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Summary

In metal forming or cutting simulations, inelastic processes in the work piece, as well as com-
plex building component geometries or production process boundary conditions, may result in
extreme deformation of the mesh and the development of large gradients in the stress or other
fields. In the context of standard finite element formulations, this often leads to a loss of ro-
bustness and efficiency in the numerical simulation, and even to its failure. One method to
improve the efficiency and robustness of the numerical solution under such circumstances is
to automatically remesh the deformed workpiece while required. In addition, error control is
required in order to achieve optimal graded meshes and maintain discretization errors within
prescribed limits. The current work is focused on the issues in adaptive remeshing, which con-
sists of error estimation, mesh refinement and coarsening, mesh optimization and application to
metal forming simulations.

The accuracy of a finite element solution is an important issue in finite element simulations.
The main study in Chapter 1 is concentrated on the discretization error which is due to the finite
element approximation of the solution. Based on the pioneer work on recovery based error es-
timation (Zienkiewicz and Zhu, 1987, 1992a,b), several modified versions of the SPR recovery
technique are proposed. Subsequently, a local extrapolation technique (BF) is developed based
on the best-fit point. The recovered derivatives are obtained at nodes via extrapolation from the
sampling points and subsequent averaging. Afterwards, the discretization error is assessed by
comparing the finite element solution and the recovered solution. Numerical tests show that the
BF method provides the most accurate error estimation in these methods.

In an adaptive simulation, remeshing techniques are required to re-discretize computational
domain while the old spatial discretization is not suitable for further simulation. Unstructured
meshing technigques have been shown to be effective and robust in generating a new mesh to
replace the old distorted mesh. However, it could have difficulties in generating local dense
mesh or yield distorted elements in graded mesh due to mesh transition. In contrast, hanging-
node-based hierarchical mesh refinement can easily achieve desired local dense mesh though
it doesn’t help the improvement of mesh quality. Therefore, in Chapter 2, we develop a com-
bined unstructured and hanging-node-based remeshing strategy by exploiting the advantages
of unstructured meshing technique and hanging-node-based mesh refinement technique. Mesh
refinement and coarsening on boundary is realized by using a boundary node placement algo-
rithm.

It is well known that a severely distorted mesh reduces the solution accuracy (Oddy et al.,
1988). Mesh smoothing techniques such as Laplacian smoothing have been shown to be ef-
fective in improving geometrical mesh quality. However, when a badly shaped mesh contains
invalid elements, most existing methods are not able to optimize such a mesh. In Chapter 3,
an optimization based mesh smoothing scheme based on the mesh quality measure, derived
from the condition number of the Jacobian matrix, is presented to optimize both invalid and
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valid meshes. The corresponding optimization problem is solved with the help of the steepest
descent method. The method can be used together with any type of mesh refinement approach,
e.g., hanging nodes. Numerical examples using the current approach demonstrate its robustness
and effectiveness.

In Chapter 4, each of the parameters including error estimator, mapping algorithm, remesh-
ing technique and element type in adaptive metal forming simulations are discussed and eval-
uated. The simulations of four types of manufacturing processes such as extrusion, cutting,
forging and rolling have been carried out to validate the proposed adaptive remeshing proce-
dure. In the applications, bilinear quadrilateral elements seem to be more efficient and robust
than linear triangular elements. In the adaptive simulation of metal cutting, numerical compar-
ison shows that the mapping algorithm based on local extrapolation technique (BF) transfers
state variables with the least numerical diffusion. Mesh coarsening included in the adaptive
remeshing procedure is shown to be able to reduce computational costs without decreasing
the solution accuracy. For large deformation problems with damage, the adaptive remeshing,
including a damaged element elimination procedure, is shown to be efficient.



Zusammenfassung

In Umformungs- und Schneidsimulationen von Metall, kénnen inelastische Prozesse im Werkstiick
sowie komplexe Bauteilgeometrien oder Produktionsprozessgrenzbedingungen in extremer Net-
zverformung und der Ausbildung groRer Gradienten in Spannungs- und anderen Feldern re-
sultieren. Im Zusammenhang mit Standard-Finite-Elemente-Formeln fiihrt dies oft zu einem
Verlust an Stabilitat und Effizienz der numerischen Simulation oder sogar zu deren Versagen.
Eine Methode zur Verbesserung der Effizienz und Stabilitadt der numerischen Ldsung unter
solchen Bedingungen ist es, das verformte Werkstiick bei Bedarf automatisch neu zu vernetzen.
Zusétzlich ist eine Fehlerkontrolle notwendig, um optimal skalierte Netze sicherzustellen und
die Diskretisierungsfehler im vorgeschriebenen Rahmen zu halten. Der Schwerpunkt dieser Ar-
beit liegt in der Betrachung der Belange der adaptiven Wiedervernetzung, die aus Fehleranalyse,
Netzverfeinerung, Netzvergroberung, Netzoptimierung und der Anwendung auf Metallumfor-
mungssimulationen.

Die Genauigkeit einer Finite-Elemente-Ldsung ist ein wichtiger Punkt von Finite-Elemente-
Simulationen. Der Schwerpunkt in Kapitel 1 liegt auf der Betrachtung des aus der Finite-
Elemente-Approximation resultierenden Diskretisierungsfehlers des Losungsansatzes. Basierend
auf der Grundlagenarbeit Giber recovery-basierte Fehlerabschatzung (Zienkiewicz and Zhu, 1987,
1992a,b), werden einige modifizierte Versionen des SPR recovery-Verfahrens vorgeschlagen.
Schlussfolgernd wird eine lokale Extrapolationstechnik (BF) basierend auf einem Idealpunkt
entwickelt. Die zuriickgewonnenen Ableitungen werden in Knotenpunkten durch Extrapolation
aus den Testpunkten und darauf folgender Mittelung ermittelt. Hiernach wird der Diskretisierungs-
fehler bewertet, indem die Finite-Elemente-Losung mit der recovery-Losung verglichen wird.
Numerische Tests zeigen, dass die BF Methode die genaueste Fehlerabschatzung dieser Meth-
oden liefert.

In adaptiven Simulationen sollen Neuvernetzungstechniken den rechnerbasierten Bereich
neu diskretisieren, da die alte spatial-Diskretisierung fiir weitere Simulationen nicht geeignet
ist. Unstrukturierte Vernetzungstechniken haben sich als effektiv und stabil dabei erwiesen, ein
neues Netz anstelle des alten verformten Netzes zu generieren. Allerdings kdnnte es Schwierigkeiten
beim Generieren von lokal dichten Netzen oder schubverzerrten Elementen in geordneten Net-
zen aufgrund von Netziibergédngen geben. Im Gegensatz dazu kann die hanging-node-basierte
hierarchische Netzverfeinerung auf einfache Weise zum gewiinschten dichten Netz fiihren,
allerdings fihrt es nicht zur Verbesserung der Netzqualitit. Deswegen entwickeln wir in Kapi-
tel 2 eine kombinierte, aus unstrukturierter und hanging-node-basierter Neuvernetzung zusam-
mengesetzte, Strategie indem wir die Vorteile des unstrukturierten Vernetzungsverfahrens und
des hanging-node-basierten Netzverfeinerungsverfahrens ausnutzen. Netzverfeinerung und -
vergroberung in Grenzbereichen wird durch einen Grenzpunktsetzalgorithmus realisiert.

Es ist bekannt, dass schwer deformierte Netze die Losungsgenauigkeit reduzieren (Oddy
et al., 1988). Netzglattungsverfahren wie die Laplace-Glattung haben sich als effektiv dabei
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erwiesen, die geometrische Netzqualitat zu verbessern. Enthalt ein schlecht geformtes Netz
ungiltige Elemente, so sind die meisten existierenden Methoden nicht fahig, so ein Netz zu op-
timieren. In Kapitel 3 wird ein optimierungsbasiertes Netzglattungsmodell, basierend auf dem
Netzqualitdtsmal3, welches von der Konditionszahl der Jacobimatrix abgeleitet ist, prasentiert,
welches sowohl ungiiltige als auch giltige Netze optimiert. Das zusammenhangende Opti-
mierungsproblem wird mit Hilfe der Sattelpunktsndherung geldst. Diese Methode kann zusam-
men mit jeder Ansatzart der Netzverfeinerung, z. B. den hanging-nodes, genutzt werden. Nu-
merische Beispiele, die diese Herangehensweise nutzen, zeigen deren Stabilitdt und Effektivitat.

In Kapitel 4 wird jeder der Bestandteile diskutiert und ausgewertet, einschliel}lich des Fehler-
schatzers, des Vernetzungsalgorithmus, des Neuvernetzungsverfahrens und der Elementtypen
in adaptiven Metallumformungssimulationen. Die Simulationen von vier Arten von Herstel-
lungsprozessen, namlich Strangpressen, Schneiden, Schmieden und Walzen wurden durchgefiihrt,
um das vorgeschlagene adaptive Neuvernetzungsverfahren zu validieren. In den Anwendungen
scheint das bilinear-quadratische Element effizienter und stabiler als das linear-dreiseitige. In
der adaptiven Schneidsimulation zeigt der numerische Vergleich, dass der auf dem lokalen Ex-
trapolationsverfahren (BF) basierte Vernetzungsalgorithmus Zustandsvariablen mit der klein-
sten numerischen Abweichung tbertragt. Es wird gezeigt, dass die Netzvergroberung, die in der
adaptiven Neuvernetzungsmethode beinhaltet ist, in der Lage ist, Rechenaufwand zu reduzieren
ohne die Ergebnisgenauigkeit zu senken. Fur Probleme grof3er Verformung mit Schaden er-
weist sich die adaptive Neuversnetzung, unter Einbeziehung einer Prozedur zur Eliminierung
geschadigter Elemente, als effizient.



Chapter 1

Recovery based error estimation and adaptivity

Abstract — The discretization error in a finite element solution is investigated in the current work.
Several modified versions of the famous SPR recovery technique are proposed. Subsequently, a local ex-
trapolation technique is investigated based on the best-fit point. The recovered derivatives are obtained at
nodes via extrapolation from the sampling points and subsequent averaging. Numerical tests demonstrate
that the resulting recovery method is more accurate than the original and the presented modified super-
convergent patch recovery methods (SPR). Finally, a-posterior error estimators for plasticity problems
and adaptive strategies are introduced and demonstrated by numerical examples.

Keywords: error estimation, recovery method, best fit point, adaptivity.

1.1 Introduction

Nowadays, the finite element method has been widely used in engineering applications. In
the context of the finite element method, a deformable body is discretized by a mesh which
is defined by a finite number of nodes and elements. Physical phenomena, including material
behavior, contact condition etc., are approximated with mathematical models. The solution is
approximated and interpolated by the element shape functions. Thus, the accuracy of the finite
element solution is highly dependent on the mesh size, the shape functions and the mathematical
model such as the material model. Naturally, a question arises: How to assess the accuracy of a
finite element solution?

Basically, there are two types of errors. Recently, the modelling error due to the use of var-
ious mathematical models of physical phenomena has been investigated by Oden et al. (2001).
The main study in this chapter is focused on the discretization error which is due to the fi-
nite element approximation of the solution. For this purpose, two types of error estimators are
available. A priori error estimators provide the information on the asymptotic behavior of the
discretization error but it is not designed to give an actual error estimation for a given mesh (e.g.,
Graetsch and Bathe, 2005; Hugger, 2001). In contrast, a posteriori error estimators assess the
actual error of the solution, based on the finite element solution (e.g., Verfuerth, 1999). Thus,
a posteriori error estimation has been widely used in mathematics and engineering. Here, the
error in an element which is induced by the element itself is indicated as local error. In contrast,
a so-called pollution error is due to the error in other neighboring elements. The pollution error
was reported by Babuska et al. (1997a, 1994a, 1995) and further investigated by Huerta and
Diez (2000); Mukherjee and Krishnamoorthy (1998a).

The first paper on error estimation was presented by Babuska and Rheinboldt (1978). Since
then, a great deal of work on error estimation has been carried out by many researchers. In
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general, they can be classified into two main categories: residual based error estimators and
recovery based error estimators.

The residual based error estimation is computed by using the residuals of the finite element
solution, which fail to satisfy the mathematical model, explicitly or implicitly. The explicit
residual error is expressed directly with the residuals of the finite element solution (e.g., Ce-
cot, 2007a); on the other hand, the implicit residual error estimation is determined by solving
local problems. The explicit residual error estimators have been shown to be inaccurate in es-
timating errors, and can only be used for guiding the adaptive analysis procedures (Babuska
et al., 1994c). The implicit residual error estimators are more accurate, but take more com-
putational cost. The requirement of solving local problems is even more complicated, when
applied to nonlinear problems. The pioneer work on residual based error estimation was pro-
posed by Babuska and Rheinboldt (1978), which estimates errors by considering local residuals
of the finite element solution. On that basis, a number of residual based error estimators have
been developed (e.g., Ainsworth et al., 2007; Ainsworth and Oden, 1993, 1997; Dey et al., 2006;
Estep et al., 2002; Hugger, 2001). For nonlinear plasticity problems, an implicit residual based
error estimator using local patch sub-meshes was proposed by Diez et al. (1998); Huerta and
Diez (2000); Huerta et al. (2002); Rodriguez-Ferran and Huerta (2000).

Compared to the residual based error estimation, the recovery based error estimation is the
most popular technique, as it is easy to implement in an existing finite element code and dra-
matically robust. The basic idea of the type of error estimation is to compare the finite element
solution and the recovered solution which is obtained by using recovery techniques in a post-
processing procedure. The pioneer work on the recovery technique and error estimation was
carried out by Zienkiewicz and Zhu (1987), which uses simple nodal averaging to improve the
finite element solution. Subsequently, Zienkiewicz and Zhu (1992a,b,c) proposed the most fa-
mous Z?2 superconvergent patch recovery technique (SPR), which is being widely used until
now.

The original SPR method is based on a least-squares fit of derivatives at the optimal sam-
pling points (e.g., Babuska et al., 1996; Barlow, 1976, 1989; Levine, 1985; Lin and Zhang,
2004; Mackinnon and Carey, 1989; Oh and Batra, 1999; Prathap, 1996) over a “node patch”
(see Figure 4.1). Such a patch represents the union of the elements surrounding the assem-
bly node. The continuous and more accurate stresses over the whole domain are obtained by
first recovering nodal stresses and then interpolating these with standard shape functions. The
technique shows a significant improvement of performance compared to other recovery tech-
niques (e.g., Hinton and Campbell, 1974; Oden and Brauchli, 1971; Oden and Reddy, 1973;
Zienkiewicz and Zhu, 1987) and the recovered solution was demonstrated to be superconver-
gent or even ultraconvergent (e.g., Babuska et al., 1997c; Li and Zhang, 1999; Wiberg, 1997;
Wiberg and Abdulwahab, 1997; Zhang and Harold Dean Victory, 1996; Zhang and Zhu, 1998,
1995; Zhu and Zienkiewicz, 1997; Zienkiewicz and Taylor, 1997; Zienkiewicz and Zhu, 1995;
Zienkiewicz et al., 1993). Babuska et al. (1994b,c) designed a robust “patch test” and proved
the SPR method was better than the element-residual error estimator.

Although good, the SPR method has been extended and improved by many authors. Mukher-
jee and Krishnamoorthy (1998b); Wiberg et al. (1995) and Gu et al. (2004) proposed a weighted
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patch scheme. Blacker and Belytschko (1994) introduced a conjoint interpolant which improves
the accuracy of recovered solution compared to the standard nodal interpolation. Blacker and
Belytschko (1994); Boroomand et al. (2004); Boroomand and Mossaiby (2005a,b); Boroomand
and Zienkiewicz (1997a,b, 1999); Kvamsdal and Okstad (1998); Lee et al. (1997); Okstad et al.
(1999); Park et al. (1999); Rodenas et al. (2006); Wiberg and Abdulwahab (1993); Wiberg et al.
(1994); Zienkiewicz et al. (1999) incorporated the equilibrium and boundary condition with
patch recovery. Li and Wiberg (1994); Mukherjee and Krishnamoorthy (1998b); Wiberg et al.
(1995) proposed a different configuration of elements, which is called an “element patch” (see
Figure 4.1) defined as the union of the elements surrounding an element under consideration.
However, a drawback of the element patch is that the recovered stress field is discontinuous over
the element boundaries. One part of the current work is to introduce a procedure to avoid a dis-
continuous recovered stress field by using additional nodes. Based on the least square method,
some Hessian recovery techniques were developed and analyzed by Vallet et al.; Yazdani et al.
(1997). Maisano et al. (2006); Wiberg and Li (1994) reported a recovery technique which fits a
polynomial to the displacements at nodes instead of the gradients at sampling points. The type
of error estimator was then further improved by using the patch with surrounding nodes (Naga
and Zhang, 2004; Zhang and Naga, 2004, 2005), here, the idea is related to the meshless method.
A recovery technique based on complementary energy was developed by Benedetti et al. (2006);
Ubertini (2004). Based on the SPR technique, Picasso (2003) introduced an anisotropic error
estimator for anisotropic unstructured meshes.

In addition to the improvement of superconvergent patch recovery technique, recovery based
error estimators have been widely applied to various problems: the plasticity problem (Araujo
et al., 2000; Boroomand and Zienkiewicz, 1999; Cecot, 2007a; Khoei et al., 2007; Li and Bett-
ess, 1997), axisymmetrical problem (YYazdani et al., 1998), acoustics problem (Bouiliard et al.,
1996; Dey et al., 2006), shell analysis (Li et al., 1997), shape optimization problem (Bugeda and
Onate, 1993; Bugeda et al., 2007; Fuenmayor et al., 1997), eigenfrequency analysis (Hager and
Wiberg, 1999), dynamics problem (Wiberg and Li, 1999), crack propagation problem (Khoei
et al., 2008) and metal forming problem (Boussetta et al., 2006; Park and Yang, 2006).

