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Summary

The first splitting schemes for solving the system of incosspible Navier-Stokes equations have been proposed
already in the second half of the last century. Among thentanginuous and discrete projection methods, ILU-
based factorisation schemes, etc. The main purpose dirgpichemes is to divide the velocity-pressure coupled
problem into smaller subproblems to be solved in an itegatray. Very often this leads to a drastic reduction
of computational work and resources. The most populartisglischemes are projection methods proposed by
A. Chorin and R. Temam in the late 1960's. Since then, theegtmjn methods were thoroughly analysed and
constantly improved, particularly for new CFD configurasand applications.

In a broad class of industrial applications one has to dehliwcompressible rotating flows. Very often it is helpful

to perform coordinate transformation to a nonintertiahfeaof reference. On one hand, this technique facilitates
the prescription of boundaries, since complex rotatingctisj become stationary, their mesh is constructed once
and for all during the preprocessing phase. On the other,l@relhas to consider the Navier-Stokes equations
with rotational forces, which consist of Coriolis and céfiyal forces. In order to obtain an efficient and robust
solver, it is important to come up with a proper handling @t extra terms. For coupled methods implementation
of rotational forces is pretty much straightforward. Foojpction methods, however, some modifications in every
step of the algorithm are required in order to guarantee(éager) convergence to a solution tugle, p). New
numerical and mathematical problems arise in this context.

The work, presented in this thesis can be divided into twaretgps:

First we propose a modified discrete projection method (DRiMthe incompressible Navier-Stokes equations
with the Coriolis force term. The tupl@u, P) of velocity and new pressure variablis computed in every time
step by ILU-based methods in the context of a Pressure Sampt@ément (PSC) approach with improved explic-
itly inverted preconditioners for both momentum and presfpisson-like equations. Proposed preconditioners
are constructed in such a way that no additional computatiefforts comparing to classical preconditioners are
required. Numerical comparisons of nonmodified and modifierjection schemes show that the latter scheme
delivers better accuracy in time of velocity and pressum@gmations for time-dependent problems, and faster
convergence rates to the steady state for stationary pnsbM/e prove that for the modified semi-discrete projec-
tion scheme the velocity is a weakly first-order approximatnd the pressure is a weakly orgeapproximation.
Numerical experiments are performed for test models ofsmitare/cube geometries and for complex 3D models
of stirred tank reactors.

In the second step, the proposed DPM-concept is extendeketgéneral-purpose ‘cross product operator’
w(w,u, ) x u, which may include Coriolis force, convection and/or anlyastterms to be written in the cross-
product form. It is shown that the non-diagonal dominandiefresulting matrix may lead to undesirable conver-
gence and accuracy shortcomings of the algorithm. NeMesbgmplementations of additional techniques such as
Vdiv- and edge-oriented stabilizations make it possible toiotstafficiently accurate solutions. Numerical tests
are performed for the flow around cylinder and the lid-drigamity benchmark problems.

The code of the algorithm is implemented into the open-sofinite element software for the incompressible
Navier-Stokes equationséat f | ow).

Key words: Navier—Stokes equations, Coriolis force, discrete pt@acmethod, pressure Schur complement,
rotational form of convection.
Andriy Sokolov, TU Dortmund
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Introduction

The design and numerical realisation of an efficient soleertlie incompressible Navier-Stokes equations is a
long-term purpose of CFD researchers. Since decades agngyirbgress is observed: a large variety of methods
and algorithms has been proposed and implemented into cosiaend open-source codes. A detailed overview
and a good mathematical foundation can be found, for instang2, 19, 20, 31, 83].

In many physical and industrial applications there is thaessity of numerical simulations of models with rotating
flows, for example, for the simulation of stirred tank reaatwodels in the chemical industry, analysis of the
influence of the orbital motion of an inner cylinder on anmdlaw in the oil drilling industry [3, 93], shape
optimization of mixers and ship propellers in food and shifghng industries, respectively, geophysical models,
etc. These kinds of applications may possess complex 3D gei@mand require large numerical simulations of
fluid models with rotating boundary parts, those propeitineat can be often a very challenging task. Fortunately,
there exists a large subclass of models, when complex tesditaf rotating parts can be avoided by coordinate
transformation and/or corresponding modification of PD@&stliese models. In our work we will focus on this
subclass of models and propose modified projection schesnésdir numerical treatment.

As a representative of the subclass of 'rotating’ modetsjseconsider a Stirred Tank Reactor (STR) benchmark
problem, which is shown in Fig. 1.1. The fluid motion is moddlby the nonstationary incompressible Navier-
Stokes equations

v+ (w-Vv—vAv+Vp=f, V-v=0 in2x(0,T] (1.2)

for given force f and kinematic viscosity > 0. We also assume that appropriate boundary values and initia
conditions are prescribed.

Cutplane
Vel.Magn. [mis]
agp. fmis]

1.08

~036

—084

~072

Fig. 1.1.(LEFT) STR geometry; (RIGHT) Numerical simulation (cutpéaof velocity).
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We assume that the STR model is satisfying the following d@:

e There are no additional baffles attached to the outside Witieostirred tank.
o Impeller rotates with constant angular speee- (0,0, w)”, wherew = const in the XY plane.

e Thetank s filled with homogeneous liquid.

Later in our work we will show that the derived algorithmiafnework remains valid and can be also applied to
models which violate any of the requirements above.

It is natural to assume that the major changes in the veloeityor field in the stirred tank reactor are due to the
blades of the rotating propeller. In order to accuratelgttteoundaries and flow field in a vicinity of the blades it
is preferable to perform a coordinate transformation usifiged mesh for the propeller around which the outside
wall of the tank is rotating. When switching from an inertiab noninertial frame of reference, we have to consider
a new velocity vectotr = v + (w x r), wherew is the angular speed amds the radius vector from the center of
coordinates. The new velocity satisfies homogeneous Dirichlet boundary values on theeblatithe propeller,
while on the outside wall of the tank one has to satisfy w x r.

After some derivation (for details s€e10.1 and references therein), we obtain that the system wiEN&tokes
equations (1.1) in the new frame of reference can be writtgoliows

u+ (u-Vu—vAu+ 2w xu+wx (wxr)+Vp=f

Vow—0 in 2 x(0,7], (1.2)

where2w x u andw X (w x r) are the so-called Coriolis and centrifugal forces, respelgt
Next, using the equality

w X ((.u><7°):—V%(<.u><r)2

and settingP = p — E w x r)? in (1.2), we get the following system of equations which Wi treated in our

2(
work:
w4+ (u-Vu—vAu+2w xu+ VP = f

Oy N2 (0.T]. (1.3)

We would like to note that the numerical analysis of (1.3) #@agbractical application is not new, see, e.g., [7,
21, 22, 23, 93]. Nevertheless, proper construction of pt@a methods, resp., operator splitting schemes for
Coriolis dominating flows and its numerical analysis werévery well investigated until now. Therefore, in the
first part of our work we will deal with the construction andmerical analysis of a discrete projection method
for (1.3), modified in such a way as to effectively treat theiGlis force term in every step of a projection scheme.
Corresponding error estimates for velocity and pressupecegimations will be derived. In the second part of our
work we will show that the proposed modified DPM framework barextended to a more general case - namely,
effective treatment of any skew-symmetric term to be wmiitea cross-product formv(u) x w, for instance of
rotational form of convection. The above transformatior3]possesses the following advantageous features for
the numerical simulation of rotating flows:

e All calculations are performed on a static mesh with rotgtimoving boundaries which can be adapted in
a very precise way. At the same time if one uses Fictitious &ioni34], resp., Fictitious Boundary [106]
methods, one can obtain only first-order approximatione@bioundaries (due to the piecewise approximation
of the interfaces). On the left hand side of Fig. 1.2 one cartlsat for the coordinate transformation strategy
mesh is aligned along the boundaries of the rotating prepéfi this case the accuracy of prescription is fine
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even for a coarse level of refinement. At the same time fronritjte hand side of Fig. 1.2 one observes
that for Fictitious Domain/Boundary approaches the givirosette of the propeller is prescribed in a zigzag
way. Therefore, the Fictitious Domain/Boundary approacparticularly suitable for the simulation of the
qualitative flow behaviour of complex configurations onfyohe likes to get quantitatively accurate results,
then a good approximation of the "real” boundaries and floeeea very fine mesh is needed, see Fig. 1.3.
As another alternative, applying Arbitrary Lagrangiandtidn [25] methods one can prescribe the mesh in an
arbitrarily precise way, too, but additional complex resioactions of the mesh in every time step, intermediate
velocity updates, etc., are required anyway.

Precise approximations can be especially important ifulertice models with wall functions in a vicinity of
the walls are used. Here the approach of coordinate transtan can be of a big help, too.

Fig. 1.2.Cross section, (LEFT) body-fitted mesh; (RIGHT) mesh forfititious boundary approach.

Fig. 1.3.Piecewise approximation of a moving blade. Gray: analygiscdiption of the blade, black: approximation leading to
a "zig-zag” description of the boundary. (LEFT) very coansesh; (RIGHT) finer mesh [92].

A fixed/'frozen’ mesh of the rotational model facilitatesmerical calculations, when some optimization of
geometry and/or flow field is required. In this case a meshmstracted 'once and for all’ without any time
consuming reassembly at every macro time step.

The detailed analysis of (1.3) stimulates new Corioli®otid discrete projection schemes, which possess the
same order of accuracy for velocity and pressure approiomsas for the classical projection methods [18,
101] for the incompressible Navier-Stokes equations (Léf)us consider the semi-implicit second order time
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discretization:
Givenu™ and the time step\t = ¢, — t,, find u”*! andp™*! (for the convenience we dengte= P
in (1.3)) satisfying

’U/n+1 —un n l((u* . v)un+1 _ I/A'U,n+1 + 2w X un+1) + Vpn+1 — gn+1
At 2 (1.4)
V-u=0
with the right-hand side
1 1
gttt = 5(]""“ +fM - 5((11,* -V)u" — vAu" 4 2w x u"), (1.5)

wherew* denotes a second order extrapolation of velocity frerandn — 1 time steps. Alternatively one
may consider a fully implicit scheme by settimg = w"*!. Discretization of (1.4)- (1.5) in space leads to a
saddle-point system to be solved in every time step. Thesybkas the form

(50)(3)=(2)

whereu = (ui,us,u3)? is the discrete velocityy the discrete pressurdi and B are discrete gradient
and divergence operators aiftlis a block matrix which is due to the discretized velocity kgters in the
momentum equation. The matri has the following block structure

A-MDO
F=|M 4 0], (1.7)
0 0 A

where A is the block diagonal part oF', which is due to the convective and diffusive terms, awdis the
off-diagonal part off’ due to the cross product operaos x -.

The implicit scheme (1.4)— (1.5) has excellent stabilitpg@rties, see e.g. [105], however solving the coupled
system (1.6) in every time step is rather expensive. To atiggd some splitting procedures are often used in
practice, e.g. already mentioned projection methods dtieen observed by a number of authors, see, e.g. [82,
85], that on the discrete level the projection method camterpreted as a particular incomplete factorization
of the matrix from (1.6), which involves preconditioners 8 and for the pressure Schur complement matrix.
Applying these principles, we will propose a modified prdi@e scheme for a better treatment of the Coriolis
force term2w x w.

The concept of projection schemes for the incompressitdéery of Navier-Stokes equations with Coriolis
force (1.3) can be extended to the system of Navier-Stokeat®ms with a general-purpose cross-product
termw(u) x u, which takes into account not only Coriolis, but also coriecand/or any other term, which
can be possible presented in the form of the cross-prodweratgr. As an example, using the well-known

inequality
2

(u-V)u:(qu)xu+v(%), (1.8)
we can formulate our problem for a general case:
wu+Wxu—vAu+ VP =Ff

o N2 (017, (1.9)

where

1 . . . . .
- W=Vxu,P=p+ EuQ for the system of the Navier-Stokes equations in the inldrédae of reference.
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1 1 . . . . .
- W=Vxu+2w,P=p+ 5u2 — 5(w x r)? for the system of Navier-Stokes equations in the nonirlertia
frame of reference.

A variety of numerical problems may arise in the context afjgction methods for the incompressible Navier-
Stokes equations with the Coriolis force term (1.3) and aeggrpurpose formulation (1.9):

1. Preconditioning How to construct effective Coriolis-oriented preconaliérs in such a way that, on the one
hand, they significantly improve the convergence behawiban iterative scheme (if compared to those with
standard preconditioners) and, on the other hand, nunhedsts of a scheme do not increase?

2. lterative behaviourTo understand effectiveness of the constructed schereéhamto examine both inner and
outer iterative behaviour. For a right choice of precomdiéirs the outer convergence of the proposed scheme
should be significantly faster and, at the same time, midtigpsts have to stay on the same level.

3. Accuracy Before applying a new scheme one has to give an answer tollbwiihg question, namely, what
order of accuracy can a user expect for velocity and presgpmximations?

4. Stabilization The skew-symmetric nature of the Coriolis-oper&orand the general-purpose cross-product
operatorw(u) x - may lead to undesired numerical properties and to bad cgemee rates. Without proper
stabilization techniques the corresponding numericalkition is often not possible. So the question is, what
stabilization methods to use and how will they influence thiimed solution and the solving process?

5. Generalized frameworR he general-purpose cross-product operat@z) x u, which contains rotational form
of convection and Coriolis force term, requires additiotleahniques to stabilize the solution process and to
guarantee sufficient accuracy of the obtained solution fediom and large Reynolds numbers. The obvious
question is what techniques to choose and how to apply themrteerical simulations?

Further in the thesis we will discuss every topic in more illgteovide the corresponding derivations, examine nu-
merical results and discuss possible implementationssotbposed schemes. The thesis is organized as follows:
In chapter 2 we give a short overview on the Schur Complemgntaach for the classical Chorin-Temam pro-
jection methods. By applying the incomplete LU factoriaative propose a modified projection method with
improved explicitly inverted preconditioners for the gystof incompressible Navier-Stokes equations with the
Coriolis force term. Some auxiliary results concerningghgposed preconditioners are proved. Then, in chapter 3
we study the error estimate of a semi-discretized form ofitbdified projection method. We show that the veloc-
ity is a weakly first-order approximation and the pressunggakly order% approximation.

Proceeding further, in chapter 4 we introduce a general &dtime cross-product operatar(u) x -, which includes

not only the Coriolis force term, but also rotational cortiaat. The modified projection method is extended to the
general scheme. This extension makes it possible to trgaeam to be written as(u, ) x w. In this chapter we
also give a short theoretical outlook on Algebraic Flux @otion and Edge-oriented techniques for stabilization
of standard and rotational forms of convection.

From theoretical derivations we move towards numericakerpents. Thus, in chapter 5 we present the numerical
analysis of the modified projection method for the systemtok& and Navier-Stokes equations with the Corio-
lis force term. We examine accuracy of the modified discretgeption method (DPM), multigrid behaviour for
the pressure Poisson-like equation and convergence ceties stationary solution for various Schur Complement
preconditioners. Model problems in a unit square/cubeadert.

Next, we perform numerical experiments for the generappse modified projection scheme. In chapter 6 we test
accuracy and iterative behaviour of the projection scheanedtational form of convection. Taking the lid-driven
cavity and the flow around cylinder benchmarks, we show tlitit the help ofVdiv- and edge-oriented stabiliza-
tion techniques one can obtain numerical solutions witfigaht accuracy. Pros and cons of numerical aspects of
rotational convection are discussed.
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Chapter 7 aims to give a short introduction into the non-camuial code-eat f | ow. We discuss its applicability,
main features, pre- and postprocessing steps, provideniafton concerning implementation of the coordinate
transformation technique. Then, in chapter 8 we descripéagtions in the field of the stirred tank reactor simula-
tions, where the modified projection method with its cooatiirtransformation strategy can be of a big importance.
Complex 3D rotating flows for geometries of stirred tank teexare simulated. For visualization purposes we take
a particle tracing tool and observe moving behaviour ofthaggparticle in the calculated flow field. Here we also
give an outlook on future investigations in the area of tlgbtiflows and population balance modeling.

Finally, chapter 9 summarizes the opportunities and dratubaf the proposed scheme and Appendix A supple-
ments the thesis by derivations of the incompressible systethe Navier-Stokes equations in the noninertial
frame of reference.

The current work was supported by the Graduate School ofuetmoh Engineering and Logistics in TU Dortmund
University, by the German Research Foundation and the Bufsiundation for Basic Research through the grant
DFG-RFBR 06-01-04000/08-01-91957 and TU 102/21-1. Okthstientific results were published in a series of
papers. Thus, the content of chapter 2 including some ngalegsults from the chapter 5 was published as a
research article iComputer Methods in Applied Mechanics and Engineef@8j. The theoretical derivation for
the modified semi-discrete projection scheme was acceptiditnal of Mathematical Fluid Mechani¢g5]. The
content of the chapter 5 including some numerical results fihe chapter 8 was published as a research article in
Electronic Transactions on Numerical Analygi9].
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2

Discrete projection methods for rotating incompressible fbw with the
Coriolis force

2.1 Discretization and solution aspects

In the current section we give an introductory insight ohi® projection scheme with the Pressure Schur Comple-
ment concept. We also present space and time discretizatlmnused.

2.1.1 Discretization aspects

First, we discretize the time derivative in the Navier-&slequations (1.3) by the one-st@cheme method.
Givenu™ and the time step\t = t,,,1 — t,, then solve forw = u"*! andp = p"*! (for the convenience we
denotep = P in (1.3))

n

uou” L G((w* - V)u — vAu + 2w X u) + Vp = gt
V-u=0

in 2 x (0,7 (2.1)

with the right-hand side
gt =0T (1 - 0)f" — (1 - 0)((u* - V)u" — vAU" + 2w x u™).

whereu* denotes a certain order extrapolation of velocity frorandn — 1 time steps. Alternatively one may
consider a fully implicit or explicit schemes by setting = u™*! or u* = u™, respectively.

For the space discretization we use the mixed Finite Elemetihod (nonconforming Rannacher-Turek elements
@1 for velocity vector fieldu and piecewise constant elemens for pressurep, see Fig. 2.1). The detailed
description of these elements can be found in [88].

Fig. 2.1.Nodal points of the nonconforming finite element in 3D.
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Applying the space discretization to (2.1), we obtain tHiofeing system of discrete equations

A —2AthwM 0 AtBy\ [w gyt

2At0wM A 0 AtBy | [ua| | g5t 22)
0 0 A AtBj us | gngl '
BT BY BT o0 ) 0

whereA = M + At0(N(u) + vL) is the velocity stiffness matrix}/ is the mass matrix and the matrix operators
N(u) and L are the discrete analogues of the continuous operétors/)- and(—A)- , respectively;B is the
gradientmatrix. It is easy to check that the discrete divergenceatpers equal td—B7). In practical realization,
AtB;p is replaced byB;p with p = At p.

2.1.2 Pressure Schur Complement approach

If we denote byg = (g7, g5, g5 t1)T and set

A —2wAOM 0
F=|2wAtoM A 0 (2.3)

0 0 A

(5 0)(3)=(?)

with the block matrixF' of the form (2.3). All the solution strategies for (2.4) candivided into two categories:
coupled and uncoupled, or co-called segregated methodsephesentatives of coupled methods are, for instance,
Vanka-like [111] approaches (see [105] for the detailsphperator-splitting schemes (see [104, 105]). In our work
we focus on the methods from the segregated class: namelpréssure Schur Complement reduction methods.

we obtain the saddle point problem

Assuming that the mati¥’ is nonsingular (under some conditions [33]), we can perfiverfollowing factorization

(D) (D EY )

whereS = —BTF~1B is the Schur Complement df in A. By this we obtain in some sense the block LU
factorization of the global matrixd. Solvability is highly dependent on the diagonal dominapaperty of the
'middle’ matrix on the right hand side of (2.5), which cornsief the velocity matrix' and the Schur Complement
operatorS. The only disadvantage is th&" F~! B is given only in implicit form, since” ! is a dense matrix in
general, and the computational effort for computing theise is too high. Therefore, appropriate iterative sotutio
methods for (2.4) have to be constructed.

Some important properties can be derived from the factoizg2.5) (see [8]), in our analysis we will need the
following:

e if F'is symmetric positive definite anl has full column rank, the& is symmetric negative definite.

e S, and henced, is invertible if and only ifB has full column rank.

Constructed ir@l/Qo solution spaceB does not have a full column rank (see Section 2.3.2 for thetcoaction

of B and corresponding discussions). Therefore the pressdegdsmined up to the constant and some extra con-
dition on pressure is required, e.§, p(z)d z = 0.
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Let us consider the solvability of (2.4). In practice, we aifu cannot know if the global matrix4 is well-
conditioned or not. The main criteria for the stability isdaarantee that the condition number.éfremains
bounded as size of the medh — 0. This condition is named after Ladyzhenskaya, Babuska amdzB
(LBB) [24, 33] and reads as follows:

inf  sup (P, V - )

e Vew) (2.6)
PrEQU . 3, [PlloVawnllo

Checking the inf-sup condition in its abstract form (2.6h&d, therefore the following criteria can be useful in
many cases.

Proposition 1 Assume thatange(B) is closed and for any € V, there existas;, = IT,u € V}, such that

{b(u — Ihu,qn) = 0Vq, € Qp 2.7)
[IThullv < cl|ully '

with a constant > 0 independent ok. Then, there exist independent of such that

b
sup b(vn, an) > kllgnllq Yan € Qn. (2.8)
oneVy  |lvnllv

In our caseb(qn,vn) = (Bqn,vp). For our theoretical and practical purposes we choose igland pressure
spaces to be as follow®), = Q1, Q, = Qo. Itis well known that the approximating pair / Qo is numerically
stable, i.e. the LBB condition is satisfied (for the desdéwipbf the finite element spacés / Qo and for the proof
of their stability see [105]).

Now, let us assume thad and F' are nonsingular matrices. Hen8eis also nonsingluar. The first row of (2.4)
reads
Fu+ Bp=g. (2.9)

Multiplying (2.9) by BT F~! and taking into account the incompressibility constrdifitu = 0 obtained from the
second row of (2.4), we get the Pressure Poisson-like pmoble

BTF-'Bp=BTFlg. (2.10)
Thus, the Pressure Schur Complement approach reads:

1. Solve forp the scalar equation (2.10).

2. Substitute the calculatednto (2.9) and solve it fot.

Considering the time-dependent problem with fully impliche-stepping schemes, we have to solve the sequence
of saddle point problems (2.4) by the above Schur Complerapptoach (see [105], Chapter 2), i.e. to solve
once (2.4) in every time step.

