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Abstract

The Security Architecture for Microprocessors (SAM ) is a lightweight and high-performance
combined hard- and software security extension for microprocessors. SAM has been designed
to provide a secure remote code execution environment. It can be used to implement effective
copy-protection schemes and provides mechanisms to prevent data and algorithm disclosure.
SAM provides protection even if an attacker has full access to both the operating system and
hardware. SAM uses an enhanced processor core which can be used as a drop in replacement
for a standard processor to provide transparent encryption and hashing of memory contents to
prevent external tampering and sniffing attacks. Further internal security-related extensions
support a secure operating system implementation. Both the hardware and software design
are presented in this thesis.
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Chapter 1

Introduction

The digital revolution and the omnipresence of computers has changed our life and our sense
of justice. With the mp3 compression format and the availability of small players digital
music is now a part of everybody’s life. The same applies for digital videos and movies as
well as for computer games and software. One of the reasons why digital multimedia content
is getting more and more successful is their availability. Everything can be downloaded from
the Internet, regardless of copyright and distribution restrictions. Most people do not even
feel that they are breaking laws when they are copying digital contents. One reason for this is
that the ownership and distribution of physical goods can easily be defined, but this is not the
case for digital data like programs or digital multimedia content. This can be illustrated by
the following example: Digital data can be produced by companies, just like physical goods.
When producing physical goods like cars, a lot of effort is required for both development and
production. This is typically not the case for digital data. Here, the effort for development is
much higher than for production. This is due to the fact that digital data can easily be copied
or reproduced once it has been created. A car, for example, has to be physically moved to
the customer, and the customer has to buy another car in case he needs another one.
However, this does not apply to digital data. It can be copied without notable effort, and
broadband Internet connections have replaced previous distribution channels requiring phys-
ical data mediums like compact discs. Due to the success of CD and DVD burners and the
growth of hard disk capacities, it is possible to permanently store huge amounts of data. This
includes copyrighted work like programs or multimedia data.
The laws have been adjusted to meet the properties of digital data. But this is not sufficient,
since people break the laws regularly, if it is easy (like driving faster than allowed) and hard to
prove. Therefore, digital data requires other protection schemes than physical goods. While
physical goods can easily be protected against theft, this is not possible for digital data,
because digital data has to be copied all the time and it is not easy to distinguish between
allowed and forbidden copying. Typically, data is copied from the hard disk or an optical
medium to main memory and then copied into the processor.
There are copy-protection schemes relying on additional verifications during runtime. For
example, a program may request permission from a license server before it starts. But these
kind of verifications can easily be broken just by removing the check from the program code.
Since this is mostly impossible for inexperienced users, a lot of programs designed to remove
these copy-protection checks exist.
Protecting software against unauthorized distribution is one goal of the Security Architecture

1
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for Microprocessors (SAM ), but it is not the only one. In some cases the program itself has
to be protected against external analysis. This is comparable to physical goods, where the
production process is kept secret to prevent replicas of the same quality produced by competi-
tors. For programs, all know-how is represented in the programs algorithms. If a competitor is
able to analyze these algorithms, he is able to write programs of similar performance or qual-
ity. Especially multimedia content is distributed in encrypted form to prevent unauthorized
copying. But the program used to display the content has to be able to decrypt the data. If
it is now possible to analyze the program, an attacker may be able to analyze the decryption
algorithm or to extract the encryption key.
Another scenario where digital data protection is required is GRID computing. In GRID
environments, simulation data and programs are spread all over the world to be executed
on computing clusters. Typically, the submitter of these programs cannot ensure that the
executing computers are well administered and the simulation programs with the computed
data cannot be analyzed or modified by third parties. Today, this limitation prevents the
commercial usage of GRID computing, due to the probability of spy attacks by competitors.
There are other areas which would benefit from additional software protection, as for example
in mobile agent scenarios, where programs (the mobile agents) are transferred and executed
on several computer systems to perform tasks in behalf of the agent’s owner. These agent-
based systems can work reliably only if the agent can perform its tasks without any external
tampering attempts. For example, it could be possible to modify the agent’s collected results
to spoof the agent’s owner. There are solutions available for some of these problems [80], but
there is no general approach.
Software only protection schemes are limited, because they cannot prevent memory-based
attacks like memory dumps performed by the administrator. Even a protected execution en-
vironment which prevents execution of unauthorized software cannot prevent memory attacks
if hardware supported bus sniffers are used. This kind of attack has been noticed by the broad
public when the copy-protection of the XBox [36] has been analyzed by bus sniffing.
Likewise, a hardware-only approach has limitations in a multitasking environment as well,
because programs interact with other programs and access data over the network or on the
hard disk. Hence, in a multitasking environment any possible attack based on the (modified)
operating system has to be prevented as well as hardware-based attacks. With a fully un-
trusted operating system, all tasks required to support secure multitasking would have to be
implemented in hardware. This might be possible but requires more complex and expensive
chip designs. Hence, hardware only protection schemes can be used only for small systems
like smart cards or microcontrollers. But these approaches are restricted due to limitations in
terms of available memory, computing power or network and file system access.
Most new technologies require some time before they are accepted and widely used. Therefore,
most new technologies are first developed as an optional add-on to existing technologies.
Hence, the acceptance of a security extension for computer systems can be improved if it is
implemented as an optional extension, which can be used but is not mandatory to be activated
to raise their acceptance. Furthermore, more security should not result in less flexibility from
the user’s point of view. A secure system which limits the number of programs to be executed
or requires only new and adjusted software without compatibility to existing software is not
likely to be accepted.
Hence, the Security Architecture for Microprocessors (SAM ) has been developed as a drop in
replacement for a standard RISC processor by providing full downward compatibility. Other
hardware parts remain unchanged, only the operating system has to be adjusted to take
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advantage of the new protection mechanisms for a secure user environment. The processor
has been extended to provide strong cryptographic functions used to transparently encrypt,
decrypt and hash memory contents to protect all program-related data.
In the following, the term protected program refers to a program designed to use the SAM
protection mechanisms. An unprotected program is a normal program which uses none of
SAM’s protection parts.
This work is structured as follows. Part I provides an overview of existing technologies that can
be used to protect programs. It starts in chapter 2 with basic protection mechanisms on the
processor level. Chapter 3 shows threats for current computer systems and software. A short
overview of cryptographic functions is given in chapter 4, followed by security architectures
based on cryptographic algorithms in chapter 5.
Part II describes SAM in detail. At first the SAM design goals are presented in chapter 6.
Chapters 7 and 8 describe the architecture and the memory protection mechanisms. The next
chapters describe sample implementations of SAM . This includes two processor designs in
chapter 9, an operating system design in chapter 10, a cache implementation in chapter 11
and a sample application design in chapter 12. Chapter 13 analyzes the security of SAM . The
simulation environment and simulation results are presented in chapter 14. Finally, chap-
ter 15 concludes this work. The appendices A and B list simulation results and configuration
parameters.
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Chapter 2

Computer and Operating System
Architecture from a Security Point
of View

This chapter gives a brief overview of modern microprocessors and operating system kernels.
Beside a presentation of the basic functions of a processor and an operating system, this
chapter provides an overview of the software protection mechanisms of current operating
systems.

2.1 Processor Overview

Today’s processor architectures can be divided into CISC (Complex Instruction Set Comput-
ing) and RISC (Reduced Instruction Set Computing) architectures [33]. CISC architectures
have a longer history and their instruction set provides a lot of functionality. The instructions
have different sizes based on their information content. Since not all instructions have the
same complexity, their execution time is different. Many CISC architectures provide a small
number of general-purpose registers but allow memory contents as operands.
In contrast to CISC processors, RISC processors have a simple instruction set. For example,
the first versions of the SPARC [85] architecture did not provide multiplication or division
instructions. These operations had to be emulated using a couple of more simple instructions.
To simplify memory access all instructions have the same size, a mostly similar runtime and
instruction format. These properties are then used to increase execution performance by using
pipelining. Compared to CISC processors, RISC processors typically have a large number of
general-purpose registers, but operands stored in memory cannot directly be addressed by
instructions except for dedicated load and store instructions (Load/Store architecture).
Along with the general-purpose registers most processors contain a number of special registers.
Sometimes the special registers are accessible by dedicated instructions only or they are for
internal use only. Examples for values stored in special register are:

• The Program Counter (PC) or Instruction Pointer (IP) which always points to the
currently executed instruction.

• Interrupt-related registers to enable or disable interrupts.

6
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• The current privilege level, because some instructions require special privileges to be
executable. Most processors provide at least two levels: supervisor mode and user mode.

Many modern processors cannot be classified as RISC or CISC, because they use a hybrid
approach. Intel, for example, translates CISC instructions to one or more so-called “µOps”
[9]. These µOps are less complex and can therefore be processed much faster.

2.1.1 Instruction Set Protection Mechanisms

Most processor architectures provide protection mechanisms on the instruction set level by
providing at least two modes of operation: user and supervisor mode. User mode defines a
normal operation mode for programs without granting additional privileges like direct access
to all instructions, memory and processor configuration registers used for memory manage-
ment or interrupt handling (see below). These operations are limited to supervisor mode, and
this mode is dedicated to the Operating System (OS).

2.1.2 Virtual Memory

A processor supporting virtual memory distinguishes between addressable and physically
available memory. For 32-bit architectures the addressable memory region covers 232 bytes,
but there may be more or less physical RAM (Random Access Memory) available.
The virtual address space is typically divided in pages with a typical size of at least 4096
bytes, and they can be mapped to physical memory using a page table. Beside the mapping
information the page table contains additional data for memory access permission like read,
write or execute permissions. All of these functions are provided by the Memory Management
Unit (MMU). To speed up mapping of virtual pages to physical pages, a Translation Lookaside
Buffer (TLB) can be used. This buffer stores a certain number (for example 16) of the last
accessed page mappings to prevent page table accesses when these mappings are needed again.
Some architectures provide direct hardware support for several processes, called “contexts”,
running at the same time. Read or write access can then be granted individually for each
context and each page. For architectures supporting only one context a new page table has
to be provided manually and the TLB has to be flushed.
Each time a virtual page is not mapped to a physical page or on insufficient access permission
an interrupt is raised. This mechanism can be used to further extend the physical memory by
for example storing pages on hard disk and loading them to Random Access Memory (RAM)
on access.

2.1.3 Memory Hierarchy

All available memory in a computer is organized hierarchically, because the speed of today’s
processors is growing faster than the memory access speed. Sometimes even parts of the main
memory are shared by the processor and the graphic card, thus further limiting the memory
bandwidth. With SRAM there is a fast RAM technology available, but SRAM (Static Random
Access Memory) is more expensive than the commonly used DRAM (Dynamic Random Access
Memory) technology. Hence, memory is organized in layers, where each layer closer to the
processor has a smaller size but provides a better performance than a farther layer.
Typical modern processors contain at least one cache. A cache provides a small amount of
fast memory used to buffer parts of the main memory for faster access. A cache is organized
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in small chunks of memory called “blocks” or “lines”. Cache lines can be placed in a cache
based on the memory address (direct-mapped), freely (fully associative) or in a combination
of both (x-way set associative) [33]. Set associative caches have another level of freedom,
because they have to choose a cache line to replace within a given set. Typical algorithms
for cache line selection are FIFO1, LRU2 and random selection. A cache line can be loaded
into the cache on each read or write access (write allocate) or on read access only (no write
allocate). Data written to the cache can be passed directly to memory (write-through) or on
a cache line exchange (write-back).
Each cache stores mainly user data but additionally a small amount of data used for cache
management. The memory used to store this data is called “TAG-RAM”. It typically contains
cache line identifiers, flags to mark lines with valid and modified data and cache line usage
information used by the line replacement algorithm.
A processor typically contains a cache hierarchy with a cache for data (L1 data cache) and
another cache for instructions (L1 instruction cache) and another and much larger but slower
combined data and instruction cache (L2 cache).

2.1.4 Interrupts

Interrupts, sometimes called “TRAP” or “fault”, can be divided into hardware and software
interrupts. Hardware interrupts are raised by hardware, for example when new data is avail-
able from the hard disk or to report failures. Software interrupts are raised by dedicated
instructions.
The processor stores the base address of the interrupt table (TRAP table) either in a special
register or at a given position in memory. The interrupt table typically contains the addresses
of the corresponding interrupt handlers or a couple of instructions to be executed on each
interrupt.
An interrupt suspends the current program flow to execute the interrupt handler. To be able
to continue execution at the interrupted position the processor stores at least the program
counter on each interrupt of the interrupted instruction and – based on the architecture –
additional information in registers or dedicated memory.
After each interrupt further interrupts are temporarily disabled by the processor. When the
state of the interrupted program has been saved successfully, the interrupt handler can re-
enable interrupts. In cases where priorized interrupts are supported only interrupts with
a higher priority than the current one can be raised. Cases where an interrupt handler is
interrupted by another interrupt are called “nested interrupts”.
With each interrupt, the current privilege level is changed to a higher one. An interrupt
handler is left with a dedicated instruction which adjusts the privilege level and resumes the
interrupted program.
The same mechanism is used to provide breakpoints to support program analysis. Breakpoints
are markers which interrupt program execution if the marked instruction is to be executed.
There are hardware and software breakpoints. For hardware breakpoints the instruction ad-
dress is stored in a processor-specific register. Software breakpoints are realized by replacing
the marked instruction by a software interrupt instruction.

1First In, First Out.
2Least Recently Used.
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2.2 Operating Systems

The task of an Operating System (OS) is to manage the hardware and software resources of a
computer. This section gives a brief introduction based on UNIX-like multiuser and preemp-
tive multitasking operating system kernels. These kernels are implemented using a monolithic
design. In a monolithic kernel all core functions like memory and process management and
drivers are executed with full access to all hardware and software resources. On the one hand
this increases performance, but on the other hand the system stability may decrease, since a
faulty driver may accidentally overwrite vital parts of the operating system.

2.2.1 Memory Layout

A user process does not have full access to the whole virtual address space. A contiguous
part, typically located at higher addresses is used by the kernel only and is shared between all
processes. The corresponding pages are not directly accessible by user processes. This kernel
address space contains the kernel and memory used to store kernel data like process and
memory descriptors and kernel stacks. The remaining virtual address space can be used by
programs. Each process has its own virtual address space but it is possible to share memory
between two or more processes.
Some of the actual addresses used by a program are not determined by the kernel but by
the linker at program creation time. The task of the linker is to take one or more objects
generated by compilers and assemble them into a single executable program [48]. The ELF
(Executable and Linkable Format [8]) file format is presented as an example of a program file
format. An ELF file contains – among others – the following sections:

• Initialization routines (.init section).

• The program code (.text section).

• Program constants (.data section).

• Zero initialized constants (.bss section).

The definition of these sections is used only by the linker and debugger. For the kernel all
sections are mapped to segments. Segments are contiguous page-aligned regions in an ELF
file which can directly be mapped to memory. Each segment provides information about its
start address and size.
Programs can be statically or dynamically linked. For statically linked programs all subrou-
tines provided by external libraries are stored with the program code, resulting in a larger
program file. This is in contrast to dynamically linked programs. They consist of the program
data only, and all used libraries have to be supplied at program start resulting in smaller
program files and a smaller memory footprint.
Dynamic program data can be stored at two different places: on the heap or on the stack.
The stack is typically located below the kernel address space and grows to lower addresses.
The heap is located between the executable and the stack and it grows to higher addresses.
Memory on the heap has to be explicitly allocated during runtime by the program using
mmap, malloc, new or a similar function. The stack is used to store function parameters, the
return address of a subroutine and automatic variables, i.e., variables which are only valid in
the current context of a function. Additionally, the stack is used as a temporary storage for
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register values, for example when a subroutine is called. The programmer typically does not
have direct access to the stack; instead, the stack is managed by the instructions generated
by the compiler.
The stack is normally located below the kernel address space and is growing to lower addresses.
Environment variables and command line parameters are stored at the beginning of the stack.

2.2.2 Interrupts

The operating system handles software and hardware interrupts differently.

• Hardware interrupts are handled as described above. Interrupt handling is getting more
complex if the kernel is preemptive, i.e., it can be interrupted as well. Then, the operating
system has to distinguish if a user program or the kernel itself has been interrupted.

• Software interrupts are mostly used to implement system calls. The kernel provides
different interfaces for process-kernel communication, but they can all be reduced to
system calls. Since direct access of the kernel code is not possible, another method to
access kernel functions is required and serves two purposes:

– Privilege expansion by activating supervisor mode. Without supervisor mode direct
access to the kernel address space is not possible.

– A standardized interface used for access control and parameter verification.

The supervisor mode can be activated by raising an interrupt. Hence, a system call
can be invoked by raising a dedicated software interrupt. The parameters passed to
the kernel can be stored in registers and on the stack. These parameters may contain
references in cases where additional data is located in user memory. A system call
basically performs the same actions as an interrupt, but additionally the user-supplied
data is verified. Otherwise, for example, it would be possible for a user process to access
kernel memory by passing references to kernel memory with a system call.

2.2.3 Virtual Memory Handling

The operating system uses virtual memory for different purposes:

• It allows a better memory utilization, because a virtual contiguous memory area can be
mapped to arbitrary non-contiguous physical pages.

• The available physical memory can be extended by storing currently unused pages on
external memory like hard disks and loading them on access back to RAM. This is called
“paging”. The operating system is notified by an interrupt each time a page not located
in physical memory is accessed. The same mechanism can be used for programs to load
the parts to be executed from the program file on demand.

• The memory access permissions can be used to provide shared read-only memory used
for example by shared libraries. Then the same physical pages are mapped to different
virtual pages to save physical memory.
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• Virtual memory provides Copy On Write (COW) functionality. This is used for example
when a program requests a large memory region initialized with zeros. Then the same
physical page containing zeros can be mapped to several virtual pages with no write
permission. On write access to one of the virtual pages the operating system allocates a
physical page, copies the contents of the read-only page to the newly allocated one and
maps it to the accesses virtual page with read and write permission.

• With execute permissions parts of the virtual address space can be explicitly reserved
for program code. Memory regions containing data and marked non-executable like the
stack or the heap can then not be used to execute injected program code using buffer
overflows (see section 3.2).

• Physical memory consumption can be lowered by storing libraries used by different
dynamically linked programs only one time in physical memory and mapping them into
the virtual address space of each process.

2.3 Protection Mechanisms

This section discusses protection mechanisms provided by modern UNIX-like3 operating sys-
tems which do not require additional cryptographic units. Other operating systems provide
similar protection mechanisms.

2.3.1 Multiuser Environment

A multiuser operating system can assign different processes to different users where each user
may have different permissions. Users can be assigned to groups, and group membership may
give additional permissions. Permissions can be granted on the file system level or directly
on the process level. Each file and each process belongs to at least one user, and this user is
called the “owner” of the file or process.

2.3.2 File System

File system permissions include read, write and execute access to files as well as permissions
to create or delete files or directories. A user is not allowed to change access permissions of
files if the owner of the file does not explicitly allow this. Therefore, file system permissions
can be used to protect sensitive information from unauthorized user access.

2.3.3 Process Management

The operating system ensures that each process running on a computer is separated from
other processes on the same computer. Each process has its own virtual address space and
has no access to memory belonging to other processes. Processes can typically be altered by
the owner of a process but not by other users. This greatly improves system stability, because
a failure in one process cannot affect other independently running processes on the same
computer. System security is improved as well, because sensitive information like passwords
stored in memory by a process cannot be read by another process.

3UNIX is a multiuser operating system written by the Bell Laboratories.
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2.3.4 Administrator Access

Most operating systems provide a fine-grained permission design, but there is at least one
user which has full access to the system or which can grant itself full access. In the following,
this user is called “administrator”. Due to its permissions, each administrator of a multiuser
system has to be trustworthy, because he is able to bypass all operating system protection
mechanisms.

2.3.5 Sophisticated Access Control

The NSA (National Security Agency), for example, has developed a security extension for
Linux, called “SELinux”4. This extension adds mandatory access control mechanisms to Linux
and therefore can be used to provide a better separation of information on Linux systems.
However, SELinux is only a tool which has to be set up properly to provide enhanced security.
Hence, sophisticated usage of access permissions can be an effective protection against unau-
thorized access as long as the administrator is trustworthy and there are no known weaknesses
to bypass the operating system security. Possible weaknesses are described in the following
chapter.

4http://www.nsa.gov/selinux/

http://www.nsa.gov/selinux/


Chapter 3

Security Issues

This chapter gives a brief overview of attacks to computer systems. Weaknesses in computer
systems can be classified in architectural and implementation weaknesses. Architectural weak-
nesses are the worst case, because they cannot easily be fixed without losing compatibility to
existing implementations. For example, the wireless encryption standard WEP (Wired Equiv-
alent Privacy) has several vulnerabilities. The last discovered one allows sending data over a
WEP protected link without knowing the secret key [6] or can be used to directly compute
the key within 60 seconds [91]. WEP’s vulnerabilities cannot be circumvented without loosing
compatibility to existing hardware. Fortunately, these kinds of problems are rare compared to
implementation errors. Therefore, implementation errors are the main target for adversaries,
and some of them will be discussed below.

3.1 Hardware Access

All operating system protection mechanisms can be bypassed if an adversary has direct phys-
ical hardware access. This kind of attack is not based on a real vulnerability, because most
computer systems are intentionally not designed to prevent this kind of attack.

For example, it is possible to bypass file system protection by directly accessing the hard disk
by another operating system or by using direct block access. The easiest protection against
this attack is a physical protection of the particular hardware. In cases where this is not
possible other protection mechanisms using special hardware or cryptography can be used
(please refer to chapter 5 for further information). When using cryptography to encrypt all
sensitive data, other problems arise. Encrypted data can be accessed only after decrypting it
with the corresponding key. Therefore, this key should not be stored on the same medium.
Hence, encrypting data to prevent hardware-based attacks is effective, but mostly requires
user interaction for decryption.

In cases where sensitive data has to be transferred over busses hardware-based sniffers can be
used. This technique has been used to break the security of the XBox [36] by capturing data
transferred over a bus using an FPGA (Field Programmable Gate Array) to pre-process the
bus signals.

13
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3.2 Software-Based Attacks

In cases where direct hardware access is not possible or too complicated software-based attacks
are used.
These attacks are mainly used remotely to break into computer systems and to increase
privileges in cases where unprivileged access is already available. For this kind of attacks the
attacker mainly tries to execute his code with the unprivileged user’s permission to access
user data or to exploit errors in system software to get administrator access.
In the simplest case the adversary manages to let the user execute a malicious program. In
cases where this is not possible, the adversary may try to exploit software implementation
errors. Common attacks are:

• Buffer overflow : Here the attacker exploits errors where the programmer has forgotten
to check if the length of the input data does not exceed the size of the buffer located
on the stack which is intended to hold the data. In these cases the adversary tries to
replace the return address stored on the stack with an address pointing to the overflowed
buffer containing its own injected code. For example, this code can then be used to copy
passwords or other sensitive information to an adversary.

Several techniques exist to prevent buffer overflows [97, 99]. Even when buffer overflows
cannot be prevented, the execution of the injected code can be prevented on some
processors by marking pages containing the stack or the heap non-executable. Another
approach is based on programming languages providing runtime size checks of buffers.
Other programing languages like Java [30] or C# [15] do not even allow direct stack
access.

• Heap overflow : These attacks are based on exceeding buffer sizes, too, but this time
the buffers are located on the heap. The heap does not contain return addresses, but in
most implementations the actual buffer and additional administrative data like the size
of the buffer and pointers to the next and the previous buffer are stored in the same
chunk of memory. The attacker can then try to overwrite one of the pointers to point
to the return address on the stack. This overwrites the return address the next time
the buffer is freed. There are several approaches to prevent this attack, like storing the
buffer and administrative data at different positions [98].

Other approaches are based on stack and heap randomization where the beginning of
the stack and heap is selected randomly on program start-up and runtime-allocated
memory is selected randomly as well. Both techniques are, for example, part of the
Grsecurity Linux kernel extension1 and have been analyzed in [96]. They can help to
defeat some attacks where the knowledge of absolute addresses is required for the attack
to succeed.

• Double free vulnerability : This attack is similar to heap overflows, but this time the
adversary exploits a request to free heap memory which already has been freed, thus
overwriting administrative data structures. This attack can for example be prevented
by using execution filtering approaches [65].

• Format string attack : The function printf is used to print data based on a format
string. The format string may contain wildcards which are evaluated during runtime to

1http://pax.grsecurity.net/docs/index.html

http://pax.grsecurity.net/docs/index.html
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read or write to variables located on the stack. If an attacker is able to alter the format
string, he may be able to overwrite stack contents to execute his own code. This error
can be detected at compile time and the programmer can be informed.

• Temporary file vulnerability : Many programs create temporary files to write data. If the
program does not choose an unpredictable file name, the attacker may try to place a
symbolic link with the expected file name to force the program to write to an existing
file the attacker cannot access but the attacked program has write access to. This attack
can for example be used to modify the password database to get administrator access.

• Brute-force attacks: Most password-based authentication schemes are vulnerable to
brute-force attacks. Here the adversary simply tries a huge number of user name and
password combinations. Most current authentication schemes try to slow down brute
force attacks by putting additional latencies in the authentication process and by dis-
abling an account after a given number of unsuccessful authentication attempts. This
countermeasure can be circumvented by an attacker by using the same password but
different user names. This attack is applicable in cases of a large user base, because inex-
perienced users tend to use simple passwords. In cases where the attacker tries common
words as passwords the attack is called “dictionary attack”.

Brute force attacks can be used as well to find overflowed buffers or possible format
string vulnerabilities by passing random or specially crafted data to programs until the
program crashes.

3.3 Side Channel Attacks

For this class of attack properties of a computer system or program are analyzed to get
additional information. Therefore, this attack is not based on theoretical weaknesses. For
example, this kind of attack can be used to distinguish illegal user names and illegal passwords
in authentication systems if both cases result in a different time until an error is reported.
The Secure Shell (SSH) was vulnerable to this kind of attack (see CVE-2003-0190)2.
Side channel attacks based on cryptographic algorithms are described in section 4.5.7.

3.4 Program Analysis

The attacks described above can be used to get access to computer systems or to extract
cryptographic keys. Another kind of attack is used to analyze program code to be able to
extract algorithms or to modify the program. This attack can be used to remove restrictions
from programs like a copy-protection. In other cases software is analyzed to reverse engineer
algorithms and protocols.
Typical tools to analyze programs are debuggers and decompilers. A debugger is used to
stop the program at arbitrary places to read or modify program variables and instructions
and to analyze the program flow. However, when debugging a program without additional
debug information, only the disassembled instructions without variable and function names
are available, which makes further analysis difficult. Programs can further be analyzed by

2Common Vulnerability Exposure (CVE) ID, http://cve.mitre.org/
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linking the program to tampered libraries to record internal data or by monitoring all system
calls.

A decompiler can be used to generate high-level program code based on the program code.
But missing variable and function name information complicates further analysis here as well.
Decompilers are more successful when transforming byte code like interpreted by the Java
virtual machine [52] back to high-level code. Here most information like variable and function
names is still contained in the byte code.

Program analysis can be further complicated when using code obfuscation. A code obfuscator
typically renames all variables and functions to meaningless names in case of interpreted
languages. In case of directly executed machine code this information is already lost and
code obfuscation is here focused on hiding algorithms by adding useless instructions to the
code and by reordering or replacing instructions in the program. Barak et al. [3] has proven
that obfuscation can never transform all programs into a “virtual black box”, which hides all
internals. Hence, obfuscation can slow down program analysis, but not prevent it.

There are further approaches to prevent program analysis. For example, the Voice over IP
program Skype3 uses many of them, and they have been partly analyzed in [5]. Skype encrypts
most parts of its obfuscated program code and decrypts it during program execution to
complicate program file analysis. Parts of the program are deleted in memory and Skype
randomly computes checksums over parts of the code. They are used to detect software
breakpoints and other manipulations to the original machine code. Some running well-known
debuggers are detected by Skype, and on detection Skype clears register values and jumps to
an arbitrary page in memory to hide the actual stack frame. Therefore, Skype makes it very
difficult to analyze the program, but it cannot prevent it.

Another approach for program analysis is virtualization. Virtual machines like the open source
QEMU [4] can emulate a whole computer, including processor, memory and peripheral devices.
A modified version of QEMU has been used in this work to log memory accesses to a trace
file. The same technique can be used to analyze programs running in the virtual machine.
Online debugging is further simplified by providing a debugger interface. Therefore, the whole
emulated computer system can be stopped and all executed instructions can be analyzed
easily, and it is very difficult for an application to detect a virtual machine, since detection
mechanisms can be circumvented in many cases by small modifications to the virtual machines’
source code.

In case of open-source operating-system kernels like Linux [54] the kernel can be used as
well to analyze a running program. The kernel knows all page mappings, can interrupt the
program at any place, and has full access to all memory and register contents.

In [60] an approach to protect scalar and array computations is presented. It is based on a
compile time transformation of these calculations to prevent reverse engineering. While this
approach works for this special class of calculations, it is not applicable for general-purpose
programs. However, it can be used in addition to other protection mechanisms to further
make reverse engineering harder, but it cannot prevent manipulations.

As a result, an effective program analysis prevention is mostly impossible without dedicated
hardware, as described in chapter 5.

3http://www.skype.com

http://www.skype.com
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3.5 Copy Protection

Another important part of software protection is copy-protection. Commercial software prod-
ucts are valuable goods and, therefore, unauthorized distribution has to be prevented. There
are dozens of different copy-protection schemes. In the following a few of them will be pre-
sented.
Copy-protection schemes can be roughly divided into those dealing with hardware and those
with software. When using a software-only protection scheme the program can easily be copied
to other computers. As soon as the program is executed the program performs checks to verify
if further execution is allowed. Common checks are so-called “product key verifications”.
A product key is typically a unique alphanumerical string which has been generated using
a secret algorithm. The program can then read the product key and perform other secret
computations on the key to check if it is valid. The verification process can be centralized
when using a license server approach as well. In case of a license server the program may
ask the server for permission each time it is started. These types of verification can easily be
bypassed, either by modifying the program to skip the check or by copying a valid product
key with the program.
Since software-only protection schemes can easily be broken, additional hardware support is
required to strengthen them. Simple protection schemes were trying to prevent the making
of copies of the installation medium. For example, several Compact Disc or DVD protection
schemes use partly corrupted data or invalid directory entries to prevent simple copy attempts.
However, specialized programs like CloneCD or CloneDVD from Slysoft exist to copy those
disks.
Most current copy-protection mechanisms are using a combination of hardware- and software-
based protection schemes. State-of-the-art Compact-Disc or DVD copy-protection schemes use
physical properties of the medium which are verified during runtime. Physical properties can
be read errors or data density. The copy-protection system SecuROM4 uses these techniques.
This protection can be bypassed using virtualization techniques by reading the physical prop-
erties of the disk and creating an image containing this information. A virtual drive can then
provide access to the image while following the timing constraints.
There are other hardware and software copy-protection schemes available, but they suffer
from the same problem, namely that they can be bypassed. Each program has to be copied
to memory which always allows further analysis of the used protection schemes and allows
modifications to the program to bypass them. It is just a matter of time until a copy-protection
scheme is broken.

3.6 Sandbox Security

Modern web browsers are able to execute program code supplied by the currently visited
website to provide more interactivity. For example, data written into a form can be verified
before sending it back to the web server. Each time program code is executed on foreign
computers the security of the host system has to be guaranteed. Examples for programs
executed within the web server are Java or Javascript [39] programs. For this kind of programs
direct file and network access has to be prevented, because otherwise an attacker could simply
copy private files possibly containing passwords or other confidential data. A possible solution

4http://www.securom.com/

http://www.securom.com/
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provided, for example, by the Java Virtual Machine [52] is the sandbox approach. A sandbox
is a limited execution environment which provides full programming capabilities within the
environment but no or only limited access to the host computer. Java programs executed
by a web browser are restricted in many ways. They are, for example, only allowed to write
temporary files in a given directory and to start network connections with the web server
they have been downloaded from. When implemented properly a sandbox can prevent many
attacks requiring direct access to the computer.
Unfortunately, a sandbox approach cannot prevent all attacks. At first, the implementation
of the sandbox may contain exploitable programming errors or logical errors, which allow the
program to escape from the sandbox5. Second, a sandbox does not necessarily prevent denial
of service attacks like consuming host resources like processing time or memory.
Hence, the sandbox approach provides more protection for the host system than a direct
execution of unknown program code, but an adversary may still find ways to break out of the
sandbox.
As a result, even a well-administrated computer system can be successfully attacked by a
sophisticated attacker. The attacker may get full access to all files and may be able to analyze
or alter running programs.

5Common Vulnerabilities and Exposures (CVE): CVE-2005-3904, CVE-2005-3905, CVE-2005-3906, CVE-
2005-3907.



Chapter 4

Cryptography

The last chapter has shown that most security threats regarding computer software cannot
be prevented using standard hardware. The usage of cryptography offers additional potential
for software protection. Therefore, this chapter gives a brief introduction to cryptographic
algorithms and cryptographic attacks and is based on [81] and [56].

4.1 Symmetric Cryptography

Cryptographic algorithms can be divided into symmetric and asymmetric ones. Symmetric
algorithms are based on a shared secret, the secret key k, which is similar or the same for
encryption and decryption. They can be further divided into stream ciphers and block ciphers.
A stream cipher is encrypting bit-wise, whereas a block cipher encrypts a couple of bits (a
block), typically 64 or 128-bits, at the same time.
The following formal notation is used:

• The plaintext is denoted by P .

• The encryption algorithm encrypting with key k is denoted by Ek.

• The decryption algorithm decrypting with k is denoted by Dk.

• The resulting ciphertext is denoted by C.

In cases where the cryptographic operation is applied to a block the block number is denoted
as i:

C = Ek(P ); Ci = Ek(Pi)
P = Dk(C); Pi = Dk(Ci)

In cases where the plaintext is smaller than a block a pad of random data has to be appended
to the plaintext before encryption.

4.1.1 Random Number Generation

Random numbers play an important role in cryptography. For example, symmetric keys should
be chosen randomly to prevent attacks. According to [81], the following types of random
number generators exist:
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1. Pseudo random number generators are often used in computers. Computers are deter-
ministic, and therefore the generated sequence of “random” numbers is periodical. A
good pseudo random number generator meets a lot of criteria. For example, the gener-
ated sequence should not be compressible.

2. Cryptographic random number generators are periodical, too, but the generated random
numbers should be unpredictable as well, even when the algorithm and all previously
generated bits are known.

3. True random number generators produce random numbers which are not reproducible.
Even when using the generator with exactly the same input data the generated numbers
are different.

True random number generators require dedicated hardware using random physical processes
like resistor noise to generate random numbers.

4.1.2 Algorithms

Many symmetric algorithms have been invented with different goals in mind. Some algorithms
are optimized for a software implementation, others are faster in hardware, but all of them
claim to be secure. However, there is only one provable secure algorithm, the One Time Pad
(OTP) algorithm. Here, the key has the length of the plaintext, and each plaintext bit is
encrypted with the corresponding bit of the randomly chosen key using the Exclusive Or
(XOR) operation. Therefore, each key can be used only once and has to be generated using
a true random number generator. Despite its security, the algorithm has a lot of drawbacks.
In particular, the algorithm cannot be used for high throughput communication channels
because of the resulting size of the key, and the key distribution process itself requires a
secure channel.
Since all other algorithms can be broken at least theoretically due to the limited key size, it
is advisable to choose a well-known and analyzed algorithm. In the past this was for example
the block cipher DES (Data Encryption Standard) and later 3DES [62]. However, DES should
not be used any longer due to its key length of 56 bits, which is too small for current security
needs.
In 2000, the National Institute of Standards and Technology presented its successor, the
Advanced Encryption Standard (AES, [63]). AES is based on the Rijndael [17] algorithm
but with 128-bits it supports only one block size. The key can have a length of 128, 192 or
256 bits. The algorithm uses several rounds of key additions, substitutions, and shift- and
mix-operations. The number of rounds depends on the key length and lies between 10 and
14.

4.1.3 Modes of Operation

Cryptographic block algorithms can be used in several ways. In the following, some modes
are discussed. Among others, the following modes are used widely:

• Electronic Codebook Mode (ECB) or direct encryption: Here a block of plaintext is
directly encrypted to a block of ciphertext:

Ci = Ek(Pi)
Pi = Dk(Ci)
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A drawback of this mode is that the same plaintext block always results in the same
ciphertext block when the key is unchanged. Nevertheless, this mode is suitable for
random access configurations like database accesses because it allows independent en-
cryption and decryption of arbitrary blocks.

• Cipher Block Chaining Mode (CBC): This mode uses a feedback mechanism. The pre-
vious ciphered block is XORed with the current plaintext block before encryption:

Ci = Ek(Pi ⊕ Ci−1)
Pi = (Ci−1 ⊕Dk(Ci))

The first block is XORed using a random pattern called “initialization vector” (IV).
This mode encrypts the same plaintext blocks differently, but arbitrary decryption of
random ciphered blocks is not possible.

