
UNIVERSIT�AT DORTMUND

Fachbereich Informatik

Lehrstuhl VIII

K�unstliche Intelligenz

Discovery of Data Dependencies in Relational

Databases

LS{8 Report 14

Siegfried Bell Peter Brockhausen

Dortmund, April 3, 1995

Universit�at Dortmund
Fachbereich Informatik

University of Dortmund
Computer Science Department

Forschungsberichte des Lehrstuhls VIII (KI) Research Reports of the unit no.VIII (AI)
Fachbereich Informatik Computer Science Department
der Universit�at Dortmund of the University of Dortmund

ISSN 0943-4135

Anforderungen an:

Universit�at Dortmund
Fachbereich Informatik
Lehrstuhl VIII
D-44221 Dortmund

ISSN 0943-4135

Requests to:

University of Dortmund
Fachbereich Informatik

Lehrstuhl VIII
D-44221 Dortmund

e-mail: reports@ls8.informatik.uni-dortmund.de
ftp: ftp-ai.informatik.uni-dortmund.de:pub/Reports

www: http://www-ai.informatik.uni-dortmund.de/ls8-reports.html

Discovery of Data Dependencies in Relational

Databases

LS{8 Report 14

Siegfried Bell Peter Brockhausen

Dortmund, April 3, 1995

Universit�at Dortmund

Fachbereich Informatik

Abstract

Knowledge discovery in databases is not only the nontrivial extraction of implicit,
previously unknown and potentially useful information from databases. We argue that in
contrast to machine learning, knowledge discovery in databases should be applied to real
world databases.

Since real world databases are known to be very large, they raise problems of the access.
Therefore, real world databases only can be accessed by database management systems
and the number of accesses has to be reduced to a minimum. Considering this property,
we are forced to use, for example, standard set oriented interfaces of relational database
management systems in order to apply methods of knowledge discovery in databases.

We present a system for discovering data dependencies, which is build upon a set
oriented interface. The point of main e�ort has been put on the discovery of value restric-
tions, unary inclusion- and functional dependencies in relational databases. The system
also embodies an inference relation to minimize database access.

1

1 Introduction and Related Works

Data dependencies are the most common type of semantic constraints in relational data-
bases which determine the database design. Despite the advent of highly automated tools,
database design still consists basically of two types of activities: �rst, reasoning about data
types and data dependencies and, second, normalizing the relations. Automatic database
design may serve as a process to support database designers with a dependencies proposing
system, which may help to design optimal relation schemes for those cases where data
dependencies are not obvious. The so called dependency inference problem is described in
[Mannila and R�aih�a, 1991] as: Given a relation r, �nd a set of data dependencies which
logically determines all the data dependencies which are valid in r.

Unfortunately, it is impractical to enumerate all data dependencies and to try to verify
each of them. Alternatively, a second approach to the dependency inference problem
is to avoid unnecessary queries by inferring as much as possible from already veri�ed
data dependencies. A third approach is to draw inferences not only from veri�ed data
dependencies but also from invalid data dependencies. In this paper we will follow the
latter approach.

To address these problems we present an inference relation on valid and invalid data
dependencies and show how a set oriented language like SQL can be used for testing data
dependencies. We exemplify this by value restrictions, unary inclusion and functional de-
pendencies. The plot of this paper is as follows: In section 2 value restrictions of attributes,
functional and unary inclusion independencies are introduced in order to improve the in-
ference of the dependencies. Then, the corresponding inference relations are discussed.
In section 3 we describe the architecture of our system, show how to test dependencies
by SQL queries and describe the implementation of the former de�ned ineference process.
Also, the complexity of this inference is discussed. We conclude with empirical results and
a comparison with similar systems.

In general, knowledge discovery in databases (KDD) incorporates the same problems
as the above approaches. First, it is impractical to test all hypotheses and second, the
only interface to the database is a database management system.

Knowledge discovery is not only the nontrivial extraction of implicit, previously un-

known, and potentially useful information from data, as de�ned by Piatetsky-Shapiro
and Frawley [Piatetsky{Shapiro and Frawley, 1991], but typically has also the following
properties1: high level language, accuracy and e�ciency. High level language means that
the discovered knowledge is represented in a high level language in order that its expres-
sions are understandable by (non technical) humans. Accuracy means that the discovered
knowledge should re
ect the contents of the database exactly, and if not, the imperfect is
expressed by measures of certainty. E�ciency is a matter of the discovery process and says
that the process is e�cient and the running times for large sized databases are predictable
and acceptable. It is easy to see, that data dependencies ful�ll the �rst two conditions,
the third condition is a matter of the underlying techniques which are discussed later.

Therefore, adapting approaches of machine learning to KDD should consider all these
properties. For example, in CLAUDIEN, cf. [Dehaspe et al., 1994], the high level language
has been taken into account, but the e�cency requirement has been neglected because the

1Mentioned by C. Lee

2 2 TERMINOLOGY AND DATA DEPENDENCIES

system can not be applied to large sized databases. Thus, our presented system can be
seen at the �rst glance as an optimized version of CLAUDIEN regarding functional de-
pendencies, [Dehaspe et al., 1994]. But there are di�erences: �rst, in CLAUDIEN the
relationship between the dependencies is based on �{subsumption and the veri�cation of
the hypotheses on theorem proving. In our approach, the relationship of the dependen-
cies is based on an axiomatization of FDs and UINDs and the veri�cation is done by the
database management system which groups the rows. This o�ers several advantages: First,
in contrast to we can infer dependencies by some kind of transitivity which is really simple,
theorem proving which is too powerful for this purpose. Second, we can �nd dependencies
in relational databases, which can not be stored in the main memory as PROLOG asser-
tions. In most others ILP learning systems like RDT, cf. [Morik et al., 1993], functional
dependencies can not be expressed. Systems, which are closer to ours, are empirically
compared in section 4.

