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Abstract: The catalyst layer in a fuel cell can be described with the
help of a system of reaction diffusion equations for the protonic over-
potential and the oxygen concentration. The Tafel equation gives an
exponential law for the reaction rate, the Tafel slope is a coefficient
in this law. We present a rigorous thin layer analysis for two reaction
regimes. In the case of thin catalyst layers, the original Tafel slope
enters an effective boundary condition. In the case of large protonic
overpotentials we derive the effect of a double Tafel slope, essentially a
consequence of a thin active region within the catalyst layer.

Keywords: thin layer analysis, reaction diffusion, effective boundary condi-
tions, fuel cells, double Tafel slope

1 Introduction

The proton exchange membrane (PEM) fuel cell is an electrochemical device
that converts chemical into electrical energy. The membrane separates the two
gases hydrogen and oxygen. Protons diffuse through the membrane and react
in the cathode catalytic layer with oxygen. The electrons travel through the
external circuit and thus provide the electric current. The membrane is sepa-
rated from the flow chanels by gas diffusion layers (GDLs) which are chemically
inactive porous media.

The processes in the catalytic layer can be described with a system of two
reaction diffusion equations, see e.g. [2, 5, 9, 10, 16]. We follow the notation of
[2] and denote the protonic overpotential by η and the oxygen concentration by
C. The stationary situation is described by the following system for η and C.

∇ · (Mη∇η) = µηCe
η/b (1.1)

∇ · (MC∇C) = µCCe
η/b. (1.2)
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In these equations Mη and MC are effective diffusion constants, µη and µC are
effective reaction constants. The equations include a nonlinear source term of
exponential form. This source expresses the Tafel law: the reaction is propor-
tional to Ceη/b, where the positive constant b is the Tafel slope. Equations (1.1)
and (1.2) are effective equations that can be derived from microscopic models,
see e.g. [2, 5, 9] for physical derivations and [11] for a rigorous analysis with ho-
mogenization techniques. Definitions of non-dimensional coefficients and typical
values are available in [2, 11].

The interesting effect of a doubling of the Tafel slope for large overpotentials
can be observed experimentally and in simulations [7, 9, 14, 15]. The most
accessible averaged quantity is that of the total production F , see the definition
below. The observation is that, in a wide range of parameter values, F obeys
the exponential law (I) for some Tafel slope b, where k is a reference value of
the potential η. Instead, for extreme values of k, one observes the dependence
(II). This effect is known as the doubling of the Tafel slope. We mention that
even a quadruple Tafel slope is reported in [9].

(I) F (k) ∼ ek/b (II) F (k) ∼ ek/(2b)

In this contribution we derive laws (I) and (II) in different regimes of the
fuel cell parameters. We always start from the reaction diffusion system (1.1),
(1.2). In the limit of a thin catalyst layer we derive (I), in the limit of large
potential we derive (II). The precise statements are given in Theorem 1 below.

The limit analysis leading to (I) follows the lines of many classical applica-
tions of asymptotic analysis. In [6], a large source term in a small layer results in
an effective boundary condition for the bulk equation. A similar effect appears
in [1, 13] in an homogenization limit. In the much more involved equations of
elasticity, one is interested in equations on the lower dimensional limit of the
thin layers, see e.g. [12]. Reduced dynamics in thin films appear in micro-
magnetics, see e.g. [4]. Another application are phase field models and their
limits, see e.g. [3, 8]. We mentioned prototypical articles and refer also to the
references therein.

Concerning (II) we are not aware of any rigorous results. The effect of a
double Tafel slope is specific to the exponential form of the nonlinearity.

Main results

We describe here our system of equations in the one-dimensional case. The
diffusion constants Mη and MC can be incorporated into new effective reaction
rates µη and µC . A boundary value C1 ≥ 0 for the oxygen concentration at
the oxygen flow chanel is assumed to be given. We introduce two numbers that
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determine the overall regime of the reaction processes: The (small) number
δ > 0 denotes the thickness of the catalyst layer, the number k a boundary
value for the protonic potential (on the side of the PEM). We consider the
overpotential η = ηδ,k and the oxygen concentration C = Cδ,k. The thin catalyst
layer occupies the domain Ωδ = (0, δ), the total flow domain is Ω0 = (0, 1) and
consists of the catalyst layer and the adjacent GDL. We consider the equation
for η in Ωδ,

∂2
xη = µηCe

η/b in Ωδ, (1.3)

η(0) = k, ∂xη(δ) = 0, (1.4)

coupled to the equation for C in Ω0,

∂2
xC = µCCe

η/b1Ωδ
in Ω0, (1.5)

∂xC(0) = 0, C(1) = C1, (1.6)

where 1Ωδ
denotes the characteristic function of Ωδ. Of particular interest is

the total production or protonic flux

Fδ,k :=

∫ δ

0

µηCe
η/b = −∂xη(0).