While using the superconvergent patch recovery techniques, one needs to minimize objec-
tive functions by solving linear systems. However, the matrix in the linear system could be ill-
conditioning or rank deficiency. In this case, additional procedures such as normalization of the
coordinates (Wiberg and Abdulwahab, 1993), LU decomposition with partial pivoting (Labbe
and Garon, 1995) and rotation of the coordinate system (Yue and Jr, 2006) have to be involved
to overcome these problems, which lead to higher computation cost. However, from the engi-
neering point of view, a good technique should be effective, robust and as simple as possible.
Therefore, in the current work, we developed a best-fit point based extrapolation technique. The
original idea was proposed by Levine (1985), who demonstrated that the average stress value is
superconvergent at the midpoint of a common edge between neighboring elements in structured
triangular meshes. Here, we investigate the position of such optimal sampling points in unstruc-
tured meshes using the best-fit approach (e.g., Liew and Rajendran, 2002; Rajendran and Liew,
2003). On this basis, a recovery method based on the best-fit points is developed. In particular,
the recovered derivatives are obtained at the nodes via extrapolation from the sampling best-fit
points and subsequent averaging.
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This chapter is organized as follows. In §1.2, we review the SPR method and propose our
modifications. The position of the best-fit point in neighboring elements is then investigated and
applied in our recovery method in §1.3. Next, we introduce the error estimation and effectivity
index used in this work. In §1.5, numerical tests are given to compare the performance of
these recovery methods discussed in this paper. In §1.6, we introduce the error estimators for
plasticity problems and the adaptive strategy. The strategy for optimization of mesh size map
is introduced in §1.7. Some numerical examples on adaptivity are given in §1.8. Finally, some
conclusions are presented in §1.9.

1.2 Superconvergent patch recovery methods

The original SPR method (ZZ) was proposed by Zienkiewicz and Zhu (1992b). In this method,
a node patch (see Figure 4.1) is defined for the original SPR method by the union of elements
surrounding the node in question. Let o* represent any component of the recovered element

A recovery element

O recovery node }
' = sampling point ’ = sampling point

Figure 1.1: Different approaches to obtain a field of recovered values. The node patch recovery
(left) provides a continuous field containing the recovered values inside the nodes, whereas
the corresponding field, provided by the element patch recovery (right) is discontinuous across
elemental boundaries (see text for further details).

stress field. This is related to the set s,, = (s, s2,...) of corresponding nodal values at the
mesh nodes via the usual ansatz

in terms of the array h?, = (hy, ho, .. .) of element shape functions. The set s,, is obtained by
assuming that o* is given by an order p polynomial expansion over a node patch, i.e.,

cf'=0'=p-a, (1.2)

where p is an array consisting of the terms of an order p polynomial and a is a set of unknown
parameters. In the case of a three-node triangular element, for example, we have

pP= (171',3/) (13)

and
a= (a’la a2, CL3) : (14)

Then

ol =

, = a1+ axx + azy (1.5)
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follows. The unknown parameters a are determined by a least square fit to a set of sample
points at which the stress component o, obtained from the finite-element solution is known to
be superconvergent or at least highly accurate. The least-squares fit is based on minimizing the
objective function

f(a) = Z lon (i, yi) — U;(%;%NQ , (1.6)

where 7 is the number of sampling points and (z1, y1), (x2, y2), . . . are the coordinates of these
points. Extremization of f(a) yields the linear system

Aa=b, (1.7)

with .
A =) " p(@i,y) @ plai, vi) (1.8)

and an
b= on(zi, 4:)p(xi, ;) (1.9)

i1

Consider next the SPR method as based on the element patch and polynomial expansion.
Wiberg et al. (1995) proposed an element patch (see Figure 4.1) defined by the union of the
elements surrounding the element in question. On this basis, they investigated 2D problems by
using a polynomial of order p. Since in this case there are at least seven elements in an interior
element patch (see Figure 1.2), one can use a polynomial of order p + 1 for ¢*. In this case, we
have

p=(1,z,v,2° 2y,9°) (1.10)
and
a = (a1, az, a3, as,as, ag) , (1.11)
yielding
0" =0, =a+ax +azy+ sz + asry + agy? . (1.12)

Having seven values for o, in this case, one can determine the six components of a.

In the SPR method based on an element patch and a polynomial of order p + 1, the recovered
stress field is obtained directly by using the SPR solution, which is discontinuous over element
boundaries. In order to provide a continuous field of order p + 1, we introduce additional
nodes in the element and treat it from the post-processing point of view as a six-node triangular
element (see Figure 1.3).

Since the average stress values in neighboring elements at the midpoints of their common
edges are superconvergent, these midpoints represent a logical choice for the additional nodes.
On this basis, the recovered stress field may be obtained by a simple averaging of the overlap-
ping patch solutions for the mesh nodes. This yields the form

0" =hy s, +hy,-s) (1.13)

for the final field over the entire domain via interpolation of the values at mesh nodes as in
equation (4.1) and at additional nodes associated with the patch as based on the interpolation
functions h;, and interpolation values s* at the additional nodes.
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<180° Elem. 1

2 <180°
Elem. 5
- 3<180°
Elem. 4 <180°

Figure 1.2: The sum of exterior angles of one triangular element is 900° and each interior angle
must be less than 180°, therefore one interior triangle must have at least six surrounding. Five
elements are only possible with one angle having 0°. Note the shape of the interior element
being arbitrary.

® Mesh node
O Additional node

Figure 1.3: Element patch with additional nodes.

1.3 Recovery method based on local extrapolation

The average derivative at the midpoint of the common edge of neighboring elements was shown
to be superconvergent by Levine (1985) and further investigated by Lakhany et al. (2000);
Lakhany and Whiteman (1999). Motivated in this section by the extrapolation technique dis-
cussed by Zienkiewicz and Zhu (1992b), we discuss how to obtain the recovered derivatives
over an element by interpolating and extrapolating the superconvergent values from the mid-
points. With three points at hand, we can perform, at least, linear extrapolation. The typical
element patch used for this is shown in Figure 1.4. Note that this differs from the element patch
used in SPR method.

® Mesh node
O Midpoint

Figure 1.4: Element patch used for the midpoint method.
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Using this patch, we can again, recover the values elementwise or nodewise. In the first
method (MP), the recovered derivatives are obtained directly using interpolation and extrapola-
tion. In this case, the recovery procedure consists of the following steps:

1. average the derivatives at the midpoint of common element edges,

2. interpolate and extrapolate these three values in the range of the element directly.

The drawback of this method is that the recovered solution is discontinuous on element bound-
aries. To deal with this, one can modify the recovery procedure as follows (named as MPN
method):

1. average the derivatives at the midpoints of element edges,
2. extrapolate these three superconvergent values to the nodes,

3. calculate the average value of the overlapping recovered solutions at the nodes and 4)
interpolate the solution field using these nodal values.

Alternately, in order to obtain a solution field of order p + 1, step 4) can be replaced by
interpolating the solution field with the values at the nodes and the midpoints, which is denoted
as MPAN method.

Consider next the positioning of the superconvergent points. Since the existing method of
superconvergence is restricted to structured meshes, the position of these points in the case of
unstructured meshes needs to be considered anew. This was done for example by Liew and
Rajendran (2002) and Rajendran and Liew (2003) in their extension of the best-fit approach to
2D problems. In the current work, the best-fit approach is extended to investigate the position
of the optimal points in two neighboring elements for the unstructured case. To this end, we
first review the best-fit procedure proposed by Liew and Rajendran (2002); Prathap (1996);
Rajendran and Liew (2003).

The best-fit approach is based on the weak form of momentum balance.

/56-0‘dv—/5u-(pa—pb)dv—/5u-tda:(). (1.14)
v v A

Slight rearranging leads to

/(5€-6’dv—/5ﬂ-(pa—pb) dv—/éﬂ-tda:/éé-(&—a) dv . (1.15)
v v A v
Here, o represents the exact stress field, &, du, and d€ the corresponding finite element quan-

tities. In this form, the left side of the expression represents the FE-formulation which, in
combination with the weak form of momentum balance, enforces the orthonormality condition

/(56 (¢—0)dv=0 (1.16)
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to determine the position of the optimal point. Here, o is the array of Voigt components of the
exact stress field, & its numerical approximation, and € the array of corresponding strain field
components. In the simple linear elastic case, (1.16) becomes

/(5€,C(€—e) dv=20, (1.17)

U

where C is the Voigt matrix representation of the linear elasticity tensor. To get the best-fit
points in one element, Rajendran and Liew (2003) restricted (1.17) to just one element. In this
case,

€ = Bu (1.18)

holds for the finite element strain field in terms of the nodal displacements u and standard B-
matrix B. The exact solution is unknown, thus, the exact displacement field is represented by a
polynomial which is one order higher than the order of the standard shape function. Thus, the
strain field is represented by

e=Pd. (1.19)
Here, P is a matrix whose components depend on polynomials of the position coordinates, in
particular for linear triangular element, which is expressed as

P=(1,zy), (1.20)

and d is a set of parameters analogous to a above for the stress field, which is represented by

d= <d17 d27 d3) : (121)

Using (1.18) and (1.19), (1.17) becomes

/ (Bou) - C(Bu — P(x)d dv = du - BTCBu — BTCP(x)d dv'® =0 (1.22)
wv(e) (e

and as dwu is arbitrary

BTCBu — BTCP(x)d dv'"® = 0. (1.23)

'U(E)
The latter result can be written as the linear system

Ka = Md, (1.24)

where
K= / BTCB dv® (1.25)
1)(5)

and
M = / BTCP dv'® . (1.26)
,U(e)
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The result (1.24) is solved for u in terms of d. The corresponding error in the stress, e,, is
expressed as
e, = C(Bu—Pd). (1.27)

Setting this error to zero, one can solve the equation to obtain the position of the optimal points.

Next, consider the extension of the best-fit approach to two neighboring linear triangular
elements (see Figure 1.5) for determination of the optimal point in neighboring elements. The

(X4,y4)
(X3,y3)

® Best-fit point

(X1,y1)
(X2,y2)

Figure 1.5: The position of the best-fit point.

exact displacement field in two neighboring elements is assumed to be a quadratic polynomial
taking the form

U = ay+ ar + azy + aur? + asxy + agy® (1.28)
v o= a7+ ast + agy + a108” + anry + any’ . '
Now, enforcing the relation (1.17) to be valid in each element, we have
/ BTCB dv®) a! = / BTCP dv*) d (1.29)
vler) wvle1)
and
/ BTCB dv'®) @ = / BTCP dv*? d . (1.30)
vle2) wv(e2)

To determine the optimal position of average derivatives of neighboring elements, the equation
e, =C{(e'+&)/2—Pd} =0 (1.31)

should be satisfied.

In case of linear triangular elements, B and C are constant in the range of the element. Thus,
(1.29) and (1.30) become

v = / P dv©) d (1.32)
vier)

and
exvie) = / Pdvd. (1.33)
v(€e2)

In combination with (1.31), this yields

WP A d [, Pdue) d
0= (fv( pPdd | Jyen Pdv )/2—Pd, (1.34)

V(e1) V/ (e2)
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1 1
1 Jyep®dV [ e zdV

v | =| 2\ Tyt Fe (1.35)
1 (S vV | [ e ydV

y 2 ( v (e1) + v (e2)

The position of the optimal sampling point for the average value of two neighboring elements is
the average position of the corresponding centers. Using the notation for a two-element-patch
as shown in Fig. 1.5 we have in particular

T ) _ z+7++> (1.36)
() (1258

for the corresponding sample point.

ol
QFEG\L;

® Mesh node
O Best-fit point

Figure 1.6: Element patch for best-fit point method.

® Mesh node

O Midpoint at boundary
© Best-fit point

Figure 1.7: Boundary element patch.

Consider next the recovery procedure. Similar to the midpoint method, this procedure can
be summarized as follows:

1. average the derivatives of neighbouring elements at the best-fit points,
2. extrapolate the average values to the nodes,
3. calculate the average value of the overlapping recovered solutions at nodes,

4. interpolate the average values at nodes with shape function. For practical purpose, the
element derivative value is used for the midpoint value at a boundary element edge (see
Figure 1.7).
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1.4 Error estimation

The FE solution, in terms of the stresses o*, differs from the corresponding exact values o. The
point-wise errors are defined by the difference

e, =0 —o. (1.37)

Since o is unknown, a recovered solution o* can be obtained by some suitable recovery process
in place of the exact solution o. The error is then estimated as

e, ~e =0 —o". (1.38)

An integral measure which is the so-called L,-norm (e.g., Wiberg and Li, 1994) is used in this
paper. Thus, the errors in Ly-norm are

1/2
lell ~ llg]l = ( / o ) . (1.39)

On the whole domain, €2, the error can be obtained by summing element contributions, i.e.

" 1/2
Jell = (Z Hel!?) , (1.40)

where ||e||; represents the contribution from element i and is obtained by integrating over the
elemental sub-domain, €2;.

1.5 Numerical tests

To evaluate the performance of different recovery methods, we present five numerical tests. The
methods, used for the numerical tests are given in Table 1.1. In what follows, the performance

| Abbreviation | Method |
YA Original SPR method
EP1 SPR method with element patch and p = 1 polynomial
EP2 SPR method with element patch and p = 2 polynomial
EPAN2 SPR method with additional nodes (§1.2).
MP, MPN and MPAN Midpoint methods from §1.3.
BF Best-fit-point method from §1.3.

Table 1.1: Recovery methods compared with each other and discussed in the text.

of the error estimator is evaluated by the corresponding element and global effectivity indices

_ Jell L
el

@]l

Oe

and _
0= H (1.42)

lell
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(e.g., Zienkiewicz and Zhu, 1987).
The first three examples to be discussed in what follows are all based on the Poisson equation

—Au=f (1.43)

and are to be solved on a unit square domain 2 = (0, 1) x (0, 1). In the first example, let w = 0
be the boundary condition on 052 and choose f so that

u(z,y) = sin(mx) sin(my) (1.44)

represents the exact solution.

The problem is now solved numerically on a sequence of unstructured meshes (see Figure
1.8).

Figure 1.8: Sequence of unstructured meshes for the numerical tests 1-3.

Figure 1.9 shows the convergence of global error and global effectivity index of the derivative
u .. Due to the symmetry of the solution, the results for « , are analogous to those for « , and are
not presented here. It can be observed from Figure 1.9(a) that the global error of the recovered
solution u . *, calculated by the BF method, is the smallest of all methods, considered here.
Figure 1.9(b) shows the global effectivity index of the BF method close to 1, even for the coarse
mesh. It can also be observed that the EPAN2 method is more effective than the EP1 and EP2
methods. The deviation of the element effectivity index from the optimal value (“1”) for « , is
illustrated in Figure 1.10. The global effectivity index represents the performance of the global
error estimator. In addition, the element effectivity index is also very important for local error
estimation.
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Figure 1.9: Results for the first example based on equation (1.44). a) rate of convergence of
global Ly-error in u ,; b) global effectivity index with respect to u .
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Figure 1.10: Deviation of element effectivity index from the optimal value (“1”) with respect to
u , for the first example based on equation (1.44). ZZ (above, left), EP2 (above, right), EPAN2
(below, left), BF (below, right).
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In the second example, consider again the PDE (1.43) defined over a unit square 2 = (0, 1) x
(0,1). The source f and boundary conditions on « are now chosen so that the exact solution is

u(z,y) = (z° + y?) sin(zy) . (1.45)

The rate of convergence of the global error is presented in Figure 1.11(a) with respect to u ,
and in Figure 1.12(a) with respect to « ,. Comparing the MP and BF methods, it is seen that the
recovered solution provided by the BF method is closer to the exact solution. This is because
the midpoint is not the optimal point in an unstructured mesh.

-0.8 : ‘ ‘ 1.25
- 7z
Sl EP(p=1)
12l EP(p=2) |
R ~o EPAN(p=2)
-1.2 N e MP
115 N - MPAN
157 AN o MPN
-14 h -> BF
¥
16 11r S
S 18 ) s
-— 7 *
//;, . FEM 1.05¢
* o J>/ —% ZZ
_al 7
2 Pk EP(p=1)
o EP(p=2) 1 e %
2.2} 2 s -= EPAN(p=2) | T
o —— MP o T
< t - MPAN 0.95f e
-2.4 > o MPN 1 =
- BF '
-26 : : :
“14 -12 -1 -0.8 -0.6 035 1 15
log h log 1/h

Figure 1.11: Results for the second example based on equation (1.45). a) rate of convergence
of global L,-error with respect to u ,; b) global effectivity index with respect to u .
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-1.4 ~> BF
. 1.05)
16
o D
S-18}
1
2f G EP(p=1) | boT T 0 o
EP(p=2) . —
22f o EPAN(p=2) | . il
o 15 e MP 0.95F e
L% T - MPAN 7
-24r ¥ o MPN ] ¥
-> BF
-26 : ; : 0.9
=14 -12 -1 08 06 0.5 1 15
log h log 1/h

Figure 1.12: Results for the second example based on equation (1.45). a) rate of convergence
of global L,-error with respect to u ,; b) global effectivity index with respect to « ,,.
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From Figure 1.11(b) and Figure 1.12(b), it is observed that the ZZ method overestimates
the error and the MP method underestimates it. This is in contrast to the BF method, which
performs well. The deviation of the element effectivity index of « , and u , are illustrated in
Figures 1.13 and 1.14, respectively. In the case of the BF method, we note that the effectivity
index of most elements are close to 1. In contrast, in the case of the ZZ method, the deviation of
element effectivity index is greater, especially near the boundary. Due to lacking neighboring
elements on the other side of the boundary, the performance of the ZZ recovery technique on a
boundary patch is worse than that on an interior patch (Babuska et al., 1997c¢).

