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Symmetry of functions and exchangeability of random variables

Karl Friedrich Siburg · Pavel A. Stoimenov

Abstract We present a new approach for measuring the degree of exchangeability of two continuous,
identically distributed random variables or, equivalently, the degree of symmetry of their corresponding
copula.

While the opposite of exchangeability does not exist in probability theory, the contrary of symmetry
is quite obvious from an analytical point of view. Therefore, leaving the framework of probability theory,
we introduce a natural measure of symmetry for bivariate functions in an arbitrary normed function space.
Restricted to the set of copulas this yields a general concept for measures of (non-)exchangeability of
random variables. The fact that copulas are never antisymmetric leads to the notion of maximal degree of
antisymmetry of copulas.

We illustrate our approach by various norms on function spaces, most notably the Sobolev norm for
copulas.
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1 Introduction

The concept of exchangeability has been studied extensively and has found important applications in many
areas of statistics; see the survey in Galambos (1982). Recently, attention has been devoted to the ways
in which identically distributed random variables fail to be exchangeable (Durante et al, 2008; Durante,
2008; Nelsen, 2007; Klement and Mesiar, 2006). Recall that two random variables X and Y are called
exchangeable if (X ,Y ) and (Y,X) have the same distribution, i.e. if their joint distribution function FX ,Y is
symmetric:

FX ,Y (x,y) = FX ,Y (y,x).

Exchangeable random variables are necessarily identically distributed.
An alternative approach to characterise exchangeability is provided by the theory of copulas. In particu-

lar, Sklar’s theorem (Sklar, 1959) states that for real-valued random variables X and Y with joint distribution
function FX ,Y and univariate margins FX and FY , respectively, there exists a copula CX ,Y such that

FX ,Y (x,y) = CX ,Y (FX (x),FY (y)) . (1.1)
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Fig. 1.1 The decomposition of copulas into symmetric and antisymmetric part

Moreover, if FX and FY are continuous the function CX ,Y is unique and will be referred to as the copula of
(X ,Y ). It follows that, for continuous identically distributed random variables X and Y , exchangeability is
equivalent to the symmetry of their copula C = CX ,Y :

C = C>

where f>(x,y) = f (y,x) is the transpose of a function f .
In order to measure the degree of non-exchangeability of random variables, respectively, the degree of

non-symmetry of copulas, one usually equips the set C of copulas with the Lp-norm ‖ · ‖p where p ∈ [1,∞]
and defines the quantity

µp(C) = ‖C−C>‖p

as a measure of non-exchangeability of X and Y (Klement and Mesiar, 2006; Nelsen, 2007; Durante et al,
2008). In other words, µp(C) measures the norm of the antisymmetric part of C which, for a general function
f , is defined by

fa =
( f − f>)

2
.

However, it completely ignores the symmetric part

fs =
( f + f>)

2

which also carries essential information and, hence, must be taken into account when dealing with symmetry
properties of functions. For instance, consider the decomposition of two copulas C and C′ as given in
Figure 1.1. Although they both possess the same antisymmetric part, it is obvious that C′ is more symmetric
than C.

Therefore, we suggest a more general approach to the investigation of symmetry properties of copulas.
Leaving the class C, we consider arbitrary functions f : I2 → R and decompose them into their symmetric
and antisymmetric parts. Then, a natural measure of symmetry is given by

δ ( f ) =
‖ fs‖2−‖ fa‖2

‖ f‖2

where ‖ · ‖ is any norm on some function space V containing the set C of copulas. The normalization by
‖ f‖2 is enforced by the fact that any measure of symmetry should be scale invariant; as a consequence, we
always have−1≤ δ ( f )≤ 1. Note that this is in contrast to the normalization by maxC∈C µp(C) proposed in
Durante et al (2008) which assumes the compactness of C and may be impossible to compute. Finally, the
restriction of δ to C yields a measure of symmetry for copulas, respectively, a measure of exchangeability
for random variables. This approach has various advantages:
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(i) Decomposing a copula C into its symmetric and antisymmetric function parts yields much more in-
formation than just a single number.

