
UNIVERSIT�AT DORTMUND

Fachbereich Informatik

Lehrstuhl VIII

K�unstliche Intelligenz

Making Large-Scale SVM Learning Practical

LS{8 Report 24

Thorsten Joachims

Dortmund, 15. June, 1998

Universit�at Dortmund

Fachbereich Informatik

University of Dortmund

Computer Science Department

Forschungsberichte des Lehrstuhls VIII (KI) Research Reports of the unit no.VIII (AI)

Fachbereich Informatik Computer Science Department

der Universit�at Dortmund of the University of Dortmund

ISSN 0943-4135

Anforderungen an:

Universit�at Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

ISSN 0943-4135

Requests to:

University of Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

e-mail: reports@ls8.informatik.uni-dortmund.de

ftp: ftp-ai.informatik.uni-dortmund.de:pub/Reports

www: http://www-ai.informatik.uni-dortmund.de/ls8-reports.html

Making Large-Scale SVM Learning Practical

LS{8 Report 24

Thorsten Joachims

Dortmund, 15. June, 1998

Universit�at Dortmund

Fachbereich Informatik

Abstract

Training a support vector machine (SVM) leads to a quadratic optimization problem with

bound constraints and one linear equality constraint. Despite the fact that this type of

problem is well understood, there are many issues to be considered in designing an SVM

learner. In particular, for large learning tasks with many training examples, o�-the-shelf

optimization techniques for general quadratic programs quickly become intractable in their

memory and time requirements. SVM light1 is an implementation of an SVM learner which

addresses the problem of large tasks. This chapter presents algorithmic and computational

results developed for SVM lightV2.0, which make large-scale SVM training more practical.

The results give guidelines for the application of SVMs to large domains.

Also published in:

'Advances in Kernel Methods - Support Vector Learning',

Bernhard Sch�olkopf, Christopher J. C. Burges, and Alexander J. Smola (eds.),

MIT Press, Cambridge, USA, 1998.

1
SV M

lightis available at http://www-ai.cs.uni-dortmund.de/svm light

1

1 Introduction

Vapnik [1995] shows how training a support vector machine for the pattern recognition

problem leads to the following quadratic optimization problem (QP) OP1.

(OP1) minimize: W (�) = �

X̀
i=1

�i +
1

2

X̀
i=1

X̀
j=1

yiyj�i�jk(xi;xj) (1)

subject to:
X̀
i=1

yi�i = 0 (2)

8i : 0 � �i � C (3)

The number of training examples is denoted by `. � is a vector of ` variables, where

each component �i corresponds to a training example (xi;yi). The solution of OP1 is the

vector �� for which (1) is minimized and the constraints (2) and (3) are ful�lled. De�ning

the matrix Q as (Q)ij = yiyjk(xi;xj), this can equivalently be written as

minimize: W (�) = ��
T1 +

1

2
�
TQ� (4)

subject to: �
Ty = 0 (5)

0 � � � C1 (6)

The size of the optimization problem depends on the number of training examples `.

Since the size of the matrix Q is `2, for learning tasks with 10000 training examples and

more it becomes impossible to keep Q in memory. Many standard implementations of QP

solvers require explicit storage ofQ which prohibits their application. An alternative would

be to recompute Q every time it is needed. But this becomes prohibitively expensive, if

Q is needed often.

One approach to making the training of SVMs on problems with many training exam-

ples tractable is to decompose the problem into a series of smaller tasks. SVM lightuses the

decomposition idea of Osuna et al. [1997b]. This decomposition splits OP1 in an inactive

and an active part - the so call \working set". The main advantage of this decomposition

is that it suggests algorithms with memory requirements linear in the number of training

examples and linear in the number of SVs. One potential disadvantage is that these algo-

rithms may need a long training time. To tackle this problem, this chapter proposes an

algorithm which incorporates the following ideas:

� An e�cient and e�ective method for selecting the working set.