• Output Feedback Mode (OFB): Here the result of the previous encryption step is en-
crypted again for the next step using a block cipher. The result of each step is XORed
with each corresponding block of plaintext:

Ci = Pi ⊕ Si; Si = Ek(Si−1)
Pi = Ci ⊕ Si; Si = Ek(Si−1)

In the first round an initialization vector is encrypted. Note that encryption is involu-
tive, so a double application recovers the plain text again. Hence, for encryption and
decryption this mode uses only the encryption engine of the block cipher. This step can
be calculated in advance without knowing the plaintext.

• Counter Mode (CTR): This mode is similar to OFB, but here a unique value like a
counter C is encrypted for each block of plaintext and the result is XORed with the
plaintext:

Ci = Pi ⊕ Ek(Ci)
Pi = Ci ⊕ Ek(Ci)

The counter can be public, but it has to be unique, otherwise an attacker might be able
to decrypt the ciphertext easily (see section 4.5.5). An application of AES in Counter
Mode is described in [20].

4.2 Data Integrity

Cryptographic algorithms can be used to hide sensitive information, but they are not designed
to prevent manipulations in the first place. Therefore, modifications to encrypted data may
remain undetected if no further verification checks are used.
In contrast to cryptography, where the size of the plaintext equals the size of the ciphertext
for many algorithms, data integrity can be ensured only by additional redundancy. There
are many algorithms used to detect transmission errors in communications engineering like
checksums or Cyclic Redundancy Checks (CRC), but they are mainly designed to detect
random transmission errors. For cryptographic systems, data integrity has to be ensured
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even if a sophisticated adversary is able to modify a protected message. Therefore, better
algorithms, called “one-way hash functions”, are required. In formal notation a hash function
H transforms a message M into a hash h with a fixed size of m bits:

h = H(M)

One-way hash functions should have the following properties [81]:

• For a given M it is easy to compute h.

• For a given h it is hard to compute M , so that H(M) = h.

• For a given M it is hard to find another message, M ′, so that H(M) = H(M ′).

• It is hard to find two random messages, M and M ′, so that H(M) = H(M ′).

A hash function with these properties should generate a hash with a reasonable size m.
Otherwise, brute-force attacks exploiting the birthday paradox might be able to find two
colliding messages M and M ′ with the same hash value h after 2

m
2 tries with a probability

of 0.5.
Current popular hash functions are SHA-1 [61] (m = 160) and MD5 [76] (m = 128), but
weaknesses have been found for both algorithms [94, 95]. They permit to find collisions much
faster than using a brute-force attack.
Due to the weaknesses the usage of SHA-256, SHA-384, or SHA-512 is recommended. The
resulting hash length m equals the number in the algorithms’ name.
Since encryption provides the properties listed above, standard block ciphers can be used to
compute hashes as well, but due to their lower performance, dedicated hash functions are
more common. There are several methods to turn a block cipher into a hash function. The
AES hash [7], for example, applies the Davies-Meyer [57] method to calculate a hash of M . At
first, M is split into the following i blocks of equal size: x1 . . . xi. Then, the hash is calculated
as follows:

Hi = Exi(Hi−1)⊕Hi−1

Related to hashes are Message Authentication Codes (MAC) [45]. They combine a crypto-
graphic hash function and a secret key to build a hash that can only be verified by the owners
of the secret key. A simple MAC computes a cryptographic hash which is then encrypted
using a block cipher with the secret key.

4.3 Asymmetric Cryptography

Asymmetric cryptography does not require a shared secret. Instead, the secret is split into a
private and a public part. The private part has to be kept secret. The public part kpub is used
for encryption

C = Ekpub
(M)

while the private part kpriv is used for decryption

M = Ekpriv
(C).
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Asymmetric algorithms are much slower than symmetric ones. Therefore, many cryptosystems
use a hybrid approach: all data is encrypted using a fast symmetric algorithm with a random
secret key, and this symmetric key is encrypted asymmetrically. This approach is much faster,
because the size of the encrypted data is typically much larger than the size of the key.
The most popular asymmetric cryptographic algorithm is RSA [77]. For RSA the public and
private keys can be used both for encryption and for decryption, which permits the usage of
RSA for digital signatures.
Digital signatures are used to prove the origin of digital data, and they are required for
distributing public keys via insecure channels. To prevent attacks, where an adversary has
exchanged a public key with its own key a digital signature can be used to protect the original
public key. Signatures typically require a trusted third party which is used to prove that a
public key belongs to a specific person. A document can be signed using RSA by encrypting
it, or a one-way hash of the document, with the private key. The signature can then be verified
by decrypting the document or the one-way hash with the public counterpart.

4.4 Key Exchange Protocols

A key exchange protocol is required each time a random encryption key is required. This can
be the case when two parties want to start an encrypted communication without a common
secret key. A widely used protocol is the Diffie-Hellman (DH) key exchange protocol [19]. The
protocol permits two parties to compute a common secret key while transferring all related
data via an insecure channel.

4.5 Cryptographic Attacks

Parallel to the development of new cryptographic algorithms, methods to break them have
been invented. Due to the large number of attacks and due to algorithm-specific attacks,
this section will name only a few common attacks. An adversary may try to attack the
algorithm directly or try to attack related parts like a protocol using the algorithm or use
a side-channel attack to get further information. Some cryptographic algorithms are kept
secret to make attacks more difficult. This does not increase security in many cases, because
secret algorithms have not been analyzed by many cryptographic experts and may contain
weaknesses. They are therefore not considered in this section.

4.5.1 Brute Force

As stated above, provided it be used carefully the only secure cryptographic algorithm is
the one-time pad, because here each possible message M with the length of the ciphertext
C has the same probability. All other algorithms can be broken due to the limited key size,
if the encrypted message is reasonably long. The simplest attack is to test all possible keys.
Therefore, using a long and true random key is prerequisite for defeating this brute force
attack. Then, the matching key with a length of n bits can be found with a probability of 0.5
after approximately 2n−1 attempts which can be considered impossible with n = 128 bit keys
in a reasonable time frame and a massive parallel approach. Hence, cryptographic algorithms
which can be broken faster than using a brute force approach are considered insecure and
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should not be used. distributed.net1, for example, uses the computing power of personal
computers spread all over the world to decode RC5 ciphertext using a brute force approach.
The project gives an overview of the time required for brute force attacks. A 64 bit RC5 key,
for example, was found after 1757 days.

4.5.2 Known Plaintext

Knowing the plaintext M and C may help an attacker who is trying to get the key k. Without
any information about the plaintext it may be impossible to find a matching k if M contains
random binary data only. In other cases the adversary may try to find the plaintext by using
statistical assumptions about M to find the key.

4.5.3 Related-Key Attack

Here the attacker knows that at least parts of k are the same without knowing the exact
values of these bits. For example, this kind of attack has been used to break WEP-protected
wireless networks [24]. This attack can be prevented by using true random keys.

4.5.4 Replay Attacks

A replay attack is used to alter ciphertext unnoticed without being able to decrypt it. As
described above, ciphertext can be protected against modifications using one-way hashes.
However, if an attacker manages to replace the ciphertext and the corresponding hash, he
might be able to replace a new message with an older one. This attack can be prevented by
adding additional redundancy like timestamps or counters to the message.

4.5.5 XOR Security Considerations

OFB mode and CTR mode both encrypt a block of precomputed data and XORing the result
with the plaintext. This decouples the slow encryption step from the plaintext and allows
encryption of single bits using a block cipher without padding. The security of these modes
is as high as in ECB mode as long as the encrypted values, here denoted as C, are always
unique for a given k.
Assume the same C is used as a counter for two plaintext blocks P1 and P2:

C1 = P1 ⊕ Ek(C)
C2 = P2 ⊕ Ek(C)

If C is public, the attacker knows that both plaintext blocks are encrypted with the same
counter. He is then able to eliminate Ek(C) by XORing C1 and C2:

C1 ⊕ C2 = P1 ⊕ Ek(C)⊕ P2 ⊕ Ek(C) = P1 ⊕ P2

With the XOR combination of two plaintext blocks the original plaintext can be recovered
in many cases. In the simplest case one block contains only zeros, which directly reveals the
other block contents. In all other cases statistical analysis can be used to reveal the plaintext
[25].

1http://www.distributed.net

http://www.distributed.net
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When using XOR to decrypt plaintext, an attacker is able to flip bits in the ciphertext, which
results in the same bits flipped in the decrypted plaintext. This attack can be used in cases
where the ciphertext is not protected against manipulations.

4.5.6 Man-in-the-Middle

For this attack an adversary tries to intercept a communication between two parties by
pretending to one party to be the other party and vice versa. The only possibility to defeat
this attack is a proper authentication scheme in conjunction with a good protection of an
established connection. For example, the public RSA key has to be signed to prevent this
attack if it is distributed over an insecure channel. The same applies for the messages required
for the DH key exchange.

4.5.7 Other Attacks

Cryptographic algorithms are often implemented in software and therefore the same attacks
as described in chapter 3 can be used to break them.
Side channel attacks are very common in case of cryptographic algorithms, because for ex-
ample the runtime of a cryptographic operation may reveal information about the key or
the decrypted data [43]. Even the processor cache can be used to reveal cryptographic keys
used by another running process, as described in CVE-2005-0109 and [68]. Here the attacker
exploits that both processors use a common L1 cache in Intel’s Pentium 4 processor with
hyper-threading enabled. This attack can be prevented by disabling hyper-threading. Other
attacks based on the power consumption [42] or on electromagnetic radiation [46] are possible.

4.6 Standard Protocols

Cryptographic algorithms and protocols are subject to several attacks, and their implemen-
tation may contain errors. In case of cryptographic protocols, wrong usage of algorithms may
result in information leakage or may allow further attacks. Therefore, the usage of standard
protocols and algorithms and standard implementations is advisable. These implementations
may contain errors as well, but the probability of errors in a new and not widely analyzed
implementation is much higher.
For network connections, the Transport Layer Security (TLS) protocol [18], the successor of
the Secure Socket Layer (SSL) protocol, can be used. It provides symmetric encryption for
data transfer, asymmetric cryptography for client and server authentication and key exchange
methods. Furthermore, it is standardized for a wide range of TCP-based Internet protocols
like HTTP (Hyper Text Transfer Protocol) or IMAP (Internet Message Access Protocol).



Chapter 5

Security Architectures

This chapter presents sophisticated hardware solutions designed to further prevent program
analysis and program manipulations as described in chapter 3.

5.1 Memory Protection Schemes

Many software protection schemes can be broken by direct manipulation or reading of memory
contents. Therefore, a memory protection is the first step for additional security. Existing
solutions cover the following three aspects:

1. Memory integrity protection using hash values.

2. Memory disclosure prevention using memory encryption.

3. Address bus protection to prevent further program-flow analysis.

5.1.1 Hash Trees

Using hash values to guarantee memory integrity has been proposed by Gassend et al. in [27].
The protected memory area is divided into small chunks of memory with the size of a cache
line, and each line is protected by a hash value. To further speed up memory verification,
memory areas containing hash values only can be cached as well (cache lines storing hash
values will be denoted as “hash lines” in the following). Therefore, the size of the hash value
has to be a fraction of the size of a cache line for efficiency reasons. Using a single hash value
to protect a memory region is not sufficient, because it does not prevent replay attacks. Static
program data cannot be replayed, but an attacker could try to replace parts of the stack or
the heap with out-of-date data to alter a program. Hence, Gassend proposes the usage of
hash trees (sometimes called “Merkle trees”) as described in [58] to prevent replay attacks by
protecting hash values with additional hash values. For this scheme only the top-level hash
called “root hash” needs additional protection, since replay attacks would still be possible if
this hash value could be replaced. A possible protection mechanism is a dedicated on chip
memory which cannot be tampered. A hardware implementation of this approach has been
proposed in [88].

26
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5.1.2 Memory Encryption

Hash values prevent any kind of program and data manipulations, but memory contents
can still be read by an adversary. Therefore, transparent memory encryption techniques can
be used to hide memory contents. Rogers et al. [78] uses a technique called “memory pre-
decryption” to protect memory contents. Memory contents are split into chunks with the size
of a cache line and these chunks are encrypted directly. Rogers tries to hide the additional
encryption latency by using a prefetching approach. The future memory access is predicted
using standard prefetching techniques. The performance of this approach depends on the
quality of the prefetcher and on the executed programs, because not all memory areas patterns
can be predicted well by a prefetcher.
Direct encryption of memory contents can be too slow for high bandwidth applications. There-
fore, memory scrambling techniques can be used [75]. For example, memory scrambling can be
implemented by using a simple and fast scrambling function like a random number generator
and XORing the random number with the data to protect. This method is similar to counter
mode, but much faster due to the lack of a complex cryptographic algorithm.
Further memory protection schemes are described in section 5.2, because they are parts of a
complex security architecture.

5.1.3 Hiding Address Information

Encrypted memory hides memory contents, but it does not hide memory addresses. Memory
addresses may give an attacker a lot of valuable information in cases in which the attacker is
able to identify the encrypted algorithm. Zhuang et al. [100] describes a statistical approach
to identify the execution of standard cryptographic libraries based on the memory access
pattern. Once identified, the memory access pattern can be used to reveal cryptographic
keys, because many algorithms are implemented using several conditional branches which
are used to distinguish only two values. In these cases an attacker can directly disclose the
corresponding value which might be a part of a key. A solution called “HIDE” is presented
by Zhuang et al. as well. HIDE is a cache extension and hides the memory access pattern
by dividing memory into blocks with the size of a cache line and permuting these blocks in
memory. Before data is written back to memory, all remaining blocks of a larger memory
region (e.g. 64k) are read and then written back to memory using a new permutation scheme.
This is similar to Oblivious RAM [29], but it consumes less memory for the permutation
information and performs better.
These memory access-hiding schemes can hide all fine-grained memory access, but due to
the limited cache size and the performance penalty these schemes can only be applied to
memory regions with a size of a few hundred kilobytes. Therefore, coarse-grained memory
access cannot be hidden. Hence, these schemes can prevent the described statistical attacks
but may reveal enough information for other classes of attacks.
A memory decryption attack is presented in [84]. The attack requires memory encryption
using counter mode, because in counter mode each flipped bit of the ciphertext results in
a flipped bit at the same position of the decrypted plaintext. The attack is based on an
opcode manipulation whereby each instruction is changed into a jump instruction, which,
when executed, gives the attacker the opportunity to record the target address on the address
bus, thus revealing more bits of the modified instruction. Even when using HIDE, parts of
the target address may remain unmodified and may give the attacker enough information
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to reveal parts of a cryptographic key. For example, when using HIDE with a 32-bit RISC
processor to hide the addresses of a 1 Mbyte (220 byte) memory region, there are at least
32− 20 = 12 bytes unchanged. This might be enough information for a attacker if these bits
belong to a secret key. Note that in most cases the protected memory region will be much
smaller, resulting in more disclosed bits.

5.2 Security Architectures

A security architecture combines many protection schemes to prevent manipulations and
attacks. This section describes several approaches to provide a secure execution environment.

5.2.1 Smart Cards

The most widely spread secure execution platform are smart cards [75]. A smart card may
contain a processor, memory (RAM, ROM, EEPROM) and input and output controllers for
communication. They can be used as an electronic purse system, for identification purposes
or as a secure data storage.
Smart cards often contain cryptographic units. They are used to digitally sign data like e-mails
or can be used for encryption purposes. Smart cards are more secure than computer-based
solutions, because the cryptographic secret or private key does not leave the card, and the
user of a card has to authenticate himself before using the card. To further complicate stealing
keys and other private data stored on smart cards, some of them can encrypt all data before
storing it in memory.
The security of smart cards has been analyzed and many security flaws and attacks like
side channel attacks have been found [32, 47]. Other attacks force computation errors to get
further information about cryptographic keys [44]. Most of the attacks presented have been
successfully demonstrated on smart cards, but they apply to other hardware cryptosystems
as well. Hence, the countermeasures which have been invented for smart cards can be used to
defeat attacks on other cryptosystems.
Software can be developed for smart cards, but due to hardware restrictions like limited pro-
cessing power, small memory, a limited communication protocol, and complex programming
these cards cannot be used for general-purpose applications. To overcome the complex pro-
gramming interface, SUN1 has developed the JavaCard [90], a smart card which is able to
execute java byte code [52]. Java as a programming language simplifies the usage of smart
cards but this card is not widely used.

5.2.2 Secure Co-Processors

Personal computers’ security can be improved using secure co-processors. IBM2 has developed
the 4758 [16] secure co-processor as a PCI (Peripheral Component Interconnect) card. The
card contains a processor, memory, a random number generator, and cryptographic devices
housed within a sealed tamper-responding environment. Recently, IBM has presented a new
co-processor architecture [2] which provides a faster processor and an increased security. Most
secure co-processors follow the security requirements defined in [22] by the National Institute

1http://www.sun.com
2http://www.ibm.com

http://www.sun.com
http://www.ibm.com
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of Standards and Technology (NIST). The standard defines four security levels and covers
physical security, authentication, operating system requirements, and key management.
Secure co-processors can be considered as a more powerful smart card. They embed many
parts of a computer system and the whole module is protected against physical attacks and
software attacks. They are used in automated teller machines and other systems where sensi-
tive data has to be protected and security is more important than costs. The main drawbacks
of secure co-processors are the additional costs (a processor card costs more than 20,000 US-$)
and increased software development complexity. The co-processor runs embedded Linux but
for communication with the host system special communication protocols have to be used.
Therefore, all the software for co-processors has to be newly designed and existing software
cannot be reused.

5.2.3 LaGrande

Intel released their preliminary architecture specification of the LaGrande technology in 2006
[38, 37]. This technology is connected with Intel’s virtualization attempts to provide a hard-
ware protected operating system running in parallel to an unprotected one. LaGrande consists
of a processor extension which works in conjunction with a cryptographic enhanced chipset,
input and output devices to provide a secure execution environment, for example for the Next
Generation Secure Computing Base (NGSCB) by Microsoft [59], with protected input and
output paths. The whole boot process including the BIOS (Basic Input Output System) and
the bootloaders are protected as well. This results in a very complex system with a huge
protected codebase, which complicates code auditing. Memory contents are not encrypted,
but the chipset is used to control memory access.
Closely related to this architecture is the Trusted Platform Module (TPM) [92] developed
by the Trusted Computing Group [93]. The module itself is not able to encrypt memory
contents. This has to be done in software by the main processor. The module can only be
used to store small amounts of information like encryption keys. Additionally, a TPM provides
cryptographic functions which can be used to protect the boot process and for identification
purposes.
Microsoft’s Windows Vista operating system can use the TPM to protect the boot process
and provides trusted video and audio output paths to protect digital content. The 64-bit
version allows loading of signed drivers only to protect the operating system from malicious
drivers. However, this design is mainly built to protect the operating system and digital media
on the operating system level. As described in chapter 2, this software-only approach cannot
defeat sniffing attacks as long as no additional cryptographic hardware like LaGrande is used.
There are other research projects like perseus [69]3, an open-source security kernel, or Nizza
[31], a small secure kernel, which are based on the LaGrande architecture. Those trusted
operating systems can then be used with virtualization technologies to protect for example
middleware systems used for Grid computing [53] to provide a secure execution environment.

5.2.4 Digital Rights Management

Digital Rights Management (DRM) describes methods of copyright owners to restrict or con-
trol the distribution of their digital content. For example, DRM techniques are used to protect

3http://www.perseus-os.org

http://www.perseus-os.org
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digital music or movies. Most DRM systems encrypt the digital data, and only dedicated play-
ers implementing the required cryptographic algorithms and knowing the required decryption
keys are able to process the protected data. Popular examples for DRM systems are Apple’s
FairPlay technology for digital music or the Advanced Access Content System (AACS) for
BluRay or HD-DVD movie discs. Like all other copy-protection schemes described in chapter 3
both technologies have been broken. FairPlay’s encryption has been analyzed using reverse
engineering by Jon Lech Johansen4, who also wrote the program DeCSS to decrypt DVD’s,
to allow playing of protected songs with players not licensed by Apple. By time of writing
this thesis, AACS has not directly been broken, but there exist methods to extract encryption
keys from popular players which can be used to decrypt and copy-protected media. Shortly
after this attack, Slysoft started selling a program to decrypt AACS protected media.

5.2.5 X-Box

The X-Box was Microsoft’s first attempt to build a video game console based on the X86
architecture. To prevent the execution of unlicensed programs or pirate copies Microsoft
created a security system which implements a security model similar to some parts of the
LaGrande architecture. However, the security system was less effective and several parts of it
have been broken. Microsoft uses a chained boot code, where beginning from the first executed
code all further code is first verified before it is executed. Due to software errors and misuse
of cryptographic algorithms, this chain has been broken. Additionally, a symmetric key used
to encrypt one of the bootloaders could be sniffed even on high-speed HyperTransport bus
by using dedicated hardware [36]. A summary of all security flaws of the X-Box design can
be found in [86].
The new X-Box 360 uses a different hardware and software architecture which has not been
deeply analyzed up to the time of writing this thesis. Therefore, there is no public information
about the new security design available.

5.2.6 XOM

The eXecute Only Architecture (XOM) [50, 51] is a processor extension which supports ex-
ecution of encrypted programs and encrypted program data. In contrast to a co-processor,
XOM enhances an existing processor design with additional security functions. Each program
is executed within its own compartment, and all data leaving the processor can be encrypted
transparently. The encrypted part of a program is entered and left by executing a special
instruction.
XOM uses ECB encryption to store data encrypted in memory. Encrypted data is additionally
protected against modification by using a MAC which incorporates the virtual base address of
the data into the hash computation. To prevent replay attacks the author suggests to compute
a MAC over all protected data by the program itself, but this decreases the performance on
frequently changed data. To overcome this issue the usage of a hash tree approach is suggested,
but not implemented.
Access to a compartment is granted using a unique symmetric session key k assigned to
each program. A special null compartment without encryption capabilities exists to share
data between processes. All processed data stored in registers or memory is tagged with a
process-dependent identifier, and each process can access data tagged with its own tag. All

4http://gigaom.com/2006/10/02/dvd-jon-fairplays-apple/
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other accesses result in an exception which terminates the current process. XOM does not
trust an operating system therefore the operating system does not have access to tagged
registers. However, the operating system requires methods to save and restore the processor
status including the register contents on context switches. Therefore, XOM provides two
instructions to save and restore the processor state to encrypted memory.
To each processor a public/private key pair is assigned by the manufacturer, and the private
key can only be accessed by the processor but not by any program running on the processor.
The public key is used to encrypt the session key so that only the dedicated processor is able to
get k and to execute an encrypted program. XOM switches between the execution of encrypted
and unencrypted instructions by executing two dedicated instructions. Unencrypted data can
be accessed only by dedicated instructions.
To limit the required amount of additional hardware XOM can be implemented using a so-
called “XOM Virtual Machine Monitor” (XVMM). This virtual machine consists of on-chip
firmware which handles most security parts like cryptography and tagged register handling.
The drawback of this approach is the limited performance in contrast to a hardware only
implementation. Therefore, a hardware only implementation is proposed as well.
In [49] an operating system design for XOM is presented. The design covers process creation,
shared libraries, interrupt handling and paging. The whole operating system design is rather
complex and requires changes compared to the first XOM implementation, since the OS has
to save registers which might be marked with different tags. All MAC’s have to be stored at
dedicated physical addresses, which limits the flexibility of the operating system, because a
certain amount of memory has to be reserved for these MAC’s. Paging is possible, but the
data and the corresponding MAC’s have to be paged out and in at the same time. The usage
of shared libraries is possible, but they cannot be protected, and therefore it is possible to
alter the unprotected parts of a program with malicious libraries. The biggest drawback is
the lack of secure system calls. Therefore, a protected algorithm has to be left each time the
operating system is called. This could be used by an attacker to alter the program flow. This
does not decrease the security of the protected part, but affects the security of the protected
program as a whole. The XOM architecture can thus be used to protect small parts of a
program like secret algorithms.

5.2.7 AEGIS

Suh’s AEGIS [89] architecture can be considered as a successor of the XOM architecture.
AEGIS shares some design principles with XOM like the ability to protect only parts of a
program and dedicated instructions to enter and leave a protected part. Other parts have
been greatly improved.
AEGIS consists of a hardware part and a software part. The software part acts as a secure
operating system kernel which enhances a normal operating system. The secure kernel has
to be activated before any protected program can be executed. The processor computes a
hash over the protected part and other sensitive values like the entry point and stores it in a
secure on-chip register. A similar approach is used each time a protected part of a program is
entered. AEGIS contains a private/public key pair as well, but in contrast to XOM this key
can be used by the processor to sign the program and the protected kernel hashes to prove
that both the program and the kernel are unmodified.
In contrast to other architectures like XOM, the secret key is not directly stored in on-
chip memory like ROM or an EEPROM (Electrically Erasable Programmable Read-Only
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Memory), because this kind of memory can easily be read by an attacker with physical access
to the processor core if no further hardware mechanisms prevent this attack. Instead, AEGIS
uses Physical Random Functions (or Physical Unclonable Functions, PUF) [28]. They use
variations of physical properties of a silicon chip, which are different even for chips on the
same wafer produced with the same mask. The output of a PUF is then used to encrypt a
private key.
AEGIS provides encrypted, verified read-and-write and verified read-only memory. Verified
read-only memory is protected with MAC’s, for read/write areas a cryptographic hash func-
tion and Merkle trees are used. Data is encrypted using AES counter with a time stamp as a
counter. The time stamp has a size of 32 bits and is stored in a dedicated memory region, thus
increasing the memory footprint by approx. 6 %. This potentially gives rise to more misses
during memory operations. Depending on the number of memory access, this counter can
overflow resulting in a time-consuming re-encryption, using a new key, of all program-related
data. Longer counters can prevent this for most programs, but they consume more memory.
The required hashing step before starting a program and the need for re-encryption during
runtime are making the whole architecture more complex, since these actions take a long time
and many memory accesses, while the program has to stay suspended during that time. A
larger counter value can prevent counter overflows in most cases at the cost of an increased
memory demand. AEGIS uses speculative execution to speed up program execution. To cir-
cumvent the attack presented in [84] AEGIS suggests the usage of memory access hiding
schemes like HIDE or oblivious RAM. But as described in section 5.1.3, this cannot prevent
this attack entirely and therefore AEGIS is still vulnerable to this attack.
AEGIS requires a protected operating system kernel to be able to execute protected programs.
This kernel requires exclusive access to memory management, otherwise the security of a
protected program cannot be ensured, since memory protection is implemented in the TLB.
An unprotected operating system could alter the page table to circumvent the protection. The
drawback of this approach is the performance degradation even in cases where no protected
program is to be executed due to the additional security checks required for the protected
operating system. AEGIS can leave a protected execution environment and later enter it
again using dedicated suspend and resume instructions. They are used for example by the
operating system to implement system call handlers in unprotected memory. AEGIS memory
verification is based on physical addresses thus making paging difficult. Therefore, AEGIS can
page only the whole data protected by a hash tree to memory and later load it to a possibly
different address, but paging only arbitrary pages is not possible.
Programs for the AEGIS architecture require a modified compiler. The compiler has to sup-
port protected, encrypted and unprotected memory and transitions between these memory
areas. For each variable and function the target memory area has to be specified by the
programmer based on the required protection. Hence, the programmer has to analyze his
program to split it into protected and public parts. This is the main disadvantage of the pro-
posed AEGIS programming model [79], because most programmers are not aware of possible
attacks, and a classification of sensitive and public parts is very difficult for inexperienced
programmers, because side channels or other attacks can easily be overlooked. Furthermore,
three different memory areas require three different stack pointers which complicate the whole
design.
Due to the complexity of the processor’s security functions, most instructions are implemented
using an internal firmware. This reduces the hardware costs at the expense of additional delays,
which occur when longer tasks like re-encrypting on counter overflows have to be performed
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by the firmware. Additionally, the internal firmware consists of normal program code which
may contain programming errors. Of course, erroneous implementations are possible on the
hardware level, too, but a design with less complexity can be verified more easily.
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Part II

The Security Architecture for
Microprocessors (SAM )
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Chapter 6

SAM Design Goals

This chapter summarizes the design goals for the SAM architecture.

6.1 Motivation

The first part of this work has shown threats to software and possible solutions. It has been
shown that software-only solutions cannot provide a secure execution environment. Only
the presented hardware-based security architectures are able to provide a secure execution
environment. However, each architecture has disadvantages which prevent their usage for
general-purpose applications. Smart cards are limited in terms of computing power and flex-
ibility, and secure co-processors are too expensive. Intel’s and Microsoft’s plans for a secure
execution environment require a lot of changes to existing hardware, but they are likely to be
implemented in future computers. Their scope is focused on digital content protection and
Digital Rights Management. Therefore, they require cryptographic enhancements even for
peripheral devices like sound cards, which makes the architecture rather complex. Though,
memory protection is not covered by LaGrande, which makes the architecture vulnerable to
hardware-based sniffing attacks.
XOM and AEGIS are designed as a drop-in replacement for a standard processor and they
provide a memory protection scheme as well as an operating system design to make the
security functions available to user programs. As described in chapter 5, AEGIS has improved
many concepts of XOM, especially the usage of physical random functions greatly improves the
security of the protected programs. However, AEGIS uses counter mode encryption without
proper countermeasures to prevent memory decryption attacks due to speculative execution
of instructions.
Unfortunately, the whole AEGIS architecture is rather complex. There are a lot of new in-
structions and differently protected memory areas which require modifications to both the
compiler and the assembler. AEGIS allows to partially protect and encrypt a program on a
function and variable basis. This gives more freedom to a programmer, but in security en-
vironments more freedom often results in more mistakes. For example, the programmer can
overlook security-related dependencies by not protecting a vital variable resulting in an ex-
ploitable flaw in his program. Therefore, most programmers will choose to protect the whole
program, and this can be done with a less complex architectural design.
Due to the complexity, some instructions are not implemented in hardware but in firmware,
which may lead to longer stalls in which the processor is not able to execute user instructions
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or operating system instructions. This may happen in cases where a counter overflow occurs,
because it results in a full re-encryption of the program. Another problem may arise if in
those cases parts of the protected parts of program are paged out to external storage and are
not directly available to the processor. Another drawback of the architecture is the increased
memory footprint, as both encrypted memory and hashed memory require additional data like
the hashes and the counter. Furthermore, different handling of read-only and read/write-areas
requires two different memory verification units, which complicates the design.
Additionally, parts of the AEGIS kernel have to be permanently protected to be able to run
protected programs. This results in a permanent performance degradation even if no protected
program is executed. Furthermore, each time a new protected part is created the processor
has to compute the hashes for this memory area. Therefore, the whole protected part has to
be loaded to memory at once and memory-efficient loading of protected pages on demand is
not possible. This further limits the flexibility of the operating system.
In this thesis, the SAM security architecture is presented. SAM has been designed to over-
come some of the disadvantages of the existing security architectures described above while
providing at least the same level of security. The architecture’s design goal is to provide a
secure execution environment based on an enhanced microprocessor. The architecture should
be mostly independent from specific processor architecture to be portable to different proces-
sor architectures. To be able to use this processor as a replacement for a normal processor
the number of architectural changes is kept low. The design should be less complex to sup-
port a direct hardware implementation without additional firmware requirements and without
reducing the security level.
Hardware-only security architectures are possible [49], but they complicate the hardware
design and have limitations in terms of a flexible operating system design and performance.
Therefore, SAM is based on a combined hardware- and software-based architecture. In the
following the security requirements for SAM are listed.

6.2 Requirements for Secure Computing

The SAM architecture has been designed with the following goals in mind:

1. Protection of program code and data. The program should act as a black box, which
hides all executed instructions as well as all processed data. Even administrators or
direct hardware access should not reveal any information about the program.

2. Prevention of any unintended modifications during program execution in a multitasking
environment. A program has to be executed in the way intended by the programmer
or automatically terminated immediately. Of course, program interruptions should be
allowed since they are required in a multitasking environment.

3. Parallel execution of protected and unprotected programs. Typically, not all programs
have to be protected. Hence, protected and unprotected programs should be executable
in parallel without lowering the security for protected programs.

While some of the attacks employed to break one of these goals cannot be prevented directly,
(for example, parts of the executed program code may have been changed in memory or
a power blackout occurs) they must be detected so that the affected program is aborted
immediately. If any tampering attempt results in a termination of the program, then each
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program that exits normally has not been tampered and it has been executed in the intended
way. However, SAM does not try to prevent any kind of programming errors. It is up to the
programmer to ensure proper prevention of buffer overflows and other possible attacks when
processing external data.
These goals can be used for efficient copy-protection schemes, because programs cannot be
modified to bypass them. The same applies for DRM implementations, because a program that
cannot be analyzed can be used to hide audio and video codecs or encryption keys. However,
SAM does not try to make program execution itself more secure for example by preventing
buffer overflows or other attacks based on eternal data, but existing countermeasures against
this kind of attacks can of course be combined with SAM .
In the following, the hardware- and software-related requirements to meet the goals for secure
computing are summed up.

6.2.1 Hardware Requirements

The following prerequisites can only be guaranteed in hardware:

• Tamper-resistant processor core: All data inside the processor has to be protected
against external physical attacks to prevent manipulations used to reveal data or ma-
nipulations related to the execution of programs [22]. As a direct consequence, all data
leaving the processor has to be protected, since modifications or sniffing attacks to
external data cannot be prevented physically by the processor.

• Tamper evidence: The processor has to be able to detect any kind of tampering attempts
before they can be exploited by an attacker. That means that any kind of tampering
does not have to be detected immediately, but in any case before an adversary could
take an advantage from it.

• Restricted execution: If a program is intended to be executed on a tamper-resistant
processor core only, then the execution on other, not protected processor cores, has to
be prevented. Hence, only the intended secure processors shall be able to execute the
program code. Otherwise, attacks may be possible, especially if a simulated processor
could be used to execute the program. Furthermore, this results in an effective copy-
protection.

• Algorithm and data protection: Programs and processed data are typically too large to
allow for direct storing inside the secure processor caches. Hence, all data and instruc-
tions (in the following the term “data” refers to instructions and other data) stored
outside the secure processor in RAM must be protected against tampering attempts.
The following two attacks have to be prevented:

1. Data disclosure: Data may be read by an attacker to analyze algorithms or pro-
cessed data. Possible attacks are, for example, memory dumps by bus master de-
vices or hardware-based sniffers.

2. Data modifications: Even if data disclosure attacks are prevented, the normal pro-
gram operation can be altered by an attacker by modifying memory contents. This
includes replay attacks, where data is replaced by older, but at that time valid,
data.
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• Prevention of program flow analysis: A (statistical) analysis of the program flow may
reveal used algorithms in a program or may be used to restore cryptographic keys by
examining the program flow of identified algorithms.

The requirements mentioned above provide a secure execution of one program in a single task
environment. In this case, the whole program is executed in a secure execution environment,
which prevents any kind of external modifications.
However, these requirements are not sufficient for a multitasking environment. In these en-
vironments, programs can be interrupted at any time by the operating system or they may
issue a system call. In both cases the protected execution environment is left. This allows new
attacks addressed below.

6.2.2 Software Requirements

Attacks in a multitasking environment can be prevented if the whole operating system is
protected as described in the previous subsection. But this would result in protecting all
drivers resulting in a huge protected codebase. More code contains more security-related
programming errors and therefore the protected codebase should be kept as small as possible.
Another positive aspect of a smaller protected codebase is the improved performance: indeed
any additional security check performed by the processor is likely to decrease the execution
speed. Furthermore, the unprotected part can easily be changed or enhanced without affecting
the security of the whole system.
Therefore, a SAM -enabled system should meet the following additional goals to provide the
required security:

• Proper interrupt handling : Interrupting a protected program in a multitasking environ-
ment and restarting it later without the possibility of modifying any program-related
data in the meantime must be ensured. Hence, the state of the program must be fully
reconstructed after an interrupt in every case without the possibility to modify pro-
gram data in an unauthorized way. This leads to the following requirements during an
interrupt:

– Prevention of program flow manipulations: Any manipulation to the program flow
could be used to execute the program in the wrong order, to skip parts of the
program or result in false computations.

– Prevention of unauthorized memory access by the operating system: The OS has
full access to the whole memory area of the program and knows all dynamically
requested memory regions as well as the size of the stack. Therefore, any kind of
manipulation or examination of memory areas by the operating system has to be
prevented. However, some memory access should be allowed, since, for example,
the register values have to be stored in memory during a context switch.

• Access to external data: A program typically relies on data read from files or the network
or user-provided data and creates new data. Hence, the security architecture has to
provide mechanisms to pass external data to a protected program. However, external
data can always be manipulated and, therefore, each program dealing with external
data has to verify this data by its own by using cryptographic protection mechanisms.
For example, data received over the network is outside the scope of a secure processor.

In the following chapters the SAM architecture is presented.



