
UNIVERSIT�AT DORTMUND

Fachbereich Informatik

Lehrstuhl VIII

K�unstliche Intelligenz

Data Preparation for Inductive Learning in

Robotics

LS{8 Report 19

Anke Rieger

Dortmund, May 22, 1995

Universit�at Dortmund

Fachbereich Informatik

University of Dortmund

Computer Science Department

Forschungsberichte des Lehrstuhls VIII (KI) Research Reports of the unit no.VIII (AI)

Fachbereich Informatik Computer Science Department

der Universit�at Dortmund of the University of Dortmund

ISSN 0943-4135

Anforderungen an:

Universit�at Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

ISSN 0943-4135

Requests to:

University of Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

e-mail: reports@ls8.informatik.uni-dortmund.de

ftp: ftp-ai.informatik.uni-dortmund.de:pub/Reports

www: http://www-ai.informatik.uni-dortmund.de/ls8-reports.html

Data Preparation for Inductive Learning in

Robotics

LS{8 Report 19

Anke Rieger

Dortmund, May 22, 1995

Universit�at Dortmund

Fachbereich Informatik

Abstract

The application of logic-based learning algorithms in real-world domains, such as robotics,

requires extensive data engineering, including the transformation of numerical tabular rep-

resentations of real-world data to logic-based representations, feature and concept selec-

tion, the generation of the respective descriptions, and the composition of training and

test sets, which meet the requirements of the respective learning algorithms. We are de-

veloping a tool, which supports a user of inductive logic-based algorithms with handling

these tasks. The tool is developed in the context of a robot navigation domain, in which

di�erent logic-based algorithms are applied to learn operational concepts.

(This paper will appear in the Proceedings of the IJCAI-Workshop on Data Engineering

for Inductive Learning, 1995.)

1 INTRODUCTION 1

1 Introduction

When applying logic-based machine learning algorithms to real-world domains, such as

robotics, users are faced with the time consuming task of preparing training and test

sets for learning and evaluating results, respectively. This task is rather complex and

requires the solution of di�erent problems. The main problem addresses representation:

The gap between the requirements of the learning algorithms and the characteristics of

the real-world data has to be bridged. The numerical, extremely large and extremely

detailed data sets, usually represented in tabular form, have to be transformed into a

description represented in a restricted �rst-order logic. Transforming the description of

the real-world data into a logic-based representation formalism is not su�cient, because it

may contain too many examples and possibly too many (irrelevant) features for learning.

As a consequence, there is the danger of burdening the learning algorithms with too many

examples and/or too many features, thus overloading it with redundant and irrelevant

information.

So, in addition to the question, how to represent the data, the users have to decide, what

to represent, i.e., which concepts are to be learned. When learning operational concepts

(see below), it might not be possible, to learn to derive them directly from the real-world

data. Thus, intermediate concepts may have to be introduced. Given the concepts to be

learned, examples and background knowledge, which constitute the training sets, have to

be generated.

Given examples and background knowledge, users of machine learning algorithms have

to compose training sets for learning. During this phase, they make a lot of choices with

respect to, for example, the portion of positive and negative examples, for learning one

versus multiple concepts. These choices often remain hidden and are rarely documented.

However, as the success of applying learning algorithms depends heavily on them, there

is a need for making them more explicit.

We are developing a tool, which supports users of machine learning algorithms with

the solution of the tasks, mentioned above. The need for this tool arose in a speci�c

domain of application, namely the robot navigation domain, developed within the BLearn-

project. Within this project, di�erent learning algorithms were developed and applied.

With di�erent users and developers involved, there was the urgent need, to develop a

framework, within which the data engineering problems could be solved in a uniform way,

in order to avoid, that each user produced another program for accomplishing the same

task.

