
Interface conditions for degenerate

two-phase flow equations in one

space dimension

F. Buzzi, M. Lenzinger and B. Schweizer

Preprint 2009-02 Januar 2009

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund tu-dortmund.de/MathPreprints





Interface conditions for degenerate two-phase
flow equations in one space dimension

Fulvia Buzzi, Michael Lenzinger and Ben Schweizer

January 19, 2009

Summary: We study the two-phase flow equations describing, e.g., the motion
of oil and water in a porous material, and are concerned with interior interfaces
where two different porous media are in contact. At such an interface, the entry
pressure relation together with the degeneracy of the system leads to an inter-
esting effect known as oil-trapping. Restricting to the one-dimensional case we
show an existence result with the help of appropriate regularizations and a time
discretization. The crucial tool is a compactness lemma: The control of the time
derivative in a space of measures is used to conclude the strong convergence of
a sequence.

1 Introduction
We consider the motion of two immiscible fluids in a porous medium. Denoting the
fluids with indices j = 1, 2, it is standard to use the variables of pressure and saturation,
pj and uj . Interpreting the saturations as volume fractions in the pore space, we have
u := u1 = 1 − u2. Conservation of mass for each phase together with Darcy’s law yield
the system of two-phase flow equations

∂tu = ∇ · (k(x)kr,1(u)∇p1), (1.1)
−∂tu = ∇ · (k(x)kr,2(u)∇p2), (1.2)

where the various coefficients k stand for the absolute and relative permeabilities. The
equations are completed by the capillary pressure relation pc(u) = p1 − p2. Adding the
equations yields

∇ · (K(x, u)∇p1 − k(x)kr,2(u)∇[pc(u)]) = 0, (1.3)

where K(x, u) := k(x)(kr,1(u) + kr,2(u)).
We restrict to the one-dimensional case x ∈ (−L,L). In this special situation the

elliptic equation (1.3) implies that the total flux is constant in space,

K(x, u)∂xp1 − k(x)kr,2(u)∂x[pc(x, u)] = −q0. (1.4)

AMS 2000 subject classification: 35K65, 76T99
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We assume for simplicity that the flux of oil and water at the left boundary are prescribed.
In this case, also the value of the total flux q0 is determined by the boundary conditions.
Setting ki(x, u) := k(x)kr,i(u) we can solve (1.4) for ∂xp1,

∂xp1 = −q0
1

K(x, u)
+
k2(x, u)

K(x, u)
∂x[pc(x, u)],

insert into (1.1) and obtain

∂tu+ ∂xF = 0

F = f(u)− k(x)λr(u)∂x[pc(x, u)],
(1.5)

with

f(u) := q0
kr,1(u)

kr,1(u) + kr,2(u)
, λr(u) :=

kr,1(u)kr,2(u)

kr,1(u) + kr,2(u)
.

Equation (1.5) is the standard approach for the modelling of two-phase flow in soil or
rock and hence of utmost importance in applications. At the same time, the equations
are mathematically challenging due to a double degeneracy. One regards the vanishing
permeability kr,1(s)→ 0 for a vanishing saturation s, leading to

f(s)→ 0 and λr(s)→ 0 for s→ 0.

Small diffusion can create free boundaries between wet and dry regions, an effect that
appears also in the standardized porous media equation ∂tu = ∆(u2) or in thin film flow,
see [4, 8] and the references therein. Technically, a vanishing permeability inhibits the
derivation of uniform estimates for the gradients of the pressure.

A second degeneracy regards the capillary pressure pc, which can have infinite slope
and should be regarded as a multi-valued function. Formally, this degeneracy can be
regarded as an infinite diffusion and leads to elliptic-parabolic equations, see [2, 14]. For
us, this fact implies that already the choice of the primary variable is a problem. Above,
we formulated relations for the saturation u. This has the advantage that, physically,
a saturation is defined everywhere, while a pressure can be defined only where fluid is
present, i.e. for u > 0. The mathematical counterpart of this observation is that pc

is multi-valued at u = 0. When we write the above system in the pressure variable v
with u = b(v) := p−1

c (v), then the degeneracy b′(v) = 0 (for some v) leads, at least
formally, to ∂tu = 0 and thus to an elliptic system. The physical initial and boundary
conditions typically involve both quantities, the initial condition prescribes a saturation
and the boundary condition prescribes a pressure. We refer to [13] and the references
therein for the modelling of boundary conditions.

Despite the double degeneracy of the equations, existence results are available. For
one-phase flow equations (Richards equation) we refer to [2, 3, 15], for the two-phase flow
equations to [1, 6, 7, 11, 12]. Most of these contributions use a formulation in pressure
variables. The contributions of the authors regard x-dependent coefficients or outflow
boundary conditions that require to use the saturation variable in a substantial way.
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Figure 1: Left: Qualitative behavior of the coefficient functions f(x, u) and λ(x, u) which
are degenerate at u = 0. Right: The flow domain Ω = (−L,L). The left part Σ− contains
another material than the right part Σ+ (e.g. a fine and a coarse medium).

Interior interfaces
The equations become even more interesting when interior interfaces are involved. To
analyze a single interface we set Σ− := (−L, 0) for the fine material and Σ+ := (0, L) for
the coarse material. We assume that the material parameters are constant in each medium,
but different in the two materials. We write k± and p±c for the permeability and capillary
pressure on Σ±. We set Σ := Σ− ∪ Σ+ and ΣT := Σ× (0, T ), see Figure 1.

