UNIVERSITAT DORTMUND
FACHBEREICH INFORMATIK

LEHRSTUHL VIII
KUNSTLICHE INTELLIGENZ

Optimizing Chain Datalog Programs and their
Inference Procedures

LS-8 Report 20
Anke Rieger

Dortmund, February 27, 1996

Universitat Dortmund
Fachbereich Informatik

University of Dortmund
Computer Science Department

Forschungsberichte des Lehrstuhls VIII (KI) Research Reports of the unit no. VIII (AI)
Fachbereich Informatik Computer Science Department
der Universitat Dortmund of the University of Dortmund

ISSN 0943-4135 ISSN 0943-4135

Anforderungen an: Requests to:

Universitat Dortmund
Fachbereich Informatik
Lehrstuhl VIII
D-44221 Dortmund

University of Dortmund
Fachbereich Informatik
Lehrstuhl VII

D-44221 Dortmund

e-mail: reports@ls8.informatik.uni-dortmund.de
ftp: ftp-ai.informatik.uni-dortmund.de:pub/Reports
www: http://www-ai.informatik.uni-dortmund.de/Is8-reports.html

Optimizing Chain Datalog Programs and their
Inference Procedures

LS-8 Report 20
Anke Rieger

Dortmund, February 27, 1996

Universitat Dortmund
Fachbereich Informatik

Abstract

We present methods for optimizing chain Datalog programs by restructuring and post-
processing. The rules of the programs define intensionally a set of target concepts, which
are to be derived via forward chaining. The restructuring methods transform the rules,
such that redundancies and ambiguities, which prevent efficient evaluations, are removed
without changing the coverage of the target concepts. The post-processing method in-
creases the coverage by introducing recursive rules in the chain Datalog program. Based
on the correspondence between chain Datalog programs and context-free languages, which
in our case reduce to regular ones, we present a method to map restructured and/or post-
processed programs to prefix acceptors, which are deterministic finite state automata,
whose input/output alphabets consist of predicates. We present an efficient marker pass-
ing method which is applied to a prefix acceptor, and which optimizes inferences. We proof
that this method is sound and complete, i.e., it calculates the minimum Herbrand model
of the chain Datalog program which has been mapped to the respective prefix acceptor.
As the developments, presented in this paper, have been motivated by an ILP application
to robotics, we have applied the methods to this real-world domain. The experimental
results at the end of the paper reflect the improvements, we have gained.

CONTENTS

Contents
1 Introduction
2 The Robotics Domain
3 Logic Programming Concepts
3.1 Definitions e e
3.2 Semantics of logic programs Lo
3.3 Correspondence between chain Datalog programs and CFG’s
3.4 Non-elementary chain Datalogrules
3.5 Constraints e e e e
4 Structuring Chain Datalog Rules in Prefix Acceptors
4.1 Sorting the premise literals of chain Datalog rules
4.1.1 The sort-method
4.1.2 The sort_dc-method
4.1.3 Related work e
4.2 The prefix tree-method L o oo
4.3 Restructuring chain Datalog programs
4.3.1 The restruct-method
4.3.2 The restruct_dc-method
4.3.3 Equivalence of the restructured program
4.3.4 Mapping the restructured program to a prefix acceptor
4.3.5 Related work
5 MP: An Efficient Forward Inference Method
5.1 The marker passing method L L o,
5.2 Soundness and completeness L Lo
6 Post-Processing Chain Datalog Programs
6.1 Disadvantages of the rules learned for the robotics domain
6.2 Post-processing the prefix acceptor: Step 1
6.3 The post-processed chain Datalog program
6.4 FExperiments L e e
7 Restructuring, Marker Passing and Decompositions
8 Conclusions
8.1 Summary e e
8.2 Current and future work Lo
A Appendix

A1l Algorithm prefix tree e
A2 Algorithm restructdc L L
A3 Auxiliary functions oL L Lo
A.4 Marker Passing: Example run on PA" L.

12
13
14
16
18
18
22
22
25
28
29
30

31
31
35

41
42
43
46
48

50

58
58
59

CONTENTS

A.5 Post-Processing: Experimental Results L. 66
Ab.1 Complexity Results oo o 66
AB.2 Testing Results o 67

1 Introduction

In this paper, we present methods for optimizing chain Datalog programs by restructuring
and post-processing. The rules of these programs define intensionally a set of (learned)
target concepts. They contain many redundancies, which are not superfluous in the sense
that they can simply removed, but which cause (forward) inference procedures to become
rather inefficient. Improvements of both, the programs and the inference procedures, are
extremely important as the rules are used in a robot application to derive higher-level
concepts from sensor observations in real-time.

Our restructuring methods transform a program without changing the coverage of
the original target concepts. They use inverse resolution (see, e.g., [14], [21], [27]), i.e.,
they implement the W-operator (see [14]) as inter-construction for chain Datalog rules.
Thus, our approach is closely related to the one proposed by Sommer [23]. However, his
method FENDER does not yield the result we need. During the restructuring process new
predicates are invented. We combine pairs of existing terms into a new combined term.
As our main goal for introducing new concepts is to speed up inferences, our approach to
concept formation differs from the demand-driven one proposed by Wrobel [28].

During the post-processing phase, some new concepts are merged according to cri-
teria, which have to be specified by the user. The post-processing method performs a
generalization step, which increases the coverage of the original target concepts.

In order to optimize the inference procedure, we use prefix acceptors, which are de-
terministic finite state automata whose input/output alphabets consist of predicates, and
to which we apply a marker passing method. Given a chain Datalog program (original,
restructured, or post-processed), we present two methods, which map it to a prefix ac-
ceptor. The first one structures the rules of the original, non-recursive program in a tree,
which is then mapped to an acceptor. The second one maps any linear chain Datalog pro-
gram to a prefix acceptor. The marker passing method is an efficient inference procedure,
which derives all possible instances of the target concepts via forward inferences. We have
proven, that this method is sound and complete, i.e., it calculates (part of) the minimum
Herbrand model of the program, which has been mapped to the prefix acceptor. We show
the relation between mapping chain Datalog rules in a prefix acceptor and marker pass-
ing, on one hand, and decompositions of chain Datalog programs for query optimization,
on the other hand [7]. In principle, our approach to optimizing chain Datalog programs
and their inference procedures can also be considered as an efficient implementation of
the theoretical concepts introduced by Dong and Ginsburg [7]. The practical relevance of
the methods is shown by their successful application to the robotics domain, which was
developed in the BLearn-project.

In Section 2, we give a short overview of the robotics domain, which motivated most of
the developments presented in this paper. We use examples from this domain throughout
the paper in order to illustrate the methods. In Section 3, we define the logic program-
ming concepts, which we need to characterize the syntax and semantics of chain Datalog
programs. We also show the correspondence between chain Datalog programs and CFGs
([24]), as we make extensive use of CFGs, in order to illustrate the basic ideas of our
methods. In Section 4, we present the restructuring methods as well as the methods,
which map a chain Datalog program to a prefix acceptor. The marker passing method is
explained in Section 5. Section 6 describes the post-processing method and results of the

4 2 THE ROBOTICS DOMAIN

application of the methods to the robotics domain. In Section 7, we elaborate the relation
between our methods and program decompositions. We conclude with a summary and
comments on ongoing and future work in Section 8.

2 The Robotics Domain

Starting point for the work presented in this paper are operational concepts, which have
been introduced in [10]. On one hand, operational concepts can be used to specify high-
level plans for robot navigation. On the other hand, they are symbolically grounded in
robot perceptions and actions, i.e., they can be derived from sensor measurements and
elementary actions. This derivation is accomplished in several inference steps, which are
reflected by the abstraction hierarchy in Figure 1. Operational concepts can be used to
specify the domain knowledge about a specific type of environment (e.g., office buildings),
in which the robot is to navigate. Given this domain knowledge, plan recognition systems
[18] can be used to reason about what kinds of actions might be supported by an observa-
tion, and about what kinds of actions might be performed in order to achieve a goal. This
process involves chaining forward from the observations and backwards from the goal, and
terminating when the two chains intersect. We first consider the forward chaining part,

operational
concepts

‘ perceptlonlntegratlng ‘

| acti on-orlented perceptuaJ
| sensor group featuresl

| bascfeaturesl ‘bascacnons‘

measurements

Figure 1: Abstraction hierarchy

i.e., the left side of the abstraction hierarchy, which accounts for the bottom-up derivation
of perceptual features. The (forward) inference steps are indicated by the non-dashed
arcs. Each arc connects two levels of the abstraction hierarchy. For each inference step,
rules have been learned, such that concepts represented at the level, from which an arc
emanates, appear in the premise of a rule, and concepts, which are represented at the level
at the end of the arc, appear in the conclusion of a rule. An example of a rule', which
derives action-oriented perceptual features from sensor group features is the following:

!We use a Prolog-like notation, i.e., variables begin with capital letters, constants with small letters.

through_door(Trace,Start,End,parallel) <-
sg_jump(Trace,left,T1,T2,parallel) & sg_jump(Trace,right,T1,T2,parallel)
& Start < T1 & T2 < End.

It states, that the robot moved parallely through a doorway in a Trace during the
interval from time point Start to End, if, during a subinterval, the sensors on the robot’s
right and left side perceived the edge grouping jump. Sensor group features are derived,
if sufficiently many sensors, which are adjacent and belong to the same class, have perceived
the same edge grouping;:

sg_jump(Trace,right,TS,TE,parallel) <-
s_jump(Trace,Sensorl,TS,TE,parallel) &
s_jump(Trace,Sensor2,TS,TE,parallel) & adjacent(Sensorl,Sensor2) &
sclass(Trace,Sensorl,T1,T2,right) & sclass(Trace,Sensor2,T1,T2,right) &
Ti1 < TS & End < TE.

This rule states, that the sensors at the robot’s right side perceive a jump during the
time interval form TS to TE during which the robot moves parallely along it, if at least
two sensors, which belong to the class right perceived this grouping. An example of a
rule, which derives sensor features from basic features is

s_jump(Trace,Sensor,X,Y,parallel) <-
stable(Trace,0r,Sensor,X,X1) & incr_peak(Trace,Or,Sensor,X1,X2) &
stable(Trace,0r,Sensor,X2,Y).

It states, that a sensor Sensor has perceived a jump in trace Trace, if it first perceived
stable measurements during the time interval X to X1, an incr peak between the succes-
sive time points X1 and X2, and finally stable measurements during the interval from X2
to Y, while moving parallely along it. We rewrite these rules, in such a way, that we get
rules, which are free of constants. For our example, we get

s_jump_parallel(Trace,Sensor,X,Y) <-
stable(Trace,0r,Sensor,X,X1) & incr_peak(Trace,Or,Sensor,X1,X2) &
stable(Trace,0r,Sensor,X2,Y).

The predicates, which appear in the head of these rules, are sensor feature predicates,
which can be characterized as

sf(tr, s, from,to),

where sf denotes a predicate symbol, which describes an object, which has been perceived
during a trace, represented by the first argument of sort tr, by a sensor, represented by
the second argument of sort s, during the time interval, whose start point is represented
by the third argument of sort from, and whose end point is represented by the fourth
argument of sort to. The predicates, which appear in the premise literals of the rules, are
basic feature predicates, which can be characterized as

bf(tr,o,s, from,to),

where bf denotes a predicate symbol, which describes the tendency of change of the
measurements, which have been perceived during a trace, represented by the first argument

6 3 LOGIC PROGRAMMING CONCEPTS

of sort tr, by a sensor, represented by the third argument of sort s, which has a certain
orientation, represented by the second argument of sort o, during the time interval, whose
start point is represented by the fourth argument of sort from, and whose end point is
represented by the fifth argument of sort to. We use SF, to denote the finite set containing
the sensor feature predicates (here: 16 predicates), i.e.,

SF ={ s_jumpparallel(7T7s,Ss, X from, Yeo),s-jump_diagonal(Trs, Ss, X froms Yio),
s_convex_straight to(T7s, S5, X from, Yio), - - -}-

BF denotes the finite set of 13 basic feature predicates, i.e.,

BF ={ stable(Try,0,, 55, X trom, Yio), decreasing(Trsy, 0o, Ss, X from, Yio),
incr_peak(1ry, Oy, Sy X from, Yio), nomovement(1ry,, O, Sy X from, Yio),
something happened(Trs, Oo, S5y X froms Yio)s -+ -} -

The rules are chain Datalog rules, which are the topic of this paper. In the next
Section, we will introduce the logic programming concepts, which we need to characterize
their syntax and semantics.

3 Logic Programming Concepts

3.1 Definitions

We use the notation and definitions given in [11] and [3]. We assume the existence of
four finite, pairwise disjoint sets, SO, C'S, PS5, V.5, containing sort, constant, predicate,
and wvariable symbols. Sort symbols start with small letters and are underlined (e.g.,
tr,o,s, from,to,...). Constant symbols start with small letters (e.g., z,y, z, . ..), predicate
symbols with small letters (e.g., a,b,¢,...,p,q,7,...), and variable symbols with capital
letters (e.g., Tr, 0,5, X,Y, Z,...)% Vs denotes, that variable V' refers to sort s. A signature
is defined by the tuple (50O,CS, PS,a), where « is a function, which maps a predicate
symbol to a sequence of n sort symbols, which denote the sorts of the respective arguments.
We restrict a term to be either a constant or a variable. An atom is a formula of the form
p(t1,...,t,), where p is a predicate symbol and ¢y,...,%, are terms. A literal is either an
atom or its negation. A clause is a closed formula® of the form VX .. NXy(L1V...V L),
where X1,..., X, are variables and L4,..., Ly are literals. Let By,..., B, and Ay,..., A,
be atoms. Then, the clause VXy...VX, (B1 V...V B,V -4 V...V —-A,,) is denoted by
Bi,....B, «— Aq,...A,. A program clause or definite clause is a clause with n = 1. A
unit clause or fact is a clause with n = 1 and m = 0. A program rule or simply a rule
is a clause with n = 1 and m > 0,ie., B «— Ay,...,A,,. B is called the head of the
rule, the conjunction Ay,..., A, is called the body of the rule. A rule is safe (generative),
if all variables, which occur in the head of the rule, also occur in the body of the rule.
A logic program is a finite set of definite clauses. A Datalog program is a function-free
logic program, such that each rule of the program is safe. The safety condition together
with the requirement that each fact belonging to a Datalog program be a ground fact

2Subscripts and superscripts can be applied to the symbols used for constants, variables, and predicates.
FA formula is closed if every variable occurring in it is bound by a quantifier.

3.1 Definitions 7

ensures, that only a finite number of facts can be deduced from a Datalog program (see
[3]). Ullman et. al. (see [24]) distinguish between basic and extended logic programs. A
basic logic program, which is denoted by Py, is a finite set of rules containing two types of
predicates:

¢ IDB (Intentional Database) predicates, which appear in rule heads and, possibly, in
rule bodies; p,q,... denote IDB predicates.

¢ EDB (Extensional Database) predicates, which appear in rule bodies only; a, b, ¢, d, ...
denote EDB predicates.

e 71,79,...denote predicates, which may either be IDB or EDB predicates.

IDB(P1) and EDB(Py) denote the intensional and extensional database predicates, re-
spectively, of the basic logic program Pj. An EDB fact is a ground fact over an EDB
predicate, i.e., a fact with constants as arguments. If 4;,¢=1,2,...and B denote atoms,
then %L',i =1,2,...and B denote ground facts over the respective predicates. An EDB
instance, denoted by Py, is a finite set of EDB facts. An extended logic program, denoted
by P, is the union of a basic logic program and an EDB instance, i.e., P = P UPg. In
the following, we assume that the rules of a basic program are Datalog rules.
Furthermore, we assume in certain contexts that the programs are linear.

Definition 1 (/24]) A program is linear, if it contains rules, each of which has at most
one recursive subgoal and at most one IDB subgoal.

We consider basic logic programs with rules of a special form. We use the definitions given
in [24] for elementary chain rules, elementary chains, left and right blocks. An elementary
chain rule is a rule containing only binary predicates of the form

p(va) — Tl(Xle)v TQ(leXQ)v B '7Tk+1(Xk7Y)7 (1)

where £ > 0, p and r;,2 = 1,...,k + 1 denote predicates, and X,Y, X;,;7 = 1,...,k
are variables. Let C' be an (elementary) chain rule and A an atom occurring in Chegy,
e.g., r(X,Y). Then, we say that A starts from variable X and leads to variable Y. Let
from(A) denote the function, which maps an arbitrary predicate to its starting variable,
and to(A) the function, which maps a predicate to its ending variable. Let X;, ¢ =1,...,k
be the variables occurring in Cjoqy and not in Cheqq. X; is called a chaining variable, if
Chody contains two atoms, Ay and Aj, such that to(A;) is equal to from(As), e.g., given
Ay = ri21(Xio1, Xi) and Az = (X, Xi41), X, is a chaining variable. In principle, clauses
can be considered as sets of literals, whose order of appearance does not matter. In the
special case of chain rules, the atoms in the body of the rule can be sorted according to
the relation <« , which we define with the help of chaining variables as follows: Let A, A
be two atoms occurring in Choqy. Then, Ay precedes Ay, Ay < Aj, if to(Ay) is equal to
from(Az). Given chain rule rl, we have r1(X, X1) < 73(X1, X3) € ... <€ 7p41(X, V).

Although this relation has not been stated explicitly in [24], it leads to their definition
of an elementary chain, which is an ordered list of binary atoms, e.g., the ordered sequence
of premise atoms of Rule 1, i.e.,

r1(X, X1), r2(X1, Xo), oo s g1 (Xg, V). (2)

8 3 LOGIC PROGRAMMING CONCEPTS

The variables X and Y are called the left block and right block of the chain.

Correspondingly, we can define a relation on the chaining variables. Let X; and X; be
two variables of the set of variables occurring in the chain of Rule 1,i.e., { X, Y, Xy, ..., X}.
We say that X; leads to X;, X; ~ X;, if there exists an atom A € Cjoqy, such that
from(A) = X; and to(A) = X;. Given the elementary Chain 2, we have X ~ Xy ~
X9~ ...~ X ~ Y. Note, that both relations, € and ~», are intransitive, irreflexive,
and asymmetric for (elementary) chain rules. Thus, they are neither a weak nor a strict
order. A further restriction is, that the chaining variables have to be unique in the sense,
that in a chain, there do not exist two atoms with the same starting and ending vari-
able. The chain a(X, X1),b(X1, X2), (X1, X2),d(X3, X3), for example, does not satisfy
this requirement.

3.2 Semantics of logic programs

Given a function-free extended logic program P , the Herbrand universe of P, Uy (P), is
the set of all constants appearing in P *. The Herbrand base of a program P, Bg(P), is
the set of all ground atoms, which can be formed from the predicates in P and the terms
in Uy (P) and which obey the sort conditions. An interpretation is a subset of U (P).
Given a function-free logic program P . there is a mapping Tp from interpretations to
interpretations. Let I be an interpretation. Then, Tp is defined as follows:

Tp(I) = {B€Bu(P) | Co=(B— Ap....Ap)om>0, (3)
is a ground instance of a clause C' € P and %11, .. .,Zlm el

Van Emden and Kowalski have shown in [25], that the least fixpoint of T'p is the minimum
Herbrand model of P°(see also [2]). In the context of computing the minimum model,
we mean the IDB-portion of the minimum Herbrand model. Tp(f) denotes the i-th
application of the Tp-mapping, with Th(f) = @ and Tlf,"l([) = Tp(Th(I)). The fixpoint
of the Tp-mapping is denoted by [J;Z, Ti)(@). In the function-free case, there exists a
natural number w, such that T%(0) = J2, Th(0), i.e., the fixpoint, and thus the minimum
Herbrand model, is determined after w applications of the Tp-mapping. As we deal with
basic logic programs Py, we use T‘f,I(PE) to denote the fixpoint of Tp, (and, thus, the

minimum Herbrand model) of the program P = P; U Py with T%I(PE) = Pp.

Definition 2 (/2]) Two basic logic programs are equivalent with respect to a set of IDB-
predicates Z, if the minimum models of both programs, extended with the same EDB,
restricted to the predicates in I, are the same.

Definition 3 Given an extended logic program P = PIUPE and a set of target predicates
I C IDB(Py), the coverage for T is the subset of the minimum Herbrand model

Covp(T) = {piltrs- .. t) | pi € T and pi(t....1,) € T (Pp)}.

*Note, that in the context of general logic programs, a term can be a complex structure built from
function symbols, variables, and constants. In that case, the Herbrand universe does not coincide with the
set of constants (see, e.g., [25]).

®The Herbrand universe has to contain at least one constant to guarantee the existence of a minimal
model.

3.3 Correspondence between chain Datalog programs and CFG’s 9

So, two basic logic programs, extended with the same EDB instance Py, have the same
coverage for 7, if they are equivalent with respect to 7.

Given a function-free extended logic program P, a derivation tree for a ground fact/atom
B is a tree with atoms as nodes and edges between parents and children, such that:

1. BY is the root.

2. For every internal node él, whose children are A, .. .,AL, there is some ground rule
instance C'o of C' € P, such that Co is Bl — A}, .. .,AZ.

3. Every node is in the minimum model of P ; leaves are not necessarily in the EDB.

A complete derivation tree is one in which all leaves are EDB facts. A path in the
derivation tree is a directed path away from the root. The fringe of the tree is the set of
its leaves.