Chapter 7

Processor Architecture

This chapter describes the main properties of the SAM processor architecture. The properties
here are mostly independent of the underlying processor architecture. Proposed implementa-
tions of SAM based on the SPARC and on the IA-32 architecture are described in chapter 9.
In the following the computer system in which a protected program has been compiled and
prepared for SAM is referred to as build host, and the system which executes protected
programs is called “target host”.

7.1 Overview

The SAM architecture provides memory encryption and memory verification in conjunction
with an enhanced and tamper-resistant processor core to prevent sniffing and tampering
attacks. As can be seen in figure 7.1, SAM adds several components to a normal processor,
all of them will be addressed below. SAM provides protected and unprotected processes,
distinguished by their context identifier. An unprotected process behaves like a normal process
executed on a processor without SAM enhancements. Therefore, SAM can be used as a direct
replacement for an existing unprotected processor, and protected and unprotected programs
can be executed in parallel.
SAM does not require a protected operating system start-up like AEGIS or the LaGrande
architecture. Instead, a design which protects parts of the operating system and the protected
process only during the runtime of the protected process has been chosen. This helps to prevent
performance degradations in cases where only unprotected processes are to be executed and
simplifies the boot process of the operating system.
The current SAM architecture described in this work does not support dynamic linkage.
That is, all protected programs have to be statically linked. This design simplifies the whole
architecture and gives the author of a program more flexibility, because it is not required to
use specific protected library versions provided by the target host. In the following, all SAM
components are described in detail.

7.2 Cryptographic Keys

In connection with cryptographic functions keys have to be exchanged and stored. Like XOM,
SAM uses symmetric and asymmetric cryptographic functions for protection. Each processor
P has its own private key kP

priv and public key kP
pub. The private key remains in the processor
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Figure 7.1: Schematic SAM processor overview

core and cannot be read by software. The corresponding public key can be read, and a copy
of this key should be signed by the manufacturer to prove the origin of each manufactured
processor. The public key can then be used to encrypt data that should only be readable by
the corresponding processor. The usage of physical random functions is possible, too, but it
is not considered in this thesis.
Each executable E is encrypted using kb, a unique secret key randomly chosen at program
creation time resulting in an encrypted executable E ′. In addition to this key, a random value r
is generated for each program for memory verification purposes and hash tree generation (see
section 8.1). Both kb and r are encrypted with kpub and attached to the encrypted program
(where || denotes a concatenation):

E ′ = Ekb
(E)||EkP

pub
(kb||r)

If E should be executable on more than one processor, kb can be attached multiple times
encrypted for each processor:

E ′ = Ekb
(E)||E

k
P1
pub

(kb||r)|| · · · ||EkPn
pub

(kb||r)

Internally, the processor has to store kb in addition to other configuration parameters described
below for each executed protected program. This information is stored in on-chip tables and
the tables are indexed using a program-specific identifier, the context number.
SAM implementations are supposed to support additional, possibly user-configurable, asym-
metric key pairs, for example a unique key stored on all SAM -enabled processors to simplify
distribution of protected programs. Using this key, a program could be executed on all SAM -
enabled processors without the need to prepare it for each specific processor.
Of course, the standard tool chain (compiler, assembler and linker) does not generate protected
programs and is not able to generate the required keys or encrypt programs. To limit the
number of changes to the tool chain, the SAM Linker is used to transform the previously
statically linked program into a protected program by encrypting the program and by adding
keys and program-verification-related data. A more detailed description of this program is
given in section 12.2.
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7.3 Tamper Detection Unit

This unit handles all detected physical and logical attacks. In the following, logical attacks are
denoted as security violations. As described below, they include memory verification errors
or invalid usage of instructions. Each detected security violation results in an immediate
termination of the currently executing protected program and program-related data deletion,
such as fault addresses. Additionally, the cache clears all lines owned by the faulty context and
the key store deletes the corresponding key kb. Security violations can only affect protected
programs. They are ignored when executing unprotected programs only.
Physical attacks to the processor core are always handled, and they result in the immediate
deletion of all keys including the private key kP

priv, as described in [2].

7.4 RSA Unit and SAM Configurator

The RSA unit has exclusive access to kP
priv and is used to decrypt Ekpub

(kb). After decryption,
the SAM configurator stores kb for the given context in an internal key store. Then, the root
hash for the corresponding context is loaded and stored decrypted in the hash store. Both
the hash store and the key store can only be read by the cache: they are not readable by
instructions, but their configuration can be controlled using memory-mapped registers.

7.5 Cryptographic Functions

All internal cryptographic units, like AES or RSA, and a hardware random number generator
can be made available to user programs. This further increases security, because this can be
helpful to avoid statistical attacks using the memory access pattern, such as those cited in
[100]. Of course, access has to be implemented in a way that access to all SAM -related keys
is prevented.

7.6 Security-Aware Cache

The cache is a major part of SAM’s security architecture. It contains all cryptographic parts
required for memory integrity verification and memory encryption and decryption. The basic
cache architecture has been published in [73], but the current architecture described in chap-
ter 11 has been enhanced to provide a better performance by using prefetching mechanisms.

7.7 Memory Layout

A SAM -enabled processor has to be able to know if memory contents are encrypted or if
their integrity has to be verified. For AEGIS and XOM dedicated instructions are used to
enable this for smaller parts of a program. The SAM architecture does not support partly
protected programs, because in these the integrity of the whole program cannot be ensured.
For example, the program flow of unprotected parts can easily be changed resulting in an
unexpected program behavior. A fully protected program simplifies program development,
because many existing functions and libraries can simply be used without any modifications
by statically linking them to the protected executable.
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Since no partly protected programs are permitted, no dedicated instructions to enter a pro-
tected part are required, and memory protection can be enabled based on the virtual address.
Figure 7.2 shows SAM’s relatively fixed and simple memory layout for a protected program
chosen with hardware implementation in mind. All addresses are virtual, resulting in a free
mapping from virtual to physical addresses, with a double positive effect: avoiding contiguous
physical memory clusters and allowing for paging of unused parts.
For each protected context only four base addresses are stored, which are marked in this figure
with the following labels:

• HASH BASE denotes the position of the root hash and therefore the beginning of the
hash tree. This section is called “hash tree” or “hash memory area” in the following.

• All code and data between ENC BASE and UNSEC BASE is protected by hash values.
This memory region can be used as read-only shared memory, for example, for protected
parts of an operating system. In the following, this memory area is called “protected
memory area” or region.

• Between ENC BASE and PROT BASE the cache transparently decrypts all read code
and data and decrypts all written code and data. This section is referred to as “encrypted
memory area”.

• All memory above UNSEC BASE and all memory below HASH BASE is unprotected.
These parts are dedicated for major parts of the operating system, DMA areas and
parameter passing between the operating system and the protected program.
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The corresponding memory layout for each protected process is set by the operating system
when loading a protected program, and it remains static during the whole execution (see
chapter 10).

7.7.1 Memory Views

Access to decrypted parts cannot always be granted and hash values must not always be
computed or checked: If for example, memory contents are decrypted and hash values are
computed during write-back only if the line was written by an instruction protected by hash
values of the same context. Likewise, access from arbitrary instructions to decrypted memory
regions must be prevented, because otherwise the administrator of a computer system may
access any part of the memory contents by simply reading them.
This results in the internal classification of protected or unprotected instructions resulting in
two different views of the main memory:

• Protected instructions can access all memory regions, and encrypted main memory
contents are decrypted in SAM’s cache. On write-back hash values are computed and
the hash tree is updated.

• Unprotected instructions can access the whole memory area, too, but encrypted parts
remain encrypted and hash values are not generated during write-back of dirty parts.

In order to be able to distinguish memory access by protected and unprotected instructions on
write-back and cache line replacements, the memory system has to be enhanced to support
tagging of memory regions. This memory view design has been chosen instead of simply
preventing memory access to protected parts, because the page mapping can freely be modified
by the OS. Therefore, it would still be possible to access a protected physical page by mapping
this page to an unprotected address space. Of course, this page can then be accessed only
encrypted and hash values are not updated. This is in contrast to AEGIS, which requires
that the parts of the operating system maintaining the page mapping be trustworthy and
protected.

7.8 Protected Operating System

The memory view design can prevent access to protected memory regions by unprotected
instructions, but it does not prevent the unintended execution of protected instructions. An
attacker who is able to modify the operating system can still jump to protected parts of
the program to execute them. This would allow an attacker to skip or re-execute parts of a
program and therefore it has to be prevented. SAM prevents this attack by distinguishing
between protected instructions executed in user mode and in supervisor mode. This is realized
using several flags (listed in table 7.1) representing the current protection level. The PM and
PE flags are set based on the current value of the program counter, and the PV flag is set by
the cache system.
The PI flag is used to restrict instruction execution in supervisor mode. When set, the cur-
rently executed instruction has full access to memory, and encrypted memory contents are
transparently decrypted. In user mode PI equals PM, resulting in full access for all protected
instructions as described above. In supervisor mode, the flag PT has to be set as well to en-
able full access. This flag is automatically set when the processor performs a transition from
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Flag Description
S Supervisor Mode. Set each time the processor operates in supervisor mode.
PP Protected Process. This flag is set during execution of a protected process.

If it is unset, the following flags are always unset.
PS SAM-enabled. This flag is set when the first protected process is configured

and cleared when all protected processes have ended.
PT Protected TRAP. This flag is set on each TRAP for a protected process.
PV Protected Data Verified. Each time all current data has been verified, this

flag is set.
PM Protected Memory. Set if the current instruction is located in protected

memory.
PE Encrypted Memory. Set if the current instruction is located in encrypted

memory.
PI Protected Instruction. PI = PM ∧ (S ∨ PT). This flag reflects the special

handling of protected instructions executed in supervisor mode and equals
PM for user mode instructions. The processor does not store this flag, its
value is always computed using the given Boolean expression.

Table 7.1: SAM’s processor flags

user mode to supervisor mode (TRAP), but it can be cleared by the operating system to
drop its privileges using the st instruction described in section 7.9. This instruction has to
be executed before leaving the protected part of the operating system to clear PT to disable
access to encrypted memory regions. Each time the operating system wants to enable full
access to encrypted memory regions st has to be executed again to set PT. Means to prevent
unauthorized setting of PT are described in chapter 10. This definition of PI serves two pur-
poses: It prevents direct data access by the unprotected parts of the operating system as well
as execution of encrypted instructions.
To prevent attacks initiated in supervisor mode the SAM architecture implements additional
checks listed in table 7.21 with the S flag in the processor. In order to prevent arbitrary
transitions from supervisor to user mode, this flag can only be cleared if, for the clearing
instruction (for example an instruction which returns from a TRAP), the PI flag is set.
Therefore, only protected instructions can return to a protected user space.
Additionally, in supervisor mode the execution of encrypted instructions is prevented. Oth-
erwise a malicious operating system may try to directly jump into user mode to execute
arbitrary instructions.

7.8.1 Protected TRAP Table

To support a protected operating system kernel, SAM ensures that the TRAP table, which is
the entry point for all operating system calls, is located in protected memory (see table 7.2).
However, this requirement (listed in [72]) is not sufficient to prevent attacks, since the pointer
to the TRAP table base address Tbase might have been changed to point to another location
in protected memory. Although it is very likely that this attack would crash the system, SAM
must prevent it. Hence, the current value of Tbase is incorporated into the memory verification

1In the table the notation → X has been used to represent a write access to X.
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Condition Description
→ S ∧ PP ∧ PI Prevention of execution of unprotected instructions in protected

TRAP mode.
S ∧ PM ∧ PE ∧ PP Prevention of execution of encrypted instructions in supervisor

mode.
S ∧ PT ∧ PM ∧ PP Prevention of execution of unprotected instructions in protected

TRAP mode.
S∧ → Tbase ∧ PS Prevent any modification of Tbase when in SAM mode.

Table 7.2: Supervisor-mode-related security violations

Hash Block

Cache Block

Root Hash

Figure 7.3: Hash tree layout

(see section 8.1 for further details), so that changing Tbase while PS is set is reported as a
security violation.

7.8.2 Sparse Hash Tree

Hash values are stored in a cached hash tree [27], as can be seen in figure 7.3. The hash
tree protects the whole virtual memory area containing the executable, stack and heap and
parts of the OS (see figure 7.2). The size of the hash tree directly depends on the size of
the protected memory region: the tree always consumes 25% of the whole protected virtual
address space due to the size of a hash value as explained in section 8.1. SAM requires that
all hash values have been precomputed at program creation time for all protected memory
regions. This increases the protected program size, but disk space is cheap and it prevents
time-consuming computations on program start-up and obviously simplifies the processor
design. However, parts like heap or stack that are unused at time of program start do not
need precomputed hash values. These values can be calculated the first time a corresponding
region is used. Hence, hash values used to protect initially unused memory parts can be
omitted in the executable to reduce its size.
In order to allow the cache to distinguish used and unused memory areas, unused areas are
marked with a hash value of zero2. Fortunately, all memory pages containing zeros only need
not to be stored within the executable, because the OS can map pages containing only zeros
to these regions. Hence, the size of the executable can be reduced if the protected address
space is mostly unused during program start-up.

2All hash value bits are set to zero.
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Each time a hash value of zero is read, the protected content is assumed to be valid, regardless
of the actual contents. In order to prevent attacks the cache still verifies this zero value using
the corresponding parent in the tree. To cope with the unlikely case of a computed hash value
of zero, the hash value is set to one3. Algorithm 7.1 illustrates the recursive hash verification
procedure verifyCacheLine used for memory integrity verification. Of course, each time data
is written back to memory the processor updates the hash values.
The sparse hash tree design requires some operating system modifications (described in sec-
tion 10.2.3). They are required to guarantee that always all required pages possibly accessed
by the cache to verify memory contents are mapped to physical memory. In cases where the
cache is unable to resolve a virtual address pointing to a required hash value, the processor
instantly reports a security violation to terminate the protected program.

Algorithm 7.1: Function verifyCacheLine(Address, CacheLine)
computedHash=computeHash(CacheLine);
rootHash=getRootHash();
if computedHash==0 then

computedHash=1;
end
if Address==BASE HASH then

if computedHash 6= rootHash then
security violation();

end
else

parentAddress=computeParentAddress(Address);
memoryHash=fetchHashValue(parentAddress);
if (memoryHash==0) or (computedHash==memoryHash) then

verifyCacheLine(parentAddress, memoryHash);
else

security violation();
end

end

7.9 SAM Instruction Set

The extended security functions of SAM require new instructions. Compared with [72] the
number of required instructions has been notably reduced with a simplified hardware design
as a by-product. The current design requires only the following Secure TRAP (st) instruction.
This instruction sets or clears the PT flag based on the register value of the operand to request
or drop additional privileges. In the following, setting PT is referred to as sts (Secure TRAP
Start), whereas clearing PT is referred to as ste (Secure TRAP End). This instruction can
only be executed in supervisor mode and applies only to protected processes. It behaves like
a nop4 instruction for unprotected processes or when located in unprotected memory.

3Only the least significant bit of the 128-bit hash is set to one.
4No Operation.
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Chapter 9 lists more additional instructions, but they are implementation-specific and not
necessary for an abstract architecture overview.

7.10 Speculative Execution

Checking the data integrity is a very time-consuming task. Hence, it is desirable to execute
most instructions speculatively prior to their verification. This improves the performance,
but an attacker might exploit the small time frame between executing tampered instructions
and detecting them to alter the program. As speculative execution cannot prevent tampering
attempts, the architecture must ensure that these attempts cannot be used to reveal any
secrets. For example, an attacker might try to replace protected but unencrypted instructions
to copy secret data to unprotected memory.

7.10.1 Memory Decryption Attack

The SAM architecture as described in [73] prevents many attacks, but was, like AEGIS and
XOM, vulnerable to an attack used to decrypt memory contents. The attack is described in
[84] and is even easier to accomplish due to the SPARC instruction format which uses only two
bits for a call5 instruction opcode (see section 9.1 for more details of the SPARC instruction
format). The attack is based on an opcode manipulation whereby each instruction is changed
into a call instruction, which, when executed, gives the attacker the opportunity to record
the target address on the address bus, thus revealing more bits of the modified instruction.
This attack is possible because the adversary gets direct feedback on his attacks. Therefore,
it is not sufficient to stall the processor on interrupts until all instructions are verified as
suggested in [89] or [73], because sensitive information may still be stored in registers con-
taining for example the faulting address on page faults. Even if these registers are cleared on
verification errors, an attacker may try and sniff the address bus directly. Even with address
bus randomization schemes, like HIDE, the attacker gets useful address information, since
these schemes typically randomize small chunks of memory. For example, if the access to 64k
Byte chunks (216 Bytes) of memory is randomized by HIDE only the information in the least
significant 16 address bits is lost. The remaining 16 most significant bits are unchanged and
can be used to reveal two bytes of memory.

7.10.2 Secure Speculative Execution

In order to prevent this attack more steps are required to not provide any kind of feedback
to the attacker when executing instructions speculatively. Hence, SAM has the following
limitations while executing instructions speculatively:

1. Instructions can be executed speculatively until an interrupt is executed or the context
is to be changed. In both cases the processor stalls until any read data has been verified
and then continues execution. Hence, modified instructions or data are detected at least
before the next system call or context switch is executed. Therefore, modified program
parts cannot be used to transfer data to disk or over the network, since this would
require a TRAP.

5A call instruction is used to jump to arbitrary instructions in the virtual address space.
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2. The cache defers program-caused fetches until all pending verifications have been fin-
ished successfully. This prevents data disclosure by address bus sniffing attacks. This
does not decrease the cache performance in cases where there is enough time between
cache misses.

3. All protected instructions trying to write to unencrypted memory or special registers
are stalled until the cache has finished all pending cache line verifications.



Chapter 8

Memory Protection

This chapter describes SAM’s memory protection scheme.

8.1 Memory Integrity Verification

Since hash values are cached, their size has to be a fraction of a cache line and a power of
two for efficiency reasons. In SAM’s case a cache line consists of 512 bits and each hash has
a size of 128-bits. Thus, four hash values (called “hash blocks”) can be stored in a cache line.
Other hash sizes are possible, but smaller hashes provide less security against attacks, and
larger hash values result in an increased memory footprint.
When computing hash values for encrypted data, the hashing function is typically applied
to the encrypted data and not to the unencrypted data. This has the advantage that it is
impossible to leak additional information by the hash value. For example, when applying a
hash function to unencrypted data, an attacker could try to decrypt the data by performing
a brute force attack using the hashing function. This attack is not possible when hashing
encrypted data.
However, when designing SAM , one goal was the resulting performance of the cryptographic
tasks. Hence, the additional amount of data required for encryption and hashing should
be reduced compared with memory encryption schemes like used by AEGIS. Applying the
hash function to unencrypted data has the advantage that the hash value can be used as
a counter value for encryption (see section 8.2). Consequently, an additional counter value
is not required, thus saving memory. Therefore, SAM always computes hash values on the
unencrypted memory contents. To prevent information leakage the algorithm has the following
properties:

• Each cache line C is XORed with a random, program-dependent secret 512 bit value
r before computing the hash H. This value makes it impossible for an attacker to
compute H even when C is known. Therefore, the hash values cannot be used as a
“fingerprint” to identify known functions in a program just by comparing the hash values
with precomputed ones. Furthermore, identical memory contents of two programs result
in different hashes due to different r values. The size of r has been chosen to successfully
prevent brute force attacks.

• Identical memory contents inside one program at different addresses always have to
result in different hash values. Otherwise, an attacker would be able to move a cache

50
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Figure 8.1: Hash value computation

line and its corresponding hash to a different address without notice. Furthermore, equal
hash values could give an attacker valuable information about encrypted memory. For
example, if hash values were computed over unencrypted and encrypted parts, equal
hash values could directly be used to reveal parts of the encrypted memory. Therefore,
SAM uses the virtual base address V of the corresponding cache line to make the
hash-value computation location-dependent.

• As described before, SAM requires a fixed address of the TRAP or interrupt table
Tbase. To ensure the correct value during protected program execution this value has
been incorporated into the hash-value computation as well.

These requirements lead to the following hashing algorithm illustrated in figure 8.1. At first

C ′ = C ⊕ r ⊕ Tbase (8.1)

is computed. In the following, C ′ is further divided into four 128-bit blocks X1···4, for conve-
nience:

C ′ = X1||X2||X3||X4. (8.2)

The hashing scheme has been suggested in [74, §2.4.4] and is based on a tree structure and
provides the properties listed in section 4.2. Let

f(x,H) = Ex(H)⊕H (8.3)

be the rounding function, where Ek(y) represents the application to y of the AES function
with key k. AES has been chosen to reduce the amount of additional hardware required to
compute hash values, since AES is used for encryption as well.
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The hash is computed as follows: First the following operations are performed in parallel to
compute the two sub-hashes H1 (over X1 and X2) and H2 (over X3 and X4):

H1 = EX1⊕V (X2)⊕X2, H2 = EX3⊕V (X4)⊕X4. (8.4)

When the previous step is completed, the following computation is carried out:

H = EH1⊕V (H2)⊕H2. (8.5)

The hashing scheme has been changed compared to the one described in [70] by incorporating
the virtual address V into the hash computation instead of XORing it with the plain cache
line due to the following reason: Let C1 and C2 be two different cache lines located at the
virtual addresses V1 and V2. Then C ′1 and C ′2 are computed using the old scheme as follows:

C ′1 = C1 ⊕ r ⊕ (Tbase||V1)
C ′2 = C2 ⊕ r ⊕ (Tbase||V2).

It can be observed that C ′1 and C ′2 are equal if

C1 ⊕ V1 = C2 ⊕ V2

resulting in an undesired information leakage. This case may happen quite frequently, because,
for example, often data is stored in linked lists which may contain virtual memory addresses
of other list elements. If these addresses are stored at the address of the last word of a cache
line, the hashes may be equal. The new scheme does not have this undesired property, because
the virtual address is directly incorporated into the hash-value computation instead of only
modifying the plaintext.
Computing a hash over the plaintext further reduces the probability that an attacker may
take advantage of the very unlikely case of equal hash values located at different addresses.
Assume that HC1 and HC2 are the hashes of the cache lines C1 and C2 located at the virtual
addresses V1 and V2. If HC1 = HC2 then C1 and C2 cannot be exchanged without notice. The
cache always recomputes the hash values over the plaintext for comparison, and due to the
different virtual addresses V1 and V2 the hash values computed with equations 8.4 and 8.5
would differ from the values stored in memory.
Another advantage of this hashing scheme compared to the one published in [72] is the
performance gain by parallelizing hash-value computation. The old scheme was based on a
sequential approach requiring five sequential AES applications before the final hash value has
been computed. The new scheme reduces this to roughly two sequential applications, resulting
in a performance gain of 5/2.
The secret random value r can be used to further optimize integrity checks. The knowledge
of r is required to compute valid hash values. Due to the one-way properties of the hash-
ing function, it is not possible to compute r based on the unencrypted plaintext and the
corresponding hash value. A brute force attack would be possible, but due to the size of r
(512 bits) it is not feasible. Without the knowledge of r it is impossible to compute a valid
hash value for a given cache line, even if the line is not encrypted. This property can be
used to omit a full hash tree walk when verifying static data like instructions, because replay
attacks on static data are not possible as long as r is different for different programs. When
using the same r value for different programs, an attacker could replace protected memory



8.2. MEMORY ENCRYPTION 53

Encrypted Memory Contents

128 Bit 128 Bit 128 Bit 128 Bit

Hash

128 Bit

AES
kb V

Cache Line C

128 Bit 128 Bit 128 Bit 128 Bit

Fetch Fetch Fetch Fetch
AES

kb V
AES

kb V
AES

kb V

Figure 8.2: Memory decryption

contents from one program with contents located at the same address of the other program.
Admittedly, omitting a full hash walk is only possible when executing no self-modifying code.
Furthermore, in contrast to the first design of SAM [72], it is no longer required to store
the root hash encrypted within the executable. This does not lower the security, because an
adversary cannot compute valid hashes, and the processor prevents read access to already
stored and updated root hash values.

8.2 Memory Encryption

SAM encrypts all data located in encrypted memory areas transparently before storing it
in memory. Since encryption adds another latency to each memory access, special care has
been taken to minimize the overhead. Instead of encrypting the memory contents directly –
which would sum up the fetching and encryption latency –, a parallel approach based on the
counter mode [20] is used. In contrast to the AEGIS architecture a dedicated counter value is
not used. Instead, the corresponding 128-bit hash value (see section 8.1) is used as a counter
value. This has the following advantages:

• The memory footprint is reduced, since there is no need for an additional counter value.

• The hash value is already stored in the cache when the cache verifies the integrity. This
helps to speed up integrity verification.

• A full re-encryption of all encrypted memory contents on counter overflows is not re-
quired.

• For direct encryption the latency to fetch the cache line C and the latency to decrypt
it sum up. This is not the case for counter mode, since the encryption function is
applied to the counter and not to the actual data. Hence, both steps can be processed
in parallel if the counter value is known in advance, as shown in figure 8.2. Therefore,
both latencies do not sum up if a reasonable fast AES implementation, such as [34],
is used. The probability of a hash line already present in the cache is between 0.5 and
0.9 for the simulated workloads presented in section 14.6. This is due to the fact, that
most memory accesses are local, both in space and time. Hence, an already fetched hash
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line can be used to decrypt up to three newly fetched cache lines, since each hash line
protects four cache lines. In cases where this is not possible, the latency is around twice
the latency of an unencrypted fetch, similar to the latency of direct encryption. Hence,
using counter mode is typically faster than direct encryption schemes.

• Approaches like memory pre-decryption [78] can hide the latency only in cases of suc-
cessful predictions but result in much higher latencies in case of mispredictions. It is
therefore advisable to use cryptographic schemes which provide a good overall perfor-
mance in all cases regardless of predicted memory accesses. However, when using the
presented design it is possible to use memory access predictors as well to further speed
up memory access.

Indeed, as described in section 4.5.5, special care has to be taken for the counter value in
counter mode. Equal counter values for different data to encrypt have to be prevented. Since
SAM uses 128-bit hash values, the probability of equal hashes is very low, because the value
r is unknown to an adversary and therefore he is is not able to compute valid hash values
by himself. Instead, he has to wait until two hashes are equal. According to the birthday
paradox described in section 4.2, this may happen after approximately 2

128
2 = 264 hash-value

computations with a probability of 0.5.
The only information that cannot be hidden with this scheme is that data at a given address
is unchanged compared to a previous point in time. However, in cases where the programmer
wants to hide this information as well, he or the compiler could enclose the data to protect
with random values changing their values with each write access.
To further decrease the impact of equal hashes SAM uses virtual address-dependent encryp-
tion keys based on a base encryption key kb chosen at compile time. The encryption will be
performed now at the block level, using a different key to encrypt each block; this encryption
key will be derived from the virtual address of the block to be encrypted, using kb as a param-
eter. This “derived key” will be the actual encryption key for the block to encrypt. The usage
of a base key has the desirable property that only hash values for the same virtual address
have to be unique. This further reduces the probability that two equal hash values computed
over two different cache lines C1 and C2 can be exploited to simplify their decryption.
More precisely, let K be the space of encryption keys, let K? be the space of base keys, and
let V be the space of virtual addresses; then, given a block X, which belongs to cache line C
and is located at virtual address V , the encryption function is

Egkb
(V )(H(C))⊕X. (8.6)

In this expression, g : K? × V → K is a suitable transformation function, such that, for each
value of the parameter kb ∈ K?, gkb

(V ) supplies a usable AES encryption key. This function
should satisfy the following property: for any kb, k′b ∈ K?, there do not exist V , V ′ ∈ V,
V 6= V ′, satisfying gkb

(V ) = gk′
b
(V ′). In practice, such function exists since |V| � |K|, but

then, of course, the base key space is smaller than the original, namely |K?| < |K|. Initially,
the requirement of hardware simplicity compels us to use a simple g, such as XORing kb and
V . But, then, the system could be liable to a related-key attack, as described in section 4.5.3.



Chapter 9

SAM Implementations

Most parts of the SAM architecture as described in the previous chapters are independent of
the underlying processor architecture. This chapter describes architecture-related adaptation
of SAM for the SPARC and the IA-32 architecture. Since the main changes compared to a
standard processor are located in the cache, the modifications to a standard processor can be
kept small.

9.1 SAM for SPARC

This section provides a short overview of the SPARC V8 architecture based on the descriptions
in [67, 85]. A SPARC processor provides 32 logical registers, separated in four different register
types containing eight registers each: global (%g0 -%g7 )1, local (%l0 -%l7 ), in (%i0 -%i7 )
and out (%o0 -%o7 ). Internally they are mapped to up to 520 physical registers in up to 32
sets. As can be seen in figure 9.1, the in and out registers of side-by-side sets are overlapping
to allow parameter passing.
The register mapping is controlled by the Current Window Pointer (CWP). When executing
a save instruction or during a TRAP the window pointer is decremented and incremented
by restore and rett (return from trap) instructions. A CWP over- or underflow results in a
TRAP. The TRAP then has to read or write the current register set from or to the stack.
Even though all registers are general-purpose registers from the hardware point of view some
registers contain special values by convention. Examples are the stack pointer which is always
stored in the out register 6 (%o6 ), the frame pointer in the in register 6 (%i6 ) and the
return address in register %o7. This design automatically converts the current stack pointer
to a frame pointer when the register window is changed on subroutine calls.
The SPARC architecture provides a user mode and a supervisor mode. The supervisor mode
is entered either by software when executing a trap instruction or by a hardware TRAP.
The SPARC architecture provides 256 TRAP’s. On each TRAP a branch into the TRAP
table is performed and the program counters of the interrupted instructions are saved in local
registers. Other operations to save the current state of the interrupted process have to be
performed by the operating system. At the end of the TRAP function, the OS returns to
the user program by executing a rett instruction. Due to register window design, the TRAP
handler can access its own local registers. Therefore, saving registers to the stack is not

1The first global register always contains the value zero.
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Figure 9.1: SPARC Register Windows

necessary in cases where the number of registers required by the TRAP handler does not
exceed the number of available local registers.
The memory management unit (MMU) allows mapping between a program-dependent mem-
ory layout (context) and the physical memory available. The MMU distinguishes programs
by a unique process ID (context ID) and can only be configured in supervisor mode.
Like on all RISC architectures the SPARC instruction set is very regular. There are only three
different instruction formats, Format 1, Format 2 and Format 3 [85]. They are distinguished
by a small two-bit opcode which allows the only Format 1 instruction, the call instruction,
to jump to arbitrary addresses in the 32 Bit virtual address space. Format 2 instructions are
mainly used for branches, and Format 3 is used for all remaining instructions. The latter
can address either two registers and a 13 bit immediate constant or three registers with an
optional address space identifier (ASI). The ASI can be used by load and store instructions to
select a different address space which can be used to directly access hardware like the MMU.
The current processor status is stored in the Processor Status Register (PSR). It contains
among others the integer condition codes N, Z, V, and C2, the S flag which indicates supervisor
mode, the PS flag which stores the S value before a TRAP, and the CWP.

9.1.1 Register Protection

In addition to the SAM architecture presented in chapter 7, the SPARC implementation
of SAM provides a register protection mechanism. It is not strictly necessary to provide a
secure execution environment, since registers containing sensitive values can always be saved
in protected memory and then cleared before executing unprotected instructions. But due to
the large SPARC register set, clearing all registers containing sensitive data would degrade
performance and, for this reason, register protection has been added to the SAM architecture.
The current register protection scheme of SAM has been modified compared to the protection
scheme described in [72] in order to reduce the hardware overhead. Instead of storing all eight
bits of the context number of the writing context along with each register, now only one
additional register protection flag is required for each register. This modification saves up to
seven bits for each physical register. The flag is set if the corresponding register has been
written by a protected instruction and cleared otherwise, i.e., it is set according to the PI
value (all processor flags are listed in table 7.1) of the writing instruction. On each read access
the PI flag of the reading instruction is compared with the stored flag. If both are equal the
read succeeds. If they are not equal, the processor has to distinguish the following two cases:

2N: negative, Z: zero, V: overflow, C: carry.
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1. If PI is set, the tamper detection unit is informed to terminate the current protected
process.

2. An unprotected read to a protected register succeeds, but instead of the current register
value zero is read to prevent information leakage. An implementation which always
treats different values in PI and the register protection flag as a tampering attempt
is possible, too, but the current design has been chosen to stay compatible with the
design described in [72]. This design had been chosen to stay compatible with memory
protection, which allows reading of encrypted parts of memory contents by unprotected
instructions as well (as long as the unencrypted parts are not visible).

Write access is always possible and sets the register protection flag accordingly. With only
one flag per register different protected processes cannot be distinguished any longer. Hence,
the processor has to clear all protected registers on context switches, as described below in
section 9.1.3.
In some cases register values must be shared between protected and unprotected instruc-
tions, for example, to allow parameter passing between the unprotected part of the OS and
a protected program. Therefore, register protection can be partly deactivated using a new
instruction. This instruction allows to alter the register protection flag of all registers in the
active register window and is described in the next section.
Register protection is not limited to general-purpose registers, because other special registers
like the PSR can be used to pass small portions of information from the protected part to
the unprotected part. Hence, SAM does not execute instructions accessing special registers
speculatively; these instructions are stalled until PV equals one. Since the protected part of
the operating system is small and these special registers can only be accessed in supervisor
mode, the performance loss is minimal.

9.1.2 Instruction Set

The SPARC instruction set has been enhanced by only three additional instructions. Hence,
the modifications to the instruction set are much smaller than for other security architectures
like AEGIS. The existing SPARC instruction set has been designed with a pipeline imple-
mentation in mind. Therefore, pipeline-design related features are discussed when describing
the new instructions as well.
All of the following new instructions are Format 3 instructions:

1. st imm (secure TRAP). With this instruction the PT flag is set based on the least signif-
icant bit of the immediate field imm. The instruction can be executed only in supervisor
mode, has to be located in protected memory, cannot be executed speculatively and has
no operation for unprotected programs (PP unset), as can be seen in algorithm 9.1.

The modification of the PT flag directly affects the next executed instruction if it is
not located in encrypted memory, because due to the pipelined design the next instruc-
tions3 are already loaded but not executed when the flag is altered. This design has
been chosen, because in supervisor mode all instructions are unencrypted and there-
fore this behavior is no limitation and possible pipeline stalls would decrease execution
performance. As described later in section 11.3 it is assumed here that all instructions

3The exact number is implementation-specific.
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located in protected, but unencrypted memory are verified regardless of the value of PI
to prevent memory tampering attacks.

Algorithm 9.1: Implementation of st
if PP==1 then

if imm==0 then
if ST==1 and PI==1 then

while PV==0 do
;

end
ST=0;

else
security violation();

end
else

if ST==0 and PM==1 then
while PV==0 do

;
end
ST=1;

end
security violation();

end
end

2. rprot %rs1, %rs2, %rd or rprot imm, %rd (register protection). This instruction controls
the register protection flags for the current register window when the PI processor flag
is set, as can be seen in algorithm 9.2. Since this instruction can be used to unprotect
parts of the register contents with possibly sensitive data, SAM requires that the PV
flag is set before further processing the instruction. The instruction can either be used
with an immediate field or with three registers:

• When used as immediate instruction the immediate bits have the meaning as de-
scribed in table 9.1.

• The variant with three registers uses register %r1 as a mask to select the registers
of the current window to be set with the corresponding values given in register
%r2.

In both cases the destination register %rd contains the flags for all registers of the current
set. This instruction definition has been used to be able to alter register protection
flags with one instruction. In almost all cases only the flags of the out registers of the
current set have to be altered and this is possible using only one instruction – the
rprot instruction – with the immediate field set accordingly. Therefore, the additional
overhead is kept very low.
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Bit Description
12 The new value for all non-masked registers.
11 When set, the flags of the seven global registers are set based on the

mask to the value of bit 12.
10 Like bit 11, but now the eight out registers are set.
9 Like bit 11, but now the eight local registers are set.
8 Like bit 11, but now the eight in registers are set.

7-0 Mask to select the registers to update. Each bit in this mask corresponds
with one register of the selected registers.

Table 9.1: st immediate constant – description

Algorithm 9.2: Implementation of rprot
if PP==1 then

if PI==1 then
while PV==0 do

;
end
if instruction format==immediate then

rd=set registerprotection flags(imm);
else

rd=set registerprotection flags(%rs1, %rs2);
end

else
security violation();

end
end
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To further optimize execution of rprot it is implemented with a delay slot. That is, the
next instruction following rprot does not change any register protection flag, even if it
writes to a register. Instead, the flags set by rprot are used. Using this delay slot the
protected part can be left with the following instructions in the given order:

// d i s a b l e r e g i s t e r p r o t e c t i o n
rpro t (1 << 11 | 1 << 10 | 0 x f f ) , %g0 ;
// c a l l s u b r o u t i n e and w r i t e re turn address to %o7
jmpl %o3 , %o7 ;
// d i s a b l e secure TRAP mode ( c a l l e d in branch d e l a y s l o t )
s t e ;

Due to the delay slot the return address stored in register %o7 is not protected and
readable by unprotected instructions. Note that the ste instruction is executed in the
branch delay slot of the jmpl4, thus disabling the protected TRAP mode for the jump
target.

