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Summary

The first splitting schemes for solving the system of incompressible Navier-Stokes equations have been proposed
already in the second half of the last century. Among them arecontinuous and discrete projection methods, ILU-
based factorisation schemes, etc. The main purpose of splitting schemes is to divide the velocity-pressure coupled
problem into smaller subproblems to be solved in an iterative way. Very often this leads to a drastic reduction
of computational work and resources. The most popular splitting schemes are projection methods proposed by
A. Chorin and R. Temam in the late 1960’s. Since then, the projection methods were thoroughly analysed and
constantly improved, particularly for new CFD configurations and applications.
In a broad class of industrial applications one has to deal with incompressible rotating flows. Very often it is helpful
to perform coordinate transformation to a nonintertial frame of reference. On one hand, this technique facilitates
the prescription of boundaries, since complex rotating objects become stationary, their mesh is constructed once
and for all during the preprocessing phase. On the other hand, one has to consider the Navier-Stokes equations
with rotational forces, which consist of Coriolis and centrifugal forces. In order to obtain an efficient and robust
solver, it is important to come up with a proper handling of these extra terms. For coupled methods implementation
of rotational forces is pretty much straightforward. For projection methods, however, some modifications in every
step of the algorithm are required in order to guarantee fast(outer) convergence to a solution tuple(u, p). New
numerical and mathematical problems arise in this context.

The work, presented in this thesis can be divided into two main steps:
First we propose a modified discrete projection method (DPM)for the incompressible Navier-Stokes equations
with the Coriolis force term. The tuple(u, P ) of velocity and new pressure variable1 is computed in every time
step by ILU-based methods in the context of a Pressure Schur Complement (PSC) approach with improved explic-
itly inverted preconditioners for both momentum and pressure Poisson-like equations. Proposed preconditioners
are constructed in such a way that no additional computational efforts comparing to classical preconditioners are
required. Numerical comparisons of nonmodified and modifiedprojection schemes show that the latter scheme
delivers better accuracy in time of velocity and pressure approximations for time-dependent problems, and faster
convergence rates to the steady state for stationary problems. We prove that for the modified semi-discrete projec-
tion scheme the velocity is a weakly first-order approximation and the pressure is a weakly order1

2 approximation.
Numerical experiments are performed for test models of unitsquare/cube geometries and for complex 3D models
of stirred tank reactors.
In the second step, the proposed DPM-concept is extended to the general-purpose ‘cross product operator’
w(ω,u, ·) × u, which may include Coriolis force, convection and/or any other terms to be written in the cross-
product form. It is shown that the non-diagonal dominance ofthe resulting matrix may lead to undesirable conver-
gence and accuracy shortcomings of the algorithm. Nevertheless, implementations of additional techniques such as
∇div- and edge-oriented stabilizations make it possible to obtain sufficiently accurate solutions. Numerical tests
are performed for the flow around cylinder and the lid-drivencavity benchmark problems.

The code of the algorithm is implemented into the open-source finite element software for the incompressible
Navier-Stokes equations (Featflow).

Key words: Navier–Stokes equations, Coriolis force, discrete projection method, pressure Schur complement,
rotational form of convection.

Andriy Sokolov, TU Dortmund

1 New pressure variable contains pressure and centrifugal force
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1

Introduction

The design and numerical realisation of an efficient solver for the incompressible Navier-Stokes equations is a
long-term purpose of CFD researchers. Since decades an evident progress is observed: a large variety of methods
and algorithms has been proposed and implemented into commercial and open-source codes. A detailed overview
and a good mathematical foundation can be found, for instance, in [2, 19, 20, 31, 83].

In many physical and industrial applications there is the necessity of numerical simulations of models with rotating
flows, for example, for the simulation of stirred tank reactor models in the chemical industry, analysis of the
influence of the orbital motion of an inner cylinder on annular flow in the oil drilling industry [3, 93], shape
optimization of mixers and ship propellers in food and shipbuilding industries, respectively, geophysical models,
etc. These kinds of applications may possess complex 3D geometries and require large numerical simulations of
fluid models with rotating boundary parts, those proper treatment can be often a very challenging task. Fortunately,
there exists a large subclass of models, when complex treatment of rotating parts can be avoided by coordinate
transformation and/or corresponding modification of PDEs for these models. In our work we will focus on this
subclass of models and propose modified projection schemes for their numerical treatment.
As a representative of the subclass of ’rotating’ models, let us consider a Stirred Tank Reactor (STR) benchmark
problem, which is shown in Fig. 1.1. The fluid motion is modelled by the nonstationary incompressible Navier-
Stokes equations

vt + (v · ∇)v − ν∆v + ∇p = f , ∇ · v = 0 in Ω × (0, T ] (1.1)

for given forcef and kinematic viscosityν > 0. We also assume that appropriate boundary values and initial
conditions are prescribed.

Fig. 1.1.(LEFT) STR geometry; (RIGHT) Numerical simulation (cutplane of velocity).
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We assume that the STR model is satisfying the following conditions:

• There are no additional baffles attached to the outside wall of the stirred tank.

• Impeller rotates with constant angular speedω = (0, 0, ω)T , whereω = const in the XY plane.

• The tank is filled with homogeneous liquid.

Later in our work we will show that the derived algorithmic framework remains valid and can be also applied to
models which violate any of the requirements above.

It is natural to assume that the major changes in the velocityvector field in the stirred tank reactor are due to the
blades of the rotating propeller. In order to accurately treat boundaries and flow field in a vicinity of the blades it
is preferable to perform a coordinate transformation usinga fixed mesh for the propeller around which the outside
wall of the tank is rotating. When switching from an inertialto a noninertial frame of reference, we have to consider
a new velocity vectoru = v+ (ω × r), whereω is the angular speed andr is the radius vector from the center of
coordinates. The new velocityu satisfies homogeneous Dirichlet boundary values on the blades of the propeller,
while on the outside wall of the tank one has to satisfyu = ω × r.