3.3 Correspondence between chain Datalog programs and CFG’s

In order to illustrate the correspondence between chain Datalog rules and CFG’s, we use
the examples and the lemma given in [24]. Elementary chain rules can be represented by
nodes, which represent their arguments, and by directed arcs between the nodes, labeled
by predicate symbols. Given the elementary chain

QU V), p(V,W), nx(W, X), qo(X, Y),q2(Y, Z),

we get the graph
vevLwL x Ly 2z

which reflects the relation ~» between variables. The elementary chain rule

P(X,Y) — qi(X, X1), p(X1, X2), q2(X2, Y)

can be represented as
XLy x4 xLx, 8y

By ignoring the variables, by treating IDB predicates as grammar non-terminals, EDB-
predicates as grammar terminals, and by inverting the implication arrow, we can rewrite
the above mentioned elementary chain rule as grammar production p — ¢y pgs.

Context-free grammars A context-free grammar (CFG) (see, e.g., [9]) is a 4-tuple G' =
(V,X, P,s), where V and ¥ are disjoint, finite sets of variables and terminals, respectively.
The special variable s € V' is called the start symbol. P is a finite set of productions; each
production is of the form p — «, where p is a variable and a is a string from (VUY). Given
a production p — «a, p is called its head and « its body. Let = be the relation defined
on strings in (V U X)" as follows: Let p be a variable and a, 3,7 be strings in (V UX)*. If
p — a is a production in P, then 8py = Bavy. Let =, be the reflexive, transitive closure
of =¢. The set ﬁ(G) ={w € ¥*|p; =" w} is called the language generated by G. A set L
is a context-free language (CFL) if I = L(G) for some context-free grammar . We define

10 3 LOGIC PROGRAMMING CONCEPTS

grammars, Gy and Gy, to be equivalent, if L(Gy) = L(Gy). We restrict ourselves to e-free
grammars® and languages (¢ denotes the empty word).

Analogous to Ullman and van Gelder [24], we define for each basic program P a
context-free grammar.

Definition 4 Let Py be a basic chain Datalog program. The grammar, which corresponds
to Py is GPI = (V, X, P,s), where V = IDB(P1) U {s}, where s is the starting symbol not
occurring in IDB(P1) and EDB(Py). ¥ is defined as ¥ = FDB(Py) and

P={p—=ry,r9,....7, | Py contains a rule of the form
p(X,Y) = (X, X1),ro(X1, Xo)y ooy T X, V))
U {s—plpelIDBPr)}.

Ullman and Van Gelder have proven in [24] the following Lemma, which allows us to
characterize chain programs with the help of their associated context-free grammars:

Lemma 1 Let Py be an elementary chain program, and let G be the associated CFG in
which each production corresponds to an elementary chain rule of Py as described above
(or is of the form s — p,p € IDB(Py)). Let predicate p in Py correspond to nonterminal
pin G, and let s — p be a production of G. Let P be an EDB instance for Py and let
P =PiUPg. Let F be a ground elementary chain all of whose atoms are in P, and
whose left and right blocks are constants, say x and y, respectively. Let F be the string
of terminal symbols of G that corresponds to F, i.€., the string of EDB predicate symbols
that occur in I Then,

F is the fringe of the complete derivation tree of p
X =
F is in the language generated by G

In the following sections, we shall extensively make use of the correspondence between
chain Datalog programs and context-free grammars, in order to characterize the programs
in terms of properties of the associated context-free languages.

3.4 Non-elementary chain Datalog rules

We now consider the rules, which have been learned, in order to derive sensor features
from basic features. Given a basic logic program consisting of these rules, the basic feature
predicates in the set BF are EDB predicates, the sensor feature predicates in the set SF
IDB predicates. An example rule from Section 1 is

s_jump.parallel(7r, 5, X,Y) < stable(7Tr 0,9,X,X;),incrpeak(Tr, 0,5, X;,Xy),
stable(1r,0,5,Xs,Y). (4)

5An e-free grammar is a grammar with no productions of the form p — ¢. An e-free grammar corresponds
to the requirement, that a basic logic program does not contain facts/unit clauses.

3.5 Constraints 11

Rules like this one are non-elementary chain rules”. The boldly printed variables are
the variables of the corresponding elementary chain rule. FEach basic feature predicate
starts from the variable at its fourth argument position and leads to the variable at
its fifth position. In this domain, these variables denote the starting and end point
of the time interval during which the basic feature is perceived. Thus, we have, e.g.,
from(stable(Tr,0,5,X,X1)) = X and to(stable(Tr,0,5,X,X1)) = X;. The sequence

of premise atoms
stable(1r, 0,5, X, X1), incrpeak(Tr, O, 9, X1, X2),stable(Tr,0,5, X3, Y). (5)

is a non-elementary chain, where the X;,¢ = 1,2 are chaining variables, and X and Y are
the left and right block, respectively. Here, the relation < coincides with the chronological
order, in which the basic features are observed. The other variables guarantee, that the
sequence of basic feature atoms refers to the same trace, T'r, and to the same sensor, 9,
which does not change its orientation, O, during the time interval from X to Y.

In the following, whenever we talk about chain Datalog programs for deriving sensor
features from basic features, we assume to be given the signature (50,CS, P9, a), where
SO = {tr,o,s, from,to,...}, and PS = {a,b,c,....q,....p,7,...}. We divide PS into
two disjoint sets PSgp = {a,b,c,...,q} and PSsp = {p1,p2,P3:---sPn}, 1€, a,b,c, ...
denote some of the predicate symbols of the predicates in BF and the p; denote some
predicate symbols occurring in SF. Then a is defined as follows

Va € PSBF a(a) =
Vp; € PSsp a(pi) =

If we introduce the sort bool, we can rewrite these statements as

Ya € PSgrp a:tr,o0,s, from,to — bool
Vp; € PSgp p; :tr,s, from,to — bool.

Note, that for a non-elementary chain rule, e.g., Rule 4, we get the corresponding elemen-
tary chain rule, by omitting the variables T'r, S, and O

s_jump.parallel(X,Y) < stable(X,X;),incr peak(Xy,X;),stable(Xs,Y).

Vice versa, we can extend an elementary chain rule by introducing the variables 7'ry., O,,
and S, at the appropriate positions (according to a of the signature) of the sensor and
basic feature predicates in PSpg and PSgp. Given that, we can use CFGs to characterize
also these non-elementary chain rules.

3.5 Constraints

Given our domain of application, EDB predicates are basic feature predicates and 1DB
predicates are sensor feature predicates. From an ”object-oriented” point of view, a sensor
features represent a class of objects with 5 properties: its type (predicate name), the trace,

"Note, that the rules are also safe, as every variable in the head of the rule also appears in the body of
the rule.

12 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

trgr, during which it has been perceived, the sensor, sgp, which has perceived the object,
the start point of a time interval, fromgp, and its end point, togp. Correspondingly, a
basic feature has as properties its type, a trace, trgg, a sensor, sgg, and its orientation,
opr, a start point, fromgr, and an end point, togp, of the time interval during which
it was perceived. In the following, we define the functions, which determine for a given
predicate/object its respective property. The functions trsg, ssp, fromsg, and togg, on
one hand, and trgr, Ogr, Sgr, frompr, and togy, on the other hand, map an atom over a
sensor (basic feature) predicate to the arguments, representing their property values. For
example, tr(a(t1,90,s5,1,8)) = t1 and to(p1(t1,s5,1,15)) = 15.

We define a constraint to be an equation of the form Ppoc = V, where Poc denotes
a property of an instance of (predicate) class OC, and V denotes its value(s). A set of
constraints is denoted by roc = {Poc1 = Vi,...,Poc, = Vip}. If we apply a set of
constraints to a predicate A of a specific class, the result, denoted Axpc, is an atom,
ground or non-ground, over the respective predicate, whose arguments representing the
properties are set to the respective property values. For example, if we apply the con-
straints kgp = {trgr = {1, 0pr = 90, 8gr = 85, fromgr = 8} to the basic feature predicate
A = b(Try, 0o, 85, Xrom, Yio), the result Arge is b(11,90,55,8,4,), where _, denotes
an arbitrary variable of sort to. If we apply the constraints sy = {trsr = tl,8sr =
55, fromgp = 8, tosy = 15} to the sensor feature predicate B = pl(174, Oy, Ss, X from, Yio),
we get Brgp = pi(t1,5,1,1,15). We use constraints in the marker passing method pre-
sented in Section 5.

4 Structuring Chain Datalog Rules in Prefix Acceptors

There are several characteristics of basic logic programs consisting of non-elementary chain
Datalog rules, e.g., those, which derive sensor features from basic features. Consider the
non-recursive example program Py

p(Tr, 9, X,Y) — a(Tr,0,5,X,X;

(0(Tr,0,9, X1, X2),¢(Tr,0,5,X5,Y). (6)
pa(Tr, 5, X,Y) (Tr,0,5,X,X,

(

(

b
,b(TT,O,S,Xl,XQ),C(TT,O,S,XQ,Y). (7)
,b(TT,O,S,Xl,XQ),C(TT,O,S,XQ,Xg), (8)

1

a
ps(Tr, 9, X,Y) — a(Tr,0,5,X,X;
d(Tr,0,5,X3,Y
pa(Tr, 9, X,Y) — b(Tr, 0,5 X,X1),e(Tr,0,8,X1,X3),d(Tr,0,5,X3,Y). (9)
ps(Tr, 9, X,Y) — b(Tr,0,5 X,X1),e(Tr,0,8,X1,X3),d(Tr,0,5, X3, X3), (10)
a(Tr,0,8, X5, X4),b6(Tr,0,5,X4,Y).

S e e e e e

where p1, pa, p3, pa, ps denote sensor feature predicate symbols in PSq and a, b, ¢, ddenote

basic features predicate symbols in PSgg. We have EDB(Py)= {a,b,¢,d} and IDB(P})=
{p1, P2, 3, P, s}

The first characteristic is, that the IDB predicates, i.e., the sensor feature predicates
occur only in rule heads. Thus, the program has inference depth 1. In the example
program, the premise literals are sorted according to the relation <. In our domain, this
reflects the chronological order of the perceived observations. Given that, there exist a lot
of rules, whose premise chains are prefixes of premise chains of other rules.

4.1 Sorting the premise literals of chain Datalog rules 13

Definition 5 A chain Chy is a prefix (chain) of chain Chgy, if there exists a substitution
o and a chain Chs, such that Chy = ChioChs.

The chain Chy = a(U, Uy),b(Uy, Uy), for example, is a prefix of chain

Chg = Q(X, Xl), b(Xl, XQ), C(XQ, Y) with ¢ = {U/X, Ul/Xl, UQ/XQ} and Chg = C(XQ, Y)
Furthermore, there exist ambiguous rules, i.e., rules with the same premise but different
conclusions. Program Py is used to derive via forward inferences higher-level concepts
from a sequence of observations.

Both characteristics, prefix chains and ambiguous rules, cause during evaluations via
forward inferences, that the same input fact may have to be matched redundantly against
premise literals of several rules. Assume, for example, that the robot perceives the ground
chain of basic feature predicates, i.e., that the basic logic program P gets as ”input” the
EDB instance (ground chain), which is an example of a sequence of basic features, which
the robot perceives, while it is moving around

Py = {a(t1,90, s5,1,8),b(11,90, 55,8, 10), ¢(t1,90, s5, 10, 15), d(t1, 90, s5, 15, 17)}.

Then, the first EDB fact, a(t1,90,s5,1,8), matches the first premise atom of rules r6,
r7, and r8. Although it cannot possibly lead to a successful derivation, the fact can, in
principle, also be matched to the fourth literal of rule r10. For the second EDB fact,
b(t1,90, s5,8,10), there exists a matching premise atom for every rule of the program Pj.
In this case, it also makes no sense to match the fact with the fifth premise literal of rule
r10. The minimum Herbrand model of the extended logic program P = Py U P is equal
to the fixpoint of the TPI—mapping

T$,(PE) = {p1(t1,55,1,15), pa(11, 5, 1,15), p3(11, 85, 1,17), py(11, 5,8, 17)}.

Our goal is, to structure the rules in such a way, that the multiple and superfluous matches,
mentioned above, are avoided during the calculation of the minimum Herbrand model.

In this section, we present methods, which map a chain Datalog program to a prefix
acceptor. We apply a marker passing method (see Section 5) to this acceptor, in order to
calculate via forward inferences the minimum Herbrand model of the original program Pj.
The prefix_tree method generates from a set of chain Datalog rules a prefix tree, which
is then mapped to a prefix acceptor. We can achieve the same result, by restructuring
the original program Py, such that the resulting program P} can be mapped directly to
a prefix acceptor. Both methods take as input a chain Datalog program, which satisfies
the following requirements: The program is non-recursive, the IDB predicates occur only
in rule heads, and the premise atoms of each rule are sorted according to the relation
<. FEach non-recursive program, in which IDB predicates occur also in rule bodies, can
be transformed to one with no IDB predicates in rule bodies by unfolding each rule with
IDB subgoals in all possible ways. In general, clauses can be considered as sets of literals,
whose order does not matter. In the next subsections, we present methods, which sort
the premise literals of a chain Datalog rule according the relation <. In the sequel, we
present the prefix tree and restructuring methods.

4.1 Sorting the premise literals of chain Datalog rules

We present two methods for sorting the premise literals of a chain Datalog rule, which
exploit its syntactical features. The first one, sort, assumes, that for the given rule two

14 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

requirements are satisfied
1. The relations ~ and < have to be intransitive, irreflexive, and asymmetric.
2. There are no premise literals, which have the same starting and ending variable.

The second method, sort_dc, does not require assumption 1 at the price of background
knowledge about the data classes, to which the predicates of the rule belong. To be more
specific, the user has to specify the functions from and to for each data class. In our
domain of application, the starting variable is the one, which denotes the start point of
the time interval, during which a sensor (basic) feature is perceived. The ending variable
is the one, which represents the end point of the time interval. In this case, we can use the
functions from(A)and to(A), which first determine the data class of literal A and then call

the function for the respective property of the data class, e.g., fromge(A) (fromge(A))
and togp(A) (tosr(A)).

4.1.1 The sort-method

If assumptions 1 and 2 are satisfied, each chaining variable X; occurs in exactly one
literal as starting variable and in one other literal as ending variable. Let vars(L;) and
vars({L1,...,L,}) denote the variables occurring in literal L; and in the set of literals
{Li,...,L,}, respectively. Given a rule C' = Cheqq < Ly,..., L, we determine for each
pair of literals, L;, L;,i # j,¢,7 € {1,...,n} the shared variables vars(L;)Nvars(L;). For
the example rule

ps(Tr, 8, X,Y) — d(Tr,0,5 X3,Y),a(Tr,0,5 X,X1),c(Tr,0,5, X2, X3),
b(TT,O, S,Xl,XQ)

we get

Tr,0,9,X5Y), a(Tr,0,5X,X1)): {Ir,0,5}
() AT, 0,5, Xs}
()): {Tr,0,5}

, o(Tr,0,8,X9,X3)): {Tr,0,5}
() AT, 0,5, X1}
() AT, 0,5, Xo}

Tr,0,59,X3Y), a(Tr,0,5 X,X1)): {0}
() {0, X5}
()): {0}

, o(Tr,0,8,X5,X3)): {0}
() {0, X4}
() {0, X2}

4.1 Sorting the premise literals of chain Datalog rules 15

Furthermore, we remove from each set the variables occurring in any other set:

Tr,0,5,X3Y), aTr,0,5 X,Xy1)): 0
() {Xs)
() 0

, o(Tr,0,5,X2,X3)): 0
() {Xqd
() { X2}

We consider only those pairs, which are associated with non empty variable sets. Given
these partial chains of length 2, we try to extend them by merging, until we are left with
a chain of length n. For our example, we get in the first iteration the extended chains

a(Tr,O, S, X, Xl),b(TT,O, S, Xl,XQ),C(TT,O,S, XQ,Xg)
and
b(TT,O, S,Xl,XQ),C(TT,O, S,XQ,Xg),d(TT,O, S,Xg,Y).

In the second iteration, we get
a(TT,O,S,X,Xl),b(TT,O,S,Xl,XQ),C(TT,O,S,XQ,Xg),d(TT,O,S,Xg,Y).

We still have to check the left and right block. The first premise L,, of the sorted chain
Ls,,..., L, hastoshare at least one variable (left block) with C.qq, which does not occur
in any other literal of the chain. Analogously, the last premise L, has to share at least one
variable (right block) with Cjeqq, which does not occur in any other literal of the sorted
chain. This test succeeds for our example and the sorted chain rule Chepq — Lgy,..., Ls,
is returned. The pseudo-code of the method is given as Algorithm 1 below.

As we do not know, whether X (Y) is the left or right block, two sorted premise chains
are possible. If X is the left block, we have

ps(Tr, 8, X,Y) — a(Tr,0,5 X,X1),0(Tr,0,5,X1,X3),c(Tr,0,5, Xq, X3),
d(Tr,0,5,X3,Y)

with
X2y X252 x5 x4y,
If Y is the left block, we have
pg(TT,S,X,Y) — d(TT,O,S,Xg,Y),C(TT,O,S,XQ,Xg),b(TT,O,S,Xl,XQ),
a(Tr,0,5,X,X1)

with
vExcva xS x4 x4 X,

If assumptions 1 and 2 are not satisfied, the method will not find a sorted premise.
Take for example the rule

p(X,Y) — a(X, X1),b(X1, X2), e(Xo, X1),d(X1, X1),e(X1,Y)

16 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

Sort(chead — Cbody)
begin

1. Pairs = {(LZ',L]')|LZ',L]' € Cbody,i 75 j},
2. for each pair (L;, L;) € Pairs
begin
(a) LiL; Vars :=wvars(L;) Nvars(L;);
(b) L;L; Vars := L;iL; Vars — vars(Chead);
(¢) LyL; Vars := L;L; Vars —J, 12 vars(Ly, Li);

end
3. Pairs := Pairs — {(L;, L;j)|L; L; Vars = 0};

4. if for each (L;, L;), L;L; Vars contains at least one variable, which does not occur
in any L; Ly Vars, with ¢, j £k,
then

(a) SortedChain := extend_chains(Puairs, |Cyody|);
% let SortedChain = Ly ... Ly;

(b) Left := (vars(L1) Nvars(Cheqq)) — vars({La, ..., Ln});
(¢) Right .= (vars(Ly,) Nvars(Cheqq)) —vars({L1, ..., Ln_1});
(d) if Left # Right, then return SortedChain;

else return failure;

end
Algorithm 1: sort
with
XLy X2 x,2x,Sx, 4 x, 5y
and

R. = {(Xle)v (leXQ)v (XQle)v (leXl)v (ley)}v

which is not asymmetric and not irreflexive. If we apply the method for sorting the literals,
we will be left without any possible pairings after step 3 of Algorithm 1.

4.1.2 The sort_dc-method

If we know for each predicate, which argument/property represents its starting and which
one its ending variable, a much more efficient algorithm can be used. Given a rule Cpeqq —
Li,...,L,, we determine the starting and ending variable of Cheqq, from(Cheqq) and
to(Cheqd), which are the Le ft Block and RightBlock. Given the Le ft Block, we search for
a literal L € Cjody, whose starting variable equals the LeftBlock. This literal becomes
the first member of the sorted premise. We update Le ft Block with to(L) and repeat the
search for the next literal until we have a chain of length [Cjoq4y|. The pseudo-code for the
method is given as Algorithm 2 below.

If we use Algorithm 2, assumption 1 does not have to be satisfied. Assume, that for the
binary predicates p,a,b,c,d, e, the starting variable is represented by the first argument

4.1 Sorting the premise literals of chain Datalog rules 17

sort_dc(Chead — Chody)
begin

1. LeftBlock := from(Chead);
2. RightBlock :=to(Cheqa);
3. Premise := Chpoay;

4. 1:=1;
5

. while Premise # ()

begin
(a) select L € Premise, such that from(L) = LeftBlock;
(b) LeftBlock :=to(L);
(¢) Premise .= Premise — {L};
(d) L; =
(e) i:=i+ 1

end

6. if to(L;_1) = Right Block

//_/_/

then return Ch.qq — L1,...,L;i_1;
else backtrack through step ba;

end

Algorithm 2: sort_dc

and the ending variable by its second argument. Then, given the rule
p(X,Y) — e(X1,Y),e(X, X1),a(X, X1),d(X1, X1),b(X1, X2)
the method sort_dc will find the ordering
p(X,Y) — a(X, X1),b(X1, X2),e(X2, X1),d(X1, X1),e(X1,Y),

which the method sort is not able to find. It is even possible, that the starting and ending
variable of a predicate is represented by the same argument. In our application domain,
it means, that the premise literals of rules including events happening at a time point
instead of during a time interval can be sorted. An example of such a rule (see [22]) is

standing(Tr, X,Y, Per PDur, PSide, L Perc) — tp_perception(Tr, X, Perc, PDir, PSide),
stand(Tr, X,Y).

where the tp_perception-predicate represents an observation at time point X, for which

we define from and to, such that both return the second argument.

If assumption 2 is satisfied, sort_dc will find one solution®. The method does not work
if assumption 2 is not satisfied. Take for example the rule

P(X,Y) — d(Xy,Y), a(X, X1),b(X1, X2), (X5, Y).

#In order to make the algorithm sort output only one solution, we have integrated the heuristic that
the starting variable has to occur before the ending variable in Cheqa.

