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Abstract

In this paper we study statistical inference for certain inverse problems. We go beyond
mere estimation purposes and review and develop the construction of confidence intervals
and confidence bands in some inverse problems, including deconvolution and the back-
ward heat equation. Further, we discuss the construction of certain hypothesis tests, in
particular concerning the number of local maxima of the unknown function. The methods
are illustrated in a case study, where we analyze the distribution of heliocentric escape
velocities of galaxies in the Centaurus galaxy cluster, and provide statistical evidence for
its bimodality.
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1 Introduction

Inverse problems have been studied intensively in the literature on numerical analysis and
mathematical physics in the last decades. See for example [32, 31, 16] for comprehensive
treatments. For linear inverse problems, the function of interest f is related to another func-
tion g by an operator equation g = Kf , where K : X → Y is a known linear operator
between Hilbert spaces X and Y, often an injective integral operator. Typically, the inverse
of the operator K is unbounded and the function g can only be observed with errors, thus,
the problem of recovering f is ill-posed and regularization techniques are required.
There are different ways to model the observational error in the function g. In the deter-
ministic approach, one assumes that the observed function gδ satisfies ‖gδ − g‖ ≤ δ for some
δ > 0. Thus, there is a deterministic upper bound to the observational error.
In contrast, in statistics, errors and observational uncertainties are modeled as influences of

1Address for correspondence: Dr. Nicolai Bissantz, Ruhr-Universität Bochum, Fakultät für Mathematik,
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random quantities. For example, an extension of the operator equation g = Kf to a regres-
sion framework with additive random error is g = Kf + ε for random noise ε. In recent years,
several inverse problems have been reinvestigated in such statistical frameworks, including
positron emission and X–ray tomography [34, 9], Wicksell’s problem [22], the heat equation
[38] or problems related to satellite gradiometry [6]. Sometimes, inverse problems also di-
rectly arise in statistical problems, such as error in variable models (cf. [18, 33]) or regression
models with instrumental variables [24].
Apart from an arguably more accurate model of errors and random influences, the statistical
approach allows to draw statistical inference about the unknown object f . For example, one
can construct regions in which f will be located with a certain (high) probability, or one can
conclude that with a (low) error probability, f will have at least two local maxima. The aim
of the present paper is therefore to take a look beyond mere estimation purposes and rather
to discuss statistical inference for certain inverse problems.
Since we shall investigate inverse problems from the point of view of nonparametric curve
estimation, in Section 2 we briefly review the concept of nonparametric (contrasted with
parametric) estimation for two fundamental direct estimation problems, namely density esti-
mation and regression estimation. Section 3 deals with statistical inference in inverse density
estimation, where we focus on density deconvolution. Specifically, we discuss the construc-
tion of asymptotic confidence intervals, uniform confidence bands, inference on the number
of modes and on the scale space surface for the target density f . Further, in Section 4 we are
concerned with statistical inference in some inverse regression models, namely a statistical
model for the backward heat equation and for a regression deconvolution model. As a case
study, in Section 5 we analyze the heliocentric escape velocities of galaxies in the Centaurus
galaxy cluster. Finally, we conclude with a discussion in Section 6.

2 Nonparametric curve estimation

Before turning to curve estimation in inverse problems, in this section we briefly discuss
two basic problems in direct nonparametric curve estimation, namely regression analysis and
density estimation. These will be extended to indirect problems in Sections 3 and 4.

2.1 Nonparametric regression

In a regression problem, paired observations (Y,X) are available, and one is interested in
determining a proper relationship between these two variables. The variable X is thought of
as being a predictor for the other variable Y , which is called dependent variable or response.
The response Y ∈ R is univariate, but the predictor X ∈ R

d can be multivariate. For
simplicity, we here assume that d = 1, which is also called a simple regression problem.
For example, one might be interested in relating budget share with log real income, or log-
income with age, or weight with height of a person.
In a linear regression model, one assumes that a sample (Yi,Xi), i = 1, . . . , n is available,
which satisfies the relationship

Yi = β0 + β1Xi + εi,

where (β0, β1) are the unknown constant regression coefficients to be estimated, the εi are in-
dependent, normally distributed random variables with equal variance σ2. Thus, the assumed
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underlying linear relationship cannot be observed precisely, but rather with a stochastic er-
ror εi, the magnitude of which is controlled by the variance σ2. The predictor variable Xi

can either be modeled as deterministic (fixed design) or also as a random variable (random
design). In the latter case, it is then usually assumed to be independent of εi.
The linear regression model is an example of a parametric regression model, in which the
functional relationship between Yi and Xi is determined by a finite-dimensional parameter
((β0, β1) for linear regression). Other parametric regression models are polynomial regres-
sion models Yi = β0 + β1Xi + . . . + βpXi + εi, for fixed p ≥ 1, or periodic models such as
Yi = β1 cos(β2Xi) + εi. Although parametric regression analysis is quite popular, there is a
substantial danger of reaching incorrect conclusions from an analysis based on a parametric
family which is not (at least approximately) of appropriate form.
Therefore, recent research in regression analysis has concentrated on estimating general rela-
tionships of the form

Yi = θ(Xi) + εi, (1)

where θ is a smooth, but otherwise unspecified function. (1) is called a nonparametric regres-
sion model, since θ, except for being smooth, is not further specified. There is a variety of
estimation methods for θ in (1), including local polynomial estimators ([20]) spline regression
([17]) and series estimators ([17]).
Apart from mere estimation purposes, a major use of nonparametric estimates θ̂ is for sta-
tistical inference. For example, by comparing a nonparametric estimate with a parametric
estimate, one can validate a parametric form for a regression model ([26]). Further, statis-
tical inference allows to construct confidence intervals for θ(x) based on θ̂(x), i.e. intervals
in which the unknown function lies with a certain (typically 95%) probability ([17]), or even
to construct uniform confidence intervals for each x in a subset I ⊂ R, which are also called
confidence bands ([46]). These objects are useful for descriptive purposes as well as for testing
statistical hypotheses on θ, e.g. testing whether θ is non-negative at a certain x or on an
interval I.