The above approach belongs to the clasprofectionmethods [8, 33]. Indeed, from (2.4), we obtain (for details

see [33)):
u\ ({I+F'BS'BT)F g
(p) a ( S'B'"F g ) (e11)
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We can see that the matrix
nN=F'BS'B" =F 'BBT"F'B)'B” (2.12)

is a projector {12 = II). It is an oblique projector ontaange(F ! B)
ITv € range(F~'B), Yv € R"

and is orthogonal toange(B):
v—ITv 1 range(B), Yv € R".

2.2 Discrete projection methods (DPM)

2.2.1 The classical Chorin-Temam projection method

Let us consider a well-known second order variant of the {BRéemam projection method [84, 19] applied to the
problem (1.3). In its semi-discrete form it can be viewed as@astep procedure for advancing from time step
to stepn + 1 with givenu™, p"™ andg™** defined in (1.5):

1. Find intermediate velocity from

o
uAl;u +5((u" V)i — vAu+ 2w x w) = " = V", (2.13)

whereu* denotes a second order extrapolation of velocity froemdn — 1 time steps.

2. Find new velocity and pressure as the result of the orthalgmrojection into the divergence-free subspace

u"tl —
S

1
_vn+1_vn:
A 5(Vp P")

(2.14)

To avoid any possible misleading we assume to be working digtbretized in space projection scheme (2.13)-
(2.14). To motivate our modifications of the projection nuethlet us consider its algebraic counterpart. To this
end, denote byM the velocity mass matrix and hly,, I, the identity matrices on discrete velocity and pressure
spaces, respectively. It is easy to check that in the dis@etting the method (2.13)—(2.14) can be written in the
following algebraic form:

<1§T _BT(AL?M)lB) (Ig %]\2—13> <U7;+1) = <g) (2.15)

with g = g" ™ + u™ — Bp™ andq = £ (p™** — p™). The matrix product on the left-hand side of (2.15) can be
observed as the incomplete LU factorization for the matfithe coupled linearized Navier-Stokes system (matrix

from (1.6)). Indeed, it holds
F B F 0 I, F-'B
<BT O) N <BT —BTFlB> <O 1, > (2.16)

The velocity submatrix has the form
A —wM O
F=|wM A 0]. (2.17)
0 0 A
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whereA = (At)~'M+3[ N(u*)+vL]is the velocity stiffness matrix. Therefore, if the timeyst#t is sufficiently
small the scaled block diagonal mass-mafi)~! M is a reasonable approximation £ and the incomplete
factorization in (2.15) is close to the exact factorizatjbr6). This shows that in some sense the projection method
(2.13)—(2.14) approximates the coupled implicit methad X for smallA¢.

2.2.2 The modified projection method

From the above consideration one realizes that a betteogippation toF —*, compared tg At) M —!, may lead

to more effective (possibly less restrictive w.r.t. size/d) projection methods. Below, see (2.32) and (2.34), we
consider an approximatioM(f)1 to F~! which takes into account the Coriolis terms and to some extee
convection terms. Thus, we consider the system (2.15) wititheer velocity matrix approximatioi ., instead

of ﬁM. In the algorithmic form one time step of the new discretggmtion method reads (fay, — t,+1):

1. Givenp™ ~ p(t,), u™ ~ u(t,), andg = g"*! + -Lu™, then solve foru the equation

Fi=g— Bp". (2.18)

2. Solve the modified discrete pressure problem

Pg=BTa  withP = BTM(f;B . (2.19)

3. Correct pressure and velocity
Pt =p"+q, (2.20)
u"tl = — M(i)lB q. (2.21)

Although we perform all our calculations with the discretejpction method (2.18)—(2.21), it is instructive to write
down its semi-discrete counterpart. This is easy to do fercse ofM(.) defined in (2.32). Now the procedure
for advancing from time step to stepn + 1 reads (compare to (2.13)—(2.14)) for giveh, p" andg™*! defined

in (1.5):

1. Find intermediate velocity from

w1
- Atu + 5((u* V) — vAG+ 2w x ) = g — Vp™. (2.22)

2. Find new velocity and pressure as the result of the foligwarojection into the divergence-free subspace

u"tl —a

~ 1
v +wx (utt —a) + i(Vp"Jrl —Vp") =0

(2.23)
V- -u"tt =0.

Remark 1For efficient calculations with the original projection hetl (2.13)—(2.14) or with the modified one,
we need an efficient solver for the velocity subproblem wihith matrix ' as well as for the (modified) pressure
problem with matrixP. In section 2.3.2 we will show that the modified method leada symmetricpressure
problem of the diffusion type.
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Remark 2If we compare the factorizations (2.15) and (2.16), it isygasotice that the matri*BT(ﬁM)—lB,
corresponding to the discrete pressure Poisson problenhecaonsidered as a preconditioner for the Schur com-
plement matrix- BT F~! B. Another way to realize this is the following, see, e.g. 4lLEliminatingz we can
rewrite (2.18)—(2.20) as

p Tt =p" + PTYBTF'Bp" —g) (2.24)

with ¢ = BT F~'g. Thus with respect to the pressure variable one step of thjeqtion method can be seen as
one iteration of the preconditioned Uzawa algorithm. Tklates the efficiency of the projection methods with the
issue of pressure Schur complement preconditioning, sedq29].

Remark 30ne possible variation of the projection method is to addffagion dependent term to the pressure
correction step (2.20):

Pt =p"+q+vM,'BTu
In [84] (for the casev = 0) it was discussed that adding such term may reduce numédcaddary layers in
projection methods.

Remark 40Observing (2.23) or the choice M(f)l in (2.32) and (2.34) one notes that the modified projectiep st
essentially takes into account the Coriolis terms and amdyréctly (in (2.34)) the convection terms. Therefore
the proposed modification of the method is especially slgtidy the case of moderate RossBy numbers. See,
however, propositions for the case of large Rossby numheheiChapter 4.1.

In the following of this section we mainly address the follog/two issues:

e Building an efficient multigrid solver for the velocity sutmblem (2.18).

e Finding an appropriate matri¥/,. involved in steps (2.19) and (2.21).

2.3 Algorithmic details of the DPM

2.3.1 Velocity subproblem

Assuming a hierarchy of grids let us consider a multigrid et for solving equation (2.18). For smoothing
iterations we take a linear iterative method of the form

't =al + aC~ (g — AtBp" — Fa') , (2.25)

whereq is a relaxation parameter addis a suitable preconditioner @&. We are interested in a smoother efficient
for the case of large values of the Coriolis force term, i.eewthe off-diagonal parts in the matrix (2.17) have
values equal or larger than those of the diagonal part. N@tin this case the skew-symmetric partBfis
dominant. Thus standard smoothing iterations like Jacolitauss-Seidel may not lead to a robust multigrid
solver.

Taking an implicitd-scheme, for instancé = 1 (Backward/Implicit Euler), we obtain the off diagonal vaki
in (2.17) to be2w At M. If this value is large enough, the Coriolis terms should d&eeh into account irC.
Following [74], we put
diag(A) —2wAtM; 0
Ceoriol = | 2wAtMy,  diag(A) 0 , (2.26)
0 0 diag(A)
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whereM, is the lumped mass matrix. The lumped mass matrix is a didguataix with diagonal elements defined
asm; = Zj m;;, wherem,;; are the entries ab/. M, is often taken as an approximation for the consistent mass
matrix. For the two-dimensional velocity problem disczetl by a conforming finite element method on a regular
grid it was proved in [74] that a standard geometric multigriethod with such smoothing is robust with respect
to all relevant problem parameters. We will see that the ignidt method stays very efficient in more practical
settings, too.

Taking into account the fact that all blocks 6f.,,.;,; are diagonal matrices, one can explicitly find its inverse
C ! by means of the proposition:

coriol
Proposition 2 Consider a matrix of the following form:

al...O—ll... 0 0

0...ap, 0 ...—-1l, 0
li...0 by...0 0
G= |t ¢ 1o (2.27)
0...7, O0...b, 0
0 0 C1 ... 0
0 0 0...cp
Then its inverse is , l
a1b11+lf O a1b11+l$ e O O
: b.TI : l’Vl
0 anbn+12 0 Y anbn+I12 0
—l1 a
m PRI 0 m PRI 0 O
G '= ST SR (2.28)
—In an
0 Anbp+12 0 T anbp+I2 0
0 0 L 0
c1
0 0 0 L

Proof. By direct calculation. [
In the corresponding section of our work we will present lssaf numerical experiments with the multigrid

method using different smoothers. We will see that itereti(?.25) with the precondition&r..,,.;,; outperform
such standard smoothers as Jacobi or SOR methods.

2.3.2 Modified pressure equation

The numerical solution of the pressure Schur complemerti@no (2.19) is typically done by applying the pre-
conditioned Richardson iteration (2.24), where the chofcn optimal preconditione? is most crucial.
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If Fu corresponds to
au — vAu ,

then an effective preconditioner for S is known and its dedlaionstruction can be found, for instance, in [105, 48].
If Fu corresponds to
au — VAU +w X u,

then an effective preconditioner is harder to develop.farrhore, in the more general case this operator contains
not only the Coriolis force, but also the convective termd dnerefore having effective preconditioners is of
great practical importance especially for the case of hiteynolds numbers. Only few results can be found in
the literature related to the preconditioning of the presstchur complement operator for fluid equations with
Coriolis terms, see for instance [71, 72].
Here we follow the approaches given in [72] and [105] to cartdta preconditioner for the discrete counterpart of
the Schur operator:

Pact= -V - (al —vA+wx)"'V. (2.29)

To this end, let us consider the influences of mass, Coriolisdiffusion parts in (2.29) separately. Frafn=

M + AtvL we get that if the time step or the kinematic viscosity is $reabugh, then we can assume that
A ~ M and therefore®~! = P.L, where Pnass = BTML‘lB. If the time step or the kinematic viscosity is
sufficiently large, then we assume théts AtvL, with B'L~'B ~ I, and hence®~* = M, whereM,, is the
pressure mass matrix. Then, as preconditioner for the geBtakes case, we can define the maRix! as linear
interpolation of the above extreme cases, namely

P71 = O‘RPn;alss'i_ OLDszl (230)

with appropriate coefficients, for instaneg = 1, ap = Atrv. When the time step is small the diffusion-oriented
part of the preconditioner,DM;l is often neglected (i.exp = 0), leading to a standard projection step as in the
well-known Chorin scheme. In the case of the Coriolis forratinvolved, we use instead &f,2ssthe modified
preconditioner
Pmass+corioI: BTM_l B (2-31)

(mass+coriol

by choosing a ‘Coriolis-oriented’ mass matrix

ML —2wAt]V[L 0
M(mass+corio)| = | 2wAtM, My, 0 . (2.32)
0 0 My,

Here, the off-diagonal parts represent the contributiothefw x operator. Thus, the modified pressure Poisson
equation reads
1

Prass+coriol = BTM ! Bq= At

(mass-+coriol B'a. (2-33)
We will see that (2.33) can be interpreted as the discretetegpart of a modified pressure Poisson problem with
symmetridiffusion tensor.

To take into account the influence of the viscous terms, trteimaDMp‘l can be also included in the definition
of P. Alternatively one can include the diagonal partifinto the pressure diffusion operator. Namely, one can
consider in (2.33)
diag(A) —2wAtMp 0
M(diag+c0riob = | 2wAtM;, diag(A) 0 . (2.34)
0 0 diag(A)
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Below we discuss some important details of the modified ptmje step. First, note that the matthass+corioliN
(2.33) can be seen as a discretization of the following diffiial operator (see [72] p. 365 for more details):

L=-V- MV withM=[l+wx], w=(0,0,2wAt)T.
One finds (use Proposition 2)
M=+ |w?) ' T+weow—wx],

where(w ® w);; = w;w;. Sincew is a constant vector one has x Vg = V x gw for a scalar function.
SinceV - (Vx) = 0, this leads tdv - (w x Vq) = 0. Therefore in the differential notation, equation (2.38) de
written as

(14 |w?) 'V - [ +wew]Vg=—(At)"'V . u.

Note that although the operatdvt is non-symmetric the resulting scalar problem for the pressipdate; is
symmetric. The important property of symmetry-preseranghe discrete level is verified in the following lemma.

Lemma 1.For the discretization with the nonconforming Stokes fingéement Ql/QO the matrix
P=BTM_! B is symmetric.

(mass+corio)
Proof. Denote
P ={pi;}, My ={m}, B = (By, B, Bs)" with Bx = {b}:}, s = 2wAt0. (2.35)

We need to prove that the matrix

1

ML —SML 0 - Bl
P= (B B BI) (sM;, My, 0 B (2.36)
0 0 ]\/fL B3

is symmetric. Using notation (2.35) we get from (2.32)

bllcibllcj bllciszs bzibllcjs b%ib%j b%ib%j
P = Xk: (mkk(l +52) (452 mw(I+s2) 0 mg(L+s2) | ma ) ' (2:37)
It is obvious that equality
by.b? s b2.b} s S
; mk:(llj_ s2) mk:(llj_ $2) ;(bllcisz - biibllcj)m =0 (2.38)
would ensure thaP is symmetric. Let us show that
bpibi; — biribi; =0, Vi, j k. (2.39)

To construct a discrete gradient operaibmwe assemble a discrete divergence operBtand use the equality
B = BT (see e.g., [33]). Denoting

B = (B1,B2,Bs) with Bx = {d}5}, (2.40)
from the incompressibility constraint we get for a sum oégrials over all quadrilaterals,

Z (Biui + Baug + Baus,q), =0 Vg€ Qo .
%
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element i

element j

Fig. 2.2. Definition of entrieshy; andby;.

Performing integration by parts and taking into account tha pressure is piecewise constant, we construct the
entries of the divergence operaf®r

(e o d2) = [ Veossiido =~ [ ¢ 0idos [ ¢y miido= [ gy mudo @a1)
T T; aT; oT;
and the entries of the gradient operator

T
(b by b)) = - @i - nipjdo (2.42)
J

wherey; € Qo, ¢; € Q? such that the degrees of freedom of its components are ddfineagh the surface
integral along the-th face;n = n,;; = (nj;,n?;,ni;)” is a unit normal to the-th face of thej-th element. In
other words we obtain

By = {b}; =nj;}, Ba={b}; =n}, Bs={b}=n}}.
Thus, for entriesb’,fi we use a vectony; and for entriesbk’cj we useny; (see Fig. 2.2). Then it holdsy; = —ny;
and (2.39) is satisfied. [

Remark 5The proposition is true for ani = BT G~! B, whereG takes the form of (2.32) or (2.34). In particular
itis valid for G = M giag+corioy from (2.34).

2.3.3 Correction of velocity and pressure

Let us consider the last step of the DPM, i.e., equationDj2(2.21), and look for a necessary modification
of velocity and pressure corrections. As an example we dendif(.) = M mass+corig- Multiplying both sides
of (2.21) by BT and using (2.33) we get

BTu=BTa - AtB" ML

1 7
(mass+corio)|Bq = At(EBTU — Prass+coriol) = 0.
Thus the discrete incompressibility constraint is satisf w.

The equation for the pressure correction undergoes soméicadions as well. Applying (2.30) withkr = 1 and
ap = Atv, we obtain from (2.33) the final equation for the pressureemtion

p:p”—i—q—i—VM;lBTﬂ,
wherel, is the pressure mass matrix.

Remark 61f M) = Mgiag, then the diffusion part is already included and one caaget 0.
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2.3.4 Resulting algorithm

To conclude the discussions of this chapter we present thtbfiedd DPM algorithm (withp™ being the pressure
from the previous time step), which reads as follows:

1. Solve foru the equation
Fu =g — AtBp" (2.43)

with a multigrid method with smoothing iterations involgithe special precondition€r described in (2.26).

2. Solve the discrete pressure problem

1
_ T —1 _ T~
Pq=B"M;Bq= B"u (2.44)

with M(f)l from (2.32) or (2.34).

3. Calculate the pressure and the velocity approximatisns a

p=p"+q+aM;'B'u,
u=u-— AtM(f)qu (2.45)

with o = 0 or o = v. In the case of DPM set* ™! = p, u" ™! = u or perform several loops of these steps to
get the fully coupled solution at timeg , ;.

2.4 Summary of the modified DPM

In this chapter we constructed the modified discrete prigiectcheme (2.43)-(2.45) for the system of the incom-
pressible Navier-Stokes equations with the Coriolis fdezen (1.3). Based on the incomplete ILU factorization

for the matrix of the coupled linearized Navier-Stokes systand detailed evaluation of discrete operators, we
proposed new explicitly inverted block-diagonal precamitrs for both momentum and projection steps. The
modified DPM should guarantee better accuracy of velocity gressure approximations and/or faster conver-
gence to the steady state solution than the classical piejemethod especially for medium and large values
of w At. Numerical experiments in chapter 5 will confirm this.

We would like to point that the constructed Pressure Schum@@ement preconditioners can be used in a fully

coupled way as well. In our work though we consider only ttsedite projection approach.






3

Error analysis of the modified projection method

As it was proposed in the Chapter 2, to handle effectivelypbgsibly dominating Coriolis force we modify the
classical projection scheme [18, 101] in the following wy:givenu™ = wu(t,,):
Step 1: Find intermediate velociy* ' from
1
(@ ) = pAGT 4 (u - V)a w @t = f () (3.1)
a" =0

Step 2: Find new velocity and pressura™*!, p"*1} as the result of the projection into the divergence-free
subspace

1 n+1 ~n+1 n+1 ~n-+1
- - - Vp"tt =0
. (u ") +w X (u ") 4+ Vp
divumtl =0 (3-2)
u"t.n|p =0
wherefk is the time stept,+1 = (n + 1)k, andn is the normal vector td". One notes that the essential
modification of the well-known Chorin-Temam method is imlnged on the correction step 2, which is not an

orthogonal projection anymore. In the present chapter waéwi¢h the convergence analysis for the method (3.1)—
(3.2).

A well established framework for numerical analysis of pation schemes is the following, see [84, 87]: one
deduces an equivalent pseudo-compressibility or penadtthod and further treats a projection scheme as the
discretization of perturbed Navier-Stokes equations. &l@#, applying this approach to (3.1)—(3.2) leads to a
number of additional terms depending @n which are not easy to handle. Therefore we analyse the qurobl
using the techniques developed by J. Shen in [94, 95] fordlse ofw = 0. Although the arguments in [94, 95]
essentially use the fact that the projection in step 2 isogitimal, we show that similar convergence results can be
proved for the modified method (3.1)—(3.2).

3.1 Preliminaries

Below we use the following notation:
[ P= - Pde, [P = IV Pde, || [ls—norminH® (£2).
£2 2

By (-,-) we will denote the inner product ib?(£2) and by(-, -) — the duality betwee/ —* and H; * for all s > 0.
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We also define
H={uce (LQ(_Q))d cdivu =0, u-n|p =0},
V={ve (H)(2)": divo =0}

In the following, we assume

w € (H*(2)1nV,
f € L0, T; (L*(£2))7) N L*(0, T3 (H' (2))9),
fie LX0,T;HY),

supe(o,r) [u(®)ll < ma.

(3.3)

We will usec or C' as a generic positive constant which depends onlyon, 7', and constants from various
Sobolev inequalities. We will denote or M as a generic positive constant which may additionally ddpmemu,,
f, w and the solution: through the constant in (3.3).

Under the assumption (3.3) one can prove the following iaéties

sup {[lu(t)l[2 + [we(t)| + [Vp@)|} < M, (3.4)
te[0,T

T
| o) + P < o @9
0

which will be used in the sequel. Indeed, in [42] the estimd®4)—(3.5) were proved for the Navier-Stokes
equations (1.1) without Coriolis term. However addiimgear skew-symmetriterm w x u to the momentum
equation does not change arguments from [42],but leads4p{3.5) with constant/ depending, in general, on
w. Further we often use the following well-known [102] esttesafor the bilinear formb(u, v, w) = [, (u-V)v-

wdx -
cllullllvlz[v]z[|lwl],
b(u,v,w) < § c|lullz|v][|w], (3.6)
cllull[[v]l2|w].

andb(u, v, w) = —b(u, w,v) foru € H.

Let Py be the orthogonal projector i{'LQ(Q))d onto H and define the Stokes operatdts = — Py Au, Yu €

DA) =Vn (HQ(Q))d. We will use the following propertiesd is an unbounded positive self-adjoint closed
operator inf with domainD(A), and its inversed —! is compact in/f and satisfies the following relations [94,
95]:
[A™ |2 < clu| and[[ A7 ul| < cfufv,
Je,C > 0, suchthatvu € H : (3.7)
cllullf, < (A7 w,u) < Cllulf.

Further in this section we will prove several auxiliary leasnThe first lemma shows that the projection (3.2) is
uniformly (with respect td) stable inH'. Another two preliminary lemmas extend the results of len2ifiom

[94] and lemma Al from [95] for the case af £ 0 and non-orthogonal projection in (3.2). We also note that
in [95] the result was proved only for the Stokes case (noineal terms has been treated). Thus we include the
nonlinear terms in the proof of lemma 4 and encounter additiassumption on the size of the time step.
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Lemma 2. The estimate
™y < @y

holds with somen independent of € (0, 1].
Proof. First note that the pressup&*! from (3.2) satisfies the following elliptic equation
div M~ tvp"tt = % diva™t! (3.8)
[(MTIVp" ] mlr =0 (3.9)
with M = [I 4+ kwx]. One can verify [72] that fod = 3 it holds
M1 P=0+ @) [T+oe0-ax], ©=kw, (3.10)

where(w ® @);; = w; @;. (For the 2D case the identity (3.10) holds withau® w term.) Sincew is a constant
vector one hagy x Vg = V x (¢w) for a scalar functio. Thereforediv(@w x Vq) = 0 and the equation (3.8)
can be written as

1
divBVp" ! = - diva™! (3.11)
with the symmetridiffusion tensoi3 = m[I + @ ® w]. One can easily see that the inequalities
w
m[€* < (BE,€) < mol¢f? 3.12)
. . 1 : . .
hold with m; andm, independent o, e.g.m; = m mo = 1. (For the 2D casé is the scaled identity
w
matrix.) Furthermore, the boundary condition (3.9) candweritten as
n+1
W o withi= M 'n.
o |

The angles(x) between the vectdi(xz) and tangential plane t& atz € I is uniformly bounded from below.