� Successive \shrinking" of the optimization problem. This exploits the property that

many SVM learning problems have

{ much less support vectors (SVs) than training examples.

{ many SVs which have an �i at the upper bound C.

� Computational improvements like caching and incremental updates of the gradient

and the termination criteria.

2 2 GENERAL DECOMPOSITION ALGORITHM

This chapter is structured as follows. First, a generalized version of the decompositon

algorithm of Osuna et al. [1997a] is introduced. This identi�es the problem of selecting

the working set, which is addressed in the following section. In section 4 a method for

\shrinking" OP1 is presented and section 5 describes the computational and implementa-

tional approach of SVM light. Finally, experimental results on two benchmark tasks, a text

classi�cation task, and an image recognition task are discussed to evaluate the approach.

2 General Decomposition Algorithm

This section presents a generalized version of the decomposition strategy proposed by

Osuna et al. [1997a]. This strategy uses a decomposition similar to those used in active

set strategies (see Gill et al. [1981]) for the case that all inequality constraints are simple

bounds. In each iteration the variables �i of OP1 are split into two categories.

� the set B of free variables

� the set N of �xed variables

Free variables are those which can be updated in the current iteration, whereas �xed

variables are temporarily �xed at a particular value. The set of free variables will also be

referred to as the working set. The working set has a constant size q much smaller than `.

The algorithm works as follows:

� While the optimality conditions are violated

{ Select q variables for the working set B. The remaining

`� q variables are fixed at their current value.

{ Decompose problem and solve QP-subproblem: optimize W (�) on B.

� Terminate and return �.

How can the algorithm detect that it has found the optimal value for �? Since OP1 is

guaranteed to have a positive-semide�nite Hessian Q and all constraints are linear, OP1

is a convex optimization problem. For this class of problems the following Kuhn-Tucker

conditions are necessary and su�cient conditions for optimality. Denoting the Lagrange

multiplier for the equality constraint 5 with �eq and the Lagrange multipliers for the lower

and upper bounds 6 with �lo and �up, � is optimal for OP1, if there exist �eq, �lo, and

�up, so that (Kuhn-Tucker Conditions, see Werner [1984]):

g(�) + (�eqy� �lo + �up) = 0 (7)

8i 2 [1::n] : �loi (��i) = 0 (8)

8i 2 [1::n] : �
up
i (�i � C) = 0 (9)

�lo � 0 (10)

�up � 0 (11)

�
Ty = 0 (12)

0 � � � C1 (13)

3

g(�) is the vector of partial derivatives at �. For OP1 this is

g(�) = �1 +Q� (14)

If the optimality conditions do not hold, the algorithm decomposes OP1 and solves

the smaller QP-problem arising from this. The decomposition assures that this will lead

to progress in the objective function W (�), if the working set B ful�lls some minimum

requirements (see Osuna et al. [1997b]). In particular, OP1 is decomposed by separating

the variables in the working set B from those which are �xed (N). Let's assume �, y,

and Q are properly arranged with respect to B and N , so that

� =

�����
�B

�N

����� y =

�����
yB
yN

����� Q =

�����
QBB QBN

QNB QNN

����� (15)

Since Q is symmetric (in particular QBN = QT
NB), we can write

(OP2) minimize: W (�) = ��
T
B(1�QBN�N) +

1

2
�
T
BQBB�B +

1

2
�
T
NQNN�N ��

T
N1 (16)

subject to: �
T
ByB + �TNyN = 0 (17)

0 � � � C1 (18)

Since the variables in N are �xed, the terms 1
2
�
T
NQNN�N and ��

T
N1 are constant.

They can be omitted without changing the solution of OP2. OP2 is a positive semide�nite

quadratic programming problem which is small enough be solved by most o�-the-shelf

methods. It is easy to see that changing the �i in the working set to the solution of OP2

is the optimal step on B. So fast progress depends heavily on whether the algorithm can

select good working sets.