2 Terminology and Data Dependencies

Familiarity is assumed with de�nitions of relational database theory as given for example
in [Kanellakis, 1990]. The uppercase letters A;B;C stand for attributes and X; Y; Z for
sets of attributes. By convention we omit the braces. R; S stands for relation schemes
and r; s for relations of a database d. Further we assume that our database is �nite,
i.e. there are only �nite many rows in a relation in order to ensure the existence of the
axiomatizations. We use tuple, row and entry in a interchangeable way.

Fagin [Fagin, 1981] introduced domain dependencies, for example IN(A; S) where A is
an attribute and S is a set. It means that the A entry in each tuple must be a member of
the set S. For example, let A be the attribute SALARY, and let S be the set of all integers
between 10; 000 and 100; 000. If A is one of the attributes of relation R, then R obeys
IN(A; S) if and only if the SALARY entry of every tuple of R is an integer between 10; 000
and 100; 000.

We adapt these constraints to the data types of our database management system and
restrict the domains to ordered sets in order to represent them as a pair of lower and upper
bounds. Therefore, we have to distinguish only between numeric and symbolic types of
the attributes and can use the normal orders on numbers and the lexicographic order on
the character set. We denote them as value restrictions:

De�nition 1 (Value Restrictions) Value restrictions are de�ned as follows:

val(A) = [ai; aj; �]j each value of the attribute A is of type � and in the interval [ai; aj]

For example, val(SALARY) = [10000; 100000; number] means that the entry of the at-
tribute SALARY is an integer between 10; 000 and 100; 000.

An inclusion dependencies (IND) says that values in columns of one relation must
also appear as values in columns of some other relation. Unary inclusion dependencies
(UINDs) restrict this de�nition to the case, where only one singleton attribute is allowed
as column. As an example, every MANAGER entry in a relation R appears as an EMPLOYEE

entry in a relation S which will be abbriviated by R(MANAGER) � S(EMPLOYEE).
Originally, the concept of INDs in relational database theory has been a generalization of
Codd's notion of a foreign key.

3

According to Kanellakis [Kanellakis, 1990] a sound and complete axiomatization for
unary inclusion dependencies (UIND) is given by the following de�nition:

De�nition 2 (Inference of Unary Inclusion Dependencies (UINDs)) Inference

rules of unary inclusion dependencies are given by:

U1 : (Reflexivity) A � A

U2 : (Transitivity)
A�B;B�C

A�C

Functional dependencies (FDs) are the most important dependencies between at-
tributes, and X ! Y , for example, says that every pair of tuples that agree in the X

entries must also agree in the Y entries. An axiomatization was given by Armstrong, and
it is usually called Armstrong's axiomatization, cf. [Ullman, 1988].

De�nition 3 (Axiomatization of FDs) X; Y and Z are sets of attributes. An axiom-

atization of FDs is given by:

FD1 : (Reflexivity) If X � Y then Y ! X

FD2 : (Augmentation) If W � V then X!Y
XV!Y W

FD3 : (Transitivity) X!Y;Y!Z
X!Z

Kanellakis, Cosmadakis and Vardi [Kanellakis et al., 1983] have investigated the re-
lationship between FDs and UINDs, and shown that there is no axiomatization in the
unrestricted case; in the �nite case, there is only a axiomatization in the presence of
cardinality dependencies.

We [Bell, 1995] have also investigated the relationship of UINDs and FDs, and have
given an axiomatization, regarding the so called independencies. Independencies have
been introduced by Janas [Janas, 1988], but the given axiomatization was not complete.
Functional independencies mirror functional dependencies, but they are meant for a totally
di�erent purpose: they are not semantical constraints on the data, but a support for the
database designer in the task of identifying functional dependencies and they also improve
the inference of functional dependencies. For example, if we know that the FD X ! Y

is valid and Z ! Y is not valid, then we can conclude that the FD Z ! X cannot be
valid too. The reason follows immediately from the de�nition of functional independencies
which is simpli�ed here by ignoring null values.

De�nition 4 (Functional Independency (FI)) X 6! Y denotes a functional indepen-

dency. A relation r satis�es X 6! Y if there exist tuples t1, t2 of r with t1[X] = t2[X] and
t1[Y] 6= t2[Y].

Unary inclusion independencies can be de�ned in a similar way.

De�nition 5 (Unary Inclusion Independency (UINI)) R[A] 6� S[B] denotes a
unary inclusion independency. A database satis�es R[A] 6� S[B] if there exists a tuple t1
of r with t1[A] 62 s[B].

