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WILFRIED HAZOD

Abstract. For finite dimensional vector spaces it is well-known
that there exists a 1–1-correspondence between distributions of
Ornstein-Uhlenbeck type processes (w.r.t. a fixed group of auto-
morphisms) and (background driving) Lévy processes. An anal-
ogous result could be proved for simply connected nilpotent Lie
groups. Here we extend this correspondence to a class of commu-
tative hypergroups.

Introduction

Let V be a d−dimensional real vector space and let (Tt)t∈R be a
continuous one-parameter group of automorphisms. M-semigroups (or
skew semigroups) are continuous one-parameter families of probabilities
(µ(t))t≥0 on V satisfying µ(t+s) = µ(t)?Tt(µ(s)), ∀s, t ≥ 0. These skew
or M-semigroups are distributions of (generalized) Ornstein-Uhlenbeck-
processes (resp. Mehler semigroups of transition kernels) and corre-
spond in a 1-1-manner to continuous convolution semigroups, the dis-
tributions of Lévy processes (called background driving Lévy processes).
The correspondence is expressed by path-wise random integral repre-
sentations of the involved processes. See [25] for d = 1, [2] or [32] and
the literature mentioned there. More generally, for random integrals
of additive processes see [37]. It should be mentioned that limits of
M-semigroups are self-decomposable laws and vice versa. For the back-
ground of self-decomposability and random integral representations on
vector spaces see e.g. the monograph [26], or [39, 28, 27], furthermore,
[1, 38, 37], and the literature mentioned there. For some applications
of self-decomposability see e.g., [4, 29] and the references there.

For locally compact groups G admitting a continuous one-parameter
group (Tt)t∈R ⊆ Aut(G), Ornstein-Uhlenbeck processes (or Mehler
semigroups of transition kernels) resp. M-semigroups on the one side
and Lévy processes resp. continuous convolution semigroups on the
other, are defined verbatim as in the vector space case. In the group
case – as random integral representations are in general not available
– at least for contractible simply connected nilpotent Lie groups a 1-
1-correspondence between M-semigroups and continuous convolution
semigroups is established via Lie-Trotter product formulas

(LT1) µ(t) = lim
n→∞

n−1

?
k=0

T kt
n

(
µt/n

)
(LT2) µt = lim

n→∞
µ(t/n)n

which may be understood as weak versions of random integral repre-
sentations. See e.g., [14], §2.14, [16], Theorem C, [15]. (For a process-
approach under some technical conditions see e.g., [30].)
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The proof relies (i) on the construction of (space-time-) Lévy pro-
cesses resp. continuous convolution semigroups on the space-time build-
ing Γ := G o R, (ii) on the existence of common cores for generators
of continuous convolution semigroups and (iii) on Lie-Trotter formulas
for addition of generators of C0−contraction semigroups. The second
property, the existence of common cores, proved independently and
nearly simultaneously by J. Faraut, K. Harzallah, F. Hirsch, J.P. Roth,
[12, 11, 21, 22, 23, 24, 35], is crucial. See also [13, 8, 9, 19]. (In fact, for
our purpose a slight generalization of this result is needed, see Theorem
1.9 b), c) below.)

As a corollary it follows that the Bruhat test functions D(G) and –
for direct and semidirect extensions Γ = G o R – that the subspaces
D(G) ⊗ D(R) ⊆ D(Γ) are common cores for generators of continuous
convolution semigroups on G and Γ respectively. A key result which
enables e.g. to verify (LT1) and (LT2). (Recall that for Lie groups
D(G) is just C∞c (G).)

Recently M. Rösler [36] and M. Voit [40] investigated hypergroup
structures on the cone of non-negative definite d× d−matrices with a
group like behaviour. In particular, the structure of the automorphism
group is well-known, a homomorphic image of GL(Rd). In fact, for
a ∈ GL(Rd) there corresponds an automorphism K 3 κ 7→ Ta(κ) :=

(aκ2a∗)
1/2 ∈ K. In [17] some probabilistic aspects of these hypergroup

structures were investigated, especially divisibility, (semi-)stability and
also self-decomposability and M-semigroups. However, the problem of
existence of background driving Lévy processes and the correspondence
by Lie-Trotter formulas was not investigated there. This is the main
target of the present investigations.

Note that a version of the above-mentioned theorem of F. Hirsch et
al. for hypergroups is proved in the thesis S. Menges [33], 5.26. There
also the existence of a common core for convolution semigroups on
commutative hypergroups is established ([33], 5.17, 5.22). However, for
non-Abelian hypergroups there is no natural candidate for a common
core as e.g., D(G) for general locally compact groups. To find such
function spaces on semi-direct extensions and to show a core property
which allows to prove the analogues of (LT1) and (LT2) is a crucial
tool of this investigation.

In Section 1 we collect notations and basic facts for continuous convo-
lution semigroups and invariant C0−contraction semigroups, including
a sketch of the afore mentioned Theorem of F. Hirsch et al. (in its
slightly generalized form.) In Section 2 we apply these results to the
case of locally compact groups (generalizing slightly the already pub-
lished results for nilpotent Lie groups). Section 3 contains the main
results: Theorem 3.1 and 3.2. The proof of the first is a consequence of
the results collected in Section 2, whereas Section 4 is concerned with
the proof of Theorem 3.2, the hypergroup case: For a class of hyper-
groups containing the afore mentioned hypergroups on matrix cones
the existence of background driving Lévy processes and the correspon-
dence via the Lie-Trotter formulas is established. The proof is quite
technical and sometimes cumbersome, but I was unable to find a more
elegant version.
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1. Notations and basic facts

Let G be a locally compact group or a hypergroup. (Or a locally
compact semigroup with unit e and with a nice behaviour at ∞: for
all compact M,N ⊆ G the set {z ∈ G : ∀x ∈ N xz or zx ∈M} is rel-
atively compact.) According to the Riesz representation theorem mea-
sures µ ∈ Mb(G) are identified with continuous linear functionals on
C0(G), the dual pairing is denoted by

∫
G fdµ = 〈f, µ〉.

Measures are also identified with linear operators, the convolution
operators acting e.g. on C0(G) from right resp. left:

Rµ : (Rµf) (x) :=

∫
fd (εx ? µ) = 〈f, εx ? µ〉

Lµ : (Lµf) (x) :=

∫
fd (µ ? εx) = 〈f, µ ? εx〉

In particular, for µ = εx0 we use the abbreviations Rx0 := Rεx0
resp.

Lx0 := Lεx0
for the right and left translations.

We collect some well-known properties of convolution operators which
are tacitly used in the sequel. ( See e.g., [18, 13], and for hypergroups,
[5].)

Proposition 1.1. a) Rµ and Lµ are linear operators acting on C0(G)
with ||Rµ||∞ = ||Lµ||∞ = ||µ||∞
b) RµLν = LνRµ for all µ, ν ∈Mb(G)

c) Rµ?ν = RµRν and Lµ?ν = LνRµ for all µ, ν ∈Mb(G)

d) 〈f, µ ? ν〉 = 〈Rµf, ν〉 = 〈Lνf, µ〉 ∀µ, ν ∈Mb(G), f ∈ C0(G)

In particular, for ν = εe resp. = εx0

d1) 〈f, µ〉 = Rµf(e) = Lµf(e) ∀µ ∈Mb(G), f ∈ C0(G)

d2) f(x0) = 〈f, εx0〉 = Rx0f(e) = Lx0f(e) ∀f ∈ C0(G)

d3) Rµf(x0) = 〈f, εx0 ? µ〉 = 〈Rµf, εx0〉 = 〈Lx0f, µ〉 = 〈Lx0Rµf, εe〉
∀µ, ν ∈Mb(G), f ∈ C0(G), x0 ∈ G
d4) Lµf(x0) = 〈f, µ ? εx0〉 = 〈Lµf, εx0〉 = 〈Rx0f, µ〉 = 〈Rx0Lµf, εe〉
∀µ, ν ∈Mb(G), f ∈ C0(G), x0 ∈ G

Proposition 1.2. Let f ∈ C0(G), and let x0 ∈ G such that |f(x0)| =
||f ||∞. Then ||f ||∞ = |Rx0f(e)| = ||Rx0f ||∞[[
Rx0 is a contraction (Proposition 1.1 a) ), hence ||Rx0f ||∞ ≤ ||f ||∞.

