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Abstract

Let ν ∈ M1([0,∞[) be a fixed probability measure. For each dimension p ∈ N, let
(Xp

n
)n≥1 be i.i.d. R

p-valued radial random variables with radial distribution ν. We derive
two central limit theorems for ‖Xp

1
+ . . . + Xp

n
‖2 for n, p → ∞ with normal limits. The

first CLT for n >> p follows from known estimates of convergence in the CLT on Rp,
while the second CLT for n << p will be a consequence of asymptotic properties of Bessel
convolutions.

Both limit theorems are considered also for U(p)-invariant random walks on the space
of p × q matrices instead of Rp for p → ∞ and fixed dimension q.

KEYWORDS: Radial random walks, central limit theorems, random matrices, large di-
mensions, matrix cones, Bessel convolution, Bessel functions of matrix argument.

Math. Subject Classification: 60F05, 60B10, 60B12, 33C70, 43A62.

1 Two central limit theorems

This paper has its origin in the following problem: Let ν ∈ M1([0,∞[) be a fixed probability
measure. Then for each dimension p ∈ N there is a unique radial probability measure
νp ∈ M1(Rp) with ν as its radial part, i.e., ν is the image of νp under the norm mapping
ϕp(x) := ‖x‖2. For each p ∈ N consider i.i.d. R

p-valued random variables Xp
k , k ∈ N, with

law νp as well as the associated radial random walks

(
Sp

n :=
n∑

k=1

Xp
k)n≥0

on R
p. The aim is to find limit theorems for the [0,∞[-valued random variables ‖Sp

n‖2 for
n, p → ∞. In [V1] and [RV] we proved that for all sequences pn → ∞,

‖Spn
n ‖2

2/n → σ2 := σ2(ν) :=

∫ ∞

0
x2 dν(x)

under the condition σ2 < ∞. Moreover, in [RV] an associated strong law and a large deviation
principle were derived under the condition that pn grows fast enough. In this paper we present
two associated central limit theorems (CLTs) under disjoint growth conditions for pn.
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The first CLT holds for pn << n and is an obvious consequence of Berry-Esseen estimates
on R

p with explicit constants depending on the dimensions p, which are due to Bentkus and
Götze [B], [BG2] (for a survey about this topic we also recommend [BGPR]):

1.1 Theorem. Assume that ν ∈ M1([0,∞[) with ν 6= δ0 admits a finite third moment
m3(ν) :=

∫ ∞
0 x3 dν(x) < ∞, and that limn→∞ n/p3

n = ∞. Then

√
p

n

nσ2
√

2
(‖Spn

n ‖2
2 − nσ2)

tends in distribution for n → ∞ to the standard normal distribution N(0, 1).

Proof. The radial measure νp on R
p has a covariance matrix Σ2 which is invariant under all

conjugations w.r.t orthogonal transformations. This yields that Σ2 = cpIp with Ip as identity
matrix and some constant cp. As σ2 = E(‖Xp

1‖2
2) = pcp, we actually have Σ2 = (σ2/p)Ip.

Theorem 2 of Bentkus [B] implies after normalization that the distribution function Fn,p of
p

nσ2 ‖Sp
n‖2

2 and the distribution function Fp of the χ2
p-distribution with p degrees of freedom

satisfy

‖Fn,p − Fp‖∞ ≤ C · p3/2

√
n

(1.1)

for n, p ∈ N with a universal C = C(ν). Therefore, for p = pn as in the theorem, we
have uniform convergence of distribution functions. Moreover, the classical CLT shows that
for χ2

p-distributed random variables Xp (with E(Xp) = p and V ar(Xp) = 2p), the random

variables
Xp−p√

2p
tend to the standard normal distribution N(0, 1) for p → ∞. A combination

of both results readily implies the theorem.

1.2 Remark. The main result of [BG2] suggests that for sufficiently large dimensions p and
ν ∈ M1([0,∞[) with finite fourth moment m4(ν) :=

∫ ∞
0 x4 dν(x) < ∞,

‖Fn,p − Fp‖∞ ≤ C · p2

n
(n, p ∈ N) (1.2)

holds (the dependence of the constants is not clearly noted in [BG2] and difficult to verify).
If (1.2) is true, then Theorem 1.1 holds under the weaker condition limn→∞ n/p2

n = ∞. We
also remark that the results of [BG1] indicate that the method of the proof of Theorem 1.1
above cannot go much beyond this condition.

