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1 Introduction

A critical Galton-Watson process (GWP) with finite offspring variance σ2 > 0 and initial
state Z0 is an N0-valued Markov process Z = (Zn : n ∈ N0) that can be defined recursively
as follows:

Zn =
Zn−1∑
i=1

Nn−1,i (n ∈ N) (1)

where {Nn,i : n ≥ 0, i ≥ 1} is a family of i.i.d. N0-valued random variables with mean 1 and
variance σ2. The state Zn can be seen as the number of individuals of a certain population
in the n-th generation; Nn,i is the random number of direct descendants of individual i of the
n-th generation. Background on GWPs is given in [1, 2, 3, 11, 12, 23] and others.

It is known that Z, re-scaled by the factor ε in both time and space, converges weakly (ε ↓
0) to a time-continuous homogeneous Markov process with continuous samples and Jǐrina’s
branching property [15], see [9, 22, 24]. The limiting process is known as Feller’s branching
diffusion and it is the unique solution of the following stochastic differential equation (SDE)

dXt = σ
√
|Xt| dWt. (2)

Here, W is a one-dimensional Brownian motion. The solution of (2) can be regarded as a
total mass approximation of a “large” system of individuals having “small” individual mass
and branching in “quick” succession. To get an intuition why the square-root is the right
coefficient in (2), note that the variance of Xt equals σ2X0t. This expression resembles the
variance of Zn which is given by σ2Z0n.

In this article, we focus on the approximation of more general SDEs by (generalized) time-
discrete GWPs. We consider the following equation

dXt = (δ(t) + µ(t)Xt) dt+ σ(t,Xt)
√
|Xt| dWt, X0 = y ≥ 0 (3)

where δ : R+ → R+, µ : R+ → R and σ : R+ ×R→ R+ are continuous functions. We assume
that there is some constant K > 0 satisfying

|σ2(t, x)| ≤ K(1 + |x|) ∀ t ∈ R+, x ∈ R, (4)

δ(t) + |µ(t)| < K ∀ t ∈ R+. (5)

Moreover we assume that there exists a unique weak solution of (3), which is the case, e.g., if
(14) holds for a(t, x) = σ(t, x)

√
|x| (cf. Section 4). For instance, one can choose σ(t, x) = ν|x|γ

with ν ∈ R+ and 0 ≤ γ ≤ 1/2. In particular, Feller’s branching diffusion with drift, i.e., the
Cox-Ingersoll-Ross model [5], and the geometric Brownian motion match the requirements.
In Section 2 we present a weak approximation of SDE (3) by a re-scaled version of the GWP
defined in (1) with additional immigration, where the branching mechanism is no longer
critical and where the offspring variance may depend on the time and the current state of
the process. To some extent, the approximating process belongs to the class of population-
size-dependent Galton-Watson processes in the sense of [10, 13, 17, 18]. Note that there are
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several results on the approximation of SDEs by different types of GWPs, see [4, 7, 8, 24] and
others. However, up to the authors best knowledge, the approximation in Section 2 has not
been made rigorous so far. The proof of our approximation result avails a martingale method
(given in [28]) similar to those of [25, 26]. The martingale method will be described in Section
4, the proof itself will be carried out in Section 5. The method of [28] allows in particular a
weakening of the usual assumption of a common offspring law. In Section 3 we add to the
approximation result a discussion of the long-time behavior of the limiting process (3).

We emphasize that the approximation of (3) in Section 2 is time-discrete, i.e., the lifetime of
an individual is fix (and not governed by an exponential clock as for instance in Section 9.4 of
[8]). In the scope of numerical simulations of SDEs, practitioners typically prefer to work in
discrete time so that the result is interesting for applications. In contrast to the classical Euler
scheme (see, e.g., [19]), the presented approximation of SDE (3) has the advantage that also
the approximating process is nonnegative for all time. In many situations this is an desirable
property, for instance, in the context of the Cox-Ingersoll-Ross short term interest rate model
[5]. Note that we have to modify the “conventional” re-scaling of GWPs [24] since we allow
for an immigration δ 6= 0. If δ = 0 then one could also consider the “conventional” re-scaling,
cf. Remark 2.4.

