge (else-case C and case D, ”normal”).
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Figure 9.27: The number of occurrences of edge types�
 � q�q� and� � pq over time for the min-max triangulation of

the then-case of step D.
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Figure 9.28: The length of the inserted edge: for comparison, the average edge length, the standard deviation, and the

maximum edge length of the initial SDG are depicted, too.
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Figure 9.29: The ratio of the length of the newly inserted edgepq and the maximum length of the already existing edges

��, �� of the current sector.
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Figure 9.30: The ratio of the length of the newly inserted edgeq�q� and the maximum length of the already existing edges
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Figure 9.31: The location of pointp with respect to the regions of Figure 9.1.
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Figures 9.29 and 9.30 show the ratio of the length of the newly inserted edge and the maximum length
of the already existing edges��, �� of the current sector. The point density distribution shows that the
factor very often is less than���. It increases during the advance of the algorithm, but still many edges
fulfill this bound. The plot confirms the trivial upper bound of�.
The edge length ratios for the planar square seem to be somewhat less than those of the other sample
sets, and less scattered. The semi-sphere also does yield less scattered ratios.
Figure 9.31 shows the location of pointp with respect to the regions of Figure 9.1. In the majority
of cases,p is located in region 1, and region 2 is used rarely This matches with the observation that
the majority of sector angles in Figure 9.24 is larger than��Æ. A somewhat surprising effect is the
non-symmetric distributions of the points falling into the symmetric regions 3 and 4.
In summary, the empirical results show that the triangulation algorithm behaves for the random sam-
ples as predicted by the analysis. It has turned out that random sampling is already a useful choice
for the algorithm. Particularly well suited would be samples arranged on an approximately uniform
quadrilateral mesh because in that case the shape of the resulting triangles would be very favorable.

9.8 Reconstruction at Ridges and Sharp Edges

The analysis performed up to now has focused on smooth surfaces. As we can see from the examples
of Figures 8.6 and 8.7 the reconstruction algorithm also shows a favorable behavior at ridges and
sharp edges. Usually, the precision of reconstruction of the algorithm depends strongly on the surface
description graph of the first phase. For clustered environment graphs, its precision can be that of the
EMST explained in Figure 4.4 of Chapter 4, that is, in theory the sharpest turn at a ridge can be��Æ.
This value, however, is only achieved if the points of the environment have equal distances around a
ridge. In practice, the observed precision is at least��Æ and the average precision is between��Æ and
��Æ. This value directly depends on the length ratio between two incident edges to a point that is on
or near to a ridge.
A good choice in order to get a favorable reconstruction of a ridge or a sharp edge is to choose sample
points directly on the ridge. The cup shown in Figure 8.6 is an example. By the remarks of the
preceding paragraph, this strategy, however, is only reasonable if the surface turn is not too sharp,
so that the structure of the environment graph can follow the surface. A further limitation of sample
points directly on a ridge is the scanning hardware because data acquisition at really sharp features
usually cause physical measuring problems with the consequence of noisy data. These problems often
occur for optical scanners.
An other strategy applicable in those cases is to sample just short before and behind a ridge. Then it can
be expected that the environment graph follows the sharp surface turn with a ”round” approximation.
Figure 4.4 illustrates this idea.
Random sampling at ridges and sharp edges is probably the worst approach because nothing can be
told about the position of the points and the resulting structure of the environment graph with respect
to the ridge or edge.

9.9 Discussion

The main results of this chapter are summarized in the Observations 9.6, 9.25, 9.32, and 9.33. They
demonstrate the existence of sample sets for smooth surfaces for which the algorithm shows a favor-
able behavior. Empirical investigations show that already for random sampling results similar to those
for the favorable sample sets are obtained. Furthermore, hints are given for suitable sampling at ridges
and sharp edges.
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Chapter 10

Interactive (Re-)construction

The reconstruction algorithm described in the preceding chapters is designed so that it should yield
satisfactory reconstructions if the sample set fulfills certain conditions. However, in practice such
conditions can not always be expected to hold, and in that case interactive intervention by the user
may support the algorithm. Another aspect is that the reconstruction algorithm can also be used as
modeling algorithm. In computer-aided geometric design, a widespread approach is to use control
points from which a shape is interpolated or approximated. An interesting observation is that the
reconstruction algorithm can be used for that purpose, too. In this chapter, we outline possibilities of
those two aspects, and give further examples which illustrate the behavior of our algorithm.

10.1 Aspects of Interactivity

Interactive reconstruction means to observe and influence the behavior of a reconstruction algorithm
interactively. There are at least two basic possibilities.

The first one isinteractive choice of the parameterswhich control the behavior of the algorithm. The
probably most simple case of interactivity is to choose a set of parameter values, start the algorithm,
inspect the result, modify the parameters if the result is not satisfying, perform another run of the
algorithm, and iterate this process until a reasonable result is achieved.

The second possibility isinteractive manipulation of the point set, that is insertion or deletion of
points. There are several interesting application scenarios of this type of interaction:

Correction in the case of not satisfying reconstruction:A reason for a not satisfying reconstruc-
tion may be unproper sample points, for example too few of them, in particular at sharp feature
lines of a surface. This deficit may be remedied by insertion of further points at critical locations.

Interactive digitization: The reconstruction algorithm is executed during interactive acquisition of
sample points, for example by tactile devices like a robot arm. The choice of sample points is
adapted to the observed requirements of the algorithm.

Surface modeling: Surface modeling is a generalization of interactive digitization, in that no physical
surface has to be present. The user just inputs 3D points which are on the virtual surface he is
designing.

In the following we will focus on the interactive manipulation of the point set.

The following degrees of interactivity can be distinguished:

1. Interactive insertion or deletion of points, and reconstruction ”in batch” if the process of inser-
tion is finished.
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2. Interactive insertion or deletion of points, and online reconstruction and visualization.

From a computational point of view, the first possibility is easy because the algorithm can be used as
is. It demands some experience of the user with the reconstruction algorithm in order to know how to
set the points to avoid a high number of possibly time-consuming runs of the algorithm.

Online updating after every insertion or deletion in the second case can be performed according to two
main strategies:

1. Recalculation from scratch.

2. Update of the current graph.

From the view of interactivity the first approach is acceptable only if the calculation time is short.
Short calculation times are achieved for small point sets, but become difficult for large sets. Time
can be saved by applying a hierarchical concept. First, just the clustered 1-environment graph (1-
EG) is constructed. If the constructed surface description graph looks sufficiently well, finally the
triangulation is included. That approach is reasonable and acceptable because a good reconstruction
can only be achieved if the earlier graphs already are reasonable. In many cases triangulation from the
surface description is canonical, and no or just little further manipulation of the point set is necessary
in order to get a satisfying result. As we already have seen in Table 8.1 of the previous chapter, the
computation of the clustered 1-environment graph needs just a few seconds if it is computed from
scratch. However, the interactive update is a slightly different task which usually means that only a
small part of the complete graph has to be recomputed. Therefore, even if the point sets get bigger the
update procedure can still have real-time behavior.

Update of the current graph means to provide a data structure which efficiently supports the following
operations:

Vertex insertion:

Given: A set of points and a reconstruction, for example an EG.

Wanted: For an arbitrary additional point, an update of the reconstruction which includes the new
point.

Vertex deletion:

Given: A set of points and a reconstruction, for example an EG.

Wanted: For an arbitrary point of the set, an update of the reconstruction without the selected point.

A simplification is possible by avoiding explicit vertex deletion. The reason is that deletion may
happen only rarely, because slight faults may also be corrected by insertion of further points. If
necessary, vertex deletion can be implemented also on a data structure which just supports insertion
[Ove83]. One approach is to store a sequence of intermediate states of the data structure, and the
sequence of insertions between two consecutive of them. The deletion can be performed by going
back to the state immediately before the insertion of the vertex to be deleted, and process a sequence
of insertions from that point, without inserting the deleted point. This approach works efficiently, if
vertices not too far in the past are eliminated.

More on dynamic data structures for surface description graphs, can be found in Section 10.4.