In Section 2, we explain, in the context of learning operational concepts for robot

navigation, the general setting, in which the tool is working. In Section 3, we sketch

the robotics domain, in order to illustrate the data engineering problems with concrete

examples. We focus on the requirements for the learning algorithms in Section 4. In

Section 5, we present the tool and show in detail, how operations for data structuring,

example generation, composition of samples, and preparing training sets for learning are

realized. We conclude with a discussion of related and future work in Section 6.

2 The General Setting

We are developing the tool within the context of a robot navigation domain, to which

inductive algorithms are applied, in order to learn operational concepts . These concepts

were introduced in [1]. They are to be used by a robot to perform exibly user-de�ned

tasks, such as move through the door, turn right, and move to the cupboard. Op-

erational concepts, on one hand, provide the basis for high-level planning. On the other

hand, they are symbolically grounded, in the sense, that they can be traced down to sonar

sensor measurements and basic robot actions. The point is, that operational concepts

cannot be learned directly from the real-world data. Thus, they constitute the highest

level of the abstraction hierarchy in Figure 1. In order to bridge the gap between the

action-oriented perceptual
features

perception-integrating
actions

operational
concepts

sensor features

basic features

measurements

basic actions

sensor group features

D
at

a
P

re
pa

ra
ti

on
 a

nd
 E

xa
m

pl
e

G
en

er
at

io
n

E
va

lu
at

io
n

Figure 1: The abstraction hierarchy

real-world data and operational concepts, we introduced intermediate levels of abstraction.

We had to decide, which information is represented on each level. Then, the strategy is

to apply inductive algorithms, in order to learn, how to derive higher-level features from

lower-level ones. The learning steps are indicated in Figure 1 by the directed non-dashed

arcs. For each step, examples and background knowledge have to be generated, and train-

ing sets have to be put together. After learning, the evaluation of the learning results

can yield valuable information for the lay-out of the next learning steps, and feedback for

the previous learning steps. Figure 1 is not to be understood in the sense, that learning

operational concepts is a process, which is �nished after having run bottom-up through

the learning steps once. Figure 2 illustrates this cyclic nature of learning. In principle,

it represents the same situation as Figure 1. Whereas in the �rst one we focused on the

3 THE ROBOTICS DOMAIN 3

Data / Information
Different

Sources

learning resultstest set

Evaluation

Machine
Learning

Algorithm
Sample Composition

training set

Case Selection

Example Generation

Figure 2: The general setting for learning

domain-dependent representation, here we focus on the domain-independent methodologi-

cal setting for learning, especially on the role of data preparation, i.e., example generation,

composing samples, and case selection.

The general setting in Figure 2 is, conceptually, anything but new. However, wherever

it appeared in the literature, the focus turned, in most cases, to the learning algorithms

instead of turning the data engineering problems. In the following, we present a tool,

which we are developing, in order to o�er users of machine learning algorithms a uniform

framework for data preparation:

1. The tool supports Horn clauses as representation formalism, and thus can be used

for, but is not restricted to, inductive logic programming (ILP) algorithms.

2. It allows to structure the data, which is used for learning.

3. It facilitates the access to data stemming from di�erent sources.

4. It o�ers operations for generating examples of the concepts to be learned, and back-

ground knowledge, from which the concepts are to be learned.

5. It o�ers operations for composing samples according to statistical criteria or criteria

referring to features of the data.

6. It supports the generation of di�erent data structures, e.g., sets of ground facts or

cases (see below), which are required as input by di�erent learning algorithms.

Our main goal is, that, by using this tool, we will succeed in separating the domain-

independent aspects of the data engineering operations from the domain-dependent knowl-

edge about the respective application. This separation has often been neglected, as in most

cases the users of the algorithms were also their developers, who, therefore, concentrated

more on the learning algorithms. The hope is, that the use of this tool will make the data

preparation phase more transparent, thus revealing more clearly its e�ect on the learning

results.

3 The Robotics Domain

In this section, we give an overview of the application domain, in order to illustrate the

concrete data engineering problems. The focus is on representational issues, i.e., we deal

with the question, about what information is represented at each level of the abstraction

hierarchy, and how these descriptions are generated from the real-world data.