Indeed, it holds: , , .
) [I* - n| Int M~1n| [n' Bn| _ my
= = > > . .
s 6l = T = AT 2 MR S 4 (3.13)
Here we used the identitpt~7 + M~1 = 23, inequalities (3.12) ang M 1| < 2. Thus the smoothness
assumption o2, (3.12) and (3.13) imply the followingl? estimate for the solution of (3.8)—(3.9) [59]:

ol < m b div @ < mk a
with some constantindependent ok. Finally, using this result we get from (3.2) and the trianiglequality
[l < fla" g+ EMTEVP | < (@ y + RIM T |2 < mlat L
O
It is straightforward to check that the solution to (3.8)9(3atisfies the estimate
MVt <mE~Hamt.
Thus the projection (3.2) is also uniformly stablefif:

lu" T < Ja" T + M TV T < matt. (3.14)
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Lemma 3. Denote

e"+1 = U(tn-i-l) — ’U,n+1 and én+1 = u(tn+1) — ,&n-i-l.

Assumé3.3), 2k|w|* < 1 and2k?|w|* < 3. It holds:
N
|6N+1|2 + |éN+1|2 +/€UZ{||€"+1H2+ Hen+1H2}

n=0

N
+ ) {le Tt =P et —e" P <mk YOS N<T/k—1 (3.15)
n=0

Proof. Let R™ be the truncation error defined by

(w(tnt1) — u(tn)) — vAU(tns1) + @ X w(tnir)
+ (U(tn+1) - V)u(tni1) + Vp(tngr) = ftnsr) + R”, (3.16)

> =

whereR" is the integral residual of the Taylor series, i.e.,

tni1
k Ji

n

By subtracting (3.1) from (3.16), we obtain

(et —e™) —pAET 4w x et

> =

= (u" - V)" — (u(tpi1) - V)ultpsr) + R = Vp(tnir) (3.17)
Taking the inner product of (3.17) withké” ! and using the identity
(a —b,2a) = |a|* = |b]* + |a — b]?,
we derive

|én+1|2 _ |en|2 + |én+1 _ en|2 4 2]{3V||én+1”2 4 (w X én+1,2kén+1)
= 2k(R",&" 1) — 2k(Vp(tny1), €™ 1Y) — 2kb(e™, @™, et
+ 2kb(u(ty) — w(tpyr), @™, ") — 2kb(w(t,yq),e" Tt e, (3.18)

Since the Coriolis term vanishego x é"+!, 2ke" 1) = 0, using the same arguments as in [94] for treating other
terms, see pages 64—-65, and applying inequality (3) frohd88 deduces from (3.18) the estimate

|én+1|2 _ |en|2 4 |é"+1 _ en|2 + 2kV||én+1H2

tn+1 tnt1
<mk (/ tllwg]|? (dt + k/ |ut|2dt) + 2k3|Vp(t, i |> +mkle"?. (3.19)
tn tn

From (3.17) we have
(entt — &ty — Vpn Ll 4w x (et — gty = 0, (3.20)

ol
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Taking the inner product of (3.20) wittke™ !, we get

|en+1|2 _ |én+1|2 + |en+1 _ én+1|2 _ 2k(w X én+1 en+1 _ én+1) =0.

Then
|en+1|2 _ |é"+1|2 + |en+l _ én+l|2 _ 2k2|w|2|é"+1|2 _ %|en+1 _ én+l|2 <0,

1
eI = (L k) [ 4 Slem T — e < 0, (3.21)

with 7 = 2k|w|?. Inequality (3.21) yields

n ~n 1 n ~n
(1 +km) e — e +1|2+m|e _ent2 <o, (3.22)
Since(1 —b) < (1+b)~! forb > 0, from (3.22) we derive
1
|en+1|2 |en+1|2 + mlemrl _ én+1|2 < kfn|e"+1|2. (3.23)

Taking the sum of (3.19) and (3.23) far=0,...,N (0 < N < T/k — 1), we obtain
N+1 2 n+1 _ zn+l 2 n+1l _ n 2 ~n+112
|+Z{ S R gl e e

T T N
< mkz le"|? +mk </0 t|\utt|\31dt+k/0 |ut|2dt+tes[up |Vp(t)|2> + > krinfe" 2,

n=0 0,7] n=0

Denotingm = max{m, m}, we can rewrite the previous inequality as

N+1|2—|—Z{ 1+km n+1 _én+1|2 |~n+1 n|2+1€1/|6n+1|2}
T T
= me "+ m (/O et + k/o waldt+ sup |Vp(t)|2> + ke N2,
n=0 elo,

Thanks to the conditiohmn < % and (3.4)—(3.5) one can write

N
|€N+1|2 + Z {|en+1 _ é"+1|2 |en+1 n|2 + kV||én+1||2}

n=0 t€[0,T)]
N

< mkz le"|?> + mk.
n=0

N T T
< mkz le™? + mk </ tllwge||*  dt + k:/ |ug|2dt + sup |Vp(t)|2>
0 0

Applying the discrete Gronwall lemma to the last inequalitg arrive at
N Z {len ™t — et et — e P+ kvlle ) < mk (3.24)

Further, lemma 2 provides the estimate
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le™ [l < mlle" s (3.25)

Applying (3.25) and the triangle inequalig* ™| < |e"*1| + |e"*! — é"T1| and (3.24), we also obtain

|eN+1|2+kVZHe"+1||2 <mk
n=0

This proves the lemma. [

Lemma 4. Assumé&3.3)and
T
| 1vmP <m. (3.26)
0

Moreover, assume thétis sufficiently small, then it holds

N
Sl P R <kt YOS N <T/R- 1.

Proof. We shift the index: + 1 — n in (3.20) and take the sum with (3.17). This brings us to

(énJrl _ én) _ VAénJrl L w X ( ~n+1 é")

= ( " v) e ( (tn-l-l) : v)u(tn-l-l) + R" — v(p(tn-‘rl) _pn) —wxe” (327)

> =

We take the inner product of (3.27) witi{e"*! — ¢") and obtain

~ ~ kv . . _ -
et — &P+ — (lle™H1> — e + [le"t! —en||?)

= —k(w x e e" Tt =) £ k(R", & — &%) + k(p(tp41) — p", div(e" ™t — "))
+ kb, @ e &) — kb(u(tyg), u(tng), & — ). (3.28)

Now we estimate the terms on the right-hand side of (3.28puBé is a positive constant to be determined later.
Using (3.15) we get

—k(w x e, et — &) < et — &2 4+ m k2|2 < 8lent! — &2 + m kS, (3.29)

Thanks to the estimaté&”|*> < ¢ ﬁj*l t|ug|2dt from [95] we have

tnit
E(R™ e™tt — &) < glett — e )2 + ck?/ tluge|*dt. (3.30)
t

n

Let us estimate the pressure-dependent term. Defiotep(t,, 1) — p™, sincediv e"*! = 0 anddiv e" = 0, we
obtain
E(p(tni1) — p", div(e" Tt — ™)) = k(Vq",é" — "t — e 4 et (3.31)

Then we deduce from (3.20) and (3.31):

~n+ n)

k(p(tn41) —p",div(e )
— k2(vqn’v(pn+l n)) 4 kQ(Vq w X ( sn+1 en+1 L en))

< -k (Ve", V(" = ¢") + K (Vg™ V(p(tnta) — p(tns1)))
+E2(Vq",w x (" — "™ — k2(Vg™, w x (6" —e™)) (3.32)
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We estimate the terms on the right-hand side of (3.32) stgigara

—k* (Vg™ V(@ = ") = S (la" P = lg" P + g™ = a" 1) (3.33)

We obtain from (3.20) the following relation:
kM@ = ") = (@ = ") = (€7 = €") + kM TV (p(tnr2) = pltat))-

Multiplying by V(¢" ™! — ¢™) and using (3.12) and conditidiw| < 1 we get

5 — n n n n
g™ = "|* < 7R M7V (T = "), V(e =)

5 ~T ~n mn n 3 - n n
< Zk(e e V(" - ") + ZkQ(M "V(p(tni2) = p(tni1), V(" = q"))

IN

Loy ni1  my2, 9,9 ntl  an2 p [T 2
k7" =" T+ (5 +o)e"T —E" T+ mE |Vp|dt, Vo > 0.
2 1'3 -

Thus, choosing sufficiently small we obtain:

K2t npz o B antt snp2 o [T 2
Sl =" P < Z[e" ="+ mk |Vpe|~dt (3.34)
2 6 tn+1
The second term on the right-hand side of (3.32) we estinstellaws:
tn+2
B(VG" T (pltor) = pltas) < K" 2+ mk? [ O (3.35)
tnt1

For the third and the fourth terms on the right-hand side (84Bwe have:

E* (V@™ w x (" — ™)) — k2(Vg™, w x (" — ™)) < E*||¢"||> + mk Z |entt — enti)? (3.36)

i=0,1
Now estimates (3.32)—(3.36) give
5
F(p(tns1) =", div(e™h —ém)) < Zfem Tt —e? 4 m kg
tn+2 . .
+E(lg" I = " H1P) + mkz/ VpoPdt +mk Y e — ™R (3.37)
tnt1 i=0,1

Further, consider the following splitting:
w(tni1) - Vu(tnyr) —u™ - Va" ™ = u(t,,,) - Vet
+ (W(tng1) —u(ty)) - Va" ™ +e" - Vau(t,11) — " - Vet (3.38)

Based on this splitting we estimate the last two terms on itftg-hand side of (3.28). The first three resulting
terms can be estimated in a straightforward manner with ¢ df (3.6) and a priori estimates (3.4), (3.5):

kb(u(ty 1), e et —em) <ole" ™ — & + KPm |lu(tni)|3]1€" 7
< §lentt —em? 4 Ermflen Y2, (3.39)
tnt1
kb(w(tny1) — wu(ty), a" T e"tt — &) < glentt — e + mk?’llﬂ"“l\/ [l
tn
< olemtt —en? + k3m, (3.40)
kb(e", w(tnyr), e — &) <6le" =& + EPmlu(tnr)[|3] "

< Glemtt — &2 + kA |2 (3.41)
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Due to (3.6) the last term from the splitting (3.38) is trebds follows:
kb(e", et et — &) < mklen[len | [lentt — e zlentt — |3 (3.42)
<mk?[e?lent? + VEva|entt — et — én|

< mEH | 4 S et — g2 4 glent — e
Finally (3.28) with (3.29)—(3.30) and (3.37)—(3.43) yiétdt sufficiently smally > 0:

~ ~ kv, . .
et —en? + 7(”6"“”2 —[le™1?) + £ (llg" 1> = llg"11%)

trtyo
< (K [ O R 4 ) + e e

tn41

R Y - ). (3.43)
i=0,1

We sum up the last inequalities far= 0, ..., N and use the assumption (3.26) and the estimate (3.15). iMeis g

N N N

~n ~n kv ~ n S|, =n
D e e e o e e Vi e S A P G S I B it D
n=0

n=0 n=0

This is equivalent to

N

k
SO Ie = E R+ KRN 4 (5 — CRE V)V
n=0

N N
< M (K4 YR+ D0 R e 21 )?).
n=0 n=1

To apply the Gronwall lemma we nee% — Ck* €M ||?) > ckv. Thus we have to assume thiais sufficiently

small such that/k||e™||?»~! < C holds. This is true for a sufficiently smallsince||e” || is uniformly bounded
due to lemma 3. We believe that the implied restrictidhv—' < ¢ can be pessimistic in practice. In particular
estimate (3.15) suggests™ ||? < 1. Now the discrete Gronwall inequality and the boundEﬁf:O [le™]|? from
(3.15) yields

N N
k
Yot -+ 7”||<;N+1||2 <mk? exp(VE Y [|e"]?) < mk? exp(VEM)
n=0

n=0
([
Thanks to the embedding—! — L2 and theL? stability of projection, see (3.14), we conclude:
let! — ey < mlemt —en| < mlent — &,

Therefore the lemma 4 yields

N
dollett —er?y <mk®  VO<N<T/k—1. (3.44)

n=0
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3.2 Error estimate

In this section we show that the scheme (3.1)—(3.2) for the@ddsstokes equations with the Coriolis force (1.2)
has the same order of accuracy as the classical projecti@mse[18, 101] for the Navier-Stokes equations (1.1).
The following theorem is the main result of this chapter.

Theorem 1.Assume3.3) and 2k|w|? < 1, then botha" ™! and ™" are weakly first-order approximations to
w(t,y1)in L2(02)4:
T/k—1
kv > {le" P et P < mk? (3.45)

n=0

Additionally assume that is sufficiently small an(jOT |Vpi|? < m, thenp™*! as well as(I — kv A)p"*! are
weakly order} approximations tg(t, 1) in L2(£2)/R:

T/k—1
k> {|Pn+1 — Pt 1) 7200y 5 + (T — kv AP — P(fn+1)|%2(rz)/3} <mk (3.46)
n=0

Proof. (i) Error estimate for the velocity.
Taking the sum of (3.1) and (3.2), we obtain

(u"™ —u™) — A" 4 (u™ - V)a" T +w x w4 VT = f(t). (3.47)

ol

Let us denote
qn-’_l = p(thrl) - P

Subtracting (3.47) from (3.16), we obtain

n+1

("t —e™) —vAe" T 4w x "t L vttt

> =

= (u" - V)a""™ — (u(tni1) - V)u(tyy1) + R". (3.48)

Taking the inner product of (3.48) withk A—'e™t!, splitting the nonlinear term into three parts, using (BTl
noticing that
(A ', Vp) =0, VYucH,

we derive (for details see [94] p. 67)

15k
le™ 112, — |2 + [l — e™[[Z) + —o= et ]2
8

< —2k(w x et AT e ) 1 2k (R, AT e ) — 2kb(e™, a" T, AT e T
— 2kb(u(tpi1), ™, A7 ™M) 4 2kb(u(t,) — w(tny1), @™, A7 e™ )
+mkle"t —en T2 (3.49)

The Coriolis term is estimated as follows
[2k(w x "L AL < mk[| AT e | |en Y

k
< mk|e" |y |en Y] < %|e"+1|2 +mk|lem Y2, (3.50)

Applying the same arguments as in [94] we deduce from (3.48)a.50) the estimate
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le™ T — lle™ 1% + vkle™ 2 + [l —em3
<mklle"HZ, +m (k2 + E3)|[e"TH? + mElent — e (3.51)

tnt1
4 mklemt — &2 fomk (/ llawge |2 dE + k:/ |ut|2dt> .
tn t

n

tnt1

The only modification of the arguments from [94] here is tinatéad of identity
[ = [em R 4 [entt — eI,
which is no longer true we use the triangle inequality
|én+1|2 < |e"+1|2 + |€n+1 _ én+1|2, (3.52)

Taking the sum of (3.51) fot = 0,..., N, N € [0,T/k — 1], we derive from lemma 3 that

N N+1
N+ {llem ™t — e + kvl Py < mk? +mk Y [len [}
n=0 n=0

By applying the discrete Gronwall lemma to the last inedgyalve obtain

N
NS+ {lle™ — e} + kvle™ Py <mk® YO< N <T/k—1.

n=0

Then, from (3.52) and lemma 3 we arrive at
N N
kY ETP <k fle TP et — e P <mk? YOS N <T/k-1. (3.53)
n=0 n=0

(i) Error estimate for the pressure.
The skeleton of our derivations for the pressure estimateaies the same as in [94]. Remarks from [95] are
applied through lemma 4.

We start from rearranging (3.48) to

Vgt = ("™ —e) —vAe™ £ w x e

+ (u(tn-i-l) : v)u(tn-l-l) - (u(tn) : v)ﬂ(tn-l-l) - an (354)

ol

where{entl gntll = {ent! gnt1}. The same relation holds fgent1 g7 +1} = {en*! ¢" 1}, whereg" ™! =
p(tni1) — (I — kvV)p"*t1. Hence we can consider simultaneously the two pressur@xipations.
We split the nonlinear term on the right hand side of (3.54) as

(w(tni1) - Vu(tpyr) — (u™ - V)a" !
= ((ultnsr) = u(tn)) - V)ultu) + (" Viultas) + (@" - V)&,

From lemma 3 we derive that
[u™] < fle"| + [u(t)]| <m  Vn.

By using (3.6) we obtain that, for all € H}(£2)4,
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(w(tns1) - VIu(tnsr) — (u" - V)a", v)
< clultngr) — wltn)l|[w(tn)ll2]v]]
+elle™lultne) ol + cllw™ [ e[| (3.55)
< e{lle" Nl + [u(tnsn) — ultn) vl

Using the Schwarz inequality we have also, foralt H}(£2)?,

1
<E(e”+1 —e") —vAe fw x et - R”,v) <

1 n n n ~ n T
<z'€ L en|y 4 ol 4w e + IR ||1) ol (3.56)

From the inequalities (3.54), (3.55), (3.56) and

. Vp,v
IPlL,(0)y/r <€ sup g7
vEHL(02)? vl

we obtain that
a2 2@ <6 sup Va'’,v) Zflentt — ey
vEHL(2)4 [[v]]
+m ([|R =+ e+ e + (1 +m)[[e T+ [utar) — u(ta)))-
Therefore, applying lemmas 3 and 4, and the inequality {388 derive
T/k—1 T/k—1

k Z |qr+l|2L2(Q)/R <mk Z {||én+1H2+(1—|—T~n)||en+lH2
n=0 n=0

FIR2, + [wltns) — u(ta)?}
1T/k71
7 g lentt — |2, < mk.

The proof of theorem 1 is complete.[]

Remark 71t was discussed in [42] that the assumptiJ€3:F1|th|2 < m, which we need to prove pressure error
estimate does not hold for general flows, but requires a ctibilitg condition on given data, cf. [42]. The sufficient
assumption for this condition to be valid f§x, t)|;—o = 0.






4

Treatment of convective term

4.1 DPM framework for rotational form of convection

In the chapters 2 and 3 we considered the system of Stokes@tgnith the Coriolis force term. However, while
performing numerical calculations for the system of Na8éwkes equations with the Coriolis force especially for
medium and high Reynolds numbers, one has to take into atdmiconvective term as well. To prevent numerical
oscillations we use the algebraic flux correction schemeMid Type [56] or the edge-oriented stabilization [107,
81] for the discretization of convection terms. Moreoveldiag such stabilization techniques makes multigrid
solvers for the velocity subproblem more effective. Anottelevant question is how to include the terms due
to convection in the projection step. As we have seen, cfarkl in§ 2.2.2, this issue can be related to the
guestion of building effective pressure Schur complemeat@nditioners for the case of dominating convection
terms. This tough question attracted a lot of consideratturing the last decade, see an overview in [30] and
[76]. However, we are not aware of any successful attemptitpithese recently suggested preconditioners in
a projection type scheme. The presence of the Coriolis forakes the question even more difficult to address.
Hence the modifications proposed in the previous chapterexgrected to improve performance of the projection
scheme mostly for the case of moderate Rossby numbers. Aigngrapproach for the case of large Rossby
numbers is the following. Using the well-known inequality

,u2
(u-V)u=(Vxu) ><u+V(7)
and introducing a new pressure variable (Bernoulli presuve can replace the convective operator by the cross
product one:
(u-Vu+2w xu+Vp=wu) xu+ VP (4.1)

with w(u) =V x u 4+ 2w andP = p + “72
(V x u) is a vorticity function. For two dimensions we define

6u1 8’11,2
Vxu=——+-2
T2 x1
and
— QU2
aXUuU=—-—uxXxoa=
aul

Therefore, the Coriolis force term and the convective djpeican be handled on the second step of the projection
method simultaneously in the same way as described abobe i@liapter 2, see [72] for the analysis of similar
approach in the context of the Schur complement precomgitfor the linearized Navier-Stokes problem.
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For 'rotating’ flows in the system of Navier-Stokes equasiave can treat convection and rotating forces either
as the right or the left part of (4.1). While both treatments equal on the continuous level and conservative
(see [72]), they may lead to discrete systems wjitite differentproperties. In particular, many reliable methods
for the stabilization of convection dominated flows haverbdeveloped by the CFD community. Among them
are streamline-diffusion and upwinding schemes, edgmated stabilization, algebraic flux correction, etc. At the
same time, not so much is known about stabilization teclesavailable for the terrivV x u) x . Although
very popular in fluid mechanics, the rotational form did natdfimuch attention among numerical analysts until
the papers of Olshanskii and coauthors [65, 72, 73, 74],Isee@cent papers [62, 89]. Nowadays rotational form
of convection still deserves more careful analysis.

Many algebraic splitting methods can be interpreted in seofrapproximate block factorizations [17, 63, 85, 90,
112, 113]. These splittings naturally lead to precondgisnfor Krylov methods both for steady and unsteady
problems ([30], Chapter 8.3.5). Though these preconditi®were designed for the standard form of convection,
some of them can be extended to the rotation form, e.g. EbremcalledB F BT preconditioner [28]. Benzi
and Lia also proposed an approach for treating rotation fafrgsonvection -Hermitian/skew-Hermitian splitting
(HSS) [9, 64]. HSS preconditioners guarantee robust behawf the algorithm, resp. quality of approximation,
as the viscosity approaches zero.

The positive sides of the rotation form of the convectiverapm are:
e Treatmentof a zero-order operator (rotational convegtitsiead of a first-order operator (standard convection)
in linearized equations.

e Natural inclusion of the Coriolis force or any other reaetterm which can be written in the cross-product
form.

e Construction of discrete projection methods with exglyditvertible matrices of block-diagonal precondition-
ers.

The discrete projection approach based on the rotation édroonvection term from (4.1) is a topic of the next
section.

4.1.1 General-purpose version of the modified DPM

Let us take a closer look at the operatefu) x :

e 2D case
VXxux =wu)x =wx = (O —w> , 4.2)
w 0
e 3D case
oud  Ou?
w1 .1'21 ZC33 0 —w3 W2
Vxux =wu)x = |wy | x = Ou 0w x=1 wg 0 —w|. 4.3)
I3 T
w3 8U2 aul — W2 W1 0

T T2
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As we will see below, the main properties of the two-dimenalmperatorv(u)x are the same as those of the
three-dimensional one. All formulas below are presentedhfe 3D case. Following the same idea, the interested
reader can easily derive them for the two dimensional case.

From (4.3) we obtain the following properties:

1. w(u)x is skew-symmetric.
2. w(u)x is off-diagonal dominant.
3. detlw(u) x | =0, i.e. itis singular.

4, (w(u) X w,u)p, =0,i.e.Jm(w(u)x) Lu

The resulting matrix’ is of the form:

M +vL 0 0 0 —ws ws
F=(M+vL+w(u)x) = 0 M+vL O + | ws 0 —w
0 0 M+ vL —ws w; 0
M+vL —ws wa
= w3 M4+vL —w , (4.4)

—Wo wi, M+vL

whereM is a consistent mass matrix afids a discrete Laplacian operator. When flow is laminar,Me+ v L is
large w.r.t.w;, operatorF' is diagonal dominant and therefore is 'easy’ for the solMénen Re increases, values
of w; also increase (rotational motion of vortices becomes mdhedntial on the whole flow), wheredd + v L
stays unchangeable. Therefore, as sodfi hecomes more off-diagonal dominant/oriented, its coodil number
increases andet|F| approaches zero (again, if measured with respect to vafuks-e v L andw;).