In the following we give two case studies of interactive modeling from scratch and interactive selective
reconstruction on a given point set.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10.1: Construction of a triangle, a tetrahedron, a flat tetrahedron, a pyramid, a ”polygonal” cone, and a cube.
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10.2 Interactive Modeling from Scratch

Modeling from scratch means to start with an empty space and to build up a triangular manifold step
by step by insertion or deletion of points, and application of the surface reconstruction algorithm on
the resulting sets of points. In the following we illustrate the possibilities of that surface modeling
approach at examples.
Figure 10.1 (a) shows the probably most simple example, the modeling of a triangle by three points. If
the three points are arranged so that the resulting triangle has an angle larger than the boundary control
parameter��� of the algorithm then no triangle is returned.
The reconstruction of a tetrahedral surface is more complicated. The reason is that it depends on the
parameterÆ� which bounds the dihedral angle, and like for the triangle, on the parameter���.
Figure 10.1 (b) shows a reconstruction of all faces of a tetrahedron.

Figure 10.2: Construction of a sphere. The figure shows the given point set, the corresponding�-environment graph, and

the final result.

Figure 10.3: Construction of a Moebius strip: the point set, the clustered�-environment graph, and the final Moebius strip.

In contrast to the previous figure, Figure 10.1 (c) depicts a reconstruction from four points which are
almost in a common plane. Whether a closed surface without boundary is constructed depends on
the parameters of the algorithm, like the dihedral angle boundÆ�. The canonical reconstruction is a
surface with boundary, consisting of two adjacent triangles.
The examples show that it makes sense to offer also the parameters of the algorithm at the user in-
terface for interactive manipulation. They also show that even with a very small number of points a
desired shape can be achieved. In case of troubles, more points usually help to overcome the difficul-
ties.
Figure 10.1 (d) shows the successful construction of a reasonably shaped four-sided pyramid, and
Figure 10.1 (e) presents a ”polygonal” cone of similar shape. Here troubles concerning the closeness
of the surface may arise if the tip of the pyramid or the cone is close to the base.
Figure 10.1 (f) demonstrates that a cube can be constructed, too, from its eight vertices. Figure 10.2
shows the approximation of a sphere.
The application of the algorithm is not limited to orientable surfaces. Figure 10.3 shows a point set
sampled from a Moebius strip and the corresponding reconstruction by the algorithm.
Figures 10.4 and 10.5. show that sharp edges can be modeled, too. The first figure illustrates that sharp
surface edges that are randomly sampled can be reconstructed appropriately. The�-environment graph
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Figure 10.4: Construction of an edge of changing curvature: the point set, the clustered�-environment graph, and the final

result.

Figure 10.5: Construction of a sharp edge: the point set, the EMST taken as surface description graph, intermediate results

of triangulation after 1,2,3,4,8,9,10,11,12,16,17,18, and 19 inserted faces, and the final reconstruction result (bottom right).

adapts naturally with edges to the situation so that the reconstruction algorithm can set surface triangles
around the edge. For demonstration purposes, in the second figure the EMST is taken as surface
description graph. Because the EMST contains less graph edges than the clustered 1-EG it is usually
more difficult for the algorithm to treat the sharp surface turn of this example correctly. Therefore, the
reconstruction of the artificially sharp surface turn of this example can be better analyzed. We see that
no surface triangle is set in the interior of the object although the sector angle between the edges is
very small. Obviously, the greedy triangulation with its sector selection strategy prefers the insertion
of triangles that fit smoothly into the surrounding current mesh structure. This behavior has prevented
the algorithm from inserting ”wrong” triangles into the surface.

As we know, the reconstruction algorithm works in two phases, construction of a surface description
graph, and triangulation of this graph. In an interactive environment it may be reasonable to replace
the environment graphs used by the algorithm by an explicitly edited arbitrary graph. The advantage
may be that the user can draw the ”right” edges directly.

The reconstruction of Figure 10.6 shows that cylindrical structures can be constructed by generating
circle-like structures by just a few points, and by arranging them so that they are connected by edges of
the EMST or the environment graph. For our example, it is of course hard to say which kind of surface
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Figure 10.6: The reconstruction of cylindrical structures. Left: the point set with its clustered 1-environment graph and the

final reconstruction without user interaction. Middle: the rings of graph edges have been connected by user interaction so

that the cylindrical structure could be reconstructed. Right: the EMST has been taken as surface description graph which is

also sufficient in order to reconstruct this type of object.

is represented by the point rings. If the clustered 1-environment graph is used as surface description
graph, every point ring describes a single circular surface part, cf. Figure 10.6 (left). If the point rings
are connected by the user with two edges (magenta) as shown in Figure 10.6 (middle), the structure
for a complete cylinder is given, and the algorithm indeed constructs a complete cylinder.

Figure 10.7: Top: Two parts of a surface have been sampled individually. The reconstruction yields two disjoint surface

meshes. Bottom: Just one single edge (magenta) between points of the two parts must be inserted in order to combine both

parts to a single surface.

Additionally, this cylindrical object is also a good example to show that even the EMST itself is a
good and sufficient surface description graph. Because the EMST connects all points with graph
edges it assures that the point rings are connected with each other so that the reconstruction algorithm
can generate a connected surface, cf. Figure 10.6 (right). This example shows that in interactive
environments the EMST and the clustered 1-environment graph might be applied by the user.

Another situation of simple user interaction is shown in Figures 10.7 and 10.8 where two surfaces are
joined by inserting just a single but significant graph edge. The SDG displayed in the upper middle of
Figures 10.7 and 10.8 does yield just edges in order to reconstruct the surfaces for the left and right
part separately. The lower middle part of both Figures shows that by inserting only one edge the two
surface parts can be joined.
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Figure 10.8: A similar situation as in Figure 10.7. Top: The two surfaces are tubes which have been generated independently

by the reconstruction algorithm because they are not connected by graph edges. Bottom: The insertion of just one edge

(magenta) yields enough information for the reconstruction algorithm in order to combine the two tubes to one single tube.

10.3 Interactive Selective Reconstruction

Selective reconstruction means the restriction of the application of the reconstruction algorithm to a
subset of the set of sample points. Selective reconstruction is useful if only small parts of a large
data set are of interest. An example is that just one part of the data set is useful while other parts are
distorted by noise.

Figure 10.9: Explicit selection of a subset of points by a so-called “picking sphere”. All points inside the picking sphere

become part of the point set picked.

We distinguish between two versions of selective reconstruction which differ in the approach of selec-



152 Chapter 10: Interactive (Re-)construction

tion of the subset:

1. Explicit selection of a subset of points which is subject of reconstruction by the surface recon-
struction algorithm.

2. Design of a surface description graph by using points of the given point set, according to one of
the versions of modeling from scratch. From the surface description graph, the manifold can be
constructed by one of the following two possibilities:

(a) Direct usage of the graph for triangulation.

(b) Transformation of the graph into a feasible environment graph under consideration of the
given point set.

An interesting aspect of the first alternative is the method of interactive point selection. Clicking points
individually is tedious for larger point sets. As an alternative we use aselection sphere. The selection
sphere is moved in space, and all those points are selected which have been in the interior of the sphere
during the motion. The radius of the sphere can be changed interactively so that its sensitivity can be
adapted dependent on the details of the region subject to current selection.

Figure 10.10: Top: The point set of the head of a puppet in front and side view. Bottom: The user decides to reconstruct the

nose. The reconstruction region is determined by surrounding the area with six edges, arranged in the shape of a tetrahedron,

which take into consideration the extreme convexity of the nose.

Figure 10.9 shows snapshots of a selection process and the result of reconstruction on the selected
point set. This approach has shown quite useful in particular in combination with a stereoscopic
display and a direct 3D-input by computer-vision-based hand tracking [Blu97, Koh99, SK95].

The background of version 2 (a) is to sketch just a rough wire frame over a subset of points, and the
reconstruction algorithm fills the wire frame in its triangulation phase to a triangular manifold. The
idea behind version 2 (b) is to automatically adapt the sketched graph to the other points of the point
set which is a kind of “projection of the graph to the point set”. This might allow rough sketching,
possibly with long edges, which are then algorithmically refined into edges of an environment graph.
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Figure 10.11: The set of edges after the refinement process. The new edges are scattered over the surface.

Figure 10.12: The result of reconstruction from the refined edges. The area where the reconstruction took place is a good

approximation of the area that has been described by the user with the initial six edges, cf. Figure 10.10.