In [1], operational concepts were introduced, which are abstract descriptions of con-

cepts, such as move through the door, and move along the wall. They constitute the

interface between a human user and a robot: The user uses operational concepts to guide

the robot in known as well as unknown environments. The robot, in turn, uses them to

report on its activities.

Operational concepts are learned from data 1 about robot traces in known environ-

ments, such as the one, illustrated in Figure 3. During a trace the following information

1

2
3

4

5

6

7

8
9

0

10

11

0
1

2
3

Figure 3: Room with robot traces

is recorded for each of the 24 sensors at successive time points: The sonar sensor measure-

ment, which is interpreted as sensed distance, the sensor orientation and position, as well

as the robot orientation and position in the global coordinate system. As the environment

is known, the coordinate of the sensed point and the respective object in the scene are

recorded as well.

From this data higher-level concepts, such as basic features, sensor features, sensor

group features, and action-oriented perceptual features (see Figure 1) are derived. An

example for an action-oriented perceptual feature is the concept of moving through a

doorway. Let t12 denote one of the traces in Figure 3, in which the robot moves parallely

through the doorway during the interval from time point 1 to 15. This fact is represented

by the ground literal 2

through door(t12,1,15,parallel) .

With reference to Figure 3, we illustrate, what happens during robot traces, in which the

robot moves through a doorway: The sensors on the robot's right side will �rst perceive

the doorframe, labelled 9, and then the wall, labelled 7. Correspondingly, the sensors

1The data has been provided by the University of Karlsruhe
2We use a Prolog-like notation, i.e., variables begin with capital letters, constants with small letters.

3 THE ROBOTICS DOMAIN 5

on the robot's left side will perceive wall 3 and 5. In [4], we introduced the term jump

for these kind of edge groupings, consisting of two parallel edges. Other edge groupings,

which are considered, are convex and concave corners, and singular edges, called line.

For example, during trace t12, the sensors on the robot's right and left side perceive

"jumps" during the interval from time point 1 to 10. These facts are represented by the

ground literals

sg jump(t12,right,1,10,parallel) and sg jump(t12,left,1,10,parallel).

Thus, the predicates for sensor group features state, that an edge grouping of a speci�c

type (denoted by the predicate name) has been perceived by a group of sensors (second

argument) in a trace (�rst argument) during a time interval (third and fourth argument),

during which the robot moved in a relative orientation (�fth argument) along the ob-

ject. Sensor features also combine the perception of an edge grouping with the relative

movement of the robot, but this time the information refers to a single sensor, e.g.,

s jump(t12,s5,1,10,parallel).

While moving, sensor s5 receives a sequence of sonar sensor measurements, illustrated

in Figure 4. They are grouped together in time intervals, during which the tendency

of change of the measurements remains approximately the same (for details see [1],[9]).

These time intervals are described by the basic features on the right side of Figure 4. The

incr_peak(t12, 90, s5, 4, 5, 0.5)
stable(t12, 90, s5, 1, 4, 0)

stable(t12 ,90, s5, 5, 10, 0)

Time

1m

2m

D
is

ta
nc

e

4 62 8 10

Figure 4: Sequence of sensor measurements

�rst one states, that in trace t12 sensor s5 received during the time interval from time

point 1 to 4 approximately stable measurements. During this time interval the robot

perceived the doorframe, labelled 9. The stable measurements during the time interval

from 5 to 10 correspond to the wall 7. The measurements at time points 4 and 5 di�er

signi�cantly, which is reected by the incr peak predicate. (The second argument of the

basic features denotes the orientation of the sensors. It is taken into account in order

to ensure, that the sensor orientation does not change. The last argument denotes the

average gradient, which was measured during the time interval. It thus adds more details

to the classi�cation decreasing, increasing etc.).