Figure 1.13: Deviation of element effectivity index from the optimal value (1) with respect to
u . for the first example based on equation (1.45). ZZ (above, left), EP2 (above, right), EPAN2
(below, left), BF (below, right).
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Figure 1.14: Deviation of element effectivity index from the optimal value (“1”) with respect to
u,,, for the first example based on equation (1.45). ZZ (above, left), EP2 (above, right), EPAN2
(below, left), BF (below, right).
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The third example is based again on Equation (1.43) defined over = (0,1) x (0,1). The
boundary condition on « and f are chosen so that

u(z,y) = 2(1 — 2)y(1 —y) tan " (20((x + y)/\/_ —0.8)) (1.46)

represents the exact solution. Figure 1.15 shows the distribution of the exact stress field, the
FEM stress field and the recovered stress field. The latter are calculated using the ZZ and
BF methods. The distribution of exact and estimated error is presented in Figure 1.16. The
maximum and minimum error are also given in Figure 1.16, as can be observed, the BF method
provides more accurate error estimation.

Exact FEM
Max=0.8544 Max=0.8254
Min=-0.3651 Min=-0.3522

Y4 BF
Max=0.7456 Max=0.8083
Min=-0.3517 Min=-0.3566

Figure 1.15: Distribution of exact and recovered values for « ,, from the third example as based
on equation (1.46).

True error Estimated error Estimated error
Max=4.523e-3 Max=5.338e-3 Max=4.623e-3
Min=1.185e-3 Min=1.630e-5 Min=1.292e-5

Figure 1.16: Distribution of exact and estimated element-based L-error (ZZ, middle; BF, right)
with respect to u , from the third example as based on equation (1.46).
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The fourth example to be considered in this section is a linear elastic problem in the plane,
used by Rajendran and Liew (2003). This assembling involves a rectangular plate with a uni-
formly distributed pinching load as shown in Figure 1.17. The numerical values for [, ¢, a and

~
=
S

\

Figure 1.17: Example 4: a rectangular plate with a uniformly distributed pinching load, as used
by Rajendran and Liew (2003).

garesetto5m,2m,2mand 1 Pa, respectively. Plane stress condition are assumed with elastic
isotropic behavior based on a value for Young’s modulus of 200 GPa and for Poisson’s ratio of
0.3. The exact solution for o, is given by

Oyy = _ga 4 Z f(m,a,c) cos(mmz/l), (1.47)
m=1

) T

with
sin(mma/l) (mme/l) cosh(mme/l) + sinh(mme/l)

m sinh(2mmc/l) + 2(mmc/l)

f(m,a,c) = (1.48)

The recovered stress o,,* is examined at the node with coordinates of (0,0) by comparing
the recovered value and the exact solution, where the exact solution has the value of o, =
—1.022411. Three meshes (see Figure 1.18) are used in the analysis. The convergence of re-
covered solutions are plotted in Figure 1.19. As can be observed, the BF method provides more
accurate recovered value at (0, 0) for all these three meshes, which proves that the BF method
is better suited for local stress recovery.

Since structured meshes are being used, the best-fit point and the midpoint coincide with each
other. In this case, the BF method is identical with the MPN method.
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Mesh 1 (320 elements)

Mesh 2 (1280 elements)

Mesh 3 (5120 elements)

Figure 1.18: Sequence of structured meshes for the fourth example.
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Figure 1.19: Convergence of o, at (0, 0) in the fourth example as based on equation (1.48).
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In the fifth example, an annular circular plate with an internal pressure is considered (see
Figure 1.20). The parameters a, b and P are set to 1 m, 3 m and 100 Pa, respectively. Young’s
modulus and Poisson’s ratio are set to 200 GPa and 0.3, respectively.

vy

Figure 1.20: Example 5: annular circular plate subjected to internal pressure.
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Figure 1.21: Sequence of meshes for the fifth example.
The exact stresses under the plane stress condition are given in both, polar coordinates:

2 2
o, = a“P 1_b

"22‘;2 Zj (1.49)
Og = bg—az 1 + )
and Cartesian coordinates:
o, = —"T;"‘) + 5% cos(20)
Op = —"’"‘5"9 — Zr5%cos(20) . (1.50)
Toy = “5otsin(20)

Using a sequence of meshes (see Figure 1.21) for the fifth example, the global L, errors in
o4, 0y and 7, are illustrated in Figure 1.22. Figure 1.23 shows the global effectivity index. As
can be observed in Figure 1.22, the error in the ZZ recovered solution is even greater than the
error in the original finite element solution when the mesh is coarse. This phenomenon was also
observed by Babuska et al. (1997b). Furthermore, in the case of 7,,, the global effectivity index
of the ZZ method doesn’t converge. In contrast, the BF method shows a good performance.
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21

The local point-wise error and effectivity index at (1.55563, 1.55563) are shown in Figures 1.24
and 1.25, which show the convergence rate of recovered solution is higher than that of the finite
element solution. In addition, the BF method shows a better local effecitivity index.
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Figure 1.22: Rate of convergence for the fifth example. a) global Ls-error in o,; b) global
Ly-error in o,; c) global Ly-error in 7,,,.
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Figure 1.23: Global effectivity index for the fifth example. a) o,; b) 0,; €) 7.
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Figure 1.24: Rate of convergence for the fifth example. a) local pointwise error in o, at
(1.55563, 1.55563); b) local pointwise error in o, at (1.55563, 1.55563); c) local pointwise
error in 7,,, at (1.55563, 1.55563).
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Figure 1.25: Local effectivity index at (1.55563, 1.55563) for the fifth example. a) o,; b) o,; C)
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To compare the recovered values, the recovered values are computed at the six arcs (lines 1-6
atr=1.0,1.4,18, 2.2, 2.6 and 3.0, respectively). Figures 1.26-1.28 show the recovered values
of o,, 0, and 7., along the lines 1-6, respectively. It is seen that the BF method provides more

accurate recovered stresses, especially on the boundary.
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Figure 1.26: Recovered stress o, for the fifth example. a) Line 1; b) line 2; c) line 3; d) line 4;

e) line 5; f)
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Figure 1.27: Recovered stress o, for the fifth example. a) Line 1; b) line 2; c) line 3; d) line 4;
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Figure 1.28: Recovered stress 7, for the fifth example. a) Line 1; b) line 2; c) line 3; d) line 4;
e) line 5; f) line6.
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Figure 1.29 shows the distribution of the exact and estimated element-wise error on the
second mesh in Figure 1.21. By comparing the maximum value, we note that the estimated
error calculated by the BF method is closer to the exact error. The deviation of the element-
wise effectivity index is shown in Figure 1.30, in which we can see that the deviation of the ZZ
method is bigger than the deviation of the BF method.

FEM: Ox - MAX:2.0615 ZZ: Ox - MAX: 5.9397 BF: Ox - MAX: 2.2504

Error
(Aug: 75%)

+0.0002+00
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Errar
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Figure 1.29: Distribution of the exact and estimated elementwise error on mesh 2, example 5.
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Figure 1.30: Deviation of the elementwise effectivity index on mesh 2, example 5.
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Figure 1.31 shows the distribution of the element-wise error in the finite element and re-
covered solutions. Comparing the maximum error, we note that the BF method decreases the
maximum error in the recovered solution while the ZZ method increases the maximum error
in the recovered solution of o, and o,. Figure 1.32 gives the distribution of the exact and es-
timated point-wise error, which shows the presented recovery methods are effective for both
element-wise and point-wise error estimation.

FEM: Ox - MAX: 2.0615 ZZ: Ox - MAX: 5.0482 BF: O0x - MAX: 1.5515

Error
(Awg: 75%)

FEM: Oy - MAX: 2.2295 ZZ: Oy - MAX: 3.5650 BF: Oy - MAX: 1.2474

FEM: Ty - MAX: 0.9336 ZZ: Ty - MAX: 0.4627 BF: Txy- MAX: 0.5747

Ervar
(Avg: 75%]

+9.4008-

+8.617e-

o

+0.000=+00

Figure 1.31: Distribution of the elementwise error in the finite element and recovered solutions
on mesh 2, example 5.
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Figure 1.32: Distribution of the exact and estimated pointwise error on mesh 2, example 5.
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The results of the five examples just discussed can be summarized in the following observa-
tions.

e The ZZ method tends to overestimate the global error, the recovery methods based on
local extrapolation (MP, MPN, MPAN, BF) tend to underestimate the error.

e The EPAN2 method is better than the EP1 and EP2 methods.

e For structured mesh, the best-fit point and the midpoint coincide with each other. Actu-
ally, the BF method is the extension of the MPN method for unstructured mesh.

e Since the average value of neighboring elements is not optimal at midpoint but best-fit
point in unstructured mesh, the performance of the BF method is better than that of the
MP, MPN and MPAN methods for unstructured mesh.

e Generally, the BF method provides the most accurate error estimation in these methods
which are evaluated in this paper.

1.6 A posteriori error estimation

In the category of recovery based error estimation, the discretization error of the finite element
solution is evaluated by comparing the finite element solution and the recovered solution. In
the past 20 years several recovery based error estimators have been proposed (e.g., Gallimard
et al., 1996; Lee and Bathe, 1994; Li and Bettess, 1997; Peric et al., 1994; Zienkiewicz et al.,
1988; Zienkiewicz and Zhu, 1987, 1992a,b). For linear elasticity problems, one can simply use
the derivatives of displacement or stresses to evaluate the discretization error (Lee and Bathe,
1994; Zienkiewicz and Zhu, 1992a,b, e.g.,). In the case of nonlinear plasticity problems, it is
much more sophisticated since the error estimation for plasticity problems is highly problem
dependent (Li and Bettess, 1997). Here, it is recommended to design various error estimators
for various simulation purposes. In the following, we will review possible quantities to be used
in context of error estimation.

1.6.1 Stress (EESS)

The error estimator based on effective stress is designed to evaluate the error mainly for linear
elasticity problems. The error ||e]| is defined in Ly-norm by

lello = ( /Q (07 — o’ dﬂ) " (L51)

with o*, the recovered effective stress and ¢, the finite element solution.

1.6.2 The incremental energy (EIE)

The error estimator based on the incremental energy was proposed by Boroomand and Zienkiewicz
(1999). This error estimator is based on the increment of recovered stresses and recovered
strains. The incremental energy norm is defined as
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1/2
lello = </Q (0% — ™) (Ac* — Ac™)| dQ> : (1.52)

where o and o” are the recovered stresses and the finite element approximation of stresses,
respectively. As and A" are the recovered incremental strains and the finite element approxi-
mation of strains, respectively. In the n** increment the above norm may be written as

1/2
lello = ( / r<a:—a::><As;—Aez>|dQ) , (153)
Q
where
Aegy, = e —er_
O RO (1.54)

Peric et al. (1994) proposed a similar error estimator with the plastic strain increment instead of
the strain.

1.6.3 The incremental strain error (EIS)

Similar to the error estimator based on energy norm, we can use an error estimator which em-
phasizes the discretization error in strain rate. The error in the n'" incremental step is expressed
as follows:

1/2
lello = ( [ aei—ady czﬂ) | (155)
Q

where A’ is the finite element approximation of strain increment in the n** incremental step,
Ac? is the recovered solution of Ac”.

1.6.4 The equivalent plastic strain error (EEPS)

In the applications to strain localization problems, we note that the strain rate based error esti-
mators show high efficiency in catching shear band when the shear band is being formulated.
However, once the strain rate lowers down, consequent mesh coarsening causes the loss of the
solutions in the formulated shear band. Therefore, a total strain based error estimator needs to
be considered for this special situation. Here, an error estimator based on effective plastic strain
is given by

1/2
lello = ( JICE d@) , (156)
Q

where ¢! is the finite element approximation of effective plastic strain and 7, is the recovered
solution of €],.
1.7 Optimization of mesh size map

After the assessment of discretization error in a finite element solution, the next step in an adap-
tive remeshing strategy is to generate an optimized new mesh size map based on the estimated
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error. The aim of optimization of mesh size map is to achieve a prescribed solution accuracy
with the least elements.

Let n be the global relative error in a finite element solution, which is defined as

n= el 7 (1.57)
[[un]]

where ||uy|| is computed with the finite element solution. Then, the local relative error in the
element ¢ is expressed as

el

[unl”

= (1.58)

where ||e||; is the elemental error in the element .

To describe the local mesh size optimization strategy, we inherit the idea about the local
remeshing indicator &, which was proposed by Bugeda (2002) and rewrite the indicator in the
following form

&=
Tl
where 7, is the prescribed relative error in element :. Note that the current element size fits the
expected element size if £, = 1, refinement is required if & > 1, and coarsening is required if
& < 1. Given a global prescribed error, one needs a criterion to determine the distribution of
the prescribed error in the mesh. Several remeshing strategies have been proposed in the past
20 years (e.g., Boroomand and Zienkiewicz, 1999; Bugeda, 2002; Bugeda and Onate, 1993,
Diez et al., 2000; Diez and Huerta, 1999; Li and Bettess, 1995; Li et al., 1995; Zienkiewicz
and Zhu, 1987). Generally, those strategies can be classified into two categories: 1) uniform
elemental error distribution (e.g., Boroomand and Zienkiewicz, 1999; Fuenmayor and Oliver,
1996; Li and Bettess, 1995; Li et al., 1995; Zienkiewicz and Zhu, 1987); 2) uniform error
density distribution (e.g., Bugeda, 2002; Bugeda and Onate, 1993).

The most popular optimization algorithm of the mesh size map is to enforce the error to be
equally distributed between all elements (Zienkiewicz and Zhu, 1987). Let n be the total number
of elements and 7,,, be the elemental prescribed relative error. Combining equations (4.15) and
(4.16) in (1.40), the global prescribed relative error is then computed by

, (1.59)

" 1/2
M = (Z mf) - (1.60)
=1

Enforcing n,, to be uniformly distributed on each element, we have

Ty = % . (1.61)

Considering again equation (4.17), the local remeshing indicator &; can be rewritten as
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¢ = . (1.62)

According to the convergence rate of the discretization error, the ratio of the old local element
size to the new local element size is computed by (Zienkiewicz and Zhu, 1987)

o) 1/p
W (e (M) (1.63)

e Ty
with p being the polynomial degree of the element interpolating functions. Hence, we obtain
the new element size which is expressed as

pew = hetd <—”p )l/p . (1.64)
/1

1.8 Adaptivity and numerical examples
1.8.1 Annular circular plate with a internal pressure

Since there exists an analytical solution for the fifth example, it is used again to evaluate the
adaptivity strategies based on the ZZ and BF error estimators. Here, the exact relative error is
expressed by

_ el , (1.65)

where ||e|| is the exact error and ||«|| is the exact solution. The estimated relative error 7, and
npr IS evaluated by

el
[[un]]
Here, we made use of the error in stresses (EESS). The initial and adapted meshes, using the
BF method are given in Figure 1.33. Table 1.2 summarizes the results of the analysis for each
of the adapted mesh. Figure 1.34 shows the relative error in the uniformly refined and adapted
meshes. Compared to the uniformly refined mesh, less elements are required in the adapted
mesh, to obtain the same accuracy.

7= (1.66)

I\ :

= o
<R
RO

e, R

SRS SR

SN A

Figure 1.33: Sequence of initial and adapted meshes for the fifth example.



34

Mesh | Nodes | Elements | ngr | nzz Nea
1 54 80 28.43 | 45.17 | 30.71
2 94 150 16.67 | 20.10 | 16.99
3 146 247 11.95 | 14.31 | 12.23
4 370 663 791 | 858 | 8.09
5 753 1391 5.16 | 556 | 5.57

Table 1.2: Results of adapted meshes for the fifth example.
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Figure 1.34: Convergence of relative error in uniformly refined and adapted meshes.
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1.8.2 Bracket

The sixth example is a classical bending problem of a cantilever beam structure under plane
stress conditions (see Figure 1.35). The material property of the beam is assumed to be ideal
plasticity. Ten equal displacement steps are prescribed to achieve the maximum displacement
of » = 0.1 mm along the end side.

10

Figure 1.35: The geometry of the bracket.

Error estimators EESS and EIE are used to perform adaptive finite element analysis. The von
Mises stress and equivalent plastic strain contours are shown in Figure 1.36. Initial mesh and
adapted meshes are shown in Figure 1.37. It can be observed that the adaptive mesh refinement
based on the EESS error estimator fails to refine the mesh where the gradient of incremental
strain is relatively high. The total number of elements during the adaptive finite element analysis
is shown in Figure 1.38. In the case of adaptive finite element analysis with EESS, it is seen that
the number of elements increases when the displacement is less than 0.02 mm, then decreases
after the displacement exceeds 0.02 mm. This phenomenon is due to the ideal plasticity material
behavior, and the distribution of the stress field tends to become smooth when the material
undergoes plastic deformation. Figure 1.39 shows the error histories of adaptive analysis based
on the EESS and EIE error estimators, which prove the effectiveness of the adaptive remeshing
strategy for error control. The load-displacement curves for the initial and adapted meshes are
shown in Figure 1.40.
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¥
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Figure 1.36: Bracket: the von Mises stress and equivalent plastic strain contours at displacement
of 0.1mm.
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Figure 1.38: Bracket: number of elements during the adaptive analysis.
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1.8.3 Plate with hole

A plate with a hole subjected to uniaxial tension is considered as the seventh example. Due
to the symmetry, the problem is analyzed by using one quarter of the plate. The plate is con-
strained at the lower edge in the y direction and the left edge in the x direction. A uniform
vertical displacement is imposed at the upper edge. The material property is assumed to be
ideal plasticity. Figure 1.41 shows the geometry of the plate and the boundary conditions.