(ii) In contrast to µp, the measure δ incorporates the symmetric as well as the antisymmetric part of a
copula. Consequently, it is able to tell whether, and even how much, a copula is more symmetric than
antisymmetric.

(iii) The definition of δ is not restricted to Lp-norms; it is even well defined for norms with respect to
which the set of copulas is not compact.

(iv) Finally, the measure δ is scale invariant by construction, regardless of the chosen norm.

We point out that, although the opposite of exchangeability does not exist in probability theory, the
opposite of symmetry is well defined. Moreover, since copulas are never antisymmetric, we have δ (C) >−1
for all C ∈ C, and we call the number

α = inf
C∈C

δ (C)

the maximal degree of antisymmetry of copulas (with respect to the given norm ‖ · ‖). Any copula C with
δ (C) = α will be called maximally antisymmetric. Note that, in general, it is not clear whether maximally
antisymmetric copulas exist.

There is one distinguished norm that has turned out to be perfectly fit for the investigation of probabilis-
tic properties of copulas. This norm is induced by a modified Sobolev scalar product on the linear span of C,
and its resulting geometry reflects probabilistic features of the underlying random variables in a surprising
and very precise way; see Siburg and Stoimenov (2007, 2008).

The paper is organized as follows. Section 2 recalls the concepts of symmetry and antisymmetry for
functions and introduces a natural measure for the degree of symmetry of a given function. Section 3 applies
this to the set of copulas and introduces the notion of maximally antisymmetric copulas. In addition, several
examples of normed function spaces containing the set of copulas are presented. In Section 4, we investigate
the particular case of the Sobolev norm and give a characterization of maximally antisymmetric copulas in
geometric, as well as probabilistic, terms.

2 Measures of symmetry for functions—the analytical viewpoint

This section discusses the symmetry properties of an arbitrary function f : I2 → R where I = [0,1] is the
closed unit interval. In this general context, it is obvious what the opposite of symmetric means.

Definition 2.1 For any given function f : I2 → R the transposed function f> : I2 → R is defined by

f>(x,y) = f (y,x).

A function f : I2 → R is symmetric if f = f>, and antisymmetric if f = − f>. For a given f : I2 → R we
call

fs =
f + f>

2
and fa =

f − f>

2
its symmetric, respectively antisymmetric, part.

With these definitions we have the following decomposition:

f = fs + fa = ( f − fs)+( f − fa). (2.1)

Moreover, a function f is symmetric if, and only if, f = fs, and antisymmetric if, and only if, f = fa.
Let (V,‖ · ‖) be any normed vector space of functions f : I2 → R. In view of the decomposition (2.1),

there are two “points of reference” for the investigation of symmetry properties of a given function f ∈V .
In order to measure the degree of antisymmetry and symmetry of f , one would like to construct a functional
δ which compares ‖ fs‖ and ‖ fa‖, and which takes its minimal, respectively maximal, value precisely for
the antisymmetric, respectively symmetric, functions. Moreover, symmetry properties are scale invariant,
i.e., the measure δ should satisfy the invariance condition δ (λ f ) = δ ( f ) for every λ 6= 0.
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From this analytical viewpoint, the following measure of symmetry on (V,‖ ·‖) is natural. We point out
that the zero function is symmetric as well as antisymmetric, so we cannot define the measure of symmetry
for f = 0.

Definition 2.2 Let (V,‖ · ‖) be a normed vector space of functions f : I2 → R. Then the measure of sym-
metry of (V,‖ · ‖) is defined as the functional δ : V \{0}→ R with

δ ( f ) =
‖ fs‖2−‖ fa‖2

‖ f‖2

where f = fs + fa is the decomposition of f into its symmetric and antisymmetric part.