We assume

k(x) :=

{
k+ for x ∈ Σ+

k− for x ∈ Σ−
pc(x, u) :=

{
p+

c (u) for x ∈ Σ+

p−c (u) for x ∈ Σ−.

and write, accordingly, λ(x, u) := k(x)λr(u) and f(x, u) = f±(u).
We will often work with a pressure variable v such that u = (pc)

−1(v). For calcula-
tions in the two variables we set λ̃ := λ◦p−1

c and denote by Λ̃(x, v) a primitive of λ̃(x, v),
Λ̃′(x, v) := ∂vΛ̃(x, v) = λ̃(x, v), normalized by Λ̃(x, 0) = 0 for all x ∈ Σ. We further
set Λ := Λ̃ ◦ pc on (0, 1), extended continuously to [0, 1]. We emphasize that Λ′ 6= λ.
With these definitions, at least formally, the diffusive part of the flux F can be written in
various forms,

λ(u)∂x[pc(u)] = λ̃(v)∂xv = Λ̃′(v)∂xv = ∂x[Λ̃(v)] = ∂x[Λ(u)].

in Σ × (0, T ). We include the warning that the function Λ(x, s) will, in general, have a
jump in x = 0. This implies that the above relations do not hold in the whole domain ΩT ,
i.e. across x = 0.

Transmission conditions. At the interface x = 0 the physical interpretation suggests to
use as the two transmission conditions the continuity of the flux and the continuity of the
capillary pressure. We use the notation h(0±) = limδ↘0 h(0± δ).

Continuity of the flux. The conservation of mass requires that the fluxes on the left-
hand side and the right-hand side with respect to x = 0 are balanced. Therefore, the first
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Figure 2: Left: The set-valued functions p+
c and p−c . Right: A possible saturation in Σ,

saturations u(0+) and u(0−) as in case (i). The saturation jumps in x = 0 as a consequence
of the continuity of flux and capillary pressure.

condition reads
F (0−, u(0−)) = F (0+, u(0+)). (1.6)

Continuity of the capillary pressure. One may think of the pressures p1 and p2 as con-
tinuous functions across x = 0. We will therefore demand the continuity of the capillary
pressure pc(x, u(x, t)) = p1−p2 at x = 0. This implies that the saturation is discontiuous,
see Figure 2.

We define the minimal pressures in Σ− and Σ+ in the limit of a vanishing saturation
as

p±min := lim
s↘0

p±c (s), p±max := lim
s↗1

p±c (s). (1.7)

The capillary pressures p±c should be regarded as set-valued functions defined as the max-
imal monotone graphs given by

p±c (u) = {p̃±c (u)} for u ∈ (0, 1),

p±c (0) = (−∞, p±min] and p±c (1) = [p±max,∞),

where p̃±c are monotonically increasing real-valued functions satisfying (1.7). The conti-
nuity condition for the capillary pressure then reads

p−c (u(0−)) ∩ p+
c (u(0+)) 6= ∅. (1.8)

We concentrate from now on on the vanishing saturation u = 0.
Let us illustrate condition (1.8) with an example. Assuming p+

min ≤ p−min, the condition
demands

p−c (u(0−)) = p+
c (u(0+)) if u(0+) > 0,

p−c (u(0−)) ≤ p−min if u(0+) = 0.

Regarding the effect of oil-trapping, we can additionally define a residual oil saturation u∗

by p+
c (u∗) = p−min and abbreviate u+ := u(0+) and u− := u(0−). The capillary pressure
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pc is continuous in the sense of (1.8) if one of the following possibilities occurs.

(i) u+ > u∗ and u− satisfies p−c (u−) = p+
c (u+)

(ii) u+ ≤ u∗ and u− = 0.
(1.9)

Here, we identified p±c with the real-valued functions p̃±c wherever the first is single-
valued. The effect of oil trapping appears when no oil is present on the left hand side,
u− = 0. Then the degeneracy of k− inhibits the transport of oil. On the right hand side,
an oil saturation u∗ is trapped. This phenomenon is studied e.g. in [9, 10, 16]. Regarding
the interface conditions we refer to [5, 13].

Main result
We study the following equations for the saturation u and the flux F .

∂tu+ ∂xF = 0 in ΣT ,

F (x, u) = f(x, u)− λ(x, u) ∂x[pc(u)] in ΣT ,

F and pc(x, u) are continuous in x = 0,

(1.10)

the continuity of pc in the sense of (1.8). For system (1.10) we impose, for given
measurable initial saturation u0 : (−L,L) → [0, 1] and pressure boundary values
p0 ∈ W 1,1((0, T ),R) with p+

min < p0(t) < p+
max for all t, the following initial and bound-

ary conditions

u|t=0 = u0 on (−L,L)

F (−L, t) = 0 and pc(u(L, t)) = p0(t) for all t ∈ (0, T ).
(1.11)

We emphasize that our methods are not restricted to this choice of boundary conditions.
We assume that the coefficient functions satisfy the following regularity and mono-

tonicity properties.

f± ∈ C0([0, 1],R), λ± ∈ C0,1([0, 1],R), p±c ∈ C1([0, 1],R)

f±(0) = λ±(0) = 0, f±, λ± > 0 on (0, 1],

f± ≤ c1λ
± and (p±c )′ ≥ c2 on [0, 1] for constants c1, c2 > 0.

(1.12)

The following definition makes our notion of solutions precise.