2.2 Nonparametric density estimation

A similarly fundamental problem as the regression problem is the estimation of the (probabil-
ity) density function of a univariate random sample. More specifically, assume thatX1, . . . ,Xn

are independent random variables with common density f . In the parametric approach, one
assumes that f belongs to a certain parametric family of densities such as the normal or the
beta family, and then estimates the parameters of this family, e.g. by maximum likelihood
estimation. Again, the possible shapes of a parametric family of densities are quite restricted,
and therefore misspecifying the parametric family can lead to incorrect conclusions about
the shape of the density f . Therefore, recent research has concentrated on nonparametric
estimation of f , assuming smoothness but no parametric form.
The distribution of the Xi is determined both by their probability density f as well as by
their distribution function F , which are related by F (x) =

∫ x
−∞ f(t) dt, so that F ′ = f . Thus,

nonparametric density estimation, i.e. estimation of the derivative f of F , may be considered
as a first example of an ill-posed inverse problem arising in statistics.
There are several nonparametric methods for density estimation, including kernel estimates
([44]), estimates based on wavelets ([45]), or nearest neighbor estimators ([14]). Again, such
nonparametric estimates f̂ will allow statistical inference for the unknown density f , in the
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form of confidence intervals ([23]) or confidence bands ([4]), as well as testing parametric
forms for f ([4]).
Nonparametric estimates (both of densities and of regression functions) typically involve se-
lection of an additional smoothing parameter. Although this may be seen as a disadvantage of
nonparametric estimation, it also allows for additional flexibility, in particular if the estimator
is investigated for distinct values of the smoothing parameter ([10], [41]). In this way one can
for example investigate the number of modes (i.e. local maxima) of the unknown function f
(or θ in the regression context).

3 Indirect density estimation: Deconvolution

3.1 Deconvolution density estimation

In contrast to direct nonparametric estimation of a density f , in indirect density estimation
one does not have observations distributed according to f , but rather to another density g
which is related to f by an equation g = Kf , where K often is an integral operator, but it
can also be a nonlinear operator with unbounded inverse.
As an example, suppose that the density f of the random variables Xi is the density of
interest. However, only noisy versions Yi = Xi + εi of the Xi can be observed. Here, εi are
unobserved errors, distributed with a density ψ and independent of the Xi. Hence, we have
for the density g of the Yi

g = f ∗ ψ.
Thus, K = Kψ is the convolution operator, and recovering f from observations Yi distributed
according to g is called the deconvolution problem. Evidently, identification and hence esti-
mation of f are only possible with some additional knowledge about ψ. The simplest, most
common assumption is that ψ is known ([18]). Otherwise, additional or repeated observations
([40, 11]) or strong shape restrictions on f and ψ are required.
Other problems which lead to indirect density estimation include Positron emission tomogra-
phy ([34, 9]) and quantum homodyne tomography ([7]). Here, in order to illustrate the main
ideas and phenomena, we shall focus on density deconvolution with known error density.
It is well known that the difficulty of recovering f in the deconvolution problem depends
sensitively on the smoothness of the error density ψ (and also on the smoothness of f itself).
Roughly speaking, the error density is called ordinary smooth if its Fourier transform |Φψ(t)|
decays at a polynomial rate as t→ ∞, in which case the problem is mildly ill-posed, whereas
if |Φψ(t)| decays at an exponential rate as t → ∞, ψ is called supersmooth and the problem
is severely ill-posed. In terms of optimal rates of convergence of the mean square error as
well as the integrated mean square error, an ordinary-smooth error density in general leads to
polynomials rates, whereas a supersmooth error density typically leads to logarithmic rates
([18]).
The arguably most popular estimator in the deconvolution problem is an estimator of kernel-
type ([18, 19, 43]). More precisely, under the assumption that Φψ(t) 
= 0 for all t ∈ R and that
ΦK, the Fourier transform of the kernel K, has compact support, the kernel deconvolution
density estimator for f , given by,

f̂n(x;h) =
1
nh

n∑
k=1

K
(x− Yk

h
;h

)
, (2)
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where
K(x;h) =

1
2π

∫
R

exp(−itx) ΦK(t)
Φψ(t/h)

dt, (3)

is well-defined. Here h > 0 is a smoothing parameter called bandwidth, and K(x;h) is
called the deconvolution kernel. The estimator in (2) can be derived by general spectral
regularization methods ([6, 38]). Note that it satisfies the equation

ĝn(x;h) =
(
f̂n(·;h) ∗ ψ

)
(x),

where ĝn(x;h) = (nh)−1
∑

iK((x − Yi/h)) is the (direct) kernel estimator of g with kernel K
and bandwidth h. Thus, f̂n can also be obtained in the particularly simple way of applying
K−1
ψ to a sufficiently smooth estimate of g.

The estimation error of f̂n is decomposed into a stochastic part and a deterministic part (a
systematic error) as follows

f̂n(x;h) − f(x) =
(
f̂n(x;h) −Ef̂n(x;h)

)
+

(
Ef̂n(x;h) − f(x)

)
. (4)

Since Ef̂n(x;h) = Kh ∗ f(x), where Kh(x) = K(x/h)/h, the deterministic error (bias)
Ef̂n(x;h) − f(x) does not depend on the error density ψ. In the following we shall discuss
statistical inference for f based on f̂n, separately for ordinary smooth and supersmooth error
densities, concentrating on the stochastic part f̂n(x;h)−Ef̂n(x;h) in the error decomposition
(4).