3 Selecting a Good Working Set

When selecting the working set, it is desirable to select a set of variables such that the

current iteration will make much progress towards the minimum of W (�). The following

proposes a strategy based on Zoutendijk's method (see Zoutendijk [1970]), which uses a

�rst-order approximation to the target function. The idea is to �nd a steepest feasible

direction d of descent which has only q non-zero elements. The variables corresponding

to these elements will compose the current working set.

This approach leads to the following optimization problem:

(OP3) minimize: V (d) = g(�(t))Td (19)

subject to: yTd = 0 (20)

di � 0 for i: �i = 0 (21)

di � 0 for i: �i = C (22)

�1 � d � 1 (23)

jfdi : di 6= 0gj = q (24)

4 4 SHRINKING: REDUCING THE SIZE OF OP1

The objective (19) states that a direction of descent is wanted. A direction of descent

has a negative dot-product with the vector of partial derivatives g(�(t)) at the current

point �(t). Constraints (20), (21), and (22) ensure that the direction of descent is projected

along the equality constraint (5) and obeys the active bound constraints. Constraint (23)

normalizes the descent vector to make the optimization problem well-posed. Finally, the

last constraint (24) states that the direction of descent shall only involve q variables. The

variables with non-zero di are included into the working set B. This way we select the

working set with the steepest feasible direction of descent.

3.1 Convergence

The selection strategy, the optimality conditions, and the decomposition together specify

the optimization algorithm. A minimum requirement this algorithm has to ful�ll is that

it

� terminates only when the optimal solution is found

� if not at the solution, takes a step towards the optimum

The �rst requirement can easily be ful�lled by checking the (necessary and su�cient)

optimality conditions (7) to (13) in each iteration. For the second one, let's assume the

current �(t) is not optimal. Then the selection strategy for the working set returns an

optimization problem of type OP2. Since by construction for this optimization problem

there exists a d which is a feasible direction for descent, we know using the results of

Zoutendijk [1970] that the current OP2 is non-optimal. So optimizing OP2 will lead to a

lower value of the objective function of OP2. Since the solution of OP2 is also feasible for

OP1 and due to the decomposition (16), we also get a lower value for OP1. This means

we get a strict descent in the objective function of OP1 in each iteration.

3.2 How to Solve OP3

The solution to OP3 is easy to compute using a simple strategy. Let !i = yigi(�
(t)) and

sort all �i according to !i in decreasing order. Let's futhermore require that q is an even

number. Successively pick the q=2 elements from the top of the list for which 0 < �
(t)
i < C,

or di = �yi obeys (21) and (22). Similarly, pick the q=2 elements from the bottom of the

list for which 0 < �
(t)
i < C, or di = yi obeys (21) and (22). These q variables compose the

working set.

4 Shrinking: Reducing the Size of OP1

For many tasks the number of SVs is much smaller than the number of training examples.

If it was known a priori which of the training examples turn out as SVs, it would be

su�cient to train just on those examples and still get to the same result. This would make

OP1 smaller and faster to solve, since we could save time and space by not needing parts

of the Hessian Q which do not correspond to SVs.

Similarly, for noisy problems there are often many SVs with an �i at the upper bound

C. Let's call these support vectors \bounded support vectors" (BSVs). Similar arguments

5

as for the non-support vectors apply to BSVs. If it was known a priori which of the training

examples turn out as BSVs, the corresponding �i could be �xed at C leading to a new

optimization problem with fewer variables.

During the optimization process it often becomes clear fairly early that certain ex-

amples are unlikely to end up as SVs or that they will be BSVs. By eliminating these

variables from OP1, we get a smaller problem OP1' of size `0. From OP1' we can construct

the solution of OP1. Let X denote those indices corresponding to unbounded support vec-

tors, Y those indexes which correspond to BSVs, and Z the indices of non-support vectors.

The transformation from OP1 to OP1' can be done using a decomposition similar to (16).