In this paper, we derive the following complementary CLT for pn >> n:

1.3 Theorem. Assume that ν ∈ M1([0,∞[) admits a finite fourth moment m4(ν) :=∫ ∞
0 x4 dν(x) < ∞, and that limn→∞ n2/pn → 0. Then

‖Spn
n ‖2

2 − nσ2

√
n

tends in distribution for n → ∞ to the normal distribution N(0,m4(ν) − σ4) on R.

1.4 Remark. (1) We do not know precise conditions on the dimensions pn under which
the CLTs 1.1 and 1.3 hold (possibly under sufficiently strong moment conditions for ν).
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In order to obtain a reasonable guess, notice that the CLTs imply, after suitable normal-
izations, convergence of moments of ‖Spn

n ‖2
2 −nσ2 to moments of normal distributions.

We therefore computed the second moment

E
((
‖Spn

n ‖2
2 − nσ2

)2)
= n(m4(ν) − σ4) + 2

n(n + 1)

pn
σ4. (1.3)

This leads to the conjecture that the assertion of Theorem 1.1 holds if and only if
n/pn → ∞ holds, and the assertion of Theorem 1.3 precisely for n/pn → 0 where
the limit conditions are necessary by Eq. (1.3). We also verified that these conditions
also work for the third and fourth moments. Unfortunately, the formulas become too
complicated to detect a general limit pattern for arbitary moments at present in order
to derive convergence of all moments. The case pn = cn for some constant c might be
also an interestig field of research.

(2) A comparison of Theorems 1.1 and 1.3 has the following possible implication to statis-
tics: Assume that ν ∈ M1([0,∞[) is known and that the random variable ‖Spn

n ‖2 can
be observed with a known time parameter n, but an unknown dimension p which has
to be estimated. Then p can be recovered in a reasonable way for n >> p3 while this
is not the case for n <<

√
p.

In this paper we are going to derive two generalizations of the preceding CLTs:

The first extension concerns a matrix-valued version: For fixed dimensions p, q ∈ N let
Mp,q = Mp,q(F) be the space of p × q-matrices over F = R, C or the quaternions H with
real dimension d = 1, 2 or 4 respectively. This is a Euclidean vector space of real dimension
dpq with scalar product 〈x, y〉 = Rtr(x∗y) where x∗ := xt, Rt := 1

2(t + t) is the real part of
t ∈ F, and tr is the trace in Mq := Mq,q. A measure on Mp,q is called radial if it is invariant
under the action of the unitary group Up = Up(F) by left multiplication, Up × Mp,q → Mp,q,
(u, x) 7→ ux. This action is orthogonal w.r.t. the scalar product above, and, by uniqueness
of the polar decomposition, two matrices x, y ∈ Mp,q belong to the same Up-orbit if and only

if x∗x = y∗y. Thus the space M
Up
p,q of Up-orbits in Mp,q is naturally parameterized by the

cone Πq = Πq(F) of positive semidefinite q× q-matrices over F. We identify M
Up
p,q with Πq via

Uqx ≃ (x∗x)1/2, i.e., the canonical projection Mp,q → M
Up
p,q will be realized as the mapping

ϕp : Mp,q → Πq, x 7→ (x∗x)1/2.

The square root is used here in order to ensure for q = 1 and F = R that the setting above with
Π1 = [0,∞[ and ϕp(x) = ‖x‖ appears. By taking images of measures, ϕp induces a Banach

space isomorphism between the space M
Uq

b (Mp,q) of all bounded radial Borel measures on
Mp,q and the space Mb(Πq) of bounded Borel measures on the cone Πq. In particular, for each
ν ∈ M1(Πq) there is a unique radial probability measure νp ∈ M1(Mp,q) with ϕp(νp) = ν.

As in the case q = 1, we now consider for each p ∈ N i.i.d. Mp,q-valued random variables
Xp

k , k ∈ N, with law νp and the associated radial random walks
(
Sp

n :=
∑n

k=1 Xp
k)n≥0.