18 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

We have b(X1, X3) € ¢(X1, Xg) and ¢(Xy, X2) £ b(Xy, X2). A unique ordering is not pos-
sible. Algorithm 2 finds the chain a(X, X1),b(X1, X3),d(X2,Y) without being able to in-
clude ¢(X1, X3). In our application domain, rules of this type represent events/observations
which happen in parallel, i.e., during the same time interval. Therefore, the sorting method
cannot deal, for example, with rules for sensor group features, such as the one for sg_jump
given in Section 2.

4.1.3 Related work

The methods, presented above, sort the premise literals according to the relation <, which
is defined via the relation ~ on the chaining variables (see Section 3). This precedence
relation excludes equality (i.e., in terms of the application, parallel events), if the ~-
relation satisfies assumptions 1 and 2. Motivated by the application, the goal of sorting
is to make the sequence of premise literals reflect the chronological order of the events, in
order to support efficient evaluation methods (see Section 5).

Ordered clauses are used in logic programming as well as in inductive logic program-
ming. In logic programming, ordered clauses (no matter how the ordering itself has been
achieved) are used to support efficient inference procedures, e.g., linear resolution (see [4]).
In inductive logic programming ordered clauses are used to define certain characteristics in
order to restrict the hypothesis language or to guide the search for hypotheses. Assuming
ordered clauses to be given (no matter how the ordering has been achieved), Muggleton
and Feng [16] define the depth and degree of their premise literals. By specifying maximal
values on both, depth and degree, the hypothesis language is restricted. Morik et.al. [12]
sort the premise literals of a rule in order to prune the search in the hypothesis space.
They define the relation <p between premise literals via the minimum distance of the
variables occurring in the literals. But, given the rule Cyoqy «— L1, Lo, L3, Ly

ps(Tr, 9, X,Y) — a(Tr,0,5 X,X1),0(Tr,0,5,X1,X2),c¢(Tr,0,5, Xq, X3),
d(Tr,0,5,X35,Y).

the minimal distance of a variable occurring in L;,¢ = 1,2, 3,4 is the same, namely 1, for
each literal. This is due to the fact, that each literal shares a variable with the rule head,
i.e., vars(Cheqq) Nvars(L;) # 0. So, for the purpose of hypothesis testing, each permu-
tation of Ly, Lo, Ls, Ly would do equally well. Obviously, we do not get deterministically
the result, which we need for our purpose.

4.2 The prefix tree-method

In this section, we present the prefix_tree method, which maps a chain Datalog program,
which satisfies the following conditions

C1: the rules are not recursive,
C2: 1IDB predicates occur only in rule heads, and

C3: the premise literals of each rule are sorted according to the relation <,

4.2 The prefix tree-method 19

to a prefiz acceptor, which is a deterministic finite state automaton, whose input and
output alphabet consists of predicates, not of propositional constants. This method has
already been presented in [19] and [20]. It takes as input a set of cases, which associate
a target predicate, i.e., an IDB predicate, with a sequence of sorted defining predicates,
i.e., a premise chain of EDB predicates. The cases can be ground or non ground. In
the latter case, they represent the set of chain Datalog rules, which are to be mapped
to the prefix acceptor. In [19] and [20], we used ground cases as a training set, such
that each case associated an example with its relevant background knowledge. So, the
prefix tree method can be used to infer the prefix acceptor directly from the training
data without generating the rules explicitly, or it can be applied to the chain Datalog rules,
which may have been learned by some other learning algorithm (see Figure 2). The cases

Training set
consisting of
ground cases

Learning

agorithm prefix_tree |—= Prefix Acceptor

Set of
chain Datalog rules
represented as
cases

Figure 2: The prefix tree method

are organized in a tree, such that for each case [Cheqq, L1, ..., L], there exists one path
beginning at the root node, such that the labels of the edges on the path are unifiable with
the respective literal L;,7 € {1,...,n}. Asin [19], [20], the emphasis was on inferring the
probabilistic automata, the algorithm (see Appendix A.l) contains some details, which
are not so relevant for the application to rules. Here, we present the method from the logic
programming point of view. In order to illustrate the basic ideas, we make extensive use
of the regular grammars, which correspond to the chain Datalog programs. Furthermore,
our presentation takes into account, that prefix acceptors for the propositional case have
already been introduced by Angluin in [1].
We illustrate the method with our example program Py

pm(Tr, 8, X,Y) — a(Tr,0,5, X,X1),0(Tr,0,5, X1, X2),c(Tr,0,8, X5, Y).
p2(Tr, 5, X,Y) (Tr,0,5,X,X1),0(Tr,0,5, X1, X2),c(Tr,0,5, X3,Y).
(b
(

1

a

ps(Tr, 8, X,Y) — a(Tr,0,5 X,X1),0(Tr,0,5,X1,X3),c(Tr,0,5, Xq, X3),

d(Tr,0,5,Xs5,Y).

pa(Tr, 8, X,Y) — b(Tr,0,5 X,X1),¢(Tr,0,8,X1,X2),d(Tr,0,5,X3,Y).

ps(Tr, 8, X,Y) — b(Tr,0,5 X,X1),¢(Tr,0,5, X1, X2),d(Tr,0,5, Xq, X3),
a(Tr,0,5, X5, X4),0(Tr,0,9,X4,Y).

According to Definition 4 (see Section 3), the CFG corresponding to Pyis G = (V, X, P, s)
with V' = {s, p1, p2, p3, P4, ps} and ¥ = {a,b, ¢, d}. P is the set containing the productions

s — N |p2|p3|p4|p5

20 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

m — abe

py — abe

ps — abed
py — bed

ps — bedab.

The language, generated by G, is ﬁ(G) = {abe, abed, bed, bedab}, which is a regular one. It
is accepted by the DFA illustrated in Figure 3. Note, that we can rewrite (G according to

Vde

D D B G O

Figure 3: DFA, which accepts the language L(G) = L(G")

the transitions of the DFA, such that we get the equivalent, left-linear, regular grammar

G/ = (Vlv 2/7 Plv 8) with V/ = {571)171)271)371)47])57 GasYabs Qabes Yabeds Gbs Gbes Gbed s Ybeda s chdab}
and X' = {a,b,c,d}. P’ is the set of productions

s — pilp2|pslpalps

P11 — Gabe Qbeda — Gbed @

P2 — Gabe Qabe — qab €

P3 — Qabed Qoed — Ghe d

Pa = Qbed Gy — Gad

Ps = Gbedab G — B C
Qbedab — Gbeda b G — a
Qabed — Gabe d @ — b

We use the strings in i(G) to generate the prefix acceptor. A string u is a prefiz of a
string v, if and only if there exists a string w, such that ww = v. Let L be a set of strings.
Then the set of prefixes of the elements in L is defined as

Prefiw(ﬁ) = {u: uis either the empty string € or a non-empty string and

there exists a string v, such that uv € L}.

Now, we structure the rules of the original basic chain Datalog program with inference
depth 1in a prefiz (tree) acceptor, which is a deterministic finite state automaton, defined
by the tuple (Q,%, 7, A, qo, F,). Q denotes a finite set of states, ¥ = BF is the set of
input predicates, Z = SF is the set of output predicates, A is the set of transitions, ¢g is
the starting state, F is the set of final states, and A is the output function.

Let L be the language generated by the grammar, associated with the program. Then,
the prefix tree acceptor is constructed as follows: For each string u € Prefiw(ﬁ) a state

4.2 The prefix tree-method 21

¢y €) is established. The initial state becomes the state, which is associated with the
empty string €, i.e., go = ¢.. The final states are those, which have been established for the
strings in L. For a string y € i, there are rules C4,...,C,,n > 1, whose premise chains
correspond to y. The final state ¢, is associated with the set of sensor feature predicates in
SF, which correspond to C pead, - - -5 Cn head- The output function A maps each state to a
subset of Z. Of course, A maps each non-final state to the empty set. Let u be a string in
Prefiw(ﬁ) and a be a terminal symbol. Whenever there are two states ¢, and g,,, which
have been established for the strings v and wa, then we establish a transition from the state
¢y to state qyq, which is labeled by the EDB predicate a(Tr¢, Og, S5, X from, Yio) € BF,i.e.,
(Gu> @(T74r, 00, S5y X froms Yio)s qua). Given the original program, Pp, the prefix acceptor
P A, which is constructed, is illustrated in Figure 4. Note the correspondence between PA
and the DFA in Figure 3. It accepts as input a ground chain of basic feature predicates, e.g.,

b(Trln Oﬂ’ S‘y Ximm’ YtQ)

o

o Tryr, Oa, S5 Xtrom Yo
e
d(Tryr, Oa. S5 Xtrom: %)
{P4(T, S0 Xrom + %o)} Clooa)
a(Tryr, Oa. S5 Xtrom: %o)
o)
b(Tryr, O, S5 Xtrom: Yo)
{PS(Th » S5 Xirom » %o)} CGocad)

a(Try, Oq, S5, Xtroms ¥a)
b(Trir, Ons S, Xtrom: %a)

c(Tryr, O, Ssi Xtroms Yia)
{ PL(Tk S5) Xerom » Yo)» P2 Tk, S5, Xrom » Yo)}

d(Tl’ﬂ, Ogv §i' XiLQma YLQ)
QoD P3(Tl Sss Xrom » Yo)}

Figure 4: Prefix tree acceptor PA

Py, and outputs one or several ground instances of sensor feature predicates, whenever
one of its final states is reached. These are exactly those, which are derivable from the
original program Pi, i.e., which are in the minimum Herbrand model of P = P; U Pg
equal to T‘f,I(PE). This is shown in Section 5.

Related Work The construction of a prefix (tree) acceptor has been first proposed by
Angluin for the propositional case in [1]. Here, we have extended the construction to an
acceptor, which works on chain Datalog rules. Structuring chain Datalog rules in a prefix
acceptor allows for a fast forward inference method, which avoids the redundant evaluation
of the same EDB fact with respect to similar rules. This inference method is the topic of
Section 5.

22 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

4.3 Restructuring chain Datalog programs

In this section, we show how a program P7p, which satisfies conditions C1, C2, and C3,
can be restructured yielding a program Pf, such that P is equivalent to Py with respect
to Z C IDB(Pq) (see Definition 2 in 3.2). The rules of P} have a special syntactical form,
which allows to map them directly to a prefix acceptor.

The restructured program P has an inference depth which is greater than one. During
the restructuring process new IDB predicates are introduced. So, from a machine learning
point of view, we introduce new, possibly meaningful concepts, without changing the
coverage of the original target concepts.

Again, we present two methods. The first one, restruct (4.3.1), exploits the syntac-
tical characteristics of chain Datalog rules. The second one, restruct_dc (4.3.2), is more
efficient, but requires, like sort_dc, the background knowledge about the data classes, to
which the rules belong.

We proof the equivalence of the original program P and the restructured program
P (4.3.3). Then, we show, how the rules of P} can be mapped to the prefix acceptor,
yielding the same result as the application of the method prefix tree to the original
program Py (4.3.4).

4.3.1 The restruct-method

The procedure restruct takes as input a non-recursive basic chain Datalog program
Py with rules, whose premises are sorted according to the relation < and whose 1DB
predicates occur only in rule heads, i.e., its inference depth is one. For each rule, the
relation ~», which is defined by its chaining variables and its left and right block has
to be intransitive, irreflexive and asymmetric. Furthermore, it is not allowed, that two
premise literals have the same starting and ending variable. The procedure generates
a modified basic chain Datalog program P}, which is equivalent to Py with respect to
Z C IDB(Py). The resulting program P7 has inference depth greater one. Furthermore,
EDB(Py)= EDB(P}) and IDB(Py) C IDB(P}). One one hand, this program supports
more efficient evaluations (see decompositions in Section 7), on the other hand it can be
directly mapped to a deterministic finite prefix acceptor, which supports an even more
efficient inference procedure.
We illustrate the method with the example program P

p(Tr, 9, X,Y) — a(Tr,0,5,X,X;

(0(Tr,0,59,X1, X2),¢(Tr,0,59,X3,Y).
pa(Tr, 5, X,Y) (Tr,0,5,X,X,

(

(

b
,b(TT,O,S,Xl,XQ),C(TT,O, S,XQ,Y).
7b(TT707 Sa X17X2)7 C(TT, 07 Sa X27X3)7

1

a
ps(Tr, 9, X,Y) — a(Tr,0,5,X,X;
d(Tr,0,5,X3,Y
pa(Tr, 9, X,Y) — b(Tr,0,5 X,X1),e(Tr,0,5,X1,X3),d(Tr,0,5,X3,Y).
ps(Tr, 9, X,Y) — b(Tr,0,5 X,X1),¢(Tr,0,5, X1, X2),d(Tr,0,5, Xq, X3),
a(Tr,0,8, X5, X4),b6(Tr,0,5,X4,Y).

S e e e e e

For each EDB predicate A = a(X1, ..., X,,), which occurs as first element in some premise
chain of a rule in Py, we introduce a new IDB predicate symbol ¢, generate a predicate,

4.3 Restructuring chain Datalog programs 23

which has the same arguments as A and introduce the rule
q(Xl, .. ,Xm) — Q(Xl, .. ,Xm)
For our example program, we get

@(Tr,0,5,X,X1) — a(Tr,0,59,X,X1). (11)
w(Tr,0,5,X,X1) — b(Tr,0,5 X, X1). (12)

We fold the rules of the program with the newly introduced rules, yielding the first inter-
mediate result:

p(Tr, 8, X,Y) — ¢(Tr,0,5 X,X1),0(Tr,0,85,X1,X3),¢(Tr,0,5,X2,Y).

p2(Tr, 8, X,Y) @(Tr,0,5,X,X1),6(Tr,0,5,X1,X2),c(Tr,0,5,X2,Y).

ps(Tr, 8, X,Y) — ¢q(Tr,0,5 X,X1),0(Tr,0,5,X1,X3),c(Tr,0,5, Xq, X3),
d(Tr,0,5,X3,Y).

pa(Tr, 8, X,Y) — q(Tr,0,5 X,X1),c(Tr,0,8, X1, X2),d(Tr,0,5,X3,Y).

ps(Tr, 8, X,Y) — @(Tr,0,5 X,X1),¢(Tr,0,5, X1, X2),d(Tr,0,5, X, X3),
a(Tr,0,5, X5, X4),b(Tr,0,5,X4,Y).

1

Note, that here and in the following steps, if we fold the rules of the program with a new
rule Q «— Aq,...,A,,n <2, we replace Ay,..., A, by @ only if the chainAy,..., A4, is a
prefix of a premise chain. As long as the program has rules with more than two premise
literals, we perform the second step: We select a rule B — A1 A3 A5... A, e.g.,

p(Tr, 9, X,Y) — q.(Tr,0,5, X, X1),0(Tr,0,5, X1, X3),c¢(Tr,0,59,X3,Y).

Then, we generate a new rule B «— A; A;. We generate a new predicate symbol for B™**
and determine its head variables. Goal of the restructuring process is to eliminate with
the new rules those variables, which occur only in Ay and Ay, and not in B, A;,¢ > 2. We
determine the variables shared by A; and Ay, vars(Ay)Nwvars(A,) (for our example, these
are the variables {T'r,0, 5, X1}), remove the variables occurring in the head ({O, X1}) and
the variables occurring in A;,7 > 2 ({X1}). This gives us the variables occurring only in
Ay and A, and thus should not occur in the head of the new rule. If we remove these
variables from vars(Ay)Nvars(Asz), we get the variables, which we keep in the head B
({T'r,0,5%}). As the new rule has to be a chain Datalog rule, we have to determine the
new left and right block. The potential variables for the left block are among the variables
shared by B and Ay, vars(B) N wvars(Ay) ({Tr,5,X}). We subtract from this set the
variables occurring in Ay ...A,. This yields the potential candidates for the left block.
The potential variables for the right block are determined from the variables shared by A,
and As, vars(Ag) Nwvars(As) ({T'r, 0,5, X2}). We remove those variables, which occur in
Ay, As, ..., A, ({X2}). This set contains the potential right blocks. It has to be different
from the set for the left block (left and right block should not coincide). The variables for
the head of the new rule are the variables to keep and the candidates for the left and right
block. For our example program, we get the rules

Qab(Trv 07 SvaXQ) — Qa(Trv 07 SvaXl)v b(TT,O, Sa X17X2) (13)

24 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

and

ch(TT, 07 S? X7 X?) — Qb(TT, 07 S? X7 X1)7 C(TT, 07 Sa le X2) (14)
We fold the rules of the intermediate program with rules r13 and r14 and get

p(Tr, 8, X,Y) — qu(Tr,0,5 X,X3),c(Tr,0,5,X3,Y).

p2(Tr, 8, X,Y) — quw(Tr,0,5 X,X3),c(Tr,0,5,X3,Y).

ps(Tr, 8, X,Y) — qu(Tr,0,5 X,X3),c(Tr,0,5, X2, X3),d(Tr,0,5,X3,Y).
pa(Tr, 8, X,Y) — q.(Tr,0,9,X,X,),d(Tr,0,5,X3,Y).

ps(Tr, 8, X,Y) — q.(Tr,0,9 X,X3),d(Tr,0,5, X2, X3),a(Tr,0,85, X3, X4),

o(Tr, 0,5, X4, Y).

If we repeat the process until there are no more rules with more than two premises, we
get

Qave(Tr, 0,5, X,Y) — qu(Tr,0,59,X,X3),¢(Tr,0,5,X2,Y). (15)
Qed(Tr, 0,5, X,Y) — q(T7,0,5X,X2),¢(Tr,0,9,X3,Y). (16)
By folding the intermediate rules with 15 and r16, we get
p(Tr, 8, X,Y) — qu.(Tr,0,5,X,Y). (17)
p2(Tr, 8, X,Y) — qu.(Tr,0,5,X,Y). (18)
ps(Tr, 8, X,Y) — que(Tr,0,5 X,Y),d(Tr,0,59,X5,Y).
pa(Tr, 8, X,Y) — quea(Tr,0,5,X,Y). (19)

ps(Tr, 9, X,Y) — qea(Tr,0,5,X,X3),a(Tr,0,59, X3, X4),6(T7,0,5,X4,Y).
Rules r17, r18, and 119 do not need any further consideration. With
Qpeda (T, 0,59, X, X4) — qpea(T7,0,5,X, X3),a(Tr,0,5, X3, X4). (20)
we get the folded rules
pa(Tr, 9, X,Y) — qu(Tr,0,9 X,Xs5),d(Tr,0,5,X3,Y).
ps(Tr, 9, X,Y) — Goeda(Tr,0,59,X,X4),6(T7,0,59,X4,Y).

Now, we are left with rules of the form B < A;, A,. Note that in this case we do not
have other premise atoms, in order to determine the variables to keep. If we determine
vars(Ay) Nvars(Asy) (for the rule with the head predicate ps, we get ({1'7,0, 5, X3}) and
remove the head variables ({O, X3}), we have the variables, which should not occur in
the head of the new rule. So, for our example, in contrast to the case with three or more
premise literals, the variable O does not appear in the head of the new rule. We get as
new rules

Qabed(TT, 9, X,Y) — que(Tr,0,5,X,X3),d(Tr,0,5,X3,Y). (21)
Qoedat(TT, 9, X,Y) — qoeda(T7,0,5, X, X4),0(Tr,0,5,X4,Y). (22)

and end up with the folded rules
ps(Tr, 8, X,Y) — qued(Tr, 5, X,Y). (23)
ps(Tr, 9, X,Y) — @oedan(T7, 5, X,Y). (24)

The restructured program consists of the rules r11,...,124.

4.3 Restructuring chain Datalog programs 25

restruct(Py)

begin

restruct_init(Py, ToDo, Done);
restruct3(ToDo, ToDol, Donel);
restruct2(ToDol, Done2);

B W N

return P/I := Done U Donel U Done2;

end

Algorithm 3: restruct

restruct_init(Rules, ToDo, Done)
begin

1. Done := §;

2. ToDo := Rules;

3. EDBS := set of all EDB predicates of Rules;
4

. while there exists C' € ToDo with C' = B «— Ay, ..., A,, and A; is a literal over a predicate
in EDB

(a) q :=new_predicate _symbol;

(b) Head:= new_atom(q,vars(Ai));

(¢) Done := Done U {Head — A;};
(d) ToDo := fold(ToDo, Head — Ay);

end

Algorithm 4: restruct_init

4.3.2 The restruct_dc-method

In the same way, as we have implemented a more efficient sorting method, we have im-
plemented a more efficient restructuring method, restruct_dc, which requires the back-
ground knowledge about the data classes, to which the predicates of the rules belong.