Once we have decided, which information will be represented on the di�erent levels of

the abstraction hierarchy, and which predicates will be used, the next problem is to gen-

erate instances of these predicates from the initial data, which will be used for learning.

For this purpose, di�erent algorithms have been implemented: As we are working within

a restricted �rst-order logic framework, the initial data has to be transformed from a nu-

merical, tabular representation to a relational one. Wessel [9] has implemented a program,

which calculates basic features from sensor measurements. The calculation is inuenced

by di�erent parameters, which reect the sensitivity to changes in the measurements. For

the sequence of measurements illustrated in Figure 5 depending on the parameters, the

Figure 5: Sensor measurements

algorithm produces di�erent sequences of basic features, e.g.,

increasing(t76,75,s6,3,32,13).

no_measurement(t76,75,s6,32,53,999).

decreasing(t76,75,s6,53,59,-9).

stable(t76,75,s6,59,65,1).

increasing(t76,75,s6,65,69,11).

something_happened(t76,75,s6,69,70,18).

increasing(t76,75,s6,70,85,13).

or

increasing(t76,75,s6,3,32,13).

no_measurement(t76,75,s6,32,53,999).

stable(t76,75,s6,53,69,0).

increasing(t76,75,s6,69,85,13).

Another program is used to derive instances of sensor features: Given the knowledge about

the environment, i.e., the position of the walls, doorframes, cupboards in the room, and

given the knowledge, which components of the scene constitute a certain type of edge

grouping, instances of the sensor feature predicates can be derived.

The point is, that there exists a heterogeneous collection of programs, which produce

an enormous collection of data �les, from which learning and test sets are to be generated.

Several users and programmers are involved, so that it is hard to keep track of what each

program does and which �le was generated by which program with which parameter com-

bination. In the resulting cemetery of data �les the users of machine learning algorithms

have to �nd those �les, which they want to use.

4 The Learning Algorithms

Given the representation of the concepts at the di�erent levels of the abstraction hierarchy,

we sketch the algorithms, which were used to learn, how to derive higher-level concepts

4 THE LEARNING ALGORITHMS 7

from lower-level ones. This is to illustrate the requirements, which come from the learning

algorithms, and which the data engineering tool has to meet.

Within the BLearn-project di�erent types of learning algorithms have been applied:

1. Inductive logic programming (ILP) algorithms, which produce rules, represented as

Horn clauses, which derive higher-level concepts from lower-level ones.

2. An algorithm, which infers automata, which take as input sequences of predicate

instances describing features, and whose �nal states are associated with concepts,

which can be derived from the features.

Both algorithms work on background knowledge B, positive and negative examples E =

E+ [E�, and a hypothesis space H.

In the ILP-context, the examples have to be consistent with the background knowledge

(i.e., B;E j= 2), and must not already be a consequence of the background knowledge

(B 6j= E). Then, the goal is to �nd a hypothesis h 2 H , which is consistent with B and

E (i.e., B; h; E j= 2), and which explains together with B the positive examples (i.e.,

B; h j= E+) and none of the negative ones (i.e., B; h j= E�).

Di�erent ILP-algorithms, which are integrated in the MOBAL-system [5], have been

applied to learn rules, which derive higher-level concepts of the abstraction hierarchy in

Figure 1 from lower-level ones (for details, see, e.g., [4], [1], [8]). Some examples of the

rules, which derive action-oriented perceptual features, sensor group features, and sensor

features, are given in the following:

through_door(Trace,Start,End,parallel) <-

sg_jump(Trace,left,T1,T2,parallel) &

sg_jump(Trace,right,T1,T2,parallel) &

Start < T1 & T2 < End.