For the one-dimensional case our results are collected in the following theo-
rem. It provides two effective models, one for thin catalyst layers, another for
high potentials. In the first regime we must scale the reaction constants with
δ in order to have a finite production in the thin layer; in the corresponding
effective model the catalytic layer is replaced by a boundary condition that in-
cludes the Tafel law. In the second regime we derive an explicit formula for the
total production in the thin layer. The formula shows the doubling of the Tafel
slope.

Theorem 1. Let Cδ,k and ηδ,k be solutions to equations (1.3)–(1.6) for C1 ≥ 0.
Then, for a universal constant q1 > 0, the following limits hold.

(i) For µη = µ∗η/δ, µC = µ∗C/δ, fixed k, µ∗η, µ
∗
C > 0, and any sequence δ → 0

there holds Cδ,k ⇀ C0,k weakly in H1(Ω0), where C0,k is determined by
the effective equation

∂2
xC

0,k = 0 in Ω0, (1.7)

∂xC
0,k(0) = µ∗CC

0,k(0)ek/b, C0,k(1) = C1. (1.8)

The production rate satisfies

Fδ,k

ek/b
→ µ∗ηC

0,k(0) =
µ∗ηC1

1 + µ∗Ce
k/b

as δ → 0. (1.9)
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(ii) Given a sequence k → ∞ and parameters µη > 0, δ = δ(k), µC = µC(k)
with δ(k) → δ0 ∈ [0, 1), δ(k)ek/(2b) → ∞, µC(k)ek/(2b) → µ̄C ≥ 0, and
δ(k)5 e5k/(2b)µC(k)→ 0. Then the total production satisfies

Fδ,k

ek/(2b)
→ q1

√
bµηC̄ for k →∞, (1.10)

where C̄ is defined by

C̄ + q1µ̄C(1− δ0)
√
b C̄/µη = C1.

We remark that solutions C0,k of (1.7)–(1.8) are affine, which immediately
implies the equality in (1.9). To illustrate the two cases of the theorem, typical
solutions are sketched in Figure 1. For an even more direct comparison of the
results we note the following. In case (i), for µ∗C → 0, formula (1.9) simplifies
to (1.11), whereas in case (ii), for µ̄C → 0, formula (1.10) simplifies to (1.12),

Fδ,k

ek/b
→ µ∗ηC1 as δ → 0, (1.11)

Fδ,k

ek/(2b)
→ q1

√
bµηC1 for k →∞. (1.12)

In Section 2 we analyze system (1.3)-(1.6) in the N -dimensional setting.
The effective equations are derived, the one-dimensional case provides (i) of the
theorem. The proof of (ii) is the aim of Section 3. We note that this second
result concerns small reaction constants µC . Numerical calculations for the
universal constant provide q1 ≈ 1.413.

2 Thin catalyst layers and moderate potential

In this section we prove the first part of Theorem 1 on rectangles in RN . The
space dimension N is arbitrary, we present results and proofs in the physical
case N = 3. For the boundary condition of η corresponding to (1.4) we write η0

instead of k. In this section, the function η0 is kept fixed and we suppress the
superscript k. Accordingly, we write Cδ, C0 and Fδ instead of Cδ,k, C0,k and
Fδ,k.

We analyze the case that the catalyst layer is thin and the reaction rates are
large. The two quantities are balanced in such a way that the total production
remains finite, i.e. µη and µC are of order 1/δ, we write µη = µ∗η/δ and µC =
µ∗C/δ. This assumption refers to fuel cells operating in a regime of high current
density. Referring to [2] we have, in SI units, δ of order 10−6, and µη and µC of
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Figure 1: Sketch of solutions ηδ,k of the one-dimensional system (1.3)-(1.6). On
the left we sketch the situation of (i), treated in Section 2: the solution for small
δ and moderate k is almost constant in the δ-layer. On the right we sketch case
(ii), treated in Section 3: the fast decay of the solution reduces the width of the
active layer and results in the double Tafel slope.

the order 104 (we used a current density i0 of order 10−2, and refer once more
to the collection of typical values in [11]).