4 2 TERMINOLOGY AND DATA DEPENDENCIES

There are interactions between FDs and UINDs and their corresponding independen-
cies which are described by an axiomatization. In our system we do not use a complete
axiomatization but only a subset of inference rules, because we do not exploit the cardi-
nalities of the attributes. But we have a certain order of dependencies in our inference
process. First, we determine the value restrictions. Second, we determine the UINDs and
third the FDs. Therefore, the Armstrongs Axioms, the axiomatization of UINDs and the
following inference rules are only of interest:

De�nition 6 (Inference) Let X; Y and Z be sets of attributes of the same relation if

not mentioned otherwise.

1. The interaction of FDs and FIs can be described by the following rules:

FI1 : XV 6!Y W;W�V
X 6!Y

FI2 : X!Y;X 6!Z
Y 6!Z

FI3 : Y!Z;X 6!Z
X 6!Y

2. The interaction of UINDs and UINIs can be described by:

UI1 : R[A]�S[B]; R[A]6�T [C]
S[B]6�T [C]

UI2 : R[A]�T [C]; S[B]6�T [C]
S[B]6�R[A]

3. There is also an interaction between UINDs, UINIs and FIs:

I6: R[A]�R[B];R[B] 6�R[A]
A6!B

Obviously, the operator � is overloaded. But it should be clear from the context
whether the normal subset relation or a UIND is intended. The correctness is proven in
[Bell, 1995]. The rules are given in a natural deduction style. For example, the �rst rule
says, that if we know the FI XV 6! YW is valid and that W is a subset of V , then the FI
X 6! Y must be the case too. The rules UI1 and UI2 describe the interaction between
UINDs and UINIs, whereas the rule I6 describes the interaction between UINDs, UINIs
and FIs.

Additionally, we have some inference rule, which infers from the type and the upper and
lower bounds the corresponding unary inclusion independencies. For example if val(B) =
[bi; bj; �b] and val(A) = [ai; aj; �a] and �b 6= �a, then A 6� B and B 6� A. Another rule is:
if val(B) = [bi; bj; �] and val(A) = [ai; aj ; �] and bj < ai, then A 6� B and B 6� A. The
correctness of these rules can be seen easily.

The discovery of value restrictions and UINDs is easier than the discovery of FDs.
Therefore, we need some more terminology for the discovery of FDs: The discovery of
FDs may be visualized as a search in semi lattices consisting of nodes and edges. The
nodes are labeled with data dependencies and the edges describe a relationship between the
nodes. In general, this relationship can be described as a more general than relationship
as in [Savnik and Flach, 1993]:

De�nition 7 (More general) Let X and Y be sets of attributes such that X � Y , then

the dependency X ! A is more general than the dependency Y ! A, or Y ! A is more

speci�c than X ! A.

5

An example of such a semi lattice can be found later in �gure 8. This de�nition cor-
responds to the usual more general de�nition in machine learning, i.e. the �{subsumption
introduced by Plotkin [Plotkin, 1970]. The relationship also re
ects our inference rules,
i.e. the inference rule FD2 states that if a relation satis�es a functional dependency, then
the relation satis�es each more speci�c dependency too. For example, if a relation satis�es
the functional dependency AB ! C, then the relation satis�es ABD ! C. We can also
adapt this concept to independencies. Then we say for example: AB 6! C is more general
than ABD 6! C or ABD 6! C is more speci�c than AB 6! C according to inference rule
FI1.

This relationship implies a partial ordering which simpli�es the discovery of functional
dependencies by a simple representation: the set of functional dependencies can be par-
titioned into equivalence classes by the satis�ability de�nition. Each class of functional
dependencies speci�es the same set of admissible relations. As these equivalence classes
will typically contain a large number of elements it is only reasonable to de�ne a suitable
representation with a minimal number of elements. This representation is usually called
minimal cover. We do not use a minimal cover as de�ned in database theory, therefore we
call the cover the most general cover. The di�erence is shown by the following example:
The set fA! B;B ! C;A! Cg is most general in our sense, but not minimal as de�ned
in database theory, because the transitivity rule is applicable.

De�nition 8 (Most General Cover) The set of functional dependencies F is a most

general cover if for every dependency X ! A 2 F , there exists no Y with Y � X and

Y ! A 2 F .

In the next section we put the point of main e�ort on data structures and the imple-
mentation of such inferences and investigate the costs.

3 Discovering Data Dependencies

In this section we present the algorithms to infer integrity constraints, unary inclusion
dependencies and functional dependencies, for more details see [Brockhausen, 1994]. But
we start with an overview of the architecture of our system.

3.1 Architecture

The input for our system consists of the data of a relational database, here Oracle Server
7, with the corresponding database scheme, represented in the system tables. The com-
munication between our system implemented in Prolog and the DBMS takes place over a
network by means of the TCP/IP protocol. Hence we can use any Oracle database which
is worldwide reachable over the Internet.

We generate the SQL queries in Prolog and the interface pushes them forward to the
database. The answer, a set of tuples, has to be converted to Prolog terms. The interface
is responsible for this too. Normally the DBMS o�ers many di�erent numeric and alphanu-
meric data types. But theses types like CHAR or VARCHAR2 in OracleV7 are mainly
meant for storage e�ciency reasons for example and do not imply any fundamental di�er-
ences in the data which justify a separate treatment in the algorithms below. Therefore

6 3 DISCOVERING DATA DEPENDENCIES

it makes sense to gather all di�erent numeric and alphanumeric types in \generic" types
NUMBER and STRING, which are mapped in turn onto the Prolog types NUMBER and
ATOM. Data of type RAW is suppressed.