1.5 Definition. We say that ν ∈ M1(Πq) admits a k-th moment (k ∈ N) if

mk(ν) :=

∫

Πq

‖s‖k dν(s) < ∞
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where ‖s‖ = (trs2)1/2 is the Hilbert-Schmidt norm. If the second moment exists, the second
moment of ν is defined as the matrix-valued integral

σ2 := σ2(ν) :=

∫

Πq

s2 dν(s) ∈ Πq.

With these notions, the following generalizations of Theorems 1.1 and 1.3 hold:

1.6 Theorem. Assume that m4(ν) < ∞. Moreover, let limn→∞ n/p4
n = ∞. Then

√
pn

n
(ϕpn(Spn

n )2 − nσ2)

tends in distribution to some normal distribution N(0, T 2) on the vector space Hq of hermitian
q× q-matrices over F (with a covariance matrix T 2 = T 2(σ2) described in the proof below for
F = R).

Proof. We regard Mp,q = Mp,q(F) as F
p⊗F

q. The radial measure νp on Mp,q has a covariance
matrix Σ2

p which is invariant under all conjugations w.r.t. Up, i.e., we have Σ2
p = Ip ⊗ Tp for

some Tp ∈ Πq. As σ2 = E((Xp
k )∗Xp

k) = pTp, we have Σ2
p = 1

p · Ip ⊗ σ2.
Moreover, Theorem 1 of Bentkus [B] implies after normalization that there is an universal

constant C > 0 such that
∣∣P (

√
p√
n

Sp
n ∈ K) − N(0,Σ2

1)(K)| ≤ C · p2

√
n

for all convex sets K ⊂ Mp,q and all n, p. Therefore, for p = pn as in the theorem,

∣∣P (

√
pn√
n

Spn
n ∈ K) − N(0,Σ2

1)(K)
∣∣ → 0 for n → ∞

uniformly in all convex sets K ⊂ Mp,q. Using the projections ϕp : Mp,q → Πq, we obtain

|P (
pn

n
· ϕpn(Spn

n )2 ∈ L) − Wpn(L)| → 0 for n → ∞ (1.4)

uniformly in all convex sets L ⊂ Πq where the measures Wpn := ϕ2
pn

(N(0,Σ2
1)) are certain

Wishart distributions on Πq with pn degrees of freedom. By definition, the measures Wpn

appear as the distribution of a pn-fold sum of iid W1-distributed random variables on the
vector space Hq with expectation σ2 and some covariance matrix T 2 = T 2(σ2) described
below. A combination of Eq. (1.4) and the classical CLT on Hq then readily implies the
theorem.

We finally compute T 2 for F = R. Let X = (X1, . . . ,Xq) be a R
q-valued, standard normal

distributed random variable, and σ ∈ Πq the positive semidefinite root of σ2. Then Y := Xσ
is R

q-valued with distribution N(0, σ2), and the Hq-valued random variable Y ∗Y = X∗σ2X
has the distribution W1. We notice that E(X4

i ) = 3, E(X2
i X2

j ) = 1 for i 6= j, and that
E(XiXjXkXl) = 0 whenever at least one index appears only once in {i, j, k, l}. This implies
that

(T 2)(i,j),(k,l) = Kov(YiYj , YkYl) = E(YiYjYkYl) − E(YiYj)E(YkYl)

=

q∑

a,b,c,d=1

σa,iσb,jσc,kσd,lE(XaXbXcXd) −
( q∑

a=1

σa,iσa,j

)( q∑

a=1

σa,kσa,l

)

=

q∑

a,b=1

(
σa,iσa,kσb,jσb,l + σa,iσa,lσb,jσb,k

)

= (σ2)i,k(σ
2)j,l + (σ2)i,l(σ

2)j,k. (1.5)
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The computation for F = C, H is similar.

Notice that the proof is analog to that of Theorem 1.1. The slightly stronger condition
is required as here certain convex sets in Mp,q instead of balls are used, where only weaker
convergence results form [B] are available. As for q = 1, we expect that Theorem 1.6 remains
true under slightly weaker conditions than n/p4

n → ∞.

1.7 Theorem. Assume that m4(ν) < ∞ and limn→∞ n2/pn = 0. Then

1√
n

(ϕpn(Spn
n )2 − nσ2)

tends in distribution to the normal distribution N(0,Σ2) on Hq where Σ2 is the covariance
matrix of ϕpn(Xpn

1 ) (which is independent of pn).