This rule states, that the robot moved parallely through a doorway in a Trace during

the interval from time point Start to End, if, during a subinterval, the sensors on the

robot's right and left side perceived the edge grouping jump. Sensor group features are

derived, if su�ciently many sensors, which are adjacent and belong to the same class, have

perceived the same edge grouping:

sg_jump(Trace,right,TS,TE,parallel) <-

s_jump(Trace,Sensor1,TS,TE,parallel) &

s_jump(Trace,Sensor2,TS,TE,parallel) &

adjacent(Sensor1,Sensor2) &

sclass(Trace,Sensor1,T1,T2,right) &

sclass(Trace,Sensor2,T1,T2,right) &

T1 < TS & End < TE.

Sensor features are de�ned in terms of sequences of basic features:

s_jump(Trace,Sensor,T1,T4,parallel) <-

stable(Trace,Or,Sensor,T1,T2,Grad1) &

incr_peak(Trace,Or,Sensor,T2,T3,Grad2) &

stable(Trace,Or,Sensor,T3,T4,Grad3).

Note, that in the case of rules, the temporal order of observations, e.g., basic features, is

reected in the chaining of the variables, representing time points. In the case of basic

features these time points appear as fourth and �fth argument of the basic features.

In the case of the ILP-algorithms, the hypothesis space, H , consists of Horn clauses.

In the case of the algorithm, presented in [7], it consists of the class of deterministic �nite

state automata and probabilistic automata, respectively. These automata accept as input

sequences of observations, i.e., ground instances of basic features, which are accepted, if

they lead to a �nal state, which represent concepts, i.e., sensor features.

A common feature of both types of algorithms is, that B and E consist of ground

literals. For the predicates, appearing in E, we also use the term target predicates , for

the predicates, appearing in B, we use the term de�ning predicates . In the ILP-case,

target predicates may appear in the conclusion of a learned rule, de�ning predicates in it's

premise. Training sets are constructed by selecting examples, searching the relevant back-

ground knowledge, and merging both, target predicate and de�ning predicate instances, in

a at set of ground literals. In the case of automata inference, the training set consists of

sequences of observations, which have to or do not have to be accepted by the automaton.

Thus, each target predicate instance in E has to be associated with the relevant sequence

of de�ning predicates in B, which also has to reect the temporal order of the observations.

So both algorithms pose di�erent requirements for the representation of training sets.

5 The Tool

In order to summarize the situation: Our goal is to learn in several steps logic-based

descriptions of abstract concepts from real-world data. In order to accomplish this task,

intermediate concepts are introduced. Programs exist, which derive instances of the pred-

icates, representing the respective concepts from the initial data. By introducing di�erent

levels in the hierarchy, we abstract from more and more details in the original data. Nev-

ertheless, an enormous amount of data is generated, which has to be structured, in order

to support the user with preparing training sets for learning. For each learning step, the

user has to start with a set of conceptual decisions, whose realization is supported by our

tool:

1. Decision about which information is to be represented at the target level and de�ning

level, respectively.

Each learning step is to bridge the gap between two levels of the abstraction hierarchy.

The lower level provides the background knowledge, i.e., the de�ning predicates, the upper

level the examples for the concepts to be learned, i.e., the target predicates.

2. Decision, which programs with which parameter settings will be used to generate

instances of the predicates, which are used for representing examples and background

knowledge.

3. Decision about which target concepts are to be learned.

In the case of learning sensor features from basic features, for example, the user has to

decide, whether the di�erent sensor features are to be learned together or separately in

several learning runs.

5 THE TOOL 9

4. Decision about which negative examples are to be used.

For example, in the case of learning the sensor feature s line, the instances of the predicate

s convex, s concave, and s line can be used as negative example for the concept s line.

5. Decision about which target predicate instances are to be put in the example set E.

This decision concerns the questions,

� which features are to be used to select the examples for the concepts to be learned:

Given a room (e.g., the one in Figure 3), in which traces were pursued, and given

the sensor features for these traces, we might want to assign the positive examples

of the sensor feature s convex for the traces t1,...,t15 to the learning set and the

examples for s convex of the other traces to the test set.