When returning the following instructions should be executed in the given order:

// en ab l e secure TRAP mode
s t s ;
// en ab l e r e g i s t e r p r o t e c t i o n
rpro t (1 << 12 | 1 << 11 | 1 << 10 | 0 x f f ) , %g0 ;
// no oper a t i on in d e l a y s l o t
nop ;

The nop operation could be replaced by any operation not modifying the register values
like copybits.

3. copybits. This instruction copies the current contents of the PP, PT, PM, and PV into
the integer condition codes N, Z, V, and C for protected and unprotected processes as
shown in algorithm 9.3. Therefore, this instruction provides an efficient way to branch
based on the SAM flags, for example to skip code which should only be executed in case
of protected programs. This instruction is not strictly necessary, because these values
can be mapped to unused bits in the PSR as well. But then one additional instruction
after reading the PSR to mask the desired bit would be required.

Algorithm 9.3: Implementation of copybits
N=PP;
Z=PT;
V=PM;
C=PV;

More instructions, for example to pass the encrypted base key kb to the processor or to set
the process-specific base addresses, are not required due to SPARC’s support of alternate
address spaces. All these functions have been mapped into a previously unused address space.
Using a memory-mapped interface often enlarges the overhead when compared with dedicated

4Jump to given address and adjust CWP.
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instructions, but since this interface is only used on protected process creation and termination
and in case of errors reported by the tamper detection unit, this overhead is acceptable. For
example, the main delay before starting a protected process is caused by the decryption of kb

and r. Furthermore, the number of unused opcodes for existing RISC architectures is rather
low, which complicates the implementation of more functionality in instructions.
In addition to the new instructions, the two existing SPARC instructions wrpsr5 and rett
have been slightly modified. Both instructions can alter the processor’s S flag. To prevent
unintended transitions to user mode the S flag cannot be cleared when the following condition
is met (see also table 7.2): S ∧ PP ∧ PI. Each prevented clearing attempt results in a security
violation reported to the tamper detection unit.
This modification ensures that for protected processes user mode can only be entered from
protected instructions in supervisor mode. Other modifications to existing instructions are
not required.

9.1.3 Context Switches

On SPARC processors the context is switched when writing a new context number to an
MMU-specific register using a store instruction with an alternative address space. For SAM
this context switch is reported to the processor by the MMU. The processor then stalls further
execution until the cache sets the PV flag and clears all protected registers in all windows.
Therefore, a context switch even to another protected process can be performed at any time
in supervisor mode, a protected instruction is not required because all possibly remaining
protected data is cleared.

9.1.4 TRAP Modifications

SAM adds the following two TRAP sources to the processor:

1. The tamper detection unit performs a TRAP for each security violation to inform the
operating system that a tampering attempt has been detected. This is required because
after each tampering attempt the corresponding program cannot be executed any longer
and the operating system needs to be notified.

2. The RSA unit notifies the processor each time a key has been decrypted. This design
has been chosen to prevent time-consuming polling when a new protected program is
to be started.

In addition to the new TRAP sources, the main modification to the TRAP handling is the
support of the secure TRAP mode. The processor now automatically sets the ST bit on each
TRAP for protected processes. Each time the ST flag is already set on a TRAP or cleared
during rett for protected processes a security violation is reported. Furthermore, the processor
now stalls until the cache sets the PV flag on each TRAP.

9.1.5 Memory-Mapped Configuration Registers

Table 9.2 lists the most important data assigned to the alternative address space used for
SAM configuration. The access column shows whether the corresponding value can be read

5Write to PSR register.
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Content Access Description
Control Register R/W Used to clear interrupt request, committing changes written

to the context, base and secret key registers and other flags.
Error R Contains error information in case of failures.
Public Key R Contains the processor’s public key information including

the size of the key.
Context Number R/W The context number the following data is used for.
HASH BASE R/W The address of the root hash (cf. figure 7.2).
ENC BASE R/W Base address for encrypted memory.
PROT BASE R/W Base address for protected memory.
UNSEC BASE R/W Start of unprotected memory.
Secret Key W Used to store the encrypted secret key kb and r before de-

cryption.

Table 9.2: SAM configuration address space

(R) or written (W). The configuration address space is mainly used by the operating system to
create or terminate protected processes. Additionally, it provides information about detected
security violations.
The configuration space is used by the operating system as follows: At program start-up,
the operating system writes the context number, the base addresses and the secret key to
the address space. Then, another write access to the control register is used to inform the
hardware to take over all values to create the new protected process and to decrypt kb and r.

9.1.6 Cache

All changes described above are relatively small compared to the changes to the cache system.
The cache design is described in chapter 11 because it is mostly processor-independent and
applies to both SPARC and IA-32 processor implementations.

9.1.7 Further Changes

With its alternate address spaces, the SPARC instruction set provides different means to
access memory. Since these instructions could be used to leak data in cases where an adversary
is able to modify protected instructions before the cache detects them, SAM stalls execution
of these instructions until all fetched cache lines have been verified. The same applies for
all protected instructions executed in supervisor mode used to access IO-ports. Since the
protected part of the kernel is small and the same code is executed frequently, the performance
loss is small, because data is already present and verified in most cases.
To prevent any information disclosure the processor clears several processor flags like the C,
Z, N, and O flags after detecting a tampering attempt. This prevents these bits from being
used to leak data.

9.2 SAM for IA-32 Processors

The IA-32 SAM design is based on the SPARC design, since SAM has been first implemented
exclusively for SPARC processors. This section gives an overview of the processor-related
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changes required to adapt SAM to IA-32 processors. Due to the huge complexity of the IA-32
architecture, no attempts have been made to implement the proposed changes. Therefore,
only the processor-related modifications are described here.
The IA-32 architecture has been developed by Intel and the current instruction format, and
an architectural description can be found in Intel’s Software Development Manuals [10, 11,
12, 13, 14]. In the following, the relevant parts for the SAM architecture are discussed.
Intel has developed the IA-32 architecture as an CISC architecture. The instruction format
is complex and provides several operand-addressing modes, both to registers and directly to
memory. The processor supports two memory-addressing modes, real mode and protected
mode. Since only the protected mode provides virtual memory and a 32 bit virtual address
space, it is the only mode considered for SAM .
The processor has eight general-purpose registers, but two of them are typically used for
stack operations. The architecture compensates its small register set with the ability of most
instructions to directly use memory contents as operands. The other registers are special
registers such as memory management, interrupt registers and control registers.
The IA-32 architecture provides four privilege levels, called “rings”, but most modern oper-
ating systems use only the lowest (ring 3) and highest (ring 0) level which in the following
are referred to as user mode and supervisor mode. Privilege levels are changed either by
instructions or by interrupts.
On each interrupt the processor locates the interrupt handler by indexing the Interrupt De-
scriptor Table (IDT) stored in memory at the address stored in the Interrupt Descriptor Table
Register (IDTR) with the current interrupt number. On each interrupt the processor auto-
matically stores the values of some registers like the stack pointer (ESP) and the address of
the interrupted instruction (Instruction Pointer, EIP) on the stack assigned to the interrupt
handler. The interrupt handler is left by the iret instruction, which restores the interrupted
state with the previously stored values.
In the following, the required changes for an IA-32 SAM design are described. Note that the
proposed design is not considered as a general design covering all IA-32 specifics, because
IA-32 is very complex and provides partly redundant addressing modes, privilege levels, and
task descriptors which are not widely used but would have to be supported for a full design.
Instead, the parts of the IA-32 architecture which are used by Linux have been protected to
allow a SAM -enabled Linux kernel as described in chapter 10.

9.2.1 Register Protection

Compared to the SPARC architecture no register protection is required for the IA-32 port
of the SAM architecture due to the small number of general-purpose registers. Even explicit
overwriting of these registers to hide their contents is not required in most cases, because the
protected part can only be left in supervisor mode and most registers containing sensitive
values have already been used and overwritten at this point.

9.2.2 Context Handling and Configuration

The IA-32 architecture does not contain a context identifier like SPARC does. Since some kind
of identifier is required to distinguish unprotected from protected programs and to select the
correct base key kb, this information has to be supplied. For this implementation a previously
unused control register (CR1) has been used. This has the advantage that no instruction set
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Bit Access Description
31 R PT: Protected Interrupt
30 R/W PP: Protected Process
29 R PM: Protected Memory
28 R PV: Protected Data Valid
27 R NI: Nested Interrupt
26 R/W PD: Protected Process Deletion
25-20 R Error Code
19-4 R Bitmap of already allocated protected processes
3-0 R/W Context Number of the currently running protected process

Table 9.3: Contents of CR1

changes are required to access this register, since it can already be addressed by the existing
instruction set. This register now controls the basic SAM configuration, and its contents are
assigned as described in table 9.3. All bits except the bitmap bits are only valid if the PP bit is
set. Otherwise they are set to zero. The first four bits in this register are used to store the flags
described in table 7.1 above. NI is described later in section 9.2.3 and PD can be used to delete
a protected process entry including deletion of the corresponding cache contents and process-
related keys. In the bitmap field each already allocated protected process is denoted with
its bit set. The total number of protected processes (contexts) with this design is 16. Error
codes and additional status information are provided in the Error Code. Here, for example,
the processor passes information about the reasons for security violations to the operating
system.
The additional information compared to SPARC stored in this control register is required,
because IA-32 does not provide alternative address spaces which could be used for memory-
mapped configuration registers. This affects key and memory region passing to the processor
as well. Therefore, this data is now stored in RAM and directly accessed by the processor.
These changes require new instructions not needed for the SPARC architecture. All new
instructions are described in section 9.2.4.

9.2.3 Privilege Level Transitions

As described above, the IA-32 architecture defines four privilege levels. Since the rings 1 and
2 are typically not used and their usage would complicate the SAM design, any usage while
executing protected programs is reported as a security violation to the tamper detection unit.
On each transition between the two remaining privilege levels, ring 0 and ring 3, the processor
has to check and set the PT flag, as described for the SPARC architecture. Furthermore, the
NI flag is set in case of a nested interrupt to simplify protected interrupt handling. Each
interrupt which interrupts an instruction executed in supervisor mode sets this flag to be
able to distinguish between user mode to supervisor mode transitions, and interrupts within
supervisor mode.
Unfortunately, due to the limited number of registers, the vital data of the interrupted pro-
gram like the instruction pointer cannot be stored in registers, therefore it is written to the
kernel stack. Since the normal kernel stack is located in kernel memory and therefore unpro-
tected, an adversary could try to read or modify these values.
Thus, the kernel stack for protected programs is moved to protected memory. The stack can
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be located anywhere in memory, but it has to be ensured that an attacker is unable to alter
the pointer to this region.
For simplicity’s sake, it is assumed that the base address PKSbase of the protected kernel
stack of each protected process is located at the same virtual address. This address can be
set by the operating system before starting any protected process, and it is then incorporated
into the hash-value computation to prevent tampering attempts. The same applies for the
base address of the IDT (IDTbase) which has to remain static as well and both addresses have
to point to protected memory. To be more specific, PKSbase and IDTbase are concatenated
to form Tbase (see equation 8.1):

Tbase = PKSbase||IDTbase.

A protected kernel stack has the following drawbacks compared to an unprotected stack: At
first, the unprotected parts of the operating system are unable to access the protected stack;
therefore the operating system has to switch to an unprotected stack located in unprotected
memory before clearing the PT flag. Second, parameters passed to the kernel have to be copied
by the operating system to the unprotected stack as well. The same applies for transitions
back to user mode where the stack contents have to be moved back to protected memory and
possible return values have to be copied, too.

9.2.4 Instruction Set

The new instructions for the IA-32 architecture differ from the ones needed for SPARC. Due
to the larger number of addressable but currently unused opcodes, the st instruction has been
split into an ste instruction and an sts instruction with their own opcodes.
As described above, the processor reads its memory base addresses and the encrypted base
key directly from memory. In contrast to SPARC, reading processor configuration data from
memory is a typical operation for IA-32-based processors, since many descriptor tables are
stored in memory as well. For SAM , a new instruction is used to pass the base address of
the configuration values to the processor. The new instruction is called csee (Create Secure
Execution Environment) can only be executed in supervisor mode and requires one register as
operand with the base address. The processor does not provide a public register to store this
address (like the IDTR), because once the data has been read and processed by the processor
the memory contents can be freed and reused.
More new instructions are not required, so that the instruction set modifications are small as
well. Additionally, existing instructions have been slightly modified for SAM : all instructions
accessing CR1 do not longer generate an “invalid opcode” exception, and instructions writing
to unprotected regions or IO ports are stalled until PV is set.

9.3 Multiprocessor Support

Initially, SAM was designed for single processors, but multiprocessor support is not prohib-
ited by the architecture, since all used keys are static for a program, and distribution to
several processors is possible since protected memory contents can be accessed by more than
one processor. But due to the internal caches of processors, accessing the same memory cache
coherency has to be ensured. There are cache coherency protocols like MESI [33] to guarantee
coherency, but all coherency protocols require that messages be exchanged between all proces-
sors to inform other processors about read or write access to memory regions. However, SAM
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does not provide secure message passing between processors, and altering the consistency of
processor caches could be used by an adversary to alter a protected program. Fortunately, this
kind of attack is impossible when placing multiple processor cores on one die in one shared
housing like used for SUN’s new open source Niagara design (OpenSPARC T16). Then, the
whole multiprocessor core can be protected against external attacks and coherency can be
guaranteed as long as only one multi-core processor is used.
Cache coherency is not the only requirement for multi processor support for SAM . As long as
only one single-threaded process is involved, its execution can easily be switched between all
cores. But with multiple processors it is desirable to execute a protected process in a multi-
threaded fashion. The proposed processor implementations for SPARC and IA-32 processors
support multi processing operations differently. For IA-32 the proposed design would have to
be modified due to the static kernel stack. This does not apply to SPARC, which can support
multi-threaded protected programs. However, the operating system has to be changed to
ensure that multiple concurrently running threads do not allow more attacks, particularly in
terms of locking and synchronization. The operating system design proposed in chapter 10
does not cover multi processing support and therefore a proper implementation is left as a
future issue.

6http://www.opensparc.net

http://www.opensparc.net


Chapter 10

SAM Operating System Design

This chapter describes a sample SPARC Linux 2.6.13 operating system design based on the
design published in [71]. SAM does not require Linux as an operating system kernel, other
kernels can be adjusted to support SAM as well. Linux has been chosen because the source
code is freely available and widely used on server and desktop environments. Due to new in-
structions, cryptographic units, and memory layout, software modifications in the operating
system and the executed program are required. The design presented in this thesis has been
developed to protect the executed program but not the target system from malicious pro-
grams. Therefore, it is advisable to make use of additional security extensions like SELinux
to protect the target host.

10.1 Threats

The SAM architecture provides hardware-based protections against external attacks, such as
memory modifications and bus sniffing. Another class of attacks are software-based attacks
originated by the operating system or by the administrator or the computer system. As
described in section 2.2, the operating system is involved in many tasks and can harm the
program in many ways. SAM’s register and memory protection mechanisms can be used
to protect the currently running process only. However, on a multitasking operating system
several processes are executed in parallel and the operating system has to ensure secure ways
to suspend execution of one protected process and resume execution of another protected or
unprotected process. In the meantime, any modification to the suspended process has to be
prevented.
Therefore, the following threats have to be considered by the secure operating system design:

• Program counter manipulations: The kernel stores the program counters (PC and NPC)
in memory on each TRAP in order to be able to return to the interrupted instruction.
A malicious kernel can modify these values to alter the program flow.

• Signal Handling : Other programs and the operating system can send signals to a pro-
gram for notification purposes. These signals have to be passed in a secure way to
prevent manipulations. However, since signals can be sent at any time, the programmer
of the application has to handle them manually or ignore them.

• Register manipulations: Register values can be securely stored on the stack of the pro-
tected process to prevent tampering attempts. However, registers are only stored on the
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stack on context switches or register window overflows. In cases where the protected
part of the kernel is left without changing the context there is no need to store the reg-
ister values and to restore them later. Due to the register window design, any tampering
attempt to the current active register mapping has to be prevented as well. For example,
the unprotected part of the operating system could be able to switch to another register
window before entering the protected part. If this window has matching permissions,
i.e. all registers are marked as protected, which is always the case for windows belonging
to higher recursion levels of protected processes, can the attack remain undetected for a
longer period of time, because the register protection flags are only able to distinguish
between protected and unprotected register access but not between the correct and a
wrong register set.

• Forging of memory contents: There are several places where the kernel is able to forge
memory contents. For example:

– when passing return values to the user program after a system call,

– when accessing external devices,

– when setting up the environment variables and command line parameters,

– by manipulating the page mapping.

• Manipulating system call return values: Most system calls return values either in reg-
isters or in memory. These values can be tampered with by the operating system to
manipulate the program.

• Tracking the accessed memory area: The operating system can record all accessed pages
using a manipulated page table by forcing a page fault TRAP for each executed in-
struction. This information can then be used for statistical analysis as described in
section 5.1.3.

10.2 Protected Kernel

Along with some changes in the hardware, SAM requires that a (small) part of the operating
system be to be protected and checked automatically by hardware. This part resides in pro-
tected memory and, therefore, is protected by hash values, to be provided by the protected
program. This design is fundamentally different from other protected operating system de-
signs (presented in chapter 5), because here, the protected operating system is not protected
in advance (for example by a protected boot loader), but only when executing protected pro-
cesses and only for the duration of the protected process. This design has been chosen to
limit the negative performance impact of protected program code to periods where protected
processes are executed.
The protected part has a size of roughly a mere 64 kByte and is located directly over the
user stack, at the beginning of the kernel virtual address space. Its main purpose is to ensure
a secure transition between the protected user mode and the (mostly) unprotected kernel
mode. Using this design, the major part of the operating system kernel, including drivers, can
remain unprotected. As a side effect, kernel upgrades, such as bug fixes or additional drivers,
are possible as long as they are not affecting the protected part.



10.2. PROTECTED KERNEL 69

Besides these hash values, each protected program has to provide one additional page located
in virtual user space directly before the protected kernel. Initially, this page mostly consists of
zeros and is used as a protected compartment for the corresponding program by the kernel. All
data written to this page is protected by SAM , as it belongs to the protected and encrypted
area, but it is used by the protected part of the kernel only. For this reason, the kernel must
ensure that this page cannot be paged out and is not writable by the user process. The
SAM Linker automatically creates this page before encrypting the program and initializes it
with the entry point of the program. Then, this page is encrypted along with the rest of the
program.

10.2.1 Limitations

Protected programs behave mostly like normal unprotected programs. However, any debug-
ging support provided by the kernel has been prevented for protected programs. Therefore,
the usage of the break-point handlers along with other debug functions result in an operating
system generated security violation.

10.2.2 Loading Protected Programs

Each time a protected executable is to be started the kernel performs the following steps:

1. Identifying the executable by reading the target architecture. If the executable is not
protected, then it is loaded in the same manner as by an unmodified kernel. The following
steps are performed only if the executable is protected.

2. Assigning an unused secure context number to the new program. If there are no secure
context numbers left, the kernel aborts loading the program.

3. Reading the base addresses for the different memory areas from the program and setting
them for the selected secure context number using the memory-mapped configuration
registers.

4. Reading the encrypted program-dependent secret key kb and random value r from the
executable and passing it to the RSA unit for decryption.

5. Loading the protected program like any other unprotected program by creating the page
mappings. At this time, the required parts of the sparse hash tree and the protected
compartment are mapped to memory. This is done by the ELF loader in the Linux
kernel.

6. Waiting until the RSA unit has finished decryption. The operating system can schedule
other processes during this time. The RSA unit raises an interrupt after successful
decryption to notify the operating system, and the cache automatically loads the root
hash.

7. Switching to the new secure context to execute a protected initialization routine, which
is used to check and copy command line parameters and environment variables to the
protected stack. This routine has to be located in protected memory, because these
parameters are stored in encrypted memory. Copying data from unprotected memory
to protected memory always contains the risk that tampered data is copied. Therefore,
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the protected routine applies several consistency checks like ensuring valid pointers and
zero terminated strings before actually copying the data. Furthermore, the program’s
entry point stored in the protected compartment is used to initialize the kernel structures
located in protected memory used to store the program and next program counters. To
ensure that this function is to be executed exactly one time for each protected program
this function uses a flag in the protected compartment (as described in section 10.2.5).

8. Scheduling the new program. The first executed instruction is located at the program
entry point stored at program linking time.

These steps ensure that the kernel can call the protected initialization routine only one time
and the program is started at the intended position.

10.2.3 Hash Tree Handling

As described above, the hash tree is mapped to memory like all other program-related data.
However, the operating system has to be adjusted to support an efficient hash tree handling.
The first modification is required due to the sparse hash tree design. Typically, each time
memory not mapped to physical memory is accessed a page fault interrupt is raised by the
processor hardware. In case of the hash tree this mechanism cannot be used to map a zeroed
page to the corresponding virtual address space in case of a page fault generated by the cache.
The reason for this is SAM’s interrupt handling, which requires that the cache has success-
fully verified all protected data until the interrupt handling continues. This requirement can
obviously not be met when a page containing hash values is missing. Therefore, as described
in section 7.8.2, the program is terminated in those cases. In order to prevent terminations
of protected programs based on missing pages, the operating system has to load and map
all pages containing hash values belonging to a newly mapped page containing program data
into memory as well. Pages containing zeros only have to be mapped to physical memory as
well if they belong to other pages already mapped to memory.
The second modification affects the paging routines as well. Since SAM uses virtual addresses
for all hashes, their physical location can change. Hence, hash values and program-related
data can easily be paged out by the operating system. However, the operating system has
to ensure that pages are only paged out starting from the leafs of the hash tree. That is,
a page containing hash value can at the earliest been paged out when all pages protected
by these hashes have been paged out as well. Pages containing user data like the heap or
the stack of the program do not need special treatment, they can be paged out at any time
and are mapped to memory using the normal page fault mechanisms. The operating system
implementation uses an additional counter in the page description structure of Linux. When
loading a page the counters of all parent pages containing hash values for the current page are
incremented. The counters are decremented each time a child page is removed where removing
pages is possible only if the counter value is zero.
In order to prevent verification errors all page handling routines of the operating system
have to be located in unprotected memory to prevent unintended memory verifications when
loading these values from the hard disk. Otherwise, the cache would start to verify possibly
not fully copied pages in cases where no DMA (Direct Memory Access) mechanisms can be
used resulting in verification errors.
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Figure 10.1: Transitions

10.2.4 User-Supervisor Mode Transitions

As described in the last subsections, the operating system is involved in TRAP handling. A
TRAP for a protected program can be divided into the following transitions (as shown in
figure 10.1):

1. User space to kernel space: This transition requires the TRAP table to be located in
protected memory. As a result, the executed kernel code is protected and has full access
to registers and memory contents.

2. Protected kernel to unprotected kernel instructions: This transition is preluded with the
execution of the ste instruction to clear the PT flag. Hence, this instruction is to be
called before leaving the protected area.

3. Unprotected kernel to protected kernel : With this transition the protected part can be
reentered by executing the sts instruction again, thus setting the PT flag. Therefore, sts
marks all valid entry points and prevents entering the protected kernel parts on other
paths.

4. Kernel space to user space: This transition is performed by executing the rett instruc-
tion. Since user space can be entered only by protected instructions the unprotected
part of the kernel is not able to enter user space.

These transitions can prevent external manipulations only if the state of the program cannot
be modified between the second and the third transition and no other than the listed tran-
sitions are possible. To prevent these modifications, all sensitive data is stored in protected
and encrypted memory. This data consists, at least, of the program counters (PC and NPC)
of the next instructions to execute and the processor state registers.
All register values are stored on the stack located in protected and encrypted memory, too.
In this way, SAM is able to prevent modifications of any of these values while the program
is interrupted and unprotected data is executed.
As stated before, when the kernel has finished its tasks, the scheduler selects the next process
to execute. If the selected candidate is other than the interrupted process, a context switch
is performed. Before switching the context all remaining register values are stored on the



72 CHAPTER 10. SAM OPERATING SYSTEM DESIGN

program stack because the context switch deletes all remaining protected registers and clears
their protection bits. If the newly selected process is protected, the kernel performs the third
transition in order to restore the program state and register values.
Another possible attack to alter the execution of protected programs would be a direct execu-
tion of code by jumping into the user program or somewhere into a protected kernel area. But
this is prevented by the hardware, since protected instructions in supervisor mode without
the PT flag set have no privileges to access encrypted memory or protected registers. Dropping
privileges by clearing the supervisor flag in the PSR or by executing a rett instruction with a
cleared PT flag is also prevented by the processor. Hence, a protected user program can only
be resumed by following the protected kernel path.

10.2.5 Protected Compartment

The protected compartment mainly has the following purposes:

1. It provides a permanent protected storage used to store information about the state of
the corresponding protected process. This status information is used for the following
purposes:

• Prevention of re-initialization of a protected process. As described above, the func-
tion to copy command line parameters has to reside in protected memory and a
second call to this function could be used to attack the program by overwriting
the beginning of the stack. Therefore, the INIT flag is used to indicate a call to
these functions. Table 10.1 provides an overview of the most important flags used
by the kernel.

• Monitored transition handling. The kernel provides several exit points from where
the protected part can be left and several entry points to re-enter it. To ensure
that the kernel enters the protected part using a function that “matches” the exit
point the kernel sets a flag for each allowed entry point before leaving the protected
part.

2. The entry point is stored by the SAM Linker in this area.

3. The remaining memory could be used as a protected kernel stack if required. However,
the current Linux implementation makes no use of a protected kernel stack.

10.2.6 System Calls

Since large parts of kernel for the current SAM architecture are unprotected, the possibility
of forged system call return values remains. This cannot be easily prevented, since the return
values of most system calls rely on external and therefore unprotected data, such as file
contents or account-specific data. Hence, the protected program cannot trust system calls
and must verify the results. This is particularly important for those system calls where the
kernel returns memory addresses, like the mmap system call. Otherwise, the kernel could return
addresses located inside the protected program area, which could result in overwriting program
data. These checks can easily be implemented in the modified libc and require no modifications
to the user program, thus dramatically simplifying the process of porting existing programs to
the SAM architecture. They are not part of the kernel to leave the protected kernel space as
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Flag Description
INIT Used to mark successful initialization of the stack. Set, after setting up

the parameters and environment variables on program start-up. This
flag prevents a second or no invocation of the initialization routine.

PROCESSING Set directly before the program is started (scheduled) for the first time.
This flag prevents that protected kernel functions can be called which
would expect a previously interrupted program.

TRAP Set each time before the protected part is left to call a TRAP handler.
SYSCALL This flag indicates that a system call is to be called.
ERROR Set on each security violation detected by the operating system. The

program cannot be started with this flag set.

Table 10.1: Flags set and checked by the kernel

small as possible to lower the probability of erroneous implementations. Additionally, different
user space programs may require different checks and therefore these checks belong to the
user space.

10.2.7 Multi Threading and Signal Handling

The transition model described above works for single-threaded programs and has been suc-
cessfully implemented. However, many programs are multi-threaded. In Linux, each thread of
a multi-threaded program is mapped to its own process and the kernel mostly handles thread
management. Since each thread has access to the whole program, the context id and the
memory mapping of each thread is the same. Therefore, multi-threaded protected programs
are possible, but the protected part of the operating system has to be adjusted to support
multiple processes (threads) acting on the same program. This involves enhancing the pro-
tected compartment to store additional process-related information and flags to prevent any
tampering attempts from the operating system. When running multi-threaded programs on
a single processor only one program can be executed at the same time, thus simplifying the
protection mechanisms. For multi processor systems many additional thread-synchronization
related issues have to be addressed, but they are not part of the current operating system
implementation.
The same applies for signal handling. The current implementation lacks support for signal
handling, since this was not required to run the benchmarks, but signal support can easily
be added by storing the program’s signal handlers in conjunction with additional flags in the
protected compartment.
However, both multi-threading support and signal handling complicate a secure operating
system design and a secure application design. With the interaction between several threads
the program design becomes more complex and it is much harder for the programmer to write
secure programs. Hence, most protected programs do not need multiple execution threads and
signal handling.
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Cache Architecture

In this section, implementation details of the L1 and L2 cache will be discussed. As encryption
and verification takes place in L2 cache, most architectural changes are located there [73].
Data encryption and verification leads to additional latencies. SAM was designed to keep
read latencies as small as possible. This, however leads to additional delays when protected
data is written back to memory. SAM tries to hide these additional latencies where possible.

11.1 Comparison with other Caches

Both the L1 data and instruction caches are operating on virtual addresses (Virtually In-
dexed1, Virtually Tagged2). This design has been chosen because it is used by the cache and
processor model used as a base for the VHDL implementation (see section 14.1.1). The L2
cache operates on physical addresses but additionally stores the virtual address of each cache
line. This is required because the virtual address is used for encryption, for decryption, and
to compute the address of the hash value. Due to the cryptographic tasks of the L2 cache, the
first-level caches have been implemented using the write-back algorithm to reduce the load
on the L2 cache.
Because of the memory verification of the L2 cache parts of its contents are hash values. They
are stored in cache lines (here called “hash lines”) like other data requested by the processing
unit and treated equally regarding the line exchange algorithm. The cache automatically
computes the memory address of the corresponding hash value to the requested data and
fetches it.
Due to the different memory views, the cache hit logic is more complex than in other caches.
For example, a requested cache line already stored in the cache could be treated as miss, if it
has been fetched for a different memory view. In cases of a permission-related miss the cache
line is written back to main memory and fetched again with the correct permissions.

11.2 L1 Data Cache

The L1 cache has to keep track of the memory views of all stored cache lines. SAM uses
one additional bit for each cache line, the unprotected bit, to reflect the memory state of the
corresponding line. The cache sets this bit in the following two cases:

1The virtual address is used to select the set of a set-associative cache.
2The virtual address in conjunction with the context number is used as a tag.

74
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Figure 11.1: Addresses and flags passed to caches

1. For cache lines fetched due to the memory access of an unprotected instruction.

2. For cache lines located in unprotected memory.

Internally, the cache sets the unprotected bit to the value of the PI flag of the fetching
instruction, as can be seen in figure 11.1. This information is additionally passed to the L2
cache during write-back to suppress hash updates. Each time a protected instruction tries to
access an unprotected line this access is treated as a miss and the line is written back to the L2
cache and re-fetched. This strategy may result in more misses in case of data being accessed
by protected and unprotected instructions, but these cases are rather rare. Furthermore,
additional bits to prevent these rare misses would make the L1 cache logic more complex,
which would slow down the cache for each memory access. Small performance penalties in the
L2 cache are more acceptable, because the L1-data (L1D) and L1-instruction (L1I) caches
are much more often accessed than the L2 cache and their miss rate is very low, as can be
seen in figure 11.23. The results are computed using the cache simulator described in detail
in section 14.2.
Table 11.1 gives an overview of the data stored for each cache line. The column “SAM ?”
states whether the corresponding entry is SAM -specific (

√
) or already used by a normal

cache. It can be seen that the unprotected bit is the only addition compared to the normal
cache.

3The total number of L1 accesses is equal for all cache configurations and therefore given only once.
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Content SAM ? Description
Dirty Bit — Set for modified cache lines.
Valid Bits — Set if parts of a cache line contain valid data.
Virtual TAG address — Most significant bits of the virtual address. The num-

ber of bits depends on the size of the cache line and
the number of sets.

Context Number — Context triggering the load of the cache line.
Unprotected Bit

√
Set if the corresponding cache line has been fetched
by an unprotected process.

Table 11.1: TAG-RAM entries used by the L1 data cache
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11.3 L1 Instruction Cache

For SAM architectures based on the Harvard design (separate data and instruction caches)
the read-only instruction cache does not need to be modified. For the data cache it has to be
possible to access encrypted parts without prior decryption, but this does obviously not apply
to instructions, because encrypted instructions cannot be executed and would result in illegal
instruction TRAPs most of the time. Therefore, the processor can directly terminate the
currently running program in cases where encrypted instructions are to be executed without
fetching them from the cache.
In contrast to the L1 data cache, which passes the value of the PI flag with its unprotected
bit to the L2 cache, the L1 instruction cache does not use the PI flag for any operation.
Instead, the value of the PM flag is directly passed to the L2 cache (see figure 11.1) in case
of misses resulting in a verification of instructions regardless of the secure TRAP mode.
This behavior has been selected to prevent undetectable memory manipulations in protected
shared memory. This memory area is unencrypted and can therefore easily be modified by an
attacker. For a succeeding attack, an adversary could place an sts instruction everywhere in
protected memory as the last instruction in a cache line to skip the original entry point and
all security checks by the operating system. Before executing sts, the PI flag is always zero
and therefore no verification of the corresponding hash line would take place. This tampering
attempt would thus remain undetected if the PI flag would be used for instructions as well.
In contrast to PI, PM is always set in protected memory regardless of other flags for protected
processes. Hence, this attack would be detected by the cache when verifying the corresponding
cache line.

11.4 L2 Cache

The L2 cache has been newly designed, because most security-related functions are located
here and therefore its design requires most changes compared to standard caches. Figure 11.3
gives an overview of the cache’s internal units. The most noticeable change are five queues.
They are used to process all functions related to protected memory and hash values in parallel
to the normal cache logic and they are described in section 11.4.5. Note that the L2 cache
contains only one TLB and all parts accessing the TLB have been marked with “TLB access”.
The cache supports only a limited amount of encrypted processes. This helps to reduce the
overhead caused by storing process-related data. The implementation is able to execute up to
16 protected processes at the same time. In the following, all parts shown in figure 11.3 are
described in detail.

11.4.1 TAG RAM

Table 11.2 shows all contents stored in the TAG RAM of the L2 cache. It can be seen that
the SAM -related overhead is much higher for the L2 cache than for the L1 data cache. All
these aspects will be described in the following.
The L2 cache uses two bits to reflect the protection level of each cache line: The unprotected
bit serves the same purpose as in the L1 cache. The cache refuses to update the hash tree
during write-back if this bit is set. Additionally, for encrypted memory regions the decrypted
bit indicates a decrypted cache line. This bit is used to prevent read or write access from



11.4. L2 CACHE 79

Content SAM ? Description
Dirty Bit — Set for modified cache lines.
Valid Bit — Set if the cache line contains valid data.
Physical TAG address — Most significant bits of the physical address. The num-

ber of bits depends on the size of the cache line and
the number of sets.

Virtual TAG address
√

Most significant bits of the virtual address. The num-
ber of bits depends on the size of the cache line and
the number of sets.

Context Number
√

Context triggering the load of the cache line.
Unprotected Bit

√
Set if the corresponding cache line has been fetched
by an unprotected process.

Decrypted Bit
√

Set if the corresponding cache line has been decrypted.
Checked Context Bits

√
Used to mark line checked for a specific context.

Table 11.2: TAG-RAM entries used by the L2 cache

other contexts to decrypted memory parts and is used to optimize access to protected shared
memory.
The L2 cache operates on physical addresses, but additionally stores the corresponding virtual
TAG part of this address. This is required because it is impossible to compute the virtual
address only from a given physical address. The virtual address is required for these reasons:

1. The virtual address is part of the hash-value computation. While the virtual address is
available during fetch operations, it has additionally to be stored with the corresponding
line to be able to compute the hash value when writing back the line.

2. It is required to determine the parent node in the hash tree, because the hash tree is
based on virtual addresses.

3. The stored virtual address of a cache line and the requested virtual address must match
in case of protected memory. If not, the cache initiates a recheck of the stored hash line
regardless of the checked context bits described in the next section. This is required,
since otherwise it would be possible to remap cache lines using the page table to different
locations within the virtual address space, and of course, this tampering attempt has
to be prevented.

On write-back, the cache has to select the matching secret key kb for hash-value computa-
tion and encryption. Thus, the context number of the fetching context (here called “owner
context”) is stored, too.

11.4.2 Hit Logic

The L2 cache contains a complex hit logic. The cache sets the following internal status bits
if the requested cache line is already stored in cache RAM:

• Write Access: This bit is set on write access.

• Protected Memory: Set if the requested data is located in protected memory.
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• Encrypted Memory: Set if the requested data is located in encrypted memory.

• Protected Instruction: Set if data is requested by a protected instruction.

• CX: Set if the owner context and the requesting context are different.

• DY: The accessed cache line is dirty.

• UN: The accessed cache line is unprotected.

• DE: The accessed cache line is decrypted.