3.2 The ordinary smooth case

As mentioned above, the error density ψ is called ordinary smooth if its Fourier transform de-
cays at a polynomial rate. In order to derive the asymptotic distribution of the deconvolution
kernel density estimator, we shall require the slightly more restrictive assumption.

Φψ(t)tβ → Cε, t→ ∞, (5)

for some β ≥ 0 and Cε ∈ C \ {0}. Note that this implies that Φψ(t)|t|β → C̄ε, t→ −∞. If (5)
holds, the deconvolution kernel K(·, h) given in (3) has a simple asymptotic form. In fact,
from the dominated convergence theorem (cf. [19]),

hβK(x;h) → K(x), h→ 0,

where

K(u) =
1

2πCε

∫ ∞

0
exp(−iux)xβΦK(x) dx+

1
2πCε

∫ 0

−∞
exp(−iux)|x|βΦK(x) dx.

If (5) and some additional regularity conditions hold, for h → 0 and nh → ∞ one can
show that f̂n(x;h) −Ef̂n(x;h) is asymptotically normally distributed with variance of order
n−1/2h−(β+1/2). Specifically, if g(x) > 0,

√
nhβ+1/2

(
f̂n(x;h) − Ef̂n(x;h)

) → N(0, g(x)κ), (6)

κ =
∫

R

|t|2β |ΦK(t)|2 dt/|Cε|2.
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From this we can construct asymptotic level-α confidence intervals for the smoothed version
Ef̂n(x;h) = (Kh ∗ f) (x) of f

Cα(x) =
[
f̂n(x;h) −

q1−α/2 (κ g̃(x))1/2√
nhβ+1/2

, f̂n(x;h) +
q1−α/2 (κ g̃(x))1/2√

nhβ+1/2

]
, (7)

which contains the true (Kh ∗ f) (x) with an asymptotic probability of 95%. Here, g̃(x) is a
consistent estimator for g, and qα is the α-quantile of the standard normal distribution.
In order to obtain a confidence interval for f(x), one has to deal with the bias |Ef̂n(x;h) −
f(x)|. Roughly speaking, for j-times differentiable densities f , this bias decays as hj . More
precisely, if f satifies a Sobolev condition of type

∫
R

|Φf (t)||t|j dt <∞,

and if, as is assumed above, a flat-top kernel is used (cf. [37]), then

∣∣Ef̂n(x) − f(x)
∣∣ =

1
2π

∣∣ ∫
R

exp(−itx)(1 − ΦK(ht))Φf (t) dt
∣∣ = o(hj), (8)

uniformly in x. Therefore, in order to guarantee that (6) continues to hold if Ef̂n(x;h) is
replaced by f(x), one needs that hj = O

(
1/(

√
nhβ+1/2)

)
, or equivalently,

h = O
(
n−

1
2β+2j+1

)
. (9)

Note that due to the use of a flat-top kernel, the estimate for the bias in (8) is o(hj), and
hence even for optimal estimation, the variance and the squared bias are not exactly balanced,
the variance dominates the squared bias. Hence, explicit undersmoothing (i.e. choosing the
bandwidth too small as compared to optimal estimation) is not required, and the bandwidth
may be chosen at the order of ∼ n−

1
2β+2j+1 In this case, (7) is also a valid asymptotic con-

fidence interval for f(x). We shall come back to the issue of bandwidth selection in Section
3.4.
The confidence intervals Cα(x) in (7) are only valid asymptotically, i.e. for large sample sizes
n. In order to improve the finite sample performance, statisticians use a resampling method
called the bootstrap. The basic idea is to replace the unknown underlying population by the
sample, and resample from this given sample ([3]).
Thus, resampling n-times from the observations Y1, . . . , Yn we obtain an i.i.d. sample Y ∗

1 , . . . , Y
∗
n

with distribution Gn, the empirical distribution function of Y1, . . . , Yn. Denote by E∗ the con-
ditional expectation given Y1, . . . , Yn. The bootstrap estimator of f is given by

f̂∗n(x;h) =
1
nh

n∑
k=1

K
(x− Y ∗

k

h
;h

)
.

Since E∗f̂∗n(x;h) = f̂n(x;h), we simulate the distribution of |Z∗
n(x)|, where

Z∗
n(x) =

n1/2hβ+1/2

g̃(x)1/2
(
f̂∗n(x;h) − f̂n(x;h)

)
. (10)
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Let q∗1−α denote the (1 − α)-quantile of this simulated distribution. Then

C∗
α(x) =

[
f̂n(x;h) −

q∗1−αg̃1/2(x)√
nhβ+1/2

, f̂n(x;h) +
q∗1−αg̃1/2(x)√
nhβ+1/2

]
(11)

is a level-α bootstrap confidence interval for Kh ∗ f(x) for general h, and for a bandwidth h
chosen according to (9) also for f(x) itself.
The confidence interval Cα(x) in (7) or the bootstrap confidence interval C∗

α(x) in (11) can
be constructed at each x in some interval I, and in this way one can obtain a pointwise
confidence band. However, this picture is misleading since the curve does not lie uniformly
within this band (with a certain error probability α), but only at each point x. In other
words, the probability that the true f will not lie in the band at some x ∈ I may be much
higher than α. Therefore, instead of pointwise confidence bands one is rather interested in
uniform confidence bands, which are designed to satisfy this uniformity property.
In fact, under some additional regularity conditions, in [5] it is shown that for an under-
smoothing bandwidth h (here, explicit undersmoothing is still required), if g > 0 uniformly
on I, one has that