The algorithm of edge refinement works as follows. A set of candidate edges is maintained which
initially consists of all edges of the sketched graph which do not have an empty�-environment. The
algorithm iteratively takes edges� � pq from that set. A vertexr in the �-environment of� with
smallest sum of distances to the verticesp andq of � is chosen. Then� is replaced with the two new
edgespr andqr . Those of the new edges which do not have an empty�-environment are inserted
into the set of candidate edges. The algorithm terminates when the set is empty. For� � � � �, the
algorithm terminates because the new edges are shorter than the original ones.
Figures 10.10 and 10.11 show an application of the refinement algorithm to a larger point set. Figure
10.10 shows the sketched wire-frame consisting of six edges arranged in the form of a tetrahedron.
Figure 10.11 depicts the transformation into an 1-environment graph by the edge refinement algorithm.
The final result of reconstruction is displayed in Figure 10.12.

10.4 Computational Issues

Possibilities of calculation of environment graphs have been described in Section 5.3. In the following
we discuss algorithmic possibilities of updating clustered environment graphs.
The principle idea for updating the clustered�-environment graph is to re-calculate it only in the
region where it could change its structure because of a point insertion/deletion. For this purpose, the
knowledge on its different calculation phases is taken into account.
Updating starts with an already existing clustered�-environment graph� for � � � of an initial point
set� as defined algorithmically in Section 5.2.2. The first two phases of the algorithm deliver a radius
for every vertexp in the end. Let
��p� be the radius resulting from the first phase, and
��p� the
radius of the second phase.
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Further, let
�	��p� , 
��p� denote the first distance of a pointp to another pointq with ��p
q� ,

��p� for which the�-environment���p
q� is not empty of points. If no such pointq for a pointp
exists, then
�	��p� ���.

10.4.1 Point Insertion

In this section the update procedure for a clustered�-environment graph is described if a new point
p�
� �� � is added to the current point set� . Let �� �� � � �p�
�� denote the new point set and

���p�
 
���p� denote the new radii with respect to steps 1 and 2 of the original clustering algorithm
for pointsp � � �. Theupdate process for point insertionconsists of three steps which are related to
those of the original clustering algorithm. Let 1’,2’, and 3’ denote these new steps which are described
below:

1’. In the first step of the update procedure all radii
��p� that could change because of insertion of
p�
� are updated to new radii
���p� as described here.

Let� be theinitial heapof points consisting of the following points:

� the new pointp�
�,

� all pointsp with p�
� in their 
�	��p� radius, that is, for which��p
p�
�� � 
�	��p�.

Then, the original step 1 of the clustering algorithm is applied to all elements of� so that each
elementp of � receives a new radius
���p�.

All other pointsq � � � �� inherit their old radius of the non-updated graph, so that
���q� ��

��q�.

Then,� is extended by all pointsp � �� whose spheres of the old radius
��p� containp�
�,
that is, for which��p
p�
�� � 
��p�.

As initialization for step 2’ all radii
���p� for p � � � are initialized to
���p� �� 
���p�.

2’. Now, the second part of the update procedure is applied which consists of iterative application
of this step 2’ onto a changing heap� until a certain final state is achieved.

The original step 2 of the clustering algorithm is applied under consideration of the radii
���p�
for all pointsp � � � and with restriction to the elements of�, that is, for each considered point
pair at least one point must be part of�. This results in the current new radii
���p� for each
point p � � �.
The set of elementsq � � � �� which have an intersection with a point ofp � � in the way
��p
q� � ����
��p�
 
���p�������
��q�
 
���q�� is called -�. The maximum of the radii
�
 
��
for p andq is taken in order to consider definitely all points that could induce either a radius
update or a new virtual edge.

After that, the original step 2 of the clustering algorithm is applied to the elements� � -� with
the same restrictions as before. This ensures that all elements of-� receive a radius update not
only from points of� but also from their other surrounding points of��.

If then for all pointsp of the current set-� the new radius
���p� is equal to the old radius
��p�,
that is
��p� � 
���p� for all p � -�, then the update process for step 2’ is complete. Otherwise,
step 2’ is repeated again after the heap� has been extended by the following points:

� all pointsq � � � � � which are contained in the
��p�-radius of elementsp � � and
whose
��q�-radius is smaller than
��p�� ��p
q�,
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� all points q � � � � � which fulfill the relation ��p
q� � ����
��p�
 
���p�� �
����
��q�
 
���q�� with a pointp � � and for which
���q� �� 
��q�.

3’. After the iteration process of step 2’ has taken place, all edges incident to points of� are
deleted. Then, the virtual edges that have been generated in step 2’ are inserted in order of
increasing length using the7-intersection test. If a new edge7-intersects an old edgepq that
connects two pointsp
q �� �, thenp
q are put onto�, all new already inserted edges are
removed, and the iteration process of step 2’ of theupdate procedure for point insertionis re-
started. This case is very unlikely, since in that casep
q usually would have been close to
points of� and therefore with probability also part of�. If only 7-intersections occur with
new inserted edges of this step 3’ then the update process of the clustered�-environment graph
is complete after all virtual edges have been considered.

10.4.2 Point Deletion

All points p � � with the property��p
p�
�� � 
��p� � 
��p�
�� with respect to the pointp�
� � �
to be deleted are put onto an initial heap�.
Then, the new point set� � is defined by� � �� � ��p�
�� and all edges of the current graph that were
incident top�
� are deleted.
After that, the same update procedure as for point insertion is applied with respect to the different
initial heap�.

10.4.3 Tetrahedrizations for Speed-up

As in Section 5.3, tetrahedrizations are useful for speeding-up the calculation. The following tasks
have to be performed.
The tetrahedrization has to be updated with respect to the manipulated point, that is the point has
to be inserted or deleted. For the Delaunay triangulation, in practice common libraries like the
CGAL [CGA] can be used for that purpose. Unfortunately, up to now there does not seem to ex-
ist any library which handles dynamic deletion of single points from a Delaunay tetrahedrization. For
the hierarchical tetrahedrization insertion does affect just one tetrahedron. Deletion is problematic,
too. A possibility to treat the problem of point deletion is to leave deleted points in the tetrahedriza-
tion and to label them as de-activated. This approach, however, does not work for the supergraph
approach based on Delaunay triangulations mentioned in Section 5.3.
Each time a point is inserted or deleted all points that have ”visited” the modified tetrahedra during
their previous�-nearest neighbor computations have to be re-initialized for this task (Appendix B).
During point insertion, the points with mutually intersecting spheres are identified by processing the
list of points having visited a tetrahedron during a�-nearest-neighbor query, and by comparing their
associated radii. Point deletion is performed analogously. All those points are considered for inter-
secting spheres which have visited the deleted pointp in previous nearest neighbor queries.

10.5 Discussion

The surface-oriented approach of our reconstruction algorithm makes it to a useful tool for interac-
tive surface modeling. The surface description graphs provide an efficient computable impression of
the final shape to be expected, and thus are quite useful as control structure of the shape. As sur-
face description graph, the suggested ”automatically” calculated environment graphs, but also graphs
interactively designed or modified by the user can be applied.
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Another benefit is that a locally-defined reconstruction can be achieved by ”projecting” graphs drawn
by the user onto the point set. This approach reduces the interaction time of the user for selection of
the desired subregion subject to reconstruction.



Chapter 11

Noise Elimination

A sample set is callednoisyif the sample points deviate from the surface by a small, usually random,
distance. Noise in sample sets may be caused by technical properties of the sampling device. If the
sample points deviate considerably from the surface, it might happen that a reconstruction algorithm
that is relying on criteria like the dihedral angle or on neighborhood criteria which assume the surface
to be sufficiently smooth might not longer yield reasonable results.

A powerful method of noise reduction is Laplacian smoothing of second order. This method is origi-
nally defined for distorted vertices of a triangular mesh. In our application, however, we do not have a
mesh before reconstruction. We solve this problem by defining an auxiliary mesh on the given sample
set to which the smoothing operator can be applied for noise reduction.

Figure 11.1: From left to right: The original noisy surface mesh, and the de-noised mesh after 1, 2, and 3 iterations of

Laplacian smoothing of second order. Here, the values� � � and� � ��� have been chosen. Note, that even after just one

iteration the de-noised mesh has significantly improved.