Approximatingw;, for i = 1,2, 3, on the discrete level by their diagonal counterparts (asliddor the Coriolis
force term in the previous chapters), we obtain a 3 by 3 opegeatery entry of which is occupied by a diagonal
matrix. Thus, the obtained global matrix is easy to inved #rerefore is easy to use as a preconditioner (see [72]
for a numerical analysis). We will utilize this idea to canst a discrete projection method for the system of
Navier-Stokes equations with convection to be written im thtational form. Namely, proceeding from (4.4) we
introduce the Schur Complement operatan the following form:

S=BT"M ! B (4.5)

(laplace+rotatioh
with
M + vL —Wws3 w2
M(Iaplace+rotatiob1 = w3 M+vL —w; . (4.6)
— W2 w1 M+ vL

The preconditioneP of S can be constructed by 'lumping’ or taking only the main diaglof diagonal\/ +v L —
diag(M + vL) and off-diagonalv; — w; block-matrices to obtain the followin@ x 3) block-diagonal matrix:

_ dzag(M + VL) —&73 ’L’L\ig
M(Iaplace+rotatiob1 = W3 diag(M + vL) — 1wy . 4.7)
—Wo Wy diag(M + vL)

Thus, we have® = BT M (I_alp| ace”otatiomB. The matrixM(|ap|ace+rotatiom is easy to invert. Its inverse can be used as a

preconditioner foiF" while solving the velocity equation or constructing the rified Schur Complement operator
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P(Iaplace+rotatiom = BTM?I B.

(laplace+rotatio

Now we are ready to write the discrete projection methodHerincompressible system of the unsteady Navier-
Stokes equations with convection written in the rotatidoah:

1. Solve foru the "viscous Burgers” equation
Fu=g— AtBp" (4.8)
with C = Maamaceﬂotamm as a special preconditioner &f.

2. Solve the discrete "Pressure Poisson-like” problem

1
T -1 -
S¢=B (laplace+rotation D9 = EB u 4.9)

with P = BTM !

(laplace+rotatiol

3. Calculate the pressure and the velocity approximatiens a

B as a special preconditioner 8f

o ~
p=p"+q+ ZL;Mp’lBTu

u=1u— AtM(’l Byq (4.10)

laplace+rotatiol

with ap = 0 or ap = vAt. In the case of DPM set**t! = p, u"*! = u or perform several loops of these
steps to get the fully coupled solution at timg ;.

Anticipated drawbacks of the above DPM in comparison toahmith the standard convection are following:

e The memory costs will increase due to the full coupling ofaens in the velocity block, see (4.4).

e The stabilization technique for the telf¥ x u) x w is not clear.

To overcome the second drawback, which may occur for num@esimulations at medium and large Reynolds
numbers, one has to think about recovering’ the diagonalidance of the resulting matrik’. This can be done,
e.g., by scaling the main diagonal matfix by some parameter, whereM is a consistent mass matrix. Since

M ~ h?
we obtain
Atwy, (up) ~ ALV x ul| + |w|)h%.

Therefore, we can choose
Kk~ At(|V x ul + |w|) + 1.

In practice we will not do it this way. Instead, we note that #tdge-oriented stabilization is built in some sense
on the same principle of increasing the main diagonal. Thezave can apply it to stabilize the rotational term
of convection. The edge-oriented technique will be desdilater in this chapter. Its influences on the solving
process (4.8)—(4.10) and on the numerical solution will isewssed in chapter 6.

4.1.2 Summary of the DMP framework for rotation form of convection

In this section we introduced the generalized cross-priogheratonw (w, u, -) x u, which takes into account con-
vection (in its rotational skew-symmetric form), Coriofrce and/or any cross-product-like terms. The operator
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w(w, u, -) x u made it possible to extend the modified discrete scheme)(22485) to a more general case. In the
following we will show that the non-diagonal dominance mataf w(w, u, -) x w may lead to poor convergence

and bad accuracy. Nevertheless, by applying additionahigaes one can obtain sufficiently good solutions. In
chapter 6 we will present numerical experiments for thedlidken cavity and flow around cyclinder benchmark
problems and discuss the obtained results with respecetoabcuracy and efficiency.

4.2 Algebraic Flux Correction

While treating convection dominated flows, one has to take account the possible growth of nonphysical os-
cillations due to the domination of the convective term.iUmbwadays this problem is not completely solved.
Nevertheless, numerous efforts of CFD specialists and noal@nalysists gave rise to many robust and efficient
methods, which allow to calculate sufficient solutions. Ashave already mentioned in the sectjoh.1, among
these methods are upwind and streamline-diffusion scheadge-oriented stabilization, algebraic flux correction,
etc. In our realisation we utilize two of them, namely: edg&nted stabilization and Algebraic Flux Correction
of TVD type techniques. In this section we will give a brieétretical overview on the Algebraic Flux Correction.
The general idea beyond the algorithm is to modify a disaestem of the Navier-Stokes equations in some spe-
cific way as to satisfy conditions, which preclude appeagafmon-physical oscillations and at the same time to
recover the high-order approximation of the velocity vedigld. The algebraic flux correction methodology was
motivated by the pioneering article of Boris and Book [11]l®i71. Since then the theory was extended onto the
multidimensional FEM discretizations for the convectominated transport equations.

4.2.1 One dimensional case

We start our description from the simple 1D cases for thefidifference schemes and will evolve to the noncon-
forming FEM discretization of the Navier-Stokes equatitorgdhe multidimensional case (2D and 3D).

Let us consider a scalar conservation law

ou Of

n + e 0. (4.12)
Settingf = vu, we obtain a 1D convection transport equation

ou ou

E-ﬁ-v% =0. (4.12)

In order to prevent oscillations af we require the discrete scheme of (4.11) to satisfy theviolig properties of
monotonicity

o No new local extremum should be created.

e Existing local maximum should not increase and local minimahould not decrease.

In other words it means that a total variation

TV (up) = Z [un(wiy1) — un(zi)

i

as a function of the approximate velocity is nhondecreasing, i.e.
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TV (upt™h) < TV (u}). (4.13)
Next, denotingl to be the discretization operator:
urtt = L oul, (4.14)

we say that a finite difference scheme (4.14ptsl variation nonincreasingTVNI) if L satisfies (4.13).

In 1982 A. Harten, see [40], proved the following results:

e aTVNI scheme is monotonicity preserving; i.euif is monotone, so i - u}!

e asemi-discrete scheme of (4.11)
du; n Jixi2 = fic1y2

=0 4.15
dt Ax ( )
is total variation nonincreasing if it can be rewritten inoarh
dui
= Cim1/2(Uim1 — ug) + i1 y2(Uip1 — uq), (4.16)

wherec; 1/ > 0, ¢ip1/2 > 0ande; _q/2 + ¢y < 1.

So constructed scheme will definitely guarantee a nonasiaidj profile ofu. On the other hand, according to a
well-known theorem of S. Godunov [35] a finite-linear scheme

k
UZ“(%-) = Z cup (Tit1), ¢, = const
l=—k

is monotonicity preserving if and only if
¢ >0, —k<Il<k.

As a result, any monotonicity preserving scheme and, hemgeT VNI scheme is first order accurate. However, in
the regions of the domain, where the flfixhanges not rapidly, one can recover high orders of accusaey40].
Accumulating both ideas (construction of monotonicitygaering schemes with local recovery of high orders of
accuracy), we introduce an adaptive correction fagtar, /,, the purpose of which is to "diffuse” the change of
flux in domains with steep changes of gradients and to rengistigh-order approximation in those domains with
smooth changes of flux:

fi:l:l/Q = fiﬂ/g + glv)i:i:l/Q[]2‘11:{:1/2 - filz/tl/Q]a (4-17)
wherefiLH/2 is a discrete value of a low order flux in theth mesh point ang/{, /, is a discrete value of a high
order flux.

Numerical experiments showed that forward and centraédifice methods for a simple 1D convection equa-
tion (4.12) withv > 0 give rise to the oscillating behaviour aof for some values of the Peclet number (see

e.g. [31]) and, therefore, are not stable. At the same timechvward difference scheme is stable, but it adds some
extra diffusion into the solution. Following the idea (4) I@r the construction of a difference scheme, we take a
backward difference method as a low (first) order non-catoity scheme:

FEa e = vui. (4.18)
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After substituting (4.18) into (4.15) and rewriting the aloied expression in the form of (4.16), we end up with
the coefficients:;_,,, = v/Axz andc;_;/, = 0, which satisfy the Harten's theorem. Therefore, the oletin
difference scheme is total variation nonincreasing. T@vecthe second order of accuracy we choose a central
difference as a higher order scheme:

= U% (4.19)
Bringing (4.18) and (4.19) together we end up with
v

fix1/2 = vu; + §¢i+1/2(ui+1 — Uj). (4.20)

To complete the derivation of the 'non-oscillatory’ scheweleft to specify the flux limite®; , /, at every mesh
point. Itis natural to requir@; , ; , to decrease, as soon as the changes in the velocity gradteease at theth
point. Therefore, we construct our flux limiter in the fody, , , = &(r;), where
= Wi — Ui-1 (4.21)
Uit1 — Ug
is the so-called slope ratio. It approaches unity for smdotiains, is negative for the local extremum and is large
in domains with the rapid change of gradients.

Generalizing flux limiting, A. Jameson in his article [45tioduced the operatdr : R? — R as a limited average
of its two variables: andv with the following properties:

P1.L(u,v) = L(v,u)

P2.L(au, av) = aL(v,u)

P3.L(u,u) =u

P4.L(u,v) = 0if uv < 0, otherwisesign L(u,v) = sign u.
(P1)-(P3) are natural properties of an average and (P4¢idaukfor the construction of a TVD (in multi dimensions
LED) schemes. Setting

&(r)y=L(1,r) = L(r,1) (4.22)

and keeping in mind (P4), we obtaif(r) = 0, if » < 0 and®(r) > 0 otherwise. At the same time properties (P1)
and (P2) give us
&(r) = L(1,r) =rL(1/r,1) =rd(1/r). (4.23)

Applying (4.23) to (4.20) we derive with
@(Ti)(ui+1 — ul) = L(ui“ — Ui, U — ui_l) = @(1/7‘1')(11,1' — ui_l). (424)

The equality (4.24) means that an "antidiffusive’ flux frohet 4 1-node into thei-th node is considered to be
'diffusive’ (stabilizing) flux, received by thé-th node from the — 1 if &(1/r;) > 0, and vice versa. Substituting
&(r;) into (4.20) we obtain a discrete scheme of the type (4.16) thie following coefficients

v b(r;)
Ci—1/2 = E[Q + "

— @(Ti,i)], Ci+1/2 = O, (425)

whered(-) is chosen as to satisfy the Harten’s theorem. There was peopmlarge number of flux limiters in the
literature, the most popular are (for test results and coatjva analysis see, i.g. [49, 56])
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minmod  &(r;) = min{l,r;}

27‘1'
VanLeer &(r;) = Ttr)
MC ar) = J; ri)
Koren  &(r;) = (1 —g ri)

superbee  &(r;) = max{l,r;}

The main drawback of almost of them is the fact that they weresdd for the specific benchmark models and are
based on certain discretizations, i.e. they lack is geizatén. In the next sections we will present the extension,
proposed by D. Kuzmin [51], of the flux-limiting methodologyto arbitrary finite element discretizations on
unstructured grids.

4.2.2 Multidimensional case. Extension of the 1D approach.

Let us consider a nonsteady convective-diffusion equation

QLY fou—eVu) =0 2, (4.26)

where? ¢ R? (d = 2,3) is a bounded, connected domain with a piecewise smoothchipsoundaryl”,
v : 2 xT — R?is an advection velocity, assumed to be known analyticallgamputed numerically, and
u: 2 x T — Ris either a scalar densipyor a single component of velocity vector fieldwith prescribed initial
u(x,0) = ug(x) and Dirichlet and Neumann boundary conditions on corredpgrboundary part of .

Denotingw to be an element from the space of velocity test functionytbak form of (4.26) reads

/ w [@ + V- (vu— 6Vu)} =0 Vw (4.27)

Next, we use the Galerkin method to convert partial difféedequations (4.27) to a problem of linear algebra by
approximatingu by

N
up, = Zuz‘@, (4.28)
i=1

where N is the number of degrees of freedom. As usual, we assume shéutection to depend on the space
coordinatesd; = ¢;(x)) and the 'velocity’ component to depend on the time varialfle = v;(¢)). Substitution

of (4.28) into (4.27) and integration by parts yield the daling system of equations (we consider divergence-free
advective velocity fieleb, which comes naturally from the continuity equation for theompressible flows):

d .
3 [/Q ¢>i¢jd:c] % +y UQ $iv; - Vojda + eV - w)jdx] u; = 0. (4.29)
J J

Let us rewrite (4.29) in a matrix form. We denote

Mg :/ ¢i¢jd$, Cij :/ ¢Zv¢jd$, Sij = V¢Z . V(bjdx, (430)
£2 2 £2

wherem;; are entries of a consistent mass mafiy, c;; are due to the convective amg are due to the diffusive
parts. All coefficients in (4.30) depend on the basis fumdif; only, hence, they can be assembled once during
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the initializing process, by this saving CPU time in future.

Next, we assemble the discrete operdtor= {k;; }:
kij = —Uj - Cj; — ESy4.

Replacing the consistent mass mattiic = {m,; } by its diagonal counterpait/;, = {m;}, the so-called lumped
mass matrix, we end up with the system of ODEs:

L% = Ku. (4.31)

For convection dominated flows the nonstabilized convegiart of the discrete transport operalors not stable,
causing the growth of non-physical oscillations in velpaitector field if some high-order time discretization
technique is used. To conquer this problem we appeal to thedy approbated idea of using high-order schemes
in domains with small changes of the velocity vector field ahdsing low-order diffusive schemes in domains,
where velocity gradients changes abruptly.

We say that a scheme is local extremum diminishing (LED) @l maximum does not increase and the local
minimum does not decrease. We modify the transport opefatiorsuch a way that our discrete scheme satisfies
the LED conditions. Using linear basis functions (see sac#.1.1), we note thazj cij =0, Zj si; = 0 and
hencezj ki; = 0. Thus, (4.31) can be rewritten as

tdt

m

Z kij (Uj — UZ) + riu;, where T = Z klj (432)
J#i J
r;u; IS a discrete counterpart @fV - v, which vanishes for the divergence-free velocity fields.engdiscrete
system (4.32) reduces to
i = Z bij (Uj — ul-), where bij = EJZ (433)
J#i
The discrete scheme (4.33) is stable, i.e. it satisfies the ¢dhditions, if all off-diagonal entriels; are nonnega-

tive. Indeed, ifu; is a local maximum and hen¢e; — u;) < 0, we getd—tZ < 0 andu; cannot increase. Similarly,

du; . T
CZ; > 0 andu; cannot decrease. After discretization in

time, such schemes remain positivity-preserving: thetemlwpdates™*! — 4™ is equivalent to the solution of
the following system

if u; is a local minimum and hende; — ;) > 0, we get

Au"tt = By, (4.34)

whereA = {a;;} in an M-matrix andB = {b;;} has no negative entries, see, e.g., [54]. For the syster)(dr®
can show that
if W">0=u""'=A4"1Buy" >0.

Let us remind, thatl is anM-matrixiff A is a Z-matrix (all off-diagonal entries are less than or étuaero) and
it satisfies the following condition
if Au>0=u>0.

To provide K with the LED condition we cannot just simply go through itsndé@gonal entries and remove
those, which are negative, since the conserved propertyresgrow and column sums of the operaforto stay
unchangeable. For this reason, we defigereralized diffusion operatdp = {d;; }:

1. di; = dj; = maxz{0, —k;;, —k;; }. Hence, a low-order operatdr = K + D = {l;;} has no negative off-
diagonal entries and, therefore, is of the LED type.
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2. Y, dit, = Y, dir = 0 and the mass conservation property is satisfied.

From 1. we obtain the symmetry of the operaiorFrom 2. we see that, in order to guarantee the conservation
property, for every-th node we have to modify thi,;, l;;, 1;, [;; } matrix entries as well:

lis = liy — dij, lij = lij + dij,
(4.35)
i = i +dig,  1j; = ljj — dij.

If d;; # 0, then it nullifies eithet;; or [;; matrix entry. Basing on this fact, we can introduce origotabf edges:
we say that the nodeis locatedupwind if I;; = 0 andl;; = |kj; — kij].

On the physical level the process of summifigo K can be considered as the addition of some extra diffusion
into the system. In order to make our scheme more accuratieaweeto eliminate the superfluous diffusion where
it is possible. Now we can define a multidimensional varidrhe flux limiter &(r;) in the mesh point, for every

i = 1, N. The purpose o®(r;) and its nature are similar to those from 1D case - the estomati the steepness
of the velocity vector field in thé-th point. Gathering everything together we construct aréie scheme with a

modified operatof(
dui

dt
whereDg is the corrected antidiffusive flux, which is built as thefdéive flux scaled by the limitep.
The last question we left to answer is how to construct the lftaker &(r;) in everyi-th mesh point for the
multidimensional case. This topic we address in the sedtidr3.

=Ku=(K+D - Dg)u, (4.36)

4.2.3 Flux limiter in multidimensions.

There are different approaches proposed in the literatometh construct the antidiffusive flux. One of them is
a slope limiting method. In the slope-limiter FEM-TVD scherane constructs a limiteb(r;) for every edge

ij by analyzing the flux contribution into every surroundingladn the element "opposite” to thg-direction.
Then, using interpolation technique one finds and allocsdase virtual node, say, to calculate the necessary
antidiffusion to be added into the system. Description & gigorithm can be found in papers by Lyt al.[66,
67]. The algorithm was implemented and exhaustively tebje&uzmin from theFeat f | ow group [55]. He
showed that with the help of the algorithm it is possible ttagbacceptable simulation results for a wide range of
CFD applications. Nevertheless, it was also observed liggissues of the method includes the low convergence
rate of nonconforming FEM on unstructured meshes. This waislgnthe reason of choosing a slightly different
way - the so-called generalized approach of the node-basategy, first proposed by Zalesak in [115]. The
generalized approach allows the construction of pure dimgnsional flux limiters for any types of meshes.

In Fig. 4.1 one can see that thh node receives fluxes from various directions/neightmgumode. These fluxes
can be either diffusive (those with positive coefficientehjch do not give rise to wiggles and therefore harmless,
or antidiffusive (those with negative coefficients), whitéwve to be bounded to avoid non-physical oscillations of
the velocity field. Splitting the transport operaf@rinto the sum of positive (diffusive) fluxes

. 4 _ + - max ) )
Qi=Q +Q;. QFf= ;max{O,k”} i {0,u; —u;} (4.37)

and negative (antidiffusive) fluxes
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v>0

i-1 i i+1

N NE. N

Fig. 4.1.Definition of the limiter

P, — Pt 4 P + ' oy man oy .
=BT PT PR =) min{0k) {0 - i) (4.38)
J#i

we obtain

Z kij(uj —wi) = Pi + Qi

JFi
After calculating diffusive and antidiffusive fluxes reeed by the nodé, we can define our limite® as the ratio
of these fluxes. Then, applying to the operators, we limit the influence ofp from above to avoid excessive
overdiffusion. Mathematically it reads as follows

RE = o(QF/PF). (4.39)

Due to the property (P4) there is no need to evaluate efther Q;, if sign (P; Q;) = —1. Moreover, for zero
antidiffusionP; we do not calculaté; as well. Recalling the orientation of edges, which was htieed at the end
of § 4.2.2, we define the antidiffusive fluf; from the downwind nodg into the upwind nodé in the following
way

% _ {mm{RZd”, l”}(ul — Uj), (7 Z Uj (440)

K mzn{Ri dija lw}(ul — Uj), u; < Uj
So modified transport operat?ﬂ satisfies the LED condition and, hence, is safe from the riorsipal oscillations
in the velocity field. We make slight changes in (4.39) and@}. Namely, we allow flexibility in choice of the
bound forQ::

Qf = Zqijmax{o, Uj — U}, Q; = Z giymin{0,u; — u;}, (4.41)
J#i J#i

whereg;; is eitherg;; = maz{0,k;;} or ¢;; = maxz{0,l;;}. In this case the antidiffusive flux (those to be
subtracted from the operatéf + D) is calculated as follows

a_{R;Lfija fi; >0 o

o= x=—f5 4.42
%] R;fl_ﬁ fl_] S 0 Jt 137 ( )

wheref;; = k;;(u; — u;). This approach is known as tifdux-limiter FEM-TVD scheme
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Example:
Let us consider a central difference discretization ofZ.1

du; | VUip1/2 —VUi—1/2
dt Az

0, VUiq1/2 = VUi — fi (4.43)
with r; from (4.21) and antidiffusive flux of the TVD type being
[ = max{0,min{2, ¢;, 2r; } hdij (u; — uj), (4.44)

whereg, = £+ (1 — &)r;, 0 < ¢ < 1. Then, the antidiffusive flux in the Flux-limiter FEM-TVD beme reduces
to
i = max{0, min{1, 2r;} }dij(ui — uj). O

Taking into account (4.42) we rewrite the process of cowsima of flux limiters [50]:
1. Compute sums for positive and negative antidiffusivedfux

P = P + max{0, fi;}, P =P +min{0, fi;}. (4.45)

2. Compute the upper/lower bounds f@f

QFf = Qf +maz{0,—fy},  QF =QF +maz{0, f;}, (4.46)
Q; = Q; + min{o, —fij}, Q; = Q; + min{oa fij}'
3. Construct the nodal correction facﬂ@f for every 'upwind’ (according to the introduces orientatimf edges)

nodei
RE = min{1,Q%/P*}. (4.47)

4.2.4 Resulting algorithm

To summarize section 4.2 we present a sketch of the staiwlizgechnique for the convection dominated flows
by the flux correction algorithm in multidimensions for thenctonforming FEM on unstructured meshes. For the
detailed description of the Flux-limiter FEM-TVD schemeaségy see [56]:

1. Perform a FEM Galerkin discretization in space to obtdiigh-order semi-discrete linear system

du
]V[CE = Ku. (4.48)

Transport matrix< is not 'stabilized’. In the sense of LED criteria it meansttBa # i : k;; < 0.

2. Satisfy the LED condition by eliminating negative offagbnal entries and preserve mass conservation prop-
erty. This can be done by applying a generalized diffusiceraiprD according to (4.35). Replace the conser-
vative mass matriXd/c by its lumped counterpari/;,. The low-order scheme reads

du

Lo = Lu, (4.49)

whereL = K + D is such that;; > 0, Vj # 1.
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3. Remove excessive diffusion where possible by addingditrantidiffusion operator
du
dt

whereK* = K + D — Dg. Though3j # i : kj; < 0, the whole matrixi’* is LED-equivalent tol.”, i.e.
L*u= K*u,wherel}; >0, Vj #i.