Definition 1.1. A function u ∈ L∞(ΩT , [0, 1]) is called a weak solution of system (1.10)
in ΩT = (−L,L)× (0, T ) if for a flux function F ∈ L2(ΩT )

∂tu+ ∂xF = 0 in D′(ΩT ), (1.13)
F (u) = f(u)− ∂x[Λ(u)] in D′(ΣT ), (1.14)

p−c (u(0−)) ∩ p+
c (u(0+)) 6= ∅ for a.e. t. (1.15)

For the last relation we note that Λ(u) has a trace by (1.14) which can be used to evaluate
u in boundary points. We say that u satisfies the initial and boundary conditions (1.11) if∫

ΩT

u∂tϕ+

∫
ΩT

F∂xϕ = −
∫

Ω

u0ϕ(0) (1.16)
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for all ϕ ∈ C∞0 ([−L,L)× [0, T )). The Dirichlet boundary condition is demanded in the
sense of traces,

pc(u(L, t)) = p0(t) (1.17)

using again the existence of traces for u.

In order to evaluate point-values of u we use the extended inverse of Λ, the function
Λ−1 : R → [0, 1] which is continuous and constant (equal to 0 or 1) beyond its natural
domain of definition [Λ̃(pmin), Λ̃(pmax)].

We note that the continuity of the flux F is included through the equation which
contains ∂xF . Our main result is the following existence statement.

Theorem 1.2. Let assumptions (1.12) hold. Then there exists a weak solution u of system
(1.10) with boundary conditions (1.11).

We will show the existence with the help of a regularized system. The degenerate
coefficient λ prevents us from showing an L2H1-estimate for the pressure. Our main tool
will be a powerful compactness lemma.

There are two possible regularization approaches. One, performed here, replaces the
degenerate coefficients by regularized coefficients that allow a priori estimates. At the
same time, the jump discontinuity at the interface is kept. A second approach would be to
regularize additionally the jump discontinuity, i.e. to replace the coefficients by smooth
functions in x. This second approach was carried out in [5] and can be regarded also as a
justification of the transmission conditions.

The proof of our main result proceeds in three stages. In Section 2 we define the
regularization of the coefficients with a parameter η > 0 and show the existence of a
solution for the regularized problem with a time discretization. In Section 3 we derive
the necessary a priori estimates to perform the limit η → 0 and to find limit functions u
and F satisfying the equation and the interface condition. The compactness lemma 1.3 is
crucial in this step. The lemma is shown in Appendix A.
Comparison to the literature. We note that the very general results of [2] can not be ap-
plied directly to our problem, since the function b(x, ·) = pc(x, ·)−1 has an x-dependence,
which is even non-smooth. The same comment concerns the results of [6] (compare
γ1 ∈ L∞L2 in assumption (A5), where γ1 contains ∂xpc). We emphasize that the two
quoted articles concern the higher dimensional case.

An existence result for the above equations in the one-dimensional case appeared in
[16], but in that work a monotonicity property of solutions was exploited, i.e. the special
structure of initial and boundary conditions was used. Another existence result was given
by the interesting contribution of Bertsch, Passo and Duijn [5], where the flux is chosen
as an independent variable. This choice has the advantage that, like the pressure, the flux
has no jumps. Similar to hyperbolic estimates, the authors derive L∞BV estimates for
the flux, which implies a gain of regularity (at the cost of assuming initial values with
(u2

0)
′ ∈ BV (R \ {0}), see assumption (H) of [5]). The flux estimates exploit that the

coefficient functions f and λr are x-independent and linearly affine in both media (see
the relation before (1.6) in [5]). Our approach is more direct and yields a more general
existence statement. Nevertheless, our results do not cover x-regularized coefficients.
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Compactness Lemma. The following lemma provides a compactness result in L2(ΩT )
for a bounded family of functions uk ∈ L2(0, T ;H1(Ω)), which additionally has a uni-
form bound for the time derivatives ∂tuk in (C0(0, T ;H1

0 (Ω))′. We believe that this com-
pactness statement is no surprise to experts, but we are not aware of a formulation in the
literature.

Lemma 1.3 (Compactness). Let Ω ⊂ RN be bounded and T > 0. Let (uk)k∈N be a
bounded sequence in L2(0, T ;H1(Ω)) such that

∂tuk ∈ (C0(0, T ;H1
0 (Ω))′

is bounded independent of k. Then there exists a subsequence uk and a limit u such that

uk → u in L2(0, T ;L2(Ω)) for k →∞.

We will apply the lemma in Section 3 to the solutions uη of a regularized problem.
The compactness is the essential tool to derive the solution property for weak limits.
Due to the degeneracy of the equation we can not derive the typical L2(0, T ;H1(Ω)) ∩
H1(0, T ;H−1(Ω)) estimates which provides the compactness with the lemma of Lions-
Aubin.

Regarding notation we agree that C denotes real constants in estimates; their value
may change from one inequality to the next. We use squared brackets such as ∂x[f(u)] to
denote the x derivative of the function f(x, u(x)). To indicate norms we sometimes abbre-
viate function spaces with time variable and write, e.g., L2H1 instead of L2(0, T ;H1(Ω)).

2 Regularized equations
In this section we define a regularized system of non-degenerate equations and show the
existence of solutions to this regularized problem.

Definition 2.1. For a sequence 0 < η → 0 we define the family of regularized coefficient
functions f±η , λ

±
η , p

±
c,η as follows.

f±η , λ
±
η ∈ C1([0, 1], [0,∞)), p±c,η ∈ C2((0, 1),R)

with p±c,η(s) → −∞ for s → 0 and p±c,η(s) = +∞ for s → 1. The regularized coeffi-
cients f±η , λ

±
η , p

±
c,η are chosen such that λ±η ≥ η > 0 with f±η ≤ c1λ

±
η and (p±c,η)

′ ≥ c2.
Concerning the critical saturations we demand that λ±η ≡ λ±(1) on [1 − η, 1], and that
p±c,η(η) ≥ p0

min := min{p+
min, p

−
min} and p±c,η(1− η) = p±max. We demand the convergence

λ±η → λ±, f±η → f± uniformly in [0, 1],

p±c,η → p±c uniformly on compact subsets of (0, 1).