We investigate the geometry sketched in Figure 2. The domain of interest
is composed of the homogenized catalyst layer Ωδ = (0, L1)× (0, L2)× (0, δ) of
thickness δ, and the gas diffusion layer Ω0δ = (0, L1) × (0, L2) × (δ, L3). The
reactions are confined to the layer Ωδ, in the limit δ → 0 we expect an effective
equation posed on the entire domain Ω0 = (0, L1)× (0, L2)× (0, L3) with a non-
homogeneous boundary condition on the boundary Σ0 = (0, L1)× (0, L2)×{0}
at the reactive side. As additional notation we use Σδ = (0, L1)×(0, L2)×{δ} for
the interface between gas diffusion layer and catalyst layer, and Σ1 = (0, L1)×
(0, L2)×{L3} for the non-reactive boundary, and denote by n the normal vector
to Ω0δ. For simplicity of notation we always impose periodicity conditions on
the remaining boundaries. We study the following macroscopic equations for the
overpotential η and the oxygen concentration C. To emphasize the dependence
on δ we write ηδ : Ωδ → R for the overpotential and Cδ : Ω0 → R for the oxygen
concentration.

∇ · (Mη∇ηδ) =
1

δ
µ∗ηC

δeηδ/b in Ωδ (2.1)

ηδ = η0 on Σ0 (2.2)

n · (Mη∇ηδ) = 0 on Σδ (2.3)

∇ · (MC∇Cδ) =
1

δ
µ∗CC

δeηδ/b1Ωδ
in Ω0 (2.4)

n · (MC∇Cδ) = 0 on Σ0 (2.5)

Cδ = C1 on Σ1 (2.6)
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Figure 2: Geometry of the δ-problem and the effective domain for L3 = 1. In
the limit domain Ω0 = Ω0δ ∪ Σδ ∪ Ωδ, the reaction term appears as a nonlinear
boundary condition on the left boundary Σ0.

For the derivation of effective equations it is useful to introduce the averaged
overpotential as

η̄δ(x1, x2) = −
∫ δ

0

ηδ(x1, x2, y) dy, η̄δ : Σ0 → R.

We will identify functions ϕ : Σδ → R with ϕ : Σ0 → R.

Theorem 2. (Effective equations in thin catalyst layers) Let ηδ, Cδ be a weak
solution of (2.1)–(2.6) and let the boundary conditions be given by η0 ∈ H1(Σ0)∩
L∞(Σ0) and C1 ∈ H1(Ω0) ∩ L∞(Ω0), C1 ≥ 0. Then, for every sequence δ → 0
there holds

η̄δ → η0 strongly in L2(Σ0) (2.7)

Cδ ⇀ C0 weakly in H1(Ω0) (2.8)

where C0 satisfies weakly the effective equations

∇ · (MC∇C0) = 0 in Ω0 (2.9)

n · (MC∇C0) = −µ∗CC0eη0/b on Σ0 (2.10)

with the other boundary conditions remaining unchanged. The production rate
satisfies

Fδ =

∫ δ

0

µηC
δeηδ/b → µ∗η

∫
Σ0

C0eη0/b for δ → 0.
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Proof. We start with the a priori estimates for the sequence (Cδ, ηδ) of solutions.
Uniform bounds. The maximum principle can be applied to the oxygen

concentration Cδ since the factor
µ∗C
δ
eηδ/b on the right-hand side of (2.4) is non-

negative. In particular, we obtain

0 ≤ Cδ ≤ ‖C1‖L∞(Ω0). (2.11)

The non-negativity of Cδ implies that the right-hand side of (2.1) is non-
negative. The maximum principle for ηδ implies the upper bound

sup
Ωδ

ηδ ≤ sup
Σ0

η0. (2.12)

Note that we only have an upper bound for ηδ, but this already provides a
uniform bound of the exponential term eηδ/b.