On the other hand, according to property d2) in Proposition 1.1, |f(x0)|
= |〈Rx0f, εe〉|, whence ||f ||∞ = |f(x0)| = |Rx0f(e)| ≤ ||Rx0f ||∞

]]
Let T := Rλ, λ ∈Mb(G). T is left invariant, i.e. TLx = LxT ∀x ∈ G

(see Proposition 1.1) and 〈f, λ〉 = Tf(e), T f(x) = 〈Lxf, λ〉. This is a
motivation to define

Definition 1.3. A subspace D ⊆ C0(G) is called left invariant if LxD ⊆
D, ∀x ∈ G, and a linear operator U : D → C0(G) is called left invariant
if D is left invariant and ULx = LxU ∀x ∈ G. Hence ULν = LνU for
all ν ∈Mb(G) with Lν(D) ⊆ D.

In this case, we define the linear functional A : D → C by 〈f, A〉 :=
Tf(e), hence (according to 1.1. d2) ) Uf(x) = LxUf(e) = ULxf(e) =
〈Lxf, A〉. This motivates the notation U = RA (in analogy to Proposi-
tion 1.1. d3) ).
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Definition 1.4. Let U : D → C0(G) be a linear operator acting on a
subspace D ⊆ C0(G). U is called dissipative if for all f ∈ D, for all
x0 ∈ G such that f(x0) = ||f ||∞ it follows < (Uf(x0)) ≤ 0.

Proposition 1.5. a) Let (Tt)t≥0 be a C0−contraction semigroup on

C0(G) with infinitesimal generator
(
U := d+

dt
|t=0Tt, D(U)

)
. Then the

domain D(U) is dense and U is closed and dissipative. Furthermore,
(I − U)D(U) = C0(G).

b) Conversely, let U be dissipative with dense domain D. Then (U,D)
is closable, and the closure

(
U,D

)
is closed and dissipative. Further-

more, (I − U)(D) is dense in (I − U)(D).

c) If in addition, (I−U)(D) is dense in C0(G) then
(
U,D

)
is the gen-

erator of a (uniquely determined) C0−contraction semigroup (Tt)t≥0.

In the latter case, D is called ’core’ for the generator of (Tt)t≥0.[[
This characterization of generators of contraction semigroups as

dissipative operators is known as Theorem of Lumer-Phillips ([31]).
]]

As a consequence of the Riesz representation theorem we obtain

Proposition 1.6. A left invariant linear operator T = RA – A defined
as above in 1.3 – defined on D := C0(G) is the convolution operator of
a bounded measure A = λ ∈Mb(G), and conversely.

In particular, a C0−semigroup of invariant operators on C0(G) is
representable as (Tt = Rλt)t≥0 where (λt)t≥0 is a continuous convolution

semigroup in Mb(G) with λ0 = εe.

We adopt the following notations: M1(G) denotes the set of proba-
bility measures and M(1)(G) :=

{
λ ∈Mb(G) : ||λ|| ≤ 1

}
.

In the sequel we shall always tacitly assume for continuous convo-
lution semigroups that λ0 = εe. Let (λt)t≥0, λ0 = εe, be a continu-

ous convolution semigroup in Mb(G) with corresponding C0−operator
semigroup (Tt = Rλt)t≥0. Then the infinitesimal generator (U,D(U)) is

a left invariant operator. If moreover, (λt) ⊆M(1)(G) then (U,D(U))
is (left invariant and) dissipative.

In view of Popositions 1.5 and 1.6 we have:

Proposition 1.7. Let (U,D(U)) be left invariant and dissipative and
assume (I−U)D(U) = C0(G), hence U is the generator of a C0−cont-
raction semigroup (Tt)t≥0. Then Tt = Rλt for some continuous convo-

lution semigroup (λt)t≥0 ⊆M(1)(G).[[
For α > 0 the resolvent Iα := (U − 1

α
I)−1 is bonded, obviously left

invariant, hence a convolution operator of a bounded measure. Any Tt
is representable as limit of exponentials of resolvent operators, hence

is itself left invariant.
]]

Remark 1.8. Let D be a core for the generator of a semigroup of
convolution operators (Rλt)t≥0. Then, by a slight abuse of language, we
call D a core for the continuous convolution semigroup (λt)t≥0.

Now we are ready to formulate the announced result of J. Faraut,
K. Harzallah, F. Hirsch and J.P. Roth ([12, 11, 21, 22, 23, 24, 35]). We
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restrict to the case of continuous convolution semigroups with trivial
idempotents λ0 = εe. As mentioned in the above cited literature,
the results generalize easily to continuous convolution semigroups with
non-trivial idempotents λ0. (If λt ≥ 0 then λ0 = ωK , a Haar measure
on some compact sub-(hyper)group K ).

Theorem 1.9. Let D be a dense linear subspace of C0(G).

a) Assume (i) LxD ⊆ D ∀x ∈ G and (ii) RxD ⊆ D ∀x ∈ G
Let U : D → C0(G) be a left invariant and dissipative linear operator.

Then the closure
(
U,D

)
is the generator of a left invariant contraction

semigroup (Tt = Rλt)t≥0. I.e., D is a core for the continuous convolu-

tion semigroup (λt) ⊆M(1)(G).

b) More generally, (ii) may be replaced by (ii’) RxD ⊆ D ∀x ∈ G.

c) Let (U,D(U)) be a dissipative, closed and left invariant operator.
Assume D ⊆ D(U) to be left-invariant (i), and assume furthermore
(ii”) RxD ⊆ D(U) ∀x ∈ G.

Then (U,D(U)) is the generator of a left invariant contraction semi-

group (Rλt)t≥0 and D̃ := span {RxD : x ∈ G} is a left- and right invari-
ant core for (U,D(U)) (resp. for (λt)t≥0) .

The following sketch of a proof follows – with different notations
– the lines of the proofs in [21, 22]. See also [13]. For hypergroups a
proof (of a) ) is contained in the thesis [33], 5.26.

Condition (ii’) is weaker than (ii), hence b) ⇒ a).
To prove b) we first note that

1. Condition (i) implies LνD ⊆ D ∀ν ∈ Mb(G). In fact, approxi-
mating ν by measures νn with finite supports such that Lνn → Lν in
the strong operator topology and observing LνnD ⊆ D for all n yields
Lνnf → Lνf for f ∈ D, and furthermore, ULνnf = LνnUf → LνUf .
Hence Lνf ∈ D and ULνf = LνUf .

Analogously, ∀g ∈ D we obtain Lνg ∈ D and ULνg = LνUg. (This
applies in particular for f ∈ D, g := Rx0f .)

2. Let ν ∈ ((I − U)D)⊥. Since (I − U)D is dense in (I − U)D, we
have ν ⊥ (I − U)D.

Let f ∈ D, let x0 ∈ G such that ||Lνf ||∞ = |Lνf(x0)| = |Rx0Lνf(e)|,
i.e., for some c with |c| = 1 we have ||Lνf ||∞ = c · Lνf(x0). W.l.o.g.
we may assume c = 1, else replace f by c · f .

As g := Rx0f ∈ D by assumption (ii’) we have

0 = 〈(I − U)Rx0f, ν〉 = 〈Lν(I − U)g, εe〉 = Lνg(e) − ULνg(e) =
Rx0Lνf(e)−URx0Lνf(e) = ||Rx0Lνf ||∞−URx0Lνf(e). Since ||Lνf ||∞=
(Rx0Lνf) (e) = ||Rx0Lνf ||∞ (cf. Proposition 1.2) and U is dissipative,
we have <URx0Lνf(e) ≤ 0. Therefore, ||Rx0Lνf ||∞ = 0. According to
property a) in 1.1, ||Lνf ||∞ = 0 follows. Since D is dense in C0(G) we
have proved ν = 0.