Let's assume �, y, and Q are properly arranged with respect to X , Y , and Z, so that we

can write

� =

�������

�X

�Y

�Z

�������
=

�������

�X

C1

0

�������
y =

�������

yX
yY
yZ

�������
Q =

�������

QXX QXY QXZ

QY X QY Y QY Z

QZX QZY QZZ

�������
(25)

The decomposition of W (�) is

minimize: W (�X) = ��
T
X(1� (QXY1) �C) +

1

2
�
T
XQXX�X +

1

2
C1TQYYC1� jYjC (26)

subject to: �
T
XyX +C1TyY = 0 (27)

0 � �X � C1 (28)

Since 1
2
C1TQYYC1 � jYjC is constant, it can be dropped without changing the

solution. So far it is not clear how the algorithm can identify which examples can be

eliminated. It is desirable to �nd conditions which indicate early in the optimization

process that certain variables will end up at a bound. Since su�cient conditions are not

known, a heuristic approach based on Lagrange multiplier estimates is used.

At the solution, the Lagrange multiplier of a bound constraint indicates, how much

the variable \pushes" against that constraint. A strictly positive value of a Lagrange

multiplier of a bound constraint indicates that the variable is optimal at that bound. At

non-optimal points, an estimate of the Lagrange multiplier can be used. Let A be the

current set of �i ful�lling 0 < �i < C. By solving (7) for �eq and averaging over all �i in

A, we get the estimate (29) for �eq.

�eq =
1

jAj

X
i2A

2
4yi �

X̀
j=1

�jyjk(xi;xj)

3
5 (29)

Note the equivalence of �eq and the threshold b in the decision function. Since variables

�i cannot be both at the upper and the lower bound simultanously, the multipliers of the

bound constraints can now be estimated by

�loi = yi

0
@
2
4X̀
j=1

�jyjk(xi;xj)

3
5+ �eq

1
A� 1 (30)

6 5 EFFICIENT IMPLEMENTATION

for the lower bounds and by

�
up
i = �yi

0
@
2
4X̀
j=1

�jyjk(xi;xj)

3
5+ �eq

1
A + 1 (31)

for the upper bounds. Let's consider the history of the Lagrange multiplier estimates over

the last h iterations. If the estimate (30) or (31) was positive (or above some threshold)

at each of the last h iterations, it is likely that this will be true at the optimal solution,

too. These variables are eliminated using the decomposition from above. This means

that these variables are �xed and neither the gradient, nor the optimality conditions are

computed. This leads to a substantial reduction in the number of kernel evaluations.

Since this heuristic can fail, the optimality conditions for the excluded variables are

checked after convergence of OP1'. If necessary, the full problem is reoptimized starting

from the solution of OP1'.

5 E�cient Implementation

While the previous sections dealt with algorithmic issues, there are still a lot of open

questions to be answered before having an e�cient implementation. This section addresses

these implementational issues.

5.1 Termination Criteria

There are two obvious ways to de�ne termination criteria which �t nicely into the algo-

rithmic framework presented above. First, the solution of OP3 can be used to de�ne a

necessary and su�cient condition for optimality. If (19) equals 0, OP1 is solved with the

current �(t) as solution.

SVM lightgoes another way and uses a termination criterion derived from the optimality

conditions (7)-(13). Using the same reasoning as for (29)-(31), the following conditions

with � = 0 are equivalent to (7)-(13).

8i with 0 < �i < C: �eq � � � yi � [
P`

j=1 �jyjk(xi;xj)] � �eq + � (32)

8i with �i = 0: yi([
P`

j=1 �jyjk(xi;xj)] + �eq) � 1 � � (33)

8i with �i = C: yi([
P`

j=1 �jyjk(xi;xj)] + �eq) � 1 + � (34)

�
Ty = 0 (35)

The optimality conditions (32), (33), and (34) are very natural since they reect the

constraints of the primal optimization problem. In practice these conditions need not be

ful�lled with high accuracy. Using a tolerance of � = 0:001 is acceptable for most tasks.