Note that, in view of (2.1), we can also write

δ ( f ) =
‖ f − fa‖2−‖ f − fs‖2

‖ f‖2 =
‖ f + f>‖2−‖ f − f>‖2

4‖ f‖2 . (2.2)

If the norm ‖ · ‖ on V is induced by a scalar product 〈 · , · 〉 then the measure of symmetry δ can be
represented as

δ ( f ) =
〈 f , fs− fa〉
‖ f‖2 =

〈 f , f>〉
‖ f‖2 . (2.3)

If, in addition, the norm is invariant under transposition, i.e., ‖ f>‖= ‖ f‖, then

δ ( f ) =
〈 f
‖ f‖ ,

f>

‖ f>‖
〉

(2.4)

measures the (cosine of the) angle between the unit vectors pointing in the direction of f and f>, respec-
tively. Norms that come from a scalar product and are invariant under transposition, are characterized by
the following result.

Proposition 2.3 Let ‖ · ‖ be a norm on V satisfying ‖ f>‖ = ‖ f‖ for all f ∈ V . Then ‖ · ‖ is induced by a
scalar product if, and only if,

‖ f‖2 = ‖ fs‖2 +‖ fa‖2

for all f ∈V .

Proof It is well known that ‖ · ‖ is induced by a scalar product if, and only if, the “parallelogram law”

‖g+h‖2 +‖g−h‖2 = 2(‖g‖2 +‖h‖2)

holds for all g,h ∈V ; see, e.g., Hewitt and Stromberg (1975, (16.6)). Now apply this to g = fs and h = fa,
and observe that fs− fa = f>. ut

Let us return to the general situation where (V,‖ ·‖) is any normed vector space of functions f : I2 →R.

Theorem 2.4 The measure of symmetry δ : (V \{0},‖ · ‖)→ (R, | · |) satisfies the following properties:

(i) δ (V \{0}) = [−1,1].
(ii) δ ( f ) =−1 if and only if f is antisymmetric.

(iii) δ ( f ) = 1 if and only if f is symmetric.
(iv) δ is continuous.
(v) δ (λ f ) = δ ( f ) for every λ 6= 0.

Proof Properties (ii)–(v) follow immediately from the definition. The inclusion δ (V \{0})⊂ [−1,1] in (i)
is obvious as well. As for the reverse inclusion, note that δ is a continuous mapping on the connected set
V \{0} that attains the values -1 and 1. Thus, the Intermediate Value Theorem implies [−1,1]⊂ δ (V \{0}),
proving (i). ut
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In addition to the transposition f 7→ f>, there is another operation on functions from I2 to R given by

f̂ (x,y) = x+ y−1+ f (1− x,1− y) (2.5)

whose motivation stems from probabilistic considerations; see Section 3.

Proposition 2.5 Both operations f 7→ f> and f 7→ f̂ are involutions, i.e.

( f>)> = f and ̂̂f = f

for all f ∈V .

Proof This is verified by straightforward calculations. ut

Next we investigate under which conditions the measure of symmetry δ is invariant under these opera-
tions. For the following result, let i : I2 → I2 be the involution

i(x,y) = (1− x,1− y).

Theorem 2.6 Let δ be the measure of symmetry of (V,‖ · ‖). Then the following holds:

(i) δ ( f>) = δ ( f ) if, and only if, ‖ f>‖= ‖ f‖.
(ii) δ ( f̂ ) = δ ( f ) if ‖ f̂‖= ‖ f ◦ i‖= ‖ f‖.

Proof The first assertion follows from

( f>)s = fs and ( f>)a =− fa. (2.6)

Moreover, it is an easy calculation to show that

( f̂ )s = f̂s and ( f̂ )a = fa ◦ i , (2.7)

which proves the second part. ut

The following examples show that the invariance conditions in Theorem 2.6 are quite strong and usually
not satisfied.