3. Therefore, (I − U)D is dense in C0(G).

Assertion b) (and hence a) ) follows by Proposition 1.7.

To prove c), put D̃ := span {RxD : x ∈ G}.
Claim: D̃ is a core for (U,D(U)). Hence (U,D(U)) is maximal dissi-
pative and therefore a generator.
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Obviously, D ⊆ D̃ ⊆ D(U). Hence D̃ is dense, by construction left

and right invariant and therefore according to a), D̃ is a core for the

closure of the restriction (U, D̃). Since (U,D(U)) is closed, we observe

D̃ ⊆ D(U), hence
(
U, D̃

)
= (U,D(U)) and (I−U)D(U) = C0(G) since

(I − U)D̃ is dense in C0(G)
]]

�

We obtain immediately the well known result:

Corollary 1.10. Let G be a locally compact group. Then the Bruhat
test function space D(G) is a common core for all continuous con-
volution semigroups (λt)t≥0 in M(1)(G), in particular, for continuous
convolution semigroups of probabilities.[[
D(G) is dense, left- and right-invariant and – according to the Lévy-

Khinchin-Hunt representation – D(G) is contained in the domain of
the generator of any continuous convolution semigroup. Cf. e.g., [18],
4.4.18, 4.5.8 for continuous convolution semigroups of probabilities, see

e.g. [8, 9, 12, 10, 11, 13, 42, 43] for the more general case M(1)(G).
]]

Corollary 1.11. Let G be an Abelian locally compact group or an

Abelian hypergroup. Then the space of ’analytic vectors’ A := (L1
c(Ĝ))∨

is a common core for all continuous convolution semigroups (λt)t≥0 in

M(1)(G). (Here L1
c denotes the space of functions with compact support

which are integrable on the dual Ĝ w.r.t. the Haar resp. Plancherel
measure, and ∨ denotes the inverse Fourier transform.) Analogously,

Cc(Ĝ)∨ and L2
c(Ĝ)∨ share this property.[[

A is dense and left- and right-invariant. Furthermore, for any f ∈ A

and any continuous convolution semigroup t 7→ Rλtf = (λ̂t · f̂)∨ =(
et·ψ · f̂

)∨
(with ψ := log λ̂1) is analytic. Therefore in particular, f is

contained in the domain of the generator. For groups a proof is found

in e.g. [7], for hypergroups see [33], 5.17, 5.22.
]]

Remark 1.12. For later use we note that the cores D(G) and A con-
structed above in Corollary 1.10 resp. 1.11 are invariant under auto-
morphisms of G.

2. Semidirect products Γ = G o R: The case of locally
compact groups

Throughout in this Section G,Gi denote locally compact topological
groups.

First we note a further corollary to Theorem 1.9:

Corollary 2.1. Let Gi, i = 1, 2 be locally compact groups with test
function spaces D(G1),D(G2) respectively. Then the subspace D :=
D(G1) ⊗ D(G1) ⊆ D(G1 ⊗ G2) is a common core for continuous con-
volution semigroups in M(1)(G1 ⊗G2).
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On the one hand, D ⊆ D(G1 ⊗ G2) ⊆ D(U) for any generator

(U,D(U)) of a continuous convolution semigroup as mentioned in Corol-
lary 1.10. On the other hand, D satisfies the conditions (i) and (ii) of

Theorem 1.9 a).
]]

Now let G denote a locally compact group and let (Tt)t∈R ⊆ Aut(G)
be a continuous one parameter group. The semidirect product Γ =
G o R is the Cartesian product G⊗ R equipped with the group oper-
ation (x, s)(y, t) := (xTs(y), s + t). Γ is a locally compact group and
hence D(Γ) is a common core for continuous convolution semigroups
in M(1)(Γ). First we have

Proposition 2.2. Let G be a Lie group. Then D := D(G) ⊗ D(R) ⊆
D(Γ) is a common core for continuous convolution semigroups inM1(Γ)

Proof: In contrast to the above mentioned Corollary 2.1 now the proof
relies on the weaker assumption (ii’) in Theorem 1.9 b).

1. Left invariance (i) is obvious: For ϕ⊗ ψ ∈ D(G)⊗D(R) we have

L(y,t)(ϕ⊗ ψ)(x, s) = ϕ(yTt(x)) · ψ(s+ t) =: ϕ1(x) · ψ1(s)

Hence L(y,t)(ϕ⊗ ψ) ∈ D ∀(y, t) ∈ Γ

2. Condition (ii’) is fulfilled:

Let (U = RA, D(U)) be the generator of (Rλt)t≥0, with a continuous

convolution semigroup (λt)t≥0 ⊆M(1)(Γ). According to Corollary 1.10

D ⊆ D(Γ) ⊆ D(U). Let
(
U,D

)
denote the closure of the restriction

(U,D).

We have to show for all (y, t) ∈ Γ that R(y,t)D ⊆ D. In fact,

R(y,t)(ϕ⊗ ψ)(x, s) = ϕ(xTs(y)) · ψ(s+ t)

We fix εn > 0, δn > 0, s
(n)
i ∈ R, i ≤ i ≤ Nn. Let suppψ ⊆ [a, b] ⊆

Nn⋃
i=1

[s
(n)
i − δn, s

(n)
i + δn]. Choose furthermore γ

(n)
i ∈ D(R) such that

suppγ
(n)
i ⊆ [s

(n)
i −δn, s(n)

i +δn], 0 ≤ γ
(n)
i ≤ 1 and

∑Nn

1 γ
(n)
i ≡ 1 on [a, b].

Put ψ
(n)
i := γ

(n)
i · ψ. Let εn → 0 and choose γ

(n)
i and δn such that

||(x, s) 7→
Nn∑
i=1

(
ϕ(xTs(y))− ϕ(xT

s
(n)
i

(y))
)
· ψ(n)

i (s+ t)||
C

(2)
0 (Γ)

< εn

We have

H(x, s) := R(y,t) (ϕ⊗ ψ) (x, s) =
Nn∑
i=1

(
ϕ(xTs(y))− ϕ(xT

s
(n)
i

(y))
)
·ψ(n)

i (s+t)+
Nn∑
i=1

ϕ(xT
s
(n)
i

(y))·ψ(n)
i (s+t)

=: Gn(x, s) + Fn(x, s)

By construction, ||Gn||C(2)
0 (Γ)

→ 0, furthermore, Fn ∈ D, H ∈ D(Γ) ⊆
D(U) and Fn → H in C0(Γ). The Lévy-Khinchin-Hunt representation
(cf. e.g., [18], 4.4.18, 4.5.8, [19], resp. [8, 12, 10, 11, 13, 42, 43]) yields

that the restriction of the generator U = RA : C
(2)
0 (Γ) → C0(Γ) is

continuous. Whence ||UGn||∞ → 0 and UFn → UH.

Therefore we have Hn → H and UHn → UH, whence H ∈ D, as
asserted.

3. Now the proof follows by Theorem 1.9 b). �
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In all examples we have in mind, the underlying group is a (simply
connected, nilpotent) Lie group. Nevertheless it is worth to point out
that this result is true for general locally compact groups G which admit
a continuous one-parameter group of automorphisms (Tt)t∈R ⊆ Aut(G):

Theorem 2.3. Let G be a locally compact group with (Tt)t∈R ⊆ Aut(G).
We define as above the semidirect extension Γ = G o R and put again
D := D(G)⊗D(R).

Let (λt)t≥0 ⊆ M(1)(Γ) be a continuous convolution semigroup with
generating functional A resp. infinitesimal generator (U = RA, D(U)).
Then D is a core for (λt)t≥0 resp. for (U = RA, D(U)).