M= = K*u, (4.50)

The discussed above method shows good and robust behasiotmrhplex 2D and 3D problems. It takes into
account both mathematical and physical interpretationtb@fproblem and is based on the careful step-by-step
modification of the flux in the "crucial’ regions.

Remark 8In the content of the modified discrete projection methodyective oriented Pressure Schur comple-
ment preconditioners might also act as sources of nonpdiyasicillations in pressure and velocity. This fact leads
to destabilizing behaviour of the algorithm and, as a regudt failure of a solver. Therefore, numerical treatment
of such preconditioners requires additional stabilizatio relaxation, which will be introduced §5.3.

4.3 Edge-oriented stabilization

The main idea of the edge-oriented stabilization is to augrtee original finite element discretization by an
interior penalty term involving the jump of the function uak or of the gradient of the approximate FEM solution.
In the literature, several jump terms were introduced féfedeént situations:

1) Jump terms including function values [46, 109]

. 1
i) = 3w /E fu][v]do. 4.51)

edge E

2) Jump terms including the gradient [27, 15, 13, 16]

J2,0(u,v) = Z 7|E|0‘/ [Vu][Vv]do,

edge E E
ralw,v) = Y B [ [0 Vulfn- Veldo,
edge E E
(4.52)
Jra(u,0) = 37 B / ¢ Vullt - Voldo,
edge E E
Js.a(u,v) = Z 'y|E|O‘/ [(t-Vu) - n][(t- Vv) - n]do.
edge E E
3) Jump terms including the divergence [13]
i) = 32 A1BE [ [V - vl (4.53)

edge E

4) Jump terms including the normal component of functiomigal[14]
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. 1
) = 3 o /E - - v]dor (4.54)

edge E

For our purposes we chose a new variant of the jump term, gezpio works by Ouazzi and Turek [79, 81, 107]

Jup,vp) = Z max('y*uhE,yh%)/ [Vu][Vu]do, (4.55)
edge E E
wherehg = |E|. The jump term (4.55) is added to the original bilinear foresp., discretized stiffness matrices,
and it uses only the gradient of the approximate solutionmbltical experiments showed that the paramegets
can be chosen more or less arbitrarily in the intef@a0001, 1], with no significant influence on the resulting
accuracy, robustness and efficiency.

4.4 Summary for the treatment of convective term

In this chapter we extended the modified projection methoah@sed in chapter 2) to the general-purpose 'cross
product operatorw(w, u,-) x u, which may include Coriolis force, convection and/or angestterms to be
written in the cross-product form. We also gave a brief oiemof the algebraic flux correction and the edge-
oriented stabilization techniques for the stabilizatidrttee convective term. Our aim was not to propose any
improvements to these techniques, but to thoroughly tesh tfor standard and rotational forms of convection in
the framework of our modified discrete projection method. the corresponding numerical results the reader is
referred to chapters 5, 6 and 8.
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Numerical results for the modified DPM

In this chapter we present numerical studies of the modifisdrete projection method for systems of incom-
pressible Stokes and Navier-Stokes equations with theo{@oforce term for model problems of unit square/cube
geometries (numerical simulations for complex 3D georastof the Stirred Tank Reactor model will be shown
and discussed if 8.1). We will compare accuracy of the modified and nonmod#igtemes, examine the multi-
grid behaviour for the arising momentum and pressure Poilke subproblems for different values of time step,
angular velocity, etc., and observe the (outer) convergbabaviour of the modified DPM scheme for various pre-
conditioners. At the end of this chapter we will discuss sasects concerning the convective part in the pressure
Schur Complement preconditioner.

5.1 Numerical results for the unit square

In this section we examine the accuracy in time of the presand velocity for the modified projection scheme and
compare results with those of the nonmodified scheme (wikutindependent orthogonal projection step (3.2)).
We take a test model of a unit square domai, 1] x [—1, 1] and solve the system of the incompressible Stokes
equations with the Coriolis force term

u —vAu+2w xu+Vp=f

V-u=0 (5-1)

with homogeneous Dirichlet boundary conditions for theoeéy. The exact solutioffu, p) of (5.1) is chosen as
in [37, 38]:

up (z,y) = wsin(t)sin(2ry)sin® (nz), (5.2)
ug(x,y) = —msin(t)sin(2rz)sin?(1y), (5.3)
p(z,y) = sin(t)cos(mx)sin(ny). (5.4)

Itis easy to calculate the right hand side of (5.1) for thdyital solution(u, p) from (5.2)-(5.3):

fi = cos(t)sin(2my) sin®(mz) — 27° sin(t) sin(2my) cos? () + 67> sin(t) sin(2my) sin’ ()
— msin(t) sin(rx) sin(ry) + 2w 7 sin(t) sin(27z) sin?(ry),
fa = — mcos(t) sin(2mz) sin? (7y) + 272 sin(t) sin(27z) cos? (7y) — 67> sin(t) sin(27z) sin? (7y)
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We denote
1 NDF
'Umean(t) - m ]; |Uanalyt(t7 k) - 'Unumer(t; k)|a

wherevanaiy: iS the velocity magnitudéu| or the pressure from (5.2)-(5.4) andv,umer iS @ corresponding
numerical value)N D F' is a number of degrees of freedom. To compute the averagedwetil some timeTl;,, s
we use the formula:

1 & T,
Verr(A) = 5 D Van (v AY), N = 22,
y=1

The following setting is chosen: = 1, T,,.s = 1.8. Then, we perform simulations for various time steps
At € {0.025, 0.05, 0.1, 0.15}, angular velocity valuegv| € {1, 5, 10} and mesh sizes € {1/32, 1/128}.

A uniform cartesian mesh is used.

In Figures 5.1 and 5.2 we show graphics Q.. (At) andp.,(At) with the angular velocitiegs| € {1, 5} and

|w| = 10, respectively.
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5.1 Numerical results for the unit square

10 and

Exemplary graphics fott,can (t), ©1mean (t)s U2mean (t) aNAPmean (t) for the settingAt = 0.1, |w)|

1/32 are shown in Figures 5.3 and 5.4.
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As the next step we refine our mesh and evaluate velocity aesspre errors. Numerical results for the case

1/128 and|w| = 10 we show in Fig. 5.5.

h:

From the presented numerical results one observes that dlaéfied projection scheme for the system of in-

compressible Stokes equations with the Coriolis force tesriim general more accurate than the standard one.
Improvement in accuracy is proportional #t |w| value. Naturally, the difference in accuracy between medifi

and nonmodified schemes becomes less noticealdieges ta), then only spatial error is visible.

Though we use very courggy-pressure approximation, for higher levels of refinemeistfitossible to reach con-

vergence state for the modified projection method, when s@ablie to observe layers with large pressure errors.

This presence of the large pressure errors at the cornere afquare domain was reported in [38, 96] and was
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conjectured by the lack of smoothness of the domain. In E&ywe show pressure errortat T,,.s = 1.8 for a
uniform cartesian mesh with the mesh-sizé28.
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Fig. 5.5.Accuracy in time as a function ad¢, |w| = 10, h = 1/128,(LEFT) werr (At), (RIGHT) perr(At).
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Fig. 5.6.Pressure errordt = 0.1, t = Thyes = 1.8, h = 1/128.

We would like to note that due to the block-diagonal struetfipreconditioning matrices, computational resources
required by standard/nonmodified and modified discreteeptigin schemes remain on the same level.

5.2 Numerical results for the unit cube

Since our end goal is the application of the modified projgcticheme for the complex 3D problems of the STR
type, we proceed with the 3D case and examine the behavidhe ofodified schemes. So, let us take a unit cube
model, which is shown in Fig 5.7. This choice is motivated bg televant simplicity of the geometry and the
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transparency of all matrix-operator constructions, wisghstantially facilitates the test of the proposed alarit
and makes the observation of its numerical behaviour eagiers, in this section our aim will be to analyze the
numerical properties of the modified discrete projectiorinod for the system of the Stokes and Navier-Stokes
equations with the Coriolis force term, to compare the efficy of preconditioners, to evaluate the convergence
rates of the multigrid for velocity and pressure subproldgimexamine the convergence of the outer DPM scheme
depending on preconditioners and to present numericdtsdeua model problem in the unit cube. As before we
assume that the Coriolis force term corresponds to a rotaiound theZ-axis, i.e. the angular velocity is
parallel toOZ. For space discretization of a unit cupel, 1] x [-1,1] x [-1, 1] we consider a uniform Cartesian
mesh. In the geometric multigrid solver we use several gidls. In Table 5.1 we adopt the following notation:

Table 5.1. Mesh characteristics of a unit cube with equidistant mesghin

level NEL | NAT | NVT | NEQ
1 8 36 27 116
64 125 | 240 | 439
512 | 1,728 | 729 | 5,696
4,096| 13,056| 4,913| 43,264
32,768101,37635,973336,89¢

a s~ wnN

NEL is the number of elements, NAT is the number of faces, Nvidl BIEQ are the number of vertices and the
total number of unknowns on different grid levels.

5.2.1 Multigrid method for velocity problems

Step 1 of the projection method involves a solution of th@eity subproblem with matri¥§ givenin (2.17). Here
we test a geometric multigrid method (V-cycle) with smoathiterations defined in section 2.3.1. We compare it
with the multigrid involving more standard pointwise SOR#&smoothing iterations. This smoothing iteration can
be defined as (2.25) with

(1,-1,1)

2.0 )
(0,0,0)

l (1-1:-1) (-1,1,-1)

'\ (1,1,-1)

Fig. 5.7.Unit cube, (LEFT) Sketch, (RIGHT) Mesh on the 4th level.
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lower_part A) 0 0
Csor = 0 lower_part( A) 0 ,
0 0 lower_part A)
lower_part A) 0 0
CsoRcoriol = 2wAtMy, lowerpart A) 0 or
0 0 lower_part A)
diag(A) —2wAtM; 0
Ceoriol = | 2wAtM,  diag(A) 0

0 0 diag(A)

Both Csoreorior and Ce,ri01 Matrices take into account convective and Coriolis foreente However, only
C.orior from (2.26) uses the full Coriolis force terms. In Table 52 present the number of multigrid iterations to
gain 3 digits of defect improvement for several problem paeters and various smoothers.

Table 5.2. Number of multigrid iterations of the momentum equation.

Preconditiondgw At|Meshing leve|
314 5
Csor 06 (2|2] 2
CsoRrcoriot |06 | 2|2] 2
Ceoriol 06 (22| 2
Csor 6 212 2
CsoRcoriol |6 212] 2
Ceoriol 6 212 2
CSOR 60 |div|div| div
CsoRrcorior |60 | 33| 3
Ceoriol 60 |[2|2] 2
Csor 600 |div|div| div
Csorcorior  |600(10|16| 12
Cioriol 600|2|2| 2

For larger values aof At the multigrid method wittC',,-;,;-based smoother outperforms the SOR-type smoothers.
Moreover, the block diagonal structure@f,,..;,; makes it possible to find the inverse matrix explicitly (usef®-
sition 2 from§ 2.3.1). This makes the calculation@&iiol for a given vector very fast and easily done in parallel.

5.2.2 Multigrid solver for the modified pressure Poisson prblem

We solve both the velocity problem in step 1 of the DPM and tloelifired pressure equation in step 2 by multigrid
methods. Numerical results §f5.2.1 show that the geometric multigrid method with spesimbothings is very
effective for solving the velocity problem. However the maléefficiency of the DPM also depends on whether a
fast solver is available for (2.44). Lemma 1 and the analys§s?.3.2 ensure that the matrix = BTM(f)lB with
M(f)l from (2.32) or (2.34) is sparse, symmetric, positive dediaitd corresponds to a mixed discretization of an
elliptic problem with symmetric diffusion tensor. Thus omepects that standard multigrid techniques work well
in this case. Numerical tests however show that the stargdamhetric multigrid method with SOR smoother does

not provide a satisfactory solver for this problem in allgiieal cases. Therefore, we also test 'stronger’ smoothers
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such as ILU(k) and BiCGStab(ILU(k)), k=1,3, see [43].

The procedure to measure the multigrid convergence ratexhasen as follows: for given we apply several
DPM iterations until some prescribed stopping criteria satisfied. The obtained steady state solutianp) is
used as an initial solution so thétug(A) = diag(A(w)). Further we solve the pressure equation by the multigrid
method with two different smoothers and various values4t. In Table 5.3 convergence rates are given for the V-
cycle with four post-smoothing steps (no pre-smoothingp®R, ILU(K) iterations, or two post-smoothing steps
by BiCGStab with ILU(k) preconditioning, where k=1,3. Léwé the mesh refinement is 3 (on every upper level
there are 8 times more elements than on the previous onegbled5.4, 5.5 and 5.6 we present the comparison of

multigrid rates on the 4th and 5th levels for pressure Scmxrcmditionera?TM(*mgsmorimB, BTM(*digg)B and
BTM(EilagwonongB' respectively. Thus, in either case the computational dexity of the multigrid was approxi-

mately the same. Summarizing our numerical results for teegure problem, we conclude:

e The convergence rates are almost level independent.

o Numerical results show that for large valueswafit the matrix P = BTM(;;SSWM)B tends towards a
tridiagonal matrix. One can check this by substitutiBg= {b;;} and M(mass+corig = {2} values into
P = BTM@;SS%O”O)B for large wAt. This explains the excellent convergence rates with the(kl.land
BiCGStab(ILU(K)) smoother since they are exact solverdrfidiagonal matrices. However, although the pres-
sure equation with these matrices is easy to solve, the gtebaviour of the outer DPM may get worse as the

following section illustrates.

5.2.3 Numerical analysis of the new DPM

For the numerical analysis of the computational perforreari¢he new DPM we consider two different cases. We
start testing the algorithm by solving a quasi-stationapbfem and calculate until the steady state is achieved by
pseudo-time-stepping with DPM. In the chapter 8 we will use nodified DPM to compute the fully unsteady
case for the Stirred Tank Reactor (STR) problem. To monifterdonvergence to the steady solution we compute
values of||u:||;, /|||, Values of||p:|i,/llplli, behave in a very similar way. In the ideal case (when the pre-
conditioner is exact) we could expect that the convergentiesosolution to the steady case would be very fast.
However, the inversion of the exact pressure Schur Compieasepreconditioner is prohibitively expensive and
therefore it cannot be used in practice. The constructerbappating preconditionerdmass+coriolis: M (diag) and

M giag+corioy Might loose in the convergence speedup if compared with xaeteone, but should definitely de-
liver better convergence behaviour if compared with thgingl nonmodified preconditionevl(mass. Moreover,

the speedup in the convergence rate should grow bigger, lahger valuesu At are used. In the following, we
perform the tests for every of the discussed choices for tliecube geometry. For the STR configurations the
convergence of the DPM has the same tendency, though due lhigter mesh complexity of the STR the relevant
upper bound of thew At value is smaller.

Schur Complement preconditioning for the Stokes equation Wh Coriolis force

Let us consider the system of the Stokes equation:

us —vAu+2wxu+VP=Ff

o in 2 x (0,7] (5.5)
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Table 5.3. Multigrid, Level3, NSMP=4 (number of pre/postsmoothingps for pressure).

PSC |Smoother 2w AL
0.05 0.5 5.0 50.0
Mmasy |SOR 0.21-010.21-01/0.21-01/ 0.21-01
ILU(0) 0.77-020.77-020.77-02 0.77-02
ILU(2) 0.17-020.17-02 0.17-02 0.17-02
ILU(3) 0.19-030.19-03 0.19-03 0.19-03

BiCGStab(ILU(1)), NSMP=10.95-03 0.95-03 0.95-03 0.95-03
BiCGStab(ILU(1)), NSMP=0.27-050.27-05 0.27-05 0.27-05
BiCGStab(ILU(3)), NSMP=}0.38-04 0.38-04| 0.38-04| 0.38-04
BiCGStab(ILU(3)), NSMP=0.77-070.77-07/0.77-070.77-07

Mg [SOR 0.67-010.25+000.39+000.42+0(
ILU(O) 0.46-010.20+000.33+000.36+0d
ILU(1) 0.31-010.14+000.23+000.25+0(
ILU(3) 0.72-020.37-01 0.76-01 0.87-01

BICGStab(ILU(1)), NSMP=1.37-020.51-02 0.75-02 0.13-01
BICGStab(ILU(1)), NSMP=10.20-05 0.64-06 0.78-06 0.20-05
BICGStab(ILU(3)), NSMP=10.64-04 0.35-04 0.74-04 0.21-03
BICGStab(ILU(3)), NSMP=0.79-07 0.83-07 0.1-06 | 0.82-07

M (mass+coriol [ SOR 0.21-010.22-010.26+000.60+0(
ILU(0) 0.77-020.80-02 0.25-02 0.57-07
ILU(1) 0.17-020.14-020.35-05 0.57-07
ILU(3) 0.19-030.13-03/0.57-07/0.57-07

BICGStab(ILU(1)), NSMP=10.95-03 0.70-03 0.73-07 0.56-07
BICGStab(ILU(1)), NSMP=10.26-05 0.33-05 0.61-07 0.57-07
BICGStab(ILU(3)), NSMP=1.37-04 0.66-05 0.62-07| 0.58-07
BICGStab(ILU(3)), NSMP=10.77-07 0.64-07| 0.63-07 0.57-07

M giagxyy |SOR 0.46-010.13+000.34+000.58+0(
ILU(0) 0.17-010.26-01{0.28-01{ 0.61-07|
ILU(1) 0.18-070.36-02 0.14-02 0.58-07
ILU(3) 0.19-030.24-03 0.24-05 0.59-07

BICGStab(ILU(1)), NSMP=1.79-03 0.11-02 0.85-05 0.56-07
BICGStab(ILU(1)), NSMP=0.80-06 0.35-05 0.60-07| 0.65-07
BICGStab(ILU(3)), NSMP=10.44-04 0.64-05 0.66-07| 0.62-07
BICGStab(ILU(3)), NSMP=10.74-07 0.63-07] 0.60-07| 0.63-07

M (giag+corioy |[SOR 0.67-010.25+000.38+000.43+0(
ILU(0) 0.46-010.18+000.17+000.38+0(
ILU(2) 0.31-010.10+000.13+000.25+0d
ILU(3) 0.72-02 0.32-01{ 0.96-02 0.92-01

BICGStab(ILU(1)), NSMP=1.37-020.51-02 0.05-02 0.18-01
BICGStab(ILU(1)), NSMP=0.19-05 0.52-06 0.76-06 0.20-05
BICGStab(ILU(3)), NSMP=10.64-04 0.35-04 0.74-04] 0.23-03
BICGStab(ILU(3)), NSMP=10.77-07 0.83-07 0.07-06{ 0.82-07




5.2 Numerical results for the unit cube 49

Table 5.4. Multigrid for M (mass+corijy NSMP=4.

Meshing levelSmoother 2w At
0.05 0.5 5.0 | 50.0
4 ILU(1) 0.19-020.19-020.77-030.12-06
5 ILU(1) 0.50-020.52-020.47-020.24-06
4 ILU(3) 0.20-030.19-030.64-050.12-06
5 ILU(3) 0.52-030.58-030.49-030.24-06
4 BiCGStab(ILU(1))0.39-030.35-030.12-030.12-06
5 BiCGStab(ILU(1))0.53-030.58-030.70-030.24-06
4 BiCGStab(ILU(3))0.12-030.11-030.15-050.12-06
5 BiCGStab(ILU(3))0.13-030.10-030.64-040.24-06

Table 5.5. Multigrid for M giag, NSMP=4.

Meshing levelSmoother 2w AL
0.05 0.5 5.0 | 50.0
4 ILU(1) 0.28-01/0.20+000.34+000.35+0(
5 ILU(1) 0.13+000.38+000.44+000.45+0(
4 ILU(3) 0.87-02/0.13+000.21+000.21+0(
5 ILU(3) 0.83-01/0.30+000.38+000.39+0(
4 BiCGStab(ILU(1)) 0.95-02 0.45-01] 0.79-01] 0.78-01
5 BiCGStab(ILU(1)) 0.78-01/0.16+000.19+0Q0.19+0(
4 BiCGStab(ILU(3)] 0.23-02 0.54-02 0.53-02 0.39-02
5 BiCGStab(ILU(3)] 0.25-01] 0.29-01] 0.39-01] 0.42-01

Table 5.6. Multigrid for M giag+corioy,» NSMP=4.

Meshing levelSmoother 2wAL
0.05 05 | 50 | 50.0
4 ILU(1) 0.28-01/0.20+000.32+000.35+0(
5 ILU(1) 0.10+000.31+000.36+000.45+0(
4 ILU(3) 0.87-020.07+000.10+0Q0.21+00
5 ILU(3) 0.50-01/0.08+000.33+000.38+0(
4 BiCGStab(ILU(1)] 0.89-02 0.29-01|0.71-01] 0.78-01
5 BiCGStab(ILU(1))] 0.70-01,0.02+000.16+0¢0.18+0(
4 BiCGStab(ILU(3)]0.19-02 0.43-02| 0.52-02 0.39-02
5 BiCGStab(ILU(3))]0.23-01] 0.24-01{ 0.25-01] 0.40-01

First we find a steady limit for the solution of (5.5) by the DRWNth homogeneous force terifh= 0. The velocity
equation in step 1 of the DPM is solved (almost) exactly. Rergrojection and correction steps 2 and 3 we examine
two options for choosing.). One isM .y = Mmasy l€ading to a standard projection method, another choice is
M(-) = M(mass+corio)|:

]\/[L 0 0 ]\/[L —QMAtML 0
M(mass = 0 My 0O ) M(mass+corio)| = | 2wAtMy, My 0
0 0 Mg 0 0 My,
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Itis natural to expect that as soon as the parametérincreases (eithef\t gets largery or both), the off-diagonal
block of the matrixM mass+corior» Which is due to the Coriolis force, plays a more importaifé and the solution
converges to a steady state in a smaller number of time steybvice versa, ifw At decreases, the iterative
behaviour of the solver with the preconditionB?M(;;SS+corio)B approaches that obtained with the standard

preconditioneB” M ! . B. We illustrate this in Fig. 5.8.