� which statistical criteria are used:

Given a set of examples for sensor features, one might

{ use 60 % of them in the learning set and the rest in the test set;

{ draw a certain percentage or a speci�c number of examples according to a

speci�ed distribution;

{ split up the sample into a number of subsamples (cross validation).

6. Decision about which background knowledge is to be used during learning.

7. Decision, about which learning algorithm is to be used.

Case Selection

Sample Composition

Example Generation

generating
sensor features basic features

Program for

BF_SampleSF_Sample

SF_Train

SF_Test

Program for

Learning Algorithm

SF_File BF__File

Training Set

generating

Figure 6: Data preparation

Data Structuring Once, the user has decided on the learning set-up, she has to go

through the same sequence of data preparation steps for each learning run. These data

preparation steps are illustrated in Figure 6 for the special case of learning sensor features

from basic features. The user has to de�ne, which predicates constitute the examples, E,

and which predicates constitute the background knowledge, B. The tool supports the user

in doing this by the de�nition of abstraction levels , which contain a group of predicates,

which are similar in the following sense:

� the predicates have the same arity, n, and

� the argument structure of the predicates is the same, i.e., the i-th argument, 1 �

i � n, of each of the predicates is of the same sort.

In our application domain, each level of the abstraction hierarchy in Figure 1 represents

concepts, which are described by a group of predicates, which have such a structure. Basic

features are represented by predicates of arity 6

<bf>(<tr>,<o>,<s id>,<start>,<end>,<gr>),

where the predicate name, <bf>, is in the set BF=fincreasing, stable, decreasing,

...g.The arguments are of speci�c sorts, denoting traces, <tr>, sensor orientations, <o>,

sensor identi�cations, <s id>, start and end points of time intervals, <start> and <end>,

and gradients , <gr>, of successive measurements. Sensor features are described by pred-

icates of arity 5

<sf>(<tr>,<s id>,<start>,<end>,<rel or>),

where <rel or> represents the relative orientation of the robot towards the edge grouping,

which is denoted by the predicate name, <sf>, which is an element of SF=fs line,

s concave,s convex,s jumpg. In this way the user can de�ne two abstraction levels, bf

and sf, for basic features and sensor features, respectively.

Sample Composition When learning to derive sensor features from basic features,

bf contains the de�ning predicates, and sf the target predicates. The next step is to

generate instances of both groups of predicates (example generation), which are then used

to compose samples (see Figure 6). A sample contains positive and negative instances

of predicates, which are speci�ed by a reference class , e.g., an abstraction level. The

instances of the sample stem from a given source, which is

� a program, which generates the instances (example generation),

� a data �le, containing the instances, or

� another already existing sample.

Samples can be composed according to two types of criteria: statistical criteria and crite-

ria, which refer to features of the objects, represented by the predicates. At the moment,

features are speci�ed by constraints on values of arguments at certain positions of the

predicates. Assume the situation, that a user has generated a data �le, SF File, which

5 THE TOOL 11

contains all sensor features for 20 traces (see Figure 6). Furthermore, the program for gen-

erating basic features has been used to generate instances of those predicates for the same

traces, which are stored in the data �le, BF File. The goal is to use the sensor features

of traces t1,...,t15 for learning, and the rest for testing. The syntax of constraints

is arg(ArgPosition,ValueList). The operation for composing a sample according to

certain constraints is

select(Source,Reference,Constraints,SampleId).

Then, the samples SF Sample, SF Train, SF Test, and BF Sample are produced by the

following sequence of operations

select(file('SB_File'),alevel(bf/6),all,BF_Sample)

select(file('SF_File'),alevel(sf/5),all,SF_Sample)

select(sample(SF_Sample),alevel(sf/5),[arg(1,[t1,...,t15])],SF_Train)

select(sample(SF_Sample),alevel(sf/5),[arg(1,[t15,..,t20])],SF_Test)

An alternative way of composing samples is to select instances according to statistical

criteria. In this case, the user can specify to draw randomly from a given sample

� a number/percentage of positive instances, and/or

� a number/percentage of negative instances,

which constitute a new sample. This requires the speci�cation of what a negative example

is. Negative examples could be given explicitly. Alternatively, e.g., in the case of learn-

ing a single sensor feature, s line, the positive instances of the predicates s concave,

s convex, and s jump could be used as negative examples. An operation has to be pro-

vided, that accomplishes the task of selecting positive and negative examples according to

the speci�cations of the user.