Energy estimates. We extend the boundary values η0 trivially to the function
η0(x1, x2, x3) = η0(x1, x2) and multiply (2.1) with ηδ − η0. An integration over
Ωδ yields∫

Ωδ

Mη∇ηδ · ∇ηδ +
1

δ

∫
Ωδ

µ∗ηC
δeηδ/bηδ =

∫
Ωδ

Mη∇ηδ · ∇η0 +
1

δ

∫
Ωδ

µ∗ηC
δeηδ/bη0.

The uniform bounds for Cδ and eηδ/b provide the boundedness of the second
integral on the right-hand side. Since the function ξeξ is bounded from below
for all ξ ∈ R we additionally have a uniform lower bound for the second integral
on the left-hand side. We conclude that the H1(Ωδ)-norm of ηδ is bounded, in
particular ‖∇ηδ‖L2(Ωδ) ≤ c. Furthermore, we have by Poincaré’s inequality

‖η̄δ − η0‖L2(Σ0) =

∥∥∥∥−∫ δ

0

(ηδ − η0)

∥∥∥∥
L2(Σ0)

≤ 1

δ1/2

∥∥ηδ − η0

∥∥
L2(Ωδ)

≤ δ1/2
∥∥∇(ηδ − η0)

∥∥
L2(Ωδ)

≤ cδ1/2,

and therefore the strong convergence of η̄δ, i.e. (2.7).
We now multiply (2.4) with Cδ − C1 and integrate over Ω0. We obtain∫

Ω0

MC∇Cδ · ∇Cδ +

∫
Ωδ

1

δ
µ∗CC

δeηδ/b(Cδ − C1) =

∫
Ω0

MC∇Cδ · ∇C1.

The second integral on the left hand side is bounded from below by the uniform
bounds for Cδ, C1, and eηδ/b. Hölder’s estimate yields the boundedness of Cδ

in H1(Ω0). In particular, we can select a weakly convergent subsequence with
a limit as in (2.8).
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The equations for C0. Multiplication of (2.4) with ϕ ∈ D(Ω0 ∪ Σ0) and an
integration over Ω0 yields∫

Ω0

MC∇Cδ · ∇ϕ+

∫
Ωδ

1

δ
µ∗CC

δeηδ/bϕ = 0. (2.13)

In the first integral we can pass to the limit by the weak convergence of Cδ.
Lemma 1 below provides the nontrivial limit∫

Ωδ

1

δ
µ∗CC

δeηδ/bϕ→
∫

Σ0

µ∗CC
0eη0/bϕ

for δ → 0. Thus, the limit equation of (2.13) is∫
Ω0

MC∇C0 · ∇ϕ+

∫
Σ0

µ∗CC
0eη0/bϕ = 0,

which is the weak form of (2.9)-(2.10). The limit problem has a unique solution,
therefore the whole sequence converges.

The limit expression for the production rate. Setting ϕ = 1 in (2.14) yields

Fδ =

∫ δ

0

µηC
δeηδ/b = µ∗η −

∫ δ

0

Cδeηδ/b → µ∗η

∫
Σ0

C0eη0/b for δ → 0.

This was the claim.

In the above proof we used a convergence result which is the consequence of
the fact that ηδ has small variations in the thin layer Ωδ.

Lemma 1. Let ηδ, Cδ be the solutions of (2.1)–(2.6) as in Theorem 2, with
boundary condition η0 and limit C0, and let ϕ ∈ C0(Ω̄0). Then

−
∫

Ωδ

Cδeηδ/bϕ→
∫

Σ0

C0eη0/bϕ for δ → 0. (2.14)

Proof. First step. We claim that the averages of Cδ converge weakly,

−
∫ δ

0

Cδ(., y) dy ⇀ C0

∣∣∣∣
Σ0

weakly in L2(Σ0) for δ → 0. (2.15)

Indeed, the trace theorem provides the boundedness of every restriction of Cδ

to a two-dimensional subset Σy := {(x, y) : (x, 0) ∈ Σ0} with the bound

‖traceΣyC
δ‖L2 ≤ c‖Cδ‖H1(Ω0) ≤ c.
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Jensen’s inequality implies that also the average of traces is bounded in L2,∥∥∥∥−∫ δ

0

Cδ(., y) dy

∥∥∥∥
L2(Σ0)

=

∥∥∥∥1

δ

∫ δ

0

traceΣyC
δ

∥∥∥∥
L2(Σ0)

≤ 1

δ

∫ δ

0

∥∥traceΣyC
δ
∥∥

L2(Σ0)
≤ c.