(masg

Schur Complement preconditioners for the Navier-Stokes cse

While considering the system of the Navier-Stokes equation

u+u-Vu—rvAu+2wxu+VP=f

O out in 2 x (0,7 (5.6)

we can expect to gain a substantial improvement in the cgewee rates by applying the Schur Complement
preconditioner with the matridZ mass+corig- BUt in this case we also have to care about the convectiveitethe
Schur Complement preconditioner. As it was proposed in tBeipus section, the convective term will be treated

by means of the preconditioning matik = BTM(_)lB with M., to be of the following choice:

diag(A) 0 0
M(diag) = 0 dzag(A) 0
0 0 diag(4)

In Fig. 5.9 we see that that the convection-oriented Schum@®@ment precondition&V/ giag provides a substan-
tial improvementin the outer-iteration convergence riatedecrease dfu.||i, /||wlli, — 0and||p:li, /||plli, — O.
Some difficulties may arise because of the oscillatory bieluawf the convective part itV giag . For the discus-
sion of this question we refer the readekts.3.

Now we are ready to perform the corresponding tests for theek&tokes equation with the full Schur comple-
ment preconditioner inside of the DPM, where both parts of/eation and the Coriolis force terms are included:

diag(A) —2wAtMj, 0
M (giag+corio) = | 2wAtM, diag(A) 0
0 0 diag(A)

This preconditioner covers both the Stokes and Navier&dtaases and under the right choice of parameters
guarantees the fastest decrease of considgrgfl, /||u||;, — 0 and||p:||i,/|lplli, — 0 values on the outer DPM
loop, see Fig. 5.9.

As the last test case on the unit cube geometry we perform etatipns with the linearized convective term of
the formU - Vu. To choose an appropriaté, we first perform the numerical simulation for the Navieol&s
equations until steady state. Then we Eet= u and solve this linear problem with the DPM which allows now
much higher values ab At, since the convection part becomes linear. For the higheesafw At the matrix

M giag+corioy IN P €nsures significantly better convergence to a steady solthanM gi,g Or other choice. Re-
sults are shown in Fig. 5.10.

All the numerical tests presented above show that the madit of the Schur Complement operator is necessary
to guarantee fast outer convergence of the DPM. Observenijetative process for large valuesAfw, we notice
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Fig. 5.9. Navier-Stokes equations (TOR) At = 1.5; (BOTTOM) 2w At = 2.5.

that improvementin the convergence to the stationaryisolgan be seen even visually. To demonstrate this effect
we present the pressure distribution of the nonmodified DRt W = BT ML . B and of the modified DPM

mas
with P = BTM(*d}agmriO,)B. In Fig. 5.11 one can see that the pressure foﬁ thg modifiedr&&tmplement pre-
conditioner has more accurate profile, closer to the statjostate of the pressure, than those for the nonmodified
Schur Complement preconditioner. The same effect couldberved for already presented simulations of the unit
square geometries frofb5.1. Smaller errors of the modified discrete projection sehare due to the capability
of the algorithm to 'catch faster’ changes in velocity andgsure fields by considering the Coriolis force and con-
vection in every step of the algorithm. At the same time themodified scheme neglects treatment of these terms
in the second projection step. That is why for some values4f the standard scheme cannot respond properly to

the changes iffu(¢), p(t)) and therefore 'generates’ larger errors.
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= = coriol
cor+diag
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Fig. 5.10. Navier-Stokes equations witi - Vu, (LEFT) 2w At = 5.0, (RIGHT) 2w At = 10.0.

Fig. 5.11. Pressure2wAt = 0.6, (LEFT)P = BTM ! B, (RIGHT)P = BT M ! B

(mas9 (diag+coriol) " *

5.3 Stabilization of convection in the Schur Complement opator

In the previous sections we considered the influence of neab8ichur Complement preconditioners on the inner
(multigrid convergence rate) and the outer (convergenciuefl;, /||wll;, and ||p:]l,/|lpll;, values) numerical
behaviour of the proposed discrete projection method. Neekess, the evaluation of one important fact we left
undisclosed until now. Namely, the oscillatory behavioluthe convective part in the preconditioners

diag(A) 0 0 diag(A) —2wAtM; 0
M(diag) = 0 diag(A) 0 and M(diag+coriop = | 2wAtM diag(A) 0
0 0 diag(A) 0 0 diag(A)
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An exemplary test in Fig. 5.12 shows that the convectiveipaMl s gives birth to wiggles first in the pressure
and then in the velocity field. If not ‘stabilized’, they masgucse divergence of the algorithm for some setting of

2wAt. The same effect one can also observe while uifigiag+corio-

10 T 10 T
ML ML
107
10°
% s::_u 107 ~
™~
= E \
10 S~ R
10
107 : . . . . . 107 : . . . . .
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
time step units time step units
Fig. 5.12.Unit cube,2w At = 2.0, (LEFT) pressure, (RIGHT) velocity.
Numerical experiments allow us to assume that
K(M(mass) < K(M(diag))a (5.7)

wherex(A) = Z’”L((A)) is the condition number and,,...(A) ando,,;» (A) are maximal and minimal singular
values, resp., ofmslgme matrik. Indeed, comparing the magnitude of entrieVfyyqsy and M giag, and taking
into account the diagonal nature of both matrices, we saddhaome large enoughu| (where|u| ~ |w x 7|)
and some matrix entrythe absolute value Cpfnfgag| is larger than those ¢fn[}%%, whereM masy = {m};>°% and
M (giag = {m?jag}. On the other hand, since ag&ir| ~ |w x 7|, there exists an entry, which corresponds to the
k-th degree of freedom in the mesh geometry, such that théutbs@lue ofjm 29 is smaller or equal tam2%.
Next, sinceB (and, henceB”) does not depend neither am\t nor onw, the following inequality takes place:

#(Pmasy) < K(Pdiag))s (5.8)

whereP., = BY M. B is the Schur Complement preconditioner. For the ldtdecondition number: (M giag) )
and therefore:(Pqiag ) increase and make the pressure Poisson-like problem dimgie ill-conditioned case.
As a result, some stabilizing techniques have to be applied following methods were suggested and tested for

validity:

1. We have seen that the DPM'’s convergence with the genedgizconditioneP giag+corio) = BTM(EilagmoriopB
is much faster than with the standard digasy = BTM(;qlasgB. For largew At the standard preconditioner
shows extremely slow descent to the steady state. At the Bama¢he modified one must deliver much faster
convergence, but it suffers from the destabilizing behawvid the convective part. To stabilize convective part
in the Schur Complement preconditioners we will restrictdigional” parts in such a way that, on one hand,
no destabilizing jumps appear and, on the other hand, tlee oativergence of the DMP is the fastest possible.

Mathematically it reads:
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]\/[L 0 0 dmg(A) — ML 0 0
Mstan = 0 Mp O + a1 0 diag(A) — My, 0 +
0 0 Mg 0 0 diag(A) — My,
0 —2wAtMp, 0
+ as | 2WALMy, 0 0], (5.9
0 0 0

whereay, as € [0, 1] are relaxation parameters for convective and Coriolisspegspectively. Then the Schur
Complement preconditioner is constructed in the followivay:

P(stay = B" Mgy B- (5.10)

Let us note that if

o o =0, ap =0= M(masy

o a3 =0, a2 =1 = Mmass+corio
o a1 =1, ap =0= Mgiag)

o a3 =1, as =1 = Mgiag+corio)-

Itis easy to see that so constructed mafvifs.py can be inverted explicitly (apply Proposition 2 from chap-
ter 2).

2. The other choice of stabilization for the modified presssubproblem is based on the fact that we use an
iterative solver:
p" =p" + adp, (5.11)

wherea € [0, 1] is a relaxation parameter. If no stabilization is requiteehtwe choose: = 1. In any other
choicec is taken smaller if stronger suppression of wiggles is nesglii

The proposed schemes 1 and 2 are in some sense equivalénagpobaches restrict the range of the pressure
after the regular iterative step and thus relax pressumajpti¢it (the first choice) or explicit (the second choice)
way. That is why numerical appearance of these schemes tettly pnuch similar.

Now let us have a look at Figures 5.13-5.15. In Fig 5.13 we st@first 16 iterations in time for the parameter
settingwAt = 1.0. In the case oM 4ia5 One can clearly see zigzags, which appear first in the pressut then

in some reduced form in the velocity. Relaxation of the cative part in the Schur Complement preconditioner
Pldiag = BTM(*dilag)B makes the|p; ||-curve smoother if the lower value of the relaxation paramnet from (5.9)

is used. Moreover, one can also note that|thg|-curve is smoothed out as well.

In Fig. 5.14 one can see that the stabilized cutkied with relazation) is smoother than those diag, steeper
than those ofnass and, though delivers slightly worse convergence rate ifbdggnning, reaches the steady state
almost at the same number of macro time step& ag.

From the graphics presented in Fig 5.15 the reader can ocmabim- or herself that the proposed stabilization
techniques help to significantly increase the convergemdtkd steady state solution even if the addition of the
convective part in its pure form into the Schur Complemeetpnditioner is not applicable because of arising
wiggles with the subsequent divergence of the solving adeor the given setting afAt¢ one can also observe
that adiag choice of the Schur Complement preconditioner is destahdlj whereas standardass
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Fig. 5.13. Unit cube 2w At = 1.0, (LEFT) pressure, (RIGHT) velocity.
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Fig. 5.15. Unit cube,2w At = 3.0, (LEFT) pressure, (RIGHT) velocity.
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preconditioner converges with the rate of convergencegoinch slower than those of a relaxéidg precondi-
tioner.

Basing on the results presented above we can make the fojowancluding remarks concerning the proposed
relaxation in the pressure subproblem:

¢ Relaxation helps to fasten the convergence to the steatysstution in comparison to the standard choice of
the Schur Complement preconditioner even if the usagkaf in its complete form is not possible.

e If oscillatory jumps in pressure do not lead to the divergeofthe solver, thediag is better than any other
relaxed choice.

At the end of this section we would like to mention an obseovatwhich was obtained during numerical tests
of this kind. Namely, if velocities irZ-direction are small with respect to thoseirny-plane, one can substitute
matricesM giag) and M giag+corioy DY the following ones:

diag(A) 0 0 diag(A) —2wAtM; 0
M(diagXY) = 0 diag(A) 0 and M(diagXY+c0ri0I) = | 2WwAtM;, diag(A) 0 . (5.12)
0 0 My, 0 0 My,

The lumped mass matrix in the enify¥, 3) is independent o and At and therefore preserves the whole system
from the rapid growth of condition number and the subseqd#fitulty with the iterative solving process. One
one hand, it plays the stabilizing role of the standard pnditmner and, on the other hand, the upper two-by-two
block matrix with Coriolis and convective parts producesithproved outer behaviour of the DPM.

Drawbacks ofPgiagxy) = BT M (‘diggxy)B and P giagxy+corio) = BT M (_diggchonobB are obvioius:

¢ Inability to use (5.12) in an arbitrarily oriented systencobrdinates or when the velocity flow field is large in
the Z-direction.

¢ Inability to control the smoothing effect of wiggles fhp: ||- and||u.||-curves, i.e. in general the convergence
to the steady state is very far from being optimal.

Convergence behaviour of the iterative process with thegur@itionerM giagxy) is shown in Fig. 5.16 in compar-
ison to those with preconditioneVd nasy andM (giag -

5.4 Summary of the numerical results for the modified DPM

Summarizing these tests, we have shown that:

¢ The modified discrete projection method delivers betteueaxy in time for pressure and velocity for medium
and large values a$ At than the classical/nonmodified discrete projection method

e The proposed explicitly inverted preconditioners bothmfmmentum and pressure Poisson-like equations show
much better convergence rate than corresponding standzsdmlitioners with the lumped mass matrix.

e Convergence to the steady state solution of the modified BPlich faster. At the same time multigrid costs
for the proposed Schur Complement preconditioners renraalraost the same level as those for the standard
preconditioner.

o M giag+corio) iS the most efficient preconditioner among all considerietesit includes parts due to convective
and Coriolis terms. For large values ©fAt the convective part iV giag+corioy May lead to the oscillatory
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Fig. 5.16. Navier-Stokes equations (TORY At = 1.5; (BOTTOM) 2w At = 2.5.

behaviour of the iterative solver and, therefore, has tadigilized. Proposed relaxation of the convective part
on the stage of preconditioner’s assembly or, later, dysiegsure correction step helps to avoid destabilizing
behaviour. Nevertheless, further study of automatic ahofdhe relaxation parameter is required.
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Numerical results for the rotation form of convection

This chapter addresses numerical aspects of the thednetsedts described in the chapter 4.1. We are mainly
interested in the behaviour of the rotation form of conwatind the influence of the modified pressure on the
iterative process and numerical solution of the incomploéssystem of the Navier-Stokes equations

u+wu) xu—vAv+ VP = f,

6.1
V.-u=0, 6.1)

with w(u) =V x wandP = p + “72 As it was shown before, in the case of the coordinate tramsition the
Coriolis force can be naturally added inig«) and the centrifugal force int®. We choose driven cavity and flow
around cylinder benchmark problems to compare obtainecernioal solutions for various Reynolds numbers with
highly-accurate solutions available in literature [12, 82, 108, 105]. Then, we examine the iterative behaviour of
the algorithm, discuss some issues and suggest techn@tesolve them.

6.1 Driven cavity benchmark problem

We solve (6.1) inf2 = [0,1] x [0, 1] with Dirichlet boundary conditiorusow = (1,0)7],—;. For a space dis-
cretization we take a uniform Cartesian mesh. In geometultignid solver several grid levels are used, the finest
level of which possesses 131584 degrees of freedom (edif#®)8 vertices and 65536 elements. We define the

UL . N . .
Reynolds number aBe = ——, wherelL is a length of the upper lid/ is a velocity value of the upper lid and
14
is a parameter of viscosity. Reynolds numbers were takdmeifalowing range: Res {100,500, 1000}.

Numerical tests showed that with the increase of Reynoldsheus the iterative solver suffers in the nonlinear
convergence. For example, f& = {1000} a fixed-point method with the linearized temn(u™) x u"*! does
not converge. To overcome this problem we did as follows:

e First, we implement a Newton-like method, when the contidsuof the Fréchet derivativey(u" 1) x u" is
added to the linearized term(u™) x u"*1.

e Second, we use the edge-oriented stabilization of the cbirre¢erm, which was described§mt.3. By varying
the edge-oriented parametgy,. we can control in some sense the diagonal/nondiagonal ratio

e Third, it was shown in [62, 73] that large norms of the Berfliquiessure gradier? P = VP (u) compared
to the velocityH/2 norms may lead to a poor convergence of the finite elementitgiiéone does not include
Vdiv stabilization into the momentum equation of (6.1):
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v(Vup, Vor) + N(up, wp, vp) + Yaio (div ug, divvp) — (Pr, divoy) = (f,vn) Yo, € Up,qn € Qp,

where N (up,, up, vy) is @ nonlinear term due to convectidd;, and@;, are spaces of test functions for the
velocity and the pressure, respectively. Otherwise, thEeddence ofju — uy||; on v is much milder. On
the other hand, too large valuesof;, “overstabilize” the problem and make corresponding liredgebraic

system poor conditioned.

The proposed techniques help us to obtain convergence diheaniterations for all Reynolds numbers (with
different accuracy, of course). The comparison of profitasufy andu, along cutlinest = 0.5 andy = 0.5,

respectively, with those of reference solutions is preseint Figures 6.1-6.3.
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We notice that the discrepancy between numerical and refesesolution get bigger, if larger Re is used. Edge-
oriented stabilization and Newton-like methods help tcaobthe nonlinear convergence. At the same time the
Vdiv stabilization helps to improve accuracy, see Figures 6026aB. Moreover, while usin§ div-stabilization

one can perform simulation for smaller valuesypf,., which are not possible otherwise.

08
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Table 6.1. Kinetic energy. Comparison of standard and rotation forroasfvection.

structured mesh

Level cells

Energy

without pressure separation

Energy
with pressureraéipa

Standard form of convectioR,q4.=0.05

1024
4096
16384
65536
262144
1048576

© 00N O U1 b~

5.007440861022897E-002
4.726577915032740E-002
4.504907900502248E-002
4.451536462306269E-002
4.447346732722830E-002
4.449511194952627E-002

5.211682419890467E-002
4.825706662364793E-002
4.548087349148145E-002
4.470287712512187E-002
4.455086811892013E-002
4.452439567412509E-00

Rotational form of convectionyeqge=0.0574;,=0.6

1024
4096
16384
65536
262144
1048576

© 00N O p

1024
4096
16384
65536
262144
1048576

© 00N O U1 b

5.917218667382527E-002
5.160284164224632E-002
4.651826977387501E-002
4.493929188531996E-002
4.460509057916964E-002
4.453347774356769E-002

6.034126831523878E-002
5.198083422220890E-002
4.661805861205227E-002
4.496463428798708E-002
4.460508688884178E-002
4.453346723495192E-00

Standard form of convectioR,q4.=0.2

4.697275081040202E-002
5.060866534334785E-002
4.670217951963666E-002
4.495614575196347E-002
4.457381775562132E-002
4.451922086434779E-002

4.751183897739284E-002
5.098802583646743E-002
4.686025705766404E-002
4.502254198984097E-002
4.460223628885603E-002
4.45192288543724BE-00

Rotational form of convectiony.qg4.=0.2

1024
4096
16384
65536
262144
1048576

© 00N O U1 b~

4.534717050856769E-002
4.900355289002138E-002
4.583846271124172E-002
4.455734529223019E-002
4.439685360860982E-002
4.444239174269192E-002

4.708663256505627E-002
5.064787120518587E-002
4.672960606432790E-002
4.498479522355114E-002
4.459296577837202E-002
4.452908673732453E-00
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Aiming for the better accuracy we also examine the use of teesure separation technique (PSepA) [108]. Its
purpose is to improve the incompressible flow simulatiompfoblems with large pressure gradients, exactly what
we need in the case of large Bernoulli pressure gradidnt= V P(u). In Table 6.1 we present the kinetic energy
for various mesh levels, calculated with and without presseparation technique, and compare its values with
those obtained for the standard convection. For the nuadessults in the case of the standard convective term
and the corresponding discussions the reader is referf@é@8}.

From graphics in Figures 6.1, 6.2, 6.3 and values of kinetérgy in Table 6.1 we see that:

e Numerical solution for the Navier-Stokes equations with thtational convection is more accurate if smaller
Reynolds number is used. F& = 300 the reference solution and the numerical solution of th&ational
convection’ almost coincide. For larger Reynolds numbéssrdpancies in velocity profiles are observable.

e For larger Reynolds one observes a poor convergence ratmbhear iterations for the Navier-Stokes equa-
tions with the rotational convection. For example, for = 1000 the solver does not converge if no additional
techniques are implemented. The Newton-like method theedgd-oriented stabilization help to improve non-
linear convergence and accuracy of numerical solutions.

e Accuracy of the numerical solution, which we estimate byueal of kinetic energy in Table 6.1, is better if
finer mesh is used.

6.2 Flow around cylinder benchmark problem

As the second test case we take the flow around cylinder bearghpmoblem. The coarse mesh is shown in
Fig. 6.4. The finest mesh level of the geometric multigridveolpossesses 267072 d.o.f., 133952 vertices and
133120 elements.

VS

Fig. 6.4.The coarse mesh for flow around cylinder benchmark.

In this case we again define the Reynolds numbetas- E whereU is an average velocity of inflow, is a
diameter of a cylinder and is a parameter of viscosity. Forysmall Reynolds numbersRiea< 20) discrepancies
between the obtained velocity field for rotation convectmnl those for standard convection are very small and
iterative behaviour of our solver shows almost no diffi@dtiFor large Reynolds numbers (Re20) one has to
resort to the help of stabilization techniques describékérprevious section. We perform simulations for-Re€0,
measure drag and lift forces on the boundaries of the inderd®r and compare their values with those obtained
for the case of standard convection [108]. Results are ptedén Table 6.2.
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Table 6.2. Darg and Lift. Comparison of standard and rotation form ofvextion.

structured mesh  Without pres. separation With pres. stpara
Level cells Drag/Lift Drag/Lift

Standard form of convectioR,q4.=0.3
2080 0.77197D+01/0.21923D-01 0.79200D+01 /0.23073D-01
8320 0.58216D+01/0.11291D-01 0.58517D+01/0.11433D-01
33280 0.56091D+01/0.10591D-01 0.56096D+01 /0.10640D-0
133120 0.55822D+01/0.10513D-01 0.55784D+01/0.105@8D-

o 0w

Rotational form of convectionyeqq.=0.3
2080 0.77898D+01/0.23215D-01 0.79742D+01/0.24085D-01
8320 0.58423D+01/0.11326D-01 0.58537D+01/0.11402D-01
33280 0.56142D+01/0.10612D-01 0.56154D+01/0.10609D-0
133120 0.55835D+01/0.10526D-01 0.55799D+01 /0.10509D-

o 0w

In general, for the flow around cylinder test case one eneusithe same problems of diagonal nondominance,
slow nonlinear convergence rate and large norm of the Bdlipoassure gradient as in the case of the lid-driven
cavity from§ 6.1. From the results of Fig. 6.2 we conclude that with the ledéledge-oriented stabilization for
convective termV div-stabilization for the pressure gradient and Newton-likethod for ‘improved’ nonlinear
convergence one can tend to the sufficient level of accuracy.

6.3 Summary of the numerical results for the rotation form of convection

In numerical simulations of the Navier-Stokes equatiorth wonvective term written in the rotation form (6.1) for
medium and large Reynolds numbers one has to take care of &jar problems. The first one is a slow nonlin-
ear convergence. Numerical experiments showed that irr twdenprove nonlinear convergence one may add a
contribution of the Fréchet derivative(u"*1) x u™ to the linearized ternw(u") x u™*. The second problem

is a large gradient of the Bernoulli pressute= p + V“Tz. Large gradients of the Bernoulli pressure have to be
resolved on a very fine mesh, otherwise they lead to the loasafracy for the velocity field. Without some
extra techniques to be implemented the simulation is natiples We showed that the edge-oriented stabilization
and theV div-method help to guarantee convergence and to obtain sufficiccurate solution.






Part Il

Implementation and Future Extensions






v

Implementation

For the simulation of the Navier-Stokes equations a lot obGBftware are available. One can choose either be-
tween commercial codes such@sX[44], St ar CD[100], Fl uent [32] or non-commercial codes, among which
areQpenFoam[77], Deal . 1 | [26], MooNMD[70] and many others. While choosing any of them, one shalkid t
into account many aspects, e.g. price of a license, suffiaieruracy of the obtained results, capability to modify
desired subroutines and parts of a code, etc. As the 1995 [BREhimark showed [110], even commercial CFD
packages can fail already for laminar flow calculations. thernumerical calculations presented in this work we
chose the home-developed free-source CFD ¢eetet f | ow, which fulfils all our requirements. In this chapter
we will give a short introduction inté-eat f | ow, describe its structure and aspects of pre- and post-fmioces
steps, show specific details concerning the realisatiomoimdified projection scheme (2.43)-(2.45) and mention
direction of further development and modernization of tbftvgare. Detailed information abo&eat f | owcan

be found in [6], [105] and references therein or at www.featftle.