Finally, the initial saturation is regularized to a smooth function u0,η : [−L,L]→ [η, 1−
η] such that u0,η → u0 in L1((−L,L)).
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Figure 3: Regularized capillary pressures p±c,η for η > 0.

In the sequel we will additionally use f̃η = fη ◦ p−1
c,η , λ̃η = λη ◦ p−1

c,η and Λ̃η as the
primitive of λ̃η with Λ̃±η (0) = 0, (Λ̃±η )′ = λ̃±η . Furthermore, we define Λη = Λ̃η ◦ pc,η on
(0, 1).

We emphasize that for any η > 0 we demand the special x-dependence fη(x, u) =
f±η (u) for x ∈ Σ±, and the same for λη, Λη and pc,η. The functions Λ̃η and Λ are strictly
monotonically increasing which allows to construct the inverse functions. We have the
uniform convergence (pc,η)

−1 → (pc)
−1 on R and Λ̃η → Λ̃ uniformly on compact subsets

of R.
In order to treat the boundary conditions of Neumann type on the left and of Dirichlet

type on the right, we set

H1
∗ (Ω) := {w ∈ H1(Ω) : w(L) = 0} and H−1

∗ (Ω) := (H1
∗ (Ω))′. (2.1)

Lemma 2.2 (Existence for the regularized problem). For regularized coefficients as in
Definition 2.1, there exists a weak solution uη ∈ H1(0, T ;H−1

∗ (Ω)) ∩ L∞(ΩT ) of (1.10)
with initial and boundary data u0,η and p0. We can give a quite strong formulation of the
equation: with vη := pc,η(uη) ∈ L2(0, T ;H1(Ω)) and Fη := fη(uη)− λη(uη)∂xvη holds∫

ΩT

∂tuη ϕ−
∫

ΩT

Fη∂xϕ = 0 (2.2)

for all ϕ ∈ L2((0, T );H1
∗ (Ω)), and the boundary conditions vη(L, t) = p0(t) and uη(0) =

u0,η hold in the sense of traces.

The transmission condition for the pressure is contained with the strong statement
vη ∈ L2(0, T ;H1(Ω)).

Proof. Step 1. Preliminaries. We use b := p−1
c,η : (−∞,∞) → [0, 1] and suppress the

subscript η in the following. We note that f̃(v) = fη(b(v)) ≤ c1λη(b(v)) = c1λ̃(v) by our
assumptions. Our aim is to construct a solution v ∈ L2(0, T ;H1(Ω)) of

∂t[b(v)] + ∂x[f̃(v)− λ̃(v)∂xv] = 0 in ΩT (2.3)
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with v(., 0) = v0 := pc,η(u0,η) and v(L, t) = p0(t). By a density argument, in order to
verify (2.2), it is sufficient to solve (2.3) in the sense of distributions for test-functions
ϕ ∈ C∞0 ((0, T );C∞0 ([−L,L)). Our choice of the regularization asserts for the initial
condition the uniform lower bound v0 = pc,η(u0,η) ≥ pc,η(η) ≥ p0

min.
Step 2. Time discretization. We use a small parameter δ > 0 and construct approx-

imate solutions with a time discretization. We discretize (2.3) in time, setting δ := ∆t,
tk := kδ and Kδ = T , k = 0, 1, ..., K. In each time step k ≤ K − 1 we solve

b(vk+1)− b(vk)

δ
+ ∂x[f̃(vk+1)− λ̃(vk+1)∂xvk+1] = 0 (2.4)

with initial condition v0 = pc,η(u0) and boundary conditions vk+1(L) = p0(tk+1) and
[f̃(vk+1) − λ̃(vk+1)∂xvk+1](−L) = 0. The existence of a solution vk+1 ∈ H1(Ω) of the
discrete problem follows e.g. with variational methods by the monotonicity of b and with
an iteration. An application of a maximum principle with stationary comparison solutions
implies a uniform bound ‖vk‖L∞ ≤ ρ0(p0, p

0
min, p

0
max, c1) for all k, independent of η and

δ. For this step, it is important to note that a stationary solution V with ∂x(f̃(V ) −
∂xΛ̃(V )]) = 0 satisfies, for our boundary condition, ∂xV = f̃(V )/λ̃(V ) ≤ c1, and is
therefore bounded. Regarding to problems in the transmission point we refer to a similar
maximum principle in [16].