After some derivation (for details see§ 10.1 and references therein), we obtain that the system of Navier-Stokes
equations (1.1) in the new frame of reference can be written as follows

ut + (u · ∇)u − ν∆u+ 2ω × u+ ω × (ω × r) + ∇p = f

∇ · u = 0
in Ω × (0, T ] , (1.2)

where2ω × u andω × (ω × r) are the so-called Coriolis and centrifugal forces, respectively.
Next, using the equality

ω × (ω × r) = −∇1

2
(ω × r)2

and settingP = p − 1

2
(ω × r)2 in (1.2), we get the following system of equations which willbe treated in our

work:
ut + (u · ∇)u − ν∆u+ 2ω × u+ ∇P = f

∇ · u = 0
in Ω × (0, T ] . (1.3)

We would like to note that the numerical analysis of (1.3) andits practical application is not new, see, e.g., [7,
21, 22, 23, 93]. Nevertheless, proper construction of projection methods, resp., operator splitting schemes for
Coriolis dominating flows and its numerical analysis were not very well investigated until now. Therefore, in the
first part of our work we will deal with the construction and numerical analysis of a discrete projection method
for (1.3), modified in such a way as to effectively treat the Coriolis force term in every step of a projection scheme.
Corresponding error estimates for velocity and pressure approximations will be derived. In the second part of our
work we will show that the proposed modified DPM framework canbe extended to a more general case - namely,
effective treatment of any skew-symmetric term to be written in a cross-product formw(u) × u, for instance of
rotational form of convection. The above transformation (1.3) possesses the following advantageous features for
the numerical simulation of rotating flows:

• All calculations are performed on a static mesh with rotating/moving boundaries which can be adapted in
a very precise way. At the same time if one uses Fictitious Domain [34], resp., Fictitious Boundary [106]
methods, one can obtain only first-order approximations of the boundaries (due to the piecewise approximation
of the interfaces). On the left hand side of Fig. 1.2 one can see that for the coordinate transformation strategy
mesh is aligned along the boundaries of the rotating propeller. In this case the accuracy of prescription is fine
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even for a coarse level of refinement. At the same time from theright hand side of Fig. 1.2 one observes
that for Fictitious Domain/Boundary approaches the given silhouette of the propeller is prescribed in a zigzag
way. Therefore, the Fictitious Domain/Boundary approach is particularly suitable for the simulation of the
qualitative flow behaviour of complex configurations only. If one likes to get quantitatively accurate results,
then a good approximation of the ”real” boundaries and therefore a very fine mesh is needed, see Fig. 1.3.
As another alternative, applying Arbitrary Lagrangian Eulerian [25] methods one can prescribe the mesh in an
arbitrarily precise way, too, but additional complex reconstructions of the mesh in every time step, intermediate
velocity updates, etc., are required anyway.
Precise approximations can be especially important if turbulence models with wall functions in a vicinity of
the walls are used. Here the approach of coordinate transformation can be of a big help, too.

Fig. 1.2.Cross section, (LEFT) body-fitted mesh; (RIGHT) mesh for thefictitious boundary approach.

Fig. 1.3.Piecewise approximation of a moving blade. Gray: analytic description of the blade, black: approximation leading to
a ”zig-zag” description of the boundary. (LEFT) very coarsemesh; (RIGHT) finer mesh [92].

• A fixed/’frozen’ mesh of the rotational model facilitates numerical calculations, when some optimization of
geometry and/or flow field is required. In this case a mesh is constructed ’once and for all’ without any time
consuming reassembly at every macro time step.

• The detailed analysis of (1.3) stimulates new Coriolis-oriented discrete projection schemes, which possess the
same order of accuracy for velocity and pressure approximations as for the classical projection methods [18,
101] for the incompressible Navier-Stokes equations (1.1). Let us consider the semi-implicit second order time
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discretization:
Givenun and the time step∆t = tn+1 − tn, find un+1 andpn+1 (for the convenience we denotep = P

in (1.3)) satisfying

un+1 − un

∆t
+

1

2
((u∗ · ∇)un+1 − ν∆un+1 + 2ω × un+1) + ∇pn+1 = gn+1

∇ · u = 0
(1.4)

with the right-hand side

gn+1 =
1

2
(fn+1 + fn) − 1

2
((u∗ · ∇)un − ν∆un + 2ω × un), (1.5)

whereu∗ denotes a second order extrapolation of velocity fromn andn − 1 time steps. Alternatively one
may consider a fully implicit scheme by settingu∗ = un+1. Discretization of (1.4)– (1.5) in space leads to a
saddle-point system to be solved in every time step. The system has the form

(
F B

BT 0

)(
u

p

)
=

(
g

0

)
, (1.6)

whereu = (u1, u2, u3)
T is the discrete velocity,p the discrete pressure;B andBT are discrete gradient

and divergence operators andF is a block matrix which is due to the discretized velocity operators in the
momentum equation. The matrixF has the following block structure

F =



A −M 0

M A 0

0 0 A


 , (1.7)

whereA is the block diagonal part ofF , which is due to the convective and diffusive terms, andM is the
off-diagonal part ofF due to the cross product operator2ω × ·.
The implicit scheme (1.4)– (1.5) has excellent stability properties, see e.g. [105], however solving the coupled
system (1.6) in every time step is rather expensive. To avoidthis, some splitting procedures are often used in
practice, e.g. already mentioned projection methods. It has been observed by a number of authors, see, e.g. [82,
85], that on the discrete level the projection method can be interpreted as a particular incomplete factorization
of the matrix from (1.6), which involves preconditioners for F and for the pressure Schur complement matrix.
Applying these principles, we will propose a modified projection scheme for a better treatment of the Coriolis
force term2ω × u.