Notice that for q = 1, Theorem 1.7 completely agrees with 1.3. Theorem 1.7 will appear
in Section 3 below as a special case of the even more general CLT 3.8.

We next turn to this generalization: Consider again the Banach space isomorphism
ϕp : M

Uq

b (Mp,q) → Mb(Πq). The usual group convolution on Mp,q induces a Banach-∗-algebra-
structure on Mb(Πq) such that this becomes a probability-preserving Banach-∗-algebra iso-
morphism. The space Πq together with this new convolution becomes a so-called commutative
orbit hypergroup; see [J],[BH], and [R]. Moreover, for p ≥ 2q, Eq. (3.5) and Corollary 3.2 of
[R] show that the convolution of point measures on Πq induced from Mp,q is given by

(δr ∗µ δs)(f) :=
1

κµ

∫

Dq

f
(√

r2 + s2 + svr + rv∗s
)
∆(I − vv∗)µ−ρ dv (1.6)

with µ := pd/2, ρ := d
(
q − 1

2

)
+ 1,

Dq := {v ∈ Mq : v∗v < I}

(where v∗v < I means that I − v∗v is positive definite), and with the normalization constant

κµ :=

∫

Dq

∆(I − v∗v)µ−ρdv. (1.7)

The convolution on Mb(Πq) is just given by bilinear, weakly continuous extension.
It was observed in [R] that Eq. (1.6) defines a commutative hypergroup (Πq, ∗µ) for all

indices µ ∈ R with µ > ρ − 1, where 0 ∈ Πq is the identity and the involution is the identity
mapping. These hypergroups are closely related with a product formula for Bessel functions
Jµ on the cone Πq and are therefore called Bessel hypergroups. For details we refer to [FK],
[H], and in particular [R]. For general indices µ, these Bessel hypergroups (Πq, ∗µ) have no
group interpretation as in the cases µ = pd/2 with integral p, but nevertheless the notion
of random walks on these hypergroups is still meaningful. For q = 1, such structures and
associated random walks were investigated by Kingman [K] and many others; see [BH].

1.8 Definition. Fix µ > ρ − 1 and a probability measure ν ∈ M1(Πq). A Bessel random
walk (Sµ

n)n≥0 on Πq of index µ and with law ν is a time-homogeneous Markov chain on Πq

with Sµ
0 = 0 and transition probability

P (Sµ
n+1 ∈ A|Sµ

n = x) = (δx ∗µ ν)(A)

for x ∈ Πq and Borel sets A ⊂ Πq.
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This notion has its origin in the following well-known fact for the orbit cases µ = pd/2,
p ∈ N: If for a given ν ∈ M1(πq) we consider the associated radial random walk (Sp

n)n≥0 on
Mp,q as above, then (ϕp(S

p
n))n≥0 is a random walk on Πq of index µ = pd/2 with law ν.

We shall derive Theorem 1.7 in Section 3 in this more general setting for µ ∈ R, µ ≥ 2q,
as the proof is precisely the same as in the group case. The proof will rely on facts on these
Bessel convolutions which we recapitulate in the next section

We finally mention that it seems reasonable that at least for q = 1, Theorem 1.1 may
be also generalized to Bessel random walks with arbitrary indices µ ∈ R with µ → ∞. A
possible approach might work via explicit Berry-Esseen-type estimates for Hankel transforms
similar as in [PV] with a careful investigation of the dependence of constants there on the
dimension parameter.

2 Bessel convolutions on matrix cones

In this section we collect some known facts mainly from [R] and [V2].
Let F be one of the real division algebras R, C or H with real dimension d = 1, 2 or

4 respectively. Denote the usual conjugation in F by t 7→ t, the real part of t ∈ F by
Rt = 1

2(t + t), and by |t| = (tt)1/2 its norm.
For p, q ∈ N we denote by Mp,q the vector space of all p × q-matrices over F and put

Mq := Mq(F) := Mq,q(F) for abbreviation. Let further Hq = {x ∈ Mq : x = x∗} the space
of Hermitian q × q-matrices. All these spaces are real Euclidean vector spaces with scalar
product 〈x, y〉 := Rtr(x∗y) and norm ‖x‖ = 〈x, x〉1/2. Here x∗ := xt and tr denotes the
trace. Let further