Step 3. Energy estimates. Our intention is to multiply equation (2.4) with vk+1 − p0.
We define Φ as the primitive of pc,η = b−1 satisfying Φ(b(0)) = 0 such that Φ(x, z) =
Φ±(z) in Σ±. Let sk(x) := b(vk(x)) and ŝ the corresponding linear interpolation of the
functions sk. With the notation v̂ := b−1(ŝ) we obtain, in the interval (tk, tk+1),

∂tΦ(ŝ) = Φ′(ŝ)
sk+1 − sk

δ
= v̂∂tŝ (2.5)

and therefore ∫
ΩT

∂tŝvk+1 =

∫
ΩT

∂tŝv̂ +

∫
ΩT

∂tŝ(vk+1 − v̂) ≥
∫

ΩT

∂tΦ(ŝ), (2.6)

where the positivity of the third integral is a consequence of the monotonicity of b. We
introduce, additionally to the interpolation v̂, the interpolation v̄ with v̄(t) = vk+1 for all
t ∈ (tk, tk+1), and similarly p̄0. Multiplication of (2.4) with vk+1 − p0(tk+1) then yields∫

ΩT

∂tΦ(ŝ) +

∫
ΩT

λ̃(v̄)|∂xv̄|2 ≤
∫

ΩT

f̃(v̄) ∂xv̄ +

∫
ΩT

∂tŝ p̄0. (2.7)

We write the second integral on the right-hand side of (2.7) as∫
ΩT

∂tŝ p̄0 = −
∫

ΩT

sk
p0(tk+1)− p0(tk)

δ
+ sKp0(tK)− u0,ηp0(0).

Using the boundedness of sk and p0(tk) and the inequality
∑

k |p0(tk+1) − p0(tk)| ≤
‖∂tp0‖L1 , we see that the second integral on the right hand side of inequality (2.7) is
bounded. The other integral can be absorbed into the left hand side and we obtain, by
λ̃ ≥ η, a uniform bound for ‖v̂‖L2H1 ≤ C, with C depending on η, but independent of δ.
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Step 4. Compactness and limit equation. The evolution equation (2.4) yields the
bound ‖∂tŝ‖L2H−1

∗
≤ C with C depending on η, but independent of δ. The spatial regu-

larity on each subdomain Σ± can be checked directly with ŝ = b(v̂),∫ T

0

∫
Σ+

|∂xŝ|2 =

∫ T

0

∫
Σ+

|b′(v̂)|2 |∂xv̂|2 ≤ C

with C independent of δ. The lemma of Lions-Aubin states that the embedding L2H1 ∩
H1H−1 ⊂ L2L2 is compact. We can therefore extract a strongly convergent subsequence
ŝ = ŝδ → s strongly in L2L2 for δ → 0. The maximum principle for vk implies bounds
ŝ ∈ [ε, 1−ε], with ε > 0 depending on η (due to the infinite slope of pc,η), but independent
of δ. Since pc,η is continuous on [ε, 1−ε], we conclude additionally the strong convergence
of the pressure, v̂ = v̂δ = pc,η(ŝδ)→ v strongly in L2(0, T ;L2(Ω)) for δ → 0.

The strong convergences permit to evaluate limits of the nonlinear coefficient func-
tions. To compare the piecewise constant interpolation v̄ with the piecewise linear inter-
polation v̂ we use a general comparison result for interpolations (see [12], Lemma 3.2):
The strong convergence of ŝδ implies the strong convergence s̄δ → s in L2(0, T ;L2(Ω))
for δ → 0. This carries over to the convergence v̄δ → v̄. After choosing a further subse-
quence, the convergences f̃(v̄δ) → f̃(v) and λ̃(v̄δ) → λ̃(v) in L2(0, T ;L2(Ω)) hold true.
This allows to pass to the limit in the time discrete equation (2.4) and to obtain equation
(2.3) for v.

3 The degenerate equations
The aim of this section is to perform the limit η → 0. The difficulty is that the L2H1-
estimate for v was dependent on η. Furthermore, in the compactness argument of the last
section, we used a priori bounds for the saturation away from the critical points 0 and
1. These bounds were also η-dependent and therefore the compactness of the sequence
uη in L2L2 will require additional arguments. We will use the compactness result of
Lemma 1.3 to take the limit uη → u and conclude that u satisfies the original degenerate
equations and the transmission condition for multi-valued functions p±c . With this section
we conclude the existence result of Theorem 1.2.
A priori estimates. We use the same energy estimates as in the last proof, i.e. estimate
(2.7) for the limit vη. For convenience we derive the estimate again from the solution
property. Using ϕ = vη − p0 = pc,η(uη)− p0 in (2.2) we obtain∫

ΩT

pc,η(uη) ∂tuη +

∫
ΩT

λ̃(vη)|∂xvη|2 ≤
∫

ΩT

f̃(vη)∂xvη +

∫
ΩT

∂tuη p0. (3.1)

Using again the primitive Φη of pc,η with Φη(b(0)) = 0 we write the first integral as a
total time derivative, ∂tΦη(uη) = pc,η(uη) ∂tuη. With the η-independent bound for p0 ∈
W 1,1((0, T )) and uη ∈ L∞ we treat the last integral. The uniform estimate f̃± ≤ c1λ̃

±

allows to absorb the first integral. Since Φη(u0,η) is bounded and Φη(uη) is positive, we
conclude ∫

ΣT

λη(uη)(p
′
c,η(uη))

2|∂xuη|2 ≤ C, (3.2)
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with C independent of η. We have only a Σ-integral, since the chain rule evaluation of
∂xvη is valid only away from x = 0. We can express this estimate, with arbitrary δ > 0,
with cut-off functions. Using that p′c,η ≥ c2 is bounded from below and λ±η (s) ≥ cδ for
all s ∈ [δ, 1] for some cδ > 0, we conclude∫

ΩT

|∂xuη|21{uη≥δ}1Σ ≤ Cδ, (3.3)

where Cδ depends on δ but is independent of η; 1A denotes the characteristic function
of the set A. From the estimate (3.2) and the boundedness of fη and λη we additionally
conclude that the family Fη = [fη(uη)− λη(uη)p

′
c,η(uη)∂xuη]1Σ is uniformly bounded in

L2(ΩT ), i.e.
‖Fη‖L2(ΩT ) ≤ C, (3.4)

with C independent of η.
Compactness. Since (uη)η>0 is uniformly bounded in L2(ΩT ) there exists a weakly con-
vergent subsequence uη ⇀ u in L2(ΩT ) for η → 0. Our aim is to show strong conver-
gence.