• The concept of projection schemes for the incompressible system of Navier-Stokes equations with Coriolis
force (1.3) can be extended to the system of Navier-Stokes equations with a general-purpose cross-product
termw(u) × u, which takes into account not only Coriolis, but also convection and/or any other term, which
can be possible presented in the form of the cross-product operator. As an example, using the well-known
inequality

(u · ∇)u = (∇× u) × u+ ∇
(
u2

2

)
, (1.8)

we can formulate our problem for a general case:

ut + W × u− ν∆u + ∇P = f

∇ · u = 0
in Ω × (0, T ] , (1.9)

where

– W = ∇×u,P = p+
1

2
u2 for the system of the Navier-Stokes equations in the inertial frame of reference.
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– W = ∇×u+2ω,P = p+
1

2
u2− 1

2
(ω× r)2 for the system of Navier-Stokes equations in the noninertial

frame of reference.

A variety of numerical problems may arise in the context of projection methods for the incompressible Navier-
Stokes equations with the Coriolis force term (1.3) and a general-purpose formulation (1.9):

1. Preconditioning. How to construct effective Coriolis-oriented preconditioners in such a way that, on the one
hand, they significantly improve the convergence behaviourof an iterative scheme (if compared to those with
standard preconditioners) and, on the other hand, numerical costs of a scheme do not increase?

2. Iterative behaviour. To understand effectiveness of the constructed scheme, one has to examine both inner and
outer iterative behaviour. For a right choice of preconditioners the outer convergence of the proposed scheme
should be significantly faster and, at the same time, multigrid costs have to stay on the same level.

3. Accuracy. Before applying a new scheme one has to give an answer to the following question, namely, what
order of accuracy can a user expect for velocity and pressureapproximations?

4. Stabilization. The skew-symmetric nature of the Coriolis-operator2ω and the general-purpose cross-product
operatorw(u) × · may lead to undesired numerical properties and to bad convergence rates. Without proper
stabilization techniques the corresponding numerical simulation is often not possible. So the question is, what
stabilization methods to use and how will they influence the obtained solution and the solving process?

5. Generalized framework. The general-purpose cross-product operatorw(u)×u, which contains rotational form
of convection and Coriolis force term, requires additionaltechniques to stabilize the solution process and to
guarantee sufficient accuracy of the obtained solution for medium and large Reynolds numbers. The obvious
question is what techniques to choose and how to apply them tonumerical simulations?

Further in the thesis we will discuss every topic in more detail, provide the corresponding derivations, examine nu-
merical results and discuss possible implementations of the proposed schemes. The thesis is organized as follows:
In chapter 2 we give a short overview on the Schur Complement approach for the classical Chorin-Temam pro-
jection methods. By applying the incomplete LU factorization we propose a modified projection method with
improved explicitly inverted preconditioners for the system of incompressible Navier-Stokes equations with the
Coriolis force term. Some auxiliary results concerning theproposed preconditioners are proved. Then, in chapter 3
we study the error estimate of a semi-discretized form of themodified projection method. We show that the veloc-
ity is a weakly first-order approximation and the pressure isweakly order12 approximation.
Proceeding further, in chapter 4 we introduce a general formof the cross-product operatorw(u)×·, which includes
not only the Coriolis force term, but also rotational convection. The modified projection method is extended to the
general scheme. This extension makes it possible to treat any term to be written asw(u, ·)×u. In this chapter we
also give a short theoretical outlook on Algebraic Flux Correction and Edge-oriented techniques for stabilization
of standard and rotational forms of convection.
From theoretical derivations we move towards numerical experiments. Thus, in chapter 5 we present the numerical
analysis of the modified projection method for the system of Stokes and Navier-Stokes equations with the Corio-
lis force term. We examine accuracy of the modified discrete projection method (DPM), multigrid behaviour for
the pressure Poisson-like equation and convergence rates to the stationary solution for various Schur Complement
preconditioners. Model problems in a unit square/cube are taken.
Next, we perform numerical experiments for the general-purpose modified projection scheme. In chapter 6 we test
accuracy and iterative behaviour of the projection scheme for rotational form of convection. Taking the lid-driven
cavity and the flow around cylinder benchmarks, we show that with the help of∇div- and edge-oriented stabiliza-
tion techniques one can obtain numerical solutions with sufficient accuracy. Pros and cons of numerical aspects of
rotational convection are discussed.



XIV 1 Introduction

Chapter 7 aims to give a short introduction into the non-commercial codeFeatflow. We discuss its applicability,
main features, pre- and postprocessing steps, provide information concerning implementation of the coordinate
transformation technique. Then, in chapter 8 we describe applications in the field of the stirred tank reactor simula-
tions, where the modified projection method with its coordinate transformation strategy can be of a big importance.
Complex 3D rotating flows for geometries of stirred tank reactors are simulated. For visualization purposes we take
a particle tracing tool and observe moving behaviour of rotating particle in the calculated flow field. Here we also
give an outlook on future investigations in the area of turbulent flows and population balance modeling.
Finally, chapter 9 summarizes the opportunities and drawbacks of the proposed scheme and Appendix A supple-
ments the thesis by derivations of the incompressible system of the Navier-Stokes equations in the noninertial
frame of reference.

The current work was supported by the Graduate School of Production Engineering and Logistics in TU Dortmund
University, by the German Research Foundation and the Russian Foundation for Basic Research through the grant
DFG-RFBR 06-01-04000/08-01-91957 and TU 102/21-1. Obtained scientific results were published in a series of
papers. Thus, the content of chapter 2 including some numerical results from the chapter 5 was published as a
research article inComputer Methods in Applied Mechanics and Engineering[98]. The theoretical derivation for
the modified semi-discrete projection scheme was accepted to Journal of Mathematical Fluid Mechanics[75]. The
content of the chapter 5 including some numerical results from the chapter 8 was published as a research article in
Electronic Transactions on Numerical Analysis, [99].



Part I

Numerical Methods for Rotating Incompressible Flow Problems





2

Discrete projection methods for rotating incompressible flow with the
Coriolis force

2.1 Discretization and solution aspects

In the current section we give an introductory insight onto the projection scheme with the Pressure Schur Comple-
ment concept. We also present space and time discretizationto be used.