11.1 Laplacian Smoothing of Second Order

For meshes, the probably up-to-now best smoothing filter is Laplacian smoothing of second or-
der [Tau95, KCVS98, VMM99, Vol98].Laplacian smoothing of first orderconsiders the set�+.�q� of
adjacent vertices of every vertexq of the mesh, and moves it to a new locationp which is calculated
by averaging the vertices in�+.�q�,

p ��
�

�

	
�
��
�����

q��

For Laplacian smoothing of second order, basically the same procedure is applied to the differenced
between the new and the original vertex location. This is performed with the slight modification that
at iterative application both the locationq at the current level of iteration and the locationo of the
vertex in the original mesh are considered by an�-weighted average, as it is done for the differences
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with a weight�, too:

d �� �


��b�q� �

�� �
��+.�q��

	
�
��
�����

b�q��

�



where
b�q� �� p� ��o � ��� ��q��

The result of Laplacian smoothing of second order of a vertexq is the sum ofp andd.

The purpose of distance correction by addingd is to reduce the shrinking effect of Laplacian smooth-
ing of first order.

This formula is applied iteratively until a satisfying result is achieved.

The value� weights the influence of the original noisy points. While this is sometimes desired when
existing surface meshes have to be smoothed, the influence of the original points during noise elim-
ination for arbitrary point sets is not favorable. Since the original point positions might have been
generated because of heavy noise the restriction to these positions does not make sense. Therefore, for
this application� � � should be chosen. For the other parameter the value� � ��! is a good choice
[VMM99].

Figure 11.1 shows an example of an application of Laplacian smoothing of second order to an artifi-
cially noised data set, for� � � and� � ��!.

For mesh smoothing it is of advantage to alternate the application of a surface smoothing operator
like Laplacian smoothing of second order with smoothing by edge swapping [FOG97, DLR90, BS91,
Bro91, Ham97].

Figure 11.2: From left to right: a noisy point set, the auxiliary mesh constructed from it, and the auxiliary mesh smoothed

by alternating the application of Laplacian smoothing of second order and edge swapping.

11.2 Direct Noise Elimination by Auxiliary Meshes

The difficulty in our setting is that no mesh is present with the given sample points. The idea to
cope with that problem is to construct an auxiliary mesh. The auxiliary mesh needs not to be a perfect
reconstruction of the surface, but it should reflect the neighborhood relations between the given sample
points approximately. The basic approach is as follows [VMM99]:
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1. Calculate a surface description graph (SDG) using the first phase of the reconstruction algorithm
of the previous chapters.

2. If the vertex degrees of the resulting graph are not typical for a surface mesh, augment the set
of adjacent vertices of every vertex by introducing edges up to a suitable number of vertices in
its neighborhood not yet adjacent. In order to take care of variations of the point density, an
adaptive number of nearest neighbors is used, which is estimated by using the length of incident
SDG edges as reference value for the different vertices.

3. Around each vertex a corona of faces is created on base of incident edges like a spanning um-
brella. In this manner for each face one new edge is created, if it does not already exist. These
edges are important for the connectivity of the new mesh.

4. Faces not fulfilling a given mesh quality measure are removed. A quality measure introduced
by Bank and Smith [BS97] is used for that purpose.

5. Remove triangles so that at most two triangles are incident to every edge in order to make edge
swapping applicable, under preservation of pairs of triangles with large dihedral angles. All
edges which do not have at least one incident face are removed.

Step 5 is necessary because the set of triangles generated in the previous steps may be non-manifold.

Figure 11.3: Reconstruction based on the noise-reduced set of points shown at the left.

Figure 11.2 shows a distorted sampling set of a bone, the derived auxiliary mesh, and the result of
smoothing of that mesh by an alternating application of Laplacian smoothing of second order and
edge swapping. Figure 11.3 depicts the noise-reduced point set and the reconstruction of the bone
obtained by our reconstruction algorithm from this point set.

11.3 Discussion

The approach of using an auxiliary mesh for smoothing of noisy point sets sampled from a smooth
surface has turned out to be useful in practical examples. A topic of further research might be to extend
the theoretical investigations of this thesis which assume the sampling points being on the surface, to
sampling points only close to the surface. A triangular mesh with those noisy sampling points as
vertices might be considered as reconstruction of the given surface, if it maps one-to-one under the
NN-image to a non-overlapping mesh on the surface.
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Chapter 12

Future Developments and Conclusion

We have presented a surface (re-)construction algorithm which falls into the category of surface-
oriented approaches. This category has found less interest in the past than volume-oriented ap-
proaches. A reason is that volume-oriented approaches usually can deliver well-defined surfaces that
are topologically equivalent to the surface of a polyhedron. Surface-oriented algorithms have to invest
some care on this issue, but immediately allow surfaces with boundaries.

Our algorithm consists of two steps. The first step is the construction of a surface description graph as
a spanning skeleton. The task of the second step is the derivation of a surface by introducing chords
into the surface description graph which define triangles.

A great advantage of this two-step-approach is that the basic shape can be controlled by the surface
description graph, which is a new concept for surface reconstruction. The surface description graph
can be constructed manually, automatically, or semi-automatically.

Interactive editing of the graph simplifies interactive input by the user in that less input is necessary
than if a complete mesh has to be edited. The power of interactive editing of surface description graphs
for the purpose of modeling surfaces has been demonstrated. A particular useful property in contrast
to other approaches is that the surface reconstruction can be easily restricted to only subsets of the
point set by very few modifications of the surface description graph.

We have found a suitable graph concept for automatic construction of surface description graphs: the
�-environment graphs. These graphs are rather in-sensitive to the distribution of the given sampling
points. They even work if the point set is not very dense.

The�-environment graphs can be forced to consider sharp edges and ridges by increased sampling
density at those items. Such sequences of dense points form a special pattern to which the�-EGs are
sensitive. A general question is whether there are other patterns and features in sampling sets which
can be used to control the setting of edges in the surface description graph, or the choice of triangles
in the subsequent triangulation, thus possibly achieving a more general graph concept.

The theoretical analysis of the algorithm is focused on the investigation of assertions for a favorable
behavior of the reconstruction approach. It is ”heuristic” in that it gives mathematical arguments that
the algorithm should behave as stated. One reason for this approach is that a rigorous mathematical
treatment would be too extensive, even if it would be based on precise stochastic methods. For the
requirements of practical application this is not really necessary. A stochastic treatment would require
to model probability distributions. Usually treatable distributions do not model the real situation and
thus the relevance of a precise treatment is of limited value. Our argumentation is that unfavorable
configurations for the mathematical analysis occur rarely and even if they should appear in practice
they do not affect the quality of the reconstruction. This means that the set of those configurations usu-
ally has less than full dimension in the space of all configurations, or has full dimension but is of small
volume. This means that under the assumption of uniform distribution unfavorable configurations oc-
cur rarely. A closer look at the arguments, however, shows, that sampling sets can usually be chosen
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which are likely to avoid unfavorable situations. For example, a well-suited sampling strategy is to
choose the sampling points as vertices of a quadrilateral mesh whose faces are moderately distorted
squares. Additionally, our empirical investigations have shown that the unfavorable configurations
are only unfavorable for the mathematical analysis and not for the reconstruction in practice. In all
of our examples, the accuracy of the reconstruction in those cases is not influenced. Obviously, the
triangulation criteria always choose surface triangles with a good approximation quality. This leads
to the assumption that the triangles “inherit” their surface approximation quality from the surrounding
triangles and it can be expected that mathematical arguments for this property can be found.

The analysis has been performed only for smooth surfaces, represented by so-called SF-surfaces�.
The mathematical treatment of sharp edges is a problem for further research. An approach for a
solution could be the consideration of singular surface points and what kind of sampling in those areas
is needed and then extend this principle to surface ridges.

We have restricted our discussion to the existence of suitable sampling sets, not having the goal of
sampling sets of minimum cardinality. A step in this direction would be to take into consideration the
maximum possible SF-radius at every point, not just a constant radius
 for the whole surface which
bounds the occurring SF-radii from below. Our investigations can be generalized in the direction by
replacing the constant
 with a function
 � � � ��� for which 
�p� is at most equal to the maximum
SF-radius atp.

A further idea is to get independent from the quality of the sampling by using feature recognition in
the surface description graph [MM98a, Mai98] if the graph itself does not contain enough surface in-
formation. The feature knowledge could be used in order to modify the graph so that the triangulation
algorithm can generate a correct surface mesh even if the sampling was not sufficient. In order to
improve flexibility in this approach, the recognition capabilities can be formulated in rules that can be
also changed during run-time and interpreted by a rule evaluation system [Hei98].