Πq := {x2 : x ∈ Hq} = {x∗x : x ∈ Hq}
be the cone of all positive semidefinite matrices in Hq. Bessel functions Jµ on these matrix
cones with a parameter µ > 0 (and suppressed parameters F and q) were studied from
different points of view by numerous people; we here only mention [H], [FK], [R], and [RV]
which are relevant here. As we do not need details, we do not recapitulate the complicated
definition here and refer to these references. We only mention that for q = 1, and F = R, we
have Πq = [0,∞[, and the Bessel function Jµ satisfies

Jµ

(x2

4

)
= jµ−1(x)

where jκ(z) = 0F1(κ + 1;−z2/4) is the usual modified Bessel function in one variable.
Hypergroups are convolution structures which generalize locally compact groups insofar

as the convolution product of two point measures is in general not a point measure again,
but just a probability measure on the underlying space. More precisely, a hypergroup (X, ∗)
is a locally compact Hausdorff space X together with a convolution ∗ on the space Mb(X) of
regular bounded Borel measures on X, such that (Mb(X), ∗) becomes a Banach algebra, and
∗ is weakly continuous, probability preserving and preserves compact supports of measures.
Moreover, one requires an identity e ∈ X with δe ∗ δx = δx ∗ δe = δx for x ∈ X, as well
as a continuous involution x 7→ x̄ on X such that for all x, y ∈ X, e ∈ supp(δx ∗ δy) is
equivalent to x = ȳ, and δx̄ ∗ δȳ = (δy ∗ δx)−. Here for µ ∈ Mb(X), the measure µ− is given
by µ−(A) = µ(A−) for Borel sets A ⊂ X. A hypergroup (X, ∗) is called commutative if
and only if so is the convolution ∗. Thus for a commutative hypergroup (X, ∗), Mb(X) is a
commutative Banach-∗-algebra with identity δe. Due to weak continuity, the convolution of
measures on a hypergroup is uniquely determined by convolution products of point measures.
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On a commutative hypergroup (X, ∗) there exists a (up to a multiplicative factor) unique
Haar measure ω, i.e. ω is a positive Radon measure on X satisfying

∫

X
δx ∗ δy(f)dω(y) =

∫

X
f(y)dω(y) for all x ∈ X, f ∈ Cc(X).

The decisive object for harmonic analysis on a commutative hypergroup is its dual space

X̂ := {ϕ ∈ Cb(X) : ϕ 6= 0, ϕ(x) = ϕ(x), δx ∗ δy(ϕ) = ϕ(x)ϕ(y) for all x, y ∈ X}.

Its elements are called characters. As for LCA groups, the dual of a commutative hypergroup
is a locally compact Hausdorff space with the topology of locally uniform convergence and
can be identified with the symmetric spectrum of the convolution algebra L1(X,ω). For more
details on hypergroups we refer to [J] and [BH].

The following theorem contains some of the main results of [R].

2.1 Theorem. Let µ ∈ R with µ > ρ − 1. Then

(a) The assignment

(δr∗µδs)(f) :=
1

κµ

∫

Dq

f
(√

r2 + s2 + svr + rv∗s
)
∆(I−vv∗)µ−ρ dv, f ∈ C(Πq) (2.1)

with κµ as in (1.7), defines a commutative hypergroup structure on Πq with neutral
element 0 ∈ Πq and the identity mapping as involution. The support of δr ∗µ δs satisfies

supp(δr ∗µ δs) ⊆ {t ∈ Πq : ‖t‖ ≤ ‖r‖ + ‖s‖}.

(b) A Haar measure of (Πq, ∗µ) is given by

ωµ(f) =
πqµ

ΓΩq(µ)

∫

Ωq

f(
√

r)∆(r)γdr with γ = µ − d

2
(q − 1) − 1.

(c) The dual space of Πq,µ is given by Π̂q,µ = {ϕs : s ∈ Πq} with

ϕs(r) := Jµ(
1

4
rs2r) = ϕr(s).

The hypergroup Πq,µ is self-dual via the homeomorphism s 7→ ϕs. Under this identifi-

cation of Π̂q,µ with Πq,µ , the Plancherel measure on Πq,µ is (2π)−2µqωµ.