We conclude the Introduction with some notation. We denote by D(R) and D(R+) the spaces
of cádlàg functions from R+ to R respectively to R+. We equip these spaces with the topology
generated by the Skohorod convergence on compacts and we consider them as measurable
spaces with respect to their Borel σ-algebras. For every ε > 0 we set εN0 = {εn : n ∈ N0}.
For every x ∈ R+ we let bxcε be the largest element of εN0 which is smaller than or equal to
x. Finally we set tεn = nε and xεk = kε2 for every n, k ∈ N0.

2 Main result

Let δ, µ, and σ, be functions as discussed subsequent to (3). Moreover let X̄ε be an ε2N0-
valued Markov process with index set εN0, which is defined via the transition probabilities as
follows. First, set X̄ε

tε0
= bycε2 . Then, for every n ∈ N, the one-step transition probability of

X̄ε,
pε(tεn−1, t

ε
n;xεk, . ) = prob

[
X̄ε
tεn

= .
∣∣∣ X̄ε

tεn−1
= xεk

]
,

is defined to be the law of the random variable

ε
⌊
δ(tεn−1)

⌋
ε

+
ε−2xεk∑
i=1

ε2N ε
n−1,i(x

ε
k). (6)

Here, {N ε
n,i(x

ε
k) : i ∈ N, n, k ∈ N0} is any family of independent, 4-integrable, N0-valued

random variables such that, for every i, n ∈ N and k ∈ N0, the random variable N ε
n−1,i(x

ε
k)

has

(i) mean 1 + εµ(tεn−1),
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(ii) variance σ2
ε (t

ε
n−1, x

ε
k)/ε,

(iii) fourth moment being bounded above by C4(1 + (xεk)
3)/εη,

where σ2
ε (t

ε
n−1, x

ε
k) = σ2(tεn−1, x

ε
k) + ε2K, and η < 5 and C4 > 0 are some constants being

independent of ε, i, n, and k. The constant K was introduced subsequent to (3). We assume
ε ≤ 1/(2K), so that

1 + εµ(tεn−1) ≥ 1/2 > 0 (n ∈ N0) (7)

(note that µ may take negative values). Condition (7) and the use of σ2
ε (instead of σ2) ensure

the existence of a distribution on N0 satisfying (i)-(iii). This will be discussed in detail in the
Appendix A. The existence of a Markov chain corresponding to pε is given by the classical
theory of Markov chains.

As in (1), the sum in (6) can be seen as a reproduction of the individuals of generation n− 1,
but now the mass of each single individual is only ε2. We emphasize that ε−2xεk is an integer
and represents the number of individuals of generation n − 1. The variance of the number
of offspring now depends on the time and the current total mass. Note however that we do
not assume that the numbers of offspring of the individuals of a given generation are identi-
cally distributed, so that the approximating process is a bit more general than the classical
population-size dependent GWP ([10, 13, 17, 18], etc.). The first summand in (6) can be
regarded as a time-dependent immigration into the system.

We may and do regard the Markov chain (X̄ε
tεn

: n ∈ N0) as a time-continuous Markov process
(Xε

t : t ≥ 0) with trajectories in the cádlàg space D(R) by setting Xε
t = X̄ε

btcε . The unique
continuous solution X of (3) can be seen as a cádlàg process too. Hence both Xε and X

induce laws on D(R). We denote them by Pε and P, respectively. Now we can state the main
result which holds for every sequence (εα) with εα > 0 and εα → 0.

Theorem 2.1 Pεα ⇒ P as α→∞.

Here, ⇒ symbolizes weak convergence. The proof is relegated to Section 5.

Remark 2.2 Since the laws Pεα have support in D(R+), Theorem 2.1 shows in particular
that the unique solution of SDE (3) is nonnegative. 2

Remark 2.3 It might be possible to relax the 4-integrability of the offspring numbersN ε
n,i(x

ε
k).

However, this integrability condition typically does not raise any problem. The basic problem
is to find any distribution on N0 satisfying (i)-(ii). Once having found such a distribution, the
4-integrability as well as the validity of (iii) often follow automatically, see the Appendix A.
For this reason (and for the sake of clarity) we desisted from weakening the 4-integrability,
and we rather decided to work with the convenient criterion of Theorem 4.2. 2
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Remark 2.4 In the scope of the approximation of (2) by a re-scaled version of (1), both the
index set and the state space of the re-scaled GWP can be chosen to be εN0 (cf. [24]). If
however δ 6= 0 in the context of (3) then εN0 is excluded from being the state space. Indeed:
The first summand in (6) has to be an element of the state space, and, moreover, this summand
divided by ε has to converge to δ(tεn−1), as ε→ 0, to make sure an application of Theorem 4.2
(or of any other related criterion). In general these two requirements contradict each other.
If δ = 0 in the context of (3) then, in turn, the state space of X̄ε can be chosen to be εN0