As these remarks show, much has been achieved, but some interesting questions remain for future
research. In conclusion, however, we believe that the approach presented in this thesis is a particular
flexible and precise alternative to other approaches. It is well-suited for practical applications, even on
non-dense data sets, and it allows useful assertions on the requirements of sampling.
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Appendix A

Implementation

The reconstruction algorithm has been implemented in C++ using the toolkits Tcl/Tk [Ous94], Tix
[Lam93] and OpenInventor [Wer94]. These toolkits were taken because of their effectiveness in the
design of graphical user interfaces as well as in the development of complex geometry viewers.

Figure A.1: A screenshot of the reconstruction system RECEYE. Left: the control panel. Right: the geometry viewer with

an intermediate reconstruction.

The graphical user interface of the reconstruction system RECEYE is separated into a control panel
and a geometry viewer window, cf. Figure A.1.

The control panel contains three sub-windows, theReconstruction Control, Interaction Settings, and
theExecution Logwindow.

TheReconstruction Controlcontains the basic buttons for the standard usage of the system. WithLoad
Points the point set specified by the current file name<pointfile>.pts is loaded. The program
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expects an already existing tetrahedron file<pointfile>.tl which contains the Delaunay tetra-
hedrization of the point file. The first line of the file will be skipped, all other subsequent lines contain
the point indices of the tetrahedra of the Delaunay tetrahedrization. For the Delaunay tetrahedrization
the program DETRI of Mücke [Müc93b, Müc93a] can be used. The other buttonsCl. 1-EG(Clustered
1-EG) andTriangulationbelong to the specific phases of the reconstruction algorithm. The (interme-
diate) results are saved using the geomview file format into the files<pointfile>.sdg.geom, for
the graph, and<pointfile>.s.geom for the triangular mesh. ThePoint File andExit buttons are
self-explaining.

Figure A.2: The sub-menues for the interaction settings menuesEdit andInspect.

Figure A.3: The sub-menues for the interaction settings menuesGraphsandParameters/Options.

In the Interaction Settingsthe relevant data for the user interaction can be set. The menues are subdi-
vided into 5 different categories:View, Edit, Inspect, Graphs, andParameters/Options. An overview
of these menues can be found in Figures A.1, A.2, and A.3.

In the following we give a short description of these five menues.

� View:

– Viewer Settings:Here, theReconstruction Viewerwindow, theTrace Modefor the recon-
struction and stereo viewing can be switched on/off.

– Stereo Settings:The eye distance offset of the stereo mode can be changed here.

– Geometry Display:The size of the points in order to simplify picking can be increased.
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– Set Default Window Geometry:The default window geometry for both windows (Rec-
Eye), the control window alone (RecEye Menu), or just the reconstruction viewer window
(RecEye Viewer/Editor) can be set.

� Edit:

– Picking Device:The user can switch between the standardMouse, the hand gesture pick-
ing (GePi Hand Gesture), and 3D movement of a picking sphere with simple mouse in-
teraction as it is supported by OpenInventor [Wer94]. Picking with the simple mouse is
performed in the picking mode of OpenInventor by first clicking onto the “arrow” in the
upper right of reconstruction viewer window and then clicking on the points. In order to
being able to turn the object in the reconstruction viewer window, the “hand symbol” in
the upper right window has to be clicked. The hand gesture picking also moves a picking
sphere through the point set. The set of points that is inside the picking sphere is picked.
This hand gesture picking approach uses the library GEPI [Blu97] based on the hand ges-
ture recognition system ZYKLOP [Koh99, SK95]. The description of the control of this
system can be found in [Blu97].

– Editing Commands:Pairs of points can be inserted as an edge (Connect Points) or their
connecting edge can be deleted (Disconnect Points). Point triplets induce the deletion
(Delete Triangle) and insertion (Build Triangle) of triangles. For the connection/discon-
nection of points and for the triangle deletion/insertion exactly two or three points, respec-
tively, have to be picked.

– Picked Objects:The picked points as well as their complement can be saved into the file
<pointfile>.[un]picked.

� Inspect:

– Inspection Mode:The Step-by-Stepmode of the triangulation can be activated and each
time aStep Forwardby inserting one triangle after another, the reconstruction process can
be investigated. In theData Inspection Modesome additional information is printed which
describes the internal computations for various modules of the system.

– Inspect Objects:In this section the various objects which became important during the
development of the reconstruction algorithm can be investigated.

� Graphs:

– Compute Different Graphs:The EMST, the clustered�-EGs with� � �, � � ��!, � � �
and their corresponding non-clustered�-EGs can be computed. All computed edges are
added to the current graph.

– Graph Modifications Related to Locally-Restricted Reconstruction:The “graph projec-
tion approach” of Chapter 10 for locally-restricted reconstruction can be applied here.

– General Graph Modification:With the buttonRemove All Graph Edges, the current graph
can be reset to the empty graph.

� Parameters/Options:

– Algorithm Parameters:The parameters of the triangulation algorithm can be changed here.

– Reconstruction Parameters:The number of faces to be inserted in one triangulation step
can be modified here. If the value is� then the complete mesh is generated.

– Optional Triangulation Snapshots:Four different values for the number of faces,
where the current triangulation mesh has to be saved into a snapshot file<point-

file>.shot#.s.geom in the geomview file format.
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The Execution Logwindow is used to provide the user with the relevant information for in-
teraction. The buttonSave allows to store the contained information into the file<point-
file>.receye.execlog, andClear deletes the displayed information on the screen.



Appendix B

Efficient and Flexible Nearest Neighbor Queries

Because of their occurrence in many applications, the efficient solution of nearest-neighbor problems
has found particular interest in computational geometry in the past. Two main streams of approaches
may be distinguished. One of them is centered around the concept of Voronoi-diagrams [PS85] the
other one on more arbitrary spatial decompositions [AM91]. For solutions of the first stream, effi-
cient worst case time bounds can often be proved, whereas for second type of approaches, the worst
case behavior often is bad but they behave quite well in practice. Often, the heuristics are easier
to implement than the more sophisticated Voronoi-diagram-based approaches. The solution of the
�-nearest-neighbor problem falls in the second category.

In previous work on heuristic solutions of nearest neighbor problems [CK92, AMN�94], regular space
subdivisions play an important role. These subdivisions perform well on uniformly distributed data,
but are somewhat less suited for data sets of strongly varying density. Triangulations, on the other
hand, are an irregular data structure which adapts easily to all kinds of data distributions.

B.1 �-Nearest-Neighbor Search

The aim of the following is, as a result of the above considerations, to present an algorithm for solving
the �-nearest-neighbors problem by taking advantage of a previously computed triangulation. A�-
dimensional triangulation is defined as follows.

Definition B.1 (�-dimensional triangulation) Let A be a real-affine space of dimension� with met-
ric ��

 
�. An�-simplex s is the convex hull of�� � points, called vertices, which are not contained
in a �� � ��-dimensional subspace. Asubsimplex of s is the convex hull of a proper subset of the
vertices ofs. A �����-subsimplex of a�-simplex is called afacet. Two�-simplices are calledincident
if one of them is a subsimplex of the other. Two�-simplices are calledadjacent if they have� vertices
in common and their intersection is a facet.

We define the distance of a simplexs from a pointp as

��s
p� �� �
	
���

��q
p� �

Let the point set� � �p�
 � � � 
p�� � A not be contained in a proper subspace ofA. A triangulation
� of� is a tesselation of the convex hull of� into �-simplices whose vertices are in� . We denote the
subsimplices of all�-simplices of� collectively as the subsimplices of� . In particular, the points in
� are the�-subsimplices of� .

The basic version of the problem we are treating is defined as follows.
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Definition B.2 (�-nearest-neighbors query)

Input: A vertexp� of a�-dimensional simplicial decomposition� .

Output: The�-nearest vertex top� in � .

Our algorithm for that problem can process multivariate data, as it functions in spaces of arbitrary finite
dimension. Furthermore, it does not assume a particular metric. Many triangulation-based algorithms
will work only with triangulations that possess certain properties, such as Delaunay triangulations.
Our algorithm makes no such requisites. Thus, it can operate on any triangulation that another module
has ‘left behind.’ In determining the� nearest neighbors, our algorithm explores only a part of the
triangulation. While this part contains more vertices than just the� nearest ones, it is in general
considerably smaller than the complete triangulation. The neighbor points are reported in order of
increasing distance from the query point. In some applications, this order presents useful additional
information. Implementation of the algorithm is straightforward. Apart from distance computations
and the triangulation, only standard operations and data structures are needed.