Using a higher accuracy did not show improved generalization performance on the tasks

tried, but lead to considerably longer training time.

5.2 Computing the Gradient and the Termination Criteria E�ciently

The e�ciency of the optimization algorithm greatly depends on how e�ciently the \house-

keeping" in each iteration can be done. The following quantities are needed in each itera-

tion.

5.3 What are the Computational Resources Needed in each Iteration? 7

� The vector of partial derivatives g(�(t)) for selecting the working set.

� The values of the expressions (32), (33), and (34) for the termination criterion.

� The matrices QBB and QBN for the QP subproblem.

Fortunately, due to the decompositon approach, all these quantities can be computed or

updated knowing only q rows of the Hessian Q. These q rows correspond to the variables in

the current working set. The values in these rows are computed directly after the working

set is selected and they are stored throughout the iteration. It is useful to introduce s(t)

s
(t)
i =

X̀
j=1

�jyjk(xi;xj) (36)

Knowing s(t), the gradient (14) as well as in the termination criteria (32)-(34) can be

computed very e�ciently. When �(t�1) changes to �(t) the vector s(t) needs to be updated.

This can be done e�ciently and with su�cient accuracy as follows

s
(t)
i = s

(t�1)
i +

X
j2B

(�
(t)
j � �

(t�1)
j)yjk(xi;xj) (37)

Note that only those rows of Q are needed which correspond to variables in the working

set. The same is true for QBB and QBN , which are merely subsets of columns from these

rows.

5.3 What are the Computational Resources Needed in each Iteration?

Most time in each iteration is spent on the kernel evaluations needed to compute the q

rows of the Hessian. This step has a time complexity of O(qlf), where f is the maximum

number of non-zero features in any of the training examples. Using the stored rows of Q,

updating s(t) is done in time O(ql). Setting up the QP subproblem requires O(ql) as well.

Also the selection of the next working set, which includes computing the gradient, can be

done in O(ql).

The highest memory requirements are due to storing the q rows of Q. Here O(ql)

oating point numbers need to be stored. Besides this, O(q2) is needed to store QBB and

O(l) to store s(t).

5.4 Caching Kernel Evaluations

As pointed out in the last section, the most expensive step in each iteration is the evalua-

tion of the kernel to compute the q rows of the Hessian Q. Throughout the optimization

process, eventual support vectors enter the working set multiple times. To avoid recom-

putation of these rows, SVM lightuses caching. This allows an elegant trade-o� between

memory consumption and training time.

SVM lightuses a least-recently-used caching strategy. When the cache is full, the ele-

ment which has not been used for the greatest number of iterations, is removed to make

room for the current row.

Only those columns are computed and cached which correspond to active variables.

After shrinking, the cache is reorganized accordingly.

8 7 EXPERIMENTS

5.5 How to Solve OP2 (QP Subproblems)

Currently a primal-dual interior-point solver (see Vanderbei [1994]) implemented by A.

Smola is used to solve the QP subproblems OP2. Nevertheless, other optimizers can easily

be incorporated into SVM lightas well.

6 Related Work

The �rst approach to splitting large SVM learning problems into a series of smaller op-

timization tasks was proposed by Boser et al. [1992]. It is known as the \chunking"

algorithm (see also Kaufman [1998]). The algorithm starts with a random subset of the

data, solves this problem, and iteratively adds examples which violate the optimality con-

ditions. Osuna et al. [1997b] prove formally that this strategy converges to the optimal

solution. One disadvantage of this algorithm is that it is necessary to solve QP-problems

scaling with the number of SVs. The decomposition of Osuna et al. [1997a], which is used

in the algorithm presented here, avoids this.