(instead of ε2N0). Of course, in this case (6) and (i)-(iii) have to be modified accordingly:

xεk/ε∑
i=1

εN ε
n−1,i(x

ε
k)

with {N ε
n,i(x

ε
k) : i ∈ N, n, k ∈ N0} any family of independent, 4-integrable, N0-valued random

variables such that, for every i, n ∈ N and k ∈ N0, the random variable N ε
n−1,i(x

ε
k) has

(i) mean 1 + εµ(tεn−1),

(ii) variance σ2
ε (t

ε
n−1, x

ε
k),

(iii) fourth moment being bounded above by C4(1 + (xεk)
3)/εη,

where η < 2 and xεk = kε, and σ2
ε (t

ε
n−1, x

ε
k) and C4 are as before. 2

3 Long-time behavior of the limiting process

If SDE (3) is regraded as the dynamics of the evolution of a population system, it is natural
to ask whether the population may become (temporally) extinct. In this section, we take up
this question. In fact, we are going to study the long-time behavior of the solution of (3) for
a particular set of coefficients. The question of (temporal) extinction then corresponds to the
question whether the stopping time T , defined below, is finite. Let δ ≥ 0, µ ∈ R, ν > 0, and
0 ≤ γ ≤ 1/2. Further, let X be the unique weak solution of

dXt = δ + µXt + ν|Xt|γ+1/2dWt, X0 = y > 0. (8)

We emphasize that (8) is a special case of (3), and that X is nonnegative by Theorem 2.1. Let
T = inf{t ≥ 0 : Xt = 0} be the first hitting time of the level 0, where we use the convention
inf ∅ = ∞. With the help of general results on the long-time behavior of SDEs ([6, 16]) we
will show that, depending on the choice of δ, µ, ν, and γ, one of the following statements
holds:

(a) P[T =∞] = P[inft≥0Xt = 0] = P[supt≥0Xt =∞] = 1

(b) P[T =∞] = P[inft≥0Xt > 0] = P[limt→∞Xt =∞] = 1

(c) P[T =∞] = P[limt→∞Xt = 0] = 1
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(d) P[T <∞] = P[Xt = 0 ∀t ≥ T ] = 1

(e) P[T <∞] = P[supt≥0Xt =∞] = 1

(f) P[T <∞] = 1− P[limt↑T Xt =∞] = π(y)
π(0) and P[Xt = 0 ∀t ≥ T |T <∞] = 1

(g) P[T <∞] = 1− P[limt↑T Xt =∞] = π(y)
π(0) and P[supt≥0Xt =∞] = 1

where
π(x) =

∫ ∞
x

exp
(
− 2
ν2

∫ s

1

δ + µz

z2γ+1
dz
)
ds.

Note that the statements (a)-(g) contradict each other.

Theorem 3.1 The following table shows, in dependence on the choice of δ, µ, ν, and γ,
which of the statements (a)-(g) holds.

γ = 0 γ ∈ (0, 1/2) γ = 1/2

(a) δ ≥ ν2/2 µ < 0 δ > 0 µ ≤ 0 δ ≥ 0 µ = ν2/2
δ = ν2/2 µ = 0 δ > 0 µ < ν2/2

(b) δ ≥ ν2/2 µ > 0 δ > 0 µ > 0 δ ≥ 0 µ > ν2/2
δ > ν2/2 µ = 0

(c) δ = 0 µ < ν2/2
(d) δ = 0 µ ≤ 0 δ = 0 µ ≤ 0
(e) δ ∈ (0, ν2/2) µ ≤ 0
(f) δ = 0 µ > 0 δ = 0 µ > 0
(g) δ ∈ (0, ν2/2) µ > 0

Proof (of Theorem 3.1) We adopt the notation of [16], and we choose I = (0,∞) and c = 1.
Since X is finite for all times t ≥ 0 (“no explosion in finite time”), the stopping time T defined
above coincides with the first exit time of the interval I, i.e. with S = inf{t ≥ 0 : Xt 6∈ I}
(which is studied in [16, Section 5.5.C]). The scale function and the speed measure are given
by

p(x) =
∫ x

c
exp

(
− 2
ν2

∫ s

c

δ + µz

z2γ+1
dz
)
ds, m(dx) =

2/ν2

p′(x)x2γ+1
dx (x ∈ I).