Sample composition according to statistical criteria also requires the speci�cation of the

distribution, according to which the random drawing is to be done. Distributions can be, in

the simplest case, the uniform distribution, or one, which reects the frequency distribution

of a feature or a feature combination in the data. Thus, operations which determine the

frequency distribution for a given sample and a user-speci�ed feature combination have to

be provided.

Another alternative, which we will o�er for composing samples, is to split up the

sample containing the target predicates into subsamples, which can then be used for cross

validation.

Case Selection In order to put together a training set, the samples containing the

instances of target and predicate instance have to be merged and organized in data struc-

tures, which are required as input for the respective learning algorithms (see Figure 6).

We have implemented a method, which, given

� a sample with instances of the target predicate(s),

� a sample with instances of the de�ning predicates,

� a list of relations, which express, how one or several argument values of a target pred-

icate instance restrict or determine the value of an argument of a relevant de�ning

predicate instance,

determines the list of cases from these two samples. A case is represented by a list

[target instance | defining instances],

whose �rst element is the target predicate instance, and whose rest is the list of relevant

de�ning predicate instances. Consider, e.g., learning sensor features from basic features:

An instance of a basic feature is relevant for a sensor feature, if it refers to the same trace,

to the same sensor, and to the same time interval, respectively. This domain-dependent

knowledge can be expressed in a more general setting in terms of relations between values

of certain arguments (see Figure 7). The transformation can be realized by using the

2 53 4

1 2 4 53 6

1

B_Feature(<tr>, <o>, <s_id>,<start>,<end>,<gr>)

Defining Predicate

s_jump(t12,s5,1,10,parallel)

Target Predicate

S_Feature(<tr>,<s_id>,<start>,<end>,<rel_or>)

Figure 7: Case selection

declarations of the abstraction levels for sensor features and basic features, respectively.

The algorithm for inferring automata, presented in [7], uses as training data sequences

of observations in temporal order, which have or do not have to be accepted by the learned

automaton. Thus, if the goal is to infer an automaton, which recognizes sensor features

from basic features, the de�ning instances of the cases constitute the training sequences,

and thus have to be sorted according to temporal order. This operation is also provided

by the tool.

The application of one of the ILP-algorithms of the MOBAL-system does not nec-

essarily require case selection. With reference to Figure 6, the instances of the samples

SF Train and BF Sample could be merged in a at data set. This way of proceeding in-

volves the risk of overloading the learning algorithm with irrelevant data, which, in view

of the enormous amount of data in the domain, is an essential question. Thus, the ef-

fort for generating �rst the cases, and then coverting them to a at data set, although

cumbersome, is worthwhile, as it reduces the time for learning, enormously.

6 Discussion

We have presented a case study of data engineering in a real-world application, i.e., data

preparation for learning operational concepts in a robot navigation domain. We have

6 DISCUSSION 13

illustrated the speci�c problems concerning

� the transformation of numerical real-world data to logic-based descriptions of ab-

stract concepts,

� the choice of appropriate representations of concepts,

� data structuring, and

� data preparation for putting together training sets for logic-based learning algo-

rithms.

Given the representational issues and the requirements of the inductive logic-based learning

algorithms, we illustrated the decisions, which the user has to make with respect to a

learning set-up.

We have presented a software tool, which supports the user with preparing training

sets according to the decisions made. It assists the user with structuring the data. By

de�ning abstraction levels, the user can group together similar predicates, which are to be

put into a sample. The tool provides several operations for sample composition according

to statistical criteria and criteria referring to features of the data. Furthermore, it uses the

samples to generate training sets, which can be represented in di�erent ways, as required

by di�erent logic-based learning algorithms.