In the first step, it introduces, just like the method restruct, for each EDB predicate
A=a(Xq,...,X,), which occurs as first element in some premise chain of Py, a new rule
with a new head predicate, which belongs to the same data class as A and has the same
property values as A. In the second step, we try to introduce for each rule with at least two
premise literals C' «— Ay,..., A,,n > 2, a new rule) — Ay, A; in the following way. The
method is provided with the background knowledge, to which data class) is to belong,
if Ay and A, belong to specific data classes. In our case, if A; and A, are basic feature
predicates,) will also be a basic feature predicate. Furthermore, the method is provided
with the background knowledge, which property values the new predicate ¢) "inherits”
from the predicates Ay and As. In our case, these are the trace, orientation, sensor and
starting point from A; and the end point from A;. Given the rule

pl(Trv S,X,Y) — Qa(Trv 07 S? X7 X1)7 b(TT,O, Sa X17X2)7 C(TT,O, Sa X27Y)7

26 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

restruct3(Rules, ToDo, Done)
begin

1. Done := §;
2. ToDo := Rules;

3. while there exists C' € ToDo such that C = B «— Aor C = B «— A1 A3 A3 ... A,
if C = B — A then

(a) Done := Done U{CY;
(b) ToDo :=ToDo — {C};

else
(a) EliminateVars := (vars(Ar) Nwvars(As)) — vars(B) —vars(As, ..., Ap);
(b) KeepVars := (vars(Ay) Nvars(As2)) — EliminateVars;
(¢) LeftVars = (vars(B) Nvars(Ay)) —vars(A2,..., Ay);
(d) RightVars := (vars(Ay) Nvars(As)) — vars(Ai, As, ..., Ap);
(¢) ¢ :=new_predicate_symbol;
(f) HeadVars:= KeepVarsU LeftVars U RightVars;
(g) Head :=new_atom(q, HeadVars);
(h) Done := Done U{Head — Ay, Aa};
(i) ToDo :=fold(ToDo, Head — Ay, As);

end

Algorithm 5: restruct3

with Ay = ¢.(Tr,0,5,X,X1) and Ay = b(T7r,0,5, X1, X3), we get
Q = Qab(Trt_Tv S§7 Xfromvyt_o)HSF = Qab(Trvov S? Xv X2)

with kgp = {trBF = tTBF(Al)a Opr = OBF(Al)v Spr = SBF(Al)vfromBF = fTOmBF(Al)vtOBF =
togr(Az)}, i.e., we get the new rule

Qab(Trv 07 SvaXQ) — Qa(Trv 07 S? X7 X1)7 b(TT,O, Sa X17X2)-

If we fold the program rules with a new rule ¢ «— Ay, A, we replace A; and A, only
by @, if they occur as first premise literals of a premise chain. The pseudo-code for the
restruct_dc-method is given in Algorithm 13 in Appendix A.2.

If we apply restruct_dc to the example program Py, we get rules r11, ..., r20. The
difference between restruct_dc and restruct lies in the treatment of rules with exactly
two premise literals. For the folded rules

pg(TT, S,X,Y) — Qabc(Trv 07 S? X7 X3)7 d(TT,O, Sa X37Y)'
p5(T7‘, S,X,Y) — chda(Trv 07 S? X7 X4)7 b(TT,O, Sa X47Y)'

the rules

Qabcd(Trv 07 S? X7 Y) — Qabc(Trv 07 S? X7 X3)7 d(TT, 07 Sa X37 Y)
chdab(Trv 07 S? X7 Y) — chda(Trv 07 S? X7 X4)7 b(TT, 07 Sa X47 Y)

4.3 Restructuring chain Datalog programs

27

restruct2(Rules, Done)
begin

1. Done := §;
2. ToDo := Rules;

3. while ToDo # 0

select a rule C' € T'oDo
if C =B «— A then

(a) Done := Done U {C'};
(b) ToDo :=ToDo— {C};

else
(a) EliminateVars .= (vars(Ay) Nwvars(As)) — vars(B);
(b) KeepVars :=vars(A1) Nvars(As) — EliminateV ars;
(¢) LeftVars = (vars(B) Nvars(A;)) — vars(A2);
(d) RightVars := (vars(B) Nwvars(As)) — vars(Ay);
(e) ¢ :=new predicate _symbol;
(f) HeadVars:= KeepVarsU LeftVars U RightVars;
(g) Head := new_atom(q, HeadVars);
(h) Done := Done U{Head — Ay, As};
)

(i) ToDo := fold(ToDo, Head — Ay, As);
end

Algorithm 6: restruct2

are introduced (instead of rules 121 and r22), yielding the folded rules

pg(TT, Svay) — Qabcd(Trvovstvy)'
p5(T7‘, Svay) — chdab(TT,O,S,X,Y)-

(instead of rules r23 and 124). So, to summarize, we get as result the restructured program

)
)
)
)
Gare(Tr,0,5,X,Y)
Qed(Tr,0,5,X,Y)
)
)
)
)
)

Pj
(Tr,0,5,X,Y a(Tr,0,9,X,Y).
w(Tr,0,5,X,Y b(Tr,0,5 X,Y).
qup(T7,0,5,X,Y (Tr,0,5, X1, X2),6(Tr,0,59,X3,Y).
@e(Tr,0,5,X,Y @w(Tr,0,5,X1,X3),¢(Tr,0,8, X3, Y).
(
(

qup(T7,0,5, X1, X3),c(Tr,0,9,X3,Y).
@e(Tr, 0,85, X1, X2),d(Tr,0,5,Xs,Y).
Gare(Tr, 0,5, X,Y).
Gare(Tr, 0,5, X,Y).
Gabed(Tr, 0,5, X,Y).

Y N A (Y A O B

Qabc(Trv 07 S? X17X2)7 d(TT,O, Sa X27Y)'
chd(Trv 07 S? X17X2)7 a(Tr, 07 Sa X27Y)'

28 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

p4(TT7 Svay) — chd(TT,O,S,X,Y)-
chdab(Trvovstvy) — chda(TrvovSlevXQ)vb(Trvovst%Y)'
p5(T7‘, S? X7 Y) — chdab(Trv 07 S? Y7 Y)

The grammar which corresponds to Py is G’ = (V', X/, P', s) with V' = {s, p1, p2, p3, pa, ps,
Ga s Gabs Qabes Qabeds 9bs Qbey Gbed s Gbeda s chdab} and X/ = {av b7 c, d} P’ is the set of pI’OdUCtiOHS

s — pilp2|pslpalps

P11 — Gabe Qbeda — Gbed @

P2 — Gabe Qabe — qab €

P3 — Qabed Qoed — Ghe d

Pa = Qbed Gy — Gad

Ps = Gbedab G — B C
Qbedab — Gbeda b G — a
Qabed — Gabe d @ — b

Remember, that G/ has already been derived from the DFA accepting the language L(G)
(see 4.2). (G is the grammar corresponding to the original program Pj.

4.3.3 Equivalence of the restructured program

Lemma 2 Let Py be a non-recursive basic chain Datalog program with rules, where the
IDB predicates occur only in rule heads. Let Py be the program which results from re-

structuring Py with either restruct or restruct_dc. Then, for a given EDB instance
Py

{pi(tlv"'vts) | Pi <A andpi(tlv"'vts) € be’I(PE)}

{pi(tlv"'vts) | pi€’l andpi(tlv"'vts) € be)i(PE)}

with T CIDB(Py), i.e., the coverage for the target predicates p; € T is the same for Py
and P1.
1

Tuf)i(PE) We know, that the inference depth of Py is 1, i.e., T‘f,I(PE) = Ti)I(PE)-
Let B € Ti)I(PE)- Then, there exists a C' € Py such that Co = (B — Ay,..., A,)
and Ay,..., A, € Pg. We have to show, that B € T‘*’i(PE). For the rule C' = (B «
Aq,...,A,), the restructuring method has produced n + 1 rules,

Proof As IDB(P1) C IDB(Pp), it suffices for the C-part to show that T‘f,I(PE) C

Ci=(Q1 — Ay)
Cy = (Qz — Q1A2)
Cs = (Q3 — Q2A3)

4.3 Restructuring chain Datalog programs 29

Cn = (Qn — Qn—lAn)
Cn—l—l = (B — Qn)
As Ay € Pg, Q, € T;i(PE), as A, € Py, @ € T%,i(PE), ..., as A, € P, Q, €
T%i(PE), and B € T%?(PE).

The D-part Let B = p,(t1,....ts) € {pu(te,....ts)|pe € T and po(ty,...,1,) € Tgl(PE)}.
I
Then, there is a rule C' € Py, such that C'o = (B — Q) with Q; € TZPi(PE) We have a
sequence of rules
C € Py, such that Cjo; = (CD; — @1_1%11) with A; € Pg
Ci_q € Pi, such that Cj_q101_1 = (@l—l — @1_2%11_1) with %11_1 € Pg

¢4 € P}, such that Cyoq = (@1 — %11) with A; € Pr

If we unfold C, we get the rule Cypfotded = (B — Aq,..., A;) with Cypsotded € P1. As
%fl, . .,le € Py, it follows that Be Twi(PE)-D

4.3.4 Mapping the restructured program to a prefix acceptor

The rules of a program Pf, which is the result of the restructuring methods presented
above, have one of following syntactical forms:

@(Tr,0,5,X,Y) — a(Tr,0,5,X,Y) (25)
¢;(Tr,0,5,X,Y) — ¢(Tr,0,5X,Xq),a(Tr,0,5,X1,Y) (26)
p(Tr, 9, X,Y) — q(Tr,0,5 X,Y) (27)

with @ € EDB(P1)=EDB(Pj), ¢; € IDB(P}) — Z, and p, € 7 C IDB(P7). The prefix ac-
ceptor is defined by the tuple (Q, %, Z, A, qo, F, \). Given P}, we map the EDB predicates
to the set of input predicates X, i.e.,

Y ={a(Tre,0,, S, X froms Yio)la € EDB(P7)}.
The IDB predicates in Z are mapped to the set of output predicates, i.e.,
Z = Api(Tr1r, S5, X from: Yio)|pi € T}
For each ¢; € IDB(P}) — 7 we establish a state for the prefix acceptor, i.e.,
Q = {gl¢; € IDB(P)) =7} U {q0},

where ¢g is a newly introduced symbol for the starting state. Fach ¢;, which appears as
IDB subgoal in a rule of form (27) is a final state, i.e.,

F={q¢|¢ € IDB(Py) — T and p,(Ir, 5, X,Y) — ¢;(T7r,0,5,X,Y) € P{}.

30 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

For each rule of form (25) we establish a transition from the starting state to ¢, i.e.,
40, &(T74r, 00, S5, X froms Yio), 4i) € A

, we establish a transition from state ¢; to state ¢;

¢, (Try, Oy, S, X trom, Yio):q;) € A.

For each rule of form (27), we add p. (174, S5, X from, Yio) to the set, to which the function
A maps state g

Aas) = {pr(Trep, S5y X proms Yio)|pr € T and p, (T, 5, X,Y) — q,(Tr,0,5,X,Y) € Pi}

For each rule of form (26

)
(
)
(

If we map the restructured example program Pj to a prefix acceptor, we get the PA
illustrated in Figure 4. Note, that this mapping procedure can be applied to any linear
program (see Definition 1 in Section 3) with rules with at most one EDB subgoal, i.e., it
is not restricted to non-recursive programs (see Section 6.3 for an example).
Furthermore, each prefix acceptor can be (re-) transformed to a basic chain Datalog
program by introducing the respective chain rules for the transition and output function.

4.3.5 Related work

Sommer has presented in [23] a method for theory restructuring, called FENDER. It restruc-
tures the rules for one concept, whereas we restructure the rules for several concepts, which
share a lot of common features. FENDER searches for common partial premises (CPPs),
each of which is collected around one variable, which appears only in a rule body. Given
a chain Datalog program with rules, such as

p(Tr, S, X,Y) —ri(Tr,0,9 X, X1),....,7641(T7r, 0,5, X, Y),

FENDER would consider the whole premise chain, collected around the variable O, and
the set of k overlapping CPPs of the form r;(Tr,0,5, X;—1, X;), rit1(T7,0,5, Xi, Xi41),
collected around the chaining variables X;,7z = 1,...,k, as candidates for intermediate
concepts. Neither of these is what we are aiming at.

The restructuring method restruct implements, in principle, the W-operator, which
was introduced by Muggleton, as inter-construction operator ([14], [15]), which in [13] is
called an inductive inference rule

p— G, H qg— G, K
p—nrH r—G q—nrK’

Inter-construction:

where p and ¢ represent propositional constants and &G, H and K conjunctions of proposi-
tional constants. The method restruct implements three specific inter-construction steps
for chain Datalog rules

B HAl,AQ,...,An
BHQl,AQ,...,An QlHAl
BHAl,AQ,...,An CHAl,LQ,...,Lm
BHleA%'"vAn QIHAI CHleL%'"vLm
B H1417‘42
B—Q Q< A A
where A;,();, L, and B represent atoms.

Step 1:

Step 2:

Step 3:

31

5 WMP: An Efficient Forward Inference Method

The marker passing method, which we present in this section, has already been introduced
in [19] and [20]. As the main focus in these papers was on a related topic, we omitted some
details of the method, which we want to elaborate here from a logic programming point
of view. Marker passing methods have been developed, e.g., by Charniak [5] and Hendler
[8]. We present a marker passing method, which is applied to a prefix acceptor, and which
calculates (part of) the minimum Herbrand model of the chain Datalog program which
has been mapped to the prefix acceptor.

5.1 The marker passing method

Assume, that a basic chain Datalog program P has been mapped to a prefix (tree)
acceptor PA. Given an EDB instance, Pg, which is a ground chain, the goal is, from
the logic programming point of view, to calculate the minimum Herbrand model of the
extended logic program P = P71 U Pg. In this section, we present a marker passing
method, called MP, which is applied to the prefix acceptor PA, in order to calculate
the minimum Herbrand model via forward inferences. The EDB instance Pg is required
to be a ground chain of atoms over the EDB predicates (here, the predicates in PSgy),
and is denoted Al ... A*. Remember, that in our robotics domain Al Ak represents a
sequence of chronologically ordered observations, i.e., basic features, from which sensor
features are to be derived. The important point to note, is, that the EDB instance Pg
is generated incrementally, while the robot moves through the environment, i.e., for each
time point 1 < ¢t < k, we have P% = P%_l U {%it}, where P% = (). However, at each time
point ¢t = 1,2,..., P} is finite and so is the Herbrand base By(P") of P! = Py U Pf.
Now, let 1\/IP(%11 .. Ak) denote the output of the marker passing method for the last
element of the chain A¥. MP calculates at each time point t,1 <t < k, the IDB-portion
of the minimum Herbrand model for the p; € Z, such that MP(A') U MP(A' A?) U
U MP(%P%P .. Ak) is a subset of the fixpoint of the mapping Tp, applied to PL,

ie., TPI(PtE). Remember, that the PA can be mapped back to a program P} and that
according to Lemma 2, we have {p;(t1,...,%s)|p; € Z and p;(t1,...,t5) € T‘f,I(PE)} =
{pi(t1,...,ts)|pi € T and p;(t1,...,t5) € Twi(PE)}'

The method exploits the special syntax of the chain Datalog rules and uses the con-
straints introduced in 3.5, in order to set the arguments/property values of the predicates
associated with the transitions and final states of the PA.

In the following, we use A to denote an atom over a basic feature predicate in PSBr,
and B, B;,1=1,2,... to denote an atom over a sensor feature predicate in PSgp. Given
a ground chain Al .Ak, we know the following:

Initialization of basic feature constraints: Given the first atom, %11, the following
equations have to be satisfied:

tree(AY) = tree(A2) = trap(A4%) = ...
OBF(AI) = OBF(AQ) = OBF(AS) =...
SBF(AI) = spr(A?) = SBF(AS) =...,

32 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

i.e., the trace, orientation and sensor of each member of the sequence of basic feature
predicates Al .%ik, beginning with %11, have to be the same. Given these equations and
an atom A’ over a basic feature predicate, we can set the constraints, which all following
basic feature atoms %ii,i > 1 have to satisfy, to

o

KBF init = {trBF = tTBF(Ai)a Opr = OBF(Ai)v Spr = SBF(AZ)}'

The function init_bf_constraints (see Algorithm 7) returns these initial basic feature
constraints for a given A’. Given the atom A = «a(%1,90,s5,1,8), we get

RBF,init = {trBF =1tl,0pr = 90,85 = 55}-

Initialization of sensor feature constraints: For any atom B, which is derivable
from the chain beginning with A!, the following equations have to be satisfied:

trap(AY) = trep(B)
spr(A) ssp(B)
fromBF(%il) = fromgp(B),

i.e., the trace, sensor and starting point of an atom over a sensor feature predicate, deriv-
able from the sequence A, .. A* has to be the same as for A'. Given these equations
and an atom Ai, we can set the constraints, which an atom B derivable from the chain
beginning with A has to satisfy, to

Ksp init = {trer = tTBF(Zli)v Ssr — SBF(Ai)vfromSF = fTOmBF(Ai)}‘

The function init_sf_constraints returns these initial sensor feature constraints for A°.
Given the atom A = (%1, 90, 55,1, 8), we get

Rsr init = {trSF = tl,ssp = 85, fromgy = 1}-

Update of basic feature constraints: Given an atom A of the chain, for the next
atom At!, the equation

has to be satisfied, i.e., the end point of the previous basic feature has to be the starting
point of the next one. Given this equation and an atom A*, we can set the constraints for

%1”’1 to

KBF update = {fromBF = tOBF(IZii)}-

The function update bf_constraints returns these constraint for a A?. Given the atom

v

A = a(t1,90,s5,1,8), we get

KBF update = {fromBF = 8}

5.1 The marker passing method 33

Update of sensor feature constraints: Given a chain Al .Ai, for any atom B,
which is derivable from the current sequence starting with A!, the equation

togr(A") = tosp(B)

has to be satisfied, i.e., the end point of the last basic feature has to coincide with the end
point of the derived sensor feature B. Given this equation and an atom A*, we can set
the update constraints, which the sensor feature has to satisfy, to

Rsr, update = {tOSF = tOBF(IZii)}-

The function update_sf _constraints returns these sensor feature constraints for Al
Given the atom A = a(t1,90, s5,1,8), it returns

RsF update = {tOSF = 8}

Now assume, that the robot perceives a sequence of ground atoms over basic fea-
ture predicates, ALA? . .,A”,n € N. At each time point 1 < ¢ < n, the ground chain
A1A% .. A" denotes the EDB instance P% for the chain Datalog program Py, which is
compiled in the prefix acceptor PA. The marker passing method, MP, works as follows:
At each time point 1 <t < n, we check, whether there exists a transition from the starting
state qo, labeled A € BF, leading to state ¢; € ()pa, such that A is unifiable with At TIf
that is the case, we generate a marker, which is associated with state ¢;. It is represented
by the tuple

(tv iy KBFinity NBF,update, FSF,inits HSF,update)-

The constraints Kgr = Kpr,init U Kr,update are those, which the next basic feature At+l
has to satisfy. The constraints Ksp = Ksp,init U Ksk update are those, which a sensor feature
has to satisfy, if it is derivable from the sequence A'A? ... A’

Each of the markers m,,1 < r < t, which has been generated at previous time points,
is checked, whether it can be passed along a transition to a successor state. Let the
information associated with marker m, at the previous time point ¢ — 1, be

-1 -1 -1
m, = (Tv qt s KBF,inits HtBRupdatev KaF,init, HéF,update)'
Let ¢"7'(m,) = ¢; denote the state, with which a marker m, is associated at time point
t — 1. Then, we check, whether there exists a transition (g;, A,q;), such that Axl;! is

unifiable with Af. If that is the case, we update HtB_Fl,update and Hé;‘,lupdate with respect to
A*, yielding Kpp dare a0d Kip ogase- So the marker info for m, at time point ¢ is

t_ t_ . et ot
m, = (Tv 4 = 4j, kBF inits KBFupdates FSF,inits HSF,update)'

Finally, we have to check for each marker m,, 1 < s < ¢, whether it is now associated with
a final state ¢ € Fip4. If that is the case, we apply to each element in A(¢) = {B1,..., B}
the constraints kL, = Kspinit U HéF,update’ yielding the ground atoms BlméF, .. .,BméF,
which are output and are part of the minimum Herbrand model of P = Py U PtE. The
pseudo-code of the procedure MP is given in Algorithm 7. It takes as input a prefix
acceptor PA (representing a basic chain Datalog program Pp) and an EDB instance Py,

34 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

represented by the ground chain ALA2. ,Zlk The prefix acceptor PA is represented
by the tuple (Qpa,Xpa, Zpa, Ara,qo,pa, F, Apa). The procedure outputs incrementally
the IDB portion of the target predicates in Z of the minimum Herbrand model for each
subsequence %11, %11%12, %11%12%13, etc.