We further set v(ξ) =
∫ ξ
c (p(ξ)− p(x))m(dx) for ξ ∈ I. We concentrate on the case γ = 0 (for

γ ∈ (0, 1/2) and γ = 1/2 one can proceed in the same line). If δ ≥ ν2/2 and µ < 0, or δ = ν2/2
and µ = 0, then p(0+) = −∞ and p(∞−) = ∞, so that [16, Proposition 5.5.22(a)] implies
(a). If δ ≥ ν2/2 and µ > 0, or δ > ν2/2 and µ = 0, then p(0+) = −∞ and p(∞−) < ∞, so
that [16, Proposition 5.5.22(c)] implies (b). If δ ∈ [0, ν2/2) and µ ≤ 0, then v(0+) < ∞ and
p(∞−) = ∞. Thus [16, Proposition 5.5.32(iii)] implies P[T < ∞] = 1. If in addition δ = 0,
then it is not hard to show that the assumptions of Theorem 2.13 of [6] are fulfilled, so that
this theorem and the nonnegativity of X imply that the second probability in (d) equals one
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too. If, on the other hand, in addition δ is strictly inbetween 0 and ν2/2, then it is not hard
to show that the assumptions of Theorem 2.12 of [6] are fulfilled (for every level a > 0), so
that this theorem and the finiteness of X imply that the second probability in (e) equals one
too.

If δ = 0 and µ > 0, then p(0+) > −∞ and p(∞−) <∞. Therefore [16, Proposition 5.5.22(d)]
implies

P
[

lim
t↑T

Xt = 0
]

= 1− P
[

lim
t↑T

Xt =∞
]

=
π(y)
π(0)

.

For the first statement of (f) it remains to show P[limt↑T Xt = 0] = P[T < ∞]. By Bayes’
theorem, it suffices to show

P
[

lim
t↑T

Xt = 0
∣∣∣T <∞

]
= 1 (9)

and
P
[
T <∞

∣∣∣ lim
t↑T

Xt = 0
]

= 1. (10)

Assertion (9) is obvious. To verify (10) we will use Theorem 2.13 of [6]. One can check that
the assumptions of this theorem are satisfied for every level a > 0, so that this theorem implies
P[T(0,a) < ∞] = 1 for every a > 0, where T(0,a) = inf{t ≥ 0 : Xt 6∈ (0, a)}. In particular,
P[T(0,a) < ∞ ∀a ∈ N] = 1, and therefore P[T(0,a) < ∞ ∀a ∈ N| limt↑T Xt = 0] = 1. Also, we
clearly have P[sup0≤t≤T Xt <∞| limt↑T Xt = 0] = 1. Hence,

P
[
T(0,a) <∞ ∀a ∈ N, and sup

0≤t≤T
Xt <∞

∣∣∣ lim
t↑T

Xt = 0
]

= 1. (11)

Since {T(0,a) < ∞ ∀a ∈ N, and sup0≤t≤T Xt < ∞} ⊂ {T < ∞}, equation (11) implies (10).
The second statement of (f) can be shown with the help of [6, Theorem 2.13] as in the proof
of (d).

If δ ∈ (0, ν2/2) and µ > 0, then the first statement of (g) can be obtained in the same way as
the first statement of (f) with the following change. This time equation (10) follows from

P
[
T <∞

∣∣∣ lim
t↑T

Xt = 0
]

= 1− P
[
T =∞

∣∣∣ lim
t↑T

Xt = 0
]

= 1− P
[
T =∞, lim

t↑T
Xt = 0

]
P
[

lim
t↑T

Xt = 0
]−1

= 1.