We sketch a proof:

D is dense in C0(Γ) and D ⊆ D(Γ) ⊆ D(U). As before, it follows
immediately that D is left invariant.

Claim: R(y,t)D ⊆ D. (Again (U,D) denotes the closure of the restric-
tion (U,D).)

As in Proposition 2.2, let δn → 0, let ϕ⊗ ψ ∈ D(G)⊗D(R), define

as in proposition 2.2, H := R(y,t)ϕ⊗ ψ, ψ =
∑
ψ

(n)
i and decompose as

before H = Fn +Gn.

(Tt) is a continuous one-parameter group. The connected component
G0 is characteristic and G/G0 is totally disconnected. Therefore, the
induced automorphisms T t act trivially on G/G0.

Choose an open subgroup G1 ⊆ G such that G1/G0 is compact.
Then, (e.g., according to [14], 3.1.22) we have G1 = lim

←
G1/K

α with

compact normal Tt-invariant subgroups Kα. Hence Γ1 := G1 o R is an
open subgroup of Γ and Γ1 = lim

←
Γ1/L

α with Lα = Kα ⊗ {0}.

The Lévy-Khinchin-Hunt representation for general locally compact
groups (cf. e.g., [18, 19] resp. [8, 12, 10, 11, 13, 42, 43]) yields that
A = B+η where η is a bounded measure (a Poisson generator), and B
is supported by Γ1. We have U = RA = RB +Rη and, as η is bounded,
||RηGn||∞ → 0, and RηFn → RηH.

Hence w.l.o.g. we may assume that Γ = Γ1 is Lie projective.

Since ϕ ∈ D(G) is constant on Kα−cosets for some Kα and all
functions involved are hence left Kα−invariant, we may assume w.l.o.g.
that G = G1/K

α resp. Γ = Γ1/L
α. Thus the proof is reduced to the

case of Lie groups, which was proved in Proposition 2.2. �

Lie-Trotter formulas. We recall Lie-Trotter product formulas for ad-
dition of generators of C0 semigroups and its applications to continuous
convolution semigroups. For the background see e.g., P.R. Chernoff [6],
1.1, and the literature mentioned there. For continuous convolution
semigroups see e.g., [13].

Proposition 2.4. a) The sum U + V of generators of C0− contrac-
tion semigroups (U,D(U)) and (V,D(V )) defines a dissipative operator
on D(U) ∩D(V ). If D(U) ∩D(V ) is a core for U + V (hence for the
generator of a contraction semigroup) then the involved semigroups are
related by the Lie-Trotter formula:

(LT ) et(U+V ) = lim
n→∞

(
e(t/n)Ue(t/n)V

)n
(Convergence in the strong operator topology.)
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b) Applying this to continuous convolution semigroups (resp. to the
corresponding convolution operators) we obtain:

Let (µt)t≥0 , (νt)t≥0 ⊆ M(1)(G) be continuous convolution semigroups
in on a locally compact group G. Let D be a common core for all con-
tinuous convolution semigroups (e.g., D = D(G)). Then the sum of
the generators is at least defined on D and its closure generates a con-
tinuous convolution semigroup (λt)t≥0. Furthermore, the Lie-Trotter
formula for continuous convolution semigroups holds true:

(LT∗) λt = lim
n→∞

(
µt/n ? νt/n

)n
3. The main results

In the following we consider a sub-semigroup of M1(Γ), defined

as M1
∗(Γ) := {µ⊗ εt : µ ∈M1(G), t ∈ R}. (Analogously M(1)

∗ (Γ),

M(1)
∗,+(Γ), Mb

∗(Γ) etc. are defined). Recall the definition of an M-
semigroup in the Introduction: A continuous family (µ(t))t≥0 ⊆M1(G)
is a M-semigroup iff

µ(s+ t) = µ(s) ? Ts(µ(t)) for all s, t ≥ 0.

Obviously, (µ(t))t≥0 is a M-semigroup in M1(G) iff (λt := µ(t)⊗ εt)t≥0

is a continuous convolution semigroup in M1
∗(Γ). Furthermore, as im-

mediately verified, for f ∈ D := D(G) ⊗ D(R) the generator U of
(Rλt) splits as Uf = (W + P )f (resp. Wf = (U − P )f), with

Wf = d+

dt

∣∣
t=0Rµ(t)⊗ε0f and ±Pf = d+

dt

∣∣
t=0Rεe⊗ε±t . W and ±P –

by construction dissipative invariant operators – are extended to gen-
erators of continuous convolution semigroups (σt := µt ⊗ ε0)t≥0 and(
p±t := εe ⊗ ε±t

)
t≥0

respectively. (Cf. Theorem 2.3). Therefore, the

steps in Section 2 yield the following result (cf. e.g., [14]), 2.14 III,
[16], Theorem C. See also e.g., [15, 3] for applications:

Theorem 3.1. Let G be a locally compact group and T := (Tt)t≥0 ⊆
Aut(G) a fixed continuous one-parameter group. Furthermore, let Γ :=
G o R denote the semidirect extension of G defined by T. Then

a) D := D(G)⊗D(R) is a core for any continuous convolution semi-
group of probabilities in M1

∗ (Γ).

b) There exists a bijection (µ(t))t≥0 ↔ (µt)t≥0 between M-semigroups
and continuous convolution semigroups, i.e., between (distributions of)
Ornstein-Uhlenbeck processes and (background driving) Lévy processes.
The bijection is expressed by the ’forward and backward Lie-Trotter
formulas’

(LT1) µ(t) = lim
n→∞

n−1

?
k=0

Tkt/n
(
µt/n

)
(LT2) µt = lim

n→∞
(µ(t/n))n

For (matrix cone-) hypergroups we shall prove in analogy to the
group case:

Theorem 3.2. Let K be a matrix cone hypergroup (investigated in [36,
40]) with fixed continuous one parameter group T := (Tt)t≥0 ⊆ Aut(K).
Define the semidirect hypergroup-product Γ := GoR in canonical way.

Then the assertions a) and b) of Theorem 3.1 hold true in this situa-
tion, where D(G) and D have to be replaced by suitable function spaces

A and D̃ (defined in the proof of Theorem 4.21 and in 4.23 below ) on
the hypergroups K and Γ respectively.
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In particular, D̃ is again a common core for all continuous convolu-
tion semigroups in M1

∗(Γ).

The proof of Theorem 3.1, worked out in Section 2, relied mainly
on the Theorem 1.9 b). In fact, Theorem 3.1, in particular a), is well-
known and was used several times – at least in the case of Lie groups –
without pointing out that the original version of Theorem 1.9 a) needs
a straight forward generalization (i.e. condition (ii’) instead of (ii))
to handle the case of semidirect products. (See e.g. [14], §2.14, [16]).
We included a proof in order to show the differences to the case of
hypergroups:

The proof of Theorem 3.2 is more complicated and not straight for-
ward. In fact, the details are quite technical, but I was unable to find
a better way. The proof will be carried out in Section 4, in a series
of propositions, which may be interesting in their own right. Here we
sketch an outline of the proof :

1. Assume (µ(t))t≥0 to be a M-semigroup on K with corresponding

space-time semigroup (λt) inM1
∗(Γ). Then we construct a suitable core

E for (λt) such that on E the generator U of the convolution operators
(Rλt) splits U = W +P , W generating a continuous convolution semi-
group (σt = µt ⊗ ε0)t≥0 concentrated on K⊗{0} ∼= K, and P generates

the semigroup of shifts
(
p+
t := ε(e,t)

)
t≥0

. (Note that the constructed

core E still depends on (λt).)

2. Then the Lie-Trotter formula (LT ) (Proposition 2.4 a)) applied to
U = W + P yields (LT1). Hence (µ(t))t≥0 7→ (µt)t≥0 is established.

3. Conversely, let (µt) be a continuous convolution semigroup on a
matrix cone hypergroup K. On these hypergroups there exists a sub-
space A which is a common core for all continuous convolution semi-
groups on K and is invariant under shifts and automorphisms. (Cf.