The important point to note is, that the marker passing method is much more efficient
than a naive forward chaining procedure, which tries to match each A? to each premise
literal of each rule. In the case of marker passing, A? has to be matched, depending
on the transitions emanating from a given state, to at most [predicates, where [=
|[EDB(P1)—=|¥|. A naive forward chaining inference procedure would try y > [matches,
where y = ZCEPI |Chody|. For a given fact At, the markers 1,...,¢ can be processed in
parallel as they are independent of each other. The method terminates after k steps, where
k is the length of the input chain Py. The time and space requirements depend linearly
on the length of the input chain Pp.

v

MP(PA, Py = A'A% ... A%)

fort=1,2,...
begin
1. if there exists a (o, 4, qx) € Apa, such that At is unifiable with A, then
begin
o .. . Aty
KBF,init ‘= 1init bf_constraints(A’);
Kspinit := init_sf_constraints(A’);
ﬁngupdate := update_bf_constraints(A’);
“tSF,update := update_sf_constraints(A’);
t_ i i)
my = (ta qr, KBF,inita K:BF,update’ KSF,inita HSF,update)’
end
2. forr=1,...,t—1
t—1 _ t—1 _ i—1 i—1
% Let m, - (7“, q = 4i, KBF,init, KBF,update’ RSF init, KSF,update)
begin
=1 ._ N i—1)
Rpr ‘= KBF,init U KBF,update’
if th‘ere exists a (¢i, 4, ¢;) € Apa, such that A’ is unifiable with ArL! then
begin
ﬁngupdate := update_bf_constraints(A’);

t — ; AtY.
Kgp update ‘= Update sf_constraints(A’);

to._— . et el .
m, = (7“, 45, KBF,init; KBF updater ST, init; KSF,update)’

end
end

3. fors=1,...,1
if ¢'(ms) = q, € Fpa, then

begin

K:tSF ‘= KsF init U KtSF,update;

for each B; € M(qx) = {B1, ..., By}: output Bikhg;
end

end

Algorithm 7: MP

5.2 Soundness and completeness 35

Example run of MP on PA: If we apply the procedure MP to the prefix acceptor
PA in Figure 4 and the chain Pp = A'A2A43A4

Py = {a(t1,90,s5,1,8),b(¢1,90,s5,8,10),¢(t1, 90, s5,10,15),d(¢1,90, s5,15,17) }
the markers are passed through the graph of the prefix acceptor as illustrated in Figure
5. Note, that the initial constraints for a sequence beginning with A° are determined
once, whereas the update constraints have to be updated once for each new member of

the respective sequence. For each atom %ii, the property values, which are updated via

the constraints, are printed boldly.
Input: A! = a(1,90, s5,1,8):

m} = (1, ¢u, {treer =tl,0pr = 90,ssr = sb}, {fromgy = 8},
{trsr = t1,s5r = 5, fromgr = 1}, {togr = 8})

Input: A2 = b(t1,90, s5,8,10):
m} = (1, qap, {trer =1tl,0mr = 90,spr = s5}, {fromgy = 10},
{tI‘SF = tl, SSF = 85,fr0mSF = 1}7 {tOSF = 10})
m% = (27 b, {trBF =tl,0pr = 90,8F = 55}7 {fromBF = 10}7
{tI‘SF = tl, SSF = 85,fr0mSF = 8}7 {tOSF = 10})

Input: A3 = (11,90, 5,10, 15):
m:l)’ = (1, Qube, {trer =1tl,0pr = 90,85 = s5}, {fromgy = 15},
{tI‘SF = tl, SSF = 85,fr0mSF = 1}7 {tOSF = 15})
my = (2, @b, {trer =tl,0sr = 90,s8r = sH}, {fromgy = 15},
{tI‘SF = tl, SSF = 85,fr0mSF = 8}7 {tOSF = 15})
Output: MP(A' A2A43) = {py(11, s5,1,15), pa(1, 55,1,15)}
Input: A* = d(11,90,55,15,17):
777411 = (17 Gabed s {trBF =11, 0pr = 90,85 = 55}7 {fromBF = 17}7
{tI‘SF = tl, SSF = 85,fr0mSF = 1}7 {tOSF = 17})
m% =(2, Qbed, {trer =1l,0r =90,spr = s5}, {fromgy = 17},
{tI‘SF = tl, SSF = 85,fr0mSF = 8}7 {tOSF = 17})

Output: MP(A' A2A3A*) = {ps(t1,55,1,17), pa(t1,55,8,17)}

5.2 Soundness and completeness

Let PA be a prefix acceptor, which corresponds to a linear chain Datalog program Py. Let
MPp4(Pp) denote the success set of the marker passing method, i.e., the set of ground
instances of the target predicates p; € 7 C IDB(Py), which are calculated by the marker
passing algorithm. In this section, we want to show, that the marker passing method is
sound and complete, i.e., for a given EDB instance P, the success set MPp4(Py) is the
minimum Herbrand model of the extended program P = P U Pg.

36 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

Input:
a(t1,90,s5,1,8) b(t1,90,85,8,10) ¢(t1,90,s5,10,15) d(t1,90,s5,15,17)

%5 299 %
524

5

Lig

d/i5 E

Output: pl(t1,s5,1,15) p4(t1,s5,8,17)
p2(t1,s5,1,15) p3(t1,s5,1,17)

b/

QM%M
OF P O% e Og
OF F@F PO

Figure 5: Example 1

In Lemma 2, we have shown, that for a given Py our restructuring methods generate a
program P7, such that

{pi(tlv"'vts) | Pi € 7 and pi(tlv"'vts) € T(i:}’I(PE)}

{pi(tlv"'vts) | Pi €7 and pi(tlv"'vts) € Twi(PE)}

where Z CIDB(Pp). Each rule of the program P7 has one of the forms

@(Tr,0,9,X,Y) — a(Tr,0,5,X,Y) (28)
¢;(Tr,0,5,X,Y) — ¢Tr,0,5X,Xq),a(Tr,0,5,X1,Y) (29)
p(Tr, 9, X,Y) — ¢(Tr,0,5X,Y) (30)

with a € EDB(Py), ¢; € IDB(P})—Z, and p, € T C IDB(Py). This program can be directly
mapped to a prefix acceptor PA, such that for each rule of the form (28), there is a tran-
sition (qgo, a(Tr4, O, Ssy X froms Y10), ¢a) € Apa emanating from the starting state gq. For
each rule of the form (29), there is a transition (¢;, a(T7¢, Oos S5y X from, Yi0)s 45) € Apa.
For a rule of the form (30), there exists a final state ¢s, such that p, (T4, S5, X from, Yio) €
Apa(gs)-

In principal, our marker passing method works incrementally, i.e., it receives sequentially
the components of the ground chain Py = A'A%... A*. However, in order to proof the

5.2 Soundness and completeness 37

soundness and completeness of the method, we show it for each finite subsequence, which
provides us with a finite Herbrand base.

We define the configuration Cp4 of a prefix acceptor PA at a given time point ¢, to be
the set of markers associated with the states of the PA at ¢, with C%, = 0.

Given an EDB instance Py, which is required to be a ground chain, the function
SuccPE maps a configuration Cpy at time point ¢ to the successor configuration at time

point ¢ + 1. We have Cit! = Sucepy, (CL 4). We define

SUCCPE (CIODA) =1{ (t.q, KBF,inity KBF updates KSF,inits HSF,update) | te{l,...,k}and
for A” € Py, there exists (go, A,¢) € Apa, such that
A is unifiable with A’ and
KBF init = {trBF = tTBF(IZit)v Opr = OBF(At)v Spr = SBF(At)}
RsF,init = {trSF = tTBF(IZit)v Sgr = SBF(At)vfromSF = fTOmBF(th)}
KBF update = {fromBF = tOBF(IZit)}

Rsr, update = {tOSF = tOBF(z‘\it)}

—

and forz > 0

. - -]
SUCCPE (C%A) =1 (tv ks WBF inits H;E7update, KSF inits HZS—ll;,update) | t<k—i+1and

(tv 95, KBr,init, HBF,updatw RSF inits HSF,update) S CPA and there

exists (¢;, A, qx) € Apy such that Akgp is unifiable with

ft+i—1 '
Attt ¢ Pp and kpp = KBF init U H;F,update
i+1 _ _ it+i—1
HBF,update - {fromBF - tOBF(A)}
i+1 _ _ At+i—1
HSF,update - {tOSF - tOBF(A)}

}

Each member A’,¢ € {1,...,k} of the ground chain Py = A'...A* is the beginning of a
subsequence from which an atom over p; € 7 may be derivable. SuccPE(C]O;A) extracts,
if possible, for each A' the sensor and basic feature constraints (initial and update), and
passes a marker to a direct successor of the starting state ¢g. Thus, each marker ¢ represents
the current processing status of the sequence beginning with At. For every configuration
SuccPE(C};A), the successor function tries to pass forward marker ¢ by considering the
(t+ i — 1)-th element of Pg.

We define the mapping I', which is applied to a configuration of a prefix acceptor, and
which generates the ground facts over the target predicates p, € Z CIDB(Py), which are
associated with the final states of the acceptor, and which in the current configuration are
occupied by a marker.

F(CPA) = {B | (tv q5 -5 -5 KsFinit) HSF,update) € CPA and B = BTHSF with
BT € A(Q) and RsF = RsFinit U HSF,update}-

Note, that the application of rules of the form (28) and (29) is simulated by the Succp,
mapping. The application of rules of the form (30) is simulated by the I' mapping. We

38 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

consider the sequence

[(Cha) = T'(Sucepy(Cpa))
Py = TX(Sucep, (Sucepy (Cha)))
I'(Chy) = Fi(SuccPE(...SuccPE(C]O;A)...))

1 times

As the length of the input chain Py is k, the I' (and SuccPE) mapping can be applied
exactly k times. We define the success set to be
MPps(Pg) = TNCha)UT*Ch4)U...UTF(CEy)
Fl(SuccPE(C]O;A)) u...U Fk(SuccPE(. . .SuccPE(C]O;A))

k times

Given a ground chain Py = A4 .%Ik, assume, that there exists a subsequence of
length i, At.. A=t 1 <t <k,t+i—1<k, from which B = p;(tr,s,z,y),p; € T can
be derived. Then, there exists a unique sequence of rules Cy,Cy,...,C;, Ciyq € P}

Cl = (Ql — Al), such that 010'1 = (@1 — /11) with 1411 = fit and @1 € Ti:)i(PE)

(Cy = Qa — Q1A3), such that Cyoy = (Q2 — Q1 Ay) with Ay = A and

Cs = (@3 — Q243), such that Cs03 = (@3 — @243) with %13 — A2 and

C; = (Qz — Qi—lAi)a such that C,o; = (@Z — C?Z'_lfii) with %L = At+i=1 and '
Q: € TZPi(PE)

Ciy1 = (B — Qz), such that Ciyq10,41 = (B — @2), and B € T;l(PE)
I
where @;,7 € {1,...,1} are atoms over the predicates ¢; €IDB(P7)—Z. Let PA be the

prefix acceptor, which corresponds to P}. The sequence of transitions, which corresponds
to the rules Cy,Cy,...,C;, Cipq € Pl is

(qo, A1, ¢q1) such that Ay is unifiable with Al and m € Ch, with
m = {tv 91, KBrF,init, Hll3F,update7 RSF init, HéF7update}
1, A2, q2) such that Askl.. is unifiable with A and m € C%, with
qi, 4 BF PA

_ .. 2 L. 2
m = {tv 92, KBF,init, HBF,updatw RSF init, HSF,update}

5.2 Soundness and completeness 39

(g2, A3, g3) such that AzxZ, is unifiable with A2 and m € C3 4 with

_ . 3 . 3
m = {tv qs, HBF,znztv HBF,updatw HSF,znztv HSF,update}

(¢i—1,Ai, q;) such that A;riz! is unifiable with A™~! and m € C};A with
m = {tv iy KBF inits H;F,updatw KaF,init, HZSF7update}

B € M¢;) such that B = Brl, and B € T/(Ch).

with Kgp it = init_bf_constraints(%ﬁ) and Ksp init = init_sf_constraints(%vlt). For
= update bf_constraints(A1),
J
BF,update’

je{l,...,i}, we have s’

BF,update
J

HSF,update
KsF,init U K

= update_sf_constraints(A™), kjp = Kpr,init U K

J
SF,update”

and khp =

We establish this correspondence with the following lemma

Lemma 3 Let P} be a linear chain Datalog program with rules, which have at most
one EDB subgoal. Let PA be the prefizx acceptor which corresponds to Py. Let T =
{p1,-..,pu} CIDB(Py). Consider the set of predicate symbols {qs|q; €IDB(P1)—1}. This
set corresponds to the set of predicate symbols for the predicates, which have been intro-
duced when the original program P was restructured, such that each rule of P} has the
form (28), (29), or (30). Let Py = AV .., A% be a ground chain of length k, which is
input to Py and PA, respectively. If

4 (21, 29, 3, 24, 25) € {Q|Q is a ground atom over a predicate q € IDB(P)) -1
and Q € T i(PE)},lgigw

then configuration C};A of the prefix acceptor, contains a marker m, which is associated
with state q,, i.e.,

— L. % L. 7
m = (tv Gry KBF,init> HBF,updatw RSF init, HSF,update)

such that
RBF,init = {trBF = 21,0Br = 22,8BF — $3}
RsF,init = {trSF = x1,8sp = Z3,fromgp = $4}
7 _ _
KBF update — {fromBF - $5}
7 _ _
HSF,update - {tOSF — $5}

The converse statement also holds, i.e., if there is a configuration C};A with m € C};A
and m = (t7q7°7HBFyinit7H§3F,update7HSFyinit7HZSF,update)’ where the constraints are the same
as specified above, then q.(x1,x2,23,24,25) € Tp/ (Pp),1 <i<w.

I

40 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

Proof We show the first part by induction on the number ¢ of applications of the TPi
mapping.

Induction basis for ¢ = 1: Let Q; = ¢ (21,22,%3,24,%5) € Ti,i(PE) Then, there
exists a clause C € Pi with Choq = @1 — %1, such that A = A! ¢ Pr,1 <t < k. For
rule Cq, we have the transition (go, 4,q1) € Apa. As A= a(x1,x, T3, Ta,T5) = At €
Py, a eEDB(Py), the application of the SuccPE mapping to C% , will produce the marker

1 H _ .. 1 .. 1 :
m e CPA with m = (t7 01, kBF,init> HBF,update’ KsF,init> HSF,update) with

KBF,init = init_bf_constraints(%vlt) = {trpr = ¥1,08F = T2,8pF = T3}
Ksp init = init_sf_constraints(%vl) = {trsy = ¥1,8sr = 23, fromgpy = 24}
Fr update = Update bf_constraints(A’) = {frompr = x5}
HéF,update = update_sf_constraints(A!) = {tos = 25}.

Suppose, as the induction assumption, that for each) = ¢, (21,22, %3,24,%5) € Ti,i(PE),

there exists a marker (%, ¢,,Kpr mmmgF updates FSF, mit,méF update) € C};A,t € {l,...,k}.
Then, we have to show the induction hypothesis, that for each Q € TZ"H(PE), there exists

Cz—l—l

a marker m € Let QH_l = ¢ (21,%2,23,%4,25) € TZP+,1(PE). Then, there exists a
1

rule i1y € P, such that Ciyq0 = (@H—l — Cé'%L'_H) with C?Z e T ,(PE) and fii—l—l =

Atti ¢ Pyg. For rule Cz-|—17 we have the transition (¢;, A1, q2_|_1) € APA According to the
induction assumption, CPA contains a marker (¢, ¢;, Kpr init, Khp updates B inits K
such that

SF,update)

KBF init = {trBF = trBF(@) Opr = OBF(@i)v Spr = SBF(Qi)}
RsFinit — {trSF = trBF(@)7 SF — SBF(Qi)vfromSF = fromBF(C?i)}
H;F,update = {frompgp = tOBF(é)}
HéF,update = {tosr = tOBF(@i)}-

As A;p1kL, is unifiable with Ai—l-l Atti ¢ Py, the application of the SuccPE mapping

i 1 1 1
results in a marker (¢, gi11, Kpr,init, /@B‘; updater FSE inits HS‘; update) C;;';l , with
i+1 _ _ .
Kgr update — {fromgy = topr(Aiy1)}
i+1 _ . 1
HSF,update - {tOSF - tOBF(AZ-I-l)}-D

The proof of the converse statement follows the same line of arguments.

Theorem 1 (Soundness) Given an EDB instance Py and a prefiz acceptor PA, which
corresponds to a basic chain Datalog program PY, its success set MP ps(Py) is contained
in the minimum Herbrand model of P = P U Py, i.e.,

MPPA(PE) - {pi(tl, .. -7t5) | pi € T and pi(tl, .. .,ts) S Tf)i(PE)}

41

Proof We have Py = A'A%... A% and MPp4(Pp) = rcL HuT(C Hu...uTk(Ck).
Let B 6 FZ(C}DA)7 1 S 7/ S k Then m = (t7 q’/’7 HBF,initv H%y"update? HSF,initv HZSFm,pdate) 6 C}DA

: D o_ 7 T o 7
with B € A(¢,) and B = Bryy, Kgp = Ksr init U K update- 1€t
RBF,init = {trBF = 21,0Br = 22,8BF — $3}
RsF,init = {trSF = x1,8sp = Z3,fromgp = $4}

7 _ _
HBF,update - {fromBF — $5}

HZSF,update = {tOSF = $5}'

According to Lemma 3, Q= ¢ (X1,22,23,24,5) € TZPi(PE) There exists a rule C' € P,
such that C'o = (B — Q). From this follows, that B € T},"’,I(PE). 0
I

Given an EDB instance Py, a prefix acceptor PA, which corresponds to a basic chain
Datalog program P7, and a set of IDB predicates Z CIDB(Pg), we say that the marker
passing method is complete with respect to L, if every ground atom B over a p; € 7, which
is in the minimum Herbrand model of P = P{UPg, is also in the success set MPp4(Pp).

Theorem 2 (Completeness)

MPp4(Pg) 2 {pi(t1,....ts) | pi €L and pi(ty,...,15) € Tf)i(PE)}

Proof Let B € {pi(ti,...,ts) | pi € T and p;(t1,...,t5) € T},"’,I(PE)},l <i<w-1.
I .
Then there exists a rule Cj4q € Py, such that Cs410 = (B — @) with @; € T§ i(PE) Ac-

cording to Lemma 3 there exists m € Ch ,, such that m = (¢, ¢;, knr.init, Kip updates KSF init s
,t < k—i+1. We also have B € A(g;). The application of the I' mapping to Cb ,

HZSF,update)
yields B = Brigp With k§p = Ksrinit U Kgp ypdare- 1 herefore, B € I'"(Ch4) € MPp4(PR).
O

6 Post-Processing Chain Datalog Programs

Given the rules for the robotics domain, we have mapped them to a prefix acceptor to
which we have applied the efficient marker passing method, in order to derive higher level
concepts from sensor observations. The analysis of performance tests motivated the post-
processing phase during which the acceptor and the chain Datalog program, respectively,
are modified. In contrast to restructuring, which does not change the coverage for the
target concepts, post-processing increases it. In 6.1, we motivate the post-processing
phase from the point of view of the application. In 6.2, we present the post-processing
method. The post-processed acceptor can be mapped back to a linear chain Datalog
program. In 6.3 we proof that its coverage for the target predicates is really increased.
The experimental results in 6.4 show the improvements, which were gained by the post-
processing step.

42 6 POST-PROCESSING CHAIN DATALOG PROGRAMS

6.1 Disadvantages of the rules learned for the robotics domain

The set of basic feature predicates, BF, contains some predicates, which do not contribute
perceptual information: In general, a basic feature describes a time interval during which
the robot keeps moving without changing its direction, and during which the tendency
of change of successive measurements is approximately the same. The basic features
are calculated in such a way, that they cover a time interval, [Start, Fnd], of a given
trace completely, i.e., given a basic feature a(1r,0,5,7T1,1T2), Start < T1, T2 < End,
there will be a basic feature b(1T'r,0,5,72,73),a,b € PSgg. In order to guarantee this,
basic feature predicates had to be introduced to account for the situations, in which the
first assumption is not satisfied, e.g., for the situation in which the robot does not move
(no_movement/5).

Now, two types of situations can occur during the training and testing/performance
phase, respectively: During the training phase a prefix (tree) acceptor is inferred, whose
transitions are labeled with an ”irrelevant” perception such as no_movement/5, because it
occurred sufficiently often in the training data, that the robot stood still. This situation
is exemplified with the automaton in the upper part of Figure 6. Given this automaton,
whenever state ¢; is reached during the performance phase, the robot expects the totally
irrelevant perception no_movement/5, instead of ignoring it. On the other hand, assume,

Before post-processing:

...... q decreasing/5 q no_movement/5 g ™\ stable/5
NEY i 1
Post-processing: Step 1 Post-processing: Step 2
...... q decreasing/5_"q "\ stable/5 (G decreasing/5_/"q "\ stable/5
NG w t}j g
no_movement/5, no_movement/5, no_movement/5,

something_happened/5 sométhing_happened/5

Figure 6: Post-processing of irrelevant basic features

that during the performance phase the robot has perceived an observation sequence which
leads to state g;_1 and then has to stop for some reason. This causes the generation
of a nomovement predicate instance, which prevents the marker passing method from
continuing to process the subsequence which may lead to state ¢;. Obviously, an unexpected
irrelevant basic feature, which does not contribute any perceptual information, should be
ignored during the performance phase. The same arguments apply to the basic feature
predicate something happened. It indicates some outlayer, which cannot be classified as
incr_peak, decr_peak, or single_peak.

In order to account for irrelevant basic features, we can modify the automaton in two
steps. Firstly, we remove the non-cyclic transitions, which are labeled by irrelevant basic
features. Assume, that there is a transition (¢;,nomovement(7 7, 0o, Ss, X from, Yo), ¢5)
(see Figure 6). Then, we remove this transition, merge the states ¢; and ¢;, and add
the cyclic transition (¢; ;,nomovement(7 74, Oy, Ss, X from, Yio), ¢i,;) (see Figure 6, bottom

6.2 Post-processing the prefix acceptor: Step 1 43

left). In the second step, we add cyclic transitions to each of the states of the acceptor
(see Figure 6, bottom right).