The most important informal observation at this point is that the convolution (2.1) con-
verges for µ → ∞ to the semigroup convolution

(δr • δs)(f) := f(
√

r2 + s2), r, s ∈ Πq

associated with the semigroup operation r • s :=
√

r2 + s2 on Πq. We next shall make this
convergence more precise, as this is the main ingredient for the proof of Theorem 1.7.
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3 The central limit theorem for µn >> n

We here derive a generalization of Theorem 1.7 for general parameters µ. We begin with
some unusual notion which is needed below:

3.1 Definition. A function f : Πq → C is called root-Lipschitz continuous with constant L,
if for all x, y ∈ Πq,

|f(
√

x) − f(
√

y)| ≤ L‖x − y‖.

3.2 Lemma. There is a constant C = C(q) such that for all r, s ∈ Πq, all µ ≥ 2ρ, and all
root-Lipschitz continuous functions f on Πq with constant L,

|δr ∗µ δs(f) − δr • δs(f)| ≤ CL‖r‖ · ‖s‖/√µ.

Proof. We first recapitulate from Lemma 3.1 of [RV] that for µ > ρ and v ∈ √
µ · Dq ⊂ Mq,

0 ≤ e−〈v,v〉 − ∆(I − 1

µ
vv∗)µ ≤ 1

µ
tr((vv∗)2) · e−〈v,v〉. (3.1)

As all norms on Πq are equivalent, we conclude from the first inequality that for r, s > 0 and
suitable constants Ci,

|δr∗µδs(f) − δr • δs(f)|

≤ 1

κµ

∫

Dq

∣∣∣∣f
(√

r2 + s2 + svr + rv∗s
)
− f

(√
r2 + s2

)∣∣∣∣ · ∆(I − vv∗)µ−ρ dv

≤ L

κµ

∫

Dq

‖svr + rv∗s‖ · ∆(I − vv∗)µ−ρ dv

≤ C1L‖r‖ · ‖s‖
κµ

∫

Dq

‖v‖ · ∆(I − vv∗)µ−ρ dv

=
C1L‖r‖ · ‖s‖

κµ(µ − ρ)(dq2+1)/2

∫
√

µ−ρ·Dq

‖v‖ · ∆(I − 1

µ − ρ
vv∗)µ−ρ dv

≤ C1L‖r‖ · ‖s‖
κµ(µ − ρ)(dq2+1)/2

∫

Mq

‖v‖ · e−〈v,v〉 dv

≤ C2
L‖r‖ · ‖s‖

κµ(µ − ρ)(dq2+1)/2
(3.2)

Moreover, the second inequality in (3.1) yields that for sufficiently large µ,

κµ =

∫

Dq

∆(I − v∗v)µ−ρdv

=
1

(µ − ρ)dq2/2

∫
√

µ−ρ·Dq

∆(I − 1

µ − ρ
vv∗)µ−ρ dv

≥ 1

(µ − ρ)dq2/2

∫
√

µ−ρ·Dq

(
1 − tr((vv∗)2)

µ − ρ

)
e−〈v,v〉 dv

≥ C3(µ − ρ)−dq2/2

and thus κµ ≥ C4(µ − ρ)−dq2/2 for all µ ≥ 2ρ and some constant C3. The lemma is now a
consequence of Eq. (3.2).
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3.3 Lemma. There is a constant C = C(q) such that for all root-Lipschitz continuous
functions f on Πq with constant L, all ν1, ν2 ∈ M1(Πq) with m1(νi) < ∞, and all µ ≥ 2ρ,

|ν1 ∗µ ν2(f) − ν1 • ν2(f)| ≤ CL · m1(ν1) · m1(ν2)/
√

µ.

Proof. By Lemma 3.2,

|ν1∗µν2(f) − ν1 • ν2(f)|

≤
∫

Πq

∫

Πq

|δr ∗µ δs(f) − δr • δs(f)| dν1(r) dν2(s)

≤ CL√
µ

∫

Πq

∫

Πq

‖r‖ · ‖s‖ dν1(r) dν2(s) = CL
m1(ν1)m1(ν2)√

µ
.