1.11, 1.12). By means of A we construct a subspace D̃ ⊆ C0(Γ) which
is a common core for continuous convolution semigroups in M1

∗(Γ).

4. Furthermore, let V be the generator of (µt)t≥0, let (σt := µt ⊗ ε0)t≥0

with generator W , and let P as above, then U = W + P is (the re-

striction to D̃ of) the generator of a continuous convolution semigroup
(λt = µ(t)⊗ εt)t≥0 ⊆ M1

∗(Γ). Applying the Lie-Trotter formulas to
U = W + P resp. W = U − P and considering the space component,
i.e., the projection to K, we obtain (LT1) and (LT2) respectively.

5. Together with step 1. this yields the bijection (µ(t))t≥0 ↔ (µt)t≥0

as asserted.

4. Semidirect products Γ = K o R: The case of matrix
cone hypergroups K

As announced in Theorem 3.2 our aim is to establish a 1-1-correspon-
dence between M-semigroups and continuous convolution semigroups
on a class of hypergroups with ’group-like behaviour’: Such hyper-
groups on the cone of non-negative definite matrices were recently
investigated, cf. [36, 40], a class of hypergroups which share many
features with locally compact groups. In particular, the group of au-
tomorphisms is well known, and there exist continuous one-parameter
groups of automorphisms in abundance. (See e.g. [17] for an overview
of some probabilistic structures on these hypergroups, in particular,
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the first section contains a collection of basic properties.) In the sequel
we have these examples in mind, but results and proofs depend only on
particular properties of K, thus could be generalized to larger classes
of hypergroups.

Definition 4.1. Let K be the cone of positive semidefinite d × d-
matrices endowed with a hypergroup structure (investigated in [36, 40]).
(We restrict for convenience to the case of real matrices.) K is a com-

mutative Hermitean hypergroup, furthermore, self-dual (i.e., K̂ is a
hypergroup ∼= K), with Pontryagin and Godement property. In partic-
ular, Lévy’s continuity theorem is valid. K is aperiodic, i.e., without
idempotents except the unit e. The unit of the hypergroup K is the
zero-matrix, denoted by e.

Automorphisms of K are obtained in the following way: K is con-
sidered as subset of the d × (d − 1)/2−dimensional vector space H :=
K − K of (real) Hermitean matrices. For a ∈ GL(Rd) put Ta : H 3
κ 7→ ((aκ) (aκ)∗)

1/2
= (aκ2a∗)

1/2 ∈ K. The restriction to K de-
fines an hypergroup automorphism of K. Let (Tt)t∈R be a continu-
ous one-parameter group in Aut(K). Then there exists a continuous
one-parameter group (at = exp(tQ))t∈R ⊆ GL(Rd) such that Tt = Tat

∀t ∈ R. And conversely, (Tat) ⊆ Aut(K) for any one-parameter group
(at). In the following we fix Tt := Tat with at = exp t ·Q, t ∈ R.

Let V := H ⊗ R, the Cartesian product, containing Γ := K ⊗ R
as a subset. Γ, endowed with a convolution structure ε(x,s) ∗ ε(y,t) :=(
εx ? εTs(y)

)
⊗ εs+t for (x, s), (y, t) ∈ Γ and with involution defined by

(x, s)− = (T−s(x)
−,−s) is a (non commutative) hypergroup. (The ax-

ioms are easily verified. Note that in our case, K is Hermitean, hence
in particular, T−s(x)

− = T−s(x).) Therefore, the notation Γ =: K o R
is justified.

Probabilities on K resp. on Γ act by convolution on C0(K) and C0(Γ)
respectively. We denote the left and right convolution operators as fol-
lows: Let f ∈ C0(K), g ∈ C0(Γ), z ∈ K, (z, r) ∈ Γ.

•
Rz f(x) = f(x ? z) =

∫
K
f(y)d (εx ? εz) (y)

•
Lz f(x) = f(z ? x) =

∫
K
f(y)d (εz ? εx) (y)

R(z,r)g(x, s) = f ((x, s) ∗ (z, r)) =

∫
Γ

g(y, u)d
(
ε(x,s) ∗ ε(z,r)

)
(y, u)

L(z,r)g(x, s) = f ((z, r) ∗ (x, s)) =

∫
Γ

g(y, u)d
(
ε(z,r) ∗ ε(x,s)

)
(y, u)

In an analogous way we define for measures λ on Γ resp. µ on K the

left resp. right convolution operators
•
Rµ,

•
Lµ, Rλ, Lλ on K resp. Γ.

Definition 4.2. In the following we restrict again our considerations
to measures on the ’space-time building’ Γ of the particular form λ =
µ ⊗ εu ∈ M1

∗(Γ) := {µ⊗ εu : µ ∈M1(K), u ∈ R}. In that case we
have

Rµ⊗εug(x, s) =

∫
K
g (x ? Ts(y), s+ u) dµ(y)

Lµ⊗εug(x, s) =

∫
K
g (y ? Tu(x), s+ u) dµ(y)
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Note that for g = ϕ⊗ ψ we obtain (with ψu : s 7→ ψ(s+ u)):

Rµ⊗εug(x, s) =

∫
K
ϕ (x ? Ts(y)) dµ(y) · ψu(s) =

( •
RTs(µ) ϕ

)
(x) · ψu(s)

Lµ⊗εug(x, s) =

∫
K
ϕ (y ? Tu(x)) dµ(y) · ψu(s) =

( •
Lµ ϕ

)
(Tu(x)) · ψu(s)

The involution on Γ induces involutions on on spaces of functions and
measures:

Let g ∈ Cb(Γ). Then g̃(x, s) := g ((x, s)−) = g (T−s(x),−s)
Let λ ∈Mb(Γ). Then

∫
Γ
fdλ̃ :=

∫
Γ
f̃dλ

In particular, for λ = µ⊗ εu we obtain λ̃ = T−u(µ)⊗ ε−u.

We recall the notations of left invariant operators and subspaces
introduced in Section 2; we have to distinguish between invariant op-
erators on K and on the non-commutative hypergroup Γ.

Proposition 4.3. a) For λ, µ ∈Mb(Γ) we have (̃λ ∗ µ) = µ̃ ∗ λ̃

b) For λ ∈Mb(Γ), f ∈ C0(Γ) we have (̃Rλf) = Lλ̃f̃

The existence of background driving Lévy processes: the map-
ping (µ(t))t≥0 7→ (µt)t≥0.
The hypergroup K is embedded into a vector space H, hence inher-
its a differentiable structure. Note that the action of Tt on K resp.
H is smooth: t 7→ (Texp tQ(κ))2 = exp tQ κ2 exp tQ∗ =: κ(t)2 is an
entire function, and K 3 x 7→ x1/2 ∈ K is holomorphic on K0 :=
K∩GL(Rd). If the kernel N(κ) 6= {0} then N(κ(t)) = exp(−tQ∗)N(κ)
andN(κ(t))⊥ = exp(−tQ)N(κ)⊥, hence the projections onto these sub-
spaces depend analytically on t. Whence the assertion easily follows.