Our system is build up by a hierarchie of three algorithms, i.e. part of the output of
one algorithm is used as input for the algorithm above. The dotted square symbolizes
that we compute these restrictions, but normaly they do not have a semantic meaning.
But nevertheless, they are useful wrt. the computation of the UINDs.

3.2 Value Restrictions

We consider value restrictions or the upper and lower bounds of attribute domains. We
select the minima and maxima for all attributes in all relations with the corresponding
SQL statements. The SQL statement uses the normal order on numbers for numerical
attributes and the lexicographic order on the character set for attributes of a symbolic
type. Since it is possible to compute the two values in one query, the overall costs are
O(n �m). Throughout this section n denotes the number of attributes in all tables and
m the maximal number of tuples in the table which possesses the most.

The third argument, i.e. the type, is determined by the two Oracle data types, as
already mentioned above, in order to infer UINDs.

3.3 Unary Inclusion Dependencies

Unary inclusion dependencies can be computed by taking advantage of the transitivity and
of a run through all possible combinations in a special sequence. First, we start with the
presentation of the necessary SQL statements and conditions for calculating the UINDs
in �gure 2.

The results of the queries are numbers. It is possible to combine the second and third
statement in one query, because in some cases both UINDs A � B and B � A are possible,
but in others only one UIND. The implemented version of the algorithm always uses the
appropriate query. The time complexity of the SQL statements is determined by the join
in the �rst one and is O(m2).

The algorithm inclusion dependencies depicted in �gure 3 is called one time for
each kind of the mentioned \generic" data types in the database.

The algorithm uses a graph representation for UINDs. There exists a directed edge
from the node Ai to the node Aj , if and only if there exists an UIND Rp[Ak] � Rq[Al] in
the database and Ai and Aj are numbers which represent the attributes Ak and Al in the
relations Rp and Rq respectively. In the algorithm we denote by Ai � Aj the edge in the
graph as well as the corresponding UIND.

The computational costs of step 1 in the algorithm are O(n2), because all combinations
between two attributes are considered. But here, since we do not pose any database
query, we do not exploit the transitivity between intervalls, which otherwise will result in
computational costs which are at least as high in the best case.

The correctness of the algorithm is considerably based on the following lemma. It
is a direct consequence of the axiomatization of dependencies and independencies, cf.
[Bell, 1995], and the proof is done by contradiction concerning the transitivity of UINDs.

3.3 Unary Inclusion Dependencies 7

Quintus Prolog

SQL

SQL

TCP/IP

DB

(VARCHAR)

(VARCHAR)(NUMBER)

(NUMBER)

Output

Input

C - Interface

System Tables

Network

Functional

Dependencies

UINDs UINDs

Value

Restrictions

Value

Restrictions

Prolog Terms

DBMS

ORACLE V7

Tuples

Figure 1: Systemoverview

8 3 DISCOVERING DATA DEPENDENCIES

1. SELECT COUNT(DISTINCT Ri:A1)
FROM Ri; Rj

WHERE Ri:A1 = Rj :A2 =: e

2. SELECT COUNT(DISTINCT A1)
FROM Ri =: e1

3. SELECT COUNT(DISTINCT A2)
FROM Rj =: e2

4. e = e1) A1 � A2

5. e = e2) A2 � A1

6. e = e1 = e2) A1 = A2

Figure 2: SQL Statements and Conditions for Calculating UINDs

Lemma 1

1. If there exists a directed edge from the node Ai+r to the node Ak and no edge from

the node Ai to the node Ak with k < i, then it is impossible that there exists an edge

from the node Ai to the node Ai+r.

2. If there exists a directed edge from the node Ai to the node Ak and no edge from the

node Ai+r to the node Ak with k < i, then it is impossible that there exists an edge

from the node Ai+r to the node Ai.

All the other steps in the algorithm are responsible for an ordered run through all
possible tests and are trivial. The procedure update graph discovers the transitive
relations between the UINDs. The two steps and the distinction between the two cases
guarantee that tests are deleted only in those lists, where they can occur. Hence the
list structure becomes \incomplete" and some more cases are needed in the algorithm
inclusion dependencies which we omitted here.

The procedure update graph has a time complexity of O(n + e), where n and e

denote the number of nodes and edges as usual. For example in the case i < j we have
to execute a depth{�rst search or breadth{�rst search in step 1a and 1b. Deleting of
tests can be done on the run and in time O(1), but one has to change the data structure
at step 4 in the algorithm inclusion dependencies from a list structure to arrays in
order to achieve this result, which is a simple transformation, but would complicate the
presentation here.

A naive algorithm for computing inclusion dependencies has a time complexity of
�(n2 � m2). It generates exactly n�(n�1)

2 database queries, if the corresponding UINDs
are valid or not. In contrast the algorithm inclusion dependencies has a overall time
complexity of O(n4 + n2 �m2). The summand O(n4) is caused by the nested loop and
each call to update graph.

3.3 Unary Inclusion Dependencies 9

Algorithm: inclusion dependencies

Input: A list of all attributes of one type
Output: A list of all inclusion dependencies between attributes of one type

1. Compute all candidate attributes for UINDs, which ful�ll the condition: the interval,
made up by the minimal and maximal value for this attribute | these are the value
restrictions | is a subset or a superset for any other attribute of this type.