P
(
f̂n(x;h)− bn(x, t) ≤ f(x) ≤ f̂n(x;h) + bn(x, t) for all x ∈ [0, 1]

) → exp(−2 exp(−t)), (12)

where
bn(x, t) =

( g̃n(x)κ
nh2β+1

)1/2( t

(2 log(1/h))1/2
+ dn

)
,

dn =
(
2 log(1/h)

)1/2 +
log

(
1
2πC

1/2
K,2

)
(
2 log(1/h)

)1/2
, CK,2 =

∫
R
x2β+1Φ2

K(x) dx∫
R
x2βΦ2

K(x) dx
.

Thus, choosing tα such that exp(−2 exp(−tα)) = 1 − α, one obtains the following level-α
confidence band on I = [0, 1],

Cuni
α (I) =

{[
f̂n(x;h) − bn(x, tα), f̂n(x;h) + bn(x, tα)

]
, x ∈ I

}
.

Let us make some remarks concerning the uniform band Cuni
α (I). First, (12) and hence

the construction of Cuni
α (I) can easily be transfered to any compact interval I on which

g > 0. Second, the uniform confidence band is wider than the pointwise band by a factor of
(log(1/h))1/2. Thus, the additional cost of uniformity is quite low at a first glance. However,
the convergence in (12) is rather slow (much slower than in (6)), and bootstrapping is highly
recommended. For constructing bootstrap confidence bands, one bootstraps the distribution
of supx∈I |Y ∗

n (x)|, where Y ∗
n (x) is defined in (10). If q∗,unif

1−α denotes its (1 − α)-quantile, then
a bootstrap confidence band is given by

C∗,unif
α (x) =

{[
f̂n(x;h) −

q∗,unif
1−α g̃1/2(x)√
nhβ+1/2

, f̂n(x;h) +
q∗,unif
1−α g̃1/2(x)√
nhβ+1/2

]
, x ∈ I

}
. (13)

3.3 Normally distributed errors

In the supersmooth case, the error density has a Fourier transform with exponentially decreas-
ing tails. Apart from logarithmic rates of convergence, supersmooth errors can also lead to
a distinct asymptotic behaviour ([43, 28]). Here we discuss the results for centered normally
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distributed errors, which have characteristic function Φψ(t) = e−|t|2σ2
, σ2 > 0. When using

the sinc kernel with characteristic function ΦK(t) = 1[−1,1](t), in [43] the following asymptotic
behaviour for h→ 0 and nh→ ∞ is obtained.

√
n

heσ
2/h2

(
f̂n(x;h) − Ef̂n(x;h)

) → N
(
0,

1
8π2σ4

)
. (14)

Thus, the form of the asymptotic variance changes, in contrast to (6) it does no longer de-
pend on g or x at all. The asymptotics in (14) could be used for constructing asymptotic
confidence intervals similarly as in (7), but with proper changes according to the form of
the asymptotic variance, in particular, the estimate of g(x) is not needed. However, this is
not recommended since convergence in (14) is quite slow, one should instead use bootstrap
confidence intervals. Another sensitive problem is the choice of the bandwidth in the super-
smooth case, since this falls into the so-called bias-dominating case ([8]). This means that for
optimal estimation, the bandwidth is chosen in such a way that the squared bias dominates
the variance. However, for the construction of confidence intervals one requires bandwidth
which lead to variance-domination, but still to consistent estimation. This is still possible
theoretically, but the construction of an adequate data-driven bandwidth choice is a hard,
yet unsolved problem. Concerning uniform confidence bands, no asymptotic results are avail-
able for supersmooth deconvolution. Of course, one can simply bootstrap a supremum-type
statistic, but no theoretical justification is available here. Thus, there are still several open
problems for statistical inference for supersmooth deconvolution.

3.4 Bandwidth selection and scale space theory

Use of the estimator f̂n in (2) requires choosing the smoothing parameter h. There are
several data-driven procedures for this purpose, see [12] for an overview. However, most
of these methods tend to smooth the estimator too much (oversmoothing). In contrast,
for the statistical inference in Sections 3.2 and 3.3, we need a bandwidth h for which the
variance dominates the squared bias (i.e. the variance decreases at a slower rate than the
bias). Actual undersmoothing in practice (i.e. choosing the bandwidth too small, so that the
variance strongly dominates the squared bias) results in poor performance of f̂n, thus, one
should tend not to oversmooth in applications.
As indicated in Section 2.2, the need to choose a bandwidth is often seen as a disadvantage
when applying nonparametric estimators. However, it also allows for additional flexibility,
and varying the bandwidth can also be used for statistical inference, e.g. for testing for the
number of modes of f̂n. In fact, for most error densities the estimator (2) is also well-defined if
the normal kernel is used for ‖ instead of a kernel with compactly supported Fourier transform
(exceptions are normal errors). In this case, the number of modes of f̂n is a monotonically
decreasing, right-continuous function of h ([2, 41]). Therefore, there are certain minimal
bandwidths (called critical bandwidths) for which the estimator just has j and not yet j + 1
modes. This observation can be used to construct a statistical test for the hypothesis that
f has at most j modes for some fixed j ([2]). Since the test is an extension of the classical
Silverman test ([41]) to deconvolution problems, we call it ”Silverman test for deconvolution”.
Investigating the estimator for different critical bandwidths is also a useful descriptive tool.
In [10], direct nonparametric kernel density estimation is discussed from the point of view of
scale space theory from computer vision, and these ideas can also be extended to deconvolution
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density estimation. For (compact) intervals I ⊂ R and H ⊂ (0,∞), call

{f̂n(x;h), x ∈ I, h ∈ H},

the empirical scale space surface and {Ef̂n(x;h), x ∈ I, h ∈ H} the theoretical scale space
surface. The monotonicity of the number of modes of f̂n(x;h) is called causality in the scale
space literature ([35]). Intuitively, causality means that at coarser scales (i.e. for larger h),
no additional features (i.e. modes) occur. For the deconvolution kernel density estimator, the
scale space surface (if I = R) also satisfies the causality property. Further, following [10]
one can also show convergence in distribution of the scale space surface if the bandwidth is
bounded away from zero.