Currently, an approach called Sequential Minimal Optimization (SMO) is explored for

SVM training (see Platt [1998a] and Platt [1998b]). It can be seen a special case of the

algorithm presented in this chapter, allowing only working sets of size 2. The algorithms

di�er in their working set selection strategies. Instead of the steepest feasible descent

approach presented here, SMO uses a set of heuristics. Nevertheless, these heuristics

are likely to produce similar decisions in practice. Another di�erence is that SMO treats

linear SVMs in a special way, which produces a great speedup for training linear separators.

Although possible, this is not implemented in SVM light. On the other hand, SVM lightuses

caching, which could be a valuable addition to SMO.

7 Experiments

The following experiments evaluate the approach on four datasets. The experiments are

conducted on a SPARC Ultra/167Mhz with 128MB of RAM running Solaris II. If not

stated otherwise, in the following experiments the cache size is 80 megabytes, the number

of iterations h for the shrinking heuristic is 100, and OP1 is solved up to a precision of

� = 0:001 in (32)-(34).

7.1 How does Training Time Scale with the Number of Training Exam-

ples?

7.1.1 Income Prediction

This task was compiled by John Platt (see Platt [1998a]) from the UCI \adult" data set.

The goal is to predict whether a household has an income greater than $50,000. After

discretization of the continuous attributes, there are 123 binary features. On average,

there are �14 non-zero attributes per example.

Table 1 and the left graph in �gure 1 show training times for an RBF-kernel

k(x;y) = exp
�
�kx� yk2=(2 �2)

�
; (38)

7.1 How does Training Time Scale with the Number of Training Examples? 9

with � = 10 and C = 1. The results for SMO and Chunking are taken from Platt

[1998a]. When comparing absolute training times, one should keep in mind that SMO and

Chunking were run on a faster computer (266Mhz Pentium II)2.

Examples SVM light SMO Chunking Minimum total SV BSV

1605 7.8 15.8 34.8 4.2 691 585

2265 16.8 32.1 144.7 9.0 1007 849

3185 30.6 66.2 380.5 6.8 1293 1115

4781 68.4 146.6 1137.2 38.4 1882 1654

6414 120.6 258.8 2530.6 70.2 2475 2184

11221 430.8 781.4 11910.6 215.4 4182 3763

16101 906.0 1784.4 N/A 436.2 5894 5398

22697 1845.6 4126.4 N/A 862.8 8263 7574

32562 3850.2 7749.6 N/A 1795.8 11572 10740

Scaling 2.1 2.1 2.9 2.0

Table 1: Training times and number of SVs for the income prediction data.

Both SVM lightand SMO are substantially faster than the conventional chunking algo-

rithm, whereas SVM lightis about twice as fast as SMO. The best working set size is q = 2.

By �tting lines to the log-log plot we get an empirical scaling of `2:1 for both SVM lightand

SMO. The scaling of the chunking algorithm is `2:9.

The column \minimum" gives a lower bound on the training time. This bound makes

the conjecture that in the general case any optimization algorithms needs to at least once

look at the rows of the Hessian Q which correspond to the support vectors. The column

\minimum" shows the time to compute those rows once (exploiting symmetry). This time

scales with `2:0, showing the complexity inherent in the classi�cation task. For the training

set sizes considered, SVM lightis both close to this minimum scaling as well as within a

factor of approximately two in terms of absolute runtime.

7.1.2 Classifying Web Pages

The second data set - again compiled by John Platt (see Platt [1998a]) - is a text clas-

si�cation problem with a binary representation based on 300 keyword features. This

representation is extremely sparse. On average there are only �12 non-zero features per

example.

Table 2 shows training times on this data set for an RBF-kernel (38) with � = 10 and

C = 5. Again, the times for SMO and Chunking are taken from Platt [1998a]. SVM lightis

faster than SMO and Chunking on this data set as well, scaling with `1:7. The best working

set size is q = 2.

2The Pentium II takes only �65% of the time for running SV M light. Many thanks to John Platt for

the comparison.