Table 11.3 illustrates the action to be taken based on these internal status bits4. Each column
represents another protection combination of the requesting instruction. For example, the
first column represents an unprotected instruction accessing unprotected memory, whereas
the last column represents a protected instruction accessing encrypted memory. The rows
in this table show the different states of the cache line already stored in cache RAM. For
example, the actions for shared protected memory are shown in column 5, rows 1, 3, 7 and
9. Possible actions are:

• WB: write-back current line and fetch the same line again with a different protection
level

• F: fetch line and overwrite selected line in cache

• R: cache hit, process read-requests

• W: cache hit, process write-requests

• c: in cases where a c is appended to the action the cache line has to be verified as well
even in case of a cache hit, if it has not been verified before for the accessing context
number

After a line fetch or on write access the status bits of the corresponding cache line are updated
according to the following Boolean functions:

DY = Write Access
UN = Protected Memory ∨ Protected Instruction
DE = Protected Instruction ∧ Encrypted Memory

11.4.3 TLB

The L2 cache must be able to compute physical addresses of parent hash lines determined by
their virtual address. Hence, as can be seen in figure 11.3, the L2 cache contains its own TLB.
This design was chosen because this TLB exclusively contains addresses for the hash tree,
which are typically not accessed directly by instructions. Consequently, there is little benefit
in using the same TLB for completely different address regions. Furthermore, most TLB’s in
existing designs are directly coupled with the instruction fetch and memory access units and
therefore another access by a third device would slow down normal processor operations.

4The following invalid status bit combinations are omitted, because they are prevented by the cache logic:
“Unprotected Memory, Encrypted Memory” and “Unprotected, Decrypted”.
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Protected Memory 0 1 1 0 1 1 0 1 1 0 1 1
Encrypted Memory 0 0 1 0 0 1 0 0 1 0 0 1

Protected Instruction 0 0 0 1 1 1 0 0 0 1 1 1
Write Access 0 0 0 0 0 0 1 1 1 1 1 1

CX DE UN DY

0 0 0 0 R R R R R F W W W W W F
0 0 0 1 R R R R R WB WB WB WB WB W WB
0 0 1 0 R R R R Rc F W W W W Wc F
0 0 1 1 R R R R WB WB W W W W WB WB
0 1 0 0 F F F F F R F F F F F W
0 1 0 1 WB WB WB WB WB R WB WB WB WB WB W
1 0 0 0 R R R R R F W W W W Wc F
1 0 0 1 R R R R WB WB WB WB WB WB WB WB
1 0 1 0 R R R R Rc F W W W W Wc F
1 0 1 1 R R R R WB WB W W W W WB WB
1 1 0 0 F F F F F F F F F F F F
1 1 0 1 WB WB WB WB WB WB WB WB WB WB WB WB

Table 11.3: L2 hit logic

11.4.4 AES Unit

The AES unit is a central part in this design and used by many other units (see figure 11.3).
It is used to compute hash values and encrypted counter values. Due to the counter mode
design and the hash-value computation algorithm, no decryption part is required. In our
implementation the AES unit is controlled by a simple scheduler. This scheduler can pass a
new cache line to be encrypted to the AES unit within each clock cycle. Since one cache line
consists of four 128-bit blocks, the AES unit should consist of at least four AES encryption
units to speed up memory decryption. It is possible to use a pipelined AES implementation
as well, but this implementation consumes much more chip space (roughly speaking ten times
more space) and – as can be seen later in section 14.6 – the number of parallel AES units has
only a limited influence on the performance of the whole cache system.

11.4.5 Queues

The cache contains three different data queues to hide cache latencies. Their dependencies
are shown in figure 11.4:

1. Hash Write Queue: On write-miss this queue stores the hash value to be written to
cache RAM until the missing hash line is fetched. This queue is used to store computed
hash values from the Memory Write Queue until the corresponding line is fetched to
prevent deadlocks. Each cache access initiated by this queue is treated as a protected
memory access.

2. Memory Write Queue: This queue contains cache lines to be written to main memory.
Internally this queue is split into the following three queues:

• Unprotected Data Queue: This queue is used for unprotected data to be written
back to memory, and acts like a write buffer used in normal cache designs.

• Protected Data Queue: This queue is used to compute hash values for protected
data to be written back. The computed hash value is passed to the Hash Write
Queue on write-miss.
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Figure 11.4: Queue data flow and dependencies

• Encrypted Data Queue: This queue serves the same purpose as the Protected Data
Queue but additionally encrypts the given line before writing it back to memory.

3. Check Queue: The purpose of Check Queue is to verify cache or hash lines. A cache line
is passed to the Check Queue if it is protected and unchecked for the accessing context.
This queue then computes the hash value and compares this hash value with the parent
hash values. The parent hash value is fetched from the cache. On a miss the queue
waits until the requested data is fetched. For encrypted data the hash value required to
decrypt the line is not directly passed to this queue. Instead, the cache waits until the
Check Queue requests the line for verification. This design has been chosen to reduce
the load of the Check Queue. Each cache access initiated by this queue is treated as a
protected memory access.

Note that all queue elements can access the AES unit as needed. Three Memory Write Queues
can result in data located at different memory regions written to memory possibly in a different
order compared to models with only one Memory Write Queue. This is no problem for single
processor systems but may cause problems in case of multiprocessor systems for example
when locking memory using spinlocks. Hence, all data and the lock must not be stored in
differently protected memory regions to ensure the original write order. In cases, where this
is not possible the SPARC instruction set allows write synchronization by using the stbar
instruction [85].
Each queue has a predefined size and only the first element can initiate a cache or memory
access. The maximum sizes of all queues except for the Hash Write Queue can be chosen
freely. The size of the Hash Write Queue SHW depends on the sizes of the Protected Data
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Queue SPD and the Encrypted Data Queue SED:

SHW = SPD + SED + 1

Otherwise deadlocks might occur if the following conditions are met:

• The main cache logic waits until one of the Memory Write Queues has written back a
specific cache line.

• The corresponding Memory Write Queue wants to access the Hash Write Queue to
write the newly computed hash line.

• The Hash Write Queue is full and waits for the cache logic to become idle.

This deadlock can be solved if the Hash Write Queue is always able to store all computed
hash values from all Memory Write Queues. Since the Hash Write Queue’s priority is higher
than the priority of other queues it is guaranteed that the queue contents can be written back
to memory.

11.4.6 Cache Arbitration and Deadlock Prevention

The arbiter controls internal and external access to the cache controller. External access is
initiated by the L1 I/D cache and internal access is requested by the queues. Since only the
internal access can result in deadlocks, the L1 cache is omitted in figure 11.4. This figure
marks all data flows back to the cache controller with dotted arrows.
The arbiter uses additional information to control bus assignment to prevent deadlocks and
to ensure cache consistency. Due to the queue design, cache lines may be stored not only in
the cache RAM but also in a queue. Therefore, the main cache logic cannot fetch a cache
line if this line is currently processed by one queue. To prevent a costly termination of cache
accesses, the arbiter is used to control L2 cache utilization based on its knowledge on queue
contents. The arbiter considers the following information when granting access to the cache:

• If a requested cache line is in one of the Memory Write Queues, cache access is deferred
until the line is written back to memory.

• A hash line cannot be accessed until all data for this hash line is written from the Hash
Write Queue to cache RAM. The same applies in cases where the corresponding hash
value is to be computed by the Memory Write Queue.

• The size of all queues is monitored. If one of the queues has less than one free element,
all L1 requests are stalled until one element has left the queue. This prevents deadlocks
on full queues caused by L1 requests.

• Queues with more active entries have a higher priority to access the cache than queues
with less active entries.

If the cache logic detects that a cache line to be accessed is currently stored in the Memory
Write Queue it simply stalls until the cache line is written back to memory to re-fetch it. This
may happen, because the cache arbiter is only able to compare the actually fetched address
with queue contents, but not their parent address within the hash tree required to decrypt
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encrypted memory. In cases where waiting would result in a deadlock, the current operation
is terminated to give other queues access to the cache.
This arbitration scheme can lower the probability of deadlocks, but the cannot be prevented
due to the Check Queue. In the worst case writing one cache line to this queue may result in
two additional cache lines to be verified. The following example illustrates this:

1. A cache line L1 is passed to the Check Queue for verification.

2. The Check Queue computes the hash value h1 = H(L1) and requests the corresponding
hash line Lh1 from the cache for comparison.

3. The request misses and the cache has to replace a dirty encrypted cache line L2 to be
able to load Lh1 .

4. L2 is passed to the Encrypted Data Queue and the corresponding hash value h2 is
computed.

5. The cache passes the newly fetched cache line Lh1 to the Check Queue for verification
and proceeds the pending request initiated by the Check Queue.

6. The Check Queue deletes L1 and proceeds with Lh1 .

7. When the Encrypted Data Queue has computed the hash Lh2 , it is passed to the Hash
Write Queue and later to the cache. This may result in another miss and another new
entry for the Check Queue.

Hence, the Check Queue likely is to overflow. To overcome this problem, the Check Queue
requests hash values non cacheable when there is only one free entry left. The fetched cache
line still has to be verified, but it cannot cause a cache line replacement resulting in one
additional Check Queue entry only for each line to verify. It is therefore still sufficient to
require one free queue entry.
Figure 11.4 shows another data flow which might cause deadlocks, because each protected
data write-back to memory results in a hash value written back to the cache. The only case
in which the Protected Data Queue and the Encrypted Data Queue could block is an overflow
of the Hash Write Queue. But since this queue size depends on the sizes of the Protected
Data Queue and the Encrypted Data Queue, this could happen only if the Hash Write Queue
is not able to access the cache for a long time. This might happen in cases where the main
cache logic waits for data to be written back to memory to fetch it again. The cache logic
solves this possible deadlock by aborting the current operation to let the queues access the
cache. This is a solution, because the blocking access could only be initiated by one of the L1
caches, since the cache waits for data in encrypted memory regions only. All other cases in
which data is located in one of the Memory Write Queues are detected by the arbiter which
prevents cache access until the data is written back to memory.

11.4.7 Speculative Execution

One of the countermeasures described in section 7.10.2 to prevent speculative execution-
related attacks has to be implemented in the cache. The cache has to stall possible fetches until
the Check Queue has finished verification of all previously fetched lines. This is implemented
using a global flag, called the “tainted” flag, which is set on each protected line fetch issued
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Figure 11.5: Context Dictionary

by one of the L1 caches. If this flag is already set when the cache wants to perform a fetch
operation issued by one of the L1 caches, this operation is aborted to allow the Check Queue to
access the cache. Until all data has been verified the tainted flag is cleared and the previously
aborted operation is restarted.

11.5 Performance Optimizations

This section provides a brief overview of additional performance optimizations to the archi-
tecture. Most performance optimizations should take place inside the cache, since the cache
is the bottleneck of this architecture. The cache contains most of the required cryptographic
functionality, provides memory integrity verification in parallel to its normal operations and
additionally stores hash values. All these properties cause a notable overhead to the normal
cache operations required for unprotected programs.

11.5.1 Read-only Shared Memory

Since the operating system is partly protected and shared between all running processes – as
described in chapter 10 –, the same protected memory area is accessed by many processes.
This protected area has to be verified for each protected process, since each process provides
its own hash values for this. To prevent expensive re-verifications for already verified data
already stored in the cache, the cache provides a checked context dictionary. This dictionary
is used to provide an efficient method to mark cache lines as “already checked” for several
contexts.
The L2 cache verifies each cache line accessed by a protected instruction. Already checked
cache lines do not have to be rechecked, as long as they remain inside the cache. Hence, a
hash tree walk to verify a newly fetched cache line stops when the first already verified hash
value is found in the cache RAM. Obviously, a cache line already stored in the cache and
checked for a protected context A may not be trustworthy for a protected context B. Since
frequently used parts of the OS remain in this kind of shared memory, the cache has to keep
track of the contexts the current cache line has been checked for.
Special care must be taken to reduce the overhead caused by storing this information, because
it has to be stored for each cache line in the cache. Therefore, SAM uses a dictionary-based
approach shown in figure 11.5a to minimize the amount of RAM to store this information. The
last four different context numbers a check was processed for are stored in a global dictionary.
Each cache line (figure 11.5a shows three sample lines) now has to keep track of which of
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the globally stored context numbers it has been checked for. Hence, this requires only four
additional dictionary bits for each cache line.
Each time a new entry is added to the dictionary the oldest entry has to be removed first and
the dictionary bits in each cache line must be updated. This is shown in figure 11.5b for the
new protected context “1100”. To speed up this task, the global dictionary and the dictionary
bits for each cache line are stored in shift registers. Thus, they can easily be updated in one
clock cycle. On write access, the context bits of others than the writing context are deleted.

11.5.2 Prefetching

Prefetching of memory contents to speed up cache operations has a long history. The idea is
to predict future misses and fetch these data before it is actually requested by the processor
by taking advantage of idle cycles on busses and caches. Obviously, the speedup achieved by
prefetching depends on the quality of the prefetcher. If most predictions are incorrect, the
additional overhead may indeed decrease performance. Of course, the prefetching accuracy is
to a high degree dependent on the memory access pattern of the executed program. If this
access is mostly random, prefetching cannot give any advantage. However, most programs
generate at least partly regular access patterns, which can then be predicted.
For the SAM architecture, prefetching is more complicated compared with normal caches
because of the following reasons:

• The prefetcher has to support memory views to prevent permission misses.

• The cache performs additional cryptographic tasks, such as hash tree walks. This results
in fewer idle cycles to perform and hide prefetching tasks.

• Prefetching cache lines in encrypted memory may result in two cache misses, thus in-
creasing the penalty in case of wrong predictions.

In this work two prefetching mechanisms have been evaluated. The first one, hash value
prefetching, prefetches all hashes before they are actually requested by the Check Queue. The
second prefetcher predicts future load accesses.

11.5.2.1 Hash Value Prefetching

The prediction accuracy for hash values is 100%, since all required hash values can be com-
puted directly. However, the prefetcher may try to prefetch values already stored in the L2
cache, thus degrading the possible performance gain.
The prefetcher is implemented using the same queue design as used by the Check Queue.
It sniffs the bus to the Check Queue, reads all addresses addressed to the Check Queue,
and stores them in its own queue. Then the parent of the stored addresses is computed,
the corresponding physical address is requested from the TLB, and the computed address
is fetched. This prefetcher helps to hide two latencies. First, the TLB access by the Check
Queue is sped up, since this access will now always be a hit due to the previous access by the
prefetcher. Second, the memory latency can be hidden as well, since Check Queue fetches are
always hits in the L2 cache if the prefetcher is able to request the corresponding cache line
before the Check Queue requests it.
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11.5.2.2 Data Prefetcher

The prefetcher is based on a design proposed in [83] using the address prediction confidence
scheme for stream buffer allocations. As can be seen in figure 11.6, this design is a hybrid
approach combining stream buffers with a Stride-Filtered Markov Predictor (SFM-Predictor).
A stream buffer is a small fully associative cache used to extend the normal cache first
proposed in [41]. This buffer prefetches predicted loads and moves them on access directly to
the L1 cache. A possible predictor is a stride predictor. This predictor analyzes the missing
addresses of load instructions to compute the stride between consecutive misses caused by
the same instruction. Future misses are then predicted using this stride. This design has
been analyzed in [23] and produces good results for programs accessing large arrays like data
structures.
A Markov predictor [40] bases its prediction on the last values seen. An order n context Markov
predictor uses the past n values to predict the next one. It can only provide a prediction if
the given pattern has been seen and the transition is recorded in a prediction table.
The overall prediction accuracy can be improved if the input for the Markov predictor is
filtered by means of a stride predictor. Only misses that cannot be predicted by the stride
predictor are stored in the Markov predictor which results in a better prediction of stride-
and non-stride-based memory access.
In the Markov predictor described above the cache line address is used as an index to select the
entry with the predicted address. Hu et al. [35] has shown that an indexing scheme based on
tag correlations (Tag Correlation Prefetcher, TCP) can outperform classical address indexing
schemes. Hence, a Tag Correlation Prefetcher instead of the classical Markov predictor has
been evaluated as well for the SFM predictor.
For the SAM -enabled cache, the streambuffer has been enhanced to support memory views
by storing the context number and the protection level of the the requesting instruction.
Additionally, the predictor can be configured to request verification of the prefetched cache
lines.
The results of the different predictors are shown in section 14.6.



Chapter 12

Application Design

This chapter discusses the proposed application design and the modifications for SAM -enabled
programs.

12.1 Compiler and Assembler

In contrast to AEGIS and XOM, SAM does not require any changes to the compiler. Hence,
SAM’s changes are high-level-language independent and existing compiler suites can be used.
Though, the additional instructions require changes in the assembler. But since these instruc-
tions are not used in user mode, no SAM -aware assembler is needed for application design.
Many operating system kernels are mostly written in high-level languages like C to support
their portability. Since access to hardware like the Memory Management Unit or interrupt
handling is not supported by C, low-level parts of each operating system are partly written
in assembler. SAM’s new instructions are used for interrupt handling and therefore they are
used in parts already written in assembler resulting in an enhanced assembler as the only
software requirement for SAM . The required changes for an existing assembler have been
evaluated exemplary for the GNU binutils1. Only ten lines with the definitions of the new
instructions have to be added to the file opcodes/sparc-opc.c containing the definitions for
all sparc assembler instructions (2024 lines) to support the new instructions with different
addressing schemes.

12.2 SAM Linker

12.2.1 Tasks

The SAM Linker converts a previously statically linked program into a protected program
by encrypting it and computing the sparse hash tree. The SAM Linker is not able to move
a previously linked program to higher addresses to get free virtual address space at lower
addresses for the hash tree. Hence, the program has to be directly linked to higher addresses
by the normal linker. For the GNU binutils this can easily be achieved by using a modified
linker script. A linker script controls the behavior of the linker and contains the start address
of the program. All other addresses are given relative to the start address resulting in only
one changed line compared to the standard linker file. In this work all programs are linked

1http://www.gnu.org/software/binutils
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to the base address 0x70000000, thus leaving enough virtual address space for the hash tree.
For smaller programs much higher addresses are possible as well to reduce the size of the hash
tree.
The SAM Linker performs the following tasks when creating a protected program:

1. It reads and analyzes the normal program. This includes reading the entry point which
points to the first instruction to be executed.

2. The base address of the hash tree is computed.

3. The random base key kb and the random pattern r are generated.

4. A section with initialization parameters is written to a newly created executable. It is lo-
cated directly below the address space of the operating system, its contents are described
in 10.2.5. In the following this address space is referred to as protected compartment.

5. Now the hash tree with its encrypted root hash is computed over all protected memory.
The protected operating system is read from a file to be able to compute matching hash
values.

6. After creating the hash tree, the program can be encrypted. All parts including the
.text and .data sections are encrypted.

7. The hash tree and the encrypted sections are written to a new file. This file is marked
as a protected program by specifying a dedicated architecture.

8. A configuration section is added to the program. It contains kb and r encrypted with
the processor-specific public key kP

pub:

EkP
pub

(kb||r)

and the four base addresses required for the memory layout as described in section 7.7.

The next subsection provides more information about the file format of protected programs.

12.2.2 SAM File Format

The current implementation of the SAM file format is based on the ELF layout. When reading
ELF files the kernel directly maps chunks with a size of a page to memory. Hence, the position
of data in the file and in memory relative to a page boundary has to be the same.
As described in section 2.2.1, the kernel is only able to map data located in segments to
memory. A segment always covers a continuous memory region, and “holes” in a segment are
not allowed. Hence, the sparse hash tree has to be stored in several segments to save space
in the file. Segments can cover more memory than physically available in the file, because
their header contains two entries, one for the overall size in memory and one for the possibly
smaller amount of data stored in the file. For this kind of segments the operating system
“fills” the remaining data with zeros when mapped to memory.
Each segment occupies an entry in the section header which is located at the beginning of
each ELF file. This header grows and would result in different offsets, because segment data
directly follows the ELF header. Since already linked data cannot be moved to other addresses,
the SAM Linker inserts additional zeroed regions into the program.
SAM adds the following new segment types:
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1. PT SAM CONF: This segment contains the memory base addresses and the encrypted
keys. It is mapped to memory during program loading and the kernel unmaps it after
successful program loading.

2. PT SAM INIT: The page containing the protected compartment is stored in this segment.

3. PT SAM HASH: The sparse hash tree is stored in segments of this type.

Adding new segments to an existing ELF file is not possible, because each new segment has to
be referenced in the program header table located at the beginning of each ELF file. Hence,
the SAM Linker has to create a new header before the original header while keeping the
page alignment of the already existing segments. The old header remains unmodified and is
encrypted when converting a program to a protected one since it is located in the encrypted
memory area. It can therefore be accessed by the program initialization routines without
the risk of tampering. The header used by the kernel to map the program to memory is
not directly protected, but the processor would detect tampering attempts based on wrongly
mapped segments using the provided hash values.

12.3 Library Support

Almost all programs require functions from additional libraries for their operation. For ex-
ample, on UNIX-compatible systems the libc is an abstraction layer between the operating
system and an application. The library provides functions like file or network access and mem-
ory management and most functions result in a system call. Almost all standard system calls
are covered by the libc and, therefore, only the libc has to be adjusted for SAM . Changes are
required at the following places:

• SAM’s memory layout requires new functions to allocate unprotected memory, since
the default for memory allocations is the encrypted heap.

• Parameter passing between the operating system and a program requires unprotected
memory. Hence, all library functions passing pointers to the kernel have to be adjusted
to allocate the memory in unprotected regions. Sometimes the pointer is given by the
user program, for example when using read or write functions. Then the user program
can be changed to explicitly allocate unprotected memory, or the library can copy this
memory to unprotected areas. We propose a hybrid approach, that is the library checks
all pointers to be passed to the kernel. In cases, where the pointer points to encrypted
memory the data is copied to unprotected memory and then passed to the kernel. On
completion data is copied back to encrypted memory.

• System calls may call unprotected kernel functions. Hence, the results passed from the
kernel to the program may be forged. Therefore, the library has to perform basic validity
checks. For example, when memory is requested from the kernel, the library has to verify
the returned memory address to prevent memory based attacks by the kernel.

With a modified library existing programs can be used with small or no modifications. Indeed,
existing programs are mostly not written to detect attacks based on their input data, espe-
cially if they are written as a console application. Therefore, changes are required to increase
security. In the following some changes are presented.
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12.4 Limited Execution

SAM programs can only be executed on the dedicated processors. Hence, unintended distri-
bution is prohibited. But in some cases even the number of executions of a program should
be limited as well. For example, in case of rented software a protected program should only
be executable within one month.
Additional control of the execution of protected programs is only possible by the program
itself. For example, a program could implement a license server approach, where it requests
execution permission on start-up. Since a public key embedded in a protected program cannot
be changed, a secure authentication of a remote license server is possible to prevent man-in-
the-middle attacks.

12.5 Data Exchange

The AEGIS architecture provides additional hardware functions to sign results processed on
a processor to prove their integrity. SAM does not provide these complex checks in hardware,
but they can easily be implemented in software. For example, a protected program may embed
a public/private key pair. This key can then be used to sign and possibly encrypt all compu-
tation results. For large results a hybrid approach using a random secret key for encryption
(this key could be generated using the cryptographic functions described in section 7.5) could
be used as well to improve encryption performance. Since the private key is known only by
the program, all signed data can only be generated by the program.
Checking addresses or data structures cannot prevent forged data passed to the protected
program. For example, when a program reads a file, this file could have been modified by
the administrator of the system. Hence, the usage of cryptographic functions is a must each
time external data is read or written. In the case of a file, the contents could be encrypted
and hashed. The protected program reading the file can store the encryption key for the file
directly in a constant variable, since the whole program is encrypted by SAM . Therefore, no
user interaction, for example to type in a passphrase to decrypt a key, is required to read
encrypted files. Network access can be secured using TLS ([18]) or similar protocols providing
encryption and data integrity. Much the same as for the file access, keys can be stored inside
the encrypted program. Secure access to external resources can further be simplified by using
standardized libraries and wrapper functions.
However, even the best security architecture cannot prevent programming errors in applica-
tions. Though SAM prevents external modifications to a program, the smart use of forged
data could exploit programming errors, which could further reveal internal data or even alter
the program flow in some ways. Prevention of this kind of errors may be possible with high-
level programming languages, which encapsulate direct memory or pointer access. Examples
are the Java programming language or C++, when using the Standard Template Library
(STL) or other high-level libraries.

12.6 Sample Application: Java Virtual Machine

Possible attacks for programs have been listed in chapter 3. Protected programs are still
vulnerable to some of these attacks. For example, when a protected program is reading input
data, buffer overflows are still possible. A possible solution for some popular attacks is the
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usage of a high-level programming language which does not allow direct memory access and
pointer handling. An object-oriented programming language with this properties is Java.
Java programs are executed on a Java Virtual Machine (JVM, [52]), which prevents any
direct access to the underlying hardware. However, most JVM’s are implemented using C
and, therefore, possible attacks are shifted from the user program to the underlying JVM,
which has direct memory access. The following security implications have to be considered
when using Java to execute programs:

• Many virtual machines provide a so-called “sandbox approach” to execute programs.
The sandbox limits the actions which are allowed to be performed by a program. For
example, disk and network access can be limited.

• In the past several JVM vulnerabilities have been discovered. This is mainly caused by
the long history of Java and initially limited security capabilities. Newer virtual machine
approaches like Microsoft’s .NET provide more security [66].

• If a JVM implementation is verified by security experts, the risk of exploitable program-
ming errors can be reduced.

• Each time a vulnerability in a virtual machine is found all programs running by that
machine are affected. Hence, it is still possible to exploit programming errors of Java
programs even if the program itself does not contain exploitable errors.

• Java programs depend on a huge library of Java classes. A class implementation may
contain programming errors as well which may affect the security of Java programs.

• Many programmers have no special experience in writing secure program code and often
input data is not verified. This gives attackers more weak points. When using a virtual
machine some typical attacks are not possible.

Due to the given reasons, using Java in a JVM is a trade-off between improved security
both for the executed program and for the computer executing a Java program and new
security risks. We think that the advantages of using Java for software development for secure
applications outweigh the risks. Furthermore, many Mobile Agents have been written in Java
and they have to be protected. Therefore, a Java Virtual Machine has been adjusted for the
SAM architecture to provide additional security. In the following the security design of the
SAM -enabled Java Virtual Machine (SJVM) is presented.

12.6.1 Design Goals

The SAM architecture provides additional protection mechanisms which are useful for Java
programs as well. But in contrast to native programs, Java programs have different properties
resulting in different demands. Hence, the following design goals for a SAM -protected JVM
have been considered to provide the same security-related goals as for the SAM architecture:

• Execution of encrypted class files.

• Class file verification to prevent manipulations.

• Dynamic loading and linking of encrypted class files. Unlike SAM , Java programs cannot
be linked statically. Hence, class files have to be decrypted, verified and linked during
runtime.
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• Movable encrypted class files. Code migration is an important feature of Java code and
has to be supported.

• Support of runtime class analysis with the reflection API.

• Class verification by the Java program. Each Java program should be able to decide
during runtime if a possibly encrypted class file is trustworthy or not.

The following architecture description shows how these requirements have been put into
practice.

12.6.2 Architecture

The basic architecture of the SJVM is similar to the SAM processor design, as can be seen
in figure 12.1. The SJVM is considered to be trustworthy and can identify itself using cryp-
tographic mechanisms. All verification and encryption steps regarding Java classes are done
in software by the SJVM. The SAM architecture provides just one protected and encrypted
container for all decrypted and verified class files. The presented architecture has been im-
plemented based on the SableVM2, a free JVM interpreter. In the following the architectural
components are described in detail.

12.6.2.1 Key Handling

Like a SAM processor each SJVM can be identified by a unique public/private key pair
compiled into each machine. The keys are protected by the SAM architecture and can only
be read by the SJVM. The public key is used to protect symmetric cryptographic keys. The
symmetric keys are used for class file encryption. In contrast to SAM , the SJVM additionally
supports digital signature handling to protect Java programs.

2http://www.sablevm.org/

http://www.sablevm.org/
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Java programs are often distributed in JAR (Java Archive, based on the ZIP archive format)
files. These files contain all application-specific class files and additional metadata. Hence,
all additional cryptographic data like keys can easily be added into separate files within the
archive.

12.6.2.2 Encryption

Java class files are encrypted to hide their contents. They are decrypted transparently by the
JVM and stored unencrypted in the protected container3. Class file encryption should not
affect the file size compared to the original size. Hence, AES in Cipher Feedback Mode is used
for encryption and a hash over the class name is used as an initialization vector.

12.6.2.3 Class File Integrity Verification

For class file integrity verification the following two cases can be distinguished:

1. To ensure the integrity of encrypted classes a cryptographic hash value is directly in-
corporated into the class file and additionally encrypted.

2. Unencrypted classes stored on the file system of the execution host are protected by a
cryptographic hash as well. This hash is stored with the corresponding class file name
in a separate file. Since Java organizes class names hierarchically, a file stores the hashes
of all classes on the same level. Additionally, upper level files contain hashes of the hash
files of the next lower levels. This results in a tree structure of hashes and reduces the
number of trusted hashes in the JAR file, because only the root hashes have to be given.

Hence, the SJVM provides efficient verification mechanisms both for encrypted and for un-
encrypted classes.

12.6.2.4 Spoofing of Class Names

A class name may contain valuable information for an adversary. In Java, all files containing
class descriptions are named with the class name. Typically, obfuscators are used to hide these
information by replacing all class names (and method names) by randomly chosen names.
This helps to hide internal class names but causes problems when using the reflection API,
because the names known by the programmer and used by him in the program are changed.
To overcome this problem the SJVM provides a more transparent solution by mapping all
file names to randomly chosen ones, but additionally storing the mapping encrypted with the
protected classes. This allows the SJVM to restore the original names when loading a class.
The file with the mappings is stored within the JAR file.

12.6.2.5 Program-Controlled Verification

Java allows linking against classes which are unknown during program creation time. For
example, these classes can be automatically generated or downloaded from a web server.

3In the following the terms “encrypted” and “decrypted” are used from the JVM’s point of view, because
SAM’s protection mechanisms are transparent to programs. Of course, even “unencrypted” data stored by the
JVM in RAM is encrypted and hashed by SAM .
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Therefore, these classes cannot be encrypted with the program’s secret key and the corre-
sponding hash of the file is unknown as well. Since loading of these classes is initiated by the
Java program, verification of these classes has to be initiated by the program as well. Hence,
the SJVM provides mechanisms for a user-defined class loader to verify this kind of classes
by invoking a callback function of the user-defined class loader.

12.6.2.6 Memory Management

For simplicity, it is assumed that all data like classes and variables are stored in memory and
not written back to disk by the SJVM. Then verification of classes is required only at the first
time a class is loaded from disk or over the network and the SJVM’s memory acts like a huge
cache for all data. The same applies for the hash values of the unencrypted classes stored on
disk. If the SJVM does not store the files containing the hash values in memory, the full hash
tree has to be verified each time a new class is loaded.

12.6.3 Usage Scenario

The proposed SJVM can be used to provide a secure execution environment for mobile code,
like the one used for the Shaman system [82]. Assume that on each SAM processor in a
network a SJVM is running a Java Execution Server (JES) application. This JES has the
following properties:

• All JES classes are encrypted.

• It provides a unique private key and a signed public counterpart.

• It provides remote procedures to send, receive and execute (encrypted) Java programs.
Program migration makes use of the Java object serialization to move a program in its
current state.

• Additional remote procedures for key handling and encryption are provided.

With these properties a program migration from JES A to JES B may consist of the following
steps:

1. A determines the next JES where the program (mobile agent) P is to be executed.

2. A initiates an encrypted TLS connection to B. During TLS handshake the public keys
kJESA

pub and kJESB
pub are exchanged.

3. Both keys are verified; if they are trustworthy, a secure connection is established and a
possible man-in-the-middle attack is prevented.

4. P is stopped and serialized and the serialized objects are transferred over the TLS
connection.

5. B receives the serialized objects and starts de-serialization. Since the SJVM does not
execute unverified code, it invokes the callback function of the JES to verify the classes.
The JES can then acknowledge loading these classes because they have been transferred
over a secure channel.

6. The TLS connection is closed and P can be executed on B.
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This example shows that is is possible to implement mobile protected Java programs with the
help of a SJVM. In cases where the protected programs need to write data to disk or start
network connections the programs are responsible for data integrity and encryption. This is
no problem, since the Java class library provides many functions for hashing and encryption.

12.6.4 Performance Analysis

The performance of the modified SJVM has been evaluated by measuring the time until a given
program has been started on a Personal Computer without SAM extensions. A performance
evaluation on the simulation environment later described in section 14.2 was not possible
due to the low speed of the simulation model. The program has been started unprotected
and protected several times to be able to measure the speedup. The measured speedup is
approximately 0.83 and will be higher for most application scenarios, since the main latency
results from the verification and decryption of class files on program start-up but once all
class files have been loaded and cached in protected memory the performance degradation is
much lower.

12.6.5 Security Analysis

The proposed design should provide the same protection to Java programs as the SAM ar-
chitecture provides for native executables. This analysis only focuses on the design and not
on a possibly erroneous implementation.
For each program executed as a protected program on the SAM architecture the goals given
in section 6.2 are met. A security analysis of the SAM architecture is given in chapter 13.
Therefore, only the SJVM-related parts are discussed here.
The SJVM is comparable to a SAM processor implementation. Due to its internal private
key, Java programs can be bound to a specific set of SJVM’s and are only executable by these
SJVM’s. The Java programs are fully encrypted and further protected by hash values. This
prevents external modifications to these files and a program analysis is not possible.
Each Java program typically consists of several classes which can be hierarchically organized
and stored in a JAR file. The class names and the hierarchical organization can give an
attacker valuable information. Therefore, all class names are mapped to randomly chosen
file names. But, in contrast to SAM , this does not hide all information about a program.
Java loads all required classes on demand and therefore an adversary might still get timing
information based on the access pattern of classes. But since encrypted classes do not contain
any valuable information and external unencrypted classes provide standard functions this
information is acceptable.
An attacker might try to replace unencrypted classes from the class path. This attack can be
detected by the SJVM by checking the tree of hash values up to the encrypted root hashes
provided by the encrypted program. Since the encrypted hash value cannot be modified, this
attack is infeasible. However, the SJVM should not link external classes to a protected Java
program without prior successful verification, i.e. non-speculative execution should be allowed.
Up to this point, only attacks to the protected program have been described. Attacks to the
underlying execution host are possible, too, but they can be prevented by using the already
existing Java sandbox mechanisms which can be used to restrict access to the host system.
As a result, the presented architecture provides mechanisms to protect Java programs both
against manipulations and against program analysis. However, programming errors in the
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SJVM or in the executed application cannot be prevented and they might be exploitable. But
this is a general problem of large parts of protected program code.



Chapter 13

Security Analysis

This section analyzes the security provided by SAM . The analysis is partly based on the
requirements given in section 6.2 and additionally presents the cryptographic parts as well
as the logical design. It is assumed that direct physical attacks to the processor core are not
possible.
Due to the complexity of the processor and the operating system, a formal proof of the secu-
rity of SAM is virtually impossible. The secure processor communicates with other insecure
components over several busses, IO and control signals. Additionally, the processor provides
many internal states and, for example, behaves differently on state transitions like interrupts
based on the previous state. Therefore, instead of a formal proof the security-relevant parts
of SAM are analyzed and SAM’s protection against commonly known attacks is discussed in
the following.

13.1 Hashing

The memory hashing-scheme is used to detect any kind of memory tampering-attempts.
SAM’s security is based on the ability to detect any kind of modifications to protected memory
contents and therefore the hashing has to be secure. Most hashing schemes used to detect
tampering attempts on encrypted data calculate hash values over the ciphertext. This has
the advantage that the hash value itself cannot reveal any information about the plaintext.
SAM does not use this approach to be able to use the hash values as a counter for encryption.
Therefore, other attempts to hide the plaintext have to be used. At first, we assume that the
hashing function described in section 8.1 has all properties required for good hash functions
as described in section 4.2, because the hashing scheme is based on a well-known application
of block ciphers used to calculate hash values [74, §2.4.4]. Therefore, the hashing is not
reversible and does not directly give any information about the hashed plaintext. However,
an attacker could generate hash values of commonly used instructions and use them to identify
the encrypted instructions. To prevent this, SAM XORs the plaintext with the random 512 bit
r, thus making it impossible to get any useful information about the plaintext. Furthermore,
even hash values computed over the same plaintext located at different memory addresses
result in different hash valued due to the incorporation of V into the hashing scheme.
The hashing scheme could only be broken if the attacker was able to get r. Since r is encrypted
using the processor’s public key r and this encryption is assumed to be secure, an attacker
could try to attack SAM’s hashing scheme to get r or at least parts of it. According to
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equations 8.1, 8.2, 8.4 and 8.5, r is incorporated into the key and the plaintext when applying
the AES encryption for the hashing algorithm.
Without loss of generality in the following we assume that the hash H(p) for a 256 bit plaintext
p = p1||p2 with a 256 bit secret random number rnd = r1||r2 (p1, p2, r1 and r2 have a length
of 128-bit) is computed as follows:

H(p) = Ep1⊕r1(p2 ⊕ r2)⊕ p2 ⊕ r2. (13.1)

We further assume that the attacker knows p and the valid hash H(p) as well as the hashing
function. Since the attacker does not know rnd, he has to find a 256-bit value x = x1||x2 (x1

and x2 are 128-bit values), so that

H ′(x) = Ex1(x2)⊕ x2 = H(p). (13.2)

If the attacker succeeds, rnd can be computed as follows: rnd = x1 ⊕ p1||x2 ⊕ p2.
If we now assume that AES does not have any weak keys or other flaws that would allow an
attacker to create a specific ciphertext while being able to modify the plaintext and the key,
a brute force attack would be the only possible attack to compute rnd. Due to the length of
rnd, a brute force attack is infeasible and therefore SAM’s hashing scheme with a random
value r of twice of the size of rnd provides a similar security as a hash computed over the
ciphertext.
In the following more possible attacks related to SAM’s hashing scheme are revisited.