2.1.1 Discretization aspects

First, we discretize the time derivative in the Navier-Stokes equations (1.3) by the one-stepθ-scheme method.
Givenun and the time step∆t = tn+1 − tn, then solve foru = un+1 andp = pn+1 (for the convenience we
denotep = P in (1.3))

u−u
n

∆t + θ((u∗ · ∇)u− ν∆u + 2ω × u) + ∇p = gn+1

∇ · u = 0
in Ω × (0, T ] (2.1)

with the right-hand side

gn+1 = θfn+1 + (1 − θ)fn − (1 − θ)((u∗ · ∇)un − ν∆un + 2ω × un).

whereu∗ denotes a certain order extrapolation of velocity fromn andn − 1 time steps. Alternatively one may
consider a fully implicit or explicit schemes by settingu∗ = un+1 oru∗ = un, respectively.
For the space discretization we use the mixed Finite Elementmethod (nonconforming Rannacher-Turek elements
Q̃1 for velocity vector fieldu and piecewise constant elementsQ0 for pressurep, see Fig. 2.1). The detailed
description of these elements can be found in [88].

Fig. 2.1.Nodal points of the nonconforming finite element in 3D.
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Applying the space discretization to (2.1), we obtain the following system of discrete equations




A −2∆tθωM 0 ∆tB1

2∆tθωM A 0 ∆tB2

0 0 A ∆tB3

BT
1 BT

2 BT
3 0







u1

u2

u3

p


 =




gn+1
1

gn+1
2

gn+1
3

0


 (2.2)

whereA = M +∆tθ(N(u) + νL) is the velocity stiffness matrix,M is the mass matrix and the matrix operators
N(u) andL are the discrete analogues of the continuous operators(u · ∇)· and(−∆)· , respectively;B is the
gradientmatrix. It is easy to check that the discrete divergence operator is equal to(−BT ). In practical realization,
∆tBip is replaced byBip̃ with p̃ = ∆t p.

2.1.2 Pressure Schur Complement approach

If we denote byg = (gn+1
1 , gn+1

2 , gn+1
3 )T and set

F =




A −2ω∆tθM 0

2ω∆tθM A 0

0 0 A


 (2.3)

we obtain the saddle point problem (
F B

BT 0

)(
u

p

)
=

(
g

0

)
(2.4)

with the block matrixF of the form (2.3). All the solution strategies for (2.4) can be divided into two categories:
coupled and uncoupled, or co-called segregated methods. The representatives of coupled methods are, for instance,
Vanka-like [111] approaches (see [105] for the details), oroperator-splitting schemes (see [104, 105]). In our work
we focus on the methods from the segregated class: namely, the Pressure Schur Complement reduction methods.

Assuming that the matixF is nonsingular (under some conditions [33]), we can performthe following factorization

A =

(
F B

BT 0

)
=

(
I 0

BTF−1 I

)(
F 0

0 S

)(
I F−1B

0 I

)
(2.5)

whereS = −BTF−1B is the Schur Complement ofF in A. By this we obtain in some sense the block LU
factorization of the global matrixA. Solvability is highly dependent on the diagonal dominanceproperty of the
’middle’ matrix on the right hand side of (2.5), which consists of the velocity matrixF and the Schur Complement
operatorS. The only disadvantage is thatBTF−1B is given only in implicit form, sinceF−1 is a dense matrix in
general, and the computational effort for computing the inverse is too high. Therefore, appropriate iterative solution
methods for (2.4) have to be constructed.

Some important properties can be derived from the factorization (2.5) (see [8]), in our analysis we will need the
following:

• if F is symmetric positive definite andB has full column rank, thenS is symmetric negative definite.

• S, and henceA, is invertible if and only ifB has full column rank.

Constructed inQ̃1/Q0 solution space,B does not have a full column rank (see Section 2.3.2 for the construction
of B and corresponding discussions). Therefore the pressure isdetermined up to the constant and some extra con-
dition on pressure is required, e.g.

∫
Ω p(x)d x = 0.
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Let us consider the solvability of (2.4). In practice, we usually cannot know if the global matrixA is well-
conditioned or not. The main criteria for the stability is toguarantee that the condition number ofA remains
bounded as size of the meshh → 0. This condition is named after Ladyzhenskaya, Babuska and Brezzi
(LBB) [24, 33] and reads as follows:

inf
ph∈Q0

sup
uh∈ eQ1

(ph,∇ · uh)

‖ph‖0‖∇huh‖0

≥ γ > 0 (2.6)

Checking the inf-sup condition in its abstract form (2.6) ishard, therefore the following criteria can be useful in
many cases.

Proposition 1 Assume thatrange(B) is closed and for anyu ∈ V , there existsuh = Πhu ∈ Vh such that

{
b(u−Πhu, qh) = 0 ∀qh ∈ Qh

‖Πhu‖V ≤ c‖u‖V
(2.7)

with a constantc > 0 independent ofh. Then, there existk independent ofh such that

sup
vh∈Vh

b(vh, qh)

‖vh‖V
≥ k‖qh‖Q ∀qh ∈ Qh. (2.8)

In our case,b(qh, vh) = 〈Bqh, vh〉. For our theoretical and practical purposes we choose velocity and pressure
spaces to be as follows:Vh = Q̃1,Qh = Q0. It is well known that the approximating pair̃Q1 /Q0 is numerically
stable, i.e. the LBB condition is satisfied (for the description of the finite element spaces̃Q1 /Q0 and for the proof
of their stability see [105]).

Now, let us assume thatA andF are nonsingular matrices. HenceS is also nonsingluar. The first row of (2.4)
reads

Fu+ Bp = g. (2.9)

Multiplying (2.9) byBTF−1 and taking into account the incompressibility constraintBTu = 0 obtained from the
second row of (2.4), we get the Pressure Poisson-like problem

BTF−1Bp = BTF−1g. (2.10)

Thus, the Pressure Schur Complement approach reads:

1. Solve forp the scalar equation (2.10).

2. Substitute the calculatedp into (2.9) and solve it foru.

Considering the time-dependent problem with fully implicit time-stepping schemes, we have to solve the sequence
of saddle point problems (2.4) by the above Schur Complementapproach (see [105], Chapter 2), i.e. to solve
once (2.4) in every time step.