Claim 1: Strong convergence.

uη → u strongly in L2(ΩT ) for η → 0. (3.5)

Our aim is to apply Lemma 1.3 to a modified uη. We fix an arbitrary δ > 0 and define

φδ(ξ) :=


0 for ξ < δ

φ̃δ(ξ) for δ ≤ ξ < 3δ

ξ − 2δ for ξ ≥ 3δ

where φ̃δ : [δ, 3δ] → R is chosen such that φδ is smooth with 0 ≤ φ̃δ
′ ≤ 1. Since

φ′δ(uη) = 0 for uη < δ and φ′δ(uη) ≤ 1 for all uη, using estimate (3.3) we obtain that
∂x[φδ(uη)] = φ′δ(uη)∂xuη is uniformly bounded in L2(ΣT ). Hence, φδ(uη) is uniformly
bounded in L2(0, T ;H1(Σ)). We note that the derivatives φ′δ(uη) and φ′′δ(uη) are bounded,
in particular φ′′δ(uη) = 0 for uη < δ.

With the help of (3.3) and (3.4) we are now able to show the uniform boundedness of
∂t[φδ(uη)] in (C0(0, T ;H1

0 (Ω))′. For any ϕ ∈ C0(0, T ;H1
0 (Ω)) we calculate∫

ΣT

∂t[φδ(uη)]ϕ =

∫
ΣT

φ′δ(uη)∂tuηϕ =

∫
ΣT

−∂xFηφ
′
δ(uη)ϕ =

∫
ΣT

Fη∂x[φ
′
δ(uη)ϕ]

=

∫
ΣT

Fηφ
′′
δ(uη)∂xuηϕ+

∫
ΣT

Fηφ
′
δ(uη)∂xϕ

≤ ‖ϕ‖C0H1‖Fη‖L2L2‖φ′′δ(uη)∂xuη‖L2L2 + ‖∂xϕ‖C0L2‖Fη‖L2L2

≤ Cδ‖ϕ‖C0H1 for all η.

Lemma 1.3 implies the strong convergence of a subsequence of wη,δ := φδ(uη) in
L2(ΩT ), i.e. wη,δ → wδ for η → 0 and for all δ > 0.
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We define Uη,δ := uη − wη,δ and consider uη = Uη,δ + wη,δ. Since wη,δ is a Cauchy
sequence in L2(ΩT ) and |Uη,δ| ≤ 2δ for all η we deduce that also uη is a Cauchy sequence
in L2(ΩT ). Therefore, we finally obtain

uη → u in L2(ΩT ).

Furthermore, exploiting the maximum principle, we have the convergence vη
∗
⇀ v in

L∞(ΩT ).
Claim 2: Identification of limits. We claim that, along a subsequence,

bη(vη)→ u = b(v) strongly in L2(ΩT ), (3.6)

Λ̃η(vη) ⇀ Λ̃(v) weakly in L2(0, T ;H1(Σ)). (3.7)

In the proof of the claim we do not emphasize x-dependence of the coefficients and
make separate calculation on Σ±, suppressing the superscripts ±. The convergence uη =
bη(vη) → u was already shown. To identify the limit, we use δ > 0 and a continuous
function ψδ : [0, 1] → [0, 1] with ψδ(s) = 0 for s in a neighborhood of {0, 1} and
ψδ(s) = 1 for s ∈ [δ, 1− δ]. We have

ψδ(uη)vη = ψδ(uη)pc,η(uη)→ ψδ(u)pc(u),

since, on compact subsets of (0, 1) the convergence pc,η → pc is uniform. The left hand
side converges weakly to ψδ(u)v. Since δ > 0 was arbitrary, we conclude v = pc(u)
almost everywhere on {u(.) ∈ (0, 1)}. Concerning the set of points with u = 1 we
calculate, with ψδ(s) = 0 for s < 1− δ and ψδ(1) = 1,

ψδ(uη)(vη − pmax) = ψδ(uη)(pc,η(uη)− pmax) ≥ O(δ),

hence v ≥ pmax on {u(.) = 1}. Similarly, we find v ≤ pmin on {u(.) = 0} and hence
v ∈ pc(u) almost everywhere. This shows (3.6).

The calculation for Λ̃ is slightly different since Λ̃ is not constant above pmax. Never-
theless, the maximum principle for vη implies boundedness of Λ̃η(vη) in L∞ and in L2H1,
and we may assume Λ̃η(vη) → U weakly in L2H1. We now exploit the linear behavior
Λ̃η(t) = αη + λ̃(1)(t− pmax) for t ≥ pmax, which holds for some sequence αη → α ∈ R.
We use a cut-off function ψ̃δ : R→ [0, 1] satisfying ψ̃δ(t) = 0 for t ≤ pmax and ψ̃δ(t) = 1
for t > pmax + δ. As for the nonlinear function b, we find ψ̃δ(vη)→ ψ̃δ(v) strongly in L2

and therefore

ψ̃δ(v)U ↼ ψ̃δ(vη)Λ̃η(vη) ⇀ ψ̃δ(v)Λ̃(v) weakly in L2,

the second convergence holds since Λ̃ is a linear function on the relevant arguments. We
find the characterization U = Λ̃(v) almost everywhere on {u = 1}. The identification
on the other parts is done as before, exploiting the uniform bounds for the pressure and
the uniform convergence Λ̃η → Λ̃ uniformly on compact subsets of R. Relation (3.7) and
Claim 2 follow.
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Limit equations. We fix a subsequence with Fη ⇀ F in L2(ΩT ) and Λ̃η(vη) ⇀ Λ̃(v) =
Λ(u) in L2(ΩT ). The limit functions u and F satisfy the equation ∂tu + ∂xF = 0 in
D′(ΩT ). Furthermore, we obtain for all ϕ ∈ C∞0 (ΣT )∫

ΣT

Fϕ←
∫

ΣT

Fηϕ =

∫
ΣT

fη(uη)ϕ+ Λ̃η(vη)∂xϕ→
∫

ΣT

f(u)ϕ+ Λ(u)∂xϕ.