SRR

10cm

10 cm

Figure 1.41: The geometry and boundary conditions of the plate with hole

Adaptive meshes at different stages of displacement using the error estimators EEPS, EIS and
EIE in combination with the BF recovery technique are shown in Figure 1.42-1.44. Figure 1.45
shows the distribution of effective plastic strain in the initial and adapted meshes. As can be
observed, the EEPS error estimator fails to capture the interior of the localization zone, since the
maximum error can be found only at the boundary of such localization zones. The total number
of elements during the adaptive finite element analysis are shown in Figure 1.46. Figure 1.48
shows the error histories of adaptive analysis based on the error estimator EEPS, EIS and EIE.
The load-displacement curves for the initial and adapted meshes are shown in Figure 1.47.
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Figure 1.42: Plate with hole: adapted meshes at displacement of 0.05, 0.45, 0.50. 0.55, 0.60
and 1.0 mm using the EEPS error estimator. Note the lower mesh density in the interior of the
localization zone. Here, the field is smoother than at the boundary of the zone. This leads to a
lower corresponding error.
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Figure 1.43: Plate with hole: adapted meshes at displacement of 0.05, 0.45, 0.50. 0.55, 0.60

and 1.0 mm using the EIS error estimator.
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Figure 1.44: Plate with hole: adapted meshes at displacement of 0.05, 0.45, 0.50. 0.55, 0.60
and 1.0 mm using the EIE error estimator.
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Figure 1.45: Distribution of PEEQ in the initial and adapted meshes at displacement of 1.0 mm.
a) Initial mesh; b) Adapted mesh (EEPS); c) Adapted mesh (EIS); d) Adapted mesh (EIE).
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1.9 Conclusions

In this chapter, several modified superconvergent patch recovery techniques and local extrapola-
tion techniques have been proposed. The numerical tests show that the BF method provides the
most accurate error estimation out of the methods which are evaluated in this chapter. To carry
out adaptive finite element analysis for plasticity problems with reference to strain localiza-
tion problems, several a-posterior error estimators and adaptivity strategies have been presented
and compared. Numerical examples have been shown to demonstrate the presented adaptivity
strategy.



Chapter 2

Automatic mesh refinement and coar sening

Abstract — In metal forming simulations, adaptive remeshing is essential for both, improving compu-
tational efficiency and maintaining mesh quality. Given a geometry, extracted from a distorted mesh,
unstructured meshing techniques have been shown to be effective and robust in generating a new mesh
to replace the old distorted mesh. However, there are difficulties in generating locally dense meshes.
Another problem is the occurrence of distorted elements in graded meshes due to the mesh transition.
In contrast, hanging-node-based hierarchical mesh refinement can easily achieve the desired local mesh
density. To improve the mesh quality as well, we develop a combined unstructured and hanging-node-
based remeshing strategy by exploiting the advantages of unstructured meshing techniques and hanging-
node-based mesh refinement techniques. Mesh refinement and coarsening on boundary is realized by
using a boundary node placement algorithm. Examples of the presented remeshing technique will be
given.

Keywords: advancing front, paving, hanging node, unstructured mesh.

2.1 Introduction

During the finite element simulation of forming processes, the mesh which represents the work-
piece, undergoes extreme large deformations, which could result in invalid elements and nu-
merical failure in the simulation. To overcome these difficulties and improve computational
efficiency, an adaptive remeshing technique is required to update the distorted mesh frequently.

Based on the geometry, which can be extracted from an existing distorted mesh, unstruc-
tured meshing techniques have been shown to be effective and robust in generating a new mesh
to replace the old distorted mesh. However, there could be difficulties in generating local mesh
densities (e.g., Paving (Blacker and Stephenson, 1991)) or yield distorted elements for graded
meshes due to mesh transition (e.g., Krishnamoorthy et al., 1995; Sarrate and Huerta, 2000). In
contrast, hanging-node-based hierarchical mesh refinement can easily achieve a desired mesh
density locally. 1t has been widely used in Eulerian finite element formulation, in particu-
lar for fluid mechanics problems. However, there are few papers which apply hanging-node-
based mesh refinement techniques to extreme large deformation problems in the context of
Lagrangian finite element formulation, since it doesn’t reduce mesh distortion. Using unstruc-
tured meshing technique and hanging-node-based mesh refinement technique separately, Hyun
and Lindgren (2004) proposed an adaptive remeshing scheme for forging problems. That is,
using the hanging-node-based mesh refinement technique at earlier stages and using the paving
technique (Blacker and Stephenson, 1991) at later stages, when the deformation becomes too
severe. As mentioned above, the paving technique is not able to generate local mesh densities
inside interior regions. Hence, it is not suitable for strain localization problems, such as metal
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cutting. To circumvent this difficulty, we develop a combined unstructured and hanging-node-
based remeshing strategy by exploiting the advantages of unstructured meshing techniques and
hanging-node-based refinement techniques.

The combined remeshing strategy comprises four steps:
1. extract boundary nodes from old mesh,

2. rearrange the boundary nodes according to the desired mesh density on the boundary and
rebuild the geometry with updated boundary nodes,

3. perform unstructured mesh generation by projecting boundary segments towards the in-
terior,

4. refine the unstructured mesh with hanging nodes according to the desired mesh size field.

This chapter is organized as follows. §2.2 deals with the unstructured mesh generation ap-
proach and boundary node placement algorithm. In §2.3, the fundamental concepts of hierar-
chical mesh refinement and coarsening are presented. Examples for the combined remeshing
approach are given in the last section.

2.2 Unstructured mesh generation

In an adaptive simulation, remeshing techniques are required to re-discretize computational
domains while the old spatial discretization is not suitable for further simulation. Various
techniques can be utilized to create a new spatial discretization: h-adaptivity (changing the
element size), p-adaptivity (changing the polynomial order of the interpolating function) and
r-adaptivity (relocating the nodes without changing the topology). In this section, we focus on
h-adaptivity with reference to unstructured meshing techniques, since it can not only refine or
coarsen a mesh but also improve the mesh quality.

2.2.1 Advancing front meshing technique

Advancing front meshing techniques (e.g., Blacker and Stephenson, 1991; Zhu et al., 1991) are
commonly used by many researchers (e.g., Gautham et al., 2003; Hyun and Lindgren, 2004) and
commercial software (e.g., ABAQUS and MSC Patran). The fundamental idea of this technique
is to start mesh generation from the boundary which is constructed with boundary segments.
Individual elements are generated by projecting boundary segments towards the interior. The
element size is determined by the lengths of the boundary segments. After a complete row is
formed, the paving boundary moves towards the interior, then mesh generation starts again on
the basis of the new paving boundary. Hence, the element size, which is far from the boundary
of the geometry, is essentially affected by the initial discretization of the boundary. In other
words, the mesh size distribution of the generated mesh completely depends on the boundary
discretization. For most metal forming simulations, this meshing technique is suitable, since the
solution accuracy is mainly affected by boundary elements in contact zones instead of interior
elements. However, for metal cutting problems, including strain localization, this technique can
not supply interior local mesh densities. Therefore, it has to be used together with hanging-
node-based mesh refinement techniques, which will be discussed in §2.3.
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2.2.2 Boundary node placement

As mentioned above, the advancing front meshing technique highly depends on the boundary
discretization. Thus, one of the most important aspects in the meshing strategy is to inherit the
deformed boundary from the old mesh and then discretize the boundary according to the desired
mesh density field.

Firstly, the boundary of the deformed body is extracted from the old mesh. Note that an
interior element edge is shared by two elements while a boundary element edge only belongs
to one element. Hence, the boundary segments are identified by analyzing the element con-
nectivity of the old mesh. Subsequently, the boundary is formed by connecting the boundary
segments counterclockwise.

Secondly, based on the desired mesh density field, which is usually derived from the dis-
cretization error in the finite element solution, the boundary is coarsened or refined by merging
or splitting the boundary segments. Various criteria are considered to coarsen or refine the
boundary.

Figure 2.1: Merging of two neighboring boundary segments. Here, an angle criterion is applied.

Since boundary coarsening could lead to volume change if the two boundary segments to
be merged are not collinear (see Figure 2.1), an angle criterion is used to restrict the volume
change, which is defined as

1180° — a < i (2.1)

where the limit oy, is taken as, e.g., 5°. It is well known that transition elements are required

@ ® * @ O
[ [ [>

Figure 2.2: Ratio of boundary segment to its neighboring segments has to be checked, before
merging.

for mesh transition from large elements to small elements. The quality of the transition element
is affected by the gradient of the mesh size. To reduce mesh distortion, a ratio criteria is utilized
in this work:

I 1
max{—, —} < Tm , (2.2)
I 1y

where [ is the length of the segment resulting from the merging operation as shown in Figure 2.2,
[; and [, are the lengths of its neighboring boundary segments and r;,,, is the limit of the ratio,
which is taken as 3 in the current work. If both, the angle criterion and the ratio criterion are
satisfied, and the nodal desired mesh sizes m; at the three nodes are all greater than the length
[ as shown in Figure 2.1, the two boundary segments are merged by eliminating their common
node.
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When the length of the current boundary segment is greater than the desired mesh size, new
nodes need to be placed at appropriate positions on the old boundary segment. Given the nodal
mesh sizes, various nodal spacing functions (e.g., Frey, 1987; Prasad et al., 1994; Prasad and
Rajagopal, 1997; Secchi and Simoni, 2003; Talbert, 1990; Zhu et al., 1991) are available to
guide the node placement.

Firstly, we determine the number of new nodes which are required to be placed on the old
boundary segment by computing
. 21
n = integer(———— — 0.5) , (2.3)
my + Mo
where [ is the length of the initial boundary segment, m and m, are nodal mesh size parameters
at the ends of the initial boundary segment and » is the number of new nodes to be added to the
initial boundary segment.

Using the linear “ideal” nodal spacing function proposed by Talbert (1990), the length of the
it" ideal new segment, which is divided from the initial segment, is calculated by the following
equation:

F=my+(i—1)xd, (2.4)
where
Mg — My

d=-2""1 (2.5)

n

Since the total ideal length E?jll [* rarely equals the actual length of the initial segment /, each

ideal segment is multiplied by a correction factor, which is the ratio of the actual length [ to the
ideal length I*. The actual length of the i** new segment is expressed as

Li=(a+(i—1)«d)x1/I". (2.6)

The node placement procedure is illustrated with an example shown in Figure 2.3. Given the
nodal mesh size and the length of the initial boundary segment, three new nodes are added to the
initial boundary segment. The error between the ideal length and the actual length is corrected
by the correction factor 10/9.
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Figure 2.3: Example of node placement. a) Initial boundary segment; b) Three new nodes added
using ideal spacing; ¢) Adjustment using correction factor.

2.3 Hierarchical mesh generation

The “Quadtree technique” was originally developed in computer graphics, then it was extended
to mesh generation in finite element analysis by Yerry and Shephard (1983). Compared to
conforming mesh generation, quadtree based hierarchical mesh generation is faster and easier to
implement. Hence, it is widely used in mathematics and engineering applications (e.g., Baeker
et al., 2002; Carey et al., 1988; Fischer and Bar-Yoseph, 2000; Fish and Markolefas, 1994;
Greaves and Borthwick, 1999; Hyun and Lindgren, 2001; Mcdill et al., 1987; Oden et al., 1986;
Oh and Lim, 1997; Patra and Gupta, 2001; Petersen et al., 2000; Solin et al., 2008; Subbaraj
and Dokainish, 1988; Tabarraei and Sukumar, 2005; Tang and Sato, 2004; Yue and Jr, 2005). It
is also implemented in commercial software LS-DYNA, in which only subdivision of elements
is available (Mathisen et al., 1999). In this work, a hanging-node-based hierarchical mesh
generation technique, including both, refinement and coarsening is developed and implemented
in VisualC++.

In hanging-node-based mesh generation, quadtree data structures play an important role,
especially due to the complexity of the data structure in hierarchical meshes. The quadtree data
structure is needed to handle the changing of the element connectivity, the nodal coordinates and
the number of nodes and elements. The additional required data, such as the refinement level
and the parent and children of the considered element, needs to be stored in the quadtree data
structure (see Figure 2.4). In a quadtree data structure, the initial element is called root element.
This element can be subdivided into four new elements, each new element can be subdivided
recursively until the desired mesh density is reached. The new elements are called children of
the subdivided (parent) element. The level of an element is the number of subdivisions, needed
to obtain the element. The level of the root element is zero. After each refinement, if the new
element and its neighboring elements are in different levels, hanging nodes need to be generated
on their jointed face to handle the mesh transition. To ensure consistency of displacement, we
impose constraint equations on the hanging nodes.

In order to obtain the smooth gradation of the refined mesh, additional elements are generated
so that the number of hanging nodes on an element edge doesn’t exceed two. The algorithm
is thus called 2 : 1 rule. Based on a hierarchical data structure, mesh coarsening can easily be
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Figure 2.4: Quadtree data structure: (a) quadtree grid; (b) tree representation.

realized by removing the children elements and retrieving their parent element.

In this work, two approaches are available to guide mesh refinement. Element selection is
a direct and simple approach to identify the elements to be splitted. The selected elements
and refinement levels are predefined, the selected elements are splitted recursively until the
refinement level is achieved. An example of this approach is presented in Figure 2.5.

T [ A :

(a) (b)

(c) (d)

Figure 2.5: Hierarchical mesh refinement based on element selection. (a) Level 0 mesh with
selected elements (231 nodes, 200 elements); (b) Level 1 (403 nodes, 106 hanging nodes, 323
elements); (c) Level 2 (1005 nodes, 318 hanging nodes, 815 elements); (d) Level 3 (3185 nodes,
742 hanging nodes, 2783 elements).

Alternatively, a refinement criterion is used if a mesh density field is given for adaptive mesh
refinement, which is expressed as

ha
= 2.7
==t @)

where h is the desired element size and h.. is the current element size. The current element
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is splitif zo is less than a threshold value, which could be chosen as, e.g., 0.75. Figure 2.6 shows
an example of adaptive mesh refinement based on a mesh density field. In practice, with the
help of a background mesh and nodal mesh size parameters, the mesh density field is obtained
by using a standard interpolating function.

(b) e

Figure 2.6: Hierarchical mesh refinement based on a mesh density field. (a) Mesh density field;
(b) Refined mesh.

2.4 Examples

In this section, three examples of application of the developed mesh generation scheme on
adaptive metal forming simulations are presented. The first example is the adaptive remeshing
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in gear ring forging simulation. Figure 2.7 shows the procedure of automatic remeshing with
boundary control. There are 180 elements and 217 nodes in the old mesh. The boundary is
retrieved by extracting the 72 boundary nodes from the old mesh. On the basis of the mesh
density field evaluated with the discretization error in the finite element solution, new boundary
nodes are added into the upper-right part where the error is high and several boundary nodes,
located at the lower part where the error is low are removed. The modified boundary consists
of 70 boundary nodes. On this basis, 201 elements and 237 nodes are generated. In contrast to
the old uniform mesh, the new adapted mesh is graded, which aims to reduce the discretization
error.

=S AN Maane
\
1
e
| T T
T |
—{ |
T~
old mesh old boundary refined and new mesh

coarsened boundary

Figure 2.7: Remeshing in gear forging simulation.
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Figure 2.8 illustrates an example of remeshing in forward extrusion simulation. There are
6446 elements and 6338 nodes in the old mesh. After remeshing, it can be observed that more
elements are generated in the lower part where the material undergoes large deformation. Fi-
nally, the new mesh consists of 7009 elements and 7209 nodes.

MWGJ J.WJ

old mesh old boundary renewed boundary new mesh

Figure 2.8: Remeshing in forward extrusion simulation.

The last example of remeshing in adaptive cutting simulation is presented to demonstrate
the performance of the combined unstructured and hanging-node-based remeshing strategy.
Figure 2.9 shows the procedure of the combined remeshing strategy. Based on the bound-
ary segments, which are extracted and modified by the means, discussed in Section 2.2.2, the
advancing front approach is first employed to generate the unstructured mesh. After that, hang-
ing nodes are utilized to refine the mesh in the region of shear bands. There are 1044 elements
and 1171 nodes in the mesh generated with the advancing front approach. The final mesh re-
fined with hanging nodes consists of 6969 elements, 7533 nodes and 847 hanging nodes, which
demonstrates the efficiency of hanging-node-based mesh refinement.
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Figure 2.9: Remeshing in cutting simulation.



Chapter 3

Optimization based mesh smoothing for planar
meshes

Abstract — In metal forming simulation, the mesh which represents the workpiece often undergoes large
deformations, which could result in large discretization errors, numerical difficulties and even failure in
the simulation. Mesh smoothing techniques such as Laplacian smoothing have been shown to be effective
in improving geometrical mesh quality. However, when a badly shaped mesh contains invalid elements,
most existing methods are not able to optimize such a mesh. Recently, an untangling technique was
proposed by Freitag and Plassmann (2000). Based on this method, a new objective function is presented
in this work, which can be used to carry out mesh optimization for an invalid mesh. The corresponding
optimization problem is solved with the help of the steepest descent method. The method can be used
together with any type of mesh refinement approach, e.g., hanging nodes. Numerical examples using the
current approach demonstrating its robustness and effectiveness will be presented and discussed.

Keywords: mesh optimization, objective function, mesh quality, untangling, smoothing, steep-
est descent method.

3.1 Introduction

The finite element method is widely used in engineering applications. Unlike other mathemat-
ical modelling tools, such as meshless methods, the basic idea of the finite element method is
to decompose the computational domain into a mesh, constructed by finite elements. Thus, the
mesh plays an important role in finite element analysis. A low quality mesh, which contains
poorly shaped or invalid elements, may lead to inaccurate solutions and even to failure.

In the past 30 years, much research work has been done on the issue of improving mesh
quality. Mesh smoothing is the most commonly used technique, which repositions nodes, to
improve the mesh quality without changing the topology. It is widely used as, e.g., the so-called
ALE remeshing in ALE formulations (e.g., Giuliani, 1982; Lohner and Yang, 1996; Sarrate and
Hueta, 2001). In addition, mesh smoothing is also an important factor in a mesh generation
procedure, since the mesh generated by a mesh generation technique is, in general, not optimal.