The above approach belongs to the class ofprojectionmethods [8, 33]. Indeed, from (2.4), we obtain (for details
see [33]): (

u

p

)
=

(
(I + F−1BS−1BT )F−1g

S−1BTF−1g

)
(2.11)
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We can see that the matrix
Π ≡ F−1BS−1BT = F−1B(BTF−1B)−1BT (2.12)

is a projector (Π2 = Π). It is an oblique projector ontorange(F−1B)

Πv ∈ range(F−1B), ∀v ∈ R
n

and is orthogonal torange(B):
v −Πv ⊥ range(B), ∀v ∈ R

n.

2.2 Discrete projection methods (DPM)

2.2.1 The classical Chorin-Temam projection method

Let us consider a well-known second order variant of the Chorin-Temam projection method [84, 19] applied to the
problem (1.3). In its semi-discrete form it can be viewed as atwo-step procedure for advancing from time stepn

to stepn+ 1 with givenun, pn andgn+1 defined in (1.5):

1. Find intermediate velocitỹu from

ũ− un

∆t
+

1

2
((u∗ · ∇)ũ − ν∆ũ+ 2ω × ũ) = gn+1 −∇pn, (2.13)

whereu∗ denotes a second order extrapolation of velocity fromn andn− 1 time steps.

2. Find new velocity and pressure as the result of the orthogonal projection into the divergence-free subspace




un+1 − ũ
∆t

+
1

2
(∇pn+1 −∇pn) = 0

∇ · un+1 = 0.

(2.14)

To avoid any possible misleading we assume to be working withdiscretized in space projection scheme (2.13)-
(2.14). To motivate our modifications of the projection method, let us consider its algebraic counterpart. To this
end, denote byM the velocity mass matrix and byIu, Ip the identity matrices on discrete velocity and pressure
spaces, respectively. It is easy to check that in the discrete setting the method (2.13)–(2.14) can be written in the
following algebraic form:

(
F 0

BT −BT ( 1
∆tM)−1B

)(
Iu ( 1

∆tM)−1B

0 Ip

)(
un+1

q

)
=

(
ĝ

0

)
(2.15)

with ĝ = gn+1 + 1
∆tu

n −Bpn andq = 1
2 (pn+1 − pn). The matrix product on the left-hand side of (2.15) can be

observed as the incomplete LU factorization for the matrix of the coupled linearized Navier-Stokes system (matrix
from (1.6)). Indeed, it holds

(
F B

BT 0

)
=

(
F 0

BT −BTF−1B

)(
Iu F

−1B

0 Ip

)
. (2.16)

The velocity submatrix has the form

F =




A −ωM 0

ωM A 0

0 0 A


 . (2.17)
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whereA = (∆t)−1M+ 1
2 [N(u∗)+νL ] is the velocity stiffness matrix. Therefore, if the time step∆t is sufficiently

small the scaled block diagonal mass-matrix(∆t)−1M is a reasonable approximation toF and the incomplete
factorization in (2.15) is close to the exact factorization(1.6). This shows that in some sense the projection method
(2.13)–(2.14) approximates the coupled implicit method (2.1) for small∆t.

2.2.2 The modified projection method

From the above consideration one realizes that a better approximation toF−1, compared to(∆t)M−1, may lead
to more effective (possibly less restrictive w.r.t. size of∆t) projection methods. Below, see (2.32) and (2.34), we
consider an approximationM−1

(·) to F−1 which takes into account the Coriolis terms and to some extend the
convection terms. Thus, we consider the system (2.15) with another velocity matrix approximationM(·) instead
of 1

∆tM . In the algorithmic form one time step of the new discrete projection method reads (fortn → tn+1):

1. Givenpn ≃ p(tn), un ≃ u(tn), andg̃ = gn+1 + 1
∆tu

n, then solve for̃u the equation

Fũ = g̃ −Bpn . (2.18)

2. Solve the modified discrete pressure problem

Pq = BT ũ with P = BTM−1
(·) B . (2.19)

3. Correct pressure and velocity

pn+1 = pn + q , (2.20)

un+1 = ũ−M−1
(·) B q . (2.21)

Although we perform all our calculations with the discrete projection method (2.18)–(2.21), it is instructive to write
down its semi-discrete counterpart. This is easy to do for the case ofM(·) defined in (2.32). Now the procedure
for advancing from time stepn to stepn+ 1 reads (compare to (2.13)–(2.14)) for givenun, pn andgn+1 defined
in (1.5):

1. Find intermediate velocitỹu from

ũ− un

∆t
+

1

2
((u∗ · ∇)ũ − ν∆ũ+ 2ω × ũ) = gn+1 −∇pn. (2.22)

2. Find new velocity and pressure as the result of the following projection into the divergence-free subspace





un+1 − ũ
∆t

+ ω × (un+1 − ũ) +
1

2
(∇pn+1 −∇pn) = 0

∇ · un+1 = 0.

(2.23)

Remark 1.For efficient calculations with the original projection method (2.13)–(2.14) or with the modified one,
we need an efficient solver for the velocity subproblem with the matrixF as well as for the (modified) pressure
problem with matrixP . In section 2.3.2 we will show that the modified method leads to a symmetricpressure
problem of the diffusion type.
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Remark 2.If we compare the factorizations (2.15) and (2.16), it is easy to notice that the matrix−BT ( 1
∆tM)−1B,

corresponding to the discrete pressure Poisson problem, can be considered as a preconditioner for the Schur com-
plement matrix−BTF−1B. Another way to realize this is the following, see, e.g., [104]. Eliminatingũ we can
rewrite (2.18)–(2.20) as

pn+1 = pn + P−1(BTF−1Bpn − g) (2.24)

with g = BTF−1g̃. Thus with respect to the pressure variable one step of the projection method can be seen as
one iteration of the preconditioned Uzawa algorithm. This relates the efficiency of the projection methods with the
issue of pressure Schur complement preconditioning, see also [29].

Remark 3.One possible variation of the projection method is to add a diffusion dependent term to the pressure
correction step (2.20):

pn+1 = pn + q + νM−1
p BT ũ

In [84] (for the caseω = 0) it was discussed that adding such term may reduce numericalboundary layers in
projection methods.