13.1.1 Replay Attack

Here, the attacker replaces encrypted parts of the main memory with older encrypted data
located at the same virtual addresses (typically without knowing the unencrypted contents).
If the attacker replaces the corresponding hash as well, this attack might be undetected. Due
to the hash tree and the permanent storage of the root hash inside the processor, this attack
is not possible, since the current parent hashes would not match the replayed hash. Hence,
the only possibility for attacks are cases in which the hash value matches by accident, as
described for the birthday attack below.

13.1.2 Random Attack

The opponent selects a random value and expects that the change will remain undetected. If
the hash function has the required random behavior, the probability of success is 1

2n , where
n stands for the number of bits in the hash. In SAM’s case, this attack is not feasible, since
we use 128-bit hashes.

13.1.3 Pre-Image Attack

Here the opponent searches another hash value that hashes to an existing hash value. This
is not feasible, since it would require 2128 operations. Moreover, this attack requires that
the attacker is able to compute the hash. The hashing algorithm is public, but without the
knowledge of the secret value r a valid hash cannot be computed.
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13.1.4 Birthday Attack

Due to the birthday paradox described in section 4.2, two equal hash values can be found
after 2

n
2 hash-value computations with a probability of 0.5. In SAM’s case n has the value 128

resulting in 264 computations. Due to r, the adversary is not able to perform this computations
by himself, but he can try to monitor memory access until two hash values are equal.
SAM’s hashing scheme incorporates the virtual address into the hashing algorithm. Thus,
the adversary has to wait until two hashes for the same cache line match, since collisions for
different cache lines are of no use. As the adversary is not able to compute the hash, he has
to force the cache to compute as many hashes as possible as fast as possible. Hash values are
computed only on cache line write-backs in case of dirty cache lines. Therefore, the cache lines
storing the protected compartment are a good candidate, because they are written each time
the program is interrupted. Therefore, a possible attack would be to interrupt a protected
program using the timer interrupt virtually after each executed instruction followed by a
cache flush.
If we assume that the memory bandwidth is approximately 232 byte/s, then at most 232/26 =
226 cache lines with a size of 26 bytes can be written per second. This value is further halved,
because for the attack to succeed a cache line has to be fetched and then written back, resulting
in two memory operations. Hence, 264 hash-value computations require at least 264/225 = 239s.
This equals roughly 6 million years and, therefore, this attack can be considered infeasible.
Additionally, this assumption does not take into account the time required for hash-value
computation, memory encryption and memory verification. Furthermore, when using address
bus randomization schemes much more data has to be transferred, which further slows down
this attack.
Another limiting factor is the required memory for this attack to succeed, because the adver-
sary has to store all 239 hash values for comparison.

13.2 Cryptography

The encryption scheme is based on the use of the counter mode. As stated in [20], it is
required that a unique counter be used for each plain text block that is ever encrypted under
a given key. There is no particular indication on the counting values, as long as they satisfy the
uniqueness requirement. This makes it possible for us to use the hash values as counters, since
the design of the function g used to generate an encryption key based on the virtual memory
address V and the encryption base key kb (see section 8.2) and the protocol guarantee that
they are unique for a given derived key. In fact, as it is easily checked, they only depend
on the contents of the particular block to be encrypted. In order to keep an overall good
performance, g should be evaluable in a short time frame (for example one clock cycle).
However, the ciphertext for the same data written at the same position in memory is always
the same for a given protected program. Hence, SAM does not conceal the fact that written
data is unchanged. This limitation could easily be solved in software by providing an additional
counter value. However, this would result in an enlarged memory footprint and a lower speed
and, therefore, this has not been considered for SAM . The applications that need to hide this
information may store a small counter along with the data.
Another possible solution is stack and heap randomization. If the stack and the heap always
start at different addresses for each program execution, the memory contents for each exe-
cution cannot be compared. If this technique is further used to randomize stack and heap
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allocation during runtime, even function calls from the same recursion level do not result in
the same encrypted memory pattern. Heap randomization can easily be implemented by the
libc, but runtime stack randomization would require a modified compiler. Both techniques
are already used to defeat several kinds of buffer overflow attacks and can easily be used to
improve SAM’s security. However, both randomization techniques can be implemented only
if the instruction set contains instructions to get hardware-generated true random numbers.
Otherwise, the tampered operating system could generate predefined values instead of random
numbers to prevent randomization.

13.3 Speculative Execution

Without speculative execution of instructions an attacker is unable to modify protected data
or instructions, because the cache will detect it using the hash values. SAM’s speculative
execution opens a small window in which protected instructions can be executed prior to their
verification. For example, in counter mode each flipped bit of the ciphertext results in the same
bit flipped in the plaintext after decryption. Therefore, in cases where the adversary knows
the plaintext or at least parts of it, he is able to modify for example instructions intentionally.
Much easier to accomplish are modifications of parts of the protected but unencrypted shared
memory. Of course, these modifications will be detected, but due to speculative execution there
might be enough time before detection to do something harmful.
Therefore, all possible paths to leak encrypted data within this small time frame have to be
prevented by SAM . SAM introduces several restrictions to speculative execution to prevent
any kind of leakage.
Protected data can be leaked by using the following methods:

• Writing to unencrypted memory: An attacker could try to read protected data to copy
it into unencrypted memory. SAM prevents this attack by stalling memory writes by
protected instructions to unprotected memory until PV is set. Hence, the tampering
attempt would be detected before unencrypted data is written to memory.

• Writing to unprotected registers: Here the attacker loads encrypted memory contents
into a general-purpose register and tries to unprotect it using rprot. This does not
succeed, because rprot requires successful verification of all fetched cache lines before
altering the register protection.

• Writing to special registers and IO-ports: SAM stalls writing to special registers and
IO-ports until the cache has verified all instructions to prevent this attack. Processor
flags like the C, Z, N or O flags are cleared after detecting a tampering attempt. Hence,
they cannot be used to leak any information.

• Writing to encrypted memory: SAM does not delay writes to encrypted memory and
therefore, tampered instructions can write arbitrary values to protected encrypted mem-
ory. However, since all cache memory contents belonging to the current context are
deleted after detecting the modification, the attacker cannot take an advantage of this
behavior.

• Using the address bus: The cache prevents any subsequent memory fetches each time
a cache line has been loaded until the line has been verified successfully. Hence, the
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address bus cannot be used as a side channel to leak information, and modifications in
encrypted memory are of no use for an adversary.

• Using side channels: Most security architectures allowing speculative execution are vul-
nerable to side channel attacks. For example, an attacker could replace protected in-
structions by a sequence of instructions that read a value in memory, compare it with
a constant and raise an interrupt based on the result of the comparison. Then, the
attacker gets some information about the read value based on the occurrence of the
interrupt. SAM prevents this attack by waiting until all data has been verified before
processing the interrupt. Then, if any modification is detected, the interrupt generated
by the attacker is overwritten by the interrupt raised by the tamper detection unit.
Hence, the attacker is not able to distinguish if the interrupt is caused initially by his
modified code or later by the tamper detection unit.

In another scenario the attacker could execute a conditional branch instead of raising
an interrupt and monitor the behavior of the processor. If, for example, the target
instruction is already loaded, the program execution continues. In cases where the target
instruction is not cached the cache would wait until all read cache lines have been
verified before loading the cache line. Both cases cannot directly be distinguished, but
an attacker could measure the power consumption of the processor to distinguish both
cases. In this work no measures to prevent this kind of side channel attacks have been
analyzed, but for a real implementation they have to be considered.

The SAM design is a trade-off between security and performance. Typically, an archi-
tecture can be considered secure if the effort to break the security has to be much higher
than the value of the protected data. For SAM , the value of the protected data may
vary depending on the program. Hence, SAM could be enhanced to support both spec-
ulative and non-speculative execution based on the program’s needs. This extension has
not been considered for this work but can be added easily. Of course, non-speculative
execution would result in a huge performance loss, as can be seen in section 14.6.1.

13.4 Processor Architecture

A security architecture, like SAM , is only useful if the execution of protected programs in
simulated or tampered environments can be prevented. By providing a unique private key for
each SAM -enabled processor protected by a tamper-resistant processor core, the distribution
of protected programs can easily be limited to a predefined set of processors. Simulated
processors are not possible, since they do not contain a signed public key1.
The processor architecture provides mechanisms to ensure a secure execution environment
through the use of encrypted and integrity-verified memory. In the simplest case there is only
one program executed on a SAM -enabled processor. This program includes its own TRAP
handlers and the whole accessed memory is encrypted and protected by hash values. Then
it is obvious that an attacker cannot alter the execution of the program. The only thing
an attacker might do is to interrupt the execution. External modifications to the intended
program flow are not possible, since the attacker has no access to the processor’s internal
registers and units. In the following it is shown that the SAM architecture operating system
design can be reduced to a secure single task execution.

1It is assumed that the manufacturer of the processor is trustworthy and keeps all sensitive keys secret.



104 CHAPTER 13. SECURITY ANALYSIS

In a multitasking environment a program is intentionally interrupted in order to execute other
programs or handle other TRAP requests. These interruptions must be implemented in such
a way that they cannot be used to attack the program flow or to reveal internal data of
a protected program. The SAM architecture implements these requirements by providing a
partly protected operating system. The architecture ensures that the instructions executed
after interrupting a protected program are protected as well by preventing manipulations to
the TRAP base register and enforcing a TRAP table located in protected memory. Since the
hash values for this part of the operating system are provided by each protected program,
the protected part can be considered as a part of the protected program.
The protected part of the operating system has full access to the program and its task is to
leave the protected part ensuring that the program cannot be altered while interrupted, and
that it is resumed exactly at the interrupted position. To this end, the current implementation
stores all sensitive data in encrypted memory. Then, the protected part can drop its privileges
by clearing the PT flag before executing unprotected parts of the operating system. The
unprotected part of the operating system can only enter the protected part by calling a
predefined set of entry points. Any of them sets PT and checks whether its own execution is
allowed by verifying the previously stored flags. Other transitions to protected user mode are
not possible, because they require PT to be set.
Other architectures like AEGIS or LaGrande require a secure boot process or a permanently
protected operating system part. The drawback of both approaches is that the boot process
involves more program code, which is unlikely to be implemented without security flaws, and
the permanently protected operating system part in AEGIS is required to ensure valid memory
management. This is in contrast to SAM , where the protected operating system performs
mainly simple tasks like program state protection and register handling. Furthermore, the
security of the protected part is not dependent on past actions performed before starting
protected processes, which further reduces the possibility of security flaws. Sensitive data
required for secure TRAP handling like the TRAP table base address cannot be changed
by an attacker, because it is incorporated into the hashing algorithm, thus any modification
would be detected because of non-matching hash values.
There is only the following small limitation in terms of providing a black-box-like execution
of programs. The memory access pattern cannot be fully hidden. SAM protects the program
counters so that an attacker is not able to read them. But, sniffing the memory bus, an attacker
is able to record the accessed addresses at the cache line granularity. However, existing schemes
to hide memory access patterns (see, for instance, [29, 100]) can of course be used for SAM
as well.
Furthermore, when providing hardware implementations of cryptographic functions as pro-
posed by SAM , memory access patterns cannot be used to disclose cryptographic keys. How-
ever, when making SAM’s cryptographic units available to normal programs special care has
to be taken to prevent any side channel attacks.

13.5 SAM Operating System Implementation

The following analysis is based on the threats listed in section 10.1 and assumes that the
protected part of the operating system has been implemented based on the design presented
in chapter 10.

• Program counter manipulations: The program counter is stored in the protected com-
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partment and cannot be modified by unprotected instructions.

• Register manipulations: Registers are stored on the user stack which is protected by
hash values.

• Register value disclosure: The hardware register protection prevents the reading of pro-
tected registers outside the protected kernel area. On context switches the register values
are stored on the encrypted program stack by the protected part of the operating system.

• Register mapping manipulations: The register mapping is stored in the protected com-
partment as well.

• Forging of memory contents: SAM requires that a program verify all data read from
unprotected sources. All data in protected regions is protected by hashes which incor-
porate the virtual address to prevent page table attacks, or written and verified by the
protected part of the kernel (such as the environment variables and command line pa-
rameters). Therefore, the page table or the operating system functions handling page
mapping do not need to be protected.

• Manipulating system call return values: This kind of attack cannot be prevented by
the current design, because data from unprotected sources can always be manipulated.
Fortunately, the number of different system calls used by most programs is fairly low
and most direct attacks, such as forged pointers or sizes of these system calls, can be
detected by the libc.

• Tracking the accessed memory area: When using SAM with additional address ran-
domization schemes like HIDE, this attack can be prevented. In cases, where this is
not possible due to performance issues, SAM prevents fine grained tracking of address
information by clearing all page offsets on page misses. However, if an attacker has full
hardware access, more address information can be recorded by sniffing the address bus.

• Signal handling : During runtime of a program any other process with matching per-
missions is able to send a signal to a program. Therefore, the protected program has
to register signal handlers in cases where these signals should be processed. In all other
cases the program is terminated. It is assumed that the operating system implemen-
tation securely passes signals to the protected program to return to the state of the
interrupted function. Therefore, no further manipulations except denial of service at-
tacks are possible.

13.6 Comparison with other Architectures

The architectures described in chapter 5 can protect program execution on different levels.
The most secure execution environment are sealed secure co-processors like the IBM PCIXCC
architecture [2]. However, as described above, secure co-processors are very expensive and lim-
ited in terms of processing power and memory. Other more lightweight security architectures
like the XBOX and the LaGrande architecture use cryptography to protect memory contents,
but decryption takes place in the processor and decrypted contents are stored in memory.
This makes the architectures vulnerable to memory sniffing attacks.
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To fill the gap between these lightweight security architectures and co-processor solutions,
XOM, AEGIS and SAM have been developed. Since these architectures have been designed
mainly as a replacement for a normal unprotected processor they do not offer enhanced
protection against direct physical attacks to the processor core. This protection is required
as otherwise an attacker might be able to read the secrets stored within a processor. AEGIS
effectively protects the secret using Physical Unclonable Functions, but other attacks are
still possible. For example, an attacker might try to modify the firmware stored within the
processor’s memory or disrupt control lines to change the behavior of the processor. These
attacks are of course possible to XOM and SAM , too. Therefore, AEGIS does not provide
more physical security than XOM or SAM . When comparing the memory protection of XOM,
AEGIS and SAM it is obvious, that XOM provides the weakest protection. The usage of hash
trees to prevent replay attacks is suggested, but not implemented. XOM does not provide
secured system calls, hence only small parts of a program can be protected. Therefore, XOM
does not protect the execution of larger programs, because the small protected parts can be
executed in arbitrary order by an attacker (program flow manipulations).
The AEGIS architecture provides secure system calls and is not affected to this attack. How-
ever, AEGIS, like SAM , does not directly implement memory randomization schemes like
HIDE, but suggests the additional usage of these schemes. For AEGIS, HIDE is required
to reduce the amount of disclosed data using the memory decryption attack [84] without
fully preventing it. SAM has been designed to prevent this attack directly, without the usage
of memory randomization schemes. Hence, SAM provides the best memory protection when
comparing it with XOM and AEGIS. However, SAM does not hide the information, that data
stored at a given memory address is unchanged. This information could leak information to
an attacker, but as described above (section 13.2) randomization schemes during runtime can
prevent this information leakage.
The operating system security provided by SAM and AEGIS is comparable when implemented
without errors. However, since the AEGIS kernel is responsible for the page table and other
security-relevant functions, it is more likely that the resulting protected operating system part
may contain exploitable programming errors.
As a result, the SAM processor architecture allows, in conjunction with a SAM -aware op-
erating system, a secure execution environment for programs that meets the goals given in
section 6.2.
However, since it is impossible for the operating system to analyze protected programs before
executing them, it is possible that the contain viruses or other malicious program code.
Therefore, it is advisable to enhance SAM -enabled operating systems with fine grained access
control systems like SELinux to control and restrict access to resources. In another approach
the operating system could be enhanced to start only digitally signed programs. This can
easily be achieved by a signed encrypted base key kb and a verification of the signature
before actually starting the program. A combination of current trusted computing concepts
developed by the TCG and SAM’s memory protection technique could further enhance the
security of the whole system.
In the end, the security of a protected program is more endangered in most cases by pro-
gramming errors —like buffer overflows— than by hiding the information-related to memory
access. Therefore, protection schemes providing only a small gain in security but resulting in
a big performance penalty have not been considered for SAM .
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Evaluation

In this chapter implementation issues and simulation results are discussed.

14.1 VHDL Implementation

Parts of the SAM architecture have been implemented as a VHDL model to prove their feasi-
bility. The implementation covers the processor-related changes like the enhanced instruction
set and a SAM -aware cache implementation. The cache implementation is based on the de-
sign presented in chapter 11, but implements only basic security functions like encryption,
decryption and verification and lacks prefetching support.

14.1.1 Development Hardware

Since the cache with its cryptographic units and the enhanced processor is very large, a corre-
sponding FPGA is required. Due to cost constraints, only two development boards, one with
a XILINX Virtex 4 (XC4VLX601) and one with a Virtex II (XC2VP502), were available. Both
of them with 59,904 and 53,136 LUT’s3, respectively, are too small for both the cache and
the processor. Therefore, they have been connected using a high-speed LVDS4 connection and
the busses have been split using dedicated bus proxies (cf. figure 14.1). Note that due to the
additional latencies caused by the interconnection, the resulting implementation could not
be used for benchmarking purposes. Furthermore, the cache uses SDRAM provided on the
development board with a cycle time of 90 ns to store all cache lines. Hence, main objectives
of the implementation are overhead estimations and feasibility studies. Table 14.1 shows the
required Lookup-Table Entries (LUT) required for the modified processor compared to the
original LEON design. It can be observed that all SAM -specific changes result in approxi-
mately 62% more LUT’s, mainly caused by the register protection. The required LUT entries
have been used for comparison, since the internal architecture of both FPGA’s differs, but
for both FPGA’s the LUT architecture is similar. Please note that the number of LUT’s
needed for each part of the architecture may vary slightly between different configurations,
because any change in the configuration (for example when changing the number of crypto-
graphic units) results in different optimization strategies. Therefore, the presented results can

1http://www.xilinx.com/publications/matrix/matrix_V4.pdf
2http://www.xilinx.com/publications/matrix/virtexmatrix.pdf
3Lookup Table.
4Low Voltage Differential Signaling, defined in the ANSI/TIA/EIA-644 standard.
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SAM -LEON LEON SAM -Overhead
MMU 4445 3584 +24%
- D-Cache Controller 1456 1365 +6%
- I-Cache Controller 648 677 -4%
- AMBA Interface 169 146 +15%
Integer Unit 2054 1983 +3%
Integer Unit Extension 405 – –
Register File 25 14 +78%
Register File Protection 1528 – –
Tamper Detection 60 – –
L2 Cache Configuration 842 – –
Board Communication, Busses 1270 180 +600%
Total 12902 7949 +62%

Table 14.1: Comparison of LEON and SAM -LEON

Configuration Parameter Value
Register Windows 8
TLB Entries per TLB 8
TLB Replacement Strategy LRU
Sets per L1 Cache 4
Lines per L1 Set 4
Cache Line Size 32 Bytes
L1 Cache Line Replacement Strategy Random

Table 14.2: LEON Configuration

be used only as a rough size estimation. In the following the whole model and the changes
are described in detail. Figure 14.1 gives an overview of the placement of the different compo-
nents on both FPGA’s. Note that or simplicity’s sake, in this figure only the interconnection
between both boards is given, but no interconnection between internal components.

14.1.2 Processor

The processor model is based on the LEON 2 [26] SPARC V8 [85] processor model. The LEON
design provides an execution pipeline with five stages5, an Integer Unit (IU), virtual memory
support, L1 data cache, L1 instruction cache and external peripheral devices like memory
(RAM and ROM). The L1 caches are implemented using the virtually tagged/virtually in-
dexed design [21]. The TLB is located between the L1 caches and memory. All external devices
like memory are connected by AMBA [1] (Advanced Microcontroller Bus Architecture) and
APB (AMBA Peripheral Bus) busses.
In the following the required changes for the SAM architecture are discussed. The configura-
tion parameters used for synthesizing are listed in table 14.2.

5IF: Instruction Fetch, DR: Instruction Decode and Register Fetch, EX: Execute, ME: Memory Access,
WB: Register Write-Back.
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Figure 14.1: Placement of logical units on both FPGA’s
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14.1.2.1 Integer Unit

The Integer Unit has been enhanced to support the additional three instructions rprot, copy-
bits, and st, and the supervisor mode handling has been modified as described in section 9.1.
Since the changes on the protected TRAP mode should be visible for the instruction directly
executed after st, it is required to stall the pipeline when st has been decoded, because any
change on PT takes place while staying in the EX phase. Without a stall the old setting of PT
would still be effective when the next instruction enters its DR phase and protected registers
may not be accessible.
The instruction rprot has been implemented to suppress register protection flag updates for
the directly following instruction resulting in the described delay slot.
The register protection mechanism has two properties: First, it has to store the value of
PI for each register and second, all protected registers have to be cleared during context
switches. The first property can easily be implemented with an additional bit associated with
each physical register. The second one could be implemented by physically writing a zero
to each register, but this would result in a huge hardware overhead. Therefore, the proposed
solution assigns only two additional bits to each register: the protected bit holds the protection
information and the zero bit can be used to mark a register as cleared. On each context switch
the zero bit is set for each register marked as protected and left untouched otherwise and all
protected bits are cleared. This implementation requires only two additional bits for each
physical register and can clear all protected registers within one clock cycle.
Of course, the register file has been adjusted to honor the protected and zero bits. The
protected bit is checked in parallel to register operation and the zero bit is connected to a
multiplexer which returns the current register value or zero on each read access. Register
protection is quite costly, as can be seen in table 14.1. The size of the enhanced register
file with its protection mechanism causes the major overhead of the whole processor design.
Therefore, further optimizations should be applied to the register handling. One possible
optimization would be to not return zero on unprotected read access but to report this read
to the tamper detection unit as discussed in section 9.1. Processor synthesizing has shown
that the register file contains the critical path in the processor design halving the maximum
processor speed from 98,9 MHz for the original LEON to 51,6 MHz for SAM -LEON.
However, it should be noted that this implementation – in contrast to the original LEON
design – has not been further optimized for speed or size. Therefore, further optimizations
could result in a smaller and faster implementation.

14.1.2.2 L1 Caches

The main change to the L1 data cache is the additional unprotected bit indicating if the corre-
sponding line has been read by a protected instruction or not. This additional bit increases the
usage of RAM blocks slightly, as can be seen in table 14.3. The table lists the allocated block
RAM for the unmodified LEON processor (LEON), for a SAM -aware L1-data cache (SAM
L1-D), and for a SAM -aware L1-data and instruction cache (SAM L1-D+I). The L1 data
cache configuration remains always the same, as listed in table 14.2. Only the L1 instruction
cache has been adjusted in terms of lines. It can be seen that the additionally required block
RAM for the unprotected bit is small compared to the original LEON design.
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Cache lines per L1-I set LEON SAM L1-D SAM L1-D+I
4 23 28 32
8 32 36 36
16 48 52 52

Table 14.3: FPGA-RAM usage

14.1.3 L2 Cache

The L2 cache implementation is based on the design described in chapter 11. The first major
change compared to a standard L2 cache affects the implementation of the bus connecting
both L1 caches with the L2 cache. This bus has been extended to pass the following additional
information to the L2 cache:

• The virtual base address of the corresponding cache line.

• The context number of the context reading or writing the line.

• A flag representing the protection level of the accessing instruction.

This information is transferred over dedicated bus lines in parallel to the address and data. It
is not required to pass information about the memory area (protected or encrypted memory)
to the L2 cache, because the cache itself has access to the tables defining these areas and can
get this information based on the virtual address. To speed up reading these addresses they
have been stored on both FPGA boards where the configuration accessed by the processor (L2
Config Mirror, cf. figure 14.1) is implemented read-only. The tamper detection unit is directly
connected with the L2 cache to be able to instantly act on detected tampering attempts by
the L2 Check Queue.
Additionally, the cache has its own TLB, which is required to be able to transform the
computed parent virtual hash tree addresses into their physical counterpart. This TLB directly
accesses the page table in memory, that is the page table entries covering the hash tree cannot
be cached. This design has been chosen to prevent possible deadlocks and to simplify cache
design.
The L2 cache implementation for SAM is a completely new design. Therefore, the first imple-
mentation of the cache without SAM enhancements has been used as a reference to measure
the overhead caused by SAM . The results based on the LUT usage are shown in table 14.4
for a cache with a size of 16k. Larger caches have not been synthesized due to the size con-
straints of the development boards. The results show that the AES unit in conjunction with
the configuration unit occupies most of the additionally used lookup tables.

14.1.4 Cryptographic Units

The cryptographic units used in this work are based on standard cores. The RSA core is based
on the Basic RSA Encryption Engine written by McQueen [55] and the AES unit has been
written by the National Security Agency [64]. The sizes of both units are given in table 14.5.
A comparison of these values with the one of the processor implementation in table 14.1
shows that the cryptographic units are much larger than the processor. Therefore, the SAM
overhead without the cryptographic units is negligible compared to the overhead caused by
the AES and RSA units, especially when taking into account that more than one AES unit
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SAM -L2 cache L2 cache
AHB6 25107 15991
Arbiter 3 3
Slave 422 274
Main Memory Controller 54 57
Cache RAM (with debugging unit) 656 663
Cache Manager 5092 5379
Queues 9060 8115
AES Unit with scheduler (encryption only) 11031 –
Hash Tree 121 –
Address Translator 82 –
Configuration unit 5537 425
Total 42670 16480

Table 14.4: L2 cache LUT usage

Unit LUT’s
RSA 26533
AES 15987

Table 14.5: Size of cryptographic units

is typically required. However, the cryptographic units are not exclusively used by SAM and
can be made available to user programs as general-purpose cryptographic units to reduce the
SAM -only overhead.

14.2 Simulation Model

As described above, the VHDL model was not suitable for performance analysis and the cache
too small to be useful. Therefore, a software simulation model has been developed, which has
been used for all performance evaluations. The software simulation model can be split into
two parts, a system emulator and a cache simulator. The system emulation is used to record
a memory access pattern which is then passed to the cache simulator.

14.2.1 System Emulation Environment

At first the different components of the system emulator are described.

14.2.1.1 Benchmark

For performance evaluation of computer systems benchmark programs are used. Several
benchmarks with different purposes exist and they can be used for performance evaluation
on different levels. Low level synthetic benchmarks like Dhrystone or Whetstone can be used
to measure several processor-specific properties, but since they are highly specific, their ex-
pressiveness is limited. Therefore, today’s most-used benchmarks are application benchmarks,
because they allow to measure several parts of a computer system at the same time. A popular
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application benchmark is the SPEC (Standard Performance Evaluation Corporation)7 bench-
mark suite. Its performance evaluation is based on the runtime of several integer and floating
point applications covering a wide range of applications. The SPEC benchmark mainly eval-
uates the performance of the processor and the memory hierarchy as well as the compiler.
Other parts of a computer system like the disk or graphic performance have no or a negligible
impact on the result.
Due to these properties, the SPEC 20018 benchmark suite has been used for the SAM per-
formance evaluation described in the following. Since all benchmarks have to be executed
by an operating system, a full system emulation including the modified operating system as
described in chapter 10 is required.

14.2.1.2 QEMU

All benchmarks are executed in a virtual machine emulating a SPARC-based computer with
peripherals like hard disk, framebuffer and keyboard. This virtual machine is based on the free
system emulator QEMU [4]. QEMU translates all instructions of the guest system into native
assembler instructions of the host system. Hence, all timing and memory access information
is lost. Therefore, QEMU has been extended to add special monitoring instructions during
the translation step to record instruction execution and memory access when executing the
translated code.
The current clock cycle has been restored by incrementing a counter before executing a
simulated SPARC instruction. This results in a simulated instruction in each clock cycle (CPI9

value of one) and hides any pipeline-related stalls. However, most modern processors with one
pipeline can reach a CPI value close to one by using speculative execution and instruction
reordering, for example. Furthermore, a “faster” processor reveals more additional latencies
caused by the security-enabled cache.
QEMU is a system emulator and not a simulator. Hence, the behavior of the emulated system
is emulated, but for example the emulated interrupts may occur at different times for concur-
rent runs of the same benchmark, because QEMU’s timing is dependent on the host system’s
timing which is, for example, dependent on real hard drive accesses and general system load.
While this is in general no problem, it may affect the generated benchmark results because the
recorded memory access pattern and timing may change slightly an subsequent runs. Since
the recorded data is used as input for the cache simulation, only one memory pattern for each
benchmark run has been created and then used for all further cache simulations. The Linux
kernel used to execute all benchmarks is described in section 14.3 and contains SAM -specific
modifications. Hence, even for simulations where the SAM extensions in the cache have been
disabled a SAM -enabled Linux kernel has been used.
Due to the long runtime (several hours up to one day just for recording the access pattern)
and the resulting large trace files, not all data for each benchmark has been recorded. For
each benchmark the first 232 simulated instructions have been skipped before recording data
to the trace file. This has the following reason: These instructions basically correspond to the
instructions executed to load and initialize the benchmark. Hence, they are more or less equal
for each executed benchmark and not of interest for further evaluations. Recording has been

7http://www.spec.org
8The 2001 suite has now been deprecated by the 2006 release, but the new release was not available by the

time of writing the emulation environment.
9Cycles Per Instruction.

http://www.spec.org
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stopped after executing a given number of instructions in user mode resulting in a total of
approximately 232 instructions.
For all benchmark simulations, all program data is located between the virtual addresses
0x70000000 and 0xefffffff and has been encrypted. The first 64 KByte of the operating
system (0xf0000000–0xf000ffff) are protected but unencrypted. The hash tree starts at
address 0x1aaaaab0. Furthermore, the Linux kernel has been adjusted to allocate memory
for the heap within the encrypted memory region starting at address 0x80000000 instead of
the default address 0x50000000.
In this paper, the single and multitasking behaviors of a SAM -enabled system have been
analyzed. Therefore, many simulations have been evaluated using a single executed bench-
mark program as well as simulations with several benchmark programs running in parallel.
Typically, the same SPEC benchmark is executed in parallel on multiprocessor machines.
But some benchmarks have a huge memory footprint and paging of protected programs is
currently not supported by the modified Linux kernel. Hence, each simulation consists of the
execution of one instance of a primary benchmark (out of the SPEC suite) and a number of
instances of a secondary benchmark. Due to its reasonable memory footprint, eon has been
selected as a secondary benchmark.

14.2.1.3 Trace File

The trace file stores the following data:

• The current clock cycle.

• The current context.

• The type of memory access: instruction, data, raw (by external devices) or I/O10.

• The direction: read or write.

• The number of bytes accessed.

• The occurrence of a TRAP or context switch.

• The virtual (if available) and physical addresses.

• The program counter value (if available11).

To save space all this data has been compressed using a hybrid approach. The trace file consists
of a concatenation of two possible data entries. The full data entry contains all information
given above and the partial one is used for relative data, that is for example the difference
between the last and the current program counter value. In cases where the partial entry
cannot be used because it does not contain less frequently changed entries like the context,
the full entry has to be used. The full data entry occupies 28 bytes, the partial one between
two and 14 bytes. The resulting data is then compressed using the bzip2 algorithm to further
remove redundant information.
Table 14.6 lists the sizes of the trace files for all single task benchmarks used in this work. It
can be seen from the given values that the memory access pattern differs for all benchmarks.
The benchmark mcf has the largest trace file and this is caused by a huge number of mostly
random memory accesses, as can be seen later in this work.

10Input/Output.
11Raw access is caused by hardware and therefore no program counter is available.
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Benchmark Size in bytes Number of instructions
bzip2 2232067571 4117835299
crafty 2240613246 4177992027
eon 1743970187 4297527575
gap 1752094717 4260858498
gzip 1438749325 4089676301
mcf 6111031769 4178233635
parser 2416248972 4290269114
perlbmk 2661729920 4257584061
twolf 3729365651 4148162172
vortex 2873667896 4418790406
vpr 3296415059 4121323314

Table 14.6: Trace file information

Cache property Value
L1 placement direct mapped
L1 line size 32 bytes
L2 placement LRU, 4-way-set
L2 line size 64 bytes
TLB Entries 64
L1 Clock 100% of main clock
L2 Clock 33% of main clock
Queue Clock 50% of main clock
Dictionary Entries 4
Bus Width Clocking
L1 ↔ L2 cache 128 bit 100% of main clock
to memory 64 bit 20% of main clock (+70 main clock cycles latency)
L2 cache ↔ Queues 128 bit 50% of main clock
to AES units 128 bit 50% of main clock

Table 14.7: Cache properties

Name L1 size L2 size AES units
Check Queue and

Memory Write Queue
entries

8-256 8k 256k 5 5
16-1024 16k 1024k 5 5
32-2048 32k 2048k 5 5

Table 14.8: Cache configurations
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14.2.2 Cache Simulator

The SAM cache simulator simulates an L1 data and instruction cache as well as the L2
cache with all security-related and performance-related extensions described in this thesis
to compute the number of simulated clock cycles for these operations. Instruction and data
access are passed to the corresponding L1 cache and external device access is simulated by
occupying the memory bus. The simulator is based on a simple discrete event simulation and
uses a simulated clock signal for transitions between its internal states.
The cache simulator is fully configurable in terms of cache sizes, bus widths, number of queue
entries and their thresholds, clock divisors to simulate different clock rates for buses and
components like the caches, memory latencies or hashing algorithms. The clocking of the L1
cache is used as a reference and all other components are clocked with divisors based on
this clock rate. For each generated trace file, a set of different cache configurations has been
simulated to obtain the overall number of simulated cache clock cycles needed for all cache
operations. This set includes a configuration without security extensions which is further used
as a reference for the speedup computation.
The trace file does not contain any hash-related data due to the lack of hash tree han-
dling within the operating system. Therefore, the cache simulator provides additional page-
mappings to unused physical pages on the fly for hash values.

14.2.2.1 Configurations

Table 14.7 lists the basic configuration used for all simulations. The bus width between the
caches has been optimized in terms of the block size of both L1 caches given with the sizes of
the L2 cache in table 14.8. The cache sizes have been chosen to represent a small, medium and
a large cache. Much larger caches are common, too, but the performance of the simulation
environment does not allow to simulate as many instructions as required to get reasonable
results for very large caches in an acceptable time frame.

14.2.3 Limitations

Each simulation model simplifies the behavior of a real processor cache combination. The
model used in this thesis has the following limitations:

• No feedback: On a real processor latencies caused by the cache result in pipeline stalls
resulting in a different timing and a different memory access pattern. This cannot be
simulated with the used model.

• QEMU emulates disks and other peripheral components but not their latencies. For
example, the interrupt indicating that a hard disk read operation has been completed
is directly triggered after sending the read request to the emulated disk. Therefore,
peripheral devices are much faster than their real counterparts. This may additionally
affect the timing. But a generally “faster” simulation environment puts more pressure
to the cache system, since external latencies cannot be used to hide cache operations
like verifications. Therefore, the performance on a real processor may be better than on
a simulated one.

• The bus model used within the cache simulator requires at least one clock cycle for each
transaction. This is in contrast to the LEON processor, whose busses are able to react
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on control signals within one clock cycle. However, the busses between the simulated
processor and the L1 caches are designed to be able to transfer data within each clock
cycle.

• Access to all busses except the bus between the L1 caches and the L2 cache is granted
based on a fixed arbitration scheme. That is, if two master devices are requesting the
bus at the same time, always the same master device will get the bus.

• All communication between components of the cache is taking place over busses im-
plemented with the same bus model. This is in contrast to the VHDL implementation,
where point-to-point connections are implemented using a more simple and partly faster
design.

• Paging of protected programs is not supported.

These simplifications are required to simulate a huge number of clock cycles. For example,
with the much more accurate VHDL model the simulated clock speed would be lower than
10 Hz, which is much slower than the clock speed of the cache simulator with approximately
180000-250000 Hz based on the simulated workload. In general, most simplifications used
for the simulation environment result in a “slower” simulated environment and therefore the
computed results can be considered as worst-case data.