A very popular mesh smoothing technique is Laplacian smoothing (Field, 1988; Herrmann
and ASCE, 1976), which relocates the interior nodes by solving a Laplacian equation. The
method is simple to implement and computationally inexpensive, but it has the drawback, that
it does not guarantee improvement of mesh quality. Actually, the nodes may run out of the
domain near concavities (Hyun and Lindgren, 2001). A “smart” Laplacian smoothing, proposed
by Lee and Lo (1994), can avoid the formation of lower quality elements, but still doesn’t
guarantee the placement of the nodes at their optimal position. Similarly, there exist many other
heuristic mesh smoothing methods, such as the weighted volume method (Jones, 1974), the
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equipotential method (Brackbill and Saltzman, 1982), the iso-parametric method (Herrmann
and ASCE, 1976) and the diamond smoothing method (Borouchaki and Frey, 1998), which
move the nodes without any guarantee on improvement of mesh quality.

Actually, a new type of smoothing technique, based on the optimization of a mesh quality
measure has been presented and is proven to be robust and effective. Using this smoothing
techniques, the nodes are moved by optimizing an objective function, constructed with some
measure of the geometric mesh quality. Various element quality measures have been used in
optimization based mesh smoothing and evaluation of mesh quality, such as extreme angle,
edge ratio and distortion metric (e.g., Aiffa and Flaherty, 2003; Amenta et al., 1999; Bank and
Smith, 1997; Calvo and Idelsohn, 2001; Chen et al., 2003; Freitag and Knupp, 2002; Joun and
Lee, 1997; Knupp, 2000a,b,c, 2001, 2003a,b; Oddy et al., 1988; Pebay, 2004; Pebay and Baker,
2003; Riccius et al., 1997; Robinson, 1987). The optimization-based mesh smoothing tech-
niques can be classified into two categories: Global and local mesh smoothing. In global mesh
smoothing, all node locations are renewed simultaneously. In contrast, local smoothing moves
the nodes in a sweep way recursively. Canann et al. (1993) proposed a global optimization
method based on Oddy’s distortion metric (Oddy et al., 1988). Balendran (1999) developed
a method similar to the finite element analysis, using the global geometrical stiffness matrix,
which was improved and extended by Diaz et al. (2004, 2005). The disadvantage of global
smoothing is its high cost of memory and CPU time, so local mesh smoothing is more com-
monly used in practice (e.g., Aiffa and Flaherty, 2003; Bottasso, 2004; Freitag, 1995; Garimella
et al., 2004; Xu and Newman, 2006).

In general, there is a limitation in most existing smoothing algorithms. That is, the mesh to
be smoothed must not have invalid elements. For invalid meshes, some two-stage schemes have
been introduced to untangle the invalid mesh first and then smooth the untangled mesh. Li et al.
(2000) proposed a procedure to repair invalid elements:

1. disconnect the invalid element from the remaining mesh,
2. reshape the invalid element,

3. assemble the repaired elements with the mesh.

A more simple and convenient optimization-based untangling approach was proposed to
untangle the invalid mesh by Freitag and Plassmann (2000). After untangling, the mesh is not
optimal since these two untangling schemes are not designed to optimize the mesh quality, and
thus a subsequent smoothing scheme should be performed to achieve an optimal mesh.

In this chapter, we propose a new mesh optimization scheme, which performs mesh un-
tangling and smoothing simultaneously. In Section 3.2, we review the mesh quality measure
and discuss the corresponding objective function. We develop the new objective function in
Section 3.3. An alternative objective function is discussed in Section 3.4. In Section 3.5, a
combined Laplacian- and optimization-based smoothing scheme is discussed and extended to
non-conforming meshes. The mesh optimization algorithm is given in Section 3.6. The numer-
ical results are presented to demonstrate the performance of the new scheme in Section 3.7. In
Section 3.8 we present some conclusions.
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3.2 Mesh quality measures and objective function
3.2.1 Mesh quality measures

Mesh quality measures are the basis when evaluating the mesh quality. Among many measures,
the one for triangles introduced by Bank and Smith (1997) can be computed efficiently and
proven to be effective in mesh optimization (Canann et al., 1998). Later, a measure was derived
based on the condition number of a Jacobian matrix, which expresses the linear transformation
between the ideal reference element and the physical element (Knupp, 2001; Pebay, 2004; Pe-
bay and Baker, 2003). In this section, we review the mesh quality measures for triangles and
quadrilaterals.

Triangular quality measure

Figure 3.1 shows the transformation between the reference triangle and the physical triangle.
The reference triangle is an equilateral triangle which is ideal to predict the finite element solu-
tion for most problems. The physical triangle is the real element inside a mesh. The coordinates
of its three nodes are labelled as (x, y),with & = 0,1,2. The edge matrix of the physical tri-

A A

[
\ 4 =

Reference element Physical element

Figure 3.1: Transformation between the ideal equilateral triangle and the physical triangle.

angle is defined by
T = <"”1 T 2 37“) . (3.1)
Yi—Y Y2 — Yo
Let W be the edge matrix of an equilateral triangle, whose nodes are, for example, located at
(0,0), (1,0), and (%, ¥2) so that I is expressed as

2779
1 1L
W = (O é) . (3.2)

2
Now the Jacobian matrix which maps the reference element to the physical element can be
expressed as
S=Tw. (3.3
As described by Knupp (2001), the mesh quality measure is defined based on the condition
number of S. In our work, the Frobenius norm is chosen for its definition. Here, the condition
number of S can be expressed as

K(S) = 1SHISI (3.4)
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where
IIS|| = /tr(STS) . (3.5)

Although «(.S) is continuous in the half space where the triangle is valid, it becomes discon-
tinuous when the triangle goes inverted due to the infinite value of quality. For this reason, we
take the inverse of the condition number and normalize it to obtain

2

- 3.6
ERIIE] (39)

q
Note that ¢ is a positive value even for an inverted element. An indicator for the validity of an
element is defined by

- = %det(T) | (3.7)

which is the area of an element when the element is valid. The level sets of o for a triangle
with one adjustable node is illustrated in Figure 3.2, the other two nodes are fixed at (—0.5, 0)
and (0.5,0). Note that o becomes negative when the element inverts. Hence it represents a
reasonable indicator for the element direction.  On this basis, a quality measure which can
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Figure 3.2: Level sets of o for a triangle.

detect the validity of an element is defined as

20

¢ = Ty (3.8)
1S=HIE

where 3 is the adjoint matrix of S:
Y =o06S. (3.9

The quality measure ¢ can be expressed in another form (Bank and Smith, 1997)

. 430

o+ 2l 4 Jlapl?

q (3.10)
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where [y 1, [1 2 and 5, are the edge lengths of the triangle, respectively. Figure 3.3 shows the
level sets of ¢°. It can be seen that the mesh quality ranges from —1 to 1. The optimal quality 1
is achieved only when the adjustable node lies at (0, @), which makes the triangle equilateral.

Figure 3.3: Level sets of ¢¢ for a triangle.

Quadrilateral quality measure

The quality measure for quadrilaterals is derived with the help of sub-triangles of the quadri-
lateral element. Consider a quadrilateral element ¢ with its four nodes and their coordinates
labelled as Ny, X, k = 1,2, 3, 4, respectively (see Figure 3.4). The quadrilateral ¢) can be de-
composed into four triangular elements 7., each consisting of three nodes Ny, N1 and Ny, 3,
where the indices are taken modulo 4. We note that the square shape of quadrilateral element is

No
Ns  No
Ns
No
N1 Ns

N:

No N
N N2 N

N. N2 N1 N2

Figure 3.4: A quadrilateral, decomposed into four sub-triangles.

achieved when all these four sub-triangles are right isosceles triangles. Analogous to the quality
measure for equilateral triangle, the quality measure for a right isosceles triangle can also be
constructed by means of the condition number of transformation matrix.
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The relationship between the reference triangle and the physical triangle is illustrated in
Figure 3.5. Let IV be the edge matrix of a right isosceles triangle, whose nodes are, for example,
located at (0, 0), (1,0), and (0, 1) so that 1V is expressed as

10
=) o
A
2 2
Tw *
1 1
0 0 >
Reference element Physical element

Figure 3.5: Transformation between the ideal right isosceles triangle and the physical triangle.

Considering again the condition number of S and o, the quality measure is defined by the
same form

20
¢ =——, (3.12)
S]]
which can also be written as (Pebay, 2004)
S (3.13)

 lo]? + [l20)?

Here,
lk,k-‘rn = (Xk-l-n — Xk) (314)

are the corresponding edge vectors of the subelements.
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Figure 3.6 shows the level sets of ¢” for a triangle with one adjustable node, the other two
nodes are fixed at (0, 0) and (1, 0). This figure shows that the mesh quality ranges from —1 to
1. The maximum value of ¢" is achieved only if the triangle is a right isosceles triangle. Now
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Figure 3.6: Level sets of ¢" for triangle.

consider the sub-triangles in Figure 3.4. If vectors I, ;11 and [, 3 are defined by

g1 = (Xpg1 — Xa) (3.15)
and

Uikt = (X3 — X) - (3.16)
The quality measure for each subtriangle is

r 40k

dj

= . 3.17
RIS A U 817)
Since the quality for single sub-triangle doesn’t indicate the quality of quadrilaterals directly,
we choose the min norm of these four qualities
qp™ = min(qg, 1, G5, ¢3) (3.18)
to express the quality of quadrilateral elements. The quadrilateral is a square only if all the four
qualities have a maximum value of one, in other words qgi” is equal to one. Figure 3.7 gives
the contour plots showing the level sets of qg”'” for a group of quadrilaterals in which the top
node is adjustable and other nodes are fixed, respectively.
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Figure 3.7: Level sets of qg"" for a group of quadrilaterals.
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3.2.2 Objective function
Triangular meshes

Given the quality measure for triangular elements, we can derive the objective function for a
triangular mesh. Consider a local sub-mesh, we formulate the composite objective function for
local sub-mesh optimization. In each local sub-mesh optimization step, the considered node is
set to be adjustable while other nodes are fixed. Let /V; be an adjustable node connected to its
surrounding elements, which construct the local sub-mesh. The objective function for the single
triangular element in the sub-mesh is derived from the quality measure. It is expressed as

¢ (%) = q5(x) . (3.19)

where qﬁ]T(X) is the objective function associated to the j** element in the local sub-mesh. In
order to move /V; so that the quality of the worst shaped element in the sub-mesh is increased as
much as possible, we utilize the minimum value in the sub-mesh as objective function, which
is expressed as

®T(x) = min (o7 (X)), (3.20)

1<j<n "/

where n is the total number of triangles in the local sub-mesh. To illustrate the level sets of this
objective function, an example is given in Figure 3.8. The shaded region in Figure 3.8 is the
feasible region, which is the set of possible locations of the adjustable node N; so that all the
elements connected to the node NV, in the sub-mesh are valid. Figure 3.9 illustrates the level sets.
It can be observed that the level sets are non-convex if the adjustable node is placed outside the
feasible region. Due to this fact, the gradient based optimization techniques such as the steepest
descent method are not guaranteed to find the global maximum value if the starting adjustable
node lies outside the feasible region.

N
b

Figure 3.8: A sub-mesh with the adjustable node N;. The shaded region is the feasible region.
Left: high quality mesh; Middle: poor quality mesh; Right: invalid mesh.
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Figure 3.9: The level sets for the objective function ®7'(x). Left: contour representation; Right:
3D representation.

Quadrilateral meshes

Taking into account the quadrilateral @), we assume that N; is the adjustable node while the
other three nodes are fixed and x is the position of N;. Then the quality for the sub-triangle 75, »

1S
4040

ivo = : 3.21
2 \litoivs|? + [liv2,it1]? ( )

Notice that x is absent in this expression, in other words, the node /V; doesn’t have an effect on
the quality of the triangle 7}, ,. Actually, the possible movement of N; only affects three other
triangles which are associated with NV;, so the objective function for quadrilateral element () is
formulated as

¢9(x) = min(qf (x), 711 (X), 47 y5(X)) - (3.22)

Now, we formulate the composite objective function for local sub-mesh optimization. In each
local sub-mesh optimization step, the considered node is set to be adjustable while the other
nodes are fixed. Let /V; be an adjustable node connected to its surrounding elements, which
construct the local sub-mesh. In order to move N;, so that the quality of the worst shaped
element in the sub-mesh is increased as much as possible, the objective function for local sub-
mesh is expressed as

d9(x) = min (¢%(x)) . (3.23)

1<j<n "/
Combining Equations (3.22) and (3.23) yields the alternative form
Qx) = mi r
®¥(x) = min (¢;(x), (3.24)
where n is the number of quadrilaterals in the local sub-mesh, j is the global index of the sub-
triangle associated with the adjustable node in the sub-mesh and ¢ (x) is the quality of the jth

sub-triangle. Figure 3.10 shows an example of a sub-mesh and its feasible region. The level
sets of the objective function are illustrated in Figure 3.11.
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Figure 3.10: A sub-mesh with the adjustable node ;. The shaded region is the feasible region.
Left: high quality mesh; Middle: poor quality mesh; Right: invalid mesh.
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Figure 3.11: The level sets for the objective function ®@(x). Left: contour representation; Right:
3D representation.
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3.3 Modified objective functions

It is known that the level sets of the objective function must be convex over the entire domain
if we take the objective function for both mesh untangling and smoothing. In this section, we
propose modified objective functions by introducing o in the original objective functions to
satisfy the above condition.

3.3.1 Triangular meshes

For triangular meshes the new objective function is expressed as

0T (x) = ér;ignm &%), (3.25)
with . .
€7 = IO 1G001 = 0,09 + 500,
The term o;(X) in equation (3.26) was introduced by Freitag (2001) for untangling. The reason
why we take the term o;(x) into consideration is that the level sets of minimum o;(x) are
convex outside the feasible region. Note that ¢5(x) differs from o;(x) by a positive coefficient
in equation (3.10), so they have the same sign. Both of their minima are positive inside the
feasible region and negative outside the feasible region, so ©7(x) takes the minimum of the
term ¢5(x) inside the feasible region and the minimum of the term o;(x) outside the feasible
region, respectively. Since both, the minimum of ¢£(x) and the minimum of o;(x) become zero
on the boundary of the feasible region, ©7(x) is continuous over the boundary of the feasible
region. Considering that the level sets of the minimum ¢5(x) inside of the feasible region and
the level sets of the minimum o (x) outside of the feasible region are both convex, the level sets
of the new objective function ©7 (x) are convex in the entire domain.

(3.26)

The level sets for the function ©7(x) are shown in Figure 3.12. Since the level sets are
convex, regardless of the location of the adjustable node, the objective function ©7(x) can be
used to untangle and smooth a tangled mesh.

15

0.5}

3,

Figure 3.12: The level sets for the new objective function ©7 (x). Left: contour representation;
Right: 3D representation.
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3.3.2 Quadrilateral meshes

Following the same procedure as described in Section 3.3.1, we obtain the modified objective
function for quadrilateral meshes:

O%x) = min £2(x), (3.27)

where i ;
ng(X) _ o (X)| + ’q]' (X) ’2_ a;j(X) + q; (X)

and n is the number of quadrilaterals in the local sub-mesh. As can be observed from Fig-

ure 3.13, the level sets of the function ©(x) is convex in the whole domain. The convexity of

the level sets enable the ability of mesh untangling for quadrilateral meshes.

(3.28)

15

0.5}
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Figure 3.13: The level sets for the new objective function ©9(x). Left: contour representation;
Right: 3D representation.

3.3.3 Mixed meshes

To optimize a mixed triangular and quadrilateral mesh, the objective functions for these two
different element types have to be normalized to work together, in other words, the objective
functions should not over-emphasize any of the element types. Since ¢/ (x) and gf(x) are both
normalized functions, the objective function for mixed meshes can be constructed by ¢/ (x) and
£7(%)

OM(x) = _ min (£ (x),6(x), (3.29)

1<i<m,1<;j<3n,

where m is the number of triangles and » is the number of quadrilaterals in the sub-mesh.
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3.4 Alternative objective function

Alternatively, the objective function can be constructed with the help of an increasing function
proposed by Escobar et al. (2005, 2006, 2003). Using the idea, the modified objective function
is constructed by substituting o with an increasing function A(c), which is expressed as

ho) = %(0 V1), (3.30)

where ¢ is a relatively small value compared to . Employing the inverted form of equa-
tion (3.8), the modified objective function for the j element is then written as

1SHHIZ

X)) = —————. 3.31
77]( ) o+ \/m ( )
Consequently, the corresponding objective function for local sub-mesh is defined as
LX) => i) . (332
j=1

Note that the parameter ¢ in equation (3.31) affects the optimal solution while minimizing the
objective function. Hence, during the optimization process, the parameter ¢ has to be set as zero
once the local sub-mesh is untangled.

3.5 Combined Laplacian and optimization based smoothing for non-confor ming
mesh

Optimization based smoothing is effective and robust for mesh optimization, however, solv-
ing optimization problems can be time consuming. On the other hand, Laplacian smoothing is
much faster since no optimization problem is involved in this technique, but it can not guar-
antee the improvement of the mesh quality. Therefore, the combination of Laplacian- and
optimization-based smoothing can achieve a compromise between mesh quality and compu-
tational costs (Canann et al., 1998; Chen et al., 2003; Freitag, 1997). In this procedure, a
threshold value is predefined. “Smart” Laplacian smoothing is performed in the first step. If
the mesh quality of the smoothed mesh exceeds the threshold value, the smoothing procedure
is terminated; otherwise, the optimization based smoothing is activated.

In the current work, hanging node based, hierarchical mesh refinement technique is incorpo-
rated with reference to adaptive remeshing. Hence, corresponding mesh smoothing techniques
need to be developed. In this section, Laplacian smoothing and optimization based smoothing
are modified and discussed, in particular for non-conforming meshes.