2. Number all attributes from A1 up to An.

3. Construct a directed graph with nodes Ai and edges Ai ! Aj , i� Aj is marked in
the system table as a foreign key for Ai.

4. Construct the following list structure:h
[A1 : [A2; A2]; [A3; A3]; : : : ; [An; An]]

[A2 : [A3; A3]; : : : ; [An; An]]
...
[An�1 : [An; An]]

i

Aj and Aj respectively are symbols for the tests, if the UINDs Ai � Aj or Aj � Ai

are valid. The list of Ai contains Aj or Aj with j > i, if there does not exist a path
in the graph from Ai to Aj or Aj to Ai respectively.

5. For all Ai with 1 � i < n do:

(a) Let Ai+r with r 2 f1; : : : ; n� ig be the next test. If there exists an edge from
Ai+r to a node Ak with k < i and no edge from Ai to Ak , then continue at
step 5b with the next test, else execute the test. If Ai � Ai+r is valid, then call
update graph with Ai � Ai+r and continue at step 5b, else continue directly
at step 5b.

(b) Let Ai+r with r 2 f1; : : : ; n� ig be the next test. If there exists an edge from
Ai to a node Ak with k < i and no edge from Ai+r to Ak , then continue at
step 5a with the next step, else execute the test. If Ai+r � Ai is valid, then
call update graph with Ai+r � Ai and continue, else continue.

(c) While the list of the tests for Ai is not empty, continue at step 5a with the next
test Ai+r+1.

6. Return all edges of the graph as UINDs

Figure 3: Algorithm inclusion dependencies

10 3 DISCOVERING DATA DEPENDENCIES

Procedure: update graph

Input: One valid UIND Ai � Aj

1. Insert the edge Ai ! Aj into the graph.

2a) i < j

(a) Find all nodes Ak, k > i, from which exists a path to the node Ai.

(b) Find all nodes Al, l > i, which are reachable from Aj .

(c) Delete all tests Al; l > j in the list Ai.

(d) Delete all tests Al; k < l in the lists Ak .

(e) Delete all tests Ak ; k > l in the lists Al.

2b) i > j

(a) Find all nodes Ak, k > j, from which exists a path to the node Ai.

(b) Find all nodes Al, l > j, which are reachable from Aj .

(c) Delete all tests Ak ; k > i in the list Aj .

(d) Delete all tests Al; k < l in the lists Ak .

(e) Delete all tests Ak ; k > l in the lists Al.

Figure 4: Procedure update graph

At a �rst glance, this result looks strange because of theO{notation. But our algorithm
has one very important property. Given a �xed numbering of the attributes at step 2,
the algorithm presented here always poses a minimal number of database queries for
the discovery of UINDs, by exploiting the transitivity of UINDs and hence it saves all
super
uous queries to the database.

It can be shown that there exist \good" and \bad" numberings of the attributes in
step 2, cf. example 2, resulting in di�erent numbers of \necessary" database queries. But
even if the numbering is a worst case one, as long as there exists at least one valid UIND
in the database, our algorithm saves at least one database query.

And since one database query | given a \real" database and measured in cpu{time
| takes considerably longer than our whole algorithm inclusion dependencies without
the database queries, the extra amount of work with time complexity O(n4) is more than
justi�ed. And for this reason it does not matter if it is possible to drop the time complexity
of summand O(n4), which seems possible, because it would not save one more database
query.

Now, we present a short example demonstrating our algorithms inclusion dependen-

cies and update. But it serves also as an illustration of one drawback of our implemented
approach.

Example 1 We are looking for all UNIDs between A1 and A2; : : : ; An. Suppose that a

transitive chain An � An�1 � : : :A2 exists, because of the foreign key entries in the

system table. Then after step 3 in the algorithm inclusion dependencies all these edges

are inserted into the graph. If A1 � A2; A1 � A3; : : : ; A1 � An and A2 6� A1; A3 6�

3.4 Functional Dependencies 11

A1

A6 A5

A4

A2 A3(1)

(1)

(1)

(1)

(2)

(2)

(3)
(3)

Figure 5: Sketch to example 2

A1; : : :An 6� A1 are valid UINDs and UINIs respectively, then starting with A1 we will

pose 2 � n database queries. But if we were starting with An we would only need 2 SQL

queries. This is caused by the transitivity and the fact that An�1 6� A1; : : : ; A2 6� A1 are

UINIs, cf. lemma 1. �

Example 2 Figure 5 illustrates the last example. (1) depicts the edges inserted after

step 3 in the algorithm inclusion dependencies and assume that no other UINDs are

valid. If we start with (3) and the test A6, then the following tests are deleted by update:

A5,: : : ,A2. After the test A6 the remaining tests A5,: : : ,A2 are removed. Starting with (2)
would be a worst case scenario in this example. �

It is easy to overcome this problem by altering our algorithm. First, look for these
chains and then, by using a heuristic choose a \good" numbering.