3.4 Lemma. There is a constant C = C(q) such that for all root-Lipschitz continuous
functions f on Πq with constant L, all ν1, ν2, ν3 ∈ M1(Πq) with m1(νi) < ∞, and all µ ≥ 2ρ,

|(ν1 ∗µ ν2) • ν3(f) − (ν1 • ν2) • ν3(f)| ≤ CL · m1(ν1) · m1(ν2)/
√

µ.

Proof. For y ∈ Πq, consider the function fy(x) := f(x • y) on Πq. By the definition of • and
our definition of root-Lipschitz continuity, these fy are also root-Lipschitz continuous with
the same constant L. Therefore, by Lemma 3.3,

|(ν1∗µν2) • ν3(f) − (ν1 • ν2) • ν3(f)|

≤
∫

Πq

∣∣∣∣
∫

Πq

fy(x) d(ν1 ∗µ ν2)(x) −
∫

Πq

fy(x) d(ν1 • ν2)(x)

∣∣∣∣ dν3(y)

≤ CL · m1(ν1) · m1(ν2)/
√

µ.

For ν ∈ M1(Πq) and n ∈ N, we denote the n-fold convolution powers of ν w.r.t. the
convolutions ∗µ and • by ν(n,∗µ) and ν(n,•) respectively.

3.5 Lemma. For all ν ∈ M1(Πq) with m2(ν) < ∞, and all n ∈ N, µ > ρ − 1,

m1(ν
(n,∗µ)) ≤

√
n · m2(ν).

Proof. By the definition of the convolution ∗µ, the function m2 satisfies

δr ∗µ δs(m2) = m2(r) + m2(s) +
1

κµ

∫

Dq

tr(rvs + sv∗r) · ∆(I − vv∗)µ−ρ dv

for r, s ∈ Πq where the symmetry of the integrand and the substitution v 7→ −v immediately
yield that the integral is equal to 0. Therefore,

δr ∗µ δs(m2) = m2(r) + m2(s).

Integration yields that for all ν1, ν2 ∈ M1(Πq) with m2(νi) < ∞,

m2(ν1 ∗µ ν2) = m2(ν1) + m2(ν2).
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In particular we obtain by induction that for ν ∈ M1(Πq) with m2(ν) < ∞ and n ∈ N,

m2(ν
(n,∗µ)) = n · m2(ν).

Therefore, by the Cauchy-Schwarz inequality,

m1(ν
(n,∗µ)) =

∫

Πq

‖x‖ dν(n,∗µ)(x) ≤
(∫

Πq

‖x‖2 dν(n,∗µ)(x)

)1/2

=
√

n · m2(ν).

3.6 Remark. The preceding lemma has the following weaker variant under a weaker moment
condition: For all ν1, ν2 ∈ M1(Πq) and all µ > ρ − 1,

m1(ν1 ∗µ ν2) ≤ m1(ν1) + m1(ν2).

For the proof, observe that the convolution ∗µ has the property that for r, s ∈ Πq,

supp(δr ∗µ δs) ⊂ {t ∈ Πq : ‖t‖ ≤ ‖r‖ + ‖s‖};

see for instance Theorem 3.10 of [R]. Therefore,

m1(ν1 ∗µ ν2) =

∫

Πq

∫

Πq

(∫

Πq

‖r‖ d(δx ∗µ δy)(r)

)
dν1(x) dν2(y)

≤
∫

Πq

∫

Πq

(‖x‖ + ‖y‖) dν1(x) dν2(y)

= m1(ν1) + m1(ν2)

as claimed.

3.7 Proposition. Let ν ∈ M1(Πq) with m2(ν) < ∞. Then there is a constant C = C(q, ν)
such that for all root-Lipschitz continuous functions f on Πq with constant L, and all n ≥ 2,
µ ≥ 2ρ,

∣∣ν(n,∗µ)(f) − ν(n,•)(f)
∣∣ ≤ CL

n3/2

√
µ

.

Proof. We first observe that
∣∣ν(n,∗µ)(f) − ν(n,•)(f)

∣∣

≤
∣∣ν(n,∗µ)(f) − ν(n−1,∗µ) • ν(f)

∣∣ +
∣∣(ν(n−2,∗µ) ∗ ν) • ν(f) − ν(n−2,∗µ) • ν • ν(f)

∣∣

+ . . . +
∣∣(ν ∗ ν) • ν(n−2,•)(f) − ν(n,•)(f)

∣∣.