3.5.1 Modlified Laplacian smoothing

The original Laplacian smoothing method (Herrmann and ASCE, 1976) repositions each node
by averaging the coordinates of its neighboring nodes, which is connected to the considered
node (see Figure 3.14):

1 n
==3"x, 3.33
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b— & O

Figure 3.14: Original Laplacian smoothing.

where i ranges over all moveable nodes, j is the jth node connected to the considered node ¢
and n is the total number of the neighboring nodes connected to the node .

For non-conforming meshes, the original Laplacian smoothing can not be used directly, due
to the constrained hanging nodes and the different refinement levels of the elements. In the
modified Laplacian smoothing scheme for non-conforming meshes, the neighboring node is
replaced with the midpoint on the edge if the edge belongs to an element in higher refinement
levels (see Figure 3.15).

Figure 3.15: Modified Laplacian smoothing for the elements in different refinement levels.

3.5.2 Optimization based smoothing

The basic idea of the mesh optimization scheme is, to move the considered node so that the
mesh quality is improved. In the case of non-conforming meshes, the construction of the sub-
mesh is tricky since the degrees of freedom of the hanging nodes are not independent. The
movement of the considered node has effect on some elements which are not connected to the
considered node directly. Figure 3.16 shows the construction of the sub-mesh for possible mesh
configurations.

3.6 Mesh optimization algorithm

The optimization approach is performed in an iterative Gauss-Seidel-like scheme by sweep-
ing over all the adjustable nodes iteratively until convergence is achieved. In each step, only
one node is adjustable while the other nodes are fixed. The local optimization approach finds
the position x* by maximizing the new objective function ©(x), which is a continuous and
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T

Figure 3.16: Optimization based smoothing for the elements in different refinement levels. The
elements, affected by the movement of the corresponding point are marked.

non-smooth composite function or minimizing the objective function I'(x) which is a smooth
function. The steepest descent method and the conjugate gradient method are employed to solve
the optimization problems based on the objective functions ©(x) and I'(x), respectively.

3.6.1 The steepest descent method

The steepest descent method is used to solve the non-smooth optimization problem. Firstly, the
gradients g,(x) are calculated for each sub-triangle associated with the adjustable node. Note
that &;(x) is not differentiable when &;(x) = 0. In this case, the gradients of ¢;(x) are taken as
the pseudo-gradients.

When the adjustable node lies on the smooth surface, the search direction g is computed by

BV TS
9=3 (Hga(X)H * Hgb(x)u) ’ (3.34

where the indices a and b indicate the two lowest quality elements in the sub-mesh. If the
adjustable node lies on non-smooth manifold, the search direction g is determined by finding
the shortest vector inside the Convex Hull (9,(X)), where g,(X) are the possible gradients
around the node (Burke et al., 2005; Freitag and Plassmann, 2000).

Secondly, the step length ~ is determined by predicting the position at which the worst quality
element will change (Canann et al., 1998), in other words, the worst quality element should be
still the worst one after the movement of the adjustable node, which can be described by

gmin(XJr) < §j<x+) : (3-35)

With the help of the first order Taylor series approximation for the function associated with each
element

§(XT) =&(x+19) = §(X) +19-9;, (3.36)
the step length is limited by
§(X) = Emin(%)
(9-9-9-9;)
Using the constraint condition, the upper limit of ~ is taken as the initial step length. If the
initial step length is not accepted, then it is halved recursively until a step length is accepted.

(3.37)

S
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3.6.2 The conjugate gradient method

Since the objective function I'(x) is smooth, the Hestenes-Stiefel conjugate gradient method is
employed in this work. At the first iteration, the gradient direction is used

A(Xo) = 9(Xo) - (3.38)
In the consequent iterations, the conjugate gradient is computed by

A(Xn) = 9(Xn) + B (Xn-1) , (3.39)

where

5, — (% =Gy
AT (9, -9, )
To determine the step length, a line search approach is implemented in the current work. In
this approach, besides the current position, one point with higher value and one point with
lower value need to be found along the search direction. Then the value is interpolated using
quadratic polynomial to find the minimum.

(3.40)

3.7 Examples

To evaluate the performance of our mesh optimization algorithm, we will present several exam-
ples to test our method based on the objective function ©(x). After that, a numerical example
will be given to compare these two objective functions ©(x) and I'(x) discussed in this chapter.
Five quality metrics are used to evaluate the mesh quality.

Qmin assesses the quality of the poorest shaped element and @), is the average value. They
are expressed as

and
1 n
avg = — i 3.42
Qung = — ; Q (342)

where n is the total number of the elements, (); represents the element quality for triangles and
the minimum quality of the four sub-triangles in a quadrilateral mesh, respectively. For ideal
triangular and quadrilateral elements, @,,,;,, and @, would be 1. To evaluate how tangled an
invalid mesh is, o; is used to replace @); when an element is invalid.

Considering each angle of an element, we can detect the minimum angle «,,,;,, and maximum
angle «,,,., in the whole mesh. They have the ideal value of 60° for triangular meshes and the
ideal value of 90° for quadrilateral mesh.

The aspect ratio is the ratio of the longest edge to the shortest edge in one element. We
compute the aspect ratios for each element and take the maximum value as the maximum aspect
ratio r,,.., Which has the ideal value of 1.
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3.7.1 Example |

The first example (Case 1) using a triangular mesh is shown in Figure 3.17. Figure 3.17 (Upper
left) shows the initial mesh whose elements are tangled. Figure 3.17 (Upper middle)-(Lower
right) show the smoothed meshes after 1, 2, 3, 4 and 5 iterations. Here, N, N,q and N;,,
indicate the number of elements, the number of nodes and the number of invalid elements,
respectively. It can be observed that the number of invalid elements decreases very rapidly.
Only five iterations are needed for untangling in this case.

Figure 3.17: Case 1. Upper left: initial tangled mesh (N, = 3952, N,,4 = 2119, N;,, = 1143);
Upper middle: smoothed mesh after the 1°¢ iteration (IV;,,, = 553); Upper right: the 2"¢ iteration
(Ninw = 191); Lower left: the 37 iteration (V;,,, = 37); Lower middle: the 4" iteration (V;,,, =
3); Lower right: the 5" iteration (V;,, = 0).

3.7.2 Example Il

Using a quadrilateral mesh, the second example (Case 2) is shown in Figure 3.18. Figure 3.18 (Up-
per left) shows the initial mesh whose elements are tangled. Figure 3.18 (Upper middle)-(Lower
right) show the smoothed meshes after 1, 3, 5, 10 and 20 iterations. The mesh quality metrics
(minimum element quality, average element quality, minimum angle, maximum angle and max-
imum aspect ratio) for these meshes are listed in Table 3.1. It can be seen that the mesh is untan-
gled after only a few iterations, in the mean while, the mesh quality is significantly improved.
In particular, the minimum element quality 0.706 and the average element quality 0.807 show
that both, the worst element and overall mesh qualities after smoothing are improved.
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Figure 3.18: Case 2. Upper left: initial tangled mesh; Upper middle: smoothed mesh after the
1%t iteration; Upper right: the 37 iteration; Lower left: the 5" fifth iteration; Lower middle: the

10" iteration; Lower right: the 20" iteration.

metric | initial mesh smoothed mesh after several iterations

1 3 5 10 20
Qmin -45.869 -8.040 -0.270 -0.001 0.389 0.706
Qavg -1.368 -0.197 0.490 0.615 0.768 0.807
Qmim, 0.026 0.062 0.088 0.060 | 27.339 | 46.661
Oz 359.868 359.938 | 359.224 | 359.940 | 154.546 | 134.620
Trma 24,578 1366.212 | 1791.391 | 892.078 | 3.835 2.946

Table 3.1: Case 2. Mesh qualities for initial mesh and smoothed mesh.
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3.7.3 Example 11l

In Case 3, we compare our method with the Laplacian method and the “smart” Laplacian
method. The initial mesh and smoothed meshes are presented in Figure 3.19. We observe that
the smoothed mesh produced by the Laplacian method has many invalid elements. The mesh,
created by the new method is much better than the initial mesh and better than the smoothed
meshes generated by the two other methods. The mesh quality metrics are shown in Table 3.2.
The “smart” Laplacian method also produces some invalid elements although the average qual-
ity is good. In Figure 3.20, we show the number of invalid elements after each iteration step. The
invalid elements are eliminated after five iterations with our new method. Although the num-
ber of invalid elements decreases more rapidly at the beginning while using the Laplacian and
“smart” Laplacian methods, the invalid elements can’t vanish completely at later stages. The
number of invalid elements even increases after a few iterations using the Laplacian method.

7 {
i N W
7 NNy
I 1 OGN 7, o=
ez NN =
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Ilff//////f”””/‘?” \‘\\“‘\\\\\&\\\\\ III%////// =
Ml i

Wyr77%
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Figure 3.19: Case 3. Upper left: initial mesh; Upper right: Laplacian; Lower left: “smart”
Laplacian; Lower right: new method.

metric | initial mesh | Laplacian | “smart” Laplacian | new method
Qmin -20.535 -11.066 -0.421 0.358
Qavg -0.758 -0.0355 0.547 0.535
Cmin 0.011 3.154 1.113 39.068
Crnaz 359.989 356.429 195.541 150.838
T'maz 91.741 112.025 15.012 5.380

Table 3.2: Case 3. Mesh qualities for the initial mesh and the smoothed meshes.
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Figure 3.20: Case 3. Number of invalid elements inside the mesh after each iteration.
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3.7.4 Example IV

The mesh quality distributions for Case 4 are shown in Figure 3.21. Note that there are still
some badly shaped elements inside the smoothed meshes created by Laplacian method and
“smart” Laplacian method. An overall high quality mesh is obtained with the new method
(Figure 3.21 (Lower right)). In Figure 3.22, we show the convergence history for 50 iterations in
terms of @),,.;,. It can be seen that Laplacian smoothing performs well at early stages, however,
it fails to achieve an optimized mesh at later stages.

Mesh quality
(Ave. Crit.: 0%)
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
 +6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

Figure 3.21: Case 4. Upper left: initial mesh; Upper right: Laplacian; Lower left: “smart”
Laplacian; Lower right: new method.
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Figure 3.22: Case 4. Convergence history.
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3.7.5 Example V

In the fifth case, the mesh quality distributions () for the initial mesh and the smoothed meshes
are shown in Figure 3.23. In Figure 3.23 (Upper right and Lower left), a bad quality element
is indicated by yellow color. In Figure 3.23 (Lower right), we note that this element’s quality
is improved. The percentage of mesh quality distributions is illustrated in Figure 3.24, where
the percentage of mesh quality is computed with the number of elements inside an interval of
size 0.05. As it can be seen, using the optimization based smoothing, all the elements’ quality
locates at the interval between 0.8 and 1, which is nearly optimal. The mesh quality metrics are
shown in Table 3.3.

Mesh quality
(Ave. Crit.: 0%)
+1.000e+00
+8.333e-01
+6.667e-01
+5.000e-01
~ +3.333e-01
+1.667e-01
+2.980e-08
-1.667e-01
-3.333e-01
-5.000e-01
-6.667e-01
-8.333e-01
-1.000e+00

Figure 3.23: Case 5. Upper left: initial mesh; Upper right: Laplacian; Lower left: “smart”
Laplacian; Lower right: new method.

metric | initial mesh | Laplacian | “smart” Laplacian | new method
Qmin -0.946 0.579 0.533 0.820
Qavg 0.596 0.907 0.902 0.868
Cmin 3.433 45511 46.313 55.370
Cmaz 356.493 144.613 147.505 124.698
T'maz 13.328 2.381 2.434 2.314

Table 3.3: Case 5. Mesh quality for the initial mesh and the smoothed mesh.

3.7.6 Example VI

Using Case 1 again, the sixth example is given to compare the objective functions ©(x) and
I['(x). A group of tangled meshes are generated by perturbing interior nodes randomly. Table 3.4
shows the comparison on mesh untangling. Here, N,,,, is the number of invalid elements in the
initial tangled mesh, I,,,.; is the number of iterations which are required to untangle the mesh. As
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Figure 3.24: Case 5. The percentage of mesh quality distributions. Here, the percentage of
mesh quality is computed with the number of elements inside an interval of size 0.05.

can be seen, the mesh is untangled after only a few iterations by both of the objective functions.
The computation costs are also very similar (only a few seconds).

The minimum and average element qualities of the smoothed meshes are shown in Table 3.5.
It can be seen that the worst element quality of the smoothed mesh in the objective function ©(x)
is higher than that in the objective function I"(x). In contrast, the average element quality in the
objective function ©(x) is less than that in the objective function I'(x). The reason is that the
objective function ©(x) is designed to improve the worst element quality while the objective
function I'(x) is designed to improve the average element quality.

Niny | Lunt(©(x)) | ime(s)(O(X)) | Luni(I'(x)) | time(s)(T'(x))
155 3 1.012 2 0.987
302 3 1.282 2 1.157
567 4 1.593 3 1.458
1143 5 1.972 4 1.816

Table 3.4: Comparison on mesh untangling.

3.7.7 Example VII

Finally, the last example is presented, in which the distorted mesh is obtained from an extrusion
simulation. An element is degenerated in the distorted mesh due to the large deformations
during the extrusion simulation. Figure 3.25 shows the distorted mesh and smoothed mesh.
The degenerated element in the distorted mesh is indicated by blue color. It can be seen that
the quality of this element is significantly improved by our smoothing method. Besides the
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Ninv Qmm(@(x)) Qavg(@(x)) Qmm<r<x)) Qavg (F<X))
155 0.859 0.958 0.736 0.982
302 0.855 0.958 0.748 0.982
567 0.852 0.953 0.750 0.981
1143 0.855 0.953 0.744 0.982

Table 3.5: Comparison on mesh qualities after fifteen smoothing iterations.

degenerated element, we also note that the qualities of many elements whose color is yellow in
the distorted mesh are improved by mesh smoothing.

Figure 3.25: Mesh smoothing for extrusion simulation. Left: distorted mesh; Right: smoothed
mesh.

3.8 Conclusions

In this chapter, an optimization based mesh smoothing scheme based on the mesh quality mea-
sure, derived from the condition number of the Jacobian matrix, has been presented to optimize
a mesh by moving nodes. Using the steepest descent method, untangling and smoothing is car-
ried out with the new objective function, simultaneously. Numerical experiments demonstrate
that the proposed mesh optimization approach is effective for both, invalid and valid meshes.
The comparison between the current objective function and alternative objective functions pro-
posed by Escobar et al. (2003) validates the robustness on improvement of the worst quality
element using the current objective function.

Although the smoothing techniques discussed in this chapter are focused on improvement
of mesh quality, it can be extended to the field of r-adaptivity which is also called adaptive
moving mesh (e.g., Branets and Carey, 2004; Kanchi and Masud, 2007; Miehe and Gurses,
2007; Nordlund et al., 1998; Oden et al., 1986; Tan and Huang, 2008), which moves nodes to
achieve the desired element size instead of an optimal mesh quality. In this case, a size measure
needs to be incorporated inside the objective function for optimization. Furthermore, one can
combine a mesh quality measure and a size measure to achieve a compromise, which is an
interesting topic in adaptive finite element analysis.
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Chapter 4

Adaptive remeshing for metal forming smulations

Abstract — Finite element simulations of metal forming processes often involve mesh distortion due to
the material flow. From a practical point of view, static mesh density distribution lacks efficiency for
stress concentration or strain localization problems. Due to this fact, an adaptive remeshing procedure is
essential for the simulation of metal forming processes. In the current work, a fully automatic remeshing
strategy is presented. To achieve a prescribed accuracy, an a posteriori error estimator controls the
hr-adaptivity procedure. After each remeshing step, the state variables and boundary conditions are
transferred from the old to the new mesh. Several examples of metal forming simulations are presented
to demonstrate the performance of the adaptive remeshing scheme.

Keywords: adaptive remeshing, error estimation, mesh size map, data transfer, metal forming.

4.1 Introduction

Manufacturing processes, such as metal forming and cutting, play an important role in modern
industry. Traditionally, a great deal of experience has been accumulated by using the trial
and error process. However, the mechanical and thermal properties of the material and the
mechanics of metal forming processes are not fully understood yet. The cost of a trial and
error process can be very expensive due to the high cost of prototypes and experiments. In
addition, the requirement of a lot of trials and errors leads to long design periods. Therefore,
mathematical modelling tools such as the finite element method have been developed to reduce
the number of prototypes and design iterations. In the past decade, the computational power of
modern computers has been significantly improved, so that the finite element method has been
applied to the simulation of manufacturing processes by more and more industrial companies.

In the context of the finite element method, a deformable body is discretized by a mesh,
which is defined by a finite number of nodes and elements. The solution is approximated and
interpolated by the shape functions of elements inside the mesh. The geometrical shape of an
element, which can be evaluated by a mesh quality measure, certainly, has effect on its shape
function. Although there is no direct relationship between solution accuracy and mesh quality
because solution accuracy highly depends on the problem being analyzed, it is well known that
severely distorted meshes reduce the solution accuracy (Oddy et al., 1988). In the Lagrangian
formulation, the mesh of a workpiece evolves to represent the material flow. During the sim-
ulation of manufacturing processes, the mesh often undergoes large deformation, which could
result in large discretization errors, numerical difficulties and even in failure of the simulation.
Therefore, remeshing techniques are required to update distorted meshes frequently for such
large deformation problems. In addition, strain localization and stress concentration often oc-
cur in the simulation of manufacturing processes. A small local element size is required to
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predict the solution in the localization area in which the solution gradient is very high. Given
a prescribed accuracy, obviously, uniform mesh density lacks efficiency. Thus, an adaptive
remeshing technique is required to generate graded meshes and improve computational effi-
ciency within a certain accuracy.