14.3 Operating System

Vital parts of the SPARC Linux operating system have been adjusted for the SAM architec-
ture. The following changes have been implemented:

• TRAP handling : For SAM , the whole TRAP handling has been rewritten, because
the Linux kernel contains a lot of architecture-specific code used for different SPARC
processor models. Furthermore, all protected program code has been moved to the
beginning of the virtual kernel address space. Due to alignment restrictions and the ELF
header of the kernel, the TRAP table begins at address 0xf0004000 and all protected
TRAP-handling code ends at address 0xf00062e0. Hence, the TRAP-related changes
occupy approximately 9000 bytes thus leaving enough free protected address space for
additional protected kernel code. In total, 2045 lines including comments of kernel code
have been modified or added.

The performance of the new implementation has been measured using the simulation
environment described above. To measure the kernel overhead 10 simulations using a
standard kernel and 10 simulations using the SAM -kernel have been started and termi-
nated after executing a fixed number of user space instructions to compute the speedup.
The results have shown a speedup of 1. Hence, the SAM -related changes did not result
in any measurable overhead, because with the rewrite some small performance optimiza-
tions could be applied to the TRAP handlers hiding the additional SAM instructions.

• ELF loader : For the ELF loader 675 lines including comments of kernel code have been
modified or added. This includes the hash tree mapping routines required to load all
pages containing hash values for all protected pages.

The performance of the modified loader has not been further analyzed, because the
main delay when loading a protected program is caused by the RSA unit.
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Parameter Range Description
Idle 0–12 Determines the number of idle cycles of the L2

cache to wait before trying to predict and fetch
data.

NoCheck yes/no Pass fetched cache line to Check Queue for ver-
ification?

AllowStrideNull yes/no Whether a stride of 0 (accessing the same ad-
dress) is predicted or not.

Buffers 1–32 Number of stride buffers.
AddressesPerBuffer 1–16 Maximum number of pre-fetched cache lines per

stride buffer.
PriorityDecrementCycles 1–100 Number of cycles after which the confidence of

an entry is decremented.
MaxConfidenceBits 1–4 Number of bits used for confidence information.
StridePrediction yes/no Enables or disables stride-prediction.
StrideBits 1–16 Number of bits used to index Stride table.
MarkovPrediction yes/no Enables or disables Markov-prediction.
MarkovAssociativity 1–4 Associativity of the Markov predictor.
MarkovBits 1–16 Number of bits used to index Markov table.
TCPEnable yes/no Use TCP instead of classical Markov predictor.
TCPTagsPerSet 1–4 Number of tag entries per set (associativity).
TCPTagbits 1–8 Number of bits used from the tag address as an

index.
TCPSetbits 1–8 Number of bits used from the set address as an

index.

Table 14.9: Parameter ranges and descriptions used as a genome

The current protected code base in the kernel is much smaller than the proposed 64 kByte,
but not all required parts have been currently implemented. However, even with a secure
implementation of multi-threading and signal handling support a protected codebase of 64
kByte is likely to be sufficient. Page unloading and other currently not implemented functions
do not require protected memory.

14.4 L2 Prefetcher

The usage of data prefetchers adds more parameters to a cache system like the number of
entries of the stride predictor or the associativity of a Markov predictor. Hence, the optimal
values are hard to find and highly workload-dependent. In order to find good parameters,
in this work an evolutionary approach using the JavaEvA toolkit [87] has been used. The
number of simulated clock cycles of a given workload has been used as a fitness function.
Initial tests have shown that the MutationMSRGlobal mutation algorithm in conjunction
with the values λ = 100 and µ = 20 provides good results12. Table 14.9 lists the parameters

12Here µ denotes the number of selected best individuals from the current population of λ individuals to
generate the next generation.
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(decision variables) which have been mutated. Note that the parameters MarkovPrediction,
StridePrediction and TCPEnable have been set to a fixed value for each run of JavaEvA.

14.5 Cache-Memory Overhead

In this subsection the hardware overhead required for SAM’s additional protection is pre-
sented. Table 14.10 sums up the cache-memory overhead for a sample cache system. The
overhead for the L1 cache is negligible. For the L2 cache the amount of required additional
TAG RAM is very high due to the TAG part of the virtual address, the context dictionary,
and the context number. However, when considering the whole cache with all user data, an
overhead of approximately 9% is reasonable.

14.6 Simulation Results

This section provides a performance analysis of the SAM architecture. Various cache and
Linux configurations have been analyzed to investigate SAM from a performance-oriented
point of view.
The results of all simulations are listed in appendix B. More information about the simulation
environment and the abbreviations used in the appendix is provided in appendix A. In the
following, references to the tables in appendix B with the results used to create the figures in
this section are provided in footnotes.
Note that instead of the geometric mean of all twelve SPEC benchmarks the results for
each single benchmark run are given. This illustrates that each benchmark has a different
memory access pattern resulting in very much different results. However, a detailed analysis
of the memory access pattern of each executed benchmark are going beyond the scope of this
work. Therefore, no detailed analysis for each benchmark executed with a particular cache
configuration can be provided.

14.6.1 L2 Cache with speculative Execution

Figure 14.2a13 shows the speedup14 for all benchmarks executed in a single task environment
and for the three standard cache sizes.
The performance of the larger caches for all benchmarks except for mcf is very good with a
typical slowdown between 0.8 and 1. Some benchmarks, like eon, are executed with negligible
slowdown. Of course, for smaller caches the slowdown increases, since a smaller cache is not
able to hide the additional overhead as well as a larger cache. However, small L2 caches with
only 256 kByte are no longer state of the art: most second-level caches of modern desktop
processors provide between one and two megabyte RAM and, for these caches, SAM performs
well.
Nonetheless, the slowdown can be worse if memory access patterns are comparable to those
of the mcf benchmark. Figure 14.2b shows the percentage of cache misses with respect to
the total number of cache accesses (shown in figure 14.2d for the second-level cache). It is
obvious that the reason for the low performance is the huge number of cache misses for the

13Simulations shown in sections B.1.2, B.1.3, and B.1.4, column normal.
14The computed speedup is mostly smaller than one due to the SAM overhead. Therefore, it is sometimes

denoted as slowdown.
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Component Original SAM Overhead
total per line total per line

16K L1 Data Cache, direct mapped, write-back
Cache Size 16384 byte 32 byte – –
Cache Lines 512 – – –
Dirty + Valid Bits 1024 bit 2 bit – –
Virtual Address 9216 bit 18 bit – –
Context Number 4096 bit 8 bit – –
Unprotected Bit – – 512 bit 1 bit
Total (administrative) 14336 bit 28 bit (+4%) 14848 bit 29 bit
Total 145408 bit – (+0.3%) 145920 bit –

16k L1 Instruction Cache, direct mapped, write-back
Cache Size 16384 byte 32 byte – –
Cache Lines 512 – – –
Valid Bit 512 bit 1 bit – –
Virtual Address 9216 bit 18 bit – –
Context Number 4096 bit 8 bit – –
Total 145152 bit – – –

1 M L2 Cache, 4-way-set-associative, write-back, LRU strategy
Cache Size 1048576 byte 64 byte – –
Cache Lines 16384 – – –
Sets 4096 – –
Dirty + Valid Bits 32768 bit 2 bit – –
LRU 20480 bit 5 bit – –
Physical Address 229376 bit 14 bit – –
Virtual Address – – 229376 bit 14 bit
Context Number – – 131072 bit 8 bit
Unprotected Bit – – 16384 bit 1 bit
Decrypted Bit – – 16384 bit 1 bit
Checked Context Bits – – 65536 bit 4 bit
Total (administrative) 282624 bit 21 bit (+162%) 741376 bit 28 bit
Total 8671232 bit – (+9%) 9412608 bit –

Table 14.10: Cache-memory overhead (without prefetching capabilities)
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Figure 14.2: Cache simulation results
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Figure 14.3: Speculative execution

mcf workload. Workloads like eon fit into the second-level cache, resulting in a very good
performance. Thus, the impact of changes to the cache configuration for workloads like eon
or perlbmk is expected to be low and, therefore, the results for these benchmarks are omitted
in some of the following figures, but full results are always available in the appendix.
For many misses of encrypted cache lines the overhead caused by decryption is low, because
the corresponding hash line is already cached for up to 80% of all hash line accesses, as can
be seen in figure 14.2c. The figure shows (in percent) how many of all hash value fetches
result in a miss. For most benchmarks and cache configurations, this value is between 5% and
55%. This indicates that the usage of counter mode encryption with hash values used as a
counter can hide the additional latency caused by reading the hash values in up to 95% of all
encrypted cache line misses.

14.6.2 L2 Cache without speculative Execution

Figure 14.3a15 shows the importance of speculative execution of instructions. It shows the
absolute speedup gain of the normal, speculative execution of instructions compared to a
nospeculative cache configuration that verifies all fetched instructions prior to their execution.
For example, the 8-256 result has been calculated by subtracting the speedup of the normal
8-256 cache configuration from the 8-256 nospeculative configuration. In the following these
differences are called “absolute speedup gain”.
Especially for smaller caches, it can be seen that speculative execution can speed up the

15Simulations shown in sections B.1.2, B.1.3, and B.1.4, columns normal and nospeculative.
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executed benchmarks by approximately up to ten percent points, which shows the importance
of speculative execution.
Figure 14.3b16 shows the absolute speedup gain when deactivating the additional measures
required to prevent the memory decryption attack described in section 7.10.1. The figure
shows the difference between two configurations with lower security compared to the standard
SAM cache configuration. The *-nt set of simulations allows subsequent cache line fetches
without prior verification of already fetched lines, and the *-t configuration protects against
the memory decryption attack by preventing subsequent instruction fetches without prior
verification but allow them for data cache accesses. The first observation is that the results for
both less secure configurations are close together. Hence, the protection against the memory
decryption attack can be realized with nearly no additional performance penalties. However,
a modified attack, which could be based on data fetches, cannot be prevented. For example,
an attacker could try to modify data which results in control flow changes if this data is
used for conditional branches to analyze the program behavior. Even if these attacks are less
likely to succeed, they have to be prevented as well. Hence, SAM prevents subsequent cache
line fetches for both data and instruction cache accesses in its default configuration. The
performance impact is noticeable, but with a speedup decrement of approximately up to 0.02
still acceptable.

14.6.3 Cache Size Variations

In the standard configuration three cache sizes have been selected. To measure the impact
of the size of the L1 caches several benchmarks with other cache size configurations have
been evaluated. Figure 14.4a17 shows the effect of different L1 cache sizes for a fixed L2 cache
size. The results show the absolute speedup gain with the standard cache configuration with
the same L2 cache size as a reference (for example, the 16-256 result has been calculated
by subtracting the 8-256 speedup from the 16-256 speedup). As a matter of course the size
of the L2 cache has a much larger impact on the slowdown than the size of the L1 cache.
However, increasing the size of the L1 cache for a fixed L2 cache size does not always result
in a better speedup. For some benchmarks like bzip2 or mcf the speedup decreases when
increasing the L1 cache size. This observation corresponds with the miss rate of the L2 cache
as shown in figure 14.4b. This result shows that larger L1 caches do not always result in a
better overall performance. According to [33], the miss rate of the L2 cache increases when
the size of both L1 caches converge at the size of the L2 cache. In case of the simulated
cache configurations the L2 cache is only four times larger than both L1 caches in the 32-256
configuration, and the miss rate of the L2 cache increases even if the number of L1 misses
decreases for larger L1 caches, as can be seen in figure 14.4c. The reason for this is obvious:
if data can stay longer in one of the L1 caches the probability of a cache line replacement
of the same data in the L2 cache increases. This results in another miss in the L2 cache
when the L1 cache writes back the dirty line resulting in two L2 misses for a L1 miss. A
write through L1 cache can prevent many of these misses, but as stated above, the write-back
strategy has been selected to relieve the L2 cache. Figure 14.5a18 proves this by showing the
absolute speedup gain for the smallest L2 cache configurations for a write through L1 cache
configuration with the normal configuration as a reference. The speedup for the write through

16Simulations shown in sections B.2.2, B.2.3, and B.2.4, columns notainted (*-nt) and tainted (*-t).
17Simulations shown in section B.3.1.
18Simulations shown in sections B.4.10, B.4.4, and B.4.7.
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Figure 14.5: Write Through cache configuration

cache configuration is higher for all benchmarks except for mcf, twolf and vpr, but the overall
number of simulated clock cycles is mostly larger for a write through cache, as can be seen in
figure 14.5b19. This figure shows how many additional clock cycles have been executed for the
write through cache configuration. Therefore, the SAM penalty is smaller for write through
L1 caches, but in general for most executed benchmarks write through L1 caches perform
worse than write-back L1 caches.
In case of a SAM -enabled cache the probability of cache line replacements further increases
due to the additional hash values required for verification, and their cost is much higher due
to their verification. Figure 14.4d20 shows the number of cache line verifications and it can
be seen that this number increases considerably with larger L1 caches at least for the bzip2,
mcf, twolf, and vpr workload.

14.6.4 Cryptography

Here the impact of the cryptographic units used in the L2 cache are evaluated. This includes
the number of AES units, their encryption performance, and the hashing performance. Due to
the huge number of results, in the following only the speedup for the 8-256 cache configuration
is given because this configuration stresses all cryptographic units more than both other
configurations.

19In this figure the number of simulated clock cycles for the mcf workload has been divided by 10 to be able
to show more details for the other workloads.

20In this figure the number of misses for the mcf workload has been divided by 10 to be able to show more
details for the other workloads.
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Figure 14.6: Performance of cryptographic-related parts of the L2 cache
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14.6.4.1 Number of AES Units

As can be seen in table 14.5, the AES unit has a huge impact on the overall size of the
processor and cache. Hence, it is desirable to reduce the impact by reducing the number of
AES units. Figure 14.6a21 shows the absolute speedup gain for different numbers of AES
units for a 8-256 cache configuration compared to the standard configuration with five units.
With only one AES unit the performance degrades up to 20 percent points (gzip benchmark)
compared to the configuration with six AES units. For all other benchmarks the degradation
is smaller, but in most cases around 10 percent points. Only the small benchmarks like eon do
not suffer from this limitation. However, the performance gain for more than two AES units is
much smaller than the additional effort in terms of chip space. Hence, a small SAM -enabled
processor could provide a good performance even with only two AES units.

14.6.4.2 Performance Variations

The impact of a fast AES implementation has been analyzed in figure 14.6b22 for the 8-256
cache configuration. In the default configuration the AES unit needs 20 cycles to perform an
AES encryption and this configuration has been compared with faster (10 cycles) and slower
(40 and 80 cycles) ones. Here only the slowest configuration has a notable impact on the
slowdown. Hence, slightly slower AES units which are possibly smaller in terms of chip size
can be used for smaller systems. However, when combining several means to reduce the chip
size, several small performance degradations sum up and may result in a major performance
loss.

14.6.4.3 Hashing Algorithm

As described in section 8.1, the first hashing scheme has been improved and is now based on a
tree algorithm instead of a sequential one to lower the hash computation time. Figure 14.6c23

compares the sequential hash algorithm and a theoretical hash algorithm which is able to
compute hashes within one clock cycle (denoted as Null in the figure) with the standard tree-
based algorithm for a 8-256 cache configuration. The tree-based algorithm can improve the
speedup up by more than five percent points compared to the sequential one. Its slowdown
is now much closer to the optimal case determined by the Null algorithm. Furthermore, this
figure shows that an even faster hashing algorithm possibly not based on a block cipher cannot
improve the speedup considerably.

14.6.5 L2 Cache with Prefetching

14.6.5.1 Hash Value Prefetching

The results for a simple hash value prefetcher are shown in figure 14.7a24. The simple hash
value prefetcher tries to prefetch a hash value before it is requested by the Check Queue.
The prefetcher uses bus sniffing to be notified about new lines sent to the Check Queue and
immediately performs a fetch to the parent hash. Unfortunately, this prefetching is not able to
improve the speedup considerably. Further analysis showed that for large caches the number

21Simulation shown in section B.5.4.
22Simulation shown in section B.6.4.
23Simulation shown in section B.7.4.
24Simulations shown in sections B.8.4, B.8.2, and B.8.3
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Figure 14.8: Geometric average of speedup for chosen benchmarks (8-256)

of times where hashes in upper levels of the hash tree are fetched was very low. Additionally,
the amount of times where the prefetcher was not able to prefetch the required hash value
before the request initiated by the Check Queue was high.
The results for a hash tree prefetcher that always performs a full hash walk up to the first
hit are not shown here because they were similar to the ones of the simple hash prefetcher,
as can be seen in section B.8.1.

14.6.5.2 Data Prefetching

As described in section 14.4, JavaEvA has been used to find optimal values for the prefetcher.
Figure 14.8 shows the geometric average of the speedup for the gcc, gzip, crafty, and perlbmk
evaluated for a 8-256 cache configuration. The speedup has been used as a fitness function
where each given value belongs to the speedup of an individual. It can be seen that the
speedup converges to 1.036. For this evaluation only the four benchmarks mentioned above
instead of all 12 benchmarks have been used to limit the simulation time. To further reduce
the simulation time all simulations have been stopped after 228 instructions.
The prefetcher configuration found during this evaluation is listed in the 8-256 column in
table 14.11, and the absolute speedup gains of this configuration for all benchmarks are
shown in figure 14.7b25. The reference cache configuration in this case is a standard cache
configuration without prefetching capabilities. In this figure, the speedups for a cache without
and with prefetching capabilities are compared. It can be observed that the implemented
prefetching algorithm is not able to speed up all simulated workloads equally. For example,
the gcc benchmark can be sped up by up to five percent points, but other benchmarks like
twolf or vpr are even slightly slower.
One reason for this observation is that using a prefetcher always causes additional load on
the cache system. For the SAM architecture this load is increased due to the hash values
required to decrypt encrypted memory. To measure whether this additional load decreases

25Simulations shown in sections B.9.7, B.9.3, and B.9.5.
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Parameter 8-256 Markov TCP Stride-only Markov-only
Best speedup 1.036 1.0476 1.045 1.044 1.026
Idle 0 0 2 3 0
NoCheck no no no no no
AllowStrideNull no no no yes yes
Buffers 32 8 32 32 32
AddressesPerBuffer 4 4 4 4 4
PriorityDecrementCycles 100 80 90 15 45
MaxConfidenceBits 4 7 3 4 5
StridePrediction yes yes yes yes no
StrideBits 5 5 5 9 –
MarkovPrediction yes yes yes no yes
MarkovAssociativity 2 4 – – 4
MarkovBits 8 7 – – 12
TCPEnable no no yes no no
TCPTagsPerSet – – 1 – –
TCPTagbits – – 7 – –
TCPSetbits – – 4 – –

Table 14.11: JavaEvA results

the performance of the prefetcher, a new set of simulations has been carried out. Figure 14.7c26

shows the results of these simulations. Here the absolute speedup gain is computed with a
normal cache with prefetching capabilities as a reference. The results show that the speedups
are mostly equal. Therefore, the additional overhead of the SAM architecture does not worsen
the performance of this prefetching algorithm. For some benchmarks like gcc the performance
is slightly lower, others are performing slightly better but in any case the difference is less
than one percent point. Hence, the prefetcher is not able to speed up protected programs
more than unprotected ones.
In the following only the gcc workload for a 16-1024 cache configuration has been used to
further analyze the prefetcher, because it has shown the best prefetching results. The influence
of the predictor is negligible, as can be seen in figure 14.9. The first figure (14.9a) shows the
speedup using the normal Markov predictor; the second figure (14.9b) shows the speedup
for the same cache configuration, but this time using the TCP predictor. In both cases the
resulting speedup is around 1.04 (see table 14.11, columns Markov and TCP). Therefore, the
Markov predictor implementation has no significant effect on the results.
To measure the effect of the stride predictor two more configurations have been evaluated (see
figure 14.10). The first one (figure 14.10a) is a pure Markov predictor without stride filter; the
second one (figure 14.10b) is a pure stride predictor without additional Markov-prediction. It
can be seen that the lack of the stride predictor results in a smaller speedup, whereas the lack
of a Markov predictor has only no visible impact on the speedup. One reason for this behavior
is that a stride predictor is able to predict compulsory27 misses whereas a Markov predictor
can only predict non-compulsory misses. The best configurations for both simulations are
shown in table 14.11 in the columns Markov-only and Stride-only.

26Simulations shown in sections B.9.6, B.9.2, and B.9.4
27A miss is compulsory if the corresponding cache line is fetched the first time.
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Figure 14.9: Different predictors

14.6.6 Queues

The impact of various queue-related changes is shown in the following sections. This includes
queue size and queue performance variations. For the following benchmarks the cache config-
uration 8-256 has been used. The results for the other two configurations were similar.

14.6.6.1 Queue Sizes

Increasing the number of queue elements has no impact on the speedup, as can be seen in
figure 14.11a28. The absolute speedup gain is close to zero for configurations using 3, 4, 10,
and 20 elements when using the standard queue size or five elements as a reference. One
reason for this is the more secure handling of speculative execution. The cache simply defers

28Simulation shown in section B.10.4.
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Figure 14.10: Influence of stride predictors and Markov predictors

fetches which, for example, could result in additional check queue elements until the previous
cache line has been verified. Hence, the only time a number of cache lines are to be verified in
parallel are cases where several misses are caused by the cache itself, for example when cache
accesses by the Hash Write Queue result in misses. However, decreasing the number of queue
elements has a huge impact and can lower the speedup by more than 45 percent points, as
can be seen for the results with only two queue entries. These results show that five queue
elements seem to be reasonable.

14.6.6.2 Queue Performance

In the default configuration the queues are clocked with half of the main processor clock.
However, the main speed of the queues does not have a notable impact on the speedup
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Figure 14.11: Queue-related configurations

of most benchmarks, as can be seen in figure 14.11b29 which shows the absolute speedup
gain compared to the default cache configuration. The main reason for this is that the main
performance loss of the architecture is caused by the additional delay when fetching encrypted
memory contents. This is not handled by queues, but by the main cache logic. The queues are
involved only in data verification and write-backs, and both tasks do not have a huge impact
on the whole performance. Verification is done in parallel with other cache operations and
typically the processor does not have to wait until a write-back of data has finished.

14.6.7 Multitasking Benchmarks

For these benchmarks, shown in figures 14.12 and 14.13, four protected benchmarks have
been started in parallel. The additional benchmarks are started to cause additional context
switches and they have the protected parts of the operating system accessed by more than
one protected context.
Figure 14.1230 directly compares the results of single task benchmarks with the multitasking
ones. It can be seen that the slowdowns are unbalanced. Some benchmarks, like bzip2 or twolf,
perform better in the multitasking environment, whereas others, like gcc, perform worse. Of
course, the overall runtime of all four benchmarks is increased, but the speedup is not as
high as for the execution of a single benchmark. Therefore, SAM performs well even when

29Simulation shown in section B.11.4.
30Simulations shown in sections B.9.9, B.9.11, and B.9.13 compared with simulations shown in sections B.9.3,

B.9.5, and B.9.7.
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Figure 14.12: Comparison between single-task and multitasking benchmarks

executing more than one protected program at the same time.

14.6.7.1 Prediction

The absolute speedup gains for the four protected processes mentioned above with the stan-
dard cache configuration without prefetching as a reference are shown in figure 14.13a31. The
absolute speedup gains for most multitasking benchmarks are slightly inferior to those shown
in figure 14.7b for single tasks benchmarks. Like for the single task case gcc performs best,
but the speedup gain for gzip is much lower in the multitasking environment. However, the
speedup in the multitasking case is higher than in the single task case, as can be seen in
figure 14.12. Hence, SAM’s multitasking performance for a prefetching cache is comparable
to its single task performance.

14.6.7.2 Cache Line Verification

For static data, like instructions, a full hash walk for verification is not required, as stated in
section 8.1. Figure 14.13b32 shows the performance improvements of this property. Here, the
absolute speedup gain of configuration that performs a hash tree walk even for static data
is shown with the default configuration as a reference. This optimization mainly speeds up
small cache configurations, but not more than three percent points. Hence, it can be used for
small systems in which no self-modifying code is executed.

14.6.7.3 Cache Dictionary

The impact of the cache dictionary can be seen in figure 14.13c33. Here, the absolute speedup
gain for cache configurations with one and two dictionary entries (*-dic1 and *-dic2) compared
with the standard configuration with four entries is given. The results show that the dictionary
can improve the overall performance up to 12 percent points for the vortex benchmark and
significantly for all other simulated workloads. This shows that shared protected memory can
be handled well by the current cache implementation as long as the number of dictionary
entries at least matches the number of parallel executed protected processes.

31Simulations shown in sections B.9.9, B.9.11, and B.9.13.
32Simulations shown in sections B.12.2, B.12.3, and B.12.4.
33Simulations shown in sections B.13.2, B.13.3, and B.13.4.
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14.6.7.4 Size of Protected Kernel Area

Limiting the size of the protected kernel area does not only simplify maintaining and verifying
this code but can additionally improve the overall performance. Figure 14.13d34 shows the
absolute speedup gains for a fully protected kernel (*-all) and a fully unprotected kernel (*-
user) compared to the default configuration with 64k protected kernel memory. It can be seen
that protecting the whole kernel has a huge performance impact whereas the current small
protected kernel performs as well as a configuration without any protected kernel code at all.

34Simulations shown in sections B.14.2, B.14.3, and B.14.4.
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Figure 14.13: Multitasking benchmarks



Chapter 15

Conclusion and Future Work

In this thesis the SAM architecture has been presented. The architecture consists of an
extension to a standard microprocessor and provides execution of protected and unprotected
programs in a multitasking environment. SAM assumes that the processor core, including
the cache and all data stored there, are protected against physical attacks. Hence, data has
to be protected when leaving the core, i.e., when sensitive data is written back to memory.
Inside this core, physical attacks are assumed to be impossible: protection has to be assured
at a logical level, i.e., by restricting memory access.
External data is transparently protected by strong AES encryption in counter mode and hash
values are used to prevent both external data disclosure and modifications. The processor sup-
ports two different memory views for encrypted memory: Encrypted data is decrypted only
when accessed by instructions that are protected by hash values, and the hash values are
updated for write accesses. Other instructions are only allowed to access encrypted memory,
and hash values are not updated. Internally, the processor supports additional protection
schemes, like register protection, and an enhanced trap handling to provide support for a pro-
tected operating system implementation. A sample operating system implementation based
on Linux with a small protected kernel part has also been introduced.
The presented simulation results show that the performance penalty caused by SAM is quite
low. Several factors contribute to this result, such as the deployment of counter mode cryp-
tography, which hides the cryptographic latency for most loads, the reuse of hash values as
a counter, which reduces the memory footprint, and the sophisticated design of the cache
system.
The hardware implementation proves that the main parts of SAM can be implemented effi-
ciently in hardware with a small overhead. The major overhead is caused by the cryptographic
units, but they can be made available to programs to speed up normal cryptographic opera-
tions as well.
As a result, the SAM architecture provides a secure execution environment for programs
using a standard and only partly enhanced processor and operating system without affecting
the execution performance much. This reduces the effort required to adjust existing programs
for SAM . Compared with other architectures, such as those based on a secure co-processor
or AEGIS architecture, the required modifications are minimal. No dedicated compiler or
development environment is needed.
This protection scheme can be used for a wide range of software, from multimedia players
featuring embedded cryptographic keys, which allow a controlled decryption of multimedia
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contents, to effective copy-protection schemes, which cannot be broken by software mod-
ifications, and permit, for example, the public deployment of secret algorithms. However,
protection of digital multimedia content requires protected data paths to external devices
to prevent sniffing when decrypted data is passed to their output device like the graphic or
sound card. Therefore, the SAM architecture could be combined with parts of the LaGrande
architecture for more security.
Future work includes hardware and software improvements. On the hardware side the ar-
chitecture has to be ported to a multi-core processor design. Even a multiprocessor design
where the processor cores are not located in the same housing is possible. However, then the
busses used for communication between the processors have to be protected and encrypted
as well. The operating system has to be enhanced as well. The current implementation lacks
support for paging out protected pages and for secure signal handling and multi-threading.



Appendix A

System Emulation Parameters

In the appendix the abbreviations listed in table A.1 are used:

Abbreviation Description
CS Cache Size. The first number represents the size of both L1

caches in kByte, and the second number represents the size
of the L2 cache in kByte.

SID Simulation Identifier. This is the internal identifier of this
simulation.

BE Benchmark Environment. Determines if a single benchmark
or multiple benchmarks have been started.

REF Reference Simulation. This is the reference simulation used
for speedup calculations. Typically this is a standard cache
without any security functions and without prefetching ca-
pabilities.

Table A.1: Abbreviations

For all cache configurations only a small set of different trace files has been used. Table A.2
lists these configurations. For all simulations kernel 2.6.13 with SAM modifications has been
executed on a simulated computer with 512 Mbyte memory, and writing to the trace file has
been started after 232 instructions. The column Benchmarks lists the number of benchmark
programs started in parallel. In case of parallel execution of several benchmarks the first
started benchmark is the one listed in the tables shown in chapter B, and for the remaining
ones eon has been started. In the column Usertermclock the number of instructions recorded
in user space for each executed benchmark before terminating the simulation is given in
hexadecimal notation. Therefore, the number has to be smaller in case of parallel execution
of several benchmarks to record approximately 232 instructions.

SID Benchmarks Usertermclock
P1 1 0x0dfffffff
P4 4 0x05fffffff

Table A.2: QEMU configurations
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Appendix B

Speedups for selected
Configurations

The basic cache configuration used for all simulations without prefetching has already been
listed in table 14.7.

In the following, the speedups for all evaluated cache configurations are listed.

B.1 Speculative Execution

B.1.1 SID: speculative

Name Speculative Execution

normal yes
nospeculative no

B.1.2 CS: 16-1024; SID: speculative (section B.1.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal nospeculative

bzip2 0.782843 0.724325
crafty 0.987439 0.981999
eon 0.999977 0.999962
gap 0.939804 0.903325
gcc 0.908137 0.846896
gzip 0.945378 0.909786
mcf 0.524216 0.467516
parser 0.921794 0.884098
perlbmk 0.999925 0.999793
twolf 0.845337 0.800338
vortex 0.957067 0.945669
vpr 0.871296 0.829082
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B.1.3 CS: 32-2048; SID: speculative (section B.1.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal nospeculative

bzip2 0.865854 0.826482
crafty 0.999456 0.999111
eon 0.999977 0.999962
gap 0.939902 0.903777
gcc 0.902791 0.841011
gzip 0.943702 0.908160
mcf 0.562288 0.511907
parser 0.955722 0.935417
perlbmk 0.999928 0.999797
twolf 0.999869 0.999754
vortex 0.969878 0.963177
vpr 0.994175 0.988151

B.1.4 CS: 8-256; SID: speculative (section B.1.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal nospeculative

bzip2 0.641587 0.550424
crafty 0.920315 0.885222
eon 0.999557 0.998845
gap 0.934038 0.895850
gcc 0.913673 0.856098
gzip 0.887723 0.821065
mcf 0.448160 0.382592
parser 0.757447 0.663347
perlbmk 0.998348 0.997045
twolf 0.606752 0.513884
vortex 0.899877 0.872151
vpr 0.609607 0.525767

B.2 Subsequent Unverified Fetches

B.2.1 SID: unverified fetches

Name Unverified subsequent data fetches Unverified subsequent data and instruction fetches

notainted no yes
tainted yes no
tainteddata no no



142 APPENDIX B. SPEEDUPS FOR SELECTED CONFIGURATIONS

B.2.2 CS: 16-1024; SID: unverified fetches (section B.2.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
notainted tainted tainteddata

bzip2 0.791727 0.791669 0.782843
crafty 0.987471 0.987464 0.987439
eon 0.999979 0.999977 0.999977
gap 0.949628 0.949621 0.939804
gcc 0.926392 0.926367 0.908137
gzip 0.957289 0.957242 0.945378
mcf 0.540353 0.540339 0.524216

parser 0.930019 0.929826 0.921794
perlbmk 0.999927 0.999927 0.999925

twolf 0.852002 0.852247 0.845337
vortex 0.957367 0.957374 0.957067

vpr 0.873071 0.873051 0.871296

B.2.3 CS: 32-2048; SID: unverified fetches (section B.2.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
notainted tainted tainteddata

bzip2 0.869454 0.869247 0.865854
crafty 0.999458 0.999464 0.999456
eon 0.999979 0.999978 0.999977
gap 0.949843 0.949849 0.939902
gcc 0.921482 0.921480 0.902791
gzip 0.955961 0.955947 0.943702
mcf 0.580970 0.580962 0.562288

parser 0.960118 0.960062 0.955722
perlbmk 0.999931 0.999930 0.999928

twolf 0.999895 0.999894 0.999869
vortex 0.970112 0.970113 0.969878

vpr 0.994808 0.994807 0.994175

B.2.4 CS: 8-256; SID: unverified fetches (section B.2.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
notainted tainted tainteddata

bzip2 0.660628 0.660548 0.641587
crafty 0.921523 0.920831 0.920315
eon 0.999645 0.999642 0.999557
gap 0.943686 0.943442 0.934038
gcc 0.928957 0.928789 0.913673
gzip 0.901475 0.901192 0.887723
mcf 0.459969 0.459934 0.448160

parser 0.779995 0.779641 0.757447
perlbmk 0.998289 0.998443 0.998348

twolf 0.628109 0.627820 0.606752
vortex 0.901946 0.901192 0.899877

vpr 0.626620 0.626368 0.609607
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B.3 Cache Size Variations

B.3.1 SID: size

Name Configuration

normal default configuration, only size variations

B.3.2 CS: 16-1024; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.782843
crafty 0.987439
eon 0.999977
gap 0.939804
gcc 0.908137
gzip 0.945378
mcf 0.524216
parser 0.921794
perlbmk 0.999925
twolf 0.845337
vortex 0.957067
vpr 0.871296

B.3.3 CS: 16-2048; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.869762
crafty 0.999492
eon 0.999976
gap 0.938124
gcc 0.906489
gzip 0.945488
mcf 0.561093
parser 0.956404
perlbmk 0.999930
twolf 0.999865
vortex 0.969942
vpr 0.994235
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B.3.4 CS: 16-256; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.627729
crafty 0.912011
eon 0.999496
gap 0.934987
gcc 0.904055
gzip 0.881240
mcf 0.443016
parser 0.753741
perlbmk 0.998447
twolf 0.605026
vortex 0.898801
vpr 0.608234

B.3.5 CS: 32-1024; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.776188
crafty 0.986347
eon 0.999977
gap 0.941555
gcc 0.904470
gzip 0.943803
mcf 0.522637
parser 0.920625
perlbmk 0.999923
twolf 0.848798
vortex 0.956827
vpr 0.872110

B.3.6 CS: 32-2048; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.865854
crafty 0.999456
eon 0.999977
gap 0.939902
gcc 0.902791
gzip 0.943702
mcf 0.562288
parser 0.955722
perlbmk 0.999928
twolf 0.999869
vortex 0.969878
vpr 0.994175
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B.3.7 CS: 32-256; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.605793
crafty 0.908910
eon 0.999585
gap 0.934355
gcc 0.896305
gzip 0.877647
mcf 0.429041
parser 0.747400
perlbmk 0.998930
twolf 0.592640
vortex 0.901147
vpr 0.597564

B.3.8 CS: 8-1024; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.787551
crafty 0.988708
eon 0.999976
gap 0.938062
gcc 0.918449
gzip 0.950181
mcf 0.519523
parser 0.923022
perlbmk 0.999920
twolf 0.841955
vortex 0.957270
vpr 0.870231

B.3.9 CS: 8-2048; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.873104
crafty 0.999540
eon 0.999975
gap 0.936384
gcc 0.917517
gzip 0.950349
mcf 0.555186
parser 0.957190
perlbmk 0.999926
twolf 0.999852
vortex 0.970005
vpr 0.994668
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B.3.10 CS: 8-256; SID: size (section B.3.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
normal

bzip2 0.641587
crafty 0.920315
eon 0.999557
gap 0.934038
gcc 0.913673
gzip 0.887723
mcf 0.448160
parser 0.757447
perlbmk 0.998348
twolf 0.606752
vortex 0.899877
vpr 0.609607

B.4 Write-through Configuration

B.4.1 SID: write-through

Name Configuration

normal default configuration, but L1 caches configured with write through
strategy

B.4.2 CS: 16-1024; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.785817
crafty 0.987865
eon 0.999980
gap 0.955846
gcc 0.931967
gzip 0.973099
mcf 0.492431
parser 0.925775
perlbmk 0.999921
twolf 0.834828
vortex 0.957352
vpr 0.864970
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B.4.3 CS: 16-2048; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.872317
crafty 0.999505
eon 0.999979
gap 0.954573
gcc 0.931300
gzip 0.973597
mcf 0.524061
parser 0.958988
perlbmk 0.999926
twolf 0.999846
vortex 0.970259
vpr 0.994916

B.4.4 CS: 16-256; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.644704
crafty 0.916595
eon 0.999632
gap 0.952207
gcc 0.927460
gzip 0.916184
mcf 0.427370
parser 0.765483
perlbmk 0.998535
twolf 0.598150
vortex 0.900741
vpr 0.602358