Example 2.7 (i) Let

(V,‖ · ‖) = (Lp(I2,R),‖ · ‖Lp)

be the usual Lp-space with p∈ [1,∞]. Then it is easy to check that ‖·‖= ‖·‖Lp satisfies the conditions
‖ f>‖= ‖ f ◦ i‖= ‖ f‖. On the other hand, it is not true that ‖ f̂‖= ‖ f‖ for every f ∈ Lp(I2,R).

(ii) More generally, consider any involution ι : I2 → I2, and let

(V,‖ · ‖) = (Lp(I2,R),‖ · ‖w)

be equipped with a weighted Lp-norm for some weight function w > 0 that is not invariant under ι :

‖ f‖p
w =

∫

I2
w| f |p dλ

where w ◦ ι 6= w and λ denotes the Lebesgue measure. Then there is always an element f ∈ V with
‖ f ◦ ι‖w 6= ‖ f‖w.
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3 Measures of symmetry for copulas—the probabilistic viewpoint

Recall from the introduction that one can associate with each pair (X ,Y ) of continuous random variables a
unique function CX ,Y : I2 → I, called the copula of (X ,Y ), such that (1.1) holds. In the following, we collect
some basic properties of copulas and refer to Nelsen (2006) for proofs and more details. As for the general
definition, a copula is a function C : I2 → I satisfying the following conditions:

(i) C(x,0) = C(0,y) = 0 for all x,y ∈ I.
(ii) C(x,1) = x and C(1,y) = y for all x,y ∈ I.

(iii) C(x2,y2)−C(x2,y1)−C(x1,y2)+C(x1,y1)≥ 0 for all rectangles [x1,x2]× [y1,y2]⊂ I2.

The set of all copulas will be denoted by C.
If CX ,Y is the copula of (X ,Y ), it is easy to show that the following identities hold, the second of which

motivates our earlier definition in (2.5):

CY,X = (CX ,Y )>

Cg(X),g(Y ) =

{
CX ,Y if g is strictly increasing
ĈX ,Y if g is strictly decreasing

for any strictly monotone transformation g : R→ R. In particular, the function ĈX ,Y is also a copula, called
the survival copula of (X ,Y ).

Definition 3.1 Let (V,‖ · ‖) be any normed vector space of functions f : I2 → R such that C⊂V , and let δ
be its measure of symmetry. Then the restriction of δ to C is called the corresponding measure of symmetry
for copulas:

δ (C) =
‖Cs‖2−‖Ca‖2

‖C‖2 =
‖C +C>‖2−‖C−C>‖2

4‖C‖2 . (3.1)

Viewed as a functional (X ,Y ) 7→ δ (CX ,Y ) of pairs of continuous random variables, we also call δ the corre-
sponding measure of exchangeability for random variables.

Note that, if C is a copula, then its transposed function C> is also a copula. Therefore, since C is a
convex set, the symmetric part Cs of a copula is a copula itself. The antisymmetric part Ca, however, is
never a copula because Ca = 0 on ∂ I2.

The properties of a general measure of symmetry as given in Theorem 2.4 translate into the following
properties of the corresponding measure of symmetry for copulas.

Theorem 3.2 The measure of symmetry for copulas δ : (C,‖ · ‖)→ (R, | · |) satisfies the following proper-
ties:

(i) δ (C)⊂ (−1,1].
(ii) δ (C) = 1 if and only if C is symmetric.

(iii) δ is continuous.

Proof Since copulas can never be antisymmetric, it follows that δ (C) > −1 for all C ∈ C. The remaining
assertions are contained in Theorem 2.4. ut

This result prompts the following definition.

Definition 3.3 The number
α = inf

C∈C
δ (C)

is called the maximal degree of antisymmetry of copulas with respect to (V,‖ · ‖). A copula C is called
maximally antisymmetric if δ (C) = α .
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Note that, in general, C need not be compact with respect to ‖ · ‖ (Darsow and Olsen, 1995). Conse-
quently, it may be not clear whether there are maximally antisymmetric copulas at all.