3.4 Functional Dependencies

We start this subsection with a presentation of the necessary SQL statement in order to
compute functional dependencies. Figure 6 lists the statement and the condition which
must hold. The clue is the GROUP BY instruction. The computational costs of this
operation are dependent on the database system, but it can be done in time O(m� logm).
The statement itself counts the di�erent values in each group and sums up over all groups.
It is su�cient to count only the di�erent values for the attribute A1, because this number
is the same for all attributes A1 up to An. But it is important that the attribute B, the
right hand side of the hypothesis, does not appear as an attribute in the grouping. And
since we are looking for most general FDs, it is assured, that the attributes A1; : : : ; An; B

are all distinct. The statement returns a binary tuple. If the two numbers are the same
then the hypothesis is true, that means that the corresponding functional dependency
holds in the database.

Example 3 The relation R contains the attributes A1; : : : ; A3, B and C. The hypotheses

A1A2 ! B and A2A3 ! B are to be veri�ed. The �rst table in �gure 7 depicts the relation

12 3 DISCOVERING DATA DEPENDENCIES

1. SELECT SUM (COUNT (DISTINCT A1)),
SUM (COUNT (DISTINCT B))

FROM R
GROUP BY A1; : : : ; An =: a1; b

2. a1 = b) A1 : : :An ! B

Figure 6: A SQL statement for the Computation of Functional Dependencies

R A1 A2 A3 B C

3 3 11 d f
2 1 7 d f
2 2 9 c i
3 3 11 d g
1 2 9 a p
2 2 9 c h

A1 A2 B

1 2 a

2 1 d

2 2 c

3 3 d

A2 A3 B

1 7 d

2 9 a
2 9 c

3 11 d

Figure 7: A sample relation to demonstrate the SQL query

R, the other two tables show the intermediate results of the SQL queries. The results of

the queries wrt. the hypotheses are as follows: a = b = 4 and a = 3 6= 4 = b respectivly. It

follows that A1A2 ! B is a FD and A2A3 6! B a FI. �

All the attributes for the left{hand side of most general FDs of the type X ! F

build a semi lattice. Figure 8 shows the intuitive reduction of this semi lattice into a tree
structure where we have left away the right{hand sides, which is always the attribute F
in this example.

AB AC AD AE BC BD BE CD CE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DE

ABCD ABCE ACDE BCDE

ABCDE

A B C D E

ABDE

AB AC AD AE BC BD BE CD CE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DE

ABCD ABCE ABDE ACDE BCDE

ABCDE

A B C D E

Figure 8: Reduction of a semi lattice into a tree structure

3.4 Functional Dependencies 13

Algorithm: functional dependencies

Input: All attributes A1; : : : ; An of the relation
Output: All discovered most general FDs

1. Compute the class of attributes NKNN.

2. For each attribute Ai do:

(a) Compute a list LHS(Ai) of all possible attributes for the left{hand side of most
general FDs X ! Ai.

(b) Compute a list UH(Ai) of all possible attributes for unary hypotheses Ak ! Ai

3. For each attribute Ai do:
IF bottom{up{search THEN top{down{search

Figure 9: The Algorithm functional dependencies

In the algorithm functional dependencies we have integrated two main ideas,
namely to exploit the transitivity of FDs and to concentrate on the computation of most
general FDs.

Every attribute in a relation can be classi�ed in one of three disjunct classes. We denote
the �rst class with UCK, that means unary candidate key. Attributes which contain only
distinct values and no NULL{values belong to this class. Some of them for example may
be marked in the system table of the database as the unary primary key or as a unique
index and so on. All the attributes of this class are keys and therefore they build the
left{hand sides of most general FDs, which the algorithm need not to generate anymore.

Other attributes contain NULL{values. They build up the second class NK, \no key".
All these attributes trivially do not imply any other attribute and more important they
are useless for specializations of hypotheses which correspond to an invalid most general
FD.

As a consequence only the attributes of the third class NKNN, that means \no-key-no-
null-values", are needed for the left{hand sides during the search for unknown most general
FDs. For the computation of the class NKNN we exploit the information in the system
table of the database and analyze the data itself where needed. The time complexity of
this operation, which is the �rst step in our algorithm, cf. �gure 9, is O(n �m).

The second step in �gure 9 mainly initializes data structures for the following third
step. But if we are looking for FDs of the form X ! B and the attribute B is an element
of the class UCK then we need not consider any unary hypotheses in the third step with
the attribute B on the right{hand side, because they all are invalid FDs. This is also
recognized in this step which has a time complexity of O(n2).

The function bottom{up{search in the next step is quite simple. Assume that the
attributes A1; : : : ; An are possible attributes for the left{hand side of a most general FD
X ! B. Then we test the most special hypothesis A1 : : :An ! B. If the corresponding
FD is not true then we need not consider this search space. Otherwise the function returns
true and the function top{down{search will be called.

14 3 DISCOVERING DATA DEPENDENCIES

1. Top{Down{Search{Start
Test all unary hypotheses Ai ! B from UH(B). If Ai ! B is a valid FD, then do:

(a) Delete Ai in LHS(B).

(b) Call the procedure update{fd with Ai ! B.

If LHS(B) = ; then RETURN

2. Top{Down{Search
Sort the names of all attributes in the list LHS(B) in ascending order. Let A1; : : : ; An

be the attributes in LHS(B). Construct all two place combinations AiAj , i < j,
i; j 2 f1; : : : ; ng and insert them into the queue QUEUE.