The boundedness of −
∫ δ

0
Cδ in L2(Σ0) allows to choose a subsequence and a

function g ∈ L2(Σ0) with

−
∫ δ

0

Cδ ⇀ g weakly in L2(Σ0) for δ → 0.

It remains to identify g = traceΣ0C
0, which also provides the convergence of the

original sequence. To this end we let ψ ∈ C1
0(Ω0 ∪Σ0) be an arbitrary function

and calculate ∫
Σ0

(
−
∫ δ

0

Cδ

)
ψ =

1

δ

∫ δ

0

∫
Σy

Cδψ +O(δ)

= −1

δ

∫ δ

0

∫
(0,L1)×(0,L2)×(y,L3)

∂

∂y
(Cδψ) +O(δ)

→ −
∫

Ω0

∂

∂y
(C0ψ) =

∫
Σ0

C0ψ

for δ → 0. The left hand side converges to
∫

Σ0
gψ(., 0), we have therefore

identified g and (2.15) is shown.
Second step. For the auxiliary function

uδ(x1, x2, y) = eηδ(x1,x2,y)/b − eη0(x1,x2)/b

we have due to Poincaré’s inequality

1

δ

∫
Ωδ

|uδ|2 ≤ cδ

∫
Ωδ

|∇uδ|2 → 0. (2.16)

Here we used that in ∇eηδ/b = 1
b
eηδ/b∇ηδ the exponent ηδ is uniformly bounded

from above by the maximum principle and ∇ηδ is uniformly bounded in L2(Ωδ).
We can now perform the calculation for the product. For (x1, x2) fixed we find(

−
∫ δ

0

Cδeηδ/b

)
= −

∫ δ

0

Cδeη0/b +−
∫ δ

0

Cδ
[
eηδ/b − eη0/b

]
= eη0/b −

∫ δ

0

Cδ +−
∫ δ

0

Cδuδ,
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and therefore, by (2.16),

−
∫

Ωδ

Cδeηδ/bϕ =

∫
Σ0

(
−
∫ δ

0

Cδeηδ/b

)
ϕ(·, 0) + o(1)

=

∫
Σ0

{(
−
∫ δ

0

Cδ

)
(x1, x2)e

η0(x1,x2)/bϕ(x1, x2, 0)

}
dx1 dx2 + o(1)

for all ϕ ∈ C0(Ω̄0). The weak L2(Σ0)-convergence of the Cδ-average in (2.15)
provides the result.

3 Thin catalyst layers at high potentials

In this section we are interested in the effect of a double Tafel slope, case (ii) of
Theorem 1. We have to analyze the one-dimensional system (1.3)-(1.6) in the
limit of high potentials, k →∞. Omitting the dependence on δ, we now write
ηk and Ck for solutions. We recall that we are given a sequence k → ∞ and
that the parameters δ = δ(k) and µC = µC(k) satisfy δ(k)4µC(k)e5k/(2b) → 0
and δ(k)ek/(2b) →∞. Our aim is to derive (1.10).

Physically, the above asymptotic behavior of the parameters reflects the
case that the oxygen diffusion is large enough to provide an almost constant
oxygen concentration in the whole catalyst layer. This situation of large oxygen
diffusion D ∼ 1/µC is also analyzed in [9].

In Subsection 3.1 we consider the case of a constant oxygen concentration
C̄ ∈ [0,∞) in the whole catalyst layer, the corresponding potential is denoted
by η̄k. We derive the limit of the production rate (1.10) in this simplified case.

In Subsection 3.2 we compare the solution for large oxygen diffusion with
the solution of constant oxygen distribution. In the case of a large diffusion
constant, the two solutions (Ck, ηk) and (C̄, η̄k) are similar and we conclude the
theorem.

3.1 Production rate for constant oxygen concentration

We assume here a constant oxygen concentration C̄ ≥ 0 in the whole cata-
lyst layer (0, δ). Equations (1.3)-(1.6) then reduce to the following ordinary
differential equation for η̄k.

∂2
xη̄

k = µηC̄e
η̄k/b in (0, δ) (3.1)

η̄k(0) = k (3.2)

∂xη̄
k(δ) = 0. (3.3)
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We are interested in the limit k →∞ and in a limit expression for the production
rate

F̄k = −∂xη̄
k(0) = µη

∫ δ

0

C̄eη̄k/b. (3.4)

We will analyze equation (3.1) with methods of ordinary differential equation
theory. The expression (3.8) of Proposition 1 provides the double Tafel slope in
the case of constant C.