This implies equation (1.14) for the flux function F .
Concerning the initial condition and the flux condition at x = −L we obtain, using

the convergences of uη and Fη in L2(ΩT ),

−
∫

Σ

uη(0)ϕ(0) =

∫ T

0

∫
Σ

∂tuηϕ+

∫ T

0

∫
Σ

uη∂tϕ

=

∫ T

0

∫
Σ

Fη∂xϕ+

∫ T

0

∫
Σ

uη∂tϕ→
∫

ΩT

F∂xϕ+

∫
ΩT

u∂tϕ,

for all ϕ ∈ C∞0 ([−L,L) × [0, T )). The regularized solutions satisfy the initial condition
uη(0) = u0,η → u0 in L1(ΩT ) which implies (1.16).

Concerning the Dirichlet boundary condition (1.17) we recall that Λ̃±η → Λ̃± uni-
formly and that Λ̃± is invertible on the interval [mint p0(t),maxt p0(t)] ⊂ (p+

min, p
+
max).

The convergence Λ̃η(vη) ⇀ Λ̃(v) in L2(0, T,H1(Σ+)) implies for the traces

Λ̃+(p0(t))← Λ̃+
η (p0(t)) = Λ̃+

η (vη(L, t)) ⇀ Λ̃+(v)(L, t)

in L2(0, T ) for η → 0. Therefore we have v(L, t) = p0(t) a.e. in (0, T ).
Transmission condition at the interface. In order to define the traces u(0±) at both sides
of the interface we abbreviate ξ := Λ±(u) ∈ L2((0, T );H1(Σ±)) and set ξ± := ξ(0±) ∈
L2((0, T )). According to our agreement in Definition 1.1 we set u(0±) := (Λ±)−1(ξ±)
and define µ± := v(0±) := (Λ̃±)−1(ξ±) in L2((0, T )). Since Λ−1 = p−1

c ◦ Λ̃−1 we also
have u(0±) = p−1

c (µ±) for a.e. t.
In the following calculations we assume p+

min ≤ p−min as in Figure 2, in the opposite
case the result follows with the analogous calculation. We introduce the piecewise linear
cut-off function Gδ : R→ [0,∞),

Gδ(v) :=

{
0 for v ≤ p−min + δ,

v − (p−min + δ) for v > p−min + δ.
(3.8)

Due to estimate (3.2) we have Gδ(vη) ∈ L2((0, T ), H1(Ω)) uniformly in η. Therefore,
for some function g ∈ L2H1 we have Gδ(vη) ⇀ g in L2H1 as η → 0 and we can identify
the limit g = Gδ(v) by the same arguments as in Claim 2 above.

We claim that the weak transmission condition

Gδ(µ+(t)) = Gδ(µ−(t)) for all δ > 0 and a.e. t ∈ (0, T ) (3.9)

holds. Since Gδ(v) ∈ L2(0, T ;H1(Ω)) we have the equality Gδ(v)(0
−) = Gδ(v)(0

+) of
the traces of Gδ(v) on both sides of the interface. It remains to verify Gδ(v(0

±)) =
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Gδ(v)(0
±) to conclude (3.9). Using the Lipschitz continuous functions Ψ± = Gδ ◦

(Λ̃±)−1, we calculate

Gδ(v(0
±)) = Ψ±(ξ(0±)) = (Ψ± ◦ ξ)(0±) = (Gδ ◦ (Λ̃±)−1 ◦ ξ)(0±).

With this, we have verified (3.9).
The original transmission condition (1.15) is now easily derived from (3.9). For fixed

t ∈ (0, T ) we set µ± = µ±(t). We distinguish two cases, (i) Gδ(µ
+) = Gδ(µ

−) > 0 for
some δ > 0 and (ii) Gδ(µ+) = Gδ(µ−) = 0 for all δ > 0. In case (i) we obtain µ+ = µ−,
hence u(0±) = p−1

c (µ±) > 0 and p+
c (u(0+)) = µ+ = µ− = p−c (u(0−)). In case (ii)

we have µ± ≤ p−min which implies u(0−) = 0 and p+
c (u(0+)) 3 µ+ ∈ (−∞, p−min] =

p−c (u(0−)). In particular, the intersection p+
c (u(0+)) ∩ p−c (u(0−)) is not empty. In both

cases the transmission condition (1.15) follows and Theorem 1.2 is shown.

A Proof of the compactness lemma

We will show in this appendix the compactness lemma 1.3. It regards a bouned space-
time domain (0, T ) × Ω ⊂ R1+N and a family of functions uk : (0, T ) × Ω → R, with
k ∈ N. We repeat the statement for convenience.