WHILE QUEUE6= ; DO
Let Ar1 : : :Ark be the �rst element of QUEUE.
IF NOT(has{fd{as{subset(Ar1 : : :Ark))

THEN verify the hypothesis Ar1 : : :Ark ! B at the database.
IF Ar1 : : :Ark ! B is valid

THEN call udate{fd with Ar1 : : :Ark ! B.
ELSE construct all k + 1{place sons Ar1 : : :ArkAl

with l 2 fk + 1; : : : ; ng. Put these at the end of QUEUE
OD
RETURN

Figure 10: Function: top{down{search

3.4 Functional Dependencies 15

The funcion top{down{search is twofolded. This distinction between the two phases is
useful, because if A is an attribute on the left hand side of a most general FD, then we need
not consider any combination of attributes on the left hand side, which entails A. This is
realized by the statement (a). Therefore, our top{down{search with the breadth{�rst and
left{to{the{right strategy starts with two place hypotheses. Then at every step, we take
the �rst element of the queue, test the hypothesis and if the test is negative, the node in
the tree is expanded and the direct children are put in left to right order at the end of the
queue.

But we need some more procedures namely update{fd and has{fd{as{subset,
which can be found in [Brockhausen, 1994]. The latter detects the following situation,
cf. example 4 which is always present by the nature of a lattice and which is impossible
to avoid in general.

Example 4 Let CE ! F be a newly detected most general FD and AB is a FI, cf. �gure

8. Then it is wrong to delete C and E in LHS(F). But one have to exclude , that C and

E together are part of the left hand sides of later generated hypotheses. For example the

successors ABC and ABE from AB have to be generated but ABCE and ABCDE not.

As the global data structure for the exploitation of the transitivity of FDs, we use a
graph structure similar to the one described for the algorithm inclusion dependencies.
Here again we start with the known most general FDs as edges, i.e. the unary primary
keys, and after the detection of new FDs by database queries or by inference, the graph is
updated by the procedure update{fd. The inference already starts at the classi�cation
of the attributes into the disjunct classes. update{fd has some drawbacks on the lists
LHS(Ai) and UH(Ai) too, where we omitted the details here in order not to complicate
the presentation of the algorithm in �gure 10.

The procedure for deriving one new FD because of the transitivity has a running time
O(l + e), where l denotes the number of nodes in the graph. At the moment we still use
search procedures like DFS or BFS in a graph which also exploit the known independencies
but we do not use any theorem prover.

But this search procedure can be called l times in the worst case. And worst in this
case is the fact that the number of nodes in the graph can be exponential in n, the number
of attributes. Even if we have n attributes and O(n) tuples in a single table, it is possible
that there exists
(2

n

2) most general FDs, as shown in [Mannila and R�aih�a, 1991], or
correspondingly nodes in the graph.

We should mention that we also use the discovered inclusion dependencies in the
algorithm above. If we know that the set of values of the attribute A is a proper subset
of the attribute B, then A cannot functionally determine B or A 6! B.

At the moment, we are interested in \correct" FDs, either the FD X ! B is valid or
not, i.e. X ! B is a FI. But certainly, a database contains \noise" in many ways, which
we will not discuss here. But if we want to cope with this problem, all we have to do is to
change the statement a1 = b in �gure 6 into j a1� b+ � j� �. Here � denotes a threshhold,
i.e. the number of allowed tuples, which \contradict" the FD. � is a \correction factor" in
order to deal with NULL{values and attributes of the class NKNN. We get this value as
a side e�ect of the classi�cation of the attributes.

16 4 EVALUATION AND CONCLUSIONS

Algorithm Data Base jrj jRj jX j Time

Savnik/Flach Lymphography 150 19 7 9 min

Schlimmer Breast Cancer 699 11 4 1 h 14 min

Bell/Brockh. Lymphography 150 19 7 > 33 h

Bell/Brockh. Breast Cancer 699 11 11 8 min 53 sec
Bell/Brockh. Breast Cancer 699 11 4 4 min 19 sec

Table 1: Comparison of the Experimental Results from [Savnik and Flach, 1993] and
[Schlimmer, 1993] with the algorithm functional dependencies.

Database jrj jRj jX j Time N

Books 9931 9 9 4 h 44 min. 25
Books 9931 9 6 4 h 40 min. 25
Books 9931 9 3 2 h 10 min. 20

Table 2: Summary of the results of the algorithm functional dependencies.

4 Evaluation and Conclusions

We compared our algorithm with two approaches: Savnik and Flach call their method
\bottom{up induction of functional dependencies from relations"[Savnik and Flach, 1993].
Brie
y, they start with a bottom{up analysis of the tuples and construct a negative cover,
which is a set of FIs. Therefore they have to analyze all combinations between any two
tuples. In the next step they use a top{down search approach similar to ours in order to
discover the functional dependencies. They check the validity of a dependency by searching
for FIs in the negative cover. Schlimmer also uses a top{down approach, but in conjunction
with a hash{function in order to avoid redundant computations [Schlimmer, 1993].

But in contrast to our algorithm, in both articles mentioned, the authors do not use
a relational database like OracleV7 or any other commercial DBMS. They even do not
use a database at all. And this has some important e�ects on the results, which will be
discussed in the next paragraph. Table 1 shows a summary of their results, where jrj
denotes the number of tuples, jRj the number of attributes, jX j the maximal number of
attributes on the left{hand side of a FD and time is the time needed for the discovery
of the most general cover. For comparison reasons we introduced such a bound on the
number of attributes in our algorithm.