Our result is based on the following transformation of (3.1). We write shorter
η = η̄k for the solution of (3.1) - (3.3) and introduce

θ = θk :=
eη/b

ek/b
and y := xek/(2b).

In the y-coordinate, the right end-point of the equation is in y0 = δek/(2b). With
c = µηC̄/b we calculate

∂2
xη = ∂2

x[b log(θek/b)] = ∂x

[
b
∂xθ

θ

]
= bek/b∂y

[
∂yθ

θ

]
= bek/b

[
∂2

yθ

θ
− (∂yθ)

2

θ2

]
µηC̄e

η/b = bek/b cθ.

We see that the η-equation (3.1) is equivalent to the θ-equation (3.5). In the
next proposition the ordinary differential equation (3.5) is analyzed. Note that
initial conditions instead of boundary conditions are imposed for this result.

Proposition 1. Consider, for given q, c ∈ [0,∞), the ordinary differential
equation

∂2
yθ −

1

θ
(∂yθ)

2 = c θ2 (3.5)

θ(0) = 1 (3.6)

∂yθ(0) = −q (3.7)

for θ = θ(y) on y ∈ (0,∞). Then there exists a critical value q∗ = q∗(c) ∈ (0,∞)
such that the solutions θ = θq of (3.5)-(3.7) satisfy

For q > q∗, the solution θ = θq is monotonically decreasing,
for q < q∗, the solution θ = θq is positive and unbounded.

The dependence of the critical value on c is given by q∗(c) = q1
√
c with q1 :=

q∗(1). Numerically, we determined q1 ≈ 1.413.
The production rate of (3.4) satisfies

F̄k

ek/(2b)
→ b q∗(c) = q1

√
bµηC̄ for k →∞. (3.8)
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Proof. First step. Properties of solutions. Let θ be a solution of (3.5) on a
maximal interval of existence (0, yq). We note that θ can never reach 0; this can
be concluded e.g. from the transformed equation (3.1) which, by the positivity
of the right hand side, admits only linear growth to −∞ for η = b log(θek/b).
We furthermore note that θ is smooth on (0, yq).

The derivative ∂yθ(0) = −q is non-positive, hence there exists a maximal
ymin ∈ (0, yq] such that θ is monotonically decreasing on (0, ymin). Assume that
ymin < yq such that ∂yθ(ymin) = 0. In this case, the solution is monotonically
increasing on (ymin, yq); due to the quadratic nonlinearity, the solution is un-
bounded. We conclude that solutions have only two possibilities. (a) they are
monotonically decreasing on (0,∞) or (b) they are positive and decreasing on
(0, ymin), and increasing and unbounded on (ymin, yq). We refer to Figure 3 for
a sketch of the phase portrait.

u

u
.

−q   *

Figure 3: Phase portrait for equation (3.5). The thick line is the solution for
initial derivative q∗ and separates the region with bounded solutions from the
region with unbounded solutions.

We can now define q∗ by

q∗ := supQ, Q := {q ≥ 0 | the solution θ = θq is unbounded}. (3.9)

For q = 0, the solution θ is increasing on (0, y0) and unbounded. In particular
we conclude that the set Q is not empty. The claim in the second step below
verifies that the set Q is bounded. These two observations show that q∗ ∈ (0,∞)
is well-defined. It remains to observe that for two number q2 > q1 ≥ 0 holds:
If the solution θ2 corresponding to q2 is unbounded, then also the solution
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θ1 corresponding to q1 is unbounded. This can be concluded from the phase
portrait, formally by concluding ∂yθ2(y) − (∂yθ1)(Y (y)) ≤ 0, where Y (y) is
chosen such that θ2(y) = θ1(Y (y)).

Second step. Solutions with fast decay. The aim of this step is to verify the
following

Claim: For q2 ≥ 4c the solution θq satisfies, for all y ∈ (0,∞),

0 < θq(y) ≤ e−
q
2
y, (i)

∂yθq

θq

< −q
2
. (ii)

Proof of the claim. Assume that (i) is satisfied on (0, y0). We claim that
this implies that also (ii) is satisfied until y0. Indeed, the derivative satisfies

∂y

(
∂yθq

θq

)
=
∂2

yθq

θq

− (∂yθq)
2

(θq)2
= cθq ≤ ce−

q
2
y.