We define particular differential operators:

Definition 4.4. For f ∈ C(1)
0 (H⊗R) (i.e. with continuous derivatives

in C0(H⊗ R)) and (x, s) ∈ H⊗ R we put

Xf(x, s) :=
d+

dt

∣∣∣∣t=0f(Tt(x), s+ t) = lim
t↘0

1

t
(f(Tt(x), s+ t)− f(x, s))

Pf(x, s) :=
d+

dt

∣∣∣∣t=0f(x, s+ t) = lim
t↘0

1

t
(f(x, s+ t)− f(x, s))

Sf(x, s) :=
d+

dt

∣∣∣∣t=0f(Tt(x), s) = lim
t↘0

1

t
(f(Tt(x), s)− f(x, s))

For the restriction to (x, s) ∈ Γ we obtain:

Proposition 4.5. Let λ ∈Mb(Γ), f ∈ C(1)
0 (H⊗ R), (x, s) ∈ Γ

a) Xf(x, s) = lim
t↘0

L 1
t (ε(e,t)−ε(e,0))f(x, s)

b) Pf(x, s) = lim
t↘0

R 1
t (ε(e,t)−ε(e,0))f(x, s)

Hence

c) RλXf(x, s) = XRλf(x, s) d) LλPf(x, s) = PLλf(x, s)

e) sup
(x,s)∈Γ

|XRλf(x, s)| ≤ ||λ|| sup
(x,s)∈Γ

|Xf(x, s)|

f) sup
(x,s)∈Γ

|SRλf(x, s)| ≤ ||λ|| sup
(x,s)∈Γ

|Sf((x, s)|.
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a)–e) are obvious, only f) needs a proof:

It is sufficient to prove the assertion for λ = ε(y,u). A simple calculation
shows SR(y,u)f(x, s) = R(Ts(y),u)Sf(x, s). Whence

sup
(x,s)∈Γ

|SR(y,u)f(x, s)| = sup
(x,s)∈Γ

|R(Ts(y),u)Sf(x, s)| ≤

sup
(y′,u)∈Γ

sup
(x,s)∈Γ

|R(y′,u)Sf(x, s)| ≤ sup
(y′,u)∈Γ

||R(y′,u)Sf ||C0(Γ) ≤ ||Sf ||C0(Γ).
]]

Proposition 4.6. Let f ∈ C(1)
0 (H⊗ R), (x, s) ∈ H⊗ R.

Xf(x, s) = lim
t↘0

1

t
(f (Tt(x), s)− f(x, s)) + lim

t↘0

1

t
(f(x, s+ t)− f(x, s))

=: Sf(x, s) + Pf(x, s)[[
Xf(x, s) =

lim
t↘0

[
1
t
(f (Tt(x), s+ t)− f(x, s+ t)) + 1

t
(f(x, s+ t)− f(x, s))

]
The second terms converge to Pf(x, s), hence also the first terms

are convergent, to S ′f(x, s) say. Now

S ′f(x, s) = lim
t↘0

[
1
t
(f (Tt(x), s+ t)− f(Tt(x), s))

+1
t
(f (Tt(x), s)− f(x, s)) −1

t
(f(x), s+ t)− f(x, s))

]
The first and third terms converge to Pf(x, s) and −Pf(x, s) re-

spectively, hence S ′f = Sf as asserted.
]]

The differential operators X and P are related by

Proposition 4.7.
(
Xf̃
)

(x, s) = −
(
P̃ f
)

(x, s)

[[
Xf̃(x, s) = lim

t↘0

1

t

(
f̃ (Tt(x), s+ t)− f̃(x, s)

)
= lim

t↘0

1

t
(f (T−s−tTt(x),−s− t)− f (T−s(x),−s))

= lim
t↘0

1

t
(f (Ts(x),−s− t)− f (T−s(x),−s))

= − (Pf) (T−s(x),−s) = −
(
P̃ f
)

(x, s)
]]

Definition 4.8. We introduce semi-norms on C
(1)
0 (H⊗ R):

||f ||(0) := sup
(x,s)∈Γ

|f(x, s)|, ||f ||(1) := sup
(x,s)∈Γ

|Xf(x, s)| = ||Xf ||(0)

and ||f ||(2) := ||Sf ||(0). Finally we put |||f ||| :=
∑2

j=0 ||f ||(j).

B denotes the completion of C
(1)
0 (H⊗R) w.r.t. |||·|||. (Since functions

coinciding on Γ are identified, the Banach space B may be considered
as subspace of C0(Γ).)

Proposition 4.9. a) B is dense in C0(Γ) w.r.t. || · ||∞(= || · ||(0)).
b) For all f ∈ B there exist Xf, Pf, Sf ∈ C0(Γ).

c) For all λ ∈Mb(Γ), for all f ∈ B we have |||Rλf ||| ≤ ||λ|| · |||f |||.
d) In particular, for a continuous convolution semigroup (λt)t≥0 in

M(1)(Γ) the operators (Rλt)t≥0 may be considered as C0−contraction
semigroup on C0(Γ) as well as on B.
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a), b) are obvious, c) and d) are immediate consequences of Propo-

sition 4.5 e) and f).
]]

Definition 4.10. In the following let (λt = µ(t)⊗ εt)t≥0 be a contin-

uous convolution semigroup in M1
∗(Γ) with λ0 = ε(e,0). Let (U,D(U))

resp.
( ∗
U,D(

∗
U)
)

denote the infinitesimal generators of the C0− con-

traction semigroups (Rλt)t≥0 on C0(Γ) and on B respectively.

Proposition 4.11. D(
∗
U) is dense in D(U) and in C0(Γ), furthermore,

D(
∗
U) is a core for (U,D(U)).[[
In fact, by construction D(

∗
U) ⊆ D(U) and D(

∗
U) is dense in B

w.r.t. ||| · |||. Hence also dense in C0(Γ) w.r.t. || · ||(0). Furthermore,

(I−
∗
U)D(

∗
U) = B, hence (I − U)D(

∗
U) is dense in C0(Γ). Whence the

assertion.
]]

Remark 4.12. D(U) is left invariant since U is left invariant. But
the ||| · |||−defining operators X and S are not left invariant. Hence we

can not conclude that D(
∗
U) is left invariant. That is the reason why

we have to use more complicated constructions in the sequel

Proposition 4.13. There exists a core E for (Rλt)t≥0 (resp. (U,D(U)))
such that E ⊆ D(U) ∩D(P )

Proof: Let f ∈ D(U), ψ ∈ D(R). Put g = gf,ψ : (x, s) 7→ f(x, s) ·ψ(s).

Let E0 := span {gf,ψ : f ∈ D(U), ψ ∈ D(R)}.
1. E0 ⊆ D(U).

In fact, we prove for g := gf,ψ : Ug(x, s) = Uf(x, s)·ψ(s)+f(x, s)·ψ′(s):[[ 1

t

∫
K
g(x ? Ts(y), s+ t)− g(x, s)dµ(t)(y)

=
1

t

∫
K
f(x ? Ts(y), s+ t) · ψ(s+ t)− f(x, s) · ψ(s)dµ(t)(y)

=

[
1

t

∫
K
f(x ? Ts(y), s+ t)− f(x, s)dµ(t)(y)

]
· ψ(s+ t)

+

∫
K
f(x, s)dµ(t)(y) ·

[
1

t
(ψ(s+ t)− ψ(s))

]
t→0−→ Uf(x, s) · ψ(s) + ψ′(s) · f(x, s).

]]
Convergence is uniform in (x, s) since ψ and ψ′ have compact support

and Uf ∈ C0(Γ).

2. E0 is dense in C0(Γ). In fact, let Ln be compact intervals, Ln ↗ R,
e.g., Ln = [−kn, kn] with kn ↗ ∞. Let ψn ∈ D(R), 1Ln ≤ ψn ≤ 1Ln+1 .
Then f(x, s)·ψn(s) → f(x, s) uniformly in (x, s) ∈ Γ (since f ∈ C0(Γ)).

3. (I − U)E0 is dense in C0(Γ).[[
We show: ∀ε > 0 ∀ f ∈ D(U) there exists a g ∈ E0 such that

||(I − U)f − (I − U)g||∞ = ||(f − g)− (Uf − Ug)||∞ < ε. (Note that
(I − U)D(U) = C0(K).)

Let f ∈ D(U), choose Ln, ψn as above, and assume in addition that
||ψn′||∞ → 0. Put gn(x, s) := f(x, s) · ψn(s). Then (I − U)gn(x, s) =
gn(x, s)−Uf(x, s) ·ψn(s)−f(x, s) ·ψ′n(s), therefore, |(I−U)f(x, s)−
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(I−U)gn(x, s)| ≤ ||f−gn||(0)+|Uf(x, s)|·|1−ψn(s)|+||f ||(0) ·||ψ′n||∞ →
0. Convergence is again uniform in (x, s) since Uf ∈ C0(Γ).