The ultimate goal of post-processing a prefix acceptor is to generalize the rules, com-
piled in it, in such a way, that their predictive power is increased. If we perform the
first post-processing step, we get the positive side effect, that the complexity of the prefix
acceptor is reduced in terms of the number of states, the number of transitions and the
maximal depth of the prefix acceptor. We define the maximal depth of the prefix acceptor
to be the number of transitions on the longest path from the starting state to a final state,
which does not contain any cycles.

6.2 Post-processing the prefix acceptor: Step 1

We explain the method informally with the prefix acceptor in Figure 4 in Section 4, i.e., we
continue with our example programs, Py and Py, and the associated grammars G and G'.
Assume that b € PSpy denotes an irrelevant basic feature. Then, we have to delete the
transition (go, b(Tr4r, O, Sy X froms Yi0), @), to merge the states ¢o and ¢, of PA, yielding
state gy, and to add the cyclic transition (gp+,b(Trs, Oo, Ss, X from, Yo), p+). We also
have to delete the transition (qq, (T4, O, Ss, X from, Yio)s Gab), t0 merge states g, and
qab, yielding state gpeqp+, and to add the transition (gexqpx, b(T74, Ss, X froms Yio), @hrap)
Finally, we have to delete (gpeda, 0(T74r, Oos S5y X froms Yio)s @hedat), to merge the states gpeqa
and @pedap, yielding state gprcqqp+ with the cyclic transition (gpxcdabs, 0(T74r, Oos S5y X froms Yio),

Qo cdab). Thus, we get the prefix acceptor PA’ in Figure 7, where the original states gs.,

b(Ty, Og, S Xfrom: %o)

a(Try, O, S, Xtrom: Yo)

))b(Tryr, O, Sy, Xiramn: Yo

c(Try, Og, Ssi Xirom» Yo

d(Try, Og, S5 Xrom» Yo) o(Trip Ogs S Xtrom: %a)
[P, S %rom » %0)t CObrod D Crar D { P Ty« Ss. Xirom + Yo)+ P2 T+ Ss. Xrom + %o)}
a(Try, Og, S5 Xfrom: %o) d(Try, O S5 Xirom» o)

{p5<T&,§,>&mm,§Q)}@ Gorarod { P Thr S5, Xrom » Y)}

b(Try, O, S, Xtrom» Yo)

Figure 7: Prefix acceptor PA’

Gbeds Gabe, and ¢upeq have been renamed by ¢pec, Ghrcd, @prabre, and gprgprcqd, respectively.
In terms of the language, generated by the equivalent grammars, ¢ and ', which are
associated with Py and P{, post-processing amounts to generalizing the language ﬁ(G) =
L(G") = {abe, abed, bed, bedab) to L(G") = {b*ab*c, b*ab*ed, b*cd, b*cdab*} D L(G). Again,
the states of PA’ represent the prefixes in Prefiz(L(G")) (when we treat b* as one sym-
bol). In other words, post-processing amounts to generalizing the rules, which are struc-

44 6 POST-PROCESSING CHAIN DATALOG PROGRAMS

tured in the prefix acceptor. The program P, which corresponds to PA’, contains newly
introduced recursive rules. Our claim is, that this causes the predictive power of the rules
to be increased. Given an EDB instance P, the coverage for the target predicates in 7
is increased, i.e., Covp:/(Z) C Covpn(ZT), where P’ = P UPg and P” = P{ U Pg.

Furthermore, the complexity of the prefix acceptor, in terms of the number of states,
the number of transitions, and the maximal depth is reduced. Note, that merging any
state with a final state (e.g., goeda and gpedqs) vields a final state, whereas merging non-final
states (e.g., ¢up and gqp) vields a non-final state.

post_proc(P A z PA™Y)
begin
PA = pA°d,
while there exists ¢; € Qpa, such that (¢;,,q;) € Apa with ¢; # ¢;
1. Apa:=Apa—{(¢ 2, 95)};

2. merge states(PA, ¢, q;, PAY) ;

3. Apa i =Ap s U{(gig %, 0i5)} 5

4. PA:= PAY
PA?eY .= PAL
end

Algorithm 8: post_proc

The procedure post_proc (Algorithm 8) takes as input the prefix acceptor PA%M =
(Qo1, %, 7, A% ggld Fold X\old) and alabel x € ¥. The procedure generates as output the
new prefix acceptor PA™Y = (Q"", X, Z, A" ¢, F", A\""), in which there do not
exist any non-cyclic transitions, labeled x. The procedure does for each state ¢;, for which
there exists a transition (¢;,2,q;) with ¢; # ¢; the following: The transition (¢;,2,¢;) is
deleted (Step 1), the states ¢; and ¢; are merged, yielding state ¢; ; (Step 2, which requires
to recursively merge other states and transitions), and the cyclic transition (g; ;,2,q; ;) is
added (Step 3).

The procedure merge states (Algorithm 9) takes as input the prefix acceptor PA° =
(QOld, ¥, Z, A% ggld, pold, /\Old) and two states, ¢; and ¢;. It generates as output the new
prefix acceptor PA™®". The procedure works as follows: State ¢; is removed from the set
of states (Step 2), whereas state ¢; is replaced by the merged state ¢; ; (Step 3). Now, we
consider all transitions, which start from the original states, ¢; and ¢;, respectively. For
each transition, which starts from ¢; and which is labeled by some € X, we check, whether
there is a transition, starting from ¢;, labeled z. If that is not the case, the transition
(¢i,2,q;) is replaced by (g;;,2,q;) (Step 4). The corresponding step is performed for
transitions, which start from state g; (Step 5). If there exist transitions, labeled by some
z € ¥, starting from both states, ¢; and ¢;, they have to be merged (Step 6). If one of
the states, ¢; or ¢;, is a final state, then the merged state ¢; ; becomes a final state and
it is associated with the final tags of both original states (Step 7). If the original state ¢;
was the starting state, the merged state ¢; ; becomes the starting state of the new prefix
acceptor PA™™ (Step 8).

The procedure merge_transitions (Algorithm 10) takes as input a prefix acceptor
P A% and the two transitions, which have to be merged. It produces as output the new

6.2

Post-processing the prefix acceptor: Step 1 45

merge states(PA%Y, ¢;, q;, PA™Y)

begin
1. PA = PAOld; FPA = @,
2. Qra = Qpra — {4}
3. Qpra = (Qpra —{¢:}) U{qi;}
4. for each # € X, such that (¢;,2,¢,) € Apa, but (¢;,2,.) € Apa:
APA = (APA - {((Jw €T, QT)}) U {(qz,]a €T, QT)}
5. for each y € X, such that (¢;,y,4¢:) € Apa, but (¢;,y,-) € Apa:
Apa = (Apa — (4,9, 45)) V{45, ¥, 45)}
6. for each z € X, such that (¢;,2,qx) € Apa and (¢;, 2, q1) € Apa:
merge_transitions(PA, (¢;, 2, qx), (¢;, 2, 1), PA™™™);
7. if ¢; € F'p gota o1 q; € Fp qo1a, then
begin
Fpanew := Fpgnew U{q; j}; Aparew(qij) = Apaora(qi) UApaora(qs);
end
8. if q0,0ld = i then qo,new ‘= 4455
end

Algorithm 9: merge_states

prefix acceptor PA™". It works as follows: The two transitions, (¢;, 2z, qx) and (¢;, 2, 1),
are deleted (Step 2). Then, the two states, ¢ and ¢;, have to be merged (Step 3). Finally,
the new transition (¢; ;, 2, qr,) is added.

merge transitions(PAY (¢;, 2, q1), (5,2, @), PA™Y)
begin

1. PA:= PA%,

2. Apa = Apa —{(4i, 2, qx), (45,2, 45)}

3. merge states(PA, ¢, i1, PA™Y)

4. Apanew := Apgnew U{(gi 5,2, q5,1)}
end

Algorithm 10: merge_transitions

Example

The effect of reducing the complexity of the graph by merging states and

transitions, respectively, is illustrated with the acceptor PA; in Figure 8, which after
post-processing for b, is transformed to the acceptor PA; in Figure 9. P A4 accepts the lan-
guage generated by the grammar G = (Vy, ¥4, P1,s) with PA; = {s — p1|p2|ps|ps, p1 —
abe,py — aca,ps — abca,py — abed} for the language ﬁ(Gl) = {abc, aca, abea, abed}.
Again let b denote an irrelevant basic feature. Post-processing is to generalize ﬁ(Gl)
to the language L(Gq) = {ab*c,ab*ca,ab*cd}. Applying the algorithm post_proc to P;
causes the states ¢; and g2 to be merged. Given that, the transitions, which lead from ¢
to p1, and from ¢ to ¢s, respectively, and which are both labeled by ¢, have to be merged.

46 6 POST-PROCESSING CHAIN DATALOG PROGRAMS

a b
b 3 -@) 2
ora® T ‘
©E) 46
Figure 8: P A4 Figure 9: PAy

This, in turn, requires to merge states p; and ¢g3. The recursive call to merge transitions,
then causes the edges from p; to ps, and from g3 to po to be merged. The recursion ends,
when the states ps and py have been merged. So, in this example, post-processing reduces
the number of states from 8 to 5, the number of edges from 7 to 5, and the max. depth of
a non-cyclic path from 4 to 3.

6.3 The post-processed chain Datalog program

The grammar G”, which is associated with acceptor PA’ (see Figure 7)is G" = (VX" P s),

with V" = {5,])1,])2,]73,]74,]75, Gb* 5 Gb*ab* s Qb*cy Gb*cd s Gb*ab*cs Gb*cdab* Qb*ab*cd}v o= {av bv & d}v
and the set P” of productions

s — pi|p2|pslp4lps Qred — Qprcd

Gpx — b P11 — brabrc
Goxabx — G P2 — Gb*ab*c

qoxe — C P4 — Gb*cd

@+ — @b Qorabred — Qorabrc d
Goxabx — A Qv*cdab* — Gored @

Qorc — Qpx C P3s — Gbrab*cd
Qorab* — Qprapr b D5 — Qbredab
Qorab*e — Qorab* € Qorcdab* — Qb*cdab* b.

The program Py, which can be derived from these productions by transforming them
to elementary chain rules, and by introducing the variables T'r, O, and S at the appropriate
positions (see 4.3.4), is

w
—

N N N N N

Qb*(TT,O,S,X,Y
Qb*ab*(Trvovstvy
Qb*c(Trvov Svay

) (T, 0,5, X,Y).
)
)
@ (Tr,0,5,X,Y)
)
)
)
)

(
a(Tr,0,9,X,Y).
c(Tr,0,5,X,Y).

@+ (T7,0,5,X,X1),6(Tr,0,59,X1,Y).
@+ (T7,0,5,X,X1),a(Tr,0,59,X1,Y).
@+ (T7,0,5,X,X1),¢(Tr,0,59,X1,Y).
Qrabx(Tr,0,5,X,X41),0(Tr,0,5,X1,Y).
Qrabx(Tr,0,5,X,X4),¢(Tr,0,5,X1,Y).

W W W w
U = W N

Qo*ab*(Tr,0,5,X,Y

@ (Tr,0,5,X,Y
Qrar<(Tr,0,59,X,Y
Qorape(TT,0,5, XY

w
(@

P e N e N T N N e N N
o
3

L T

o
oo

e
\]

6.3 The post-processed chain Datalog program

Qrca(Tr, 0,5, XY
p(Tr, 5, X,Y
pa(Tr, 5, X,Y
pa(Tr, 5, X,Y

) @o(Tr,0,5,X,X1),d(Tr,0,5,X1,Y).

)

)

)
Qoraprca(Tr,0,9,X,Y)

)

)

)

)

Qorabe(Tr,0,9, X,Y).

Qorabe(Tr,0,9, X,Y).
Qrcd(Tr, 0,5, X,Y).

Qorabre(Tr, 0,59, X, X1),d(Tr,0,5,X1,Y).
Qred(Tr, 0,5, X, X1),a(Tr,0,9,X1,Y).
Qovapred(TT,0,59,X,Y),

Qv cdap (TT,0,5,X,Y),

Qo cdabs (T7,0,9,X,X1),6(T7,0,59,X1,Y).

T T
N = O O

N
=

Qo cdab(TT,0,9, X,V
pa(Tr, 5, X,Y
ps(Tr, 5, X,Y
Qo cdab(TT,0,9, X,V

I
S O

e

P T e N e N T T e N e N
inNy inNy
-~I [UN]
S N S e S e e e e

Our claim is that post-processing increases the coverage (see Definition 3 in Section 3)
of the set of target predicates in Z. This claim is supported by the following lemma:

Lemma 4 Let P} be a program, which has been mapped to a prefiz acceptor PA. Let
PA" be the acceptor, which results from post-processing PA for some EDB predicates of
P1. Let P{ be the chain Datalog program, which corresponds to PA’ and I a set of target
predicates p; € T C IDB(PY),IDB(PY). Then,

{pi(tlv"'vts) | pi€’l and pi(tlv"'vts) € be)i(PE)}
c
{pi(tlv"'vts) | pi€’l and pi(tlv"'vts) € be)f(PE)}v

i.e., the coverage of Py for the target predicates in I is a subset of the coverage of Py for
Z: Covp/(Z) C Covpn(Z) with P’ = P{UPE and P’ = P{ UPg.

Proof We have EDB(P7)=EDB(PY). Furthermore, consider the sets of predicate sym-
bols IDB(P7)—Z and IDB(P{)—Z. They correspond to the states of the prefix acceptors
PA and PA’, respectively. Fach state of PA’ is either a state of the original PA or
a state which resulted from merging several states of PA. The post-processing method
guarantees, that each state of PA is merged into at most one state of PA’. Therefore,
there exists a mapping f from the predicate symbols IDB(P7)UEDB(PY) to the predicate
symbols IDB(P{)UEDB(PY) which is defined as follows

r if r € EDB(P7)=EDB(P{)orr €T
f(r)= , " . N
r; € IDB(PY)-Z if r € IDB(P})-Z.

For our example programs, P} and P7, this mapping is

f = {(psp)lpi € I} U{(a,a)la € EDB(P})=EDB(P})} U
{(Qav Qb*ab*)v (va Qb*)v (Qabv Qb*ab*)v (chv Qb*c)v (Qabcv Qb*ab*c)v (chdv Qb*cd)v
(Qabcdv Qb*ab*cd)v (chdav Gb*cdab*)7 (chdabv Gb*cdab*)}

If we apply this predicate renaming function to a rule ', we exchange each predicate
symbol according to the function f. We denote the result by f(C'). Given that, for each

48 6 POST-PROCESSING CHAIN DATALOG PROGRAMS

rule ¢’ € Pf, there exists a rule C” € PY, such that f(C’) is a variant? of C”. As f is
the identity function for p; € 7 and ¢ € EDB(P7)=EDB(PY), it follows, that for each

B =pi(p1,...,ps), if Be Twi(PE)’ then B € T‘”f(PE).D

6.4 Experiments

We have applied the method for structuring chain Datalog programs in prefix (tree) accep-
tors and the method for post-processing the acceptors to the data of the robot navigation
domain developed within the BLearn-project. We worked with four data sets for four
environments, denoted P, @, R, and 5 (see Figure 10, 11, 12, and 13).

Traces in scenela: E Traces in scenelb: v = Traces in scenelc: T e Traces in scenedd:

\

o L, o I J

Figure 10: Traces for Figure 11: Traces for Figure 12: Traces for Figure 13: Traces for
data set P data set @) data set R data set S

Each data set contains the measurements of 24 sonar sensors, which have been per-
ceived during seven traces'®. In Figure 14, the sequence of sonar sensor measurements is

=] sensed_distances

;;;;;

Figure 14: Sequence of sensor measurements

shown, which has been perceived by a sensor on the robot’s left side during the trace in P,
in which the robot moves diagonally along the doorway. Given the sonar sensor data, we
generated the examples F for the concepts to be learned, i.e., the sensor features. We ap-
plied the method, developed by Wessel [26], in order to calculate the basic features, which
constitute the background knowledge B for learning. The calculation of basic features is
guided by a parameter, which represents the tolerance within which successive gradients
of sensor measurements are considered to be approximately equal. This gradient is used

®Clauses C; and C5 are variants, if there exist substitutions ¢ and o such that C; = C26 and C> = Cy0
(see [11]).
19The data has been provided by the University of Karlsruhe.

6.4 Experiments 49

to decide during the calculation, whether the measurement at a given time point is added
to the time interval for the previous measurements or to a new interval for the next ba-
sic feature. By considering the tendency of change of successive measurements, i.e., the
ratio between the values and not the absolute values themselves, we try to smooth out
the inaccuracies of the sensor measurements. The effect of calculating basic features with

Tolerance=6: Tolerance=15:
increasing(t7,75,s6,3,32). increasing(t7,75,s6,3,32).
no_measurement (t7,75,s6,32,53). no_measurement (t7,75,s6,32,53).
decreasing(t7,75,s6,53,59). stable(t7,75,s56,53,69).
stable(t7,75,s56,59,65). increasing(t7,75,s6,69,85).

increasing(t7,75,s6,65,69).
something_happened(t7,75,56,69,70).
increasing(t7,75,s6,70,85).

Figure 15: Different ways of calculating basic features

different parameters is shown in Figure 15 for the measurements in Figure 14. For each of
the four data sets, P, @, R, and 5, we have calculated the basic features with four different
tolerance values, i.e., 6, 8, 10, and 15.

Given the examples F/ and the background knowledge B, i.e., the basic features calcu-
lated with one specific parameter value, we used for training the prefix tree method to
learn rules for deriving sensor features from basic features (see 4). In [10], we have already
shown, that due to the sensor noise, the coverage of these rules is not very high. For this
reason, we accepted rules, which covered at least one positive example. Then, we struc-
tured the rules in a prefix tree acceptor. During the post-processing phase we applied the
procedure post_proc for the two basic features no movement and something happened.

Given the examples F and the background knowledge B, i.e., the basic features cal-
culated with one specific parameter value, we performed the training, post-processing,
and testing phase four times with the training/test sets QRS/P, PRS/Q, PQS/R, and
PQR/S. So we used the data of three environments for learning and tested the results
with the data of the fourth environment. Thus, each row of Table 1 (and of Table 2),

P A before post-processing P A’ after PP: Step 1 Step 2
BF-Param | [Train] || [Q] [[A] Depth Q] | Qrea [[A]] Ages | Depth [A]
Tol=6 1215 438 | 437 9 149 | 65.9% | 211 | 51.9% 6 447
Tol=8 1196 323 | 322 7 129 | 59.9% | 170 | 47.1% 5 387
Tol=10 1176 287 | 286 7 120 | 58.3% | 159 | 44.5% 5 358
Tol=15 1121 225 | 224 7 100 | 55.8% | 133 | 40.5% 5 298
8 60.0% 146.0% 5

Table 1: Complexity of the prefix acceptors before and after post-processing

which is indexed by a tolerance value contains the average results of four training/post-
processing/test runs. The tables with the detailed results can be found in Appendix A.5.
In Table 1, we present the results, which reflect the improvements with respect to the
complexity of the acceptors, which we achieved by post-processing. BF-Param is the
value for the tolerance parameter, which was used to calculate the basic features. |Train|
denotes the number of training examples. |@| is the number of states, |A| is the num-
ber of transitions, and Depth is the maximal depth of the prefix acceptors before and

50 7 RESTRUCTURING, MARKER PASSING AND DECOMPOSITIONS

after post-processing. @ pe.q denotes the percentage, by which the number of states was
reduced, Ap.q the percentage by which the number of transitions was reduced via post-
processing. If we consider the columns for the PA before post-processing, we see that the
number of states and transitions decreases with increasing tolerance values. This reflects
the fact, that the more sensitive the method for calculating basic features is, the longer
the sequence of basic features become, yielding rules with long premise chains and large
acceptors. After having performed the first post-processing step, we see, that also the re-
duction of the number of states and transitions decreases with increasing tolerance values.
The average reduction of 60% of the states and 46% percent of the transitions is notable
and justifies the effort to perform the first post- processing step. Obviously, the second
one increases the complexity enormously. In Table 2, we present the results of testing the

No PP PP: Step 1 PP: Step 2

BF-Param |Train| |T€St| CO Cl 1071 CQ 1072 1172
Tol=6 1215 405 59.9% || 67.8% | 7.9% | 68.7% | 8.8% | 0.9%
Tol=8 1196 399 61.4% || 67.6% | 6.2% | 68.4% | 7.1% | 0.9%
Tol=10 1176 392 61.3% || 66.2% | 4.9% | 66.9% | 5.6% | 0.7%
Tol=15 1121 374 62.4% || 66.2% | 3.8% | 68.2% | 4.3% | 0.5%

61.3% || 67.0% | 5.7% || 68.1% | 6.5% | 0.8%

Table 2: Testing results before and after post-processing

learning results before and after post-processing. During the testing phase we used the
marker passing method, presented in Section 5, in order to derive sensor features from
the basic features in the test sets, and compared them with the testing examples. |Test]
denotes the number of testing examples, Cy the percentage of correctly derived examples
before post-processing, (' the percentage after the first, and Cy the percentage after the
second post-processing step. I, denotes the improvement, which we achieved by the first,
Ip,> the one achieved by the second post-processing step, when compared to the testing
results before post-processing. I; 3 denotes the improvement achieved by the second step
compared to the results of the first post-processing step. The percentage of correctly de-
rived test examples before post-processing increases with increasing tolerance values (see
column Cy). After post-processing step 1, we have the opposite effect (see column Cy).
We get the highest improvements for the case, that the basic features have been calculated
with tolerance 6. The average improvement, we get, is 5.7%. We get only slightly better
results for step 2. However, our claim, that the predictive power of the post-processed
program/acceptors is increased, is confirmed. Obviously, the second post-processing step,
which increases the complexity of the acceptor enormously, does not pay off, in terms of
the improvements of the predictive power. So, in order to summarize, we can say, that the
first post-processing step achieves good results in terms of the complexity and predictive
power.