An adaptive remeshing strategy includes three main factors:

1. an error estimator for the assessment of the accuracy of the finite element solution,
2. amesh generator for the generation of a new mesh and

3. a mapping scheme which transfers the solution from the old to the new mesh.

In addition, a mesh size optimization scheme is required to convert the estimated error map to
a new mesh size map, which needs to be imported to a mesh generator.

In the past twenty years, adaptive remeshing strategies have been investigated and widely
applied to various problems. A goal oriented adaptivity strategy based on point-wise error
representation was proposed by Diez et al. (2007). Baeker et al. (2002); Diez et al. (2000);
Huerta and Diez (2000); Huerta et al. (1999); Khoei et al. (2005); Peric et al. (1994); Selman
et al. (1997) and Khoei et al. (2007) applied adaptive remeshing for strain localization prob-
lems. Several adaptive remeshing strategies for fracture and damage problems were introduced
by Borouchaki et al. (2005); Bouchard et al. (2003, 2000); Espinosa et al. (1998); Jr. and Owen
(2001); Murthy and Mukhopadhyay (2000); Rodriguez-Ferran and Huerta (2000); Rodriguez-
Ferran et al. (2004); Secchi et al. (2007) and Khoei et al. (2008). On the application to pro-
duction processes, such as forging, extrusion, deep drawing, welding and so on, a great deal of
work has been presented (e.g., Boussetta et al., 2006; Fernandes and Martins, 2007; Gautham
et al., 2003; Hamide et al., 2008; Hyun and Lindgren, 2004; Khoei and Lewis, 2002, 1999;
Kubli and Reissner, 1995; Kwak et al., 2002; Kwak and Im, 2002; Lee et al., 2007; Lewis and
Khoei, 2001; Li et al., 2000; Owen and Jr., 1999; Park and Yang, 2006; PavanaChand and Kr-
ishnaKumar, 1998; Peric et al., 1999; Pires et al., 2004; Ravindranath and Kumar, 2000; Rieger
and Wriggers, 2004; Sheng et al., 2004; Xing et al., 1999).

In this chapter, we investigate and discuss each of the factors in adaptive remeshing and
present the applications of adaptive remeshing strategy in several metal forming simulations.
The chapter is organized as follows: Recovery techniques are briefly reviewed in §4.2. Several
error estimators are given in §4.3. In §4.4, the optimization of the mesh size map is discussed.
The mapping algorithms are introduced in §4.5. In §4.6, the examples of extrusion, cutting,
forging and rolling are simulated to validate the proposed adaptive remeshing strategy. For large
deformation problems with damage, an adaptive remeshing with damaged element elimination
procedure is proposed in §4.7. The conclusions are given in the last section.
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4.2 Error estimation

In the current work, two recovery based error estimation techniques are implemented to obtain
the improved finite element solution.

4.2.1 Superconvergent patch recovery (SPR)

The original superconvergent patch recovery method (SPR) is based on a least-squares fit of
derivatives at the optimal sampling points. In this work, integration points are chosen as sam-
pling points. The node patch (see Figure 4.1) is defined for the SPR method by the union of
elements surrounding the node in question.

O recovery node

" . .
’ m sampling point

Figure 4.1: Node patch.

Let o* represent any component of the recovered element stress field. This is related to the
set s, = (s1, 9, . ..) of corresponding nodal values at the mesh nodes via the usual ansatz

0" =hy - S" . (4.1)

in terms of the array h,, = (hy, ho, . ..) of element shape functions. The set s,, is obtained by
assuming that o* is given by an order p polynomial expansion over a node patch, i.e.,

* *

o' =0,=p-a, (4.2)

where p is an array consisting of the terms of an order p polynomial and a is a set of unknown
parameters. In the case of a three-node triangular elements, for example, we have

p=(1,2y) (4.3)
and
a= (ala az, a3) : (44)
Then
o, = ap + axx + azy (4.5)

follows. The unknown parameters a are determined by a least square fit to a set of sample
points at which the stress component o, obtained from the finite-element solution, is known to
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be superconvergent or at least highly accurate. The least-squares fit is based on minimizing the
objective function

f(a) = Z lon (i, yi) — 0;(331'7%”2 3 (4.6)

with n the number of sampling points and (x1, y1), (22, ¥2), - . . the coordinates of these points.
Extremization of f(a) yields the linear system

Aa=b, 4.7)

with .
A = p(z;,y:) @ plai, ;) (4.8)

and il
b= on(zi, )P, ) (4.9)

i1

4.2.2 Recovery method based on local extrapolation (BF)

With the help of 2 x 2 integration points at one quadrilateral element, the recovered solution
field can be obtained by using local extrapolation (Hinton and Campbell, 1974). In the case of
a linear triangular element, one integration point is not sufficient for local extrapolation. The
average derivative at the midpoint of the common edge of neighboring elements in structured
mesh was shown to be superconvergent by Levine (1985). Hence local extrapolation can be
realized by using such midpoints. In practice, unstructured meshes are usually employed instead
of structured mesh. Therefore, the corresponding optimal point for unstructured meshes has to
be investigated. The details are referred to Chapter 1. Given the best-fit point for unstructured
meshes, we consider the element patch as given in Figure 4.2.

O recovery node
m best-fit point

9 '
.

Figure 4.2: Element patch for local extrapolation.

The recovery procedure based on local extrapolation is summarized as follows:
1. average the derivatives at the best-fit point,
2. extrapolate these three superconvergent values to the nodes and

3. calculate the average value of the overlapping recovered solutions at the nodes.
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4.3 A posteriori error estimation

In the category of recovery based error estimation, the discretization error of finite element
solution is evaluated by comparing the finite element solution and the recovered solution. In
the past 20 years several recovery based error estimators have been proposed (e.g., Gallimard
et al., 1996; Lee and Bathe, 1994; Li and Bettess, 1997; Peric et al., 1994; Zienkiewicz et al.,
1988; Zienkiewicz and Zhu, 1987, 1992a,b). For linear elasticity problems, one can simply use
the derivatives of displacement or stresses to evaluate the discretization error (Lee and Bathe,
1994; Zienkiewicz and Zhu, 1992a,b, e.g.,). In the case of nonlinear plasticity problems, it is
much more sophisticated since the error estimation for plasticity problems is highly problem
dependent (Li and Bettess, 1997). Here, it is recommended to design various error estimators
for various simulation purposes. In the following, we will review possible quantities to be used
in context of error estimation.

4.3.1 The incremental energy (EIE)

The error estimator based on the incremental energy was proposed by Boroomand and Zienkiewicz
(1999). This error estimator is based on the increment of recovered stresses and recovered
strains. The incremental energy norm is defined as

1/2
lello = </Q (0" — oM)(Ac* — AeM)| dQ> | (4.10)

where o and o" are the recovered stresses and the finite element approximation of stresses,
respectively. Ae and A" are the recovered incremental strains and the finite element approxi-
mation of strains, respectively. In the n** increment the above norm may be written as

1/2
lella = ( [ Nz = otyiaci - achy d@) | (a.11)
Q
where
Aeg;, = € —¢€_4
m m [ 4,12
Aeh = gh—¢ch | (4.12)

Peric et al. (1994) proposed a similar error estimator with the plastic strain increment instead of
the strain.

4.3.2 The incremental strain error (EIS)

Similar to the error estimator based on energy norm, we can use an error estimator which em-
phasizes the discretization error in strain rate. The error in the n'* incremental step is expressed
as follows:

1/2
lello = (/Q(As;; Ay dQ) (4.13)

where A’ is the finite element approximation of strain increment in the n** incremental step,
Ac? is the recovered solution of Ac”.
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4.3.3 The equivalent plastic strain error (EEPS)

In the applications to strain localization problems, we note that the strain rate based error esti-
mators show high efficiency in catching shear band when the shear band is being formulated.
However, once the strain rate lowers down, consequent mesh coarsening causes the loss of the
solutions in the formulated shear band. Therefore, a total strain based error estimator needs to
be considered for this special situation. Here, an error estimator based on effective plastic strain
is given by

1/2
lella = ( I dsz) (4.14)

where 5Zp is the finite element approximation of effective plastic strain, €7, is the recovered
solution of &7 .

4.4 Optimization of mesh size map

After the assessment of the discretization error in a finite element solution, the next step in
an adaptive remeshing strategy is to generate an optimized new mesh size map based on the
estimated error. The aim of optimization of mesh size map is to achieve a prescribed solution
accuracy with the least elements.

Let » be the global relative error in a finite element solution, which is defined as

n= ‘”L” (4.15)

Jun]|
where ||uy]| is computed with the finite element solution. Then, the local relative error in the
element ¢ is expressed as

lell:
Jun|

where ||e||; is the elemental error in the element .

ni = | (4.16)

To describe the local mesh size optimization strategy, we inherit the idea about the local
remeshing indicator &, which was proposed by Bugeda (2002) and rewrite the indicator in the
following form

&=L (4.17)
npi

where 7, is the prescribed relative error in element :. Note that the current element size fits the
expected element size if £; = 1, refinement is required if £; > 1, and coarsening is required if
& < 1. Given a global prescribed error, one needs a criterion to determine the distribution of
the prescribed error in the mesh. Several remeshing strategies have been proposed in the past 20
years (e.g., Boroomand and Zienkiewicz, 1999; Bugeda, 2002; Bugeda and Onate, 1993; Diez
et al., 2000; Diez and Huerta, 1999; Li and Bettess, 1995; Li et al., 1995; Zienkiewicz and Zhu,
1987). Generally, those strategies can be classified into two categories:
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1. uniform elemental error distribution (e.g., Boroomand and Zienkiewicz, 1999; Fuen-
mayor and Oliver, 1996; Li and Bettess, 1995; Li et al., 1995; Zienkiewicz and Zhu,
1987);

2. uniform error density distribution (e.g., Bugeda, 2002; Bugeda and Onate, 1993).

4.4.1 Equal distribution of the elemental error (MDE)

The most popular optimization algorithm of mesh size map is to enforce the error to be equally
distributed between all elements (Zienkiewicz and Zhu, 1987). Let n be the total number of
elements and 7,,, the elemental prescribed relative error. Combining equations (4.15) and (4.16),
the global prescribed relative error is then computed by

" 1/2
M = <Z mf) . (4.18)
=1

Enforcing 7,, to be uniformly distributed on each element, we have

Tlpi = % . (4.19)

Considering Equation (4.17) again, the local remeshing indicator &; can be rewritten as

£ = "if . (4.20)

According to the convergence rate of discretization error, the ratio of the old local element
size to the new local element size is computed by Zienkiewicz and Zhu (1987)

pold ’ 1/p
Tzew - (gl)l/p - <n \/ﬁ) ) (421)
h; Tlp

with p, the polynomial degree of the element interpolating functions. Hence, we obtain the new
element size which is expressed as

R (—”p )l/p . (4.22)
nivn

4.4.2 Constrained computational costs based optimization strategy (MCE)

Although the prescribed error based mesh size optimization strategy has a direct relationship
with the expected solution accuracy, it can lead to high computational costs, if the prescribed
accuracy is not given accordingly. Since for practical metal forming simulations, the material
flow can become more and more complicated during the forming process, a fixed prescribed
accuracy would result in a huge total number of elements. Therefore, from a practical point
of view, constraining the computational costs is also an important issue in adaptive remeshing.
A few approaches have been proposed, to constrain the computational costs by imposing a
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prescribed number of elements, prescribed memory or prescribed CPU time (Boussetta et al.,
2006; Coorevits and Bellenger, 2004).

Given a prescribed accuracy, we can approximate the total number of new elements by us-
ing (Li et al., 1995)

n old \ 2 n N\ 2/p
S5 R

i=1 i=1 Tl

With the imposed number of elements n,,,,, the adjusted prescribed accuracy according to
the prescribed number of elements is expressed as

n p/2
Mimp =77p( . > : (4.24)

Nimp

In addition, in adaptive simulations for large deformation problems, the total number of
remeshing steps is highly dependent on the minimum element size. For example, in the sim-
ulation of an extrusion process, the tool displacement in each remeshing step is suggested to
be less than the minimum element size, otherwise, the mesh could be extremely distorted or
even degenerated. It is known that a large number of mapping steps could result in error in the
mapped solution. Hence the total number of remeshing steps should be restricted by specifying
a minimum element size.

While determining the new mesh density, based on error estimation, we note that the error
could be zero in some regions, where the solution, such as plastic strain, used for error estima-
tion is zero. In this case, the new element size calculated by equation (4.22) is infinite, which
could result in an extremely coarse new mesh and consequently lead to numerical difficulties
in the next time step. Therefore a maximum element size can be imposed to overcome this
problem.

4.5 Mapping algorithm

After each remeshing step, all state variables, such as velocities, stresses, temperatures and
hardening parameters, have to be transferred from the old mesh to the new mesh (e.g., Araujo
et al., 2000; Boroomand and Zienkiewicz, 1999; Cecot, 2007b; Cirak and Ramm, 2000; Fernan-
des and Martins, 2007; Kalhori, 2001; Khoei et al., 2007; Mediavilla et al., 2006; PavanaChand
and KrishnaKumar, 1998; Peric et al., 1996, 1999; Ravindranath and Kumar, 2000). Data trans-
fer is a key issue in an adaptive finite element analysis, since the mapping algorithm directly
affects the initial condition of the next analysis step. Unsuitable mapping algorithms could
cause large errors between the original solution and mapped solution and consequently lead to
an inaccurate final simulation result.

The mapping process consists basically of identifying the element inside the old mesh that
contains the node n of the new mesh and subsequent transfer of the state variables from the old
mesh to the new mesh.
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4.5.1 Element identification

Before transferring the state variables from the old to the new mesh, the old element, which
contains the new point has to be identified. An overall searching algorithm is quite time con-
suming. To overcome this problem, an efficient searching algorithm is required. Selman et al.
(1997) proposed a searching technique by using area-coordinates. Zhao et al. (1999) developed
a searching algorithm specifically for bilinear quadrilateral elements. In the current work, we
use a searching technique which is based on a background grid (Hortig and Svendsen, 2008).
In this method, a background grid with an appropriate number of elements is built to classify
the old elements. Thus, the searching is performed within a reduced domain of background
elements instead of the whole domain, which drastically decreases the computational costs on
the searching process.

4.5.2 Data transfer

The state variables, which are available at nodes, can be interpolated directly from the old nodes
to the new nodes. However, the transfer of variables from old gauss points to the new ones is
somehow tricky. In most cases, the state variables in the old mesh are first projected to nodes,
then the values at the new integration points of the new mesh are computed by simple inter-
polation of the old nodal value using the original shape functions (e.g., Araujo et al., 2000;
PavanaChand and KrishnaKumar, 1998; Peric et al., 1996; Ravindranath and Kumar, 2000).
Boroomand and Zienkiewicz (1999) introduced a new mapping strategy in which the state vari-
ables are transferred from the old integration points to the ones directly.

In the field of recovery-based error estimation, a great deal of solution recovery techniques
have been developed to obtain a recovered solution which is supposed to be more accurate than
the original finite element solution. Naturally, these recovery technigques can be also utilized
to improve the finite element solution before mapping it from the old to the new mesh. In the
current work, three recovery techniques are implemented to improve the finite element solution.
These are nodal averaging (NA), superconvergent patch recovery (SPR) and best-fit point based
extrapolation (BF) techniques.

The procedure of data transfer is summarized as follows:

1. identify the old element, which contains the new node or integration point,

2. for the state variables at integration points, smooth the original state variables to obtain
the recovered values at nodes by using recovery techniques,

3. compute the local coordinates of the new nodes,
4. transfer the recovered nodal values from the old mesh to the new mesh, using the shape
functions of the corresponding old elements.
4.6 Metal forming ssimulation

In this section, several examples of adaptive finite element simulations of production processes
are presented. The adaptive remeshing strategy is shown in Figure 4.3. After each calculation
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step, an a posterior error estimator is employed to assess the discretization error. Consequently,
a new mesh is generated by a mesh generator with the help of an optimization algorithm for the
mesh size map. After that, the state variables and boundary conditions are transferred from the
old to the new mesh. Finally, a new finite element model, based on the new mesh is built for the
finite element analysis for the next time step.

1

FE solver <

!

[ Finite element solution ]

A 4

No

Remeshing?

[ Mesh generator}

]

{I\/Iapping prograrrj

Y

Figure 4.3: Workflow of the adaptive finite element simulation procedure (see text for details).
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4.6.1 Extrusion simulation

Extrusion is a manufacturing process, used to produce objects with a fixed cross section (e.g.,
pipes), in which a material is extruded through a die of the desired cross section. Two exam-
ples are presented in this section. The first example is a forward extrusion of aluminum alloy.
The simulation involves severe mesh distortion when the material is extruded through the neck
region. Taking advantage of axis symmetry, the problem is analyzed with an axis symmetric
model (see Figure 4.4). The material behavior is assumed to be linear isotropic hardening.
Element sizes h,,;,, = 1 mmand h,,,, = 5 mm are specified for adaptive remeshing.

P B = B B B B W W W B G

B e

Figure 4.4: The initial mesh and boundary conditions for the forward extrusion process.

Figure 4.5 shows the adapted meshes and the distribution of equivalent plastic strain at differ-
ent punch displacements. It can be seen, that the mesh near the bottom of the container is refined
due to high strains. This is induced by the friction between the material and the container. The
mesh near the neck region is also refined where the material undergoes large deformations. The
distribution of equivalent plastic strain in the 3D representation of the workpiece is shown in
Figure 4.6.
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Figure 4.5: Adapted meshes at displacement of 5, 10, 15 and 20 mm using the EIE error esti-
mator.
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Figure 4.6: Distribution of the equivalent plastic strain in the workpiece.