]]
4. The above steps remain true if E0 is replaced by

E := span
{
gf,ψ : f ∈ D(

∗
U), ψ ∈ D(R)

}
.

(According to 4.11, D(
∗
U) is a core for (U,D(U)).)

5. In that case we have in addition E ⊆ D(P ) (and PE ⊆ C0(Γ)).[[
Since D(

∗
U) ⊆ B ⊆ D(P ) (cf. Proposition 4.9) and Pgf,ψ(x, s) =

Pf(x, s) · ψ(s) + f(x, s) · ψ′(s) .)
]]

�

Note that in contrast to E0 the core E is not left invariant but the
core D(U) ∩D(P ) is:

Proposition 4.14. D(U)∩D(P ) is a core for (U,D(U)) (since the core
E is contained in D(U)∩D(P ) according to 4.13). Furthermore, D(U)∩
D(P ) is obviously left invariant, since U and P are left invariant.

For f ∈ D(U) ∩D(P ) we have:

Uf = Wf + Pf,

where Wf(x, s) = lim
t↘0

1
t

∫
K f(x ? Ts(y), s)− f(x, s)dµ(t)(y)

= lim
t↘0

1
t

(
Rµ(t)⊗ε0 − I

)
f(x, s)

[[
Uf(x) = lim

t↘0

1
t

∫
K f(x ? Ts(y), s+ t)− f(x, s)dµ(t)(y) =

= lim
t↘0

1
t

∫
K f(x ? Ts(y), s+ t)− f(x, s+ t)dµ(t)(y) +

lim
t↘0

1
t

∫
K f(x, s+ t)− f(x, s)dµ(t)(y) =: Wf(x, s) + Pf(x, s)

Furthermore,

Wf(x, s) = lim
t↘0

[
1

t

∫
K
f(x ? Ts(y), s)− f(x, s)dµ(t)(y)

+
1

t

∫
K
f(x ? Ts(y), s+ t)− f(x ? Ts(y), s)dµ(t)(y)

−1

t

∫
K
f(x, s+ t)− f(x, s)dµ(t)(y)

]
The second and the third terms converge to Pf(x, s) and −Pf(x, s)

respectively, whence

Wf(x, s) = lim
t↘0

1

t

∫
K
f(x ? Ts(y), s)− f(x, s)dµ(t)(y)

follows.
]]

Definition 4.15. Λ :=

{
K 3 x 7→ f(x, 0) =:

•
f (x) : f ∈ D(U) ∩D(P )

}
Proposition 4.16. Λ is || · ||−dense in C0(K), left invariant (and also
right invariant, as K is Abelian).[[
D(U) ∩D(P ) is a left invariant subspace of C0(Γ). In other words,

L(y,u)(D(U)∩D(P )) ⊆ (D(U)∩D(P )) ∀(y, u) ∈ Γ. Considering u = 0

we obtain
•
Ly (Λ) ⊆ Λ ∀y ∈ K.

]]
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Now we are ready to prove the existence of a background driving Lévy
process:

Proposition 4.17. As introduced afore, we put
•
f for the restriction

of f to {(y, 0) : y ∈ K} ≡ K. With this notation we have:

Λ 3
•
f 7→ Wf(·, 0) =: V

•
f

is a left invariant operator Λ → C0(K). V is dissipative (by construc-
tion) and has a unique extension to the generator of a semigroup of
convolution operators (Rµt)t≥0 for a continuous convolution semigroup

(µt)t≥0 ⊆M(1)
+ (K). In particular, Λ is a core for (µt)t≥0.[[

Λ is dense in C0(K) and left invariant. Since K is Abelian, Λ is

(trivially) right invariant. By construction, V is dissipative, whence
according to Theorem 1.9 a) the existence of (µt)t≥0 ⊆M(1)(K) follows.

Furthermore, according to Proposition 4.14, V = lim
t↘0

Vt where Vt =

1
t

(
Rµ(t) − I

)
and µ(t) ∈ M1(K). Hence Rµs = lim

t↘0
exp s · Vt, thus

µs = lim
t↘0

exp s1
t
(µ(t)− εe) ≥ 0 for all s ≥ 0.

]]
Proposition 4.18. Let (µt)t≥0 ⊆ M(1)

+ (K), W and V be defined as

in Proposition 4.17. Let (σt := µt ⊗ ε0)t≥0 ⊆M1
∗(Γ) denote the corre-

sponding continuous convolution semigroup, concentrated on K⊗{0} ∼=
K. Put furthermore

(
p±t := ε(e,±t)

)
t∈R+

.

Then W and ±P are the generators of (Rσt)t≥0 and
(
Rp±t

)
t≥0

re-

spectively.[[
For all (x, s) ∈ Γ we have:

Wf(x, s) = lim
t↘0

1

t

∫
K
f (x ? Ts(y), s)− f(x, s)dµ(t)(y)

= lim
t↘0

1

t

∫
K

(
L(e,s)f

)
(T−s(x) ? y, 0)−

(
L(x,s)f

)
(T−s(x), 0) d(µ(t)(y)

= V
•
g (T−s(x)) (with g := L(e,s)f)

=
d+

dt

∣∣∣t=0

•
Rµt

•
g (T−s(x)) =

d+

dt
|t=0Rσtg (T−s(x), 0)

=
d+

dt
|t=0Rσtf (x, s)

(cf. Proposition 4.17.)
]]

In view of Proposition 4.14, application of the Lie-Trotter formula
(LT ) (Proposition 2.4 a)) to the decomposition U = W + P yields

Proposition 4.19. With the notations introduced above we obtain:

(LT1) µ(t) = lim
n→∞

n−1

?
k=0

Tkt/n
(
µt/n

)
[[

The Lie-Trotter formula (LT∗) yields λt = lim
n→∞

(
σt/n ? p

+
t/n

)n
. Con-

sidering the projection to the K−component yields (LT1).
]]
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In 4.17 we have proved µt ∈M(1)
+ (K). Now we are ready to prove

Proposition 4.20. µt ∈M1(K) for all t ≥ 0.[[
Assume ||µt|| < 1 for some t > 0. Then, as µt are positive, ||µt|| =

e−ct for some c > 0. Therefore, in (LT1) the right hand side has norm

≤ e−ct. A contradiction to the assumption µ(t) ∈M1(K).
]]

We have proved that for any M-semigroup (µ(t))t≥0 there exists a
continuous convolution semigroup (µt)t≥0, the background driving Lévy
process, such that (LT1) holds true. In fact, the following results
prove uniqueness of (µt)t≥0 and bijectivity of the mapping (µt)t≥0 7→
(µ(t))t≥0. Bijectivity is proved by the inverse Lie-Trotter formula (LT2).

The existence of M-semigroups: The mapping (µ(t))t≥0 7→
(µt)t≥0

First we show

Theorem 4.21. Let (µt)t≥0 be a continuous convolution semigroup in

M1(K). Then there exists a M-semigroup (µ(t))t≥0 ⊆ M1(K) such
that (LT1) and (LT2) hold:

(LT1) µ(t) = lim
n→∞

n−1

?
k=0

Tkt/n
(
µt/n

)
(LT2) µt = lim

n→∞
(µ(t/n))n

Proof: At the first glance it seems obvious to consider as before

W =
d+

dt

∣∣∣∣t=0Rµt⊗ε0 =:
d+

dt
|t=0Rσt

and to apply the Lie-Trotter formula to the representation U = W +P
resp. W = U − P . But a priori there is no ’natural’ common domain
for U,W,P . Therefore we have to find a slightly different approach.
This will be done in the subsequent steps, formulated as propositions.

Let (µt)t≥0 ∈ M1(K) be given, define (σt := µt ⊗ ε0)t≥0 ⊆ M1
∗(Γ),

put for t > 0, Wt := 1
t
(Rσt − I), Vt := 1

t

( •
Rµt −I

)
(acting on C0(Γ)

and C0(K) respectively). Furthermore, let (W,D(W )) and (V,D(V ))
be the generators of the corresponding contraction semigroups (Rσt)

and
( •
Rµt

)
.