4 Inverse regression models

4.1 Inverse Regression: Estimators and Example

In an indirect regression model, independent observations (zk, Yk), k = 1, . . . , n satisfying

Yk = (Kθ)(zk) + εk (15)

are available. Here the zk are design points, the εk’s are i.i.d. errors with Eεk = 0, Eε2k =
σ2 < ∞, and K is a compact injective operator between L2–spaces L2(μ1) and L2(μ2). The
aim is not to estimate the regression function m(z) = Kθ(z) of Yi given zi, but rather the
function θ, therefore, we speak of indirect regression. We shall assume that the zi are fixed (i.e.
non-random) design points. Since K is assumed to be compact, we can consider its singular
value decomposition: There exist orthonormal bases (φk) of L2(μ1) and (ψk) of L2(μ2), and
singular values λk > 0, such that Kφk = λkψk and K∗ψk = λkφk. Here K∗ denotes the
adjoint operator of K.

Example 1 (The heat equation). Suppose that the state u(x, t) of a system at a spatial point
x at time t is governed by the heat equation

∂u

∂t
=
∂2u

∂2x
, 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

with boundary and initial conditions

u(0, t) = u(1, t) = 0, u(x, 0) = θ(x), 0 ≤ t ≤ T, (16)

and suppose that we have noisy observations of the form Yk = u(zk, T0) + εk. The aim is to
recover the initial condition θ, which is related to u(z, T0) by

u(x, T0) =
(
KT0θ

)
(x) =

∞∑
k=1

exp(−k2π2T0) < θ, φk > φk(x),

where φk(x) =
√

2 sin(kπx), k ≥ 1, and < θ, φk >=
∫ 1
0 θ(x)φk(x) dx, cf. [32], p. 267.

Evidently, the operator KT0 is self-adjoint with eigenfunctions φk and eigenvalues λk =
exp(−k2π2T0).
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In the following we discuss construction of estimators for real-valued basis functions φj and
ψj . We first construct estimators for the Fourier coefficients bk =< Kθ,ψk >, assuming that
the design points are approximately uniform w.r.t. the measure μ2, as follows:

b̂j,n =
1
n

n∑
k=1

ψj(zk)Yk,

A truncated Fourier series estimator of θ is then given by

θ̂n(x;M) =
M∑
j=1

b̂j,n
λj

φj(x) =
n∑
k=1

Ykwk,n(x), wk,n(x) =
1
n

M∑
j=1

ψj(zk)φj(x)
λj

, (17)

where M = M(n) is a regularization parameter, namely the truncation parameter in the
series estimator. The estimator θ̂n(x;M) is the spectral cut-off estimator as suggested e.g. in
[38]. Note that it makes explicit use of the basis functions φk and ψk. Other estimators, e.g.
based on iterative regularization methods, which do not require knowledge of these functions,
are discussed in [6].
In contrast to the kernel deconvolution density estimator, for the estimator (17) in indirect
regression, no results on asymptotic normality and the construction of confidence intervals
are available, since these are harder to derive for series estimators (such as (17)) than for
kernel estimators (such as (2)).
Here we present some new results on asymptotic normality of θ̂n(x;M) in (17), specifically for
the examples introduced above. To this end we consider the decomposition of the estimation
error into a stochastic and a deterministic part

θ̂n(x;M) − θ(x) =
(
θ̂n(x;M) −Eθ̂n(x;M)

)
+

(
Eθ̂n(x;M) − θ(x)

)
.

In the subsequent section we will derive confidence intervals for Eθ̂n(x;M). These can be used
to construct confidence intervals for the regression function θ itself after additional estimation
of the bias.

4.2 Variance and asymptotic normality

In order to check asymptotic normality of the estimator (17), we use the following theorem
which is Lemma 3.1 in [17].

Theorem 1. Suppose that in model (15), the weights wk,n(x) of the estimator θ̂n(x;M) in
(17) satisfy

max1≤k≤n |wk,n(x)|( ∑n
j=1w

2
j,n(x)

)1/2
→ 0. (18)

Then
(
σ2

∑n
j=1w

2
j,n(x)

)−1/2(
θ̂n(x;M) − E θ̂n(x;M)

) → N(0, 1).

The denominator in (18) is proportional to the variance of θ̂n(x;M). In order to derive lower
bounds on the variance (required to check (18)), we shall use the following assumption.
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Assumption 1 (Orthogonal design). Suppose that

1
n

n∑
k=1

ψi(zk)ψj(zk) = δi,j , i, j = 1, . . . , n. (19)

Let us mention that approximate orthogonality of the design is sufficient for the following
results. In case of an orthogonal design, the variance can be easily evaluated as follows.
Under Assumption 1 we have for the variance that

V ar θ̂n(x;M) =
σ2

n

M∑
j=1

φ2
j (x)
λ2
j

.