7 Restructuring, Marker Passing and Decompositions

By mapping a set of chain Datalog rules to a prefix acceptor, we have gained a compilation
of rules, which allows to optimize forward chaining inferences. In Appendix A.4, we have

51

added another example of a run of MP on the (post-processed) prefix acceptor PA’ in

Figure 7. In this section, we show that this way of proceeding is similar to decomposing

chain Datalog rules for query optimization (see the work by Dong and Ginsburg in [7]).
Consider the example program P, which is the result of restructuring (see 4.3.2).

¢(Tr,0,5,X,Y) — aTr,0,5X,Y). (48)
w(Tr,0,5,X,Y) «— bTr,0,5X,Y). (49)
qup(Tr, 0,5, X,Y) — q(Tr,0,5, X1, X2),b(Tr,0,5,X5,Y). (50)
@e(Tr, 0,5, X,Y) — ¢(17,0,5 X1,X2),¢(Tr,0,8,X2,Y). (51)
Qape(T7,0,5,X,Y) — qu(Tr,0,5 X1, X2),e(T7,0,5 X3, Y). (52)
Ged(T7,0,5,X,Y) — q(Tr,0,5 X1, X9),d(T7,0,5, X3, Y). (53)
p(Tr, 9, X,Y) — qu(Tr,0,5 X,Y). (54)
pa(Tr, 9, X,Y) — qu(Tr,0,5 X,Y). (55)
pa(Tr, 9, X,Y) — qpea(Tr,0,59,X,Y). (56)
Qabed(T7, 0,5, X,Y) — que(T7,0,5, X1, X2),d(Tr,0,5,X3,Y). (57)
Qpeda(T7,0,5, X,Y) — quea(T7,0,5,X1,X2),a(Tr,0,59,X3,Y). (58)
pa(Tr, 9, X,Y) — quea(Tr,0,5 X,Y). (59)
Qoedat(T7,0,9, X,Y) — qoeaa(Tr, 0,5, X1, X2),0(Tr,0,85, X3, Y). (60)
) = (61)

p5(T7‘, Svay chdab(Trvov S? Y7 Y)

D
—_

Based on the notion of dependent rules, we can decompose the rules of program Pj
into disjoint sets of rules.

Definition 6 ([7]) Given a basic logic program Py and two rules Cy,Cq € Py, Cy is said
to depend on Cy (in Py), denoted by Cy P Cy, if either the predicate occurring in the
head of Cy occurs in the body of Cy, or there is a rule C' € Py, such that Cy > P C and
C >‘PI CQ.

The direct dependencies among the rules of P} are r61 =P r60 py rb8 py rb3 Py

151 »ps 149, 159 =p s 157 >p s 152 =p s 150 -p s 148, 156 >-p s 153, 155 -p s 152, and
154 >‘PI/ rH2.

Similar to Dong and Ginsburg [7], we define a program decomposition as follows:

Definition 7 For a given set of IDB predicates T = {p1,...,pn} CIDB(P}) of a basic
logic program P a sequence Pyy...Pyy(n > 1) of programs is called a {p1,...,pn}-
decomposition of Py if

{pi(t1,..,tn) | pi€Z and pi(t1,...,t,) € Tf;lno...o Tf,Il(I)}

iltreeosta) | pi€T and pilts,....t,) € T (D)

for interpretations I, which are restricted to be FDB instances of Py.

52 7 RESTRUCTURING, MARKER PASSING AND DECOMPOSITIONS

Here, o denotes a composition of mappings, where the component mappings are applied
from right to left. Each Pp; is called a component program or simply component of the
decomposition. Note, that Py U...U Py, does not have to coincide with Py, i.e., new
predicates are introduced. In our case it is the program P = PpiU...UPy,, which is the
result of applying the procedure restruct or restruct_dc to the original program Pj.

The method decompose (see Algorithm 11) finds one possible decomposition of a
(restructured) program. The rules with no IDB predicates in their bodies are put into
the first component. Then, we repeat the following step until each rule has been assigned
to a component: Add to component ¢ all rules, which depend direcly on some rule in
component ¢ — 1.

decompose(Py)
begin

1. Py :={C|C € Py and Chogy consists of EDB predicates only };

2. ToDo =Py — PI,15

3.1 =72

4. while ToDo # 0
begin

PI,i :={C|C € ToDo and C >—PI C; with C; € PI,i—l};
ToDo :=ToDo — PLi;
=141

end

5. return PI,l .. 'PI,i—15
end

Algorithm 11: decompose

If we apply this method to P}, we get the components

Pr; = {48, 149}

P, = {150, 151}

Py = {152, 153}

Pr, = {154, 155, 156, 157, 158}
Pis = {159, r60}

Pl = {161}

Py 1 contains the rules, which do not depend on any other rule of P1, Pj 5 contains the
rules, which depend directly on those in Py, Py 3 contains the rules, which depend di-
rectly on those in Py 5, etc. For each interpretation I, which is an EDB instance for P1, the
minimum Herbrand model can be determined by first computing the fixpoint F'1 of TPLl
on I, followed by the fixpoint £2 of TPL2 on F1, followed by the fixpoint F'3 of TPLS on
F2, etc. There is no need to consider computations, where the rules in Py g are applied
first, followed by the application of other rules. So the sequence Pyq,...,Pyg is a de-
composition of program Pj for the target predicates py, ..., ps. Note, that decompositions

53

are not unique. The decompose-method finds the one with maximal components. For the
post-processed program Py (see 6.2), decompose finds the {p1, ps, p3, pa, p5 }-decomposition

1 1 1 1
L1FT12FT3 T4

P = {31, r32, r33}

Pf’z = {134, r35, 136, r37, 138, r39}
P = {140, r41, r42, 143, r44}
Pi’A = {145, 146, r47}

The purpose of decompositions is to divide programs into smaller clusters, in order to
achieve more eflicient evaluations of programs. As a side-effect, some interactions among
rules may be removed. Here, it is the redundant evaluation of premise chains, which are
prefixes of other premise chains. Separation of these interactions may also help a user to
better understand the programs. From a sequential processing point of view, each rule ('
in a decomposition is evaluated after those, on which C' depends. For example, rule 160 is
evaluated after rule 158, which is evaluated after rule 153, etc. From a parallel processing
point of view, if each rule in a component program is independent of any other rule in the
same component, they can be processed in parallel.

Now, assume that the robot perceives the sequence of ground basic feature predicates,
i.e., that the basic logic program Py = PpiU...UPy, gets as input the EDB instance

Py = {a(t1,90, s5,1,8),b(11,90, 55,8, 10), ¢(t1,90, s5, 10, 15), d(t1, 90, s5, 15, 17)}.

Now, if we calculate T‘f,LG o T‘*f,L5 o T‘*f,L4 o T‘*f,L3 o T‘*f,L2 o T‘f,Ll (P) according to Definition

7, we get
Fl= PI 1(PE) = Py U{q(t1,90,55,1,8),q(t1,90,s5,8,10)}
F2=Tp 2(Fl) = F1U{qu(1,90,55,1,10), g5.(t1,90,55,8,15)}
F3=Tp 3(FQ) = F2U {qu(t1,90,55,1,15), qpeq(t1,90,55,8,17)}
F4= PI4(F3) = F3U{p(tl,s5,1,15),pa(t1,5,1,15), pa(t1, s5,8,17),

Qabcd(tlv 90, s5, 1, 17)}
Fb5 = T‘f,14(F4) = F4U{ps(tl,s5,1,17)}
F6 = TPL5(F5) = Fb.
For this example, it is obvious, that
F5 = ‘*f,LG o Tuf)l,s o T‘f,IA o T‘f,LS o T‘f,L2 o T‘f,Ll(PE) = Tuf)i(PE) 2 T‘f,I(PE)
and that

{pi(trvsvwvy) | Pi €l = {p17p27"'7p5} and
piltr,s,z,y) € T‘f,LG o T‘*f,L5 o T‘*f,L4 o T‘*f,L3 o T‘*f,L2 o T‘f,Ll(PE)}
{pi(trvsvwvy) | Pi €l = {p17p27"'7p5} and pi(trvsvxvy)e T(i:}’I(PE)}
= {p1(t1,s5,1,15), pa(t1, s5,1,15), ps(t1, s5,1,17), pa(t1, s5,8,17)}.

54 7 RESTRUCTURING, MARKER PASSING AND DECOMPOSITIONS

i.e., the IDB-portion of the minimum Herbrand model of the predicates pq,...,ps in 7 is
the same, no matter whether we apply the T mapping for the whole program or sequentially
for its components. We show the validity of this relation in the following lemma:

Lemma 5 Let Py be a

e a non-recursive basic program with rules, in which the IDB-predicates occur only in
rule heads, to which we apply one of the restructuring methods, presented in 4.3, or

e a linear basic logic program with rules which have at most one EDB-subgoal,

then the method decompose generates a decomposition Py ... Py, such that

{pi(tlv .. '7ts)|pi €7 and pi(tlv .. '7t5) € be’I(PE)}

{pi(t1,...,ts)|pi € T and pi(t1,...,t5) € Tf’Ln 0...0 T“f,Ll(PE)},

where 7 CIDB(Py).

Proof Remember, that the fixpoint T‘f,I(PE) can be determined in a finite number of
steps. In Section 3, we defined T%I for a given EDB instance Pg to be T%I(PE) = Py.

Note, that Z CIDB(P)CIDB(Py;U...UPy,). So, in order to show the C-part, it suffices
to show T‘f,I(PE) CTp, o...0 T‘f,Il(PE).

C: We show this part by induction on the number ¢ of applications of the TPI mapping,
necessary to calculate the fixpoint T‘f,I(PE).

Ifi=1and B € Tp, (PE) with B = p,(21,...,2,) where p, € T C IDB(Py). Then,
there are two possibilities. The first is, that there exists a rule ' € Py with one premise

and Co = (B — %i), such that A € Pr. The restructuring method does not change any
rules with one premise. So ¢' € Py and B € T‘f,I 1(PE). The other possibility is, that C

is a rule with more than one premise with Co = (B — A, ,Zln) and Aq,..., A, € Pg.
During the restructuring phase C' has been transforrrvled to the rules (Q1 — A1),(Q2 —
Q1,42),...,(Qr — Qi—1,A4;),(B — Q). Therefore, B € Tuf)IH-l 0...0 T‘f,Il(PE). This
takes care of the induction basis. 7 7

Suppose, as the induction assumption, that TZf)I(PE) C T‘f,Ln 0...0 T‘f,Ll(PE). Then,

we have to show the hypothesis TEI(PE) C T‘f,I o.. .oT‘f,I 1(PE). Let B = po(21,...,2;)

and B € T},"’II(PE). Then, there exists a clause C' € Py with Co = (B — A;,..., A;) and
Ay, .. A€ TZPI(PE). According to the assumption, Ay,..., A; € T‘f,Ln 0...0 T‘f,Ll(PE).
Consider the component TPLt’l <t < n, with C € TPLt' In order to be able to
apply C', we have to show, that the A;...A; are already in the set to which the TPLt

mapping is applied or that they are added to the interpretation during the calculation of

the fixpoint T‘f,Lt. Assume the contrary, i.e., Ay ... A; & T‘*f,Lt 0...0 T‘f,Ll(PE). Then,

55

cither Ay ... A; ¢ T‘f,I 0...0 T‘f,I 1(PE), which is a contradiction to the assumption. Or
7n ?
A A € T‘f,I 0...0 T‘f,Il(PE), but A;...A; are calculated only after the fixpoint
7n ?
T% ~ has been determined. From this follows, that for at least one A,,v € {1,...,1},
Pry

there is a component Py, with v > ¢, which contains a rule ', = (A, — Choqy). Clearly,
we have C' > (. This again leads to a contradiction, because according to our method
for determining the components, we have C' ¥ ', for each rule C' in a given component
Pr¢,1 <t <nand any rule C,, € Py, t <z < n.

D: Again it suffices to show, that {p;(t1,...,%,)|p; € Z C IDB(Pg) and p;(t1,...,1s) €
T‘*’ 0...0 TP (PE)} C TP (Pg). We show this part by induction on the number n of
components of the decomp051t10n

Casen = 1. Each rule C' € Py ; for a predicate p;(Xy, ..., X;) with p; € 7 CIDB(Py) is

either a member of Py or it can be unfolded, yielding Cyy, foideqd With Cunsotded € P1. From
this follows, that {pi(t1,...,ts)|p; € Z C IDB(Pg) and p;(t1,...,ts) € T‘f)Il(PE)} C

Ty (PE).
Case n > 1. For the induction basis, we have to show, that {p;(t1,...,%s)|pi € T C
IDB(Pg) and pi(te,...,t) € T‘” (PE)} CTh (PE) The component TP contains all

rules, which are independent of any other rule in PI 1U...UP . All rules C € TP have

the form B — A. Therefore, A has to be an atom over a predlcate in EDB(Py). If B is an
atom over a predicate p; € 7 CIDB(Py), then, according to the restructuring method, the
rule B — Ais also in Py. Soif B = p,(21,...,z,) with p, € Z C IDB(Py) and Be TPI ,

then there exists a C' € T‘f,l L with Co = (B «— A) and A € Pg. As C € Py, we also have
Be T%)I(PE), and therefore B € T‘f,I(PE).

Let I1,.. ;.1 < j < ndenote the set {p;(t1,...,t5)|p; € T CIDB(Pg) and p;(t4,...,t;5) €
T‘*’ ;o oT (PE)} Suppose, as the induction assumption, that I _; C T‘f,I(PE), 1<

J < n. Then, we have to show the induction hypothesis I; ;41 C T“fo(PE) with
b, g1 = A{pilt, - 1)lpi € T CIDB(PE) and pi(ty,..., 1) € Tp . o...0Th (Pp)}.

Let B = pr(te, ...,) with p, € 7 C IDB(P;) and Be I, j+1. Then, there are two pos-
sibilities. The first is, that B € Iy, ; and thus Be Tp (PE) according to the assumption.

If that is not the case, then there exists a (' € TPIj-|—1’ such that C'o = (B — Ay, .. .,le)

and Aq,..., 4, ¢ T%Lj-l—l 0...0 T‘f,Ll(PE), r < w. This rule C' is either a member of Pt or

it can be unfolded, such that C\;, to14eq is @ member of Py. From this follows, that B will
also be in TPI(PE)- a
With Lemma 2 (see 4.3.3), Theorem 1 and 2 (see 5.2), and Lemma 5, we have

Theorems 1, 2
MPpa(Pg) =

{pi(tlv .- '7ts)|pi €7 and pi(tlv .- '7t5) € Twi(PE)}
{pi(tlv .. '7ts)|pi €7 and pi(tlv .. '7t5) € Tuf’I(PE)}
Lemma 5

o {pi(t1,...,ts)|pi € T and pi(t1,...,t5) € T‘f,Ln OTPH(PE)}

Lemma 2

56 7 RESTRUCTURING, MARKER PASSING AND DECOMPOSITIONS

Furthermore, we have
[pilths o t)lps € T and piltr, ..o t,) € T$,(Pg) = T(Chy)

{pilty - to)lpi € T and pi(ty,. .. 1) € Th 0 Th, (Pp)} = I2(C2,)U...uTY(Chy)
{pi(t1,...,ts)|p;i € T and p;(t1,...,15) € T‘f)IS o T‘*f,I2 o T‘f)Il(PE)}

=T®(C2)U...UT2(C2,)U...UT (Chy)

{pi(t1,...,ts)|pi € T and p;(t1,...,t5) € T‘f,Ln 0...0 T‘f,Ll(PE)}

=T5CE) U...UTYHCh,) = MPp4(PR)
with 1 < iy <43 < ...< k, where k is the length of the input chain Pg.

The process of incrementally calculating the fixpoint of the T mapping, i.e., of calculat-
ing incrementally the minimum Herbrand model, can also be illustrated by the complete
derivation trees for pi(?1,s5,1,15), ps(tl,s5,1,17), and pa(t1,s5,8,17), which are pre-
sented in Figure 16, 17, and 18, respectively. The sequential application of the T

p, (t1,55,1,15), P, (t1,s5,1,15)

Oane (11,90,55,1,10)

0y (11,90,55,1,10)
o T T

0,(t1,90,s5,1,8)

a(t1,90,s51,8) b(t1,90,s5,8,10) c(t1,90,55,10,15)

Figure 16: Derivation tree for pi(t1,s5,1,15)

mapping for the component programs and the passing forward of the marker in the prefix
acceptor is equivalent to constructing the derivation trees incrementally from left to right
and bottom-up. This incremental construction is exactly simulated by the marker passing
method, which we have presented in Section 5. The difference is, that the marker passing
method does not calculate the IDB-portion of the minimum Herbrand model for the aux-
iliary IDB predicates ¢; € IDB(P7) — Z. Remember, that the order of the EDB facts in
Py corresponds to the relation <. Due to the syntactical characteristics of chain Datalog
programs, it can never happen, that, given the chain Py = Al .Ak, some permuted sub-
sequence of it appears as the fringe of a complete derivation tree. So, the point we want to
make, is, that the compilation of a chain Datalog program into a prefix acceptor and the
application of the marker passing method for efficient forward inferences corresponds to
the decomposition of chain Datalog programs and to calculating the minimum Herbrand
model by calculating sequentially the fixpoint of the T mapping to the components of the
decomposition starting with a given an EDB-instance.

57

P (tL,$5,1,17)
Oapeq (11,90,85,1,17)
qabc(tl,9ow
10510
o e

0, (t1,90,s5,1,8)

a(t1,90,s5,1,8) b(t1,90,s5,8,10) c(t1,90,s5,10,15) d(t1,90,s5,15,17)

Figure 17: Derivation tree for ps(t1,s5,1,17)

p, (t1,85,8,17)

Opeq (11,90,55,8,17)

e
. (11,90,55,8,15)
e

q,,(t1,90,s5,8,10)
b(t1,90,85,8,10) c(t1,90,s5,10,15) d{(t1,90,s5,15,17)

Figure 18: Derivation tree for p4(t1,s5,8,17)

Related work Dong and Ginsburg have introduced uniform decompositions (see [6])
and p-decompositions (see [7]). A sequence Pry...Pr,(n > 1) of programs is called a
uniform decomposition of program Py, if TPLn 0...0 TPLl (I) = Tpy(I) for every in-
terpretation I of Py. For a predicate p, a sequence Pyj...Py,(n > 1) of programs is
called a p-decomposition of program Py, if {p(t1,t2)|p(t1,12) € Tp, o...0 TPH(I)} =
{p(t1,t2)|p(t1,t2) € TPI(I)}. Common to all types of decomposftions is the brdered,
compositional manner of computation of the component programs. The differences be-
tween {pi,...,p,}-decompositions, on one hand, and p-decompositions and uniform de-
compositions, on the other hand, are the following: Like p-decompositions, {py,...,pn}-
decompositions take as input only EDB instances of Py, whereas uniform decompositions
take as input interpretations of both, IDB and EDB predicates. The decompositions differ
in the predicates, for which they ”simulate” the original program Pj: A uniform decompo-
sition "simulates” Py for every IDB predicate in IDB(Py), a p-decomposition ”simulates”
P only for one predicate p. Finally, {py, ..., p,}-decompositions "simulate” Py for a sub-
set of IDB predicates {p1,...,p,} C IDB(Pp). Like p-decompositions, but in contrast
to uniform decompositions, {p1,...,p,}-decompositions may use newly introduced pred-
icates, i.e., predicates not in EDB(Py) U IDB(Py). For example, the {p1, p2, ps, pa, ps}-
decomposition Py 1PpoPy 3P 4P 5P uses nine newly introduced predicates ¢;,; €

58 8 CONCLUSIONS

Grammars Acceptors Programs

PIO

(unfold)| | sort

G R
(unfold) | | "Gorey™
prefix_tree|
G P’I
%
PA
Covp(1)=Covp. (1) Covp. (1)
I Il
L(G)=L(G') L(G") post_proc
MRA(RD MRy (R)
PA
/(/////,/’ W
G P

Figure 19: Summary
Prefiz(L(G)) = Prefiz(L(G") — {¢}.