The meshes before and after remeshing are shown in Figure 4.7. It can be seen, that some
elements near the die in the neck region are highly distorted before remeshing. The mesh
quality is significantly improved by updating the deformed mesh (the worst element quality in
the deformed mesh is 0.1395 and the worst element quality in the updated mesh is 0.5285).
The worst element quality of the meshes before and after remeshing during the whole adaptive
simulation is plotted in Figure 4.8.
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Figure 4.7: Meshes before and after remeshing. Left: before remeshing; Right: after remeshing.
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Figure 4.8: Mesh quality during the adaptive simulation.

Comparison on variouserror estimators

To compare the performance of different error estimators, three different error estimators EEPS,
EIS and EIE are employed to drive the adaptive simulation. Figure 4.9 shows the simulation
results based on different error estimators. It can be observed that the mesh is coarsened after
it goes through the die while using the EIS and EIE error estimator. This is because the stain
rate decreases rapidly after the material passes the die. In contrast, while using the EEPS error
estimator, the mesh density is almost fixed.

Figure 4.10 shows the number of elements during the adaptive simulation. The discretization
errors in the simulation are shown in Figure 4.11.



4.6 Metal forming simulation

PEEQ

(Avg: 75%)
+1.042e+01
+9.555e+00
+8.687e+00
+7.818e+00
+6.949e+00
+6.081e+00
+5.212e+00
+4.343e+00
+3.475e+00
+2.606e+00
+1.737e+00
+8.687e-01
+0.000e+00

PEEQ

(Avg: 75%)
+4.489e+00
+4.115e+00
+3.741e+00
+3.367e+00
+2.993e+00
+2.619e+00
+2.245e+00
+1.870e+00
+1.496e+00
+1.122e+00
+7.482e-01
+3.741e-01
+6.533e-08

PEEQ

(Avg: 75%)
+5.045e+00
+4.624e+00
+4.204e+00
+3.783e+00
+3.363e+00
+2.943e+00
+2.522e+00
+2.102e+00
+1.682e+00
+1.261e+00
+8.408e-01
+4.204e—-01
+3.503e-07

Figure 4.9: Adapted meshes using different error estimators.
Lower: EIE.

Upper: EEPS; Middle:
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Figure 4.10: Number of elements during the adaptive analysis.

20



4.6 Metal forming simulation

EEPS
40 T
S
§ 30
)
>
'E 20
o
10 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
displacement (mm)
EIS
40 T
<)
S 35
S
© 30
)
=
o
® 25
20 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
displacement (mm)
EIE
30 T
S
5 20| :
o .
>
E 10 .
o
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Figure 4.11:

displacement (mm)

Error histories during the adaptive analysis.

99



100 CHAPTER 4

Effect of element type

In order to compare the performance of quadrilateral and triangular meshes for extrusion sim-
ulations, the results, obtained by using a quadrilateral mesh and a triangular mesh are shown
in Figure 4.12. As can be seen in Figure 4.12 and 4.13, the triangular mesh yields unrealistic
high plastic strains at the upper-right corner. In addition, it can be seen in Figure 4.13 that the
triangular mesh results in the zigzags of the lower deformed boundary. Figure 4.14 shows the
discretization error during the adaptive simulation. The number of elements which are used for
the adaptive analysis are plotted in Figure 4.15.
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Figure 4.12: Adapted meshes for extrusion simulation. Upper: quadrilateral mesh; Lower:
triangular mesh.
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Figure 4.13: Comparison on quadrilateral and triangular meshes.
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Figure 4.14: Error histories during the adaptive analysis.
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Figure 4.15: Number of elements during the adaptive analysis.
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The second extrusion example is a backward extrusion. Figure 4.16 shows the initial mesh
and boundary conditions. For the adaptive simulation, the element sizes A,,;,, = 0.8 mm and
hmax = 10 mm are specified. The adapted meshes and the distribution of the equivalent plastic
strain during the process are given in Figure 4.17.
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Figure 4.16: The initial mesh and boundary conditions for backward extrusion simulation.
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Figure 4.17: Adaptive remeshing for backward extrusion simulation.
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4.6.2 Cutting simulation

Metal cutting is one of the most common manufacturing processes, which cuts the material to
achieve the desired geometry. When the cutting tool advances into the workpiece, the workpiece
material is separated into two parts and the chip is formed. Hence, a chip separation criterion
and a mesh separation approach are needed to model the chip formation.

There are two types of chip separation criteria: geometrical and physical (ABAQUS-Manual).
Usually, geometrical criteria are employed for predefined node debonding techniques. The cri-
teria are defined by geometrical parameters, such as the distance between the front node and the
cutting tool. When the distance is less than a prescribed value, the bonded nodes are separated.
Physical criteria are based on the physical behavior of the material, such as critical stress states
and equivalent plastic strain. When the physical parameter exceeds a critical value, material
failure occurs.

Several numerical methods can be used to model the chip formation in finite element sim-
ulation (Xie, 2004). Element elimination techniques eliminate the failure element when the
failure criteria are reached. Node debonding techniques separate the mesh by debonding the
tied nodes, however the path of crack growth has to be predefined. In contrast to node debond-
ing, node splitting techniques separate two neighboring elements by creating new nodes. In the
context of cutting simulation, adaptive remeshing techniques can also be employed to realize
chip formation. The advantage of remeshing techniques is, that no chip separation criterion is
required, the chip is modelled by mesh deformation. Since the material undergoes extremely
large deformations in metal cutting simulations, the distorted mesh has to be updated frequently.

In this work, we employ an adaptive remeshing technique to model the chip formation. The
initial mesh and boundary conditions are shown in Figure 4.18. Johnson-Cook material model
with adiabatic heating is used for the simulation (Hortig and Svendsen, 2008).

Figure 4.18: The initial mesh and boundary conditions for high speed cutting (Hortig and
Svendsen, 2008).
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The results of the adaptive simulation are reported in Figure 4.19. It can be observed that
several shear bands developed in the chip. The mesh is refined with the help of hanging nodes.
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Figure 4.19: Adaptive remeshing for high speed cutting.
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Effect of mesh coar sening

To investigate the effect of mesh coarsening, two groups of simulations are carried out. In the
first group, the mesh is updated completely according to the desired mesh density field. Here,
mesh refinement is performed if the current element size is greater than the desired element size
and mesh coarsening is performed if the current element size is less than the desired element
size. In the second group, the mesh coarsening function in our mesh generation scheme is turned
off. As can be seen in Figure 4.20 (Nel: number of elements; Nnd: number of nodes; Nhnd:
number of hanging nodes), both cases yield a similar temperature distribution, whereas the
second case yields more elements and nodes due to lack of mesh coarsening. Therefore, mesh
coarsening is proven to be helpful to obtain a certain solution accuracy with less computational
costs. In addition, it is of interest to note that the number of hanging nodes in the first case
is higher than that of the second case. One possible reason is, that mesh coarsening makes the
new mesh optimal, the gradient of mesh size is greater than that without mesh coarsening. Thus,
more hanging nodes are required, to handle mesh transition between different mesh sizes.
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Figure 4.20: Effect of mesh coarsening. Left: with coarsening (Nel = 2655, Nnd = 2988, Nhnd
= 492); Right: without coarsening (Nel = 3248, Nnd = 3602, Nhnd = 428).
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Comparison on quadrilateral and triangular meshes

The performance of quadrilateral and triangular meshes for adaptive simulation of metal cutting
is investigated in this part. Figure 4.21 shows the distribution of temperature.
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It can be observed that both, quadrilateral and triangular meshes lead to similar results. The
number of degree of freedom during the adaptive simulation is plotted in Figure 4.22.
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Figure 4.22: Number of degree of freedom during the adaptive simulation.
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The total amount of computational costs for error estimation & mesh generation (ErrorE &
MeshG), searching & mapping and that for the FE solver are illustrated in Figure 4.23.

I quadrilateral mesh
61 | I triangular mesh

04-. -

ErrorE & MeshG Searching & Mapping FE Solver

Figure 4.23: Comparison on computational cost.

It can be seen that, although the number of degrees of freedom in a quadrilateral mesh is
higher than that in a triangular mesh, the CPU time of finite element computation for a quadri-
lateral mesh is less, than that for the triangular mesh. In addition, we note that the procedure of
error estimation and mesh generation for the quadrilateral mesh is faster. This advantage ben-
efits from the hierarchical mesh generation technique, which is much faster than conforming
mesh generation such as advancing front or Delaunay mesh generation techniques. Currently,
two different searching algorithms are employed for quadrilateral and triangular meshes. The
searching algorithm used for the quadrilateral mesh is slower due to the larger searching region,
therefore the computational costs for the quadrilateral mesh is more expensive than that for the
triangular mesh.

Effect of mapping algorithm

Using this metal cutting example, the mapping algorithms based on various recovery techniques
are investigated. Nodal averaging (NA), superconvergent patch recovery (ZZ) and best-fit point
based local extrapolation (BF) techniques are employed to obtain improved solutions before
mapping them from the old to the new mesh. Figure 4.24 shows the distribution of temperature
for two groups of results. The results at cutting tool displacement of 0.61 mm are displayed in
Figure 4.24(a)-(c) and the results at tool displacement of 0.76 mm are shown in Figure 4.24(d)-
(f). These three columns show the results based on the NA (left), ZZ (middle) and BF (right)
mapping algorithms, respectively.
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Figure 4.24: Effect of mapping algorithm. Results at cutting tool displacement of 0.61 mm (a)-
(c) and the results at tool displacement of 0.76 mm (d)-(f). The three columns show the results
based on the NA (left), ZZ (middle) and BF (right) mapping algorithms, respectively.
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As can be observed in Figure 4.24(a)-(c), the development of the second shear band in these
three cases is quite similar. However, it can be seen in Figure 4.24(d), at a later stage, after
about 30 remeshing and mapping steps, the NA mapping algorithm leads to artificial diffusion
of the second shear band. The temperature near the horizontal machined surface also decreases
due to the error in the NA mapping algorithm. In addition, compared to Figure 4.24(e) and (),
the NA algorithm leads to unrealistic high temperature in the upper region of the workpiece. In
Figure 4.24(e), we note that the ZZ mapping algorithm also results in numerical diffusion of the
second shear band, but this algorithm shows a good performance in mapping the solution near
the horizontal boundary. It is of interest to note that the second shear band in Figure 4.24(f) is
the most similar to the second shear band in Figure 4.24(a)-(c), which demonstrates the good
performance of the BF mapping algorithm.

4.6.3 Forging simulation

Forging is a manufacturing process which is used to shape the material by using localized
compressive forces. In this section, we first consider a gear ring forging problem. The geometry
and boundary conditions are shown in Figure 4.25. The material behavior is assumed to be
linear isotropic hardening.

I
E
L, L

Figure 4.25: The initial mesh and boundary conditions for the gear ring forging simulation.

The EIE error estimator is employed to drive the adaptive remeshing. Figure 4.26 shows the
adapted meshes at various stages. At an early stage, the material is compressed. It can be seen
that the mesh near the round corner is refined due to high energy error.
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Figure 4.26: Adaptive remeshing for gear forging simulation.
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At later stages, the material flows towards the right side. The gradient of strain rate is quite
high due to the friction between the die and material flow, therefore the mesh is further refined.
The distribution of the equivalent plastic strain in the workpiece at the final stage is shown in
Figure 4.27. 1t can be observed that the equivalent plastic strain near the rigid tool is very high.
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Figure 4.27: Distribution of equivalent plastic strain in the workpiece.
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Figure 4.28: Accumulated volume loss during the adaptive simulation.

On the other side, the adaptive remeshing procedure results in more elements in contact
zones, which reduces the interference between the mesh and the round rigid tool. Figure 4.28
displays the accumulated loss of volume during the adaptive simulation. It can be seen that
the total loss of volume at the final stage is only 0.161%. The volume loss is related to the
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remeshing steps and element size near the curved die. In general, the more remeshing steps,
the less the volume loss since frequent remeshing makes the adapted mesh optimally match the
curved die. The volume loss can also be decreased by fitting the mesh to the curved die with
smaller elements.

The second forging example is considered, using geometrically complex dies. The simula-
tion involves large plastic strains near the punch and the die. The initial mesh and boundary
conditions are shown in Figure 4.29. The rigid tool moves vertically. The EIS error estimator
is used to determine the adapted mesh density. Figure 4.30 shows the adapted mesh and the
distribution of equivalent plastic strain according to different displacements of the punch. It is
noticed that the mesh in contact with the rigid tool is refined.
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Figure 4.29: The initial mesh and boundary conditions for cold forging simulation.
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Figure 4.30: Adaptive remeshing for cold forging simulation.
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4.6.4 Rolling simulation

Rolling is a manufacturing process used to transform material into a form by rotating rollers.
In this example, rolling of a thick plate is simulated. Due to the symmetry of the model, a half
model is considered for plane strain analysis. The geometry and boundary conditions are shown
in Figure 4.31.

Figure 4.31: The initial mesh and boundary conditions for the rolling simulation.

The material behavior is assumed to be linear isotropic hardening. The roller is rotated
counterclockwise. Coulomb friction is assumed between the roller and the plate. The plate is
imposed by an initial velocity in the z-direction. Then it will be pulled through the roll stand,
by means of friction only.

The EIS error estimator is employed to analyze the discretization error and calculate the op-
timal mesh density for a prescribed accuracy. In the adaptive simulation, the maximum element
Size hyqe = 8 mm and the minimum element size h,,;,, = 0.2 mm are imposed. The adapted
meshes are shown in Figure 4.32. Here, the left column shows the distribution of incremental
strain and the right column shows the distribution of the mesh density. By comparing the distri-
bution of incremental strain and the adapted mesh, we note that the EIS error estimator is very
effective in catching the error in the incremental strain.

The number of elements, used during the adaptive simulation is shown in Figure 4.33. The
discretization errors in the simulation are shown in Figure 4.34. It can be seen that the dis-
cretization error is drastically decreased while the total number of elements is increased at early
stages.
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Figure 4.32: Adaptive remeshing for rolling simulation.
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Figure 4.33: Number of elements during the adaptive analysis.
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Figure 4.34: Error histories during the adaptive analysis.
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4.7 Adaptiveremeshing for large defor mation problem with damage

As discussed in §4.6.2, when material failure takes place, element elimination techniques can be
employed to remove the failure elements. In this section, we discuss the shear failure criteria and
an element elimination scheme. An example of a uniaxial tensile test is presented to demonstrate
the performance of the adaptive remeshing with the additional element elimination procedure.

4.7.1 Shear failure model

The shear failure model (ABAQUS-Manual) is based on the equivalent plastic strain at inte-
gration points. When the equivalent plastic strain exceeds the strain at failure 5‘1}[, the damage
parameter w exceeds 1 and material failure occurs. The corresponding stress components are
set to zero and the material point has no contribution to the elementary stiffness matrix. If all
the material points at an element fail, the element is eliminated from the mesh. The damage
parameter, w , is defined as:

YA
==,
r
where Az’ is an increment of the equivalent plastic strain and Eff is the strain at failure. The

increments of the equivalent plastic strain are summarized over the whole analysis.

w

(4.25)

4.7.2 Damaged element elimination procedure

If failure criteria are met, the damaged elements have to be eliminated in order to define the new
geometry before remeshing takes place. The procedure includes the following steps:

1) Delete the damaged element connectivity;
2) Delete the nodes not connected to the remaining elements;
3) Renumber the nodes and elements and renew the element connectivity.

4.7.3 Tensile test

In this example, a rectangular specimen under plane strain condition is considered. The bottom
of the specimen is fixed and on the top of the specimen a displacement is imposed. Two different
mesh generation schemes are employed to renew the mesh for this example. The results for the
simulation with only refining are shown in Figure 4.35 and the results for a complete remeshing
are shown in 4.36. It can be seen that the damage localizes inside two diagonal shear bands,
then the crack propagates along one of the shear bands until the specimen is broken up. Note
that the orientations of crack propagation in Figure 4.35 and 4.36 are different due to mesh
dependence.
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Figure 4.35: Uniaxial tensile test with adaptive refining (no mesh coarsening takes place).

PEEQ PEEQ
ke, thve. Crit.: 754}
#: B
+ F3l147e-01
- X e
i <P 42 16e-01
My ] +1.30ge-01
15 =l 41 E38=-01
+7 ‘h 41 z8Ee-01
H 13 750=-02
iz "F 4E .64 7a-0Z
+2 ] +2. Ea4e-02
¥4 ‘ﬂg +4 d0de-03
okl
Il
gﬁ!ﬂﬂ
LAY
HE Y
5 v
i ik
i iy
B =]
5 g
e LA
B
- 1A ¥
£ <)
[ Za¥ ﬁb‘f
SR
NN
RS
RORDE
%% "‘1‘ 2
2 (= g o _
K] A IDE: tensile f Expli
ODE: tensile-f§ fExp 1 ,
Blep: Step—
tlep: srep-1 %n?;emef,ép ] z.
e De formed Tad Srale De formad Va

Primary Var: HES
Deformed Var: U  Deformation Seos

Figure 4.36: Uniaxial tensile test with adaptive remeshing (refinement and coarsening applied).



4.8 Conclusions 121

48 Conclusions

An adaptive remeshing strategy for metal forming simulation has been presented in this chapter.
Each of the ingredients including error estimator, mapping algorithm, remeshing technique and
element type in adaptive metal forming simulations have been discussed and evaluated. The
simulations of four types of manufacturing processes such as extrusion, cutting, forging and
rolling have been carried out to validate the proposed adaptive remeshing procedure.

In the applications, bilinear quadrilateral elements seem to be more efficient and robust than
linear triangular elements. In the adaptive simulation of metal cutting, numerical comparison
shows that the mapping algorithm based on local extrapolation technique (BF) transfers state
variables with the least numerical diffusion. Mesh coarsening included in the adaptive remesh-
ing procedure is shown to be able to reduce computational costs without decreasing the solution
accuracy. For large deformation problems with damage, the adaptive remeshing, including a
damaged element elimination procedure, is shown to be efficient.
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