Example 1 (continued) In Example 1, an orthogonal design is given by the uniform design
zk = (k − 1/2)/n, k = 1, . . . , n. In this case we get for the variance that

V ar θ̂n(x;M) =
2σ2

n

M∑
j=1

exp(2j2π2T0) sin2(jπx).

Note that at the boundary x = 0 or x = 1, the estimator (17) satisfies the boundary condition
(16): θ̂(x) = 0 for x = 0, 1. Therefore, in the following we restrict ourselves to x ∈ (0, 1).
To bound the order of the variance from below, we have to control the trigonometric function
sin2(x). To this end we prove that there exists κ = κ(x) such that, if sin2(jπx) < κ(x) for
some index j, then sin2((j + 1)πx) ≥ κ(x). In fact, choose l = l(x) ∈ N with 0 < 1/l < x <
1−1/l < 1 and set κ(x) := sin2(1/(2l)) > 0. Suppose that j is such that (jx) ∈ B1/(2l), where

B1/(2l) :=
{
x : (x mod 1) ∈

[
0,

1
2l

)
∪

(
1 − 1

2l
, 1

]}
,

so that sin2(jπx) < κ(x). Then, since 1/l < x < 1− 1/l, we have that (j + 1)x /∈ B1/(2l), and
sin2((j + 1)πx) ≥ κ(x), which proves our claim. Using this we estimate

V ar θ̂n(x;M) =
2σ2

n

M∑
j=1

exp(2j2π2T0) sin2(jπx) ≥ σ2κ(x)
n

M−1∑
j=1

exp(2j2π2T0),

since exp(2j2π2T0) is monotonically increasing in j. The order of the variance is now bounded
from below as follows:

M∑
j=1

exp(2j2π2T0) ≥M

∫ 1

0
exp(2M2u2π2T0) du ∼ M

4M2π2T0
exp(2M2π2T0),

where in the last step we used Lemma 5 in [43]. Therefore, for x ∈ (0, 1) and some c(x) > 0,

V ar θ̂n(x;M) ≥ c(x)
exp

(
2(M − 1)2π2T0

)
n(M − 1)

.

On the other hand, the weights wk,n(x) can be bounded as follows:

|wk,n(x)| ≤ C
exp((M + 1)2π2T0)

n(M + 1)
,

11



by arguing as above. Therefore,

max1≤k≤n |wk,n(x)|(∑n
j=1w

2
j,n(x)

)1/2
= O

(exp(4Mπ2T0)
(nM)1/2

)
,

which tends to zero if we choose M → ∞ such that M ≤ (log n)/(8π2T0). Thus, under these
conditions, Theorem 1 applies.
An asymptotic level-α confidence interval for Eθ̂n(x;M) is now given as follows.

Cα(x) =
[
θ̂n(x;M) − σ̂Sn q1−α/2, θ̂n(x;M) + σ̂Sn q1−α/2

]
, x ∈ (0, 1), (20)

where σ̂2 is an estimator of the error variance σ2 (e.g. of difference type as in [13]), S2
n =

2/n
∑M

j=1 exp(2j2π2T0) sin2(jπx), and q1−α/2 the (1 − α/2)-quantile of the standard normal
distribution.

4.3 Estimation of the bias

In order to construct confidence intervals for θ itself, we have to deal with the bias, which for
fixed design consists of an additional discretization bias. In fact, we can decomposed it into
a discretization bias and a truncation bias as follows:

Eθ̂n(x;M) − θ(x) =
M∑
j=1

n−1
∑n

i=1 ψj(zi)(Kθ)(zi) − bj
λj

φj(x) +
∞∑

j=M+1

ajφj(x),

where bj =< Kθ,ψj > and aj =< θ, φj >. For estimating the truncation bias, one needs
smoothness assumptions on θ (or equivalently a source condition on θ). Typically, one assumes
that the function θ is contained in a smoothness class of type

Θα = {f ∈ L2(μ1) : f(x) =
∑
j≥1

cjφj(x), cj ≤ C1j
−(1+α)}

for some α > 0, cf. [38]. If in addition, the functions φj are uniformly bounded by some
C2 > 0, we can estimate the truncation bias by

∣∣∣
∞∑

j=M+1

ajφj(x)
∣∣∣ ≤ C1C2M

−α

α
. (21)

The discretization bias is more difficult to handle in general, and requires assumptions on the
design, in particular that averaging w.r.t. the design points is close to integration w.r.t. μ2.
In our examples one can establish a uniform estimate of the form

∣∣n−1
n∑
k=1

ψj(zk)(Kθ)(zk) − bj
∣∣ ≤ An−1 (22)

for some constant A > 0, independent of j. From (21) and (22) it follows that

|Eθ̂n(x;M) − θ(x)| ≤ A

n

M∑
j=1

λ−1
j +

C

α
M−α.

12



Example 1 (continued) Arguing as in [17], p. 106-107, (22) is satisfied if θ ∈ Θα for
α > 1/2. In this case,

|Eθ̂n(x;M) − θ(x)| ≤ C
(exp((M + 1)2π2T0)

n(M + 1)
+M−α

)
.

Under the above assumption on M , the first term is negligible as compared to the standard
deviation. However, for the second term M−α, a more specific choice of the smoothing
parameter is required to achieve domination of the standard deviation. In fact, if we let
M − 1 = (

√
2T0π)−1(log n)1/2, then we get for the bias a rate of (log n)−α/2, whereas for the

variance we get a rate of (log n)−1/4, which is slower since we assume that α > 1/2. For such
an M , the confidence interval (20) is also a valid asymptotic confidence interval for θ.