With only minor modifications, the algorithm becomes applicable to slightly different types of queries.
Thus, it is easy to find the data points lying within a certain radius from the query point. Not only
vertices of the triangulation, but arbitrary points in the respective space can be used as query points.
A query can be suspended after a certain number of neighbors have been determined, to be resumed
later if further neighbors are needed. This is particularly useful for interactive graphical techniques
where additional demand for neighborhood information arises as a result of feedback from the user.

The basic concept of our algorithm [WM96] is a ball which is centered at the query pointp� and
whose radius increases continuously. As the ball expands, it encounters the vertices of� in order of
increasing distance fromp�. Our algorithm registers not only the vertices, but also the�-simplices of
� in the order in which the ball encounters them. To this end, an appropriate subset of the�-simplices
and vertices is stored in a heap, which is sorted by distance from the query point. The element closest
to p� is found at the top of the heap.

The expanding ball will, in general, encounter several�-simplices and/or vertices simultaneously. The
algorithm, on the other hand, processes these elements one after another. At any given time during
the expansion process, we call a�-simplex or vertex of� intersectingif the algorithm has determined
that it intersects the ball. All other�-simplices and vertices are callednon-intersecting, even if they
do intersect the ball. The term closest is used with respect to distance from the query point.

Lemma B.3 Let p� be contained in at least one intersecting�-simplex. Then one of the closest non-
intersecting�-simplices is adjacent to (i.e., shares a facet with) an intersecting�-simplex.
Proof: Let t be a closest non-intersecting�-simplex, and letq be the point oft closest top�. Since
� covers a convex volume, it must cover the line segmentp�q. By choice oft andq, it is clear that
each interior point ofp�q is contained in some intersecting�-simplex. Since we consider closed�-
simplices,q is also contained in an intersecting�-simplex, say,t�. (If the line segment has no interior
points, thenq � p� is contained in an intersecting�-simplex by hypothesis.) Now consider two
interior points,p andp�, of t and t�, respectively. We choose these points sufficiently close toq that
the line segmentp�p is covered by�-simplices containingq. If necessary, we perturb the points such
thatp�p does not intersect any subsimplex of� of dimension less than�� �. At some point between
p� andp, the line segment must pass from an intersecting into a non-intersecting�-simplex. This point
is interior to a facetf, which is shared by the two�-simplices. Since the non-intersecting�-simplex
containsq, it is a closest non-intersecting�-simplex.

The algorithm starts by inserting one�-simplex incident onp� into the empty heap. It then keeps
processing simplices from the top of the heap until it has found the� nearest neighbors. If the simplex
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from the heap is a vertex, it is reported as the next neighbor. When a�-simplex t is taken from the
heap, it becomes intersecting. The� adjacent�-simplices and the vertices oft are inserted into the
heap. A flag for each�-simplex and each vertex prevents multiple insertion into the heap. The flag is
set when its corresponding simplex is inserted. A simplex whose flag is set will not be inserted again.

As mentioned above, the heap is ordered by distance from the query point. As a secondary ordering
criterion, vertices are given priority over�-simplices: If a vertex and a�-simplex are equally distant
from p�, the vertex will appear at the top of the heap first. This prevents the algorithm from unnec-
essarily processing�-simplices which are as far fromp� as the��� nearest neighbor. The complete
algorithm is described in Algorithm B.1.

Algorithm B.1 �-Nearest-Neighbors Query

Input: Triangulation� of a point set� � �p�
 � � � 
p��, query pointp� � � , and integer�.
Operation: Compute� nearest neighbor points ofp� :
Heap� �� �.
2 := �. // number of neighbors found so far

Find a�-simplext which is incident top� .
Insert t into�.
Set the flag oft.
repeat

Delete simplexs from the top of�. // we now call s intersecting

if ( s is a�-simplex) then
foreach ( vertexv of s with flag ofv not set) do

Compute��v
p��.
Insertv into�.
Set the flag ofv.

end
foreach ( �-simplext adjacent tos with flag oft not set) do

Compute��t
p��.
Insert t into�.
Set the flag oft.

end
else // s is a vertex

2 := 2 � �.
Reports as the2�� neighbor.

end
until ( 2 � � )
Output: � nearest neighbor points ofp�.

Theorem B.4 Algorithm B.1 reports� nearest neighbors ofp� in order of increasing distance.
Proof: Let us first consider the case� � �� �, i.e., all other vertices are requested. In this case, we
have to show that the vertices are reported in the correct order. Assume that vertexq is reported before
p, butp is strictly closer top� thanq. This can only happen ifq appears at the top of the heap beforep
has been inserted. There exists a�-simplext which is incident onp. Now t must be non-intersecting,
or p would have been inserted into the heap. On the other hand,t is not further fromp� thanp, and
therefore strictly closer thanq. By Lemma B.3, there exists a closest non-intersecting�-simplex t�

which is adjacent to an intersecting�-simplex. Because of this adjacency,t� must be in the heap. On
the other hand,t� is closer thanq, a contradiction. Therefore,q cannot be reported beforep. To prove
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the case� 1 � � �, we simply note that the algorithm runs in exactly the same way as for� � �
neighbors, but stops after the� nearest neighbors have been found.

p
i

p
i

Figure B.1: Two phases of the algorithm as the expanding ball encounters a vertex and, simultaneously, three triangles.

Figure B.1 shows two snapshots of the algorithm working on a planar triangulation. The intersecting
triangles and vertices are drawn in white and black, respectively. The triangles and vertices in the heap
are drawn in gray. In the left diagram, the algorithm has just deleted a vertex from the heap. In the
right diagram, it has also processed the triangles that are incident on this vertex.

Concerning the analysis of the time complexity of the algorithm, we assume that the data structure of
the triangulation allows us to carry out the following operations:

� Given a vertex, find an incident�-simplex in constant time.

� Given a�-simplex, find its vertices in time����.

� Given a�-simplex, find the�� � adjacent�-simplices in time����.

One elementary step in Algorithm B.1 is the distance computation between a�-simplex and the query
point. The time complexity of this step depends on the dimension and on the metric being used. In
�-dimensional space, it takes time proportional to� to determine the Euclidean distance between two
points alone. In the following, we letÆ denote the worst-case complexity of distance computations,
both between two points and between a point and a�-simplex.

Let �� � denote the number of�-simplices in� , and let��� be the number of simplices contained in
�. We note that� � ���� ��. In the planar case, we also have�� � � ����. In �-dimensional space,
triangulations with�� � � ���� exist and can be constructed in���  ���� time (cf. [EPW90]).

To analyze the time complexity of the overall algorithm, let us first look at the time spent on heap
operations. An insertion or deletion takes�� �� ���� time. Each vertex and each�-simplex is inserted
into, and, likewise, deleted from, the heap at most once. Therefore, both the number of heap operations
and the heap size are bounded by���� ��. The total time for all heap operations is���� �  �� �� �� in
the worst case. Distance computations are carried out only for those simplices which are inserted into
the heap, and only once per simplex. Therefore, the total time for distance computations is bounded
by��Æ �� ��.
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Next, we will look at the two for-loops. Disregarding the heap operations and distance computations,
for which we have already accounted above, the body of each for-loop consists only of setting a flag.
This can be done in constant time. Within one execution of the repeat-loop, each for-loop is run at
most�� � times. The loop overhead consists of finding�� � vertices or�-simplices and testing their
flags, which takes time proportional to�. Thus, the for-loops cost���� time. All other steps that we
have not considered so far require constant time. Each time the repeat-loop is executed, a simplex is
deleted from the heap. This bounds the number of executions of the repeat-loop with���� ��. Thus,
the time for all executions of all constant-time steps is bounded by��� �� ��. This results in a total
execution time of���� � ��� Æ �  �� �� ��� in the worst case.

p
i

Figure B.2: Triangulation causing worst-case behavior of the algorithm.