8 Conclusions

8.1 Summary

Figure 19 gives an overview of the work presented in this paper. We started with a
non-recursive chain Datalog program P?, whose rules define intensionally several target
concepts represented by the predicates with the symbols p; € Z C IDB(P?), which occur
only in rule heads. We have used the syntactical features of chain Datalog programs to
develop methods, which sort automatically the premise literals of a chain Datalog rule
according to the relations, < and ~+, respectively. By sorting the premise literals and
by unfolding the rules for the IDB predicates in all possible ways, we can transform an
arbitrary non-recursive program P? to a non-recursive chain Datalog program Py with
sorted premise chains and with all its IDB predicates p; € 7 C (P}) occurring in rule

8.2 Current and future work 59

heads only. We have used the correspondence between chain Datalog programs and CFGs
to characterize P1 by the regular grammar . The method prefix_tree takes as input
a chain Datalog program of the above mentioned type, structures the rules in a prefix
tree and maps the tree to a prefix tree acceptor PA. We can obtain the same result,
if we restructure the program P1 with one of the methods presented in 4.3. The rules
of the resulting program Pj have a special form, which allowed us to define a procedure
to map the rules directly to the prefix acceptor and vice versa. Again, the restructured
program P can be characterized by a regular left-linear grammar G’, which can also be
obtained from the transitions of the DFA accepting the language ﬁ(G) The restructuring
methods do not change the coverage of the target concepts represented by the p; € 7,
i.e., Covp(Z) = Covp/(Z). The goal of post-processing is to increase the coverage of
these target predicates. The method post _proc transforms the PA by deleting non-cyclic
transitions for some EDB predicates, by merging the affected states and transitions, and
by introducing cyclic transitions. This is a generalization step. In terms of the grammar,
the language L(G) = L(G') is generalized to L(G"), such that L(G) = L(G") C L(G"),
where G” is the grammar corresponding to PA’. The post-processed acceptor PA’ can
be mapped to a linear chain Datalog program P{ (see Definition 1), whose coverage is
a superset of the one of P] and Py, respectively, i.e., Covp(Z) = Covp/(Z) C Covpn(Z)
with P = PjUPy, P’ = Pi UPg and P’ = Pi’ UPE.

The original rules in Py are used to infer for a given ground chain Py via forward
inferences the higher-level concepts represented by p; € Z. The reasons for optimizing the
program and the inference procedure, respectively, are the prefix effect and the ambiguities,
which require to match EDB facts redundantly with premise literals of several rules. We
have presented an efficient marker passing method, which is sound and complete, i.e., its
success set MP p4(Py) for a given EDB instance Py, is equal to the subset of the minimum
Herbrand model for the predicates in Z of the extended program P = P;U Pg, where Py
is the program compiled in the respective prefix acceptor.

With the restructuring methods we have contributed to the field of theory restruc-
turing, whose goal it is to transform a program without changing the coverage of the
learned concepts. We map pairs of existing terms to a new combined term, in order to
support more efficient evaluations. These evaluations are realized by the marker passing
method MP. The post-processing phase is a generalization step in which the coverage of
the learned concepts is increased and the complexity of the prefix acceptors is reduced.
Furthermore, we have shown the relation of rule structuring and marker passing, on one
hand, and program decompositions for query optimization of chain Datalog programs, on
the other hand. So our methods can be considered as efficient implementations of the
theoretical concepts introduced by Dong, Ginsburg and others. Finally, we have applied
all the methods successfully to a robotics domain, thus contributing to applications of
machine learning methods to real-world domains.

8.2 Current and future work

The relation of the restructuring method to inverse resolution and inter-construction has
to be elaborated more formally, i.e., we have to show, that the selection of the variables
for the invented predicates preserves soundness and correctness.

The idea of rule structuring and marker passing can also be applied to the chain

60 8 CONCLUSIONS

Datalog programs for operational concepts (see, e.g., [22],[10]). Operational concepts are
defined in terms of perception-integrating action features (see Figure 1 in Section 2), which
define the pre-condition for executing the concept, the action itself, and the post-condition,
which has to be satisfied after executing the concept (see [22] for details and examples
of the chain Datalog rules, which have been learned with ILP algorithms). Plans can
be specified as sequences of operational concepts, whose pre- and post-conditions may
overlap. Based on the idea, that chain Datalog programs correspond to CFGs (in our
case, regular languages), we have succeeded in specifying an automaton, which accepts
sequences of perception-integrating action features, which represent plans. Its final states
are associated with operational concepts. The graph structure of this automaton can
be used for a depth-bounded breadth-first search, as proposed by Klingspor. The depth
bound can be realized by specifying the maximal number of final states, which can be
visited during a plan. The point, we want to make here, is that this search can be
implemented by a modified marker passing method, where the init and update functions
for the constraints have to be specified for the respective data classes, i.e., operational
concepts and perception-integrating features.

Future work will also address the integration of the probabilities, estimated with the
method described in [20], in the logic programming framework. The goal is to modify
the marker passing method for the probabilistic case, such that it constitutes an inference
procedure for a probabilistic logic based on the semantics given by Ng and Subrahmanian

(see, e.g., [17]).

Acknowledgements The author would like to thank A. Hallmann and St. Weber for
discussions and constructive comments, which helped to clarify the ideas and to improve
this paper. Thanks to St. Wessel for providing the algorithm for calculating basic features.
St. Sklorz developed the perception-integrating action features and applied RDT to learn
the (chain Datalog) rules for operational concepts. K. Morik helped with comments for
comparing related approaches.

A Appendix

A.1 Algorithm prefix tree

prefix_tree(Cases)

begin

Edges = 0;
Vertices := {RootNode} ;
while Cases # 0

1
2
3.
4

10.
11.

© o =1 O O

. select [Chead, L1, ..., Ln] € Cases;

. Cases := Cases — {[Chead, L1, - - -, Ln]};
Current Node := RootNode;

.fori=1,...,n

if (CurrentNode, L, Next) € Edges such that L is unifiable with Z; then
begin
(a) CurrentNode := update(CurrentNode, i, [Cheqq, L1, .., Ln]);
(b) CurrentNode := Next;
(¢) i:=i+1;
end
else begin
) NewNode :=new node;
NewNode :=update node(NewNode, i, [Chead, L1, - - -, Ln]);
Vertices := Vertices U{NewNode};

(a
(b)
(c)
(d) Edges := Edges U{(CurrentNode, L;, NewNode)};
) C
)

¢

(e urrentNode := NewNode;
(f) i:=i+1;
end

Q = Vertices;

Y= {L|(q, L,q;) € Edges};

7Z = {C|3Chead, L1, - - -, Ln] € Cases and C is a variant of Cheqq};
A = Fdges;

qo := RootNode;

F = {q|q € Vertices and #CC(q) > 0};

for all ¢ € @:

A(g) = {C]C is a variant of some Cheqq With [Cheqa, L1, ..., Ln] € CC(q)};

return (Q,X, 7, A, qo, F, A);

end

Algorithm 12: prefix tree

61

62 A APPENDIX

A.2 Algorithm restruct.dc

restruct_dc(Py)

begin
1. restruct_init(Py, ToDo, Done);
2. restruct2.dc(ToDo, Donel);
3. return P/I := Done U Donel;

end

Algorithm 13: restruct_dc

restruct2._dc(Rules, Done)
begin

1. Done := §;
2. ToDo := Rules;

3. while there exists C' € ToDo such that C = B «— Aor C = B «— A1 A3 A3 ... A,
if C = B — A then

(a) Done := Done U{CY;
(b) ToDo :=ToDo — {C};
else
(a) det_data class((A;, Az2), ALevel);
Constraints :=det_constraints((Ay, As), ALevel);

Head := new_atom(q, ALevel, Constraints);

)
)
(¢) ¢ :=new_predicate_symbol;
(d)
) Done := Done U{Head — Ay, Aa};
)

end

Algorithm 14: restruct2.dc

A.3 Auxiliary functions 63

A.3 Auxiliary functions

update node(Node, i, [Cheqq, L1, .-, Ln)])
begin

if i < n then
#SC(Node) := #SC(Node) + 1; SC(Node) := SC(Node) U{[Cheqd, L1, - - -, Ln]};
else #CC(Node) := #CC(Node) + 1; CC(Node) .= CC(Node) U {[Chead, L1, .-, Lnl};

return Node;

end

Algorithm 15: Auxiliary functions for prefix_tree

det_constraints((A4y,..., Ay), ALevel)
begin

switch ALevel =BF then

case BF:
return {trBF = trBF(Al)a OBF — OBF(Al)a SBF — SBF(Al)a topr = tOBF(An)}

case SF:
return {...};

case ...

end

new_atom(ALevel, ¢, KaLovel)
begin

1. A:= generate an atom of data class ALevel with predicate symbol ¢;
2. add ¢ to data class ALevel,;
3. return Arapever;

end

Algorithm 16: Auxiliary functions for restruct._dc

64 A APPENDIX

A.4 Marker Passing: Example run on PA’

The prefix acceptor PA’ is illustrated in Figure 7, the EDB instance is the chain Py =
Al A2 A3 A

Py = {a(11,90, s5,1,8),b(t1,90, 55,8, 10), ¢(t1, 90, 5, 10, 15), d(t1, 90, s5, 15, 17)}.
Input: A' = a(1,90,55,1,8):
m% = (1, @rap*, {trpr =1tl,0pr = 90,spp = s5}, {fromge = 8},
{trsr = tl,s8er = 5, fromgr = 1}, {togy = 8})
Input: A? = b(11,90, s5,8,10):

m? = (1, Gprapr, {trpp =tl,opr = 90, spp = s5}, {fromgp = 10},
{trsr = t1, s¢r = 5, fromgp = 1}, {togy = 10})
mi = (2, @+, {trpr =1tl,08r = 90,s88r = sb},{fromgy = 10},
{trsr = t1, sgr = 5, fromgp = 8}, {togy = 10})

Input: A3 = (11,90, 5,10, 15):

mil)) = (17 Qb*ab*c, {trBF =tl,opr = 90, 8pr = 55}7 {fromBF = 15}7
{tI‘SF = tl, SSF = 85,fr0mSF = 1}7 {tOSF = 15})
my = (2, @pre, {trpr =tl,0pr = 90,8gr = s}, {fromgy = 15},
{tI‘SF = tl, SSF = 85,fr0mSF = 8}7 {tOSF = 15})

Output: MP(A'A2A%) = {py(11, s5,1,15), po(t1,55,1,15)}
Input: A* = d(11,90, 55,15, 17):

777411 = (17 db*ab*cd s {trBF =1tl,0pr = 90,85 = 55}7 {fromBF = 17}7
{tI‘SF = tl, SSF = 85,fr0mSF = 1}7 {tOSF = 17})
m% = (27 Qb*cd, {trBF =tl,opr = 90, 8pr = 55}7 {fromBF = 17}7
{tI‘SF = tl, SSF = 85,fr0mSF = 8}7 {tOSF = 17})

Output: MP(A'AZA3A*) = {ps(11, s5,1,17), pa(t1, 55,8,17)}

A.4 Marker Passing: Example run on PA’

Input:
a(t1,90,55,1,8) b(t1,90,s5,8,10) c(t1,90,s5,10,15) d(t1,90,5,15,17)
b/5 b/5 b/5 b/5
c/5 al5 c/5 al5 c/5 al5 c/5 al5
b/5 b/5 b/5 b/5
di5 c/5 d/5 c/5 d/5 c/5 d/5 c/5
a5 d/5 a5 d/s a5 d/i5 a5 d/5
b/5 b/5 b/5 b/5
Output: p1(t1,s5,1,15) p4(t1,s5,8,17)
p2(t1,85,1,15) p3(t1,85,1,17)

Figure 20: Example 2

65

66

A.5 Post-Processing: Experimental Results

A APPENDIX

A.5.1 Complexity Results
No Post-processing Post-processing: Step 1 Step 2
Train | [Train| || |Q| | |F| | |A] | Depth || |Q| | Qgea | |F] | |A] | Agea | Depth [A]
QRS 1185 || 408 | 268 | 407 9 141 | 65.4% | 116 | 193 | 52.6% 6 422
PRS 1183 || 457 | 298 | 456 9 157 | 65.6% | 130 | 219 | 52.0% 6 470
PQS 1220 428 | 279 | 427 8 145 | 66.1% | 119 | 208 | 51.3% 6 434
PQR 1272 459 | 305 | 458 9 154 | 66.4% | 128 | 222 | 51.5% 6 461
1215 438 | 288 | 437 9 149 | 65.9% | 123 | 211 | 51.9% 6 447
Table 3: Prefix acceptors for basic features calculated with Tolerance = 6
No Post-processing Post-processing: Step 1 Step 2
Train | [Train| || |Q| | |F| | |A] | Depth || |Q| | Qgea | |F] | |A] | Agea | Depth [A]
QRS 1163 307 | 228 | 306 7 123 | 59.9% | 106 | 161 | 47.4% 5 368
PRS 1167 || 343 | 245 | 342 7 135 | 60.6% | 110 | 175 | 48.8% 5 404
PQS 1201 312 | 230 | 311 7 125 | 59.9% | 102 | 166 | 46.6% 5 374
PQR | 1254 || 328 | 245 | 327 7 134 | 59.1% | 110 | 178 | 45.6% 5 401
1196 323 | 237 | 322 7 129 | 59.9% | 107 | 170 | 47.1% 5 387
Table 4: Prefix acceptors for basic features calculated with Tolerance = 8
No Post-processing Post-processing: Step 1 Step 2
Train | |Train| || |@Q| | |F| | |A] | Depth || |Q| | Qgea | |F] | |A] | Agea | Depth |A]
QRS 1143 274 | 195 | 273 7 110 | 59.9% | 92 | 146 | 46.5% 5 329
PRS 1146 304 | 211 | 303 7 125 | 58.9% | 101 | 162 | 46.5% 5 374
PQS 1183 285 | 205 | 284 7 122 | 57.2% | 98 | 163 | 42.6% 5 365
PQR | 1232 283 | 206 | 282 7 121 | 57.2% | 98 | 163 | 42.2% 5 362
1176 287 | 204 | 286 7 120 | 58.3% | 97 | 159 | 44.5% 5 358
Table 5: Prefix acceptors for basic features calculated with Tolerance = 10
No Post-processing Post-processing: Step 1 Step 2
Train | |[Train| || |Q| | |F| | |A] | Depth || |Q| | Qgrea | |F] | |A] | Ageqd | Depth |A]
QRS 1093 213 | 158 | 212 7 93 | 56.3% | 80 | 125 | 41.0% 5 278
PRS 1091 239 | 171 | 238 7 101 | 57.7% | 83 | 135 | 43.3% 5 302
PQS 1121 232 | 172 | 231 7 103 | 55.6% | 83 | 137 | 40.7% 5 308
PQR | 1177 || 217 | 165 | 216 6 101 | 53.5% | 83 | 136 | 37.0% 5 302
1121 225 | 167 | 224 7 100 | 55.8% | 82 | 133 | 40.5% 5 298

Table 6: Prefix acceptors for basic features calculated with Tolerance = 15

A.5 Post-Processing: Experimental Results 67

A.5.2 Testing Results

No PP PP: Step 1 PP: Step 2
Train | Test | |Train| | |Test] Cy Cy Io1 Co Lo » Ii»
QRS P 1185 435 63.2% || 69.9% | 6.7% || 72.6% | 9.4% | 2.7%
PRS Q 1183 437 67.5% || 74.8% | 7.3% || 75.3% | 7.8% | 0.5%
PQS R 1220 400 52.3% || 60.5% | 8.2% || 61.0% | 8.7% | 0.5%
PQR S 1272 348 56.6% || 65.8% | 9.2% || 65.8% | 9.2% | 0.0%
1215 405 59.9% || 67.8% | 7.9% || 68.7% | 8.8% | 0.9%

Table 7: Testing results for basic features calculated with Tolerance = 6

No PP PP: Step 1 PP: Step 2
Train | Test | |Train| | |Test| Cy Cy Io1 Co Lo » Ii»
QRS P 1163 432 66.2% || 72.7% | 6.5% || 75.56% | 9.3% | 2.8%
PRS Q 1167 428 70.1% || 74.8% | 4.7% || 756.2% | 5.1% | 0.4%
PQS R 1201 394 52.8% || 59.4% | 6.6% || 59.6% | 6.8% | 0.2%
PQR S 1254 341 56.3% || 63.3% | 7.0% || 63.3% | 7.0% | 0.0%
1196 399 61.4% || 67.6% | 6.2% || 68.4% | 7.1% | 0.9%

Table 8: Testing results for basic features calculated with Tolerance = 8

No PP PP: Step 1 PP: Step 2
Train | Test | |Train| | |Test| Cy Cy Io1 Co Lo » Ii»
QRS P 1143 425 65.7% || 70.6% | 4.9% || 72.9% | 7.2% | 2.3%
PRS Q 1146 422 69.2% || 73.0% | 3.8% || 73.5% | 4.3% | 0.5%
PQS R 1183 385 55.6% || 60.8% | 5.2% || 60.8% | 5.2% | 0.0%
PQR S 1232 336 54.8% || 60.4% | 5.6% || 60.4% | 5.6% | 0.0%
1176 392 61.3% || 66.2% | 4.9% || 66.9% | 5.6% | 0.7%

Table 9: Testing results for basic features calculated with Tolerance = 10

No PP PP: Step 1 PP: Step 2
Train | Test | |Train| | |Test| Cy Cy Io1 Co Lo » Ii»
QRS P 1093 401 67.1% || 71.6% | 4.5% || 73.6% | 6.5% | 2.0%
PRS Q 1091 403 70.2% || 73.0% | 2.8% || 73.0% | 2.8% | 0.0%
PQS R 1121 373 57.4% || 60.9% | 3.5% || 60.9% | 3.5% | 0.0%
PQR S 1177 317 54.9% || 59.3% | 4.4% || 59.3% | 4.4% | 0.0%
1121 374 62.4% 66.2% | 3.8% || 68.2% | 4.3% | 0.5%

Table 10: Testing results for basic features calculated with Tolerance = 15

68 REFERENCES

References

[1] D. Angluin. Inference of reversible languages. Journal of the Association for Com-
puting Machinery, 29:741-765, 1982.

[2] K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.
Journal of the Association for Computing Machinery, 29:841-862, 1982.

[3] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-
Verlag, 1990.

[4] Ch.-L. Chang and R. Ch. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

[5] E. Charniak. Passing markers: A theory of contextual influence in language compre-
hension. Cognitive Science, 7, 1983.

[6] G. Dong and S. Ginsburg. On the decomposition of datalog program mappings.
Theoretical Computer Science, 75:143-177, 1990.

[7] G. Dong and S. Ginsburg. On decompositions of chain Datalog programs into p
(left-)linear 1-rule components. Journal of Logic Programming, 23:203-236, 1995.

[8] J. A. Hendler. Integrating marker-passing and problem solving. In A. Tate J. Allen,
J. Hendler, editor, Readings in Planning, pages 275-287. Morgan Kaufmann, 1990.

[9] J. D. Ullman J. E. Hopcroft. Introduction to Automata Theory, Languages, an Com-
putation. Addison-Wesley, 1979.

[10] V. Klingspor, K. Morik, and A. Rieger. Learning concepts from sensor data of a
mobile robot. Machine Learning, 1996. to appear.

[11] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, 2nd edition, 1987.

[12] K. Morik, St. Wrobel, J. U. Kietz, and W. Emde. Knowledge Acquisition and Machine
Learning: Theory, Methods, and Applications. Addison Wesley, 1993.

[13] S. Muggleton. Inverse entailment and Progol. New Generation Computing Journal,
13:245-286, 1995.

[14] S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting
resolution. In S. Muggleton, editor, Inductive Logic Programming, 1992.

[15] S. H. Muggleton. Duce, an oracle based approach to constructive induction. In
Proc. of the 10th Int. Joint Conf. on Artificial Intelligence, Los Altos, 1987. Morgan
Kaufmann.

[16] St. Muggleton and C. Feng. Efficient induction of logic programs. In St. Muggleton,
editor, Inductive Logic Programming, chapter 13, pages 281-298. Academic Press,
1992.

REFERENCES 69

[17]

[20]

[21]

[22]

[23]

V.S. Subrahmanian R. Ng. A semantical framework for supporting subjective and
conditional probabilities in deductive databases. Journal of Automated Reasoning,
10:191-235, 1993.

A.S. Rao. Means-end plan recognition - towards a theory of reactive recognition. In
J. Doyle, E. Sandewall, and P. Torasso, editors, Proc. 4th Int. Conf. on Principles of
Knowledge Representation and Reasoning, pages 497-508, 1994.

A. Rieger. Inferring probabilistic automata from sensor data for robot navigation.
In M. Kaiser, editor, Proc. of the 3rd Furopean Workhop on Learning Robots, 1995.
also available as Research Report 18, FB Informatik LS 8, Universitit Dortmund,
Dortmund, Germany.

A. Rieger. Learning to guide a robot via perceptions. In M. Ghallab, editor, Procs.
of the 3rd Furopean Workshop on Planning. 10S Press, 1996.

C. Rouveirol. Extensions of inversion of resolution applied to theory completion. In
Inductive Logic Programming, pages 63-92. Academic Press, 1992.

St. Sklorz. Representing and learning operational concepts. Master’s thesis, Univer-
sitit Dortmund, 1995. in German.

E. Sommer. FENDER : An approach to theory restructuring. In N. Lavrac¢ and St.
Wrobel, editors, Proc. of the European Conference on Machine Learning (ECML-95),
pages 356-359. Springer Verlag, 1995.

J. D. Ullman and A. van Gelder. Parallel complexity of logical query programs.
Algorithmica, 3:5-42, 1988.

M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as program-
ming language. Journal of the Association for Computing Machinery, 23:733-742,
1976.

St. Wessel. Learning qualitative features from numerical robot sensor data. Master’s
thesis, Universitat Dortmund, 1995. in German.

R. Wirth. Completing logic programs by inverse resolution. In K. Morik, editor, Proc.
Fourth FEuropean Workong Session on Learning (EFWSL), pages 239-250. Morgan
Kaufmann, 1989.

S. Wrobel. Concept Formation and Knowledge Revision. Kluwer Academic Publishers,
1994.