10 7 EXPERIMENTS

Examples SVM light SMO Chunking Minimum total SV BSV

2477 18.0 26.3 64.9 3.6 431 47

3470 28.2 44.1 110.4 7.8 571 69

4912 46.2 83.6 372.5 13.2 671 96

7366 102.0 156.7 545.4 27.0 878 138

9888 174.6 248.1 907.6 46.8 1075 187

17188 450.0 581.0 3317.9 123.6 1611 363

24692 843.0 1214.0 6659.7 222.6 1994 506

49749 2834.4 3863.5 23877.6 706.2 3069 948

Scaling 1.7 1.7 2.0 1.7

Table 2: Training times and number of SVs for the Web data.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5000 10000 15000 20000 25000 30000 35000

C
P

U
-t

im
e

in
 s

ec
on

ds

Number of examples

chunking
SMO

SVM-Light
minimum

0

500

1000

1500

2000

2500

3000

3500

4000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
P

U
-t

im
e

in
 s

ec
on

ds

Number of examples

chunking
SMO

SVM-Light
minimum

Figure 1: Training times from tables 1 (left) and 2 (right) as graphs.

7.1.3 Ohsumed Data Set

The task in this section is a text classi�cation problem which uses a di�erent represen-

tation. Support vector machines have shown very good generalisation performance using

this representation (see Joachims [1998]). Documents are represented as high dimensional

vectors, where each dimension contains a (TFIDF-scaled) count of how often a particular

word occurs in the document. More details can be found in Joachims [1998]. The par-

ticular task is to learn \Cardiovascular Diseases" category of the Ohsumed dataset. It

involves the �rst 46160 documents from 1991 using 15000 features. On average, there are

�63 non-zero features per example. An RBF-kernel with � = 0:91 and C = 50 is used.

Table 3 shows that this tasks involves many SVs which are not at the upper bound.

Relative to this high number of SVs the cache size is small. To avoid frequent recomputa-

tions of the same part of the Hessian Q, an additional heuristic is incorporated here. The

working set is selected with the constraint that at least for half of the selected variables

the kernel values are already cached. Unlike for the previous tasks, optimum performance

is achieved with a working set size of q = 20. For the training set sizes considered here,

runtime is within a factor of 4 from the minimum.

7.2 What is the Inuence of the Working Set Selection Strategy? 11

Examples SVM light Minimum total SV BSV

9337 18.8 7.1 4037 0

13835 46.3 14.4 5382 0

27774 185.7 50.8 9018 0

46160 509.5 132.7 13813 0

Scaling 2.0 1.8

Table 3: Training time (in minutes) and number of SVs for the Ohsumed data.

7.1.4 Dectecting Faces in Images

In this last problem the task is to classify images according to whether they contain a

human face or not. The data set was collected by Shumeet Baluja. The images consist of

20x20 pixels of continuous gray values. So the average number of non-zero attributes per

example is 400. An RBF-kernel with � = 7:1 and C = 10 is used. The working set size is

q = 20.

Examples SVM light Minimum total SV BSV

512 10.8 8.4 340 0

1025 37.2 31.2 559 0

2050 129.0 111.0 930 0

4100 443.4 381.0 1507 0

8200 1399.2 1170.6 2181 0

Scaling 1.7 1.7

Table 4: Training time and number of SVs for the face detection data.

Table 4 shows the training time (in seconds). For this task, the training time is

very close to the minimum. This shows that the working set selection strategy is very

well suited for avoiding unnecessary kernel evaluations. The scaling is very close to the

optimum scaling.

Let's now evaluate, how particular strategies of the algorithm inuence the perfor-

mance.

7.2 What is the Inuence of the Working Set Selection Strategy?

The left of �gure 2 shows training time dependent on the size of the working set q for the

smallest Ohsumed task. The selection strategy from section 3 (lower curve) is compared

to a basic strategy similar to that proposed in Osuna et al. [1996] (upper curve). In each

iteration the basic strategy simply replaces half of the working set with variables that

do not ful�ll the optimality conditions. The graph shows that the new selection strategy

reduces time by a factor of more than 3.