We conclude this section with examples of vector spaces (V,‖ · ‖) containing the set C.

Example 3.4 It is well known that copulas are Lipschitz continuous Lp-functions for any p ∈ [1,∞], so that
we may choose

(V,‖ · ‖) = (Lp(I2,R),‖ · ‖Lp)

with p ∈ [1,∞]. The classical situation deals with the case p = ∞ where

‖ · ‖= ‖ · ‖∞ = ‖ · ‖L∞

on C is the maximum norm (Durante et al, 2008; Klement and Mesiar, 2006; Nelsen, 2007). For this partic-
ular choice, we immediately see that ‖C‖∞ = 1 and ‖C +C>‖∞ = 2 for every C ∈ C, so that we have

δ∞(C) = 1−
(‖C−C>‖∞

2

)2
. (3.2)

Therefore, the measure of symmetry δ∞ is actually a function of the distance ‖C−C>‖∞ alone. Conse-
quently, for the maximum norm, the measure of symmetry δ∞(C) for copulas and the quantity ‖C−C>‖∞
essentially share the same properties.

As for the maximal degree of antisymmetry, Nelsen (2007) showed that ‖C−C>‖∞ ≤ 1/3 as well as
‖C2/3−C>2/3‖∞ = 1/3 where Cθ is the copula given by

Cθ = min(x,y,max(x−θ ,0)+max(y− (1−θ),0)) (3.3)

for 0 ≤ θ ≤ 1. Cθ is the singular copula whose support consists of two line segments, one from (0,1−θ)
to (θ ,1), and the other from (θ ,0) to (1,1−θ). Hence, in view of (3.2), we have

α∞ =
35
36

(3.4)

and C2/3 is a maximally antisymmetric copula. Actually, Nelsen gave a complete description of maximally
antisymmetric copulas in this setting, and proved that all maximally antisymmetric copula agree on the
diagonal in I2; compare Theorem 4.7.

Related results were obtained by Klement and Mesiar (2006). Finally, Durante et al (2008) computed
that ‖Cθ −C>θ ‖∞ = 1−θ for every θ ∈ [2/3,1].

Example 3.5 In addition to Lp-spaces, there is another natural class of function spaces containing the set
of copulas. Since C0,1(I2,R) = W 1,∞(I2,R) (Evans, 1998) we have C ⊂W 1,p(I2,R) for p ∈ [1,∞] where
W 1,p(I2,R) is the standard Sobolev space; compare also Darsow and Olsen (1995). Therefore, we may
consider

(V,‖ · ‖) = (W 1,p(I2,R),‖ · ‖W 1,p)

with p ∈ [1,∞].
Among these spaces, the Sobolev space W 1,2(I2,R) is a Hilbert space with respect to the standard

Sobolev scalar product

〈 f ,g〉W 1,2 =
∫

I2
f gdλ +

∫

I2
∇ f ·∇gdλ

with λ being the Lebesgue measure. On the linear span of C, which will be denoted by span(C), there is
also the (modified) Sobolev scalar product defined by

〈 f ,g〉0 =
∫

I2
∇ f ·∇gdλ (3.5)

with induced norm

‖ f‖0 = ‖∇ f‖L2 =
(∫

I2
|∇ f |2 dλ

)1/2
. (3.6)
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Actually, in view of Poincaré’s inequality, the norms ‖·‖0 and ‖·‖W 1,2 are equivalent on span(C). In contrast
to the standard Sobolev norm, the modified Sobolev norm ‖·‖0 has distinguished geometric and probabilis-
tic properties. We are not going to dwell on this here, but refer the reader to Siburg and Stoimenov (2007,
2008) where the geometry of C with respect to 〈 , 〉0, as well as its probabilistic interpretations, is described
in detail. Thus, another natural choice for (V,‖ · ‖) is given by

(V,‖ · ‖) = (span(C),‖ · ‖0).