Remark 4.Observing (2.23) or the choice ofM−1
(·) in (2.32) and (2.34) one notes that the modified projection step

essentially takes into account the Coriolis terms and only indirectly (in (2.34) ) the convection terms. Therefore
the proposed modification of the method is especially suitable for the case of moderate RossbyRo numbers. See,
however, propositions for the case of large Rossby numbers in the Chapter 4.1.

In the following of this section we mainly address the following two issues:

• Building an efficient multigrid solver for the velocity subproblem (2.18).

• Finding an appropriate matrixM(·) involved in steps (2.19) and (2.21).

2.3 Algorithmic details of the DPM

2.3.1 Velocity subproblem

Assuming a hierarchy of grids let us consider a multigrid method for solving equation (2.18). For smoothing
iterations we take a linear iterative method of the form

ũl+1 = ũl + αC−1(g −∆tBpn − Fũl) , (2.25)

whereα is a relaxation parameter andC is a suitable preconditioner ofF . We are interested in a smoother efficient
for the case of large values of the Coriolis force term, i.e. when the off-diagonal parts in the matrix (2.17) have
values equal or larger than those of the diagonal part. Note that in this case the skew-symmetric part ofF is
dominant. Thus standard smoothing iterations like Jacobi or Gauss-Seidel may not lead to a robust multigrid
solver.

Taking an implicitθ-scheme, for instanceθ = 1 (Backward/Implicit Euler), we obtain the off diagonal values
in (2.17) to be2ω∆tM . If this value is large enough, the Coriolis terms should be taken into account inC.
Following [74], we put

Ccoriol =



diag(A) −2ω∆tML 0

2ω∆tML diag(A) 0

0 0 diag(A)


 , (2.26)
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whereML is the lumped mass matrix. The lumped mass matrix is a diagonal matrix with diagonal elements defined
asmi =

∑
j mij , wheremij are the entries ofM .ML is often taken as an approximation for the consistent mass

matrix. For the two-dimensional velocity problem discretized by a conforming finite element method on a regular
grid it was proved in [74] that a standard geometric multigrid method with such smoothing is robust with respect
to all relevant problem parameters. We will see that the multigrid method stays very efficient in more practical
settings, too.

Taking into account the fact that all blocks ofCcoriol are diagonal matrices, one can explicitly find its inverse
C−1

coriol by means of the proposition:

Proposition 2 Consider a matrix of the following form:

G =




a1 . . . 0
...

. . .
...

0 . . . an

−l1 . . . 0
...

. . .
...

0 . . . −ln

0
. . .

0

l1 . . . 0
...

. . .
...

0 . . . ln

b1 . . . 0
...

. . .
...

0 . . . bn

0
. . .

0

0
. . .

0

0
.. .

0

c1 . . . 0
...

. . .
...

0 . . . cn




(2.27)

Then its inverse is

G−1 =




b1
a1b1+l2

1

. . . 0

...
. . .

...
0 . . . bn

anbn+l2n

l1
a1b1+l2

1

. . . 0

...
. . .

...
0 . . . ln

anbn+l2n

0
. . .

0
−l1

a1b1+l2
1

. . . 0

...
. . .

...
0 . . . −ln

anbn+l2n

a1

a1b1+l2
1

. . . 0

...
. . .

...
0 . . . an

anbn+l2n

0
. . .

0

0
. . .

0

0
. . .

0

1
c1
. . . 0

...
. . .

...
0 . . . 1

cn




(2.28)

Proof. By direct calculation. �

In the corresponding section of our work we will present results of numerical experiments with the multigrid
method using different smoothers. We will see that iterations (2.25) with the preconditionerCcoriol outperform
such standard smoothers as Jacobi or SOR methods.

2.3.2 Modified pressure equation

The numerical solution of the pressure Schur complement problem (2.19) is typically done by applying the pre-
conditioned Richardson iteration (2.24), where the choiceof an optimal preconditionerP is most crucial.
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If Fu corresponds to
αu − ν∆u ,

then an effective preconditioner for S is known and its detailed construction can be found, for instance, in [105, 48].
If Fu corresponds to

αu− ν∆u +w × u ,

then an effective preconditioner is harder to develop. Furthermore, in the more general case this operator contains
not only the Coriolis force, but also the convective term, and therefore having effective preconditioners is of
great practical importance especially for the case of higher Reynolds numbers. Only few results can be found in
the literature related to the preconditioning of the pressure Schur complement operator for fluid equations with
Coriolis terms, see for instance [71, 72].
Here we follow the approaches given in [72] and [105] to construct a preconditioner for the discrete counterpart of
the Schur operator:

Pfact = −∇ · (αI − ν∆+w×)−1∇ . (2.29)

To this end, let us consider the influences of mass, Coriolis and diffusion parts in (2.29) separately. FromA =

M + ∆tνL we get that if the time step or the kinematic viscosity is small enough, then we can assume that
A ≈ M and thereforeP−1 = P−1

mass, wherePmass = BTM−1
L B. If the time step or the kinematic viscosity is

sufficiently large, then we assume thatA ≈ ∆tνL, withBTL−1B ∼ I, and henceP−1 = M−1
p , whereMp is the

pressure mass matrix. Then, as preconditioner for the general Stokes case, we can define the matrixP−1 as linear
interpolation of the above extreme cases, namely

P−1 = αRP
−1
mass+ αDM

−1
p (2.30)

with appropriate coefficients, for instanceαR = 1,αD = ∆tν. When the time step is small the diffusion-oriented
part of the preconditionerαDM

−1
p is often neglected (i.e.αD = 0), leading to a standard projection step as in the

well-known Chorin scheme. In the case of the Coriolis force term involved, we use instead ofPmassthe modified
preconditioner

Pmass+coriol= BTM−1
(mass+coriol)B (2.31)

by choosing a ‘Coriolis-oriented’ mass matrix

M(mass+coriol) =




ML −2ω∆tML 0

2ω∆tML ML 0

0 0 ML


 . (2.32)

Here, the off-diagonal parts represent the contribution ofthew× operator. Thus, the modified pressure Poisson
equation reads

Pmass+coriolq = BTM−1
(mass+coriol)B q =

1

∆t
BT ũ. (2.33)

We will see that (2.33) can be interpreted as the discrete counterpart of a modified pressure Poisson problem with
symmetricdiffusion tensor.