Moreover, by Lemmas 3.4 and 3.5, we have for k = 2, . . . , n that
∣∣ν(k,∗µ) • ν(n−k,•)(f) − ν(k−1,∗µ) • ν • ν(n−k,•)(f)

∣∣

≤ m1(ν
(k−1,∗µ)) · m1(ν) · C1L√

µ

≤ C1L

√
k − 1√

µ
m1(ν) ·

√
m2(ν)

with a suitable constant C1 > 0. Combining this with the preceding inequality and
∑n

k=1

√
k =

O(n3/2), the proposition follows.
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We now fix a probability measure ν ∈ M1(Πq) and consider for µ > ρ, the associated
random walk (Sµ

n)n∈N on Πq with law ν according to Definition 1.8.

3.8 Theorem. Let ν ∈ M1(Πq) with a finite fourth moment
∫
Πq

‖x‖4 dν(x) < ∞. Assume

that n2/µn → 0 for n → ∞. Then
(Sµn

n )2 − nσ2

√
n

tends in distribution for n → ∞ to the normal distribution N(0,Σ2) on the vector space Hq of
Hermitian q × q matrices, where Σ2 is the covariance matrix belonging to the image measure
Q(ν) ∈ M1(Πq) ⊂ M1(Hq) under the square mapping Q(x) := x2 on Πp.

Proof. Let f ∈ C0(Hq) be a Lipschitz-continuous function in the usual sense on Hq with the
Lipschitz constant L. Then, for n ∈ N, the functions

fn(x) := f
(x2 − nσ2

√
n

)

on Πq are root-Lipschitz with constants n−1/2L. Therefore, by Proposition 3.7 and the
assumptions of the theorem,

∣∣
∫

Πq

fn dν(n,∗µn ) −
∫

Πq

fn dν(n,•)∣∣ ≤ CL
n√
µ

n

→ 0 (3.3)

for n → ∞ with
∫

Πq

fn dν(n,∗µn ) =

∫

Πq

fn dPSµn
n

=

∫

Hq

fdP((Sµn
n )2−nσ2)/

√
n, (3.4)

where PX denotes the law of a random variable X. Moreover, as the square mapping Q(x) :=
x2 is a isomorphism from the semigroup (Πq, •) onto the semigroup (Πq,+), and denoting
the classical convolution of measures on Πq ⊂ Hq associated with the operation + by ∗, we
see that

∫

Πq

fn dν(n,•) =

∫

Πq

f

(
x2 − nσ2

√
n

)
dν(n,•)(x)

=

∫

Πq

f

(
x − nσ2

√
n

)
dQ(ν(n,•))(x)

=

∫

Πq

f

(
x − nσ2

√
n

)
d(Q(ν)(n,∗))(x) (3.5)

where the latter tends by the classical central limit theorem on the euclidean space Hq to∫
Hq

f dN(0,Σ2). Taking (3.3) and (3.4) into account, we obtain that

∫

Hq

fdP((Sµn
n )2−nσ2)/

√
n →

∫

Hq

f dN(0,Σ2) (3.6)

for n → ∞. As the space of Lipschitz continuous functions in C0(Hq) is ‖.‖∞-dense in
C0(Hq), a simple ε-argument together with the triangle inequality ensures that Eq. (3.6)
holds for all f ∈ C0(Hq). This completes the proof.
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We briefly consider the case of point measures ν = δx. In this case we have Σ2 = 0 and
we do not need to apply the classical CLT above. In particular, the first part of the preceding
proof leads to the following weak law:

3.9 Corollary. Let (an)n≥1 ⊂]0,∞[ an increasing sequence with an = o
(

n3/2

µ1/2

)
for n → ∞.

If ν = δx for some x ∈ Πq, then

(Sµn
n )2 − nx2

an
→ 0 in probability.

In particular, for an := n and n/µn → 0, we obtain Sµn
n /

√
n → x. We note that this

particular result was derived under much weaker conditions on the µn in [RV] by different
methods.

We finally note that a similar CLT is derived in [V3] for radial random walks on the
hyperbolic spaces when time and dimension tend to infinity similar as above.
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