Let (uk)k∈N and its distributional time derivative satisfy that

uk ∈ L2(0, T ;H1(Ω)) and ∂tuk ∈ (C0(0, T ;H1
0 (Ω))′

are bounded independent of k. Then there exists a subsequence uk and a limit u such that

uk → u in L2(0, T ;L2(Ω)) for k →∞.

Proof. At first, we find a subsequence such that

uk ⇀ u in L2(0, T ;H1(Ω)),

∂tuk
∗
⇀ ∂tu in (C0(0, T ;H1

0 (Ω))′.

We may assume u = 0, passing to the sequence ũk = uk − u if necessary. Furthermore,
due to the density of smooth functions, we can assume that the functions uk are smooth.

Step 1. We provide an estimate of BV-type for the sequence uk. For (p, q) ⊂ (0, T )
we define

‖v‖BV (p,q;H−1) := sup
M∑

m=1

‖v(t+m)− v(t−m)‖H−1(Ω),

where the supremum is taken over all M ∈ N and all families t±m ∈ (p, q), p < t−1 < t+1 <
t−2 < t+2 < ... < t+M < q. We claim that for a constant C > 0 there holds the estimate

‖uk‖BV (0,T,H−1) ≤ C. (1.1)
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Let M ∈ N, t±m ∈ (0, T ), m = 1, ...,M be fixed, and (ϕm)m=1,...,M a family of
functions in H1

0 (Ω) with ‖ϕm‖H1 ≤ 1 for all m. For δ > 0 sufficiently small we choose
an interpolation ϕδ ∈ C0(0, T ;H1

0 (Ω)) with the following properties:

ϕδ ≡ ϕm in [t−m, t
+
m] for all m ≤M,

ϕδ ≡ 0 in [t+m + δ, t−m+1 − δ] for all m ≤M − 1,

‖ϕδ‖L∞H1 ≤ 1.

Due to the boundedness of ∂tuk in (C0H1
0 )′ we obtain

M∑
m=1

[uk(t
+
m)− uk(t

−
m)](ϕm) =

M∑
m=1

∫ t+m

t−m

[∂tuk](ϕm) = lim
δ→0

∫ T

0

[∂tuk](ϕ
δ)

≤ ‖∂tuk‖(C0H1
0 )′ · ‖ϕδ‖C0H1 ≤ C.

Thus (1.1) is proved.
Step 2. For J ∈ N large, we divide (0, T ) in subintervals Ij , j = 1, ..., J of length

η = T/J . Furthermore, we choose a number ρ > 0 and define the set of intervals Gk with
large values by

j ∈ Gk :⇐⇒ ‖uk‖BV (Ij ;H−1) ≥ ρ.

We can estimate the number of indices j ∈ Gk as follows,

|Gk| · ρ ≤
∑
j∈Gk

‖uk‖BV (Ij ;H−1) ≤ ‖uk‖BV (0,T ;H−1) ≤ C.

Step 3. We estimate variations from mean values over time intervals by the BV -
seminorm. For intervals I ⊂ (0, T ), u : I → H−1 and a fixed time t0 ∈ I we calculate
the Bochner integrals∥∥∥∥−∫

I

u− u(t0)
∥∥∥∥

H−1

=

∥∥∥∥ 1

|I|

∫
I

u(t)− u(t0) dt
∥∥∥∥

H−1

≤ 1

|I|

∫
I

‖u(t)− u(t0)‖H−1 dt

≤ ‖u‖BV (I;H−1).

Therefore, inserting an arbitrary value u(t0), we obtain∫
I

∥∥∥∥u−−∫
I

u

∥∥∥∥2

H−1

dt ≤ 2

∫
I

‖u− u(t0)‖2H−1 dt+ 2

∫
I

∥∥∥∥u(t0)−−∫
I

u

∥∥∥∥2

H−1

dt

≤ 4|I| ‖u‖2BV (I;H−1).

Step 4. We estimate the L2(ΩT )-norm of uk. Using the interpolation ‖w‖2L2 ≤
h‖w‖2H1 + Ch‖w‖2H−1 for w ∈ H1(Ω) we have

‖uk‖2L2L2 =

∫ T

0

‖uk(t)‖2L2 dt ≤ h

∫ T

0

‖uk‖2H1 dt+ Ch

∫ T

0

‖uk‖2H−1 dt.
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By insertion of mean values on subintervals we obtain

‖uk‖2L2L2 ≤ Ch+ 2Ch

∑
j≤J

|Ij|

∥∥∥∥∥−
∫

Ij

uk

∥∥∥∥∥
2

H−1

+ 2Ch

∑
j∈Gk

∫
Ij

∥∥∥∥∥uk −−
∫

Ij

uk

∥∥∥∥∥
2

H−1

dt

+ 2Ch

∑
j 6∈Gk

∫
Ij

∥∥∥∥∥uk −−
∫

Ij

uk

∥∥∥∥∥
2

H−1

dt. (1.2)

Extracting a subsequence k →∞, due to the compactness of H1(Ω) ↪→ H−1(Ω), we can
assume that ∥∥∥∥∥−

∫
Ij

uk

∥∥∥∥∥
H−1

→ 0 as k →∞ for all j = 1, ..., J.

Therefore, the second term on the right-hand side of (1.2) vanishes for k → ∞. For the
remaining sums we use the BV -estimates and obtain for arbitrary ε > 0

‖uk‖2L2L2 ≤ Ch+
ε

4
+ ChC

η

ρ
+ 8Chρ

2.

Given ε, we first choose h, then ρ and finally η sufficiently small to achieve

‖uk‖2L2L2 ≤ ε

for k sufficiently large. This concludes the proof of the Lemma.
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