The corresponding measure of symmetry for copulas, δ0, is discussed in the next section.

4 The Sobolev measure of symmetry for copulas

This section considers the case where the norm ‖ · ‖0 on span(C) is the modified Sobolev norm given by
(3.6), coming from the scalar product (3.5) for copulas introduced in ?. Let δ0 be the measure of symmetry
with respect to ‖ ·‖0. Note that the norm ‖ ·‖0 satisfies ‖C>‖0 = ‖C‖0 for all C ∈ C. Hence, in view of (2.4),
the measure δ0 can be written as

δ0(C) =
〈C,C>〉0
‖C‖2

0
=

〈 C
‖C‖0

,
C>

‖C>‖0

〉
0

(4.1)

which has a distinctive geometric interpretation.
In the following, we denote by

C−(x,y) = max(x+ y−1,0) , C+(x,y) = min(x,y)

the lower and upper Fréchet-Hoeffding bound, respectively, and by

P(x,y) = xy

the product copula modelling stochastic independence. C− and C+ are the minimal and maximal copula,
respectively, since we have

C−(x,y)≤C(x,y)≤C+(x,y) (4.2)

for all (x,y) ∈ I2 and any C ∈ C. We refer to Nelsen (2006) for proofs and more details.
The set C carries an algebraic structure discovered by Darsow et al (1992). More precisely, they intro-

duced a product for copulas by setting

(A∗B)(x,y) =
∫ 1

0
∂2A(x, t)∂1B(t,y)dt ,

where ∂i denotes the partial derivative with respect to the i-th variable. Darsow et al. proved that A∗B ∈ C
whenever A,B ∈ C. Furthermore,

P∗C = C ∗P = P and C+ ∗C = C ∗C+ = C (4.3)

for all C ∈ C; thus, P and C+ are the null, respectively unit, element for the ∗-product.
It turns out that the Sobolev scalar product 〈· , ·〉0 allows an algebraic interpretation. In fact, it is an

elementary calculation to show that the Sobolev scalar product is related to the ∗-product via the following
representation formula which relates the geometric and the algebraic structures on the set of copulas.

Lemma 4.1 (Siburg and Stoimenov (2008)) We have

〈A,B〉0 =
∫ 1

0
(A> ∗B+A∗B>)(t, t)dt.

Furthermore, we need the following facts about the scalar product of two copulas.
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Lemma 4.2 (Siburg and Stoimenov (2008)) For any A,B in C, we have

1
2
≤ 〈A,B〉0 ≤ 1

where both bounds are sharp. Moreover, 〈A,B〉0 = 1 if, and only if, A = B and ‖A‖0 = ‖B‖0 = 1.

Recall from Definition 3.3 that the maximal degree of antisymmetry of copulas is given by α = infC∈C δ (C).
For the special case of the Sobolev norm ‖ · ‖0 we obtain the following result.

Theorem 4.3 The maximal degree of antisymmetry with respect to ‖ · ‖0 is

α0 =
1
2
.

Proof In view of (4.1) and Lemma 4.2 we have

α0 = inf
C∈C

δ0(C)≥ 1
2
. (4.4)

In order to show that this estimate is sharp we provide an example of a copula C that satisfies δ0(C) = 1/2.
For this, consider the copula Cθ from (3.3) with 0≤ θ ≤ 1. In order to compute δ0(Cθ ) we need to calculate
the scalar product 〈Cθ ,C>θ 〉0 and the norm ‖Cθ‖0. To do so, we have depicted in Figure 4.1 the gradients
∇Cθ and ∇C>θ , as well as their Euclidean scalar product ∇Cθ ·∇C>θ . Integrating |∇Cθ |2 and ∇Cθ ·∇C>θ
yields ‖Cθ‖2

0 = 1 as well as

〈Cθ ,C>θ 〉0 = θ +θ(1−θ)+(1−3θ)2 = 8θ 2−4θ +1. (4.5)