Initially, we have ∂yθq

θq
(0) = −q. This provides the estimate

∂yθq

θq

(y) ≤ −q +

∫ y

0

ce−
q
2
y dy < −q +

2c

q
≤ −q

2
.

On the other hand, let (ii) be satisfied until y0. Then

∂yθq < −
q

2
θq

implies that (i) is strictly satisfied until y0 and is, by continuity, also satisfied
on a larger interval. We conclude that (i) and (ii) are satisfied on R+ and have
thus verified the claim.

The dependence q∗(c) = q∗(1)
√
c follows immediately by a scaling argument

with the substitution z =
√
cy.

Third step. Limit of the production rate. We keep c fixed and omit the c-
dependence in the following. For the sequence of solutions η = η̄k of (3.1)–(3.3)
we consider

θ = θk =
eη/b

ek/b
, y0 = y0(k) = δ(k)ek/(2b),

such that θ solves (3.5)-(3.7) on (0, y0). The unknown value q = qk = −∂yθk(0)
is determined by the boundary condition ∂yθk(y0) = 0. We note that θk ≥ 0
holds by definition of θ and that θk is monotonically decreasing on (0, y0) because
of ∂yθk(y0) = 0. The initial condition satisfies qk ≤ q∗, since a continuation of
the solution θk beyond y0 is necessarily unbounded. The boundedness of the



14 M. Lenzinger and B. Schweizer

Figure 4: Numerical solutions of system (3.5)-(3.7). The results were obtained
by M. Mihailovici using MATLAB.

derivatives qk allows to choose a subsequence k → ∞ such that qk → q∞ for
some limiting value q∞ ≤ q∗.

The functions θk, defined on (0, y0(k)) with y0(k) → ∞, are uniformly
bounded with uniformly bounded second derivatives. We may therefore as-
sume that our subsequence satisfies θk → θ∞ uniformly on compact subsets of
[0,∞). By the boundedness of the second derivatives, also the first derivatives
converge uniformly and we find −q∞ ← −qk = ∂yθk(0) → ∂yθ∞(0). The limit-
ing function θ∞ inherits the properties of θk: it is a solution of (3.5) and it is
bounded by 1. This implies q∞ ≥ q∗ and we have thus verified qk → q∞ = q∗.

The production rate is

F̄k = −∂xη̄
k(0) = −ek/(2b) b ∂y[log(θke

k/b)]

∣∣∣∣
y=0

= −b ek/(2b)∂yθk(0)

θk(0)
,

hence
F̄k

ek/(2b)
= −b∂yθk(0) = bqk −→

k→∞
bq∗ = bq1

√
c.

Recalling c = µηC̄/b, this concludes the proof of (3.8).

Numerically, we determined the value q1 = 1.413±0.002. We refer to Figure
4 for the shape of solutions for various values of q.
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3.2 Asymptotic behavior in case of large oxygen diffu-
sion

The aim of this subsection is to determine the asymptotic behavior of the total
production Fk for the coupled system of equations (1.3)-(1.6) in the limit k →
∞. In the case of a small reaction constant µC = µC(k) we are able to compare
these solutions (Ck, ηk), in the catalyst layer, with a family of solutions (C̄, η̄k)
of (3.1)-(3.3). The subsequent proposition concludes the proof of Theorem 1.

Proposition 2. Let µη > 0, let k →∞ be a sequence and δ = δ(k), µC = µC(k)
be parameters with δ(k) → δ0 ∈ [0, 1), δ(k)ek/(2b) → ∞, µC(k)ek/(2b) → µ̄C ∈
[0,∞), and δ(k)5 e5k/(2b)µC(k) → 0. Let (ηk, Ck) be the corresponding solution
of (1.3)-(1.6). Let the real number C̄ ≥ 0 be the unique solution of

C̄ + q1µ̄C(1− δ0)
√
b C̄/µη = C1 (3.10)

and η̄k be the solution of (3.1)-(3.3), according to C̄. Then the following con-
vergences hold.

(i) ‖Ck − C̄‖L∞((0,δ(k))) → 0 and ‖ηk − η̄k‖L∞((0,δ(k))) → 0 for k →∞,

(ii)
Fk

ek/(2b)
→ q1

√
bµηC̄ for k →∞.