4.4 Deconvolution

Suppose that θ, ϕ ∈ L2[0, 1] are periodic functions, and consider the convolution model

Yi = (Kϕθ)(zk) + εi, (Kϕθ)(z) = ϕ ∗ θ(z).

On the space L2
C
[0, 1] of complex-valued square-integrable functions, the operator K is a

normal operator for real-valued ϕ ∈ L2[0, 1] with eigenfunctions φj(x) = exp(2πijx), j ∈ Z,
and eigenvalues

λj =
∫ 1

0
ϕ(t) e−2πijt dt, j ∈ Z.

Here, the basis functions are evidently complex-valued, and the estimator needs some minor
modifications as follows

θ̂n(x;M) =
M∑

j=−M

b̂j,n
λj

φj(x), where b̂j,n =
1
n

n∑
k=1

Ykφj(zk),

and ¯ denotes complex conjugation. Since b̂j,n = b̂−j,n and λj = λ−j , the estimator θ̂n is
real-valued. Its properties are developed along the lines for real-valued basis functions. For
example, the orthogonality property (19) now reads

1
n

n∑
k=1

φi(zk)φj(zk) = δi,j , i, j = 1, . . . , n,

and is satisfied for the uniform design. In this case the variance of θ̂(x;M) is given by

V ar θ̂n(x;M) =
σ2

n

M∑
j=−M

|φj(x)|2
|λj |2 =

σ2

n

( 1
|λ0|2 + 2

M∑
j=1

1
|λj |2

)
,

since |φj(x)|2 = 1. Its order depends on the decay of the coefficients λj . Both for polynomial
decay as well as for exponential decay one can prove asymptotic normality as in (18), and use
this to construct confidence intervals for Eθ̂n(x;M). After estimating the bias Eθ̂n(x;M) −
θ(x), these yield confidence intervals for the regression function θ itself. The bias is dealt
with similarly as in Example 1, and we hence omit the explicit derivation.
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5 Case study - analyzing the deep structure of the Centaurus
galaxy cluster

5.1 Observational data

In this section we show how to apply some of our methods in a case study. The problem
we consider is estimation of the density of heliocentric escape velocities of galaxies in the
Centaurus galaxy cluster. To this end we (re-)analyse a dataset of heliocentric velocities in
or close to the Centaurus cluster ([15]), which is an ensemble of many individual galaxies. In
particular, we aim to provide statistically significant evidence for the multimodality of the
escape velocity distribution in the cluster. Based on the original dataset (we shall use a slightly
extended version provided by R. J. Lucey) bimodality of the distribution of heliocentric
velocities in the Centaurus galaxy cluster was discussed. From the velocity distribution one
can estimate the deep (distance) structure of galaxies from a distribution of escape velocities.
Such results are of fundamental importance for verifying cosmic evolution models by testing
their predictions on the structure of the universe on different scales.
At our disposal are 274 measurements of heliocentric velocities in the Centaurus cluster ([15],
where our data is a slightly revised version of table 11 provided by J. R. Lucey, personal
communication). The distance of the galaxies included in the data from the cluster center
at 12h 46m 56deg.3, −40deg 56′ 49′′ (1950.0) is ≤ 6.9deg. In the subsequent sections we show
evidence for a bimodality of the distribution in the ”region of interest” given by ≈ 2000km/s ≤
d ≤ 5500km/s. This selection of the ”region of interest” is suggested by the known escape
velocity (and hence distance) of the galaxies in the Centaurus cluster. We will comment
further on the selection of the ”region of interest” from the methodological point of view
below. In section 5.2 we discuss statistical modelling of the data, which includes choosing
the distribution of the noise. This is a difficult and important step in any data analysis,
as statistical significance in general depends somewhat on the distribution of the noise, in
particular on its approximate variance. Then, in section 5.3, we estimate the density and
provide associated bootstrap confidence bands to assess the error level of the estimate. Finally,
in section 5.4, we use the Silverman test for deconvolution to assess the modality structure
of the density of escape velocities.

5.2 Statistical modelling of the data

The first important step in the application of statistical methodology in general is the for-
mulation a statistical model for the data. This consists of a model equation which links the
quantity of interest, here f , to the observations, and in the definition of a model for the distri-
bution of the random noise. Here, we choose the density deconvolution model, i.e. we assume
that the observations Yi are given by Yi = Xi + εi (cf. Section 3), where Xi are the true
heliocentric escape velocities of the observed galaxies, which are random realizations from the
density of interest f , and εi are i.i.d. noise terms with density ψ. In practical applications,
it is in general a difficult task to determine the noise density ψ with high precision, since the
noise is a complex combination of many sources of error, which includes calibration errors
in the evaluation of the observed data and random measurement errors. If the density of
the noise is unimodal, popular models for the density of the noise are Gaussian and double-
exponential (Laplace) densities. Many theoretical results, such as our asymptotic confidence
bands for deconvolution data, do not hold for supersmooth noise densities, as e.g. the Gaus-
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sian case. However, in [39] it is shown that miss-specifying a supersmooth noise density as
ordinary smooth is much less critical from the point of view of the risk of the estimator than
vice-versa. Hence, in practical applications where the density of the noise can only be ap-
proximately estimated but is expected to have a simple unimodal structure we suggest using
a Laplace density with an estimated variance for the deconvolution methodology rather than
a Gaussian density. Here we use a Laplace distribution with standard deviation 100km/s [36].