LetA ⊆ D(V ) denote a core for (µt)t≥0 with the following properties:
(1) A is left invariant (and right invariant, as K is Abelian).
(2) Ts(A) ⊆ A for all automorphisms Ts.

[ Such cores exist for K, e.g., A =
(
L1
c(K̂)

)∨
, the space of analytic

vectors, as mentioned in 1.11, 1.12. ]

Define D := A⊗D(R) ⊆ C0(Γ). Then we have:

(i) D ⊆ D(W )[[
Let f := ϕ⊗ ψ ∈ D. Then

Wtf(x, s) = 1
t

(∫
K ϕ (x ? Ts(y))− ϕ(x)dµt(y)

)
· ψ(s)

= (Vtγ) (T−s(x)) · ψ(s)
t→0−→ (V γ) (T−s(x)) · ψ(s)

(with γ := ϕ ◦ Ts ∈ A.) We define: Wf(x, s) := lim
t↘0

Wtf(x, s)
]]

(ii) D is left invariant and dense in C0(Γ)
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Obviously D is dense in C0(Γ). To prove invariance we consider

L(y,t) (ϕ⊗ ψ) (x, s) = (ϕ⊗ ψ) (y ? Tt(x), s+ t) =

(ϕ ◦ Tt) (T−t(y) ? x)·ψ(s+t) =
•
L(T−t(y)) (ϕ ◦ Tt) (x)·ψ(s+t) =: g(x)·ξ(s)

with g =
•
L(T−t(y)) (ϕ ◦ Tt) ∈ A and ξ ∈ D(R).

]]
�

Proposition 4.22. Let f ∈ D, (z, u) ∈ Γ. Then R(z,u)f ∈ D(W ).[[
In fact, by definition

WtR(z,u) (ϕ⊗ ψ) (x, s) =

=
1

t

∫
(ϕ (x ? Ts(z) ? Ts+u(y))− ϕ (x ? Ts(z)) dµt(y) · ψ(s+ u)

= Vt (ϕ ◦ Ts+u)
(
T−(s+u)(x) ? Tu(z)

)
· ψ(s+ u)

=:
•
Rz ((Vtϕs,u) ◦ T−u) (T−s(x)) · ψu(s) (with ϕs,u := ϕ ◦ Ts+u)

t→0−→
•
Rz ((V ϕs,u) ◦ T−u) (T−s(x)) · ψu(s)

= V (ϕ ◦ Ts+u)
(
T−(s+u)(x) ? Tu(z)

)
· ψ(s+ u)

=: W
(
R(z,u) (ϕ⊗ ψ)

)
(x, s)

Convergence is again uniform on Γ.
]]

Definition 4.23. Let D̃ := span
{
R(z,u)f : (z, u) ∈ Γ, f ∈ D

}
Proposition 4.24. D̃ is dense in C0(Γ) and left and right invariant.

Furthermore, D̃ ⊆ D(W ) ∩D(P ).

W and ±P are, as limits of convolution operators, left invariant and
by construction dissipative. Hence U shares this property.

Therefore, according to Theorem 1.9 c), D̃ is a core for P , W and
U := W + P . (Note that W = U − P .)[[

Only D̃ ⊆ D(P ) needs a proof:

PR(z,u) (ϕ⊗ ψ) (x, s) = lim
t↘0

R 1
t (ε(e,t)−ε(e,0))R(z,u) (ϕ⊗ ψ) (x, s) =

lim
t↘0

(ϕ (x ? Ts(z)))·
1

t
(ψ(s+ u+ t)− ψ(s+ u)) = ϕ (x ? Ts(z))·ψ′(s+u)

Convergence is uniform since ψ and ψ′ have compact supports. Whence

the assertion.
]]

Proposition 4.25. The afore announced Lie-Trotter formulas (LT1)
and (LT2) (cf. 4.21) hold.[[

Applying the Lie-Trotter formula (LT ) (cf. Proposition 2.4 a)) to

U = W + P resp. W = U − P yields λt = lim
n→∞

(
σt/n ∗ p+

t/n

)n
resp.

σt = lim
n→∞

(
λt/n ∗ p−t/n

)n
, t ≥ 0. Projecting to the space component K

yields (LT1) resp. (LT2)
]]

We have proved, that (µ(t))t≥0 , (λt)t≥0 ⊆ M+(K) and have norm
||µ(t)||, ||λt|| ≤ 1. Comparing the norms in (LT1) and (LT2) yields
again that µ(t) and hence λt are probabilities.
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The proof of Theorem 3.2 is complete. �

Remark 4.26. In the particular situation with given continuous con-
volution semigroup (µt)t≥0 ⊆ M1(K) it is possible to find an alterna-
tive proof for the existence of a corresponding M-semigroup (µ(t))t≥0 ⊆
M1(K) satisfying (LT1):

The alternative proof avoids space-time semigroups and relies heavily
on the fact that K is Abelian (this was used also before, to find an
example A of a suitable function space with prescribed properties) and
on the validity of Lévy’s continuity theorem.[[

Let µ̂t = etL with strongly negative definite −L : K̂ (≡ K) → R. (For

definitions and properties of positive and negative definite functions
on hypergroups see e.g. [5, 41, 20]). L is a continuous function and
R 3 s 7→ Ts ∈ Aut(K) is continuous. Define

M(t) :=
∫ t

0
L ◦ T ∗s ds = lim

n→∞
t
n

n−1∑
k=0

L ◦ T ∗kt/n =: lim
n→∞

Mn(t)

(where T ∗s denotes the dual automorphism acting on K̂ (∼= K)).

Obviously, Mn(·) are continuous and −Mn(·) are strongly negative
definite functions with corresponding continuous convolution semigroups(
ρ

(n)
t :=

n−1

?
k=0

µ
(n)
k,t

)
t≥0

, where µ
(n)
k,t := Tkt/n(µt/n), ρ̂

(n)
t = eMn(t). More-

over, eMn(t) n→∞−→ eM(t) (for all t ≥ 0), and the limit is continuous at
e. Therefore, according to Lévy’s continuity theorem for hypergroups,

there exist probabilities µ(t) ∈M1(K) with µ̂(t) = eM(t) and, since by
construction, t 7→ M(t) is continuous, t 7→ µ(t) is weakly continuous.

Furthermore, by construction, µ(t) = lim
n→∞

n−1

?
k=0

Tkt/n(µt/n). I.e., (LT1)

holds. And in addition, ∀s, t ≥ 0, M(s+ t) = M(s)+M(t)◦T ∗s . Hence

(µ(t))t≥0 is a M-semigroup.
]]

Note that by construction, t 7→ M(t) =
∫ t

0
L ◦ T ∗s ds is differentiable

in t = 0 with d+

dt
|t=0M(t) = L . (*)

On the other hand, if (*) is assumed for strongly negative definite

functions −M(t), t ≥ 0, and −L : K̂ → R is continuous and strongly
negative definite, then there exist µ(t) ∈ M1(K) and a continuous
convolution semigroup (µt)t≥0, such that (LT2) holds.[[

In fact, µ̂(t/n)
n

= et·
n
t
·M( t

n
) → et·L. Lévy’s continuity theorem proves

the assertion (LT2): µ(t/n)n → µt.
]]

As Fourier transforms on K̂ are real valued, it is easily shown that
(LT2) is equivalent to the differentiability condition (*).

Hence we obtain:

Remark 4.27. The proof of (LT1) and (LT2) in Proposition 4.25
shows in view of Theorem 3.2 that for any M-semigroup on K with

Fourier transform µ̂(t) = eM(t), t ≥ 0, the logarithms M(t) are differ-

entiable at t = 0 and d+

dt
|t=0M(t) = L, the logarithm of the Fourier

transform of the background driving Lévy process.
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