7.1 About Featflow

Feat f | owis "Finite element software for the incompressible Navi¢okes equations”. It was developed at the
University of Heidelberg within the working group of R. Rauier and S. Turek (the list of involved persons
can be found in Appendix B of [5]Feat f | owis a set of programs/solvers based on the finite elementikdsra
Feat 2D[10] andFeat 3D[39], which were originally written irFor t r an 77. The most advantageous charac-
teristics ofFeat f | oware following:

1. powerful geometric multigrid solver [80, 105],
2. mixed Finite Element method with stable nonconformingtecher-Turek elements [88],
3. fast projection schemes for the system of the Navier€d@kjuations [104, 105].
In 2007 Michael Kdster from TU Dortmund completely reorgaa old packages into carefully documented data-

encapsulated code writtenfor t r an 90, by this giving birth to the second releaserafat f | ow 2 available
at www.featflow.de.

The structure ofeat f | owcan be divided into two parts: an outer ‘user-setting’ parte described ig§ 7.2.2,
and an inner solution part, which provides an approximalgtism of discretized system for the given configura-
tion. The inner part can be considered as a "solver enginkitiwhas to be modified only if some changes in the
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algorithmic flow of a scheme is supposed, e.g. realisatiaghefmodified projection scheme.

By treating the nonlinear problerkgat f | owsolvers can be divided into two approaches:

1. In the first one the nonlinearity is treated by outer nagdiniterations of fixed-point or quasi-Newton type or
by a linearization technique through extrapolation in tiffileen the obtained linear indefinite subproblems of
Oseen type are solved by a coupled or a splitting appraac®d/ cc3d solvers).

2. In the second one, the coupled system is first split to oltafinite subproblems i (Burgers-equations)
as well as inp (linear pressure-Poisson problems). Then the nonlindapreblems inu are treated by an
appropriate iteration or a linearization technigpp2d/ pp3d solvers).

These approaches form the Navier-Stokes trefeeatt f | ow solvers. Numerical tests [103] have shown that the
solverspp2d/ pp3d are superior t@wc2d/ cc3d, especially for highly nonstationary flows. Moreover, oa@ ¢
easily verify that thepp2d/ pp3d approach fits into the concept of the modified projection sehé2.43)-(2.45).
This was the reason why we took its code as a basis for the aaroging realisation of the proposed modified
projection scheme (2.43)-(2.45).

At the end of this section we would like to add couple wordstalpmtentials for &eat f | ow user. Namely, in
aFeat f | owcode one can easily include any extrenal mathematicahipsach aBLAS, LAPACK, UMFPACK,
etc. A user can couple it with some external mathematicahgireering tools, e.g forleat f | ow-Mat | ab cou-
pling see [41], for &eat f | ow-Par si val interaction see [52]. The open source nature helps to madifypart
of pre-, post- or solving steps. Peat f | owuser can choose from large variety of stabilization teches pre-
conditioners, viscous stress tensors, building-blocksdovection-diffusion transport equations and other fublp
already implemented features. At the moment a large sfiegtioup of Stefan Turek in TU Dortmund keeps
working on further extensions of tlieat f | owcode in the directions of population balance and turbulemod-
els, visco-elastic flows, optimization techniques, pattte flows, parallelization, etc. Detailed informatiom dze
found at www.mathematik.uni-dortmund.de/lsiii.

7.2 Preprocessing

The preprocessing phaseheat f | ow consists of construction of an appropriate mesh, which e twritten
according to thé-eat f | owformat, setting of required data parameters, prescrigifdsoundary conditions for
the velocity, assignment of the right hand side and parana¢itn/smoothing of a mesh for finer levels. Mesh
construction will be described if17.2.1. Setting of data parameters, boundary conditions, will be provided
in§7.2.2.

7.2.1 Grid generation

As it was mentioned in the chapter 2, a grid for #eat f | ow simulation must be constructed of quadrilateral
elements for the 2D case and of hexahedrons for the 3D casanaim restrictions on the mesh are following:

1. All elements have to be convex and contain no ‘hangingesodee Fig. 7.1.

2. Every element is described by a series of vertices. In 2&riasconsists of vertices, orders of which must
correspond to anticlockwise direction. In 3D a series ciasif2 x 4 vertices, where the first and the last
vertices should form quadrilaterals in anticlockwise dii@n.
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3. No element can have vertices, which belong to differentidaries of a given geometry.

4. Elements should be of moderate aspect ratios, i.e. tapdod thin elements should be avoided, if possible.

Fig. 7.1.Forbidden elements, (LEFT) hanging node, (RIGHT) non-earelement.

In general, it is much more complex to cover a domain with giletéral elements than with triangular ones.
Nevertheless, the recently develodeelVi SoRG i d3 [68] offers a user broad opportunities concerning mesh
construction and visualization. This java-written prograith a friendly interface can provide a user with helpful
information about nodes, edges, elements and boundarigsv#sh. It can automatically fulfil a domain with
quadrilaterals of a given radius/mesh size, check the ngetstd mesh for validity, etc. Having a 2D mesh (e.g.
again to construct it ibeVi SORGr i d3), one can easily prolong it into the three-dimensional egigca layer-to-
layer algorithm, the so-called ‘sandwich’ mesh generatiatirect ‘sandwich’ style of construction is not possible
e.g. in the case of considered stirred tank reactor geoesdtom Figures 8.1 and 8.2, one can resort to the help
of special scripts, which rewrite boundaries of a domairhmrequired format and automatically fulfil a domain
with quadrilaterals. For the latest releaséeli SORGr i d3 check www.featflow.de.

7.2.2 User settings

We would like to note, thafFeat f | owprograms solve the Navier-Stokes equations in their dimafess form.

To characterizes the flow field one can think of the Reynoldslmer. Thus, if one works with experimental data,
all required parameters and boundary conditions for vBid@ve to be scaled in such a way as to correspond to a
certain Reynolds number.

User settings in Featflow are divided into two categories:

1. solver parameters

2. code prescribed settings

Solver parametersire the corresponding parameters for the differential satdems. They are located in the
separatgpp2d. dat or pp3d. dat files and can be changed in their values without recompiliegarogram. A
list of some solver parameters together with their shortidgtons for the code of the modified discrete projection
method is shown in Table 7.1.

Code prescribed settingaclude boundary conditions for the velocity, assignmeinthe right hand side and
parameterisation/smoothing of a mesh for finer levels. Althem are to be written in the user-oriented files
in For t r an programming language. After changes are made, the progaanohbe recompiled. An advanced
Feat f | owuser can modify not only these files, but any blocleft f | owsolver orFeat 2D, resp.,Feat 3D
libraries, as long as he or she clearly understands interacf added blocks with specifics of the original code,
which can be either read in documentation or found out fronelbpers.



Table 7.1. Short list of selected parameters for the modified projectiade.

CPARM
CMESH
CFl LE
| START

CSTART
I SCL

CsOL
NLM N /
I MASS

| MASSL
I UPW

INLM N /

I Cycu /
I LM NU /
I LMAXU /
ISMJ /|

ISLU / |

I JUMP
DIUMP

I NEWTON
DNEWION
BCORLS
BMSCMVP
BRCONV
DHDI V
ANGVEL
RE

NI TNS

TI MENS
THETA

TSTEP

| FRSTP
DTGW

| GW

TI MEMX
| ADTI M

DTM N /
DTFACT

name of parameterisation file
name of coarse mesh file
name of protocol file
input of start vector
=0: start with homogeneous vector (only boundary condifjon
#0: read start vector
name of start vector file
output of solution vector
=0: no output#0: output
name of solution vector file
NLMAX  minimal / maximal multigrid level

parameter for mass matrix type (lumped of real mass matrix)
parameter for element type of lumped mass matrix
parameter for convective terms (streamline diffusion, imo\mg or edge-oriente
stabilization)

I NLMAX minimal / maximal number of nonlinear iterations used fa slolution
of the nonlinear transport-diffusion equations
INLMIN = INLMAX = 1: linear extrapolation in time
INLMIN = INLMAX = -1: constant extrapolation in time

I CYCP  parameter for multi-cycle for velocity / pressure (F-, \k \Wd-cycle)
I LM NP minimal number of multigrid steps for velocity / pressure
I LMAXP maximal number of multigrid steps for velocity / pressure

S\WP parameter for multigrid-smoother for velocity / pressure
(Jacobi, SOR, SSOR or ILU(K))
SLP parameter for multigrid-solver for velocity / pressure

(SOR, BICGSTAB, CG, ILU(K), or BICGSTAB+ILU(K) / CG+ILU(K)
kind of the jump term
relaxation parameter for the jump
Newton method: 1=in, O=out
relaxation parameter of the Newton method
Coriolis force term: TRUE=in, FALSE=out
projection scheme: TRUE=modified, FALSE=nonmodified
type of convection: TRUE=rotation, FALSE=standard
parametery for Vdiv stabilization
angular velocity
parameter for viscosity (Reynolds number)
maximum number of macro time steps
absolute start time
parameter for time-stepping value (Implicit Euler or Craiicolson, only
used ifl FRSTP=0)
starting time step
parameter for time-stepping scheme (one-step or fradtgtap scheme)
time difference folgmv-output
level for gmv-output
maximum absolute time
parameter for adaptive time-step control
=0: no control, fixed time stepSTEP is used
#0: time step control is used
DTMAX  minimal / maximal time step during adaptive control
factor for largest possible time step changes

o
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7.3 Postprocessing

For visualization of obtained numerical results we use alyravailable visualizatiof&W program (short for
CGeneral Mesh Vi ewer), see [78]GW is a quite powerful postprocessing tool, at least if to coraf@anong
freely available software. Knowin@W format, one can prescribe the output of any wanted parameter to
calculate and to output required vector/scalar fields, taasd to colour materials and boundaries, to prescribe
cutlines, cutplanes, iso-lines/surfaces, to set varidaisaV attributes and so on.

The proposed idea of the coordinate transformation cortmépgs us to the necessity of calculating and setting
boundary conditions for the transformed velocity and presssbut outputting non-transformed user-accustomed
values of the velocity and pressure during the postproeggsihase. Thus, prescription of Dirichlet boundary

conditions for the velocity = —w x r for problems, presented in Figures 8.1 and 8.2, will lookddigs:

!*****************************
angvel = -sone_positive_val ue

! V_X conponent
fdatin = y*xangvel

! V_y conponent
fdatin =-x*angvel
!*****************************

where we assume that blades of a propeller rotate clockwisectibn with the angular velocity

w = (0,0, —somepositivevalue).

After calculating inFeat FI ow the approximation tuplév, P), but before outputting its values into tlyen -
formatted file, we have to perform a ‘backward’-coordinamsformation to output a user-acquainted values
(u,p), see Fig 7.2.

FeatFlow —_— GMV
“v” calculation | ——~ “u” output

coordinate / velocity / pressure
transformation

Fig. 7.2. Transformation for the GMV output
A ‘backward’-coordinate transformation of geometry is donaccording to the formula

x = UTE. IntheFeat f | owcode it reads as follows:

!*****************************

al pha = angvel *ti nens

X_trans_coord real (dcorvg(1,ivt))
y_trans_coord = real (dcorvg(2,ivt))
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x_coord = cos(al pha) *x_transformed _coord -
sin(al pha)*y_transforned_coord
y_coord = sin(al pha)*x_transformed_coord +

cos(al pha) *y_transformed_coord

!*****************************

A ‘backward’-transformation for the velocity = —w x 7 can be written in the code as

!*****************************

I v_x conponent
write(nunit,1000) (v_x(ivt)-real (dcorvg(2,ivt))=*angvel)

I v_y conponent
write(nunit,1000) (v_y(ivt)+real (dcorvg(1,ivt))=*angvel)

!*****************************

For a ‘backward’-pressure transformatifn= p — 3 (w x r)? one can write

| xckkhkhkhhhhkhkhhhhhkhhhhhhkhhhkkk*x
wite(nunit,1000) (p(ivt) + &
0. 5xangvel *angvel &
( dcorvg(l,ivt)+dcorvg(l,ivt) + &
dcorvg(2,ivt)*dcorvg(2,ivt) ) )

!*****************************
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Future Extensions

The proposed approach of coordinate transformation waivated by extensive work lead in the numerical sim-
ulation of population balance models for turbulent flow fgeld stirred tank reactor geometries [41, 52, 91, 92].
Here, the moving boundaries of a propeller have to be apprated in a very precise way not only because they
are sources of main ‘perturbations’ in the velocity flow fiddbe used further in the population balance modeling,
but also because in many turbulence models (e.g.¢, £ — w, etc.) the prescription of boundary layers is of
supreme importance, see e.g. [47, 60, 114]. The main puigdfdbe current chapter is to show that the modified
projection scheme can be used not only for simple test pnobf@resented in the cahpter 5, but also for complex
3D simulations of real-life models. As a representativelwafbsmodels we chose the stirred tank reactor. In the
subsequent text we will apply the modified DPM to calculat flow field in the stirred tank. Afterwards, we
will examine convergence of the iterative solver for vas@ueconditioners, among which are newly proposed and
classical ones. Then, we will use a particle tracing toolldtam a visual understanding of the flow field in a tank.
And finally, we will give a brief insight into the future CFD &nsions, where the modified projection method
can be of big importance. This is, namely, the populatioahet modeling for turbulent flows in the stirred tank
reactor.

8.1 Numerical results for the Stirred Tank Reactor

In the chapter 5 we observed that the modified discrete giofemethod performs in a very advantageous manner
delivering good multigrid rates and faster convergenchécsteady state solution. Nevertheless, it is a known fact
that very often the mesh complexity plays a crucial role mmlumerical behaviour of the algorithm. Taking this
fact into consideration one might ask a fair question. Ngmehat if the proposed algorithm is applied to some
complex real-life 3D model, will it produce the same numakicehaviour as we expect and which we observed
for the unit cube geometry?

To give an answer on this question we decided to considerwfigurations from a class of Stirred Tank Reactors
(STR). This choice was due to the following reasons:
e Geometrical STR possesses complex enough geometry.

e Transforming STR makes it is possible to transform from the usual inkfréane of reference to the nonitertial
one, and thus to substitute the system of the Navier-Stakestions by a new one with rotational forces.
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e Scientific STR is widely used in industry and was intensively expldrethe series of works: modeling and
simulation of drop size distributions in stirred liquidpliid systems [52, 91, 92] and flow control of turbulence
models [41].

Drafts of the STR configurations 1 and 2 are presented in Egyu.1 and 8.1, respectively. Mesh characteristics
are given in Table 8.1, where notation is similar to thosalts&able 5.1.

Fig. 8.1.STR configuration 1, (LEFT) Design draft, (RIGHT) Mesh on #klevel.

Fig. 8.2.STR configuration 2, (LEFT) Design draft, (RIGHT) Mesh on #itlevel.
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Table 8.1. Characteristics of STR meshes.

Ievel‘ NVT ‘ NAT ‘ NEL ‘ NEQ
One-propeller STR configuration

1 510 1,216 | 352 4,000
2 | 3,450| 9,088 | 2,816 | 30,080
3 | 25,074| 70,144 | 22,528| 232,960
4 1190,434 550,912(180,2241,832,96(
Three-propellers STR configuration

1 | 1,406| 3,528 | 1,048 | 11,632
2 | 9,864 | 26,688 | 8,384 | 88,448
3 | 73,100| 207,360 67,072 689,152
4 1560,9161,634,304536,57 5,439,48$

8.1.1 Multigrid with smoother C for velocity problems

In the same way as we did f15.2.1 we test three preconditioning approaches for solthegvelocity subprob-
lem (2.25) for the chosen STR configurations. The first tweeswds include standard pointwise SOR methods
with the following preconditioners:

lower_part A) 0 0

Csor = 0 lower_part( A) 0
0 0 lower_part A)

lower_part A) 0 0

CsORcoriol = 2wAtMy,  lower_par{ A) 0
0 0 lower_part A)

The third variant is the block-diagonal preconditiodgy,,.;,; from (2.26). Both configurations gives almost the
same data results (see Table 8.2), which are equivalenbs$e fresented in Table 5.2.

Table 8.2. Number of multigrid iterations of the momentum equation.

Preconditiongw At| Meshing level
2 3 4
Csor 06| 2 2 2
CsoRcoriot  |0.6 2 2 2
Coriol 0.6 2 2 2
Csor 6 2 2 2
CsoRcoriol |6 2 2 2
Ccor'iul 6 2 2 2
Csor 60 | div | div | div
CsoRcoriol |60 3 4 4
Ceoriol 60 2 2 2
CSOR 600 | div div div
Cs0Reoriol 600 |>100>100>100
Coriol 600 | 2 2 2
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8.1.2 Multigrid solver for the modified pressure equation

As the next step, we check the convergence behaviour of thiifiet pressure Poisson equation and show that
the observed behaviour of multigrid convergence rateshesame tendency as those shown in Tables 5.3-5.6. It
can be also seen that the mesh complexity increases valtias aferage multigrid factor, which are presented in
Tables 8.3 and 8.4.

Table 8.3. Multigrid convergence rates for different preconditiongr = BTM(f)lB with 4 smoothing steps, resp., 2 smooth-
ing steps for BiCGStab, 3d level.

Smoother 2w AL

0.05 ‘ 0.5 ‘ 5.0 ‘ 50.0
M(mass
SOR 0.50+000.50+000.50+000.50+0
ILU(2) 0.17-01/0.17-01{0.17-01 0.17-01]
ILU(3) 0.75-03 0.75-03 0.75-03 0.75-03

BiCGStab(ILU(1))0.19-02 0.19-02 0.19-02/ 0.19-02
BiCGStab(ILU(3))0.47-03 0.47-03 0.47-03 0.47-03

M(mass+cori0]

SOR 0.50+000.51+000.81+00Q div
ILU(1) 0.17-010.19-01{ 0.59-01{ 0.26-01]
ILU(3) 0.75-03 0.75-03 0.48-02/0.28-02

BiCGStab(ILU(1))0.18-02 0.18-02 0.61-02/ 0.30-02
BiCGStab(ILU(3))0.47-03 0.36-03 0.21-02 0.18-02

M diag

SOR 0.46+000.31+000.41+000.49+00
ILU(L) 0.13-01/ 0.32-01/0.20+000.35+0(
ILU(3) 0.23-02/0.76-02/0.81-01]0.19+0(

BICGStab(ILU(1)] 0.31-02 0.83-02 0.45-01/ 0.88-01
BICGStab(ILU(3))] 0.96-03 0.18-02 0.20-02 0.43-02

M(diag+coriob

SOR 0.46+000.34+000.56+0Q00.68+0d
ILU(1) 0.13-01]0.34-010.14+0Q0.16+0d
ILU(3) 0.23-020.79-02 0.38-01 0.40-01

BiCGStab(ILU(1))0.31-02 0.85-02 0.23-01{ 0.28-01
BiCGStab(ILU(3))0.96-03 0.17-02 0.13-02 0.19-02

8.1.3 Unsteady simulation for the STR configurations

Now we are ready to perform full unsteady numerical simataifor two configurations of the Stirred Tank
Reactor. The main characteristics besides the presentéid.i8.1 (left) and Fig. 8.2 (left) are chosen to be as
follows (all measures are given in non-dimensional form):

1. Configuration 1: Kinematic viscosity = 0.1, velocity of inflow w;, r;,,, = 40, angular velocityw = 2,
Ekman numbeFEk ~ 0.0004, whereFEk := Z . In the case of mixers the Ekman number is such that
Whipiade

FEk = Ri whereRe is the Reynolds number.
()

2. Configuration 2: Kinematic viscosity = 0.1, velocity of inflow w;, 10, = 40, angular velocityw = 2,
Ekman numbeFEk ~ 0.0004.
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Table 8.4. Multigrid convergence rates for the preconditioder= BTM(;gag +eoriony B for different levels with 4 smoothing
steps, resp., 2 smoothing steps for BiCGStab.

level 2w At
0.05 ‘ 0.5 ‘ 5.0 ‘ 50.0

SOR
2 [0.35+000.35+040.57+000.65+0(
3 |0.46+000.34+000.56+000.68+0(
4 |0.40+040.40+000.60+000.65+0(
BiCGStab(ILU(1))
2 0.85-030.91-030.45-020.76-02
3 |0.31-020.85-02 0.23-01/ 0.28-01
4 |0.53-02/0.98-020.23-010.38-01

Fig. 8.3.Numerical simulation, (LEFT) For the configuration 1, (RIGH-or the configuration 2.

In every case fluid enters the tank through an inlet near thi@ing then it is ‘'mixed’ by the rotating propeller
and leaves the stirred tank through an outlet located onapesee Fig. 8.3. Inlet and outlet are prescribed on

the outside wall as inhomogeneous Dirichlet and homogenBeumann boundary conditions, resp. The inlet is
prescribed as a triangular region:

e Configuration 1width ¢ € [—;—2, %], heightZ € [0.2,1.2].
e Configuration 2width ¢ € [—5—2, %], heightZ € [1.0,4.0].

Outlet is located on the opposite side of the tank and defiaddll@ws:
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e Configuration 1 width ¢ € [ — z—z,w + ?6’—1], heightZ € [2.8,3.8].
) . . 3T 3T .
e Configuration 2width ¢ € [ — Y + a], heightZ € [18.0,21.0].

The coordinate transformation made it possible to presherenesh aligned with the boundaries of the propeller
such that even the small-scale flow features are resolvettieAdnd of the simulation, in the postprocessing phase,
the backward coordinate transformation (from the noniakid the inertial one) is performed and the velocity field
is changed respectively to provide the user with the 'stediagaotion of the propeller in the stirred tank reactor, see
Fig. 8.4. Movies of the velocity field can be found at www.neattatik.uni-dortmund.de/Isiii/download/sokolow.

Particle tracing

Usually, it might be a difficult task to make concluding reksabout the flow field in the 3D geometry. Moreover,
very often the main interest of the simulation is not the fleidfitself, but a mixture of some sources/species inside
of the reactor. Injection of the particle tracers into themetry of the STR helps to evaluate both the propagation
of the velocity field and the mixture of the particles.

For these reasons we took the explicit time-stepping pattiacing toolAWPT [1], which was developed by Jens
Acker at TU DortmundGWPT matches with-eat f | ow output data in th&w format and uses these data to
calculate propagation of particles in the obtained flow fi€ldr the best visualization one can choose number of
sources, their colours, location of source injectors ahémhelpful features.