B.4.5 CS: 32-1024; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.782388
crafty 0.986948
eon 0.999980
gap 0.955733
gcc 0.930618
gzip 0.972855
mcf 0.490860
parser 0.924651
perlbmk 0.999919
twolf 0.835062
vortex 0.957221
vpr 0.865887
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B.4.6 CS: 32-2048; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.869865
crafty 0.999472
eon 0.999979
gap 0.954351
gcc 0.929829
gzip 0.973130
mcf 0.522014
parser 0.958169
perlbmk 0.999924
twolf 0.999844
vortex 0.970178
vpr 0.994889

B.4.7 CS: 32-256; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.641421
crafty 0.916596
eon 0.999717
gap 0.952546
gcc 0.926321
gzip 0.916784
mcf 0.427880
parser 0.764067
perlbmk 0.998968
twolf 0.598466
vortex 0.905057
vpr 0.603591

B.4.8 CS: 8-1024; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.789633
crafty 0.988892
eon 0.999981
gap 0.956099
gcc 0.937188
gzip 0.974692
mcf 0.493423
parser 0.927161
perlbmk 0.999924
twolf 0.838968
vortex 0.957726
vpr 0.865782
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B.4.9 CS: 8-2048; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.875024
crafty 0.999546
eon 0.999979
gap 0.954904
gcc 0.936888
gzip 0.975243
mcf 0.525200
parser 0.959961
perlbmk 0.999930
twolf 0.999844
vortex 0.970480
vpr 0.994880

B.4.10 CS: 8-256; SID: write-through (section B.4.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal

bzip2 0.648695
crafty 0.922486
eon 0.999668
gap 0.952169
gcc 0.931284
gzip 0.918231
mcf 0.427404
parser 0.767307
perlbmk 0.998401
twolf 0.603380
vortex 0.901078
vpr 0.602422

B.5 AES Units

B.5.1 SID: AES

Name Number of simulated AES units

aes-1 1
aes-2 2
aes-3 3
aes-4 4
aes-5 5
aes-6 6
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B.5.2 CS: 16-1024; SID: AES (section B.5.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
aes-1 aes-2 aes-3 aes-4 aes-5 aes-6

bzip2 0.682901 0.754218 0.761478 0.781285 0.782843 0.784093
crafty 0.981310 0.985635 0.985963 0.987396 0.987439 0.987502
eon 0.999953 0.999969 0.999971 0.999976 0.999977 0.999977
gap 0.823029 0.910182 0.924144 0.936653 0.939804 0.943058
gcc 0.738831 0.863263 0.880312 0.905001 0.908137 0.910607
gzip 0.790237 0.904710 0.926894 0.941470 0.945378 0.950298
mcf 0.406315 0.489880 0.502579 0.521346 0.524216 0.526577
parser 0.823984 0.896231 0.905883 0.919503 0.921794 0.923500
perlbmk 0.999790 0.999880 0.999886 0.999925 0.999925 0.999926
twolf 0.756151 0.819504 0.826603 0.843842 0.845337 0.847089
vortex 0.948904 0.954764 0.955104 0.957031 0.957067 0.957093
vpr 0.810637 0.851389 0.855766 0.870551 0.871296 0.872305

B.5.3 CS: 32-2048; SID: AES (section B.5.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
aes-1 aes-2 aes-3 aes-4 aes-5 aes-6

bzip2 0.796317 0.845839 0.850365 0.864972 0.865854 0.866670
crafty 0.999034 0.999324 0.999341 0.999454 0.999456 0.999458
eon 0.999953 0.999970 0.999971 0.999977 0.999977 0.999977
gap 0.824435 0.910895 0.924457 0.936825 0.939902 0.943154
gcc 0.732965 0.857782 0.874512 0.899491 0.902791 0.905424
gzip 0.787709 0.903097 0.925009 0.939705 0.943702 0.948646
mcf 0.445139 0.526385 0.537075 0.560137 0.562288 0.564599
parser 0.899393 0.941687 0.946971 0.954522 0.955722 0.956629
perlbmk 0.999792 0.999882 0.999888 0.999928 0.999928 0.999929
twolf 0.999681 0.999812 0.999822 0.999866 0.999869 0.999871
vortex 0.964544 0.968327 0.968546 0.969851 0.969878 0.969889
vpr 0.983891 0.991552 0.991548 0.994042 0.994175 0.994458

B.5.4 CS: 8-256; SID: AES (section B.5.1); BE: P1, REF: cache without
prefetching

Benchmark Speedups
aes-1 aes-2 aes-3 aes-4 aes-5 aes-6

bzip2 0.509937 0.601963 0.613473 0.638319 0.641587 0.643816
crafty 0.891124 0.911378 0.912854 0.920119 0.920315 0.920496
eon 0.998207 0.999160 0.999240 0.999547 0.999557 0.999564
gap 0.816992 0.903910 0.917971 0.930819 0.934038 0.937138
gcc 0.765732 0.873695 0.888266 0.910854 0.913673 0.916025
gzip 0.691972 0.832368 0.857343 0.882977 0.887723 0.893110
mcf 0.344866 0.419264 0.431534 0.445772 0.448160 0.450741
parser 0.594994 0.706290 0.723758 0.751956 0.757447 0.760916
perlbmk 0.996395 0.997778 0.997878 0.998338 0.998348 0.998357
twolf 0.442762 0.557166 0.574925 0.601770 0.606752 0.610462
vortex 0.878224 0.893466 0.894503 0.899680 0.899877 0.899979
vpr 0.501568 0.578942 0.586612 0.607324 0.609607 0.611590
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B.6 Performance of AES Units

B.6.1 SID: AES cycles

Name Required Cycles for AES encryption

aes-10 10
aes-20 20
aes-40 40
aes-80 80

B.6.2 CS: 16-1024; SID: AES cycles (section B.6.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
aes-10 aes-20 aes-40 aes-80

bzip2 0.790517 0.782843 0.763395 0.674811
crafty 0.987701 0.987439 0.987007 0.982979
eon 0.999979 0.999977 0.999970 0.999945
gap 0.952718 0.939804 0.908832 0.819358
gcc 0.923757 0.908137 0.861878 0.719105
gzip 0.962740 0.945378 0.898820 0.787597
mcf 0.000000 0.000000 0.000000 0.000000
parser 0.930206 0.921794 0.897563 0.816684
perlbmk 0.999927 0.999925 0.999916 0.999823
twolf 0.852930 0.845337 0.828374 0.757434
vortex 0.957381 0.957067 0.956392 0.949878
vpr 0.875750 0.871296 0.863533 0.818983

B.6.3 CS: 32-2048; SID: AES cycles (section B.6.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
aes-10 aes-20 aes-40 aes-80

bzip2 0.869768 0.865854 0.855407 0.799491
crafty 0.999475 0.999456 0.999423 0.999143
eon 0.999979 0.999977 0.999970 0.999946
gap 0.952718 0.939902 0.909345 0.820552
gcc 0.919155 0.902791 0.855977 0.713262
gzip 0.961219 0.943702 0.896478 0.784251
mcf 0.577695 0.562288 0.532457 0.438140
parser 0.960300 0.955722 0.942658 0.895915
perlbmk 0.999930 0.999928 0.999918 0.999825
twolf 0.999888 0.999869 0.999824 0.999626
vortex 0.970039 0.969878 0.969447 0.965368
vpr 0.995310 0.994175 0.994076 0.987925
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B.6.4 CS: 8-256; SID: AES cycles (section B.6.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
aes-10 aes-20 aes-40 aes-80

bzip2 0.657284 0.641587 0.605339 0.483649
crafty 0.921849 0.920315 0.916564 0.891913
eon 0.999609 0.999557 0.999353 0.998426
gap 0.946848 0.934038 0.902516 0.812167
gcc 0.926774 0.913673 0.874598 0.756565
gzip 0.905336 0.887723 0.835550 0.693591
mcf 0.459587 0.448160 0.425859 0.348739
parser 0.776090 0.757447 0.706618 0.566630
perlbmk 0.998467 0.998348 0.998095 0.996828
twolf 0.626887 0.606752 0.560532 0.423687
vortex 0.901308 0.899877 0.896624 0.875431
vpr 0.619462 0.609607 0.589398 0.489479

B.7 Different Hashing Algorithms

B.7.1 SID: hashing algorithm

Name Hashing Algorithm

hashnone Hash calculation requires one clock cycle
hashseq Sequential hashing algorithm
hashtree Tree-based hashing algorithm

B.7.2 CS: 16-1024; SID: hashing algorithm (section B.7.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
hashnone hashseq hashtree

bzip2 0.792587 0.761459 0.782843
crafty 0.987693 0.987093 0.987439
eon 0.999980 0.999968 0.999977
gap 0.955013 0.908625 0.939804
gcc 0.930638 0.858582 0.908137
gzip 0.964447 0.900812 0.945378
mcf 0.543215 0.495783 0.524216
parser 0.931858 0.897417 0.921794
perlbmk 0.999928 0.999919 0.999925
twolf 0.853905 0.829273 0.845337
vortex 0.957531 0.956271 0.957067
vpr 0.874891 0.863986 0.871296
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B.7.3 CS: 32-2048; SID: hashing algorithm (section B.7.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
hashnone hashseq hashtree

bzip2 0.870014 0.855530 0.865854
crafty 0.999479 0.999427 0.999456
eon 0.999980 0.999969 0.999977
gap 0.955023 0.908909 0.939902
gcc 0.925959 0.852488 0.902791
gzip 0.963119 0.898111 0.943702
mcf 0.582937 0.531363 0.562288
parser 0.961056 0.942610 0.955722
perlbmk 0.999931 0.999922 0.999928
twolf 0.999897 0.999816 0.999869
vortex 0.970135 0.969404 0.969878
vpr 0.995516 0.994189 0.994175

B.7.4 CS: 8-256; SID: hashing algorithm (section B.7.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
hashnone hashseq hashtree

bzip2 0.665034 0.598368 0.641587
crafty 0.922291 0.916111 0.920315
eon 0.999621 0.999363 0.999557
gap 0.949051 0.902254 0.934038
gcc 0.932456 0.872691 0.913673
gzip 0.907941 0.839065 0.887723
mcf 0.463252 0.426375 0.448160
parser 0.783640 0.702180 0.757447
perlbmk 0.998485 0.998058 0.998348
twolf 0.633528 0.557436 0.606752
vortex 0.901990 0.895757 0.899877
vpr 0.624497 0.587289 0.609607

B.8 Hash Value Prefetching

B.8.1 SID: hash prefetching

Name Prefetching

hashpf Hash value prefetching
hashsniff Sniffing-based hash prediction
hashtree Tree-based hash prediction
nopred No hash value prediction
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B.8.2 CS: 16-1024; SID: hash prefetching (section B.8.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
hashpf hashsniff hashtree nopred

bzip2 0.783323 0.783382 0.783118 0.782843
crafty 0.987470 0.987459 0.987465 0.987439
eon 0.999977 0.999977 0.999977 0.999977
gap 0.940121 0.940106 0.940442 0.939804
gcc 0.908389 0.908505 0.908259 0.908137
gzip 0.945802 0.945886 0.946213 0.945378
mcf 0.524851 0.524979 0.523705 0.524216
parser 0.922424 0.922455 0.922375 0.921794
perlbmk 0.999926 0.999926 0.999925 0.999925
twolf 0.845236 0.845248 0.845263 0.845337
vortex 0.957004 0.957463 0.957107 0.957067
vpr 0.871022 0.870945 0.871530 0.871296

B.8.3 CS: 32-2048; SID: hash prefetching (section B.8.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
hashpf hashsniff hashtree nopred

bzip2 0.865759 0.865793 0.865939 0.865854
crafty 0.999458 0.999461 0.999456 0.999456
eon 0.999977 0.999977 0.999977 0.999977
gap 0.940204 0.940219 0.940524 0.939902
gcc 0.902981 0.903105 0.902839 0.902791
gzip 0.943968 0.944086 0.944379 0.943702
mcf 0.563195 0.563271 0.562461 0.562288
parser 0.955910 0.955984 0.955954 0.955722
perlbmk 0.999929 0.999929 0.999929 0.999928
twolf 0.999872 0.999872 0.999871 0.999869
vortex 0.969971 0.970109 0.969915 0.969878
vpr 0.994623 0.994604 0.994168 0.994175

B.8.4 CS: 8-256; SID: hash prefetching (section B.8.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
hashpf hashsniff hashtree nopred

bzip2 0.643250 0.643658 0.642684 0.641587
crafty 0.920785 0.920798 0.920787 0.920315
eon 0.999558 0.999558 0.999559 0.999557
gap 0.934370 0.934362 0.934754 0.934038
gcc 0.913854 0.913986 0.913733 0.913673
gzip 0.888052 0.888104 0.888339 0.887723
mcf 0.447913 0.449724 0.447217 0.448160
parser 0.760631 0.760541 0.759516 0.757447
perlbmk 0.998394 0.998352 0.998351 0.998348
twolf 0.607952 0.607971 0.607318 0.606752
vortex 0.899038 0.900874 0.899650 0.899877
vpr 0.611284 0.611754 0.610739 0.609607
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B.9 Cache Line Prefetching

B.9.1 SID: prefetching

Name Prefetching

nopred Cache without prefetching but with SAM enabled
pred Cache with prefetching and SAM enabled
reference Normal cache without prefetching and without SAM
prednosam Normal cache with prefetching and without SAM

B.9.2 CS: 16-1024; SID: prefetching (section B.9.1); BE: P1, REF: cache
with prefetching

Benchmark Speedups
nopred pred reference

bzip2 0.775585 0.784064 0.990729
crafty 0.980249 0.987218 0.992719
eon 0.997375 0.999944 0.997399
gap 0.938823 0.940871 0.998957
gcc 0.861094 0.904434 0.948198
gzip 0.917626 0.942139 0.970645
mcf 0.524368 0.524285 1.000290
parser 0.918424 0.924468 0.996344
perlbmk 0.997002 0.999925 0.997076
twolf 0.849273 0.845351 1.004657
vortex 0.956455 0.957310 0.999360
vpr 0.879455 0.871576 1.009364

B.9.3 CS: 16-1024; SID: prefetching (section B.9.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
nopred pred prednosam

bzip2 0.782843 0.791402 1.009358
crafty 0.987439 0.994459 1.007334
eon 0.999977 1.002552 1.002608
gap 0.939804 0.941853 1.001044
gcc 0.908137 0.953845 1.054632
gzip 0.945378 0.970632 1.030243
mcf 0.524216 0.524133 0.999710
parser 0.921794 0.927860 1.003669
perlbmk 0.999925 1.002857 1.002933
twolf 0.845337 0.841432 0.995365
vortex 0.957067 0.957923 1.000640
vpr 0.871296 0.863490 0.990723



156 APPENDIX B. SPEEDUPS FOR SELECTED CONFIGURATIONS

B.9.4 CS: 32-2048; SID: prefetching (section B.9.1); BE: P1, REF: cache
with prefetching

Benchmark Speedups
nopred pred reference

bzip2 0.858693 0.866515 0.991730
crafty 0.997280 0.999154 0.997823
eon 0.998265 0.999951 0.998288
gap 0.939008 0.941056 0.999049
gcc 0.863014 0.898950 0.955940
gzip 0.922031 0.941468 0.977036
mcf 0.562517 0.562457 1.000408
parser 0.952975 0.957248 0.997126
perlbmk 0.999174 1.000005 0.999246
twolf 1.003482 1.000031 1.003613
vortex 0.969577 0.970088 0.999690
vpr 0.998583 0.994232 1.004433

B.9.5 CS: 32-2048; SID: prefetching (section B.9.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
nopred pred prednosam

bzip2 0.865854 0.873741 1.008339
crafty 0.999456 1.001334 1.002182
eon 0.999977 1.001665 1.001715
gap 0.939902 0.941952 1.000952
gcc 0.902791 0.940384 1.046091
gzip 0.943702 0.963596 1.023503
mcf 0.562288 0.562228 0.999592
parser 0.955722 0.960008 1.002882
perlbmk 0.999928 1.000760 1.000755
twolf 0.999869 0.996431 0.996400
vortex 0.969878 0.970389 1.000310
vpr 0.994175 0.989844 0.995586

B.9.6 CS: 8-256; SID: prefetching (section B.9.1); BE: P1, REF: cache with
prefetching

Benchmark Speedups
nopred pred reference

bzip2 0.634067 0.642678 0.988279
crafty 0.908652 0.918655 0.987327
eon 0.994365 0.999367 0.994805
gap 0.932827 0.934928 0.998703
gcc 0.867820 0.906625 0.949814
gzip 0.847725 0.887033 0.954943
mcf 0.448264 0.448205 1.000232
parser 0.752884 0.758889 0.993976
perlbmk 0.994616 0.998410 0.996262
twolf 0.610043 0.607596 1.005423
vortex 0.898278 0.899564 0.998223
vpr 0.612810 0.610667 1.005254
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B.9.7 CS: 8-256; SID: prefetching (section B.9.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
nopred pred prednosam

bzip2 0.641587 0.650300 1.011860
crafty 0.920315 0.930447 1.012836
eon 0.999557 1.004586 1.005222
gap 0.934038 0.936142 1.001299
gcc 0.913673 0.954529 1.052838
gzip 0.887723 0.928886 1.047183
mcf 0.448160 0.448100 0.999768
parser 0.757447 0.763488 1.006061
perlbmk 0.998348 1.002156 1.003752
twolf 0.606752 0.604319 0.994607
vortex 0.899877 0.901165 1.001780
vpr 0.609607 0.607476 0.994773

B.9.8 CS: 16-1024; SID: prefetching (section B.9.1); BE: P4, REF: cache
with prefetching

Benchmark Speedups
nopred pred reference

bzip2 0.917216 0.921920 0.995894
crafty 0.992506 0.993905 0.998487
eon 0.992776 0.995114 0.997800
gap 0.978004 0.980032 0.998056
gcc 0.741250 0.768759 0.978381
gzip 0.986588 0.992262 0.994463
mcf 0.584062 0.584789 0.999247
parser 0.954641 0.958779 0.996796
perlbmk 0.994662 0.996887 0.997725
twolf 0.887099 0.886876 0.999725
vortex 0.967143 0.967335 0.999883
vpr 0.896272 0.894973 1.001610

B.9.9 CS: 16-1024; SID: prefetching (section B.9.1); BE: P4, REF: cache
without prefetching

Benchmark Speedups
nopred pred prednosam

bzip2 0.920998 0.925721 1.004123
crafty 0.994010 0.995411 1.001515
eon 0.994965 0.997309 1.002205
gap 0.979909 0.981941 1.001948
gcc 0.757629 0.785745 1.022096
gzip 0.992082 0.997787 1.005568
mcf 0.584502 0.585229 1.000753
parser 0.957709 0.961861 1.003214
perlbmk 0.996929 0.999160 1.002280
twolf 0.887343 0.887120 1.000275
vortex 0.967257 0.967448 1.000117
vpr 0.894831 0.893534 0.998392
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B.9.10 CS: 32-2048; SID: prefetching (section B.9.1); BE: P4, REF: cache
with prefetching

Benchmark Speedups
nopred pred reference

bzip2 0.949939 0.952920 0.997358
crafty 0.996511 0.996672 0.999737
eon 0.987768 0.988905 0.999041
gap 0.976624 0.977354 0.999368
gcc 0.937608 0.961220 0.975527
gzip 0.985137 0.989219 0.995979
mcf 0.622963 0.623694 0.999821
parser 0.973187 0.975925 0.997812
perlbmk 0.992456 0.993438 0.999063
twolf 0.990162 0.989703 1.000419
vortex 0.976994 0.976854 1.000112
vpr 0.987709 0.986509 1.001071

B.9.11 CS: 32-2048; SID: prefetching (section B.9.1); BE: P4, REF: cache
without prefetching

Benchmark Speedups
nopred pred prednosam

bzip2 0.952455 0.955444 1.002649
crafty 0.996773 0.996935 1.000263
eon 0.988715 0.989854 1.000960
gap 0.977242 0.977973 1.000633
gcc 0.961130 0.985333 1.025087
gzip 0.989115 0.993212 1.004037
mcf 0.623074 0.623806 1.000179
parser 0.975321 0.978065 1.002193
perlbmk 0.993387 0.994369 1.000938
twolf 0.989747 0.989288 0.999581
vortex 0.976884 0.976745 0.999888
vpr 0.986653 0.985454 0.998930

B.9.12 CS: 8-256; SID: prefetching (section B.9.1); BE: P4, REF: cache
with prefetching

Benchmark Speedups
nopred pred reference

bzip2 0.823514 0.829747 0.992594
crafty 0.928034 0.930056 0.996643
eon 0.941501 0.945751 0.994451
gap 0.936737 0.940457 0.995225
gcc 0.657607 0.688679 0.984055
gzip 0.892456 0.904153 0.986895
mcf 0.508231 0.508728 0.998787
parser 0.853173 0.858259 0.993820
perlbmk 0.906785 0.910087 0.994730
twolf 0.714506 0.714858 0.998645
vortex 0.818767 0.819573 0.998081
vpr 0.714811 0.715363 0.998376
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B.9.13 CS: 8-256; SID: prefetching (section B.9.1); BE: P4, REF: cache
without prefetching

Benchmark Speedups
nopred pred prednosam

bzip2 0.829659 0.835938 1.007462
crafty 0.931160 0.933189 1.003369
eon 0.946754 0.951027 1.005580
gap 0.941232 0.944969 1.004798
gcc 0.668263 0.699837 1.016203
gzip 0.904307 0.916159 1.013279
mcf 0.508848 0.509346 1.001215
parser 0.858478 0.863596 1.006219
perlbmk 0.911589 0.914908 1.005298
twolf 0.715476 0.715828 1.001357
vortex 0.820341 0.821149 1.001923
vpr 0.715974 0.716527 1.001627

B.10 Queue Size Variations

B.10.1 SID: queue size

Name Number of queue elements

normal 5
qsize2 2
qsize10 10
qsize20 20

B.10.2 CS: 16-1024; SID: queue size (section B.10.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal qsize10 qsize2 qsize20 qsize3 qsize4

bzip2 0.782843 0.783095 0.642141 0.783095 0.776612 0.781949
crafty 0.987439 0.987476 0.978510 0.987476 0.987072 0.987425
eon 0.999977 0.999977 0.999903 0.999977 0.999976 0.999976
gap 0.939804 0.940069 0.695415 0.940069 0.932176 0.938773
gcc 0.908137 0.908718 0.625103 0.908719 0.895684 0.906178
gzip 0.945378 0.945696 0.689998 0.945696 0.934316 0.944137
mcf 0.524216 0.524230 0.394130 0.524230 0.512693 0.521829

parser 0.921794 0.922072 0.821321 0.922073 0.916719 0.921397
perlbmk 0.999925 0.999925 0.999683 0.999925 0.999923 0.999925

twolf 0.845337 0.845373 0.794018 0.845373 0.842198 0.845107
vortex 0.957067 0.956905 0.937345 0.956905 0.955795 0.956866

vpr 0.871296 0.871305 0.794742 0.871304 0.869597 0.870710
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B.10.3 CS: 32-2048; SID: queue size (section B.10.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal qsize10 qsize2 qsize20 qsize3 qsize4

bzip2 0.865854 0.865962 0.793254 0.865966 0.861990 0.865396
crafty 0.999456 0.999455 0.997750 0.999455 0.999456 0.999451
eon 0.999977 0.999977 0.999904 0.999977 0.999976 0.999977
gap 0.939902 0.940242 0.683104 0.940244 0.931189 0.938721
gcc 0.902791 0.903482 0.600477 0.903481 0.888973 0.900677
gzip 0.943702 0.944056 0.664122 0.944057 0.931054 0.942347
mcf 0.562288 0.562308 0.454802 0.562308 0.557039 0.562460

parser 0.955722 0.955847 0.896171 0.955847 0.952601 0.955424
perlbmk 0.999928 0.999928 0.999724 0.999928 0.999927 0.999928

twolf 0.999869 0.999869 0.999193 0.999869 0.999866 0.999869
vortex 0.969878 0.969865 0.957879 0.969865 0.969107 0.969844

vpr 0.994175 0.994176 0.983484 0.994176 0.994461 0.994057

B.10.4 CS: 8-256; SID: queue size (section B.10.1); BE: P1, REF: cache
without prefetching

Benchmark Speedups
normal qsize10 qsize2 qsize20 qsize3 qsize4

bzip2 0.641587 0.642578 0.392324 0.642584 0.628295 0.638861
crafty 0.920315 0.920184 0.873197 0.920184 0.918447 0.920086
eon 0.999557 0.999557 0.998483 0.999557 0.999540 0.999557
gap 0.934038 0.934296 0.720634 0.934296 0.928321 0.933219
gcc 0.913673 0.914070 0.675505 0.914071 0.903793 0.912112
gzip 0.887723 0.888014 0.669299 0.888014 0.877975 0.887879
mcf 0.448160 0.449805 0.287385 0.449810 0.433521 0.444409

parser 0.757447 0.758116 0.542952 0.758116 0.746233 0.756169
perlbmk 0.998348 0.998348 0.995829 0.998348 0.998436 0.998432

twolf 0.606752 0.607321 0.470432 0.607322 0.593912 0.604943
vortex 0.899877 0.899470 0.861409 0.899458 0.898312 0.900031

vpr 0.609607 0.612983 0.467289 0.612983 0.604226 0.611024

B.11 Queue Clocking Variations

B.11.1 SID: queue performance

Name Queue clocking in percent compared to main processor clocking

slow-1 50 %
slow-2 33 %
slow-3 25 %
slow-4 20 %
slow-6 14 %
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B.11.2 CS: 16-1024; SID: queue performance (section B.11.1); BE: P1,
REF: cache without prefetching

Benchmark Speedups
slow-1 slow-2 slow-3 slow-4 slow-6

bzip2 0.719410 0.716422 0.713533 0.710984 0.705109
crafty 0.924474 0.924315 0.924129 0.923977 0.923694
eon 0.940689 0.940688 0.940687 0.940687 0.940685
gap 0.881304 0.878163 0.875172 0.872210 0.866534
gcc 0.833467 0.829032 0.824703 0.820334 0.811546
gzip 0.884204 0.880155 0.876203 0.872465 0.866439
mcf 0.489847 0.485275 0.481720 0.478800 0.471676
parser 0.842894 0.840474 0.837913 0.835684 0.830635
perlbmk 0.936155 0.936152 0.936149 0.936146 0.936139
twolf 0.789686 0.787193 0.784510 0.782134 0.776965
vortex 0.900594 0.900428 0.900176 0.899943 0.899373
vpr 0.814487 0.812747 0.810984 0.809379 0.806128

B.11.3 CS: 32-2048; SID: queue performance (section B.11.1); BE: P1,
REF: cache without prefetching

Benchmark Speedups
slow-1 slow-2 slow-3 slow-4 slow-6

bzip2 0.796378 0.794487 0.792599 0.790908 0.786965
crafty 0.935405 0.935395 0.935384 0.935374 0.935352
eon 0.940674 0.940673 0.940672 0.940672 0.940670
gap 0.881663 0.878589 0.875660 0.872773 0.867278
gcc 0.830306 0.825892 0.821588 0.817214 0.808494
gzip 0.882704 0.878694 0.874738 0.871049 0.865100
mcf 0.525428 0.521680 0.518315 0.515263 0.508701
parser 0.875590 0.874260 0.872902 0.871642 0.868883
perlbmk 0.936145 0.936142 0.936139 0.936136 0.936130
twolf 0.933970 0.933965 0.933959 0.933954 0.933943
vortex 0.912701 0.912581 0.912407 0.912272 0.911997
vpr 0.929372 0.929118 0.928843 0.928582 0.928024

B.11.4 CS: 8-256; SID: queue performance (section B.11.1); BE: P1, REF:
cache without prefetching

Benchmark Speedups
slow-1 slow-2 slow-3 slow-4 slow-6

bzip2 0.588296 0.583474 0.578566 0.574420 0.564252
crafty 0.861776 0.860774 0.859633 0.858747 0.856640
eon 0.940226 0.940193 0.940148 0.940110 0.940010
gap 0.875777 0.872545 0.869411 0.866373 0.860315
gcc 0.839428 0.834990 0.830372 0.826361 0.817446
gzip 0.830935 0.825201 0.819340 0.813933 0.803322
mcf 0.418767 0.414535 0.410544 0.407110 0.399525
parser 0.693791 0.688209 0.682505 0.677527 0.666294
perlbmk 0.934667 0.934606 0.934542 0.934490 0.934345
twolf 0.566840 0.560992 0.554811 0.549880 0.538185
vortex 0.846521 0.845888 0.845088 0.844355 0.842820
vpr 0.569774 0.565619 0.561429 0.560772 0.550397
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B.12 Instruction Hashwalk

B.12.1 SID: instruction hashwalk

Name Hashwalk for instructions

hashwalk yes
nohashwalk no

B.12.2 CS: 16-1024; SID: instruction hashwalk (section B.12.1); BE: P4,
REF: cache without prefetching

Benchmark Speedups
hashwalk nohashwalk

bzip2 0.922950 0.924926
crafty 0.993634 0.994142
eon 0.994952 0.994965
gap 0.979623 0.980140
gcc 0.782614 0.790891
gzip 0.992095 0.992358
mcf 0.594980 0.600986
parser 0.959436 0.961172
perlbmk 0.996943 0.996947
twolf 0.885721 0.892034
vortex 0.966806 0.967976
vpr 0.895346 0.897231

B.12.3 CS: 32-2048; SID: instruction hashwalk (section B.12.1); BE: P4,
REF: cache without prefetching

Benchmark Speedups
hashwalk nohashwalk

bzip2 0.953122 0.953847
crafty 0.996719 0.996783
eon 0.988712 0.988718
gap 0.977281 0.977446
gcc 0.966990 0.967455
gzip 0.989329 0.989395
mcf 0.633881 0.640243
parser 0.976187 0.976995
perlbmk 0.993383 0.993390
twolf 0.989999 0.989839
vortex 0.977088 0.977403
vpr 0.986886 0.986453
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B.12.4 CS: 8-256; SID: instruction hashwalk (section B.12.1); BE: P4,
REF: cache without prefetching

Benchmark Speedups
hashwalk nohashwalk

bzip2 0.826920 0.839724
crafty 0.920062 0.933677
eon 0.937030 0.948152
gap 0.929650 0.942734
gcc 0.701278 0.713898
gzip 0.891550 0.912018
mcf 0.516596 0.518324
parser 0.850050 0.867799
perlbmk 0.888681 0.913562
twolf 0.712752 0.731837
vortex 0.788642 0.824354
vpr 0.708238 0.725181

B.13 Dictionary Entries

B.13.1 SID: dictionary

Name Dictionary Entries

dic1 1
dic2 2
dic4 4

B.13.2 CS: 16-1024; SID: dictionary (section B.13.1); BE: P4, REF: cache
without prefetching

Benchmark Speedups
dic1 dic2 dic4

bzip2 0.852710 0.863091 0.920998
crafty 0.958587 0.965119 0.994010
eon 0.969242 0.969478 0.994965
gap 0.946572 0.954282 0.979909
gcc 0.658761 0.672330 0.757629
gzip 0.967924 0.970724 0.992082
mcf 0.511751 0.524079 0.584502
parser 0.899292 0.910065 0.957709
perlbmk 0.962467 0.965707 0.996929
twolf 0.809767 0.822085 0.887343
vortex 0.891508 0.902901 0.967257
vpr 0.801462 0.816071 0.894831
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B.13.3 CS: 32-2048; SID: dictionary (section B.13.1); BE: P4, REF: cache
without prefetching

Benchmark Speedups
dic1 dic2 dic4

bzip2 0.897643 0.904048 0.952455
crafty 0.977396 0.978896 0.996773
eon 0.964959 0.964979 0.988715
gap 0.948845 0.954420 0.977242
gcc 0.868699 0.876917 0.961130
gzip 0.967906 0.968862 0.989115
mcf 0.551593 0.562391 0.623074
parser 0.941280 0.945368 0.975321
perlbmk 0.965861 0.967098 0.993387
twolf 0.938989 0.944163 0.989747
vortex 0.923692 0.930182 0.976884
vpr 0.920904 0.930353 0.986653

B.13.4 CS: 8-256; SID: dictionary (section B.13.1); BE: P4, REF: cache
without prefetching

Benchmark Speedups
dic1 dic2 dic4

bzip2 0.746151 0.764382 0.829659
crafty 0.846679 0.862456 0.931160
eon 0.882661 0.894019 0.946754
gap 0.875501 0.887108 0.941232
gcc 0.608448 0.630439 0.668263
gzip 0.829484 0.846965 0.904307
mcf 0.442257 0.456394 0.508848
parser 0.756815 0.777580 0.858478
perlbmk 0.827616 0.839791 0.911589
twolf 0.633486 0.651598 0.715476
vortex 0.704457 0.721846 0.820341
vpr 0.629868 0.647935 0.715974

B.14 Protected Kernel Area

B.14.1 SID: protected kernel

Name Dictionary Entries

dic1 1
dic2 2
dic4 4
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B.14.2 CS: 16-1024; SID: protected kernel (section B.14.1); BE: P4, REF:
cache without prefetching

Benchmark Speedups
kernel64 kernelall user

bzip2 0.920998 0.854658 0.920878
crafty 0.994010 0.960730 0.994223
eon 0.994965 0.937545 0.994971
gap 0.979909 0.915334 0.979905
gcc 0.757629 0.686372 0.754159
gzip 0.992082 0.927103 0.991981
mcf 0.584502 0.557165 0.584581
parser 0.957709 0.893263 0.958004
perlbmk 0.996929 0.946504 0.996970
twolf 0.887343 0.814512 0.887854
vortex 0.967257 0.921698 0.967361
vpr 0.894831 0.828391 0.896103

B.14.3 CS: 32-2048; SID: protected kernel (section B.14.1); BE: P4, REF:
cache without prefetching

Benchmark Speedups
kernel64 kernelall user

bzip2 0.952455 0.886562 0.952316
crafty 0.996773 0.965553 0.996764
eon 0.988715 0.926354 0.988716
gap 0.977242 0.913049 0.977253
gcc 0.961130 0.906560 0.961809
gzip 0.989115 0.924711 0.989142
mcf 0.623074 0.601883 0.621023
parser 0.975321 0.914382 0.975314
perlbmk 0.993387 0.941112 0.993386
twolf 0.989747 0.931960 0.989336
vortex 0.976884 0.934403 0.976801
vpr 0.986653 0.931099 0.987417

B.14.4 CS: 8-256; SID: protected kernel (section B.14.1); BE: P4, REF:
cache without prefetching

Benchmark Speedups
kernel64 kernelall user

bzip2 0.829659 0.711602 0.830251
crafty 0.931160 0.843735 0.932341
eon 0.946754 0.821645 0.949728
gap 0.941232 0.810715 0.940604
gcc 0.668263 0.586472 0.669378
gzip 0.904307 0.769291 0.905204
mcf 0.508848 0.466415 0.511380
parser 0.858478 0.726833 0.859269
perlbmk 0.911589 0.780421 0.913485
twolf 0.715476 0.602229 0.721194
vortex 0.820341 0.696727 0.819663
vpr 0.715974 0.605357 0.719216
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untrusted hosts. In Michael Pinho, Lúıs Miguel; González Harbour, editor, Reliable Software Technologies
– Ada-Europe 2006 11th Ada-Europe International Conference on Reliable Software Technologies, Porto,
Portugal, June 5–9, 2006, Proceedings, pages 106–118, June 2006.

[61] National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash Standard. National
Institute for Standards and Technology, Gaithersburg, MD, USA, April 1995. Supersedes FIPS PUB
180 1993 May 11.

http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf
http://www.opencores.org/projects.cgi/web/basicrsa/overview
http://www.opencores.org/projects.cgi/web/basicrsa/overview
http://www.cacr.math.uwaterloo.ca/hac/
http://www.microsoft.com/resources/ngscb/


170 BIBLIOGRAPHY

[62] National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption Standard (DES).
National Institute for Standards and Technology, Gaithersburg, MD, USA, October 1999. supersedes
FIPS 46-2.

[63] National Institute of Standards and Technology, editor. Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication 197, November 2001.

[64] National Security Agency (NSA). AES VHDL model. http://csrc.nist.gov/CryptoToolkit/aes/

round2/r2anlsys.htm, December 1999.

[65] James Newsome, David Brumley, and Dawn Song. Vulnerability-specific execution filtering for exploit
prevention on commodity software. In Proceedings of the 13th Annual Network and Distributed Systems
Security Symposium, 2006. http://www.cs.cmu.edu/~dbrumley/.

[66] Nathanael Paul and David Evans. Comparing Java and .NET security: Lessons learned and missed.
Computers & Security, 25(5):338–350, 2006.

[67] Richard P. Paul. SPARC Architecture Assembly Language Programming, & C. Prentice-Hall, Inc, 1994.

[68] Colin Percival. Cache missing for fun and profit. BSDCan 2005, http://www.daemonology.net/papers/
htt.pdf, May 2005.

[69] Birgit Pfitzmann, James Riordan, Christian Stüble, Michael Waidner, and Arnd Weber. The PERSEUS
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