Therefore, δ0(Cθ ) = 〈Cθ ,C>θ 〉0 = 8θ 2−4θ + 1, and this function takes its minimal value 1/2 precisely at
the point θ = 1/4. Hence the copula C1/4 satisfies

δ0(C1/4) =
1
2
,

which completes the proof of the theorem. ut

As mentioned before, the norm ‖ · ‖0 establishes a strong link between the geometry and probabilistic
aspects of copulas (Siburg and Stoimenov, 2008). In particular, this norm detects the so-called mutual
complete dependence of random variables.

Definition 4.4 Two random variables X and Y are called mutually completely dependent if there are Borel
measurable functions g,h such that Y = g(X) a.e. and X = h(Y ) a.e.

The next result provides a complete characterization of maximally antisymmetric copulas in terms of
geometric, as well as probabilistic, properties. This is another manifestation of the exceptional role of the
norm ‖ · ‖0.

Theorem 4.5 Let C = CX ,Y be the copula of two random variables X and Y . Then the following assertions
are equivalent:

(i) C is maximally antisymmetric with respect to ‖ · ‖0.
(ii) ‖C‖0 = 1, and 〈C,C>〉0 = 1/2.

(iii) C and C> realize the diameter of C, i.e., ‖C−C>‖0 = diam(C).
(iv) X and Y are mutually completely dependent, and 〈C,C>〉0 = 1/2.

Proof It is clear from (4.1) and Lemma 4.2 that (i)⇔ (ii). It follows from Lemma 4.2 that (ii)⇔ (iii); see
Siburg and Stoimenov (2008, Cor. 15). Finally, (ii)⇔ (iv) follows from the fact that ‖C‖0 = 1 is equivalent
to X and Y being mutually completely dependent (Siburg and Stoimenov, 2007, Thm. 9). ut
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Fig. 4.1 Calculating the scalar product 〈Cθ ,C>θ 〉0 in (4.5)

Note that Theorem 4.5 implies the following probabilistic consequence of maximal non-exchangeability
with respect to the Sobolev norm ‖ · ‖0.

Corollary 4.6 Maximally non-exchangeable random variables with respect to ‖ · ‖0 are mutually com-
pletely dependent.

Finally, we will derive a result analogous to that of Nelsen who showed that all maximally antisymmetric
copulas with respect to the maximum norm ‖ · ‖∞ coincide on the diagonal; see Nelsen (2007, Thm. 3.1).

Theorem 4.7 If 〈C,C>〉0 = 1/2 then

(C ∗C)(t, t) = C−(t, t)

for all t ∈ I.
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Proof If 〈C,C>〉0 = 1/2 then the representation formula (4.1) implies

1
2

= 〈C,C>〉0 =
∫ 1

0
(C> ∗C>+C ∗C)(t, t)dt = 2

∫ 1

0
(C ∗C)(t, t)dt

so that C ∗C and C− have the same mean value along the diagonal:
∫ 1

0
(C ∗C)(t, t)dt =

1
4

=
∫ 1

0
C−(t, t)dt.

But the lower Fréchet-Hoeffding bound satisfies C ≥C− for any copula C, in particular C ∗C ≥C−, so that
C ∗C and C− have to agree on the diagonal. ut

As a consequence, we obtain the following analog to Nelsen’s result.

Corollary 4.8 If C is maximally antisymmetric with respect to ‖ · ‖0 then C ∗C agrees with C− along the
diagonal.

Proof This follows immediately from Theorem 4.5 and Theorem 4.7. ut
We end this paper with some remarks concerning possible sample versions for the above measures δ∞

and δ0. Whereas δ∞(C) can easily be estimated from a sample by using the empirical copula, the esti-
mation of δ0(C) is a much more difficult task since it involves the estimation of the partial derivatives of
C. This requires more advanced techniques using kernel density estimators and will be pursued in future
investigations.
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