Clearly, the tool is under development. Its presentation made obvious the components,

which still have to be implemented. Operations, which are implemented, have to be

improved: The composition of samples according to features of objects, represented by the

predicates, is realized by specifying constraints on argument values. On one hand, this way

of proceeding makes the composition of samples more independent of the domain, to which

learning is applied. On the other hand, it requires the user, to know which information is

represented by which argument. Data encapsulation may o�er an alternative to free the

user from specifying argument positions.

In the view of the enormous amount of data, from which the right one has to be

selected for putting together a speci�c training set, the question is, whether the access to

the data cannot be made more e�cient by using databases and by coupling the tool with

the RDT/DB-method developed in [3].

Nevertheless, the tool has already been successfully applied, in order to prepare training

sets for two di�erent types of logic-based learningx algorithms. Within this application

domain, which is characterized by the enormous amount of data, the most noticeable e�ect

has been, that the tool allowed to put together relevant information for training sets in a

structured way, thus preventing the learning algorithms to be overloaded with irrelevant

data.

The fact, that the tool works on a restricted �rst-order logic representation formal-

ism, does not con�ne its use to a speci�c domain nor to the two learning algorithms,

which we have used. In principle, it can be used for any ILP-algorithm (as for example

those presented in [6] and [2]), which require training sets consisting of examples E and

background knowledge B, which contain ground literals. It is a known fact, that for all

learning algorithms the composition of appropriate training and test sets is crucial. The

point is, that users, when applying a learning algorithm, make a lot of choices with respect

to the traing sets, which remain hidden in most cases, and which are rarely documented.

However, as the success of applying machine learning algorithms depends critically on the

set of choices made, there is a need for making them more explicit. The tool, which has

been represented in this paper, forces the user to make her choices explicit in a uniform

framework, thus making them amenable to analysis.

Given the two types of learning algorithms we have used, one aspect of future work

will be the analysis of the e�ect of data engineering on the induced models. This is not

straightforward, as the induced models - at rule sets versus automata models, which

reect the structure inherent in the rule set - complement each other. The comparison

can only be made by evaluating the performance of the robot, which uses the learned

concepts in order to navigate in known as well as unknown environments. The evaluation

tool, sketched in Figure 1 and 2, also has not been implemented yet, and thus will be also

a topic of future work.

References

[1] V. Klingspor, K. Morik, and A. Rieger. Learning operational concepts from sensor

data of a mobile robot. (submitted to Machine Learning Journal), September 1994.

[2] N. Lavrac and S. Dzeroski. Inductive Logic Programming - Techniques and APplica-

tions. Ellis Horwood, New York, 1994.

[3] G. Lindner. Application of the learning algorithm RDT to a relational database.

Master's thesis, Universit�at Dortmund, 1994. in German.

[4] K. Morik and A. Rieger. Learning action-oriented perceptual features for robot naviga-

tion. In Proc. of the 1st European Workshop on Learning Robots, 1993. also available

as Research Report 3, FB Informatik LS 8, Universit�at Dortmund.

[5] K. Morik, St. Wrobel, J. U. Kietz, and W. Emde. Knowledge Acquisition and Machine

Learning: Theory, Methods, and Applications. Addison Wesley, 1993.

[6] St. Muggleton, editor. Inductive Logic Programming. Academic Press, 1992.

[7] A. Rieger. Inferring probabilistic automata from sensor data for robot navigation. In

Proc. of the 3rd European Workhop on Learning Robots, 1995.

[8] St. Sklorz. Representing and learning operational concepts. Master's thesis, Universit�at

Dortmund, 1995. in German.

[9] St. Wessel. Learning qualitative features from numerical robot sensor data. Master's

thesis, Universit�at Dortmund, 1995. in German.