5.3 Estimating the density of heliocentric velocities and its associated con-
fidence bands

The second step of our analysis consists in assessing the shape of the unknown density f .
To this end we compute an estimate and its associated confidence bands according to eqs.
(2) and (13), respectively. Here, the bandwidth for the estimator f̂n(x;h) is determined by a
simple data-driven bandwidth selector which aims at minimizing the L∞-distance between the
estimate f̂ and f . This bandwidth estimator was shown to perform well in simulation studies
w.r.t. the coverage probabilities and area of the resulting confidence bands [5]. The ”region
of interest” for which the confidence bands hold is [2000, 5500]km/s. For some details on the
necessity of the selection of such a region we refer to Section 5.4. In practical applications
with sample sizes of order several hundred, Bissantz et al. ([5]) have shown that bootstrap
confidence bands are significantly more reliable than their asymptotic counterparts. Hence,
we determine bootstrap confidence bands, where ≈ 100 bootstrap simulations turned out to
be sufficient in simulation studies. Fig. 1 shows the resulting estimator and confidence bands
with a nominal coverage of 90%. From the additional information on the (uniform) precision
of the estimator it is now possible to derive further properties of the galaxy cluster, such
as its total mass and other properties of the dynamical structure. However, whereas this
information is of large importance on its own (and in a number of cases the major interest
in the study of a galaxy cluster), from the figure we can only conclude that there is some
indication for bimodality, but unimodality cannot be excluded due to the large width of the
confidence bands. A more sophisticated analysis of the modality structure of the data is thus
required and will be provided by the Silverman test for deconvolution in the following section.

5.4 Statistical evidence for multimodality in the escape velocity distribu-
tion: applying Silverman’s test for deconvolution

The graphical assessment of the density of escape velocities discussed in the preceding section
provided some indications for multimodality, but did not allow to exclude a unimodal den-
sity. Therefore, we use Silverman’s test for deconvolution (cf. Section 3.4) in this final part
of our case study to provide statistical significance of multimodality of the density. Indeed,
Silverman’s test allows to test and, given the p-value is small enough, to reject the hypothesis
of unimodality of f .
The ”region of interest” for Silverman’s test was defined to be vh ∈ [2000, 5500]km/s, simi-
larly as for the confidence bands. Such a restriction is not only suggested by (crude) previous
knowledge of the escape velocities in the Centaurus cluster, but also necessary for proper
performance of the statistical methods for deconvolution. Neither the confidence bands nor
the Silverman test perform reasonably well if zero (or very close to zero) regions of the density
are included in the region of interest. Similar problems exist for direct density estimation, cf.
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Figure 1
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Figure 1: Estimator (thick line) and bootstrap confidence bands with a nominal coverage
probability of 90% for the estimation of the density of heliocentric radial velocities czH =
cΔλ/λ [km/s] in the Centaurus cluster of galaxies from 274 observations.

16



Figure 2
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Figure 2: Estimates of the density of heliocentric escape velocities czH = cΔλ/λ [km/s] in
the Centaurus cluster of galaxies corresponding to the critical bandwidth for one mode (solid
line), two modes (dashed line) and three modes (dotted lines). See text for details.
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[25].
We now turn to the results of applying the Silverman test for deconvolution to the escape
velocities. Fig. 2 shows the critical densities for one, two and three modes. The first and
second mode appear at approximately the same locations where the confidence bands indi-
cated the existence of modes. This provides additional evidence for the existence of these
modes (but still does not show their existence in a statistically significant way). In more
detail, the first and second modes, which are the major ones, are located at ≈ 3.1 · 103km/s
and 4.5 · 103km/s. This compares well with the results of Lucey et al. [36], who obtained
3041km/s and 4570km/s, respectively, from a maximum likelihood fit of a mixture of two
normal densities to the data.
In order to evaluate statistical significance for the existence of more than one mode we per-
formed the Silverman test for deconvolution to test the unimodality null hypothesis against
a multimodal alternative, where we used the calibrated version of the test with a level of 5%
(cf. [2]). The calibration constant λ5% was simulated based on a normal test density. It turns
out that the null hypothesis is rejected, and we conclude that the distribution of velocities in
the Centaurus cluster is (at least) bimodal. We remark that Lucey et al. [36] already used
several tests for normality (the Lilliefors-test, Shapiro-Wilk-test, and tests for skewness and
kurtosis) to show non-normality of the distribution, which however, is not a suitable method
to reject unimodality of the data.
In recent years large, in part automated observation systems have provided additional, more
precise observations of escape velocities towards the Centaurus clusters. These datasets sup-
port the conclusions derived from the data used in our application, cf. e.g. [42]. In our case
study, we nevertheless used the dataset of Dickens et al. [15] since it resembles well the data
quality in many practical applications, for example our recent analysis of the young massive
cluster luminosity function in the Antennae galaxies [1].

6 Discussion

Inverse problems are omnipresent in scientific data analysis. In this paper we discussed in-
verse problems from a statistical point of view, which apart from estimation purposes allows
to draw statistical inference, e.g. the construction of confidence intervals or hypothesis tests,
about the unknown objects. Here we took the point of view of nonparametric curve estima-
tion, but other inference techniques such as Bayesian methods can be used in this context
as well [30]. While for nonparametric estimation, also in the context of inverse problems,
the concept of adaptivity has been thoroughly investigated, for statistical inference such as
confidence bands it has been shown recently that adaptivity sometimes cannot be achieved
[21].
Our main examples were deconvolution problems. However, many other operators K exist,
which are of similar practical importance in applications from physics, image analysis, etc.
These are technically more difficult to handle and an extension of our results is the aim of
some of our current research. Moreover, sometimes, apart from the measurements error in
g there is a observational error in the operator K as well. Estimation in such situations
has been studied very recently [27], but further statistical inference methods still have to be
developed.
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