First, our algorithm cannot detect the FDs in the Lymphography domain in reasonable
time, because we do not hold the data in main memory like Savnik and Flach. And
since most of the FDs are really long, for some attributes the shortest most general FDs
have already seven attributes on the left side, the search space and the overhead for the
communication with the database is to big. But it cannot be said that our approach is
inferior to the one of Savnik and Flach, because the circumstances are to di�erent, namely
the presence or absence of a database for the storage of the tuples.

Second, in the Breast Cancer domain our algorithm is really fast, more than seventeen

REFERENCES 17

times faster than Schlimmer's algorithm. Even without any bound on the length of the
FDs it is still eight times faster and it uses a database. We conjecture, that this interesting
but also unexpected result is mainly caused by the distinction between the three types of
attributes in the search for functional dependencies.

But of course the two domains above are not typical database applications. Table 2
shows the results of our algorithm with respect to a real database, the library database of
our computer science department. Here it becomes obvious that our pruning criterions are
e�cient, because with a bound of six attributes and without any bound the time needed
is nearly the same. The di�erences are neglectable because there are many more users
working on the network and the results are only reproducible within some bounds. But
apart from the known primary key of the database the discovered FDs are semantically
meaningless.

Furthermore we have stored the tuples of the databases mentioned above as ordinary
PROLOG Facts. In the Breast Cancer domain the results were very surprising, because
the database approach is more than four times faster as using eleven place PROLOG
predicates, one place for every attribute, and simulating the SQL queries in PROLOG.
But the reason is obvious. This kind of representation is not e�cient because due to the
arity of the predicates which represent the tuples, we have to take into account eleven
variables even for testing unary FDs.

In summary, on can say that the algorithm which we present in our work has one
important advantage over the two approaches mentioned above. The algorithm is capable
of dealing with great amounts of data, because we use a real database for the storage. And
as a side e�ect, because we use standard SQL statements for the discovery of FDs, our
approach is portable and we can use any database which \understands" SQL as a query
language.

Acknowledgment: This work is partly supported by the European Community
(ESPRIT Basic Research Action 6020, project Inductive Logic Programming) and the
Daimler{Benz AG, Contract No.: 094 965 129 7/0191.

References

[Bell, 1995] Bell, S. (1995). Inferring data independencies. Technical Report 16, University
Dortmund, Informatik VIII.

[Brockhausen, 1994] Brockhausen, P. (1994). Discovery of functional and unary inclusion
dependencies in relational databases. Master's thesis, University Dortmund, Informatik
VIII. in german.

[Dehaspe et al., 1994] Dehaspe, L., Laer, W. V., and Raedt, L. D. (1994). Applications
of a logical discovery engine. In Wrobel, S., editor, Proc. of the Fourth International

Workshop on Inductive Logic Programming, GMD-Studien Nr. 237, pages 291{304, St.
Augustin, Germany. GMD.

[Fagin, 1981] Fagin, R. (1981). A normal form for relational databases that is based on
domains and keys. ACM Transactions on Database Systems, 6(3):318{415.

18 REFERENCES

[Janas, 1988] Janas, J. M. (1988). Covers for functional independencies. In Conference of

Database Theory. Springer, Lecture Notes in Computer Science 338.

[Kanellakis, 1990] Kanellakis, P. (1990). Formal Models and Semantics, Handbook of The-

oretical Computer Science, chapter Elements of Relational Database Theory, 12, pages
1074 { 1156. Elsevier.

[Kanellakis et al., 1983] Kanellakis, P., Cosmadakis, S., and Vardi, M. (1983). Unary
inclusion dependencies have polynomial time inference problems. Proc. 15th Annual

ACM Symposium on Theory of Computation.

[Mannila and R�aih�a, 1991] Mannila, H. and R�aih�a, K.-J. (1991). The design of relational

databases. Addison-Wesley.

[Morik et al., 1993] Morik, K., Wrobel, S., Kietz, J.-U., and Emde, W. (1993). Knowledge
Acquisition and Machine Learning: Theory, Methods and Applications. Knowledge-
Based Systems. Academic Press, London u.a.

[Piatetsky{Shapiro and Frawley, 1991] Piatetsky{Shapiro, G. and Frawley, W. (1991).
Knowledge discovery in databases { an overview. In G. Piatetsky-Shapiro, W. F.,
editor, Knowledge Discovery in Databases, pages 1 { 27. AAAI Press, Menlo Park.

[Plotkin, 1970] Plotkin, G. D. (1970). A note on inductive generalization. In Meltzer,
B. and Michie, D., editors, Machine Intelligence, chapter 8, pages 153{163. American
Elsevier.

[Savnik and Flach, 1993] Savnik, I. and Flach, P. (1993). Bottum-up indution of func-
tional dependencies from relations. In Piatetsky-Shapiro, G., editor, KDD-93: Work-

shop on Knowledge Discovery in Databases. AAAI.

[Schlimmer, 1993] Schlimmer, J. (1993). Using learned dependencies to automatically
construct su�cient and sensible editing views. In Piatetsky-Shapiro, G., editor, KDD-
93: Workshop on Knowledge Discovery in Databases. AAAI.

[Ullman, 1988] Ullman, J. D. (1988). Principles of Database and Knowledge-base Systems,
volume 1. Computer Science Press.