Figure B.2 shows a planar example which causes worst-case behavior of the algorithm. The dots in the
diagram indicate that the left and right boundaries have�

��� vertices each, where�may be arbitrarily
large. We consider a query with� � � at the time when the nearest neighbor ofp� has just become
intersecting. The heap contains the�

� � � vertices left ofp�. Before the next neighbor can be found,
�
� � � triangles and�� � � vertices lying to the right of the nearest neighbor are inserted. Since these
new simplices are closer top� than the�� � � vertices already contained in the heap, the summed cost
for the insertions is proportional to�  ���. Note that this extreme behavior of the algorithm occurs
only if p� or its nearest neighbor is used as the query point. For any other vertex, at most� triangles
and" vertices are inserted into the heap before the second neighbor is found. In fact, as long as� is
small compared to�, the time complexity averaged over all vertices depends on� rather than on�� �.
We conjecture that dependency on� only will be the case for most triangulations. This conjecture is
strongly supported by the experimental results which are presented next.

In order to investigate the algorithm’s behavior in practice, it was measured on various point sets. The
experiments were set up as follows. For each pointp� in a data set� , a query for the 2000 nearest
neighbors ofp� is carried out. When the query finds the2�� neighbor,� � 2 � ����, two quantities
are recorded: the current heap size, denoted by��� �p�
 2�, and the number of heap insertions which
the query has executed up to this point, denoted by�A�p�
 2�. Note that these quantities reflect not
only the current state of the actual query for 2000 neighbors, but also the final state of a hypothetical
query for only2 neighbors ofp�.
The measurements were carried out on eight two-dimensional data examples:

� three sets of uniformly distributed random points, containing 2500, 10000, and 100000 points,

� three square grids of sizes!�� !�, ��� � ���, and���� !��, and

� two sets of 8700 and 13687 points, scanned from real objects and exhibiting strong variation in
point density due to previous data reduction.
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Figure B.3: Number of heap insertions (upper set of curves) and current heap size (lower set of curves).

In each case,� was a Delaunay triangulation of� .

We were interested in the worst-case behavior of the algorithm on each particular data set, so the
maxima

����2� �� ���
���%

����p�
 2� �	+ �A�2� �� ���
���%

�A�p�
 2�

over all queries within the same data set� were computed. Figure B.3 shows the graphs of����2�
and�A�2� as functions of2. Two observations can be made in the graphs. The first is that�A�2� is
strongly correlated to2. In other words, it appears to depend on2 linearly. The second observation
is that, although the underlying data sets vary in size by a factor of up to 40, the corresponding
function graphs in Figure B.3 almost coincide. This indicates that, as far as our examples go, the time
complexity is in fact independent of�� �.
In some applications, one does not know a priori how many nearest neighbors of a query point will be
required. After looking at the� nearest neighbors, one may find that anotherB neighbors are necessary.
In such a situation, it is an easy matter for Algorithm B.1 to resume the query where it left off before.
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The cost for searching first� and then the nextB neighbors is the same as for searching��B neighbors
in a single query. Some information must be saved in order to resume a query. This comprises the
heap�, the flags, and the number� of previously found neighbors. We call this informationnearest
neighbor query iterator(NNQ iterator).
It is also possible to run queries in a concurrent manner, e.g., find�� neighbors ofp�, then�� neigh-
bors ofp�, then anotherB� neighbors ofp�, etc. Multiple suspended queries require a nearest neigh-
bor iterator for each query point. Suppose that concurrent queries are carried out for all� vertices,
then the space requirement for the flags is proportional to� �� �. However, if the average number of
neighbors computed per vertex is small, most of the flags will never be used. Storage space can be
reduced if we replace the flags by a hash table. Instead of setting a flag, we insert a pair of the form
�query point
 ‘flagged’ simplex� into the table. By the very nature of concurrent queries, the required
number of neighbors in a single query is not known in advance. Thus, it may be impossible to make an
appropriate choice for the size of the hash table, which has a strong influence on the table’s efficiency.
As an alternative, we can substitute a sorted tree (e.g., AVL or SBB tree, cf. [Wir86]) for each heap,
i.e., one per query. We inserts� into the tree if it is not contained in the tree and was not processed
befores. Containment in the tree can be tested efficiently. Simplices are processed in order of in-
creasing distance from the query point. Therefore, ifs� is strictly closer thans, it has been processed
before, and ifs� is strictly further thans, it has not been processed before. Equidistant simplices that
have been processed are stored in an auxiliary tree, and can be found there. A simplex is inserted into
the auxiliary tree as soon as it is processed. The auxiliary tree is cleared when the intersecting sphere
expands, i.e., when a simplex of greater distance is processed.

B.2 An Object-Oriented Framework for Flexible and Adaptive Nearest
Neighbor Queries

Usually, nearest neighbor queries are only considered from the algorithmical point of view and not
from the implementation view. Since the nearest neighbor task is a frequent problem in many ap-
plications we show how the implementation can be done with respect to our algorithmical solution.
The reason for this is, that our approach is so general that it allows an easy-to-follow object-oriented
approach that simplifies the implementation. Another advantage is that this framework can be ad-
justed to several similar tasks of nearest neighbor queries, for example, if using other types of spatial
subdivisions besides tetrahedrizations/triangulations.
In the following we describe the basic approach how the implementation can be done. In our ex-
ample we restrict the types of query objects to single points and the type of spatial subdivisions to
tetrahedrizations as examined in theory for the� nearest neighbor search in the previous section. But
extension to arbitrary types of objects (polyhedrons) is straightforward. The only thing that has to be
considered is an appropriate distance function for the kind of object that is used as query object and the
surrounding polyhedral cells. The already reported neighbors are stored in a list that is associated with
the query point so that concurrent queries that are carried out from different positions of the program
do not repeat unnecessary computations. This means, that if the number of needed neighbors is below
the number of already computed neighbors, only the elements of the neighbor list of a query point
have to be iterated in order to complete the query task. This holds as long as the tetrahedrization is not
modified. But even if this is the case, local modifications mean only local influence on the neighbor
structure for the points in the modified regions, so that an update can be established efficiently by only
updating the points that have already “traversed” the modified region with their expanding ball.
For better understanding of the implementation be have chosen a simplified and more readable version
of C++ – like program code. This code should be comprehensible for everyone who is familiar with
object-oriented concepts in an arbitrary programming language.
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updateNeighborsInTree(PointPtr);

updateNeighborList();

// Boolean functions:

updateNeighborsInTree(PointPtr);

updateNeighborList();

// Boolean functions:

. . .

Simplex

Point

simplexNeighborTree;

// Sorting tree of simplices

neighborList;

// List of neighbor points: 

updateNeighborsInTree(PointPtr);

// Boolean function:

Tetrahedron AnySimplexClass

updateNeighborsInTree(PointPtr);

// Boolean functions:

updateNeighborList();

Figure B.4: The UML class diagram of the nearest neighbor query implementation.

We assume an arbitrary tetrahedrization is already given and use this information within the nearest
neighbor query algorithm.

The UML class diagram (unified modeling language)[BRJ99] of our implementation is shown in
Figure B.4. In our application we need aPoint class and aTetrahedron class that are both derived
from the classSimplex. Since this concept is extensible to any type of nearest neighbor queries
for each kind of simplex, there also can be implemented a nearest neighbor query for an arbitrary
simplex class which is denoted in the diagram asAnySimplexClass. The most important parts of the
diagram are thevirtual functionsupdateNeighborList() andupdateNeighborsInTree() of
classSimplex that are overloaded in each implementation inside the classPoint or Tetrahedron.
These are the main functions needed in the realization of a�-nearest-neighbor query algorithm. As we
see in the diagram the functionupdateNeighborList() is only implemented for thePoint class,
since we restrict our queries to points. But as mentioned before, arbitrary queries for other object types
than points would be possible, too. For example, if one would like to implement a nearest neighbor
query for tetrahedrons, it is sufficient to implement the functionupdateNeighborList() for the
Tetrahedron class.
In the following we describe how the concept of the UML class diagram can be used in order to
implement nearest neighbor queries for points. ClassNnqIterator delivers the frame work for
an instantiation of a nearest neighbor query iterator for a query pointq, cf. Figure B.5. It consists
of a pointer to a point that describes the query object, and a list iterator that iterates on the list of
nearest neighbors already found. ThisneighborList is associated with each query point. In the
beginning theneighborList is empty before a query has taken place for the query point. With
thereset() function ofNnqIterator the iterator can be set to the beginning of a neighbor query
which responds to the situation where the query ball has radius zero. In order to get a nearest neighbor
the get() function of NnqIterator is then called. Then the next point that is delivered is the
nearest neighbor of the query. Each time theget() function is called a new neighbor is computed
and appended to theneighborList that is associated with the query pointq. But first it is checked
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class NnqIterator
�
PointPtr q; // pointer to query point
ListIterator	PointPtr� listIter; // iterator for ordered nearest neighbor list of already computed neighbors

public:
...
void reset() � listIter.reset(); � // reset list iterator; query ball radius = 0
Boolean get(PointPtr & p) // compute next nearest neighbor

�
if ( listIter.get(p) ) // nearest neighbor already computed ?