The last step is due to P[T = ∞, limt↑T Xt = 0] = 0, which in turn follows from the second
statement of (g). The latter can be shown with the help of [6, Theorem 2.12] as in the proof
of (e). 2

7



4 A general criterion for the approximation of SDEs

In this Section, we recall from [28] a general criterion for the weak convergence of step processes
with fix equidistant jump times to the solution of SDE (12). We emphasize that there are
several other related criteria that could in part be used for our purposes too (see, for instance,
[8, 14, 20, 21, 25, 26] and references cited therein). We consider the solution of the following
one-dimensional SDE:

dXt = b(t,Xt)dt+ a(t,Xt)dWt, X0 = y (12)

where y ∈ R, and a and b are continuous functions on R+ × R satisfying

|a(t, x)|+ |b(t, x)| ≤ K(1 + |x|) ∀ t ∈ R+, x ∈ R (13)

for some constant K > 0. We presuppose the existence of a weak solution of (12). That means,
there exists a triplet {X;W ; (Ω,F , (Ft),P)} where (Ω,F , (Ft),P) is a filtered probability space
with (Ft) satisfying the usual conditions, W = (Wt : t ≥ 0) is an (Ft)-Brownian motion, and
X = (Xt : t ≥ 0) is a real-valued continuous (Ft)-adapted process such that, for every t ≥ 0,∫ t

0
(|b(s,Xr)|+ a2(r,Xr))dr <∞ P-a.s.

and

Xt = y +
∫ t

0
b(r,Xr)dr +

∫ t

0
a(s,Xr)dWr P-a.s.

Here, the latter is an Itô-integral. Moreover we require the solution to be weakly unique,
which means that any two solutions coincide in law. For instance, the existence of a unique
weak solution is implied by Lipschitz continuity of b in x (uniformly in t) and

|a(t, x)− a(t, x′)| ≤ h(|x− x′|) ∀ t ∈ R+, x, x
′ ∈ R (14)

for some strictly increasing h : R+ → R+ with
∫ 0+
0 h−2(u)du =∞. Note that (14) and Lips-

chitz continuity of b even imply the existence of a strongly unique strong solution (Yamada-
Watanabe criterion [27]). But the notion of strong solutions and strong uniqueness is beyond
our interest.

Now, for every α ∈ N we fix some εα > 0 such that εα → 0, and we set tαn = tεαn (= nεα) for all
n ∈ N0. We further let aα and bα be measurable functions on R+×R such that ‖a−aα‖∞ and
‖b− bα‖∞ converge to 0 as α→∞, where ‖.‖∞ is the usual supremum norm. We consider a
sequence (yα) ⊂ R satisfying yα → y, and we suppose that Xα is a solution of the following
(εα, aα, bα, yα)-martingale problem for each α ≥ 1. Here, nα(t) denotes the largest n ∈ N0

with tαn ≤ t.

Definition 4.1 Suppose Xα = (Xα
t : t ≥ 0) is a real-valued process on some probability space

(Ω,F ,P) whose trajectories are constant on the intervals [tαn, t
α
n+1), n ∈ N0. Then Xα is called

solution of the (εα, aα, bα, yα)-martingale problem if

Mα
t = Xα

t − yα −
nα(t)−1∑
i=0

bα(tαi , X
α
tαi

) εα (15)
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provides a (zero-mean) square-integrable martingale (with respect to the natural filtration) with
compensator

〈Mα〉t =
nα(t)−1∑
i=0

a2
α(tαi , X

α
tαi

) εα. (16)

The Xα could be defined on different probability spaces (Ωα,Fα,Pα). However we assume
without loss of generality Ωα = D(R), Fα = B(D(R)), and that Xα is the coordinate process
of Pα (each cádlàg process induces a corresponding law on D(R)). We further assume that
there are some q > 2 and γ > 1 such that

Eα
[
|Xα

tαn
−Xα

tαn−1
|q
]
≤ CT

(
1 + Eα

[
|Xα

tαn−1
|q
])
εγα (17)

for every α, n ∈ N with tαn ≤ T , where CT > 0 is any constant that may depend on T . By
an induction on n, (17) implies in particular that Eα[|Xα

tαn
|q] < ∞ for all α and n. That is,

the processes Xα have to be q-integrable. The following theorem shows that Xα converges in
distribution to the unique solution of (12).

Theorem 4.2 [28, Theorem 2.2] Suppose SDE (12) subject to (13) has a unique weak solu-
tion, and denote by P the corresponding law on D(R). Moreover, let Pα be the law (on D(R))
of Xα subject to (15)-(17). Then, Pα ⇒ P as α→∞.