Here we demonstrate a pair of postprocessing simulations dg a particle tracing toddWHPT. In the first case
prescribed near the inlet three sources of particles, wtéchbe distinguished by its colour: green, yellow and
red, respectively (see Fig. 8.5). Six snapshots at the sdoug time steps give a realistic understanding of the
flow motion and show a good mixing process of particles. Indbeond case, the domain of prescription we
leave the same, but now we colour particles with respectd turation of stay in the tank: starting from blue
as the youngest particle and following the RGB colour scaléoured as the oldest particle. Six snapshots at the
succeeding time steps are shown in Fig. 8.6. Movies of padistributions can be found at www.mathematik.uni-
dortmund.de/Isiii/download/sokolow.

As a remark, we would like to point out that the simulated SBRfigurations can be significantly more complex
(curvature and number of blades, shape of the tank, etdputitany loss from the side of the numerical behaviour
of the proposed DPM.

The considered discrete projection method shows a robustacurate behaviour for such complex unsteady
problems as a stirred tank reactor. The developed code gfdoits advanced CFD techniques such as stable
non-conforming finite elements [88], robust high-resauatstabilization of the convective term [56], multigrid
solvers [105], etc. Furthermore, the approach can be estetalpopulation balance models or turbulent flows
(k — e turbulence model), which will be discussed shortly in stk 8.2 and; 8.3.



Fig. 8.4.Distribution of the velocity field in the STR.
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Fig. 8.5.Distribution of particles at consecutive time steps in ti&kSParticles are colored by sources.
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Fig. 8.6.Distribution of particles at consecutive time steps in tA&kSParticles are colored by the duration of their stay in the
tank.



82 8 Future Extensions

8.2 Turbulence model

To model the relevant processes appearing in such a systarstased tank reactor, one has to account for the
turbulent flow. Mathematically the turbulent flow is definegddsystem of Navier-Stokes equations with a high
Reynolds numberRe = UL/v, whereU is a characteristic velocityl, is a characteristic length andis a
kinematic viscosity). While dealing with three-dimensabfiows at high Reynolds numbers, the numerical costs of
DNS (Direct Numerical Simulation) are extremely high. Feaeple, for a 3D simulation of the stirred tank reactor
with Reynolds numbeRe = 30 000 this would require abouRe > 10 000 000 000 nodes (see e.g. [36], [92]),
which is not feasible with today’s computing power. Therefeome kind of turbulence modelling has to be used.

A k-e turbulence model was added teATFLOwW, in order to make the calculation of such flows on meshes of
moderate size possible. The corresponding CFD pqdal- ke was developed by Kuzmin building on the laminar
Feat f | owversion [57]. The mathematical foundations of the programloe described as follows.

We consider the following system Bfeynolds-averaged Navier-StoKBANS) equations:

%8 +u-Vu=—-Vp+V-((ro+vr)D(u)) ©.1)
V-u=0 '
whereu = (uy,us,u3)? is atime-averaged velocity apd= p(t, x) is a time-averaged pressure, both defined on a
time-space domaif®, T') x 2 with T > 0 andf2 C R%. D(u) = Vu+ (Vu)T is a strain tensor andy = Oﬂg

is a turbulent eddy viscosity. The turbulent kinetic engkgnd its dissipation rateare modelled by the following
scalar transport equations:

ok L v. (ku— ”—Tw> — P e,
8t O
(8.2)
Oe €
5% + V- <€u - Z—ZV@) = E(Clpk — Cse),

whereP,, = ”7T|Vu + Vu®'|2. The default values of the involved empirical constants @fe=0.09, C, = 1.44,
Cy =192,0,=1.0,0. =1.3.

Additionally, appropriate boundary conditions f@rk ande have to be prescribe®? = I, U I'outU Iwall U Lsym.

As usual, Dirichlet boundary conditions fat k£ ande are prescribed on the inflow bounddry,:

k3/2
u=g, k= cab|u|2, €= CMT,

(8.3)

wherec,;, is an empirical constant [58] ariglis a mixing length.

Let us denoten to be the unit outward normal to the boundary. At the ouflgt; the following 'do-nothing’
boundary conditions are prescribed:

ou ok Oc
= 0, = 0 = 0, n-[pl—vrD(u)]=0. (8.4)

In thek — ¢ model the behaviour of a fluid near an impervious solid wathagdelled by wall functions. The com-
putational wall boundary ., is located at a distancefrom the real geometrical wall boundary. In our case we
assume that the computational domain is already reduceddygpof widthd, which is a user-defined parameter.
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We set the following boundary conditions &ty:

2 3
uy u U U

k: T = —
FT R

RZarl VC.

wherex = 0.41 is the von Karman constant and is the friction velocity. Here:, is the solution of the logarithmic
wall law equation:

n-u=0, n-D(u)=

(8.5)

1
ul = ur(~logy™ +5.5), (8.6)
wherey™ = u.d/v is the local Reynolds number.

A detailed mathematical derivation of tike- ¢ turbulence model can be found, e.g. in [61, 69]. The reatinaif
the numerical algorithm is described in [58].

We would like to note that the wall boundary conditions (&BJ (8.6) in thé: — ¢ turbulent model are based on
the experimentally measured behaviour of flow in a channieteého data about wall boundaries in the stirred tank
is available, we have to assume that they do not differ snbatly from those in the channel flow. The coordinate
transformation led not to the rotation of the blades of thapptier, but to the outside wall, which shape is more
similar to the plain deck, especially if the curvature of thall of the tank is small. Moreover, since the outside
wall of the tank rotates (again, if to consider from the nenfial frame of reference), the main role plays not
normal, but the tangential component of veloaityThus, the boundary conditions (8.5) and (8.6) are modified i
the following way:

1
n-u=n-a, ‘nl~(u—a'c)‘ :uT(Elogy++5.5), (8.7)

wherez is velocity of the wall ands - n* = u — (n - u)n.

Basing on the Reynolds-averaged Navier-Stokes equaohsdnd the generalized boundary conditions (8.7) we
can propose the coordinate transformation concept foratteittreatment of a rotating propeller boundaries. This
can lead to the application of the proposed modified disgneiection method. Careful numerical analysis of the
modified DPM in the direction of the Reynolds-averaged tlehoe modeling we leave as a topic for future.

8.3 Population balance

Population balance is a well-established method used tysmthe size of the dispersed phase during our mod-
elling of the phenomena that occur in the stirred tank. Weshawdescribe the behaviour of this dispersed phase
and as a result to account for the population dynamical ps&seof the drops: to describe how the number of drops
of a certain size changes with time. On the one hand, when tejsccollide, they may form a larger drop. That
means a new larger drop is generated, whereas two smallgs disappear. On the other hand, a drop may also
collide with an eddy such that it breaks up into some smallepsl In this case, some smaller drops are formed
and the larger, the so-called mother drop, is destroyedcdh#uence of drops is called coalescence, the breakup
is called dispersion.

In simulation the following assumptions can be made:
e Only binary coalescence is considered (since the prolatiitat three or more drops collide in a time interval
(t,t + dt) at a certain point is negligibly small compared to the philitg that two drops meet).

e Source term in the population balance equation are assuwreseldnly due to break-up and coalescence (ex-
pansion, growth and other processes are ignored).



84 8 Future Extensions

The continuity equation for the dispersed phase, accogirftn the changes in the particle size, is of the
form [86], [97]:

%pa + V- pau + %pon* =0, (8.8)

wheret is time, p is density« is volume fractionu is velocity,r is a particle radius andis the rate of change in
particle radius. The first term of this equation represengnges of particle concentration in time, the second term
the convection in physical space and the third term the absimgsize.

Let us denote

S = —%pai’

to be the source/sink teri = S(V, x,t) and
f=—pa
to be the average number density functjor- f(V, x,t), i.e. f describes how many drops of voluriieare at a
certain pointe at timet.
Applying Reynolds averaging to the population balance g#qu#8.8), we obtain:
of

StV @)=V (V) =5, (8.9)

where the diffusion term-V - (¢, Vf) is due to the modelliny - (u'f") = =V - (¢,Vf). Here,u’ is velocity
of small eddiesf’ is an average number density function of the small eddiess vr/(pSct), wherevr is a
turbulent eddy viscosity anflc; is the turbulent Schmidt number. Further information cafooed in the book by
D. Ramkrishna [86]

The coalescence and breakup phenomena are taken into atgooreans of the terms in the right-hand side
of this integro-differential equation. There are differapproaches can be found in literature on how to model
source/sink tern$. In our case we will assume that sink is only due to the sinkoafl@€scence_,, and breakup
Spreake @Nd, in the same way, source is only due to the source of smmiees’ and breakup.,,, Therefore

— of - + —
S(V7 T, t) = Scoal + Scoal + Sbreak+ Sbreak

The terms due to coalescence are modeled by:
Vmax—V
S&)m(x, Va t) = _f(X7 ‘/7 t) / RC0a|(Va V/a y(X, t))f(X, V/a t)dvla
0

\%4
S::)a|(xa Va t) = A Rcoal(Vla V”a Y(xa t))f(x7 Vla t)f(x7 VH? t)dvl

Here,Reoa(V', V", y(x,t)) denotes the coalescence rate, which describes the prip#izt two drops with vol-
umesV’ andV"” coalesce. Vectoy is the so-called continuous phase vector, which is depemdetihe properties
of the continuous phase that influence the coalescence aalldge processes. Thus, the vegtonay consist of
pressure, temperature, or other values that we get frometlealation of the flow field.

On the other hand, the source and sink terms due to breagaggx, V, t) are modelled by:

Spreak X, V1) = —Rpreak V, ¥ (X, 1)) f(x, V1),
Vmax
SpreakX: Vs 1) :/V n(V',y(x,)v(V, V', y(x,t)) Roreal V', y (%, 1))
f(x, V', t)av'.

Here, Ryread V', y (%, t)) denotes the breakage rate, which accounts for the protyathitit a drop with volume
V' breaks up. Furthermore(V, V' y(x, t)), the so-called distribution of daughter drops, descrihegprobabil-
ity that the breakage of a drop with voluri& leads to at least one daughter drop with voluvheThe quantity
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n(V', y(x,t)) gives the number of daughter drops that are formed by thé&ageeof a drop with volum&”'.

Physically, the following boundary conditions should begaribed o yai = stirrer U L tank

u = Ustirer ON I sirrer
u =0 on/iank
f(x,V,t) =0 on [yal

where I girer describes the stirrer, andank the boundary of the tank. The initial conditions are choserhghat
they are consistent with the boundary conditions. Furtle¢aits about the modelling of stirred liquid-liquid sys-
tems can be found in [52, 91, 92].

In practice it is often assumed that drops belong to some Bikalgroups, the number of which is finite. Hence,
discretizing (8.8) in respect to size, we obtain a contineguation for the size group-i:

0
P + V- paju =S, (8.10)

wheresS; is the rate of mass transfer into or out of the size group dumeak-up and coalescence. It is obvious,
that the sum of all particle volume fractions equals the r@uraction of the dispersed phase:

Z o = Q.
As before, we can rewrite the individual size-group volumaetion in terms of the total as:
fia=q;
and rewrite (8.10):
%pafi—i—v-paufi =5, (8.11)

wheref; is the fraction of the dispersed phase volume fraction imgsio This equation has the form of the trans-
port equation of a scalar variabfgin the dispersed phase.

Due to one way coupling we can apply the coordinate transdtiom technique to calculate the velocity fialg
which will be used later in the population balance equat&8); Numerical experiments in this direction we will
also leave as a topic for future.

8.4 Conclusions

From the previous two sections we observe that the cooeliretsformation concept and therefore the modified
discrete projection framework are applicable for the nucaéisimulation of population balance and 'Reynolds-
averaged’ turbulence models, where precise calculatienfloiwv field along moving boundaries is important. We
showed that the modified discrete projection method is igiteor simulation of complex industrial models. We
also noticed that for complex 3D simulations presentedimc¢hapter the iterative solver demonstrates the same
properties already observed for test models of the chapfEiéparticle tracing tool gives a realistic behaviour of
the flow field in the stirred tank reactor. At the moment,fHeat f | owgroup at TU Dortmund continues intensive
research in the directions of turbulent flows [53] and pofioites balance modeling [4]. As future extensions one
can choose simulation of such complex models by a genergbpa scheme (4.8)-(4.10), where convection and
the Coriolis force term are written in a form of the cross¢arot operatoiw (u, w, -) X wu.
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Conclusion and outlook

In this thesis we proposed a new discrete projection metbodhie incompressible Stokes and Navier-Stokes
equations with Coriolis force which includes new multigadd preconditioning techniques for the arising sub-
problems for pressure and velocity. In particular, the tmesed multigrid method for the velocity matrix shows

a robust convergence behaviour for a wide range Af values. Moreover, its explicit inversion does not require
any additional memory or computational resources. The figabiliscrete pressure Poisson-like operator in a pro-
jection step was deduced using pressure Schur complemegraratitioning technique. It appears to be much more
efficient both in accuracy in time and in convergence to thady state solution than the standard one since con-
vective as well as rotational parts were taken into accothit. numerical results showed that the modified DPM
is more efficient and robust with respect to the variatiorrobtem parameters than the standard projection scheme.

Furthermore we analysed the accuracy of the modified piojestheme. It was proven that the proposed DPM for
the Navier-Stokes equations with the Coriolis force (1) the same order of accuracy as the classical projection
scheme for the Navier-Stokes equations (1.1). Namely, ¢hacity is weakly first-order approximation and the
pressure is weakly ord%r approximation.

As the next step we introduced the rotational form of coneacBy doing so, we extended the framework of the
modified scheme to the general case, which made it possitskstioany terms written in a form of the cross-product
operatonw(u, -) X u. Though we did not gain advantageous numerical behavidhegbtation form of convection
with respect to those of the standard form, we showed thattvé help of edge-oriented afddiv-stabilization
techniques one can obtain sufficiently accurate result® upeidium Reynolds numbers. As test models we took
the lid-driven cavity and the flow around cylinder benchmambblems.

Finally, with the code for the modified discrete projecti@heme we performed nonsteady simulations for two
configurations of stirred tank reactor models. In the oletdiflow field we injected virtual particles and observed

their distribution and mixture. These tests showed thaptioposed DPM can be successfully used for real-life
models. We also showed possible applications of our DPMudsuient flows in the stirred tank reactor, where

prescription of boundary layers is of primary importanceniérical analysis of this model by a general scheme
with coriolis-convection operatap(u, w, -) X u we leave as a topic for the future.
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Appendix A

10.1 Derivation of the modified system of the Navier-Stokesgeations

As we have already seen, for the case of the stirred tankaieidés reasonable to perform a coordinate transfor-
mation in such a way that blades of the propeller remainastatiy, but the outside wall of the stirred tank reactor
rotates in a direction opposite to those of the propelleote€oordinate transformation, see Fig. 10.1. In other
words, we assume that the observer is placed into the middteegropeller. By doing so, we have to turn to
consider the system of the Navier-Stokes equations witkdhealled rotational forces — forces, which arise in the
system due to this coordinate transformation. In our déaaa we make the following assumptions:

1. The propeller in the stirred tank rotates aroundAhaxis. The general case can be easily obtained by accu-
mulating the same idea, presented below.
2. Angular velocity is constant, i.e: = (0,0, w)”, wherew = const.

3. The tank is filled with homogeneous liquid.

stirred tank

Fig. 10.1.Systems of coordinates

We say that an inertial framK is a preferable frame of reference and anything causingteclesto be accelerated
relative to it is regarded as a true force. We denote a badiS iy {z1, 22, 2}.

At the same time, the non-inertial reference fragnén which body violates Newton’s Laws of Motion) has a
commonOZ-axis and rotates in an anticlockwise direction with sonpeéd’w relative toX . Let us choose an
arbitrary pointP = P(x) = P(£), wherex = (z1,2,2)7 are its coordinates i, and¢ = (¢4, &, 2)T are
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coordinates irs. There can be established the following relation betweand¢:

r1 = 1rcosf
To9 = rsinf
&1 =rcos(6 — wt) = rcosfcoswt + rsin b sin wt (10.2)
& = rsin(f — wt) = rsind coswt — r cos O sin wt
Z2=z

wheret is a time variable. Rewriting (10.1) in a matrix form, we get

£E=Uz, (10.2)
coswt sinwt 0
whereU = | —sinwt coswt 0 | is a matrix of the coordinate transformatisn— £. One can easily check that
0 0 1
U is orthogonal, i.eUTU = UU" = I. Hence,
x=UTE. (10.3)

Differentiating (10.2) with respect t§ one obtains

51 = 21 coswt + To Sinwt — rqw sinwt 4+ xow coswt
& = —dy sinwt + @9 coswt — T1w coswt — Tow sin wt (10.4)
z=72
The matrix form of (10.4) is
E=Uz —w xr(f), (10.5)

wherer (&) = (&1, &2, 2)T is a radius vector. Again, differentiating (10.3) with resptot, one gets
& =UTé+wxr(x). (10.6)

Let us turn our attention to the relation between the ratdahge of an arbitrary vect@?P = p in K and its rate

of change irS. If we fix p, which can be in general a function of time, then its rate @fge will appear different
in both systems. If the tip of the vector is at resSrthen, as seen froid, a perpendicular componesatx p adds

up per unit of time. In general, whenmis not fixed inS, either in direction or in magnitude or both, we shall have:

dp _(dp
(dt)K—<dt)S+w><p. (10.7)
Next, let us denote by
T1¢ él + 501525.2
d d S5 3 .
u=a= (—T> and v = (—T) = | 226,81 + 226,62 | = UTe (10.8)
dt ) dt ) 4 ' .

z

velocities inK andS frames, respectively. Then, from (10.6) we can derive

du dv
(%), = () v 109

Substitutingu into the last term of (10.9) we obtain

<Z—?>K—(Z—:>K+wxv+wx(wx7~). (10.10)
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Next, applying (10.7) ta one gets

dv> (dv>
— =|— ) 4+wxw. (10.12)
(dt % dt ) 4
Substituting (10.11) into (10.10) we come to the final equali
(%)K = (Z—?)S+2(wxv)+w X (wx7T). (10.12)

As we know, in the inertial frame of referen&é the system of Navier-Stokes equations reads:

%—? +u-Vu=-Vp+vAu (10.13)
V-u=0 (10.14)

We perform a term-by-term modification to get its view in trenimertial frames.

First, taking into account the incompressible property14pwe obtain
Au =V (Vu+Vu') =2V-D(u).
The tensor components 6f(w) are ‘transformed’ as follows:
- 1 (5)ui N 6uk) _1 ((%i N ka) N
2 \ Ozy, ox; 2 \ Oz, Ox;

4—l i(w><r)-+i(w><r) _! 8vi+8vk =
2 | Oz, 9z o Oz, Ox; ) ik

since

0 o0
——(wx7r); + a—(w X Tk (EitmwiTm) +

oxy, T; T Oz,

+£(6klmwl$m) = wy (€itmOmk + EkimOmi) = wi(€ak + €rti) = 0,

wheree;;,, = 1, if (i,1,m) is an even permutation, and,, = —1, if (,1,m) is an odd permutation.
We see that the componentg are built from the vector fielé in the same way as the componenjs are built
from the vector fieldu. Because the pressure term is trivial to evaluate, the skand the last step to do is to
‘transform’ the equation (10.14) for the incompressipgitis follows:

Viu=V - (v+(wxr)=V-v+V-(wxr)=

:V-v+a;zk(wxr)k:V-v—l-aimaklmwl:cm:V-v.

Thus, in the noninertial frame of referen8¢he system of Navier-Stokes equations becomes of the form:

@—i—v-Vv—l-wav—i—wx(wxr):—Vp—l—uAu (10.15)

ot
Vou=0 (10.16)

where2w x v is theCoriolis forceandw x (w x r) is theCentrifugal force

At the end we would like to prove two auxiliary propositiomg)ich were used iff 1 and throughout the thesis.
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Proposition 1.Letw | r. Thenw x (w x r) = —w?r

Proof. By direct calculation. [
. 1 )
Proposition 2. w x (w X r) = —§V(w X 7)

Proof.
(wWxr)P=Wxr) (wxr)=(rx(wxr) w=uwr’—(r w?

V(wx7)? =20 —2(r-w)w = —2w x (w x 1)

Proposition is proved. [



Nomenclature

velocity stiffness matrix, page 4

Stokes operator, page 16

discrete gradient operator, page 4

discrete divergence operator, page 4

diagonal preconditioner for the velggitatrix in the velocity equation, page 8
computational fluid dynamics, page IX

discrete projection method, page 6

error, page 18

Ekman numbéfk = LQ wherev is the kinematic viscosityy is the angular
w
velocity andL is the characteristic length, page 76

force, page X

velocity matrix, page 4

mesh size, page 30

identity matrices on discrete velocitylgmessure spaces, respectively, page 6
jump operator, page 40

time step, page 15

discrete Laplacian operator, page 4

local extremum diminishing, page 35
consistent mass matrix, page 10
approximation to the velocity matrix, galp
lumped mass matrix, page 10

mass matrix for the pressure, page 10
discrete convective operator, page 4

outward unit normal to the boundary, page 12



94 Nomenclature

NAT ... ... number of faces, page 45

NDF . .............. number of degrees of freedom, page 42

NEL ................ number of elements, page 45

NEQ ............... number of unknowns, page 45

NVT ... number of vertices, page 45

Do e pressure, page X

P oo new or Bernoulli pressure, page X

Py = BTM(f)lB ....... modified Schur Complement operator, page 10
Qoo intermediate pressure, page 13
r=(z1,22,23)7 ... ... radius vector, page X

Re ................. Reynolds numbéte = E whereU and L are, respectively, characteristic

velocity and length scales? amds the kinematic viscosity, page 59
R™ integral residual of the Taylor serieage 18

Ro................. Rossby numb&o = Li whereU and L are, respectively, characteristic ve-

locity and length scales, anftl= 2 w sin ¢ is the Coriolis frequency, whete is
the angular velocity and is the latitude, page 8

S=BTF'B ......... Schur Complement operator, page 4
STR . ... ... ... ... stirred tank reactor, page 74
b time, page 4

TVD . ... ... total variation diminishing, page 27

w = (uy,uz,uz)’ .. ... .. velocity, page X

U oo intermediate velocity, page 13

w = (wy,ws,w3)T ... rotational operator, page 28

Voot e e kinematic viscosity, page 1X

Qe e parameter, page 55

r'ordf2 ............. boundary of the domain, page 15

Vdiv - w e e e e e e Vdiv stabilization parameter, page 60
Vedge o v e edge-oriented stabilization paramgtage 59
w= (w1, wa,wz)l .. ... angular velocity, page X

0 domain, page IX

2 test function for the velocity spaceged 2
D correction factor, page 32

Yoo test function for the pressure spacged®
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