// Yes, return true and reference to elementp

� return TRUE; �

// No, then compute next nearest neighbor

else �
q�updateNeighborList(); // compute next neighbor

// now, the neighbor list for the point on whichlistIter iterates is updated
// if a new element has been added to the list,
// then the next call oflistIter.get(p) returns the next neighbor

// if a new neighbor has been found

return listIter.get(p); // return next neighbor
�

�
�

Figure B.5: The listing of thenearest neighbor query iteratorclass:NnqIterator.

for whether there is already a next nearest neighbor in theneighborList that has not been reported
so far. This is performed by calling theget() function of the list iterator withlistIter.get().
If a neighbor is on a list the algorithm returns the valueTRUE and a reference to the neighbor point
found. If this is not the case then the next nearest neighbor is computed by calling the function
q�updateNeighborList() of the query point. This function starts the complete nearest neighbor
computation process. If a new neighbor could be found, it is appended to theneighborList, so that
the next call of thelistIter.get() function of the list iterator will return an element and the value
TRUE.
Now we come to the description of an update of theneighborList of a query point, cf. Fig-
ure B.6. As described in the UML diagram the classPoint has two important member func-
tions:updateNeighborList() andupdateNeighborsInTree(). The functionupdateNeigh-
borList() is needed for the initiation of a query while the relevant update procedures are called
with updateNeighborsInTree(). Since we do not show here how nearest neighbor queries
can be applied to tetrahedra the classTetrahedron needs only to overload the functionup-
dateNeighborsInTree() so that neighbor queries for points can be applied. The function
q�updateNeighborList() returnsTRUE if a new neighbor point could be found. This is only
the case if the recursive call ofupdateNeighborsInTree() for each simplex onsduring theneigh-
bor update processresults in finding a new neighbor point.
When a neighbor list update for a query pointq is applied, the functionq�updateNeighborList()

is called. If theneighborList is empty, the neighbor update forq must be intialized by putting all
adjacent tetrahedrat to the tree of simplices. These simplices are stored in thesimplexNeigh-

borTree that contains all points and tetrahedra that surround the “query ball”. These elements are
sorted according to their distance to the query pointq. This is done in theforeach-loop of Figure
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Boolean Point::updateNeighborList()
�
if ( neighborList.isEmpty() ) // initialize the neighbor structure around this point
�
Tetrahedron t;
foreach ( adjacent tetrahedron t of this point instance ) do

�
putToSimplexNeighborTree(t,dist(t,this)); // put tupel (t,dist(t,this))

// on the sorted neighbor simplex tree
t�putToVisitTree(this); // mark tetrahedron t as visited from this point
�

�

Simplex s;

if ( getFromSimplexNeighborTree(s) )
� return s�updateNeighborsInTree(this); �

else � return FALSE; �
�

Figure B.6: The listing of the functionupdateNeighborList of thePoint class.

B.6.

If the neighborList has been already initialized, then the next nearest neighbor simplexs (point
or tetrahedron) of the query point is taken bygetFromSimplexNeighbor(s). Then, the function
s�updateNeighborsInTree() of this simplexs is called.

Now, two cases can occur. Eithers is a point or a tetrahedron.

We first consider the case, that the simplexs is a point. In its associated functions�updateNeigh-

borsInTree() we first memorize thatshas been visited byq by calling the functionputToVisit-
Tree(), cf. the listing in Figure B.7. Then, the point is appended to theneighborList of the query
point.

Boolean Point::updateNeighborsInTree(PointPtr q)
//———————————————————————–
// member function call for this instance of class Point
//———————————————————————–
�

// mark this instance p�	�
 of class Point as visited from point q

this�putToVisitTree(q); // memorize query q in a AVL tree that this point p�	�
 was visited by q
q�appendToNeighborList(this); // append pointer to this instance p�	�
 of class Point

// to the neighbor list of q
return TRUE;

�

Figure B.7: The listing of the functionupdateNeighborsInTree of thePoint class.

If the simplexs is a tetrahedron then its associated functions�updateNeighborsInTree() does
the following, cf. Figure B.8. First, all four points of the tetrahedron are marked as visited from the
query pointq. Second, the four points are put onto the simplex neighbor tree of the query pointq
which sorts the simplices according to their distance toq in shortest first ordering. Then, all tetrahedra
that have not been visited by the query pointq are put onto the simplex neighbor tree that sorts all
simplices. Additionally, each tetrahedron that is considered in this previous step is marked as being
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already visited byq so that it is not considered again. All this is performed in theforeach-loop.
After that, the next nearest neighbor simplex (either a point or a tetrahedron) is taken from the simplex
neighbor tree and itsupdateNeighborsInTree() function is called.

This process of calling the functions�updateNeighborsInTree() for each simplexs iterates on
the simplexNeighborTree until the simplexs is a point so that it can be added to theneigh-
borList as new nearest neighbor. If no point is found, than the whole point set has been already tra-
versed by the query forq and the process terminates. In this case the iterator for theneighborList

does not return a new neighbor. Otherwise, if a new neighbor has been found theneighborList

increases in length by one element and the list iterator in classNnqIterator returns a new element
if the listIter.get() function is called.

Boolean Tetrahedron::updateNeighborsInTree(PointPtr q)
//———————————————————————–
// this is the member function call for tetrahedron this
//———————————————————————–
�
// 1. mark all four points a,b,c,d of the tetrahedron this=�(a,b,c,d)
// as visited from the query point q.
// 2. put all four points a,b,c,d on the simplex neighbor tree of q
// sorted according to their distance to q (shortest first).
.
. �	 /* here is the relevant program code for the two steps above */
.

// put all tetrahedra that have not been visited by q onto the simplex neighbor tree

foreach ( adjacent tetrahedron t of this tetrahedron instance ) do
�

if ( t�isNotContainedInVisitTree(q) )
�
t�putToVisitTree(q);
q�putToSimplexNeighborTree(t,dist(t,q));
�

�

// get next nearest neighbor simplex (point or tetrahedron) for point q

if ( q�getFromSimplexNeighborTree(s) )
� return s�updateNeighborsInTree(q); �

else � return FALSE; �

�

Figure B.8: The listing of the functionupdateNeighborsInTree of theTetrahedron class.

An example for the usage of this program framework is given in Example B.5.

Example B.5 (Usage of the�-nearest-neighbors query implementation)Let q be the query point.
Then, the� nearest neighbors can be computed very simply:

NnqIterator iter(q);
Point nn;
Number i=1;
Number k=11; // number of nearest neighbors to be computed

while ( (i � k) AND (iter.get(nn)) ) // print neighbors in order of appearence
�
cout << "Neighbor number " << i << ": " << nn�pointIndex() << endl;

�
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If a newNnqIterator for the sameq is instantiated during the program execution in order to com-
pute
 nearest neighbors then we have two possible cases. If
 � �, it means that the neighbors to be
delivered are taken from an already computed list of nearest neighbors. Here, no more update with
tetrahedral sorting and searching in the above mentioned data structures is necessary.

i=1;
Number r=8; // number of nearest neighbors to be computed

while ( (i � r) AND (iter.get(nn)) ) // print neighbors in order of appearence
�
cout << "Neighbor number " << i << ": " << nn�pointIndex() << endl;

�

If 
 , �, it means that the already� computed neighbors are taken and that for the last
�� neighbors
a new nearest neighbor computation is started by calling the functionq�updateNeighborList().
�
� // as before
�

Number r=17; // number of nearest neighbors to be computed

while ( (i � r) AND (iter.get(nn)) ) // print neighbors in order of appearence
�
cout << "Neighbor number " << i << ": " << nn�pointIndex() << endl;

�

After 
 nearest neighbors are computed, then
 � �" elements are part of the nearest neighbor list
that is associated with the specific query pointq.
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