5 Proof of Theorem 2.1

We adopt the notation introduced in Sections 1 and 2. However, for the sake of clarity, we
write Xα, Pα, σα, tαi , xαi and yα in place of Xεα , Pεα , σεα , tεαi , xεαi and bycε2α , respectively.
We intend to show that Xα converges in distribution to the solution of (3), i.e., that Pα ⇒ P.
To this end we set

aα(t, x) = σα(t, x)
√
x and bα(t, x) = bδ(t)cεα + µ(t)x,

and we note that aα(t, x) and bα(t, x) converge uniformly in (t, x) to a(t, x) = σ(t, x)
√
x and

b(t, x) = δ(t) + µ(t)x, respectively, as α→∞. Moreover we have yα → y. By Theorem 4.2 it
thus suffices to show that Xα solves the (εα, aα, bα, yα)-martingale problem (Definition 4.1),
and that Xα satisfies (17). The key tools will be the following two lemmas. The proof of the
first lemma is relegated to the end of this Section.

Lemma 5.1 There is some constant C > 0 such that, for all α, n ∈ N,

Eα
[
(Xα

tαn
−Xα

tαn−1
)4
]
≤ C

(
1 + Eα

[
(Xα

tαn−1
)4
])
εγα (18)

with γ = min{2; 6− η} > 1. In particular, the process Xα is 4-integrable.

Lemma 5.2 For all α, n ∈ N,

Eα
[
Xα
tαn

∣∣∣Xα
tαn−1

]
= εαbδ(tαn−1)cεα + (1 + εαµ(tαn−1))Xα

tαn−1
(19)

Varα
[
Xα
tαn

∣∣∣Xα
tαn−1

]
= εασ

2
α(tαn−1, X

α
tαn−1

)Xα
tαn−1

(20)

Eα
[
(Xα

tαn
)2
∣∣∣Xα

tαn−1

]
= εασ

2
α(tαn−1, X

α
tαn−1

)Xα
tαn−1

+
(
εαbδ(tαn−1)cεα + (1 + εαµ(tαn−1))Xα

tαn−1

)2
.(21)
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Proof Since the sum in (6) consists of (ε−2xεk)-many independent summands, each of which
has mean ε2 + ε3µ(tαn−1) and variance ε3σ2

ε (t
ε
n−1, x

ε
k), the formulae (19) and (20) are obvious.

Further, (21) follows immediately from (19) and (20). 2

Now, let Mα and 〈Mα〉 be the processes defined in (15) and (16), respectively. Mα is square-
integrable since Xα is, and it is an (FXα

t )-martingale since

Eα
[
Mα
tαn
−Mα

tαn−1

∣∣∣FXα

tαn−1

]
= Eα

[
Xα
tαn
−Xα

tαn−1
− bα(tαn−1, X

α
tαn−1

)εα
∣∣∣Xα

tαn−1

]
= Eα

[
Xα
tαn

∣∣∣Xα
tαn−1

]
− εαbδ(tαn−1)cεα −

(
1 + εαµ(tαn−1)

)
Xα
tαn−1

vanishes by (19). With the help of (19) and (21) we further obtain by straightforward calcu-
lations

Eα
[(
Mα
tαn

)2 − 〈Mα〉tαn
)
−
(

(Mα
tαn−1

)2 − 〈Mα〉tαn−1

)∣∣∣FXα

tαn−1

]
= 0.

This shows that 〈Mα〉 is the compensator of Mα since the Doob-Meyer decomposition is
unique. Hence Xα solves the (εα, aα, bα, yα)-martingale problem. Moreover, by (18) we have
(17) with q = 4. This completes the proof of Theorem 2.1.

For the proof of Lemma 5.1 we need the following lemma. Its proof is elementary and will be
omitted.

Lemma 5.3 Assume ξ1, ξ2, . . . are independent random variables on some probability space
(Ω̃, F̃ , P̃) with Ẽ[ξi] = 0 and supi∈N Ẽ[ξ4i ] <∞. Then, for every ν ∈ N,

Ẽ
[( ν∑

i=1

ξi

)4
]
≤ ν sup

i∈N
Ẽ[ξ4i ] + 3ν2 sup

i,j 6=i
Ẽ[ξ2i ]Ẽ[ξ2j ].