To take into account the influence of the viscous terms, the matrix αDM
−1
p can be also included in the definition

of P . Alternatively one can include the diagonal part ofF into the pressure diffusion operator. Namely, one can
consider in (2.33)

M(diag+coriol) =



diag(A) −2ω∆tML 0

2ω∆tML diag(A) 0

0 0 diag(A)


 . (2.34)
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Below we discuss some important details of the modified projection step. First, note that the matrixPmass+coriolin
(2.33) can be seen as a discretization of the following differential operator (see [72] p. 365 for more details):

L = −∇ ·M−1∇ with M = [I +w× ], w = (0, 0, 2ω∆t)T .

One finds (use Proposition 2)
M−1 = (1 + |w|2)−1 [I +w ⊗w −w×] ,

where(w ⊗ w)ij = wiwj . Sincew is a constant vector one hasw × ∇q = ∇ × qw for a scalar functionq.
Since∇ · (∇×) ≡ 0, this leads to∇ · (w×∇q) = 0. Therefore in the differential notation, equation (2.33) can be
written as

−(1 + |w|2)−1∇ · [I +w ⊗w]∇q = −(∆t)−1∇ · ũ .

Note that although the operatorM is non-symmetric the resulting scalar problem for the pressure updateq is
symmetric. The important property of symmetry-preservingon the discrete level is verified in the following lemma.

Lemma 1. For the discretization with the nonconforming Stokes finiteelement Q̃1/Q0 the matrix
P = BTM−1

(mass+coriol)B is symmetric.

Proof. Denote

P = {pij}, ML = {mii}, B = (B1, B2, B3)
T with BK = {bKij}, s = 2ω∆tθ. (2.35)

We need to prove that the matrix

P =
(
BT

1 BT
2 BT

3

)


ML −sML 0

sML ML 0

0 0 ML




−1

B1

B2

B3


 (2.36)

is symmetric. Using notation (2.35) we get from (2.32)

pij =
∑

k

(
b1kib

1
kj

mkk(1 + s2)
+

b1kib
2
kjs

mkk(1 + s2)
−

b2kib
1
kjs

mkk(1 + s2)
+

b2kib
2
kj

mkk(1 + s2)
+
b3kib

3
kj

mkk

)
. (2.37)

It is obvious that equality

∑

k

b1kib
2
kjs

mkk(1 + s2)
−

b2kib
1
kjs

mkk(1 + s2)
=
∑

k

(b1kib
2
kj − b2kib

1
kj)

s

mkk(1 + s2)
= 0 (2.38)

would ensure thatP is symmetric. Let us show that

b1kib
2
kj − b2kib

1
kj = 0, ∀i, j, k. (2.39)

To construct a discrete gradient operatorB we assemble a discrete divergence operatorB and use the equality
B = BT (see e.g., [33]). Denoting

B = (B1,B2,B3) with BK = {dKij} , (2.40)

from the incompressibility constraint we get for a sum of integrals over all quadrilateralsTk

∑

k

〈B1u1 + B2u2 + B3u3, q〉Tk
= 0 ∀q ∈ Q0 .
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Fig. 2.2.Definition of entriesbKki andbKkj .

Performing integration by parts and taking into account that the pressure is piecewise constant, we construct the
entries of the divergence operatorB

(
d1

ij , d
2
ij , d

3
ij

)
=

∫

Ti

∇ · φjψidx = −
∫

Ti

φj∇ψidx+

∫

∂Ti

φj · nψidσ =

∫

∂Ti

φj · nψidσ (2.41)

and the entries of the gradient operatorB

(
b1ij , b

2
ij , b

3
ij

)T
=

∫

∂Tj

φi · nψjdσ , (2.42)

whereψj ∈ Q0, φi ∈ Q̃3
1 such that the degrees of freedom of its components are definedthrough the surface

integral along thei-th face;n = nij = (n1
ij , n

2
ij , n

3
ij)

T is a unit normal to thei-th face of thej-th element. In
other words we obtain

B1 = {b1ij = n1
ij}, B2 = {b2ij = n2

ij}, B3 = {b3ij = n3
ij}.

Thus, for entriesbKki we use a vectornki and for entriesbKkj we usenkj (see Fig. 2.2). Then it holdsnki = −nkj

and (2.39) is satisfied. �

Remark 5.The proposition is true for anyP = BTG−1B, whereG takes the form of (2.32) or (2.34). In particular
it is valid forG = M(diag+coriol) from (2.34).

2.3.3 Correction of velocity and pressure

Let us consider the last step of the DPM, i.e., equations (2.20), (2.21), and look for a necessary modification
of velocity and pressure corrections. As an example we considerM(·) = M(mass+coriol). Multiplying both sides
of (2.21) byBT and using (2.33) we get

BTu = BT ũ−∆tBTM−1
(mass+coriol)Bq = ∆t(

1

∆t
BT ũ− Pmass+coriolq) = 0.

Thus the discrete incompressibility constraint is satisfied foru.

The equation for the pressure correction undergoes some modifications as well. Applying (2.30) withαR = 1 and
αD = ∆tν, we obtain from (2.33) the final equation for the pressure correction

p = pn + q + νM−1
p BT ũ ,

whereMp is the pressure mass matrix.

Remark 6.If M(·) =M(diag), then the diffusion part is already included and one can setαD = 0.
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2.3.4 Resulting algorithm

To conclude the discussions of this chapter we present the modified DPM algorithm (withpn being the pressure
from the previous time step), which reads as follows:

1. Solve forũ the equation

Fũ = g −∆tBpn (2.43)

with a multigrid method with smoothing iterations involving the special preconditionerC described in (2.26).