Proof. We first note that from the assumptions we also have the decays
δ2(k)ek/bµC(k)→ 0, δ3(k)e3k/(2b)µC(k)→ 0, and δ4e2k/bµC(k) as k →∞.

First step. Convergence of Ck. From the maximum principle we know the
bounds 0 ≤ Ck ≤ C1 and ηk, η̄k ≤ k. In particular, we have Ck(0) ∈ [0, C1] and
we find a subsequence and C̄ ∈ [0, C1] such that Ck(0) → C̄ for k → ∞. We
will later derive the characterizing relation (3.10) for this limit C̄.

Integrating equation (1.5) we obtain for any x ∈ Ω0

∂xC
k(x) =

∫ x

0

µC(k)Ckeηk/b1Ωδ
≤ δµC(k)C1e

k/b,

and therefore, for all x ∈ [0, δ],

Ck(x)− Ck(0) =

∫ x

0

∂xC
k ≤ δ2µC(k)C1e

k/b.

By monotonicity of Ck we find, in particular, the Ck-convergence of (i).
Second step. Convergence of ηk. We subtract the equations (1.3) and (3.1)

and test with the difference (ηk − η̄k). We obtain∫ δ

0

|∂x(η
k − η̄k)|2 =

∫ δ

0

(C̄ − Ck)eηk/b(ηk − η̄k)− C̄
∫ δ

0

(eηk/b − eη̄k/b)(ηk − η̄k).
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Due to the monotonicity of the exponential function the second integral on
the right-hand side is nonnegative such that Hölder’s and Poincaré’s inequality
allow to estimate∫ δ

0

|∂x(η
k − η̄k)|2 ≤

∫ δ

0

(C̄ − Ck)eηk/b(ηk − η̄k)

≤ δ3/2ek/b‖C̄ − Ck‖∞ ‖∂x(η
k − η̄k)‖L2(Ωδ).

The last estimate implies, with the fundamental theorem of calculus,

‖ηk − η̄k‖∞ ≤ δ1/2‖∂x(η
k − η̄k)‖L2(Ωδ) ≤ δ2ek/b‖C̄ − Ck‖∞ ≤ δ4µC(k)C1e

2k/b.

We find, in particular, the ηk-convergence of (i).
Third step. Convergence of Fk. Comparing the total production Fk corre-

sponding to ηk with the production F̄k corresponding to η̄k we obtain

1

µη

|Fk−F̄k| =
∣∣∣∣∫ δ

0

(Ckeηk/b − C̄eη̄k/b)

∣∣∣∣ ≤ δ ek/b‖Ck−C̄‖∞+δ C1‖eηk/b−eη̄k/b‖∞.

Since |eηk(x)/b − eη̄k(x)/b| ≤ 1
b
ek/b|ηk(x)− η̄k(x)| for all x ∈ Ωδ we conclude

1

µη

|Fk − F̄k| ≤ δ ek/b‖Ck − C̄‖∞ + δ
C1

b
ek/b‖ηk − η̄k‖∞

and from the results of the first and second step we have

1

µη

|Fk − F̄k| ≤ δ3C1 µC(k)e2k/b + δ5 C
2
1

b
µC(k)e3k/b. (3.11)

Finally, with the assumption on the decay of δ(k)5µC(k), we obtain∣∣∣∣ Fk

ek/(2b)
− q1

√
bµηC̄

∣∣∣∣ ≤ ∣∣∣∣ Fk

ek/(2b)
− F̄k

ek/(2b)

∣∣∣∣ +

∣∣∣∣ F̄k

ek/(2b)
− q1

√
bµηC̄

∣∣∣∣
where the right-hand side tends to 0 as k →∞ due to the estimate (3.11) and
Proposition 1. This shows (ii).

Fourth step. Characterization of C̄. Since ∂2
xC

k = 0 on (δ, 1), the first
derivative of Ck is constant on (δ, 1) and we obtain

∂xC
k(δ) =

C1 − Ck(δ)

1− δ
.

Due to the definition of the total production we can calculate

µ̄Cq1

√
bµηC̄ ← µC(k)Fk = µη

∫ δ

0

∂2
xC

k = µη∂xC
k(δ)

= µη
C1 − Ck(δ)

1− δ
→ µη

C1 − C̄
1− δ0

by the first step.
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