12 8 CONCLUSIONS

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

C
P

U
-t

im
e

in
 m

in
ut

es

Size of working set

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80

C
P

U
-t

im
e

in
 m

in
ut

es

Cache-size in MB

Figure 2: Training time dependent on working set size and cache size for the Ohsumed

task.

7.3 What is the Inuence of Caching?

The curves in the graph on the right hand side of �gure 2 shows that caching has a strong

impact on training time. The lower curve shows training time (for an RBF-kernel with

� = 10 and C = 50 on the 9337 examples of the Ohsumed data) dependent on the cache

size when shrinking is used. With the cache size ranging from 2 megabytes to 80 megabytes

a speedup factor of 2.8 is achieved. The speedup generally increases with an increasing

density of the feature vectors xi.

7.4 What is the Inuence of Shrinking?

All experiments above use the shrinking strategy from section 4. The upper curve in �gure

2 (right) shows training time without shrinking. It can be seen that shrinking leads to a

substantial improvement when the cache is small in relation to the size of the problem.

The gain generally increases the smaller the fraction of unbounded SVs is compared to

the number of training examples ` (here 2385 unbounded SVs, 110 BSVs, and a total of

9337 examples).

8 Conclusions

This chaper presents an improved algorithm for training SVMs on large-scale problems

and describes its e�cient implementation in SVM light. The algorithm is based on a

decomposition strategy and addresses the problem of selecting the variables for the working

set in an e�ective and e�cient way. Furthermore, a technique for \shrinking" the problem

during the optimization process is introduced. This is found particularly e�ective for

large learning tasks where the fraction of SVs is small compared to the sample size, or

when many SVs are at the upper bound. The chapter also describes how this algorithm is

e�ciently implemented in SVM light. It has a memory requirement linear in the number of

training examples and in the number of SVs. Nevertheless, the algorithms can bene�t from

additional storage space, since the caching strategy allows an elegant trade-o� between

training time and memory consumption.

13

9 Acknowledgements

This work was supported by the DFG Collaborative Research Center on Complexity Re-

duction in Multivariate Data (SFB475). Thanks to Alex Smola for letting me use his

solver. Thanks also to Shumeet Baluja and to John Platt for the data sets.

References

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin

classi�ers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on

Computational Learning Theory, pages 144{152, Pittsburgh, PA, July 1992. ACM Press.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, 1981.

T. Joachims. Text categorization with support vector machines. In European Conference

on Machine Learning (ECML), 1998.

L. Kaufman. Solving the quadratic programming problem arising in support vector classi-

�cation. In B. Sch�olkopf, C. Burges, and A Smola, editors, Advances in Kernel Methods

- Support Vector Learning. MIT Press, Cambridge, USA, 1998.

E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and applications.

A.I. Memo (in press), MIT A. I. Lab., 1996.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector

machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural Networks

for Signal Processing VII | Proceedings of the 1997 IEEE Workshop, pages 276 { 285,

New York, 1997a. IEEE.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to

face detection. In , editor, Proceedings CVPR'97, , 1997b. .

J. Platt. Sequential minimal optimization: A fast algorithm for training support vector

machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998a.

J. Platt. Sequential minimal optimization: A fast algorithm for training support vector

machines,. In B. Sch�olkopf, C. Burges, and A Smola, editors, Advances in Kernel

Methods - Support Vector Learning. MIT Press, Cambridge, USA, 1998b.

R. Vanderbei. Loqo: An interior point code for quadratic programming. Technical Report

SOR 94-15, Princeton University, 1994.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

J. Werner. Optimization - Theory and Applications. Vieweg, 1984.

G. Zoutendijk. Methods of Feasible Directions: a Study in Linear and Non-linear Pro-

gramming. Elsevier, 1970.