Proof (of Lemma 5.1) Plainly,

Eα
[
(Xα

tαn
−Xα

tαn−1
)4
]

=
∑

(k,m)∈N2
0

(xαm − xαk )4 Pα
[
Xα
tαn

= xαm

∣∣∣Xα
tαn−1

= xαk

]
Pα
[
Xα
tαn−1

= xαk

]
. (22)

If (Ω̄, F̄ , P̄) denotes the domain of the random variables N ε
n−1,i(x

ε
k) in (6), we also obtain with

the help of (5),∑
m∈N0

(xαm − xαk )4 Pα
[
Xα
tαn

= xαm

∣∣∣Xα
tαn−1

= xαk

]

= Ē
[(
εαbδ(tαn−1, x

α
k )cεα +

ε−2
α xαk∑
i=1

ε2αNn−1,i(xαk )− xαk
)4
]

(23)

≤ 33

{
(εαK)4 + Ē

[( ε−2
α xαk∑
i=1

ε2α[Nn−1,i(xαk )− (1 + εαµ(tαn−1)]
)4
]

+ (εαµ(tαn−1)xαk )4
}
.
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We assume without loss of generality 0 < εα ≤ 1, and we set

Sαl = sup
i∈N

Ē
[
[Nn−1,i(xαk )− (1 + εαµ(tαn−1)]l

]
(l = 2, 4).

By (4) and (ii)-(iii) of Section 2, we have

Sα2 ≤ K(1 + xαk )/εα and Sα4 ≤ C4(1 + (xαk )3)ε−η.

Therefore we obtain with the help of Lemma 5.3,

Ē
[( ε−2

α xαk∑
i=1

ε2α[Nn−1,i(xαk )− (1 + εαµ(tαn−1)]
)4
]

≤ ε8α

(
(ε−2
α xαk )Sα4 + 3(ε−2

α xαk )2(Sα2 )2
)

≤ ε8α

(
(ε−2
α xαk )C4(1 + (xαk )3)ε−ηα + 3(ε−2

α xαk )2(K(1 + xαk )/εα)2
)

≤ (C/2)(1 + (xαk )4)(ε6−ηα + ε2α) (24)

for some suitable constant C > 0. Now (22), (23), (5), (24), and Fubini’s theorem, imply
(18). 2

A Appendix

The construction of the approximating process X̄ε in Section 2 relies on the existence of a
distribution on N0 satisfying (i)-(iii) of Section 2. The existence of such a distribution is not
completely obvious. Basically the problem is to find any distribution on N0 with mean m and
variance v for given m, v > 0. Provided

m < m2 + v, (25)

the counting density of the requested distribution can be chosen as

p0 = 1−
∞∑
j=1

pj , pk = c qk−1 (k ≥ 1) (26)

with

c =
4m3

(v +m2 +m)2
and q =

v +m2 −m
v +m2 +m

(note that condition (25) is more or less necessary for the existence of the requested distri-
bution since m2 + v =

∑∞
k=1 k

2pk ≥
∑∞

k=1 kpk = m). Condition (25) implies 0 < c, q < 1
and q ≤ 1 − c, which in turn ensures that (pk) provides a counting density of a probability
measure. Note that the corresponding probability generating function is given by

g(t) = 1− c

1− q
+

ct

1− qt
(0 < t < 1). (27)

11



Let N be any random variable whose law has the counting density (26). Using (27) and

E[N(N − 1) · · · (N − k + 1)] = g(k)(1) (k ∈ N), (28)

we easily obtain E[N ] = m and Var[N ] = v. With the help of (27) and (28) we further obtain

E[N4] = g(4)(1) + 6g(3)(1) + 7g′′(1) + g′(1)

=
24cq3

(1− q)5
+

36cq2

(1− q)4
+

14cq
(1− q)3

+
c

(1− q)2

≤ 36
4∑

k=1

4m3(v +m2 −m)k−1

(2m)k+1
. (29)

In the context of (i)-(iii) of Section 2, we now set

m = 1 + εµ(tεn−1) and v = σ2
ε (t

ε
n−1, x

ε
k)/ε. (30)

By (5) we have εµ(.) + εK > 0, and therefore we obtain

m = 1 + εµ(tεn−1)

< 1 + εµ(tεn−1) + εµ(tεn−1) + ε2µ2(tεn−1) + εK + σ2(tεn−1, x
ε
k)/ε

= (1 + εµ(tεn−1))2 + σ2
ε (t

ε
n−1, x

ε
k)/ε

= m2 + v.

That is, condition (25) holds. Therefore the counting density in (26) generates a distribution
with mean m and variance v as in (30). Moreover, using (30), (29), (4), (5), and (7), one
can easily show that the fourth moment is bounded above by C4(1 + |xεk|3)ε−3 for all n ∈ N,
k ∈ N0, and some suitable universal constant C4 > 0. By all account, we have established a
distribution on N0 satisfying (i)-(iii) of Section 2.
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