2. Solve the discrete pressure problem

Pq = BTM−1
(·) Bq =

1

∆t
BT ũ (2.44)

withM−1
(·) from (2.32) or (2.34).

3. Calculate the pressure and the velocity approximations as

p = pn + q + αM−1
p BT ũ ,

u = ũ−∆tM−1
(·) Bq (2.45)

with α = 0 or α = ν. In the case of DPM setpn+1 = p, un+1 = u or perform several loops of these steps to
get the fully coupled solution at timetn+1.

2.4 Summary of the modified DPM

In this chapter we constructed the modified discrete projection scheme (2.43)-(2.45) for the system of the incom-
pressible Navier-Stokes equations with the Coriolis forceterm (1.3). Based on the incomplete ILU factorization
for the matrix of the coupled linearized Navier-Stokes system and detailed evaluation of discrete operators, we
proposed new explicitly inverted block-diagonal precondtioners for both momentum and projection steps. The
modified DPM should guarantee better accuracy of velocity and pressure approximations and/or faster conver-
gence to the steady state solution than the classical projection method especially for medium and large values
of ω ∆t. Numerical experiments in chapter 5 will confirm this.
We would like to point that the constructed Pressure Schur Complement preconditioners can be used in a fully
coupled way as well. In our work though we consider only the discrete projection approach.





3

Error analysis of the modified projection method

As it was proposed in the Chapter 2, to handle effectively thepossibly dominating Coriolis force we modify the
classical projection scheme [18, 101] in the following way:for givenun ≈ u(tn):
Step 1: Find intermediate velocitỹun+1 from

{ 1

k
(ũn+1 − un) − ν∆ũn+1 + (un · ∇)ũn+1 + ω × ũn+1 = f(tn+1)

ũn+1|Γ = 0
(3.1)

Step 2: Find new velocity and pressure{un+1, pn+1} as the result of the projection into the divergence-free
subspace 




1

k
(un+1 − ũn+1) + ω × (un+1 − ũn+1) + ∇pn+1 = 0

divun+1 = 0

un+1 · n|Γ = 0

(3.2)

wherek is the time step,tn+1 = (n + 1)k, andn is the normal vector toΓ . One notes that the essential
modification of the well-known Chorin-Temam method is introduced on the correction step 2, which is not an
orthogonal projection anymore. In the present chapter we deal with the convergence analysis for the method (3.1)–
(3.2).

A well established framework for numerical analysis of projection schemes is the following, see [84, 87]: one
deduces an equivalent pseudo-compressibility or penalty method and further treats a projection scheme as the
discretization of perturbed Navier-Stokes equations. However, applying this approach to (3.1)–(3.2) leads to a
number of additional terms depending onω, which are not easy to handle. Therefore we analyse the problem
using the techniques developed by J. Shen in [94, 95] for the case ofω = 0. Although the arguments in [94, 95]
essentially use the fact that the projection in step 2 is orthogonal, we show that similar convergence results can be
proved for the modified method (3.1)–(3.2).

3.1 Preliminaries

Below we use the following notation:

| · |2 =

∫

Ω

| · |2dx, ‖ · ‖2 =

∫

Ω

|∇ · |2dx, ‖ · ‖s – norm inHs(Ω).

By (·, ·) we will denote the inner product inL2(Ω) and by〈·, ·〉 – the duality betweenH−s andH−s
0 for all s > 0.
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We also define

H = {u ∈
(
L2(Ω)

)d
: div u = 0, u · n|Γ = 0},

V = {v ∈
(
H1

0 (Ω)
)d

: div v = 0}.

In the following, we assume





u0 ∈ (H2(Ω))d ∩ V,
f ∈ L∞(0, T ; (L2(Ω))d) ∩ L2(0, T ; (H1(Ω))d),

ft ∈ L2(0, T ;H−1),

supt∈[0,T ] ‖u(t)‖ ≤ m1.

(3.3)

We will use c or C as a generic positive constant which depends only onΩ, ν, T , and constants from various
Sobolev inequalities. We will denotem orM as a generic positive constant which may additionally depend onu0,
f , ω and the solutionu through the constantm1 in (3.3).

Under the assumption (3.3) one can prove the following inequalities

sup
t∈[0,T ]

{‖u(t)‖2 + |ut(t)| + |∇p(t)|} ≤M, (3.4)

∫ T

0

‖ut(t)‖2 + t|utt|2dt ≤M, (3.5)

which will be used in the sequel. Indeed, in [42] the estimates (3.4)–(3.5) were proved for the Navier-Stokes
equations (1.1) without Coriolis term. However addinglinear skew-symmetricterm ω × u to the momentum
equation does not change arguments from [42],but leads to (3.4)–(3.5) with constantM depending, in general, on
ω. Further we often use the following well-known [102] estimates for the bilinear formb(u,v,w) =

∫
Ω(u ·∇)v ·

w dx

b(u,v,w) ≤





c‖u‖‖v‖ 1
2 |v| 12 ‖w‖,

c‖u‖2|v|‖w‖,
c‖u‖‖v‖2|w|.

(3.6)

andb(u,v,w) = −b(u,w,v) for u ∈ H .

Let PH be the orthogonal projector in
(
L2(Ω)

)d
ontoH and define the Stokes operatorAu = −PH∆u, ∀u ∈

D(A) = V ∩
(
H2(Ω)

)d
. We will use the following properties:A is an unbounded positive self-adjoint closed

operator inH with domainD(A), and its inverseA−1 is compact inH and satisfies the following relations [94,
95]:

∃c, C > 0, such that∀u ∈ H :





‖A−1u‖2 ≤ c|u| and‖A−1u‖ ≤ c‖u‖V ′ ,

c‖u‖2
V ′ ≤ (A−1u,u) ≤ C‖u‖2

V ′ .
(3.7)

Further in this section we will prove several auxiliary lemmas. The first lemma shows that the projection (3.2) is
uniformly (with respect tok) stable inH1. Another two preliminary lemmas extend the results of lemma2 from
[94] and lemma A1 from [95] for the case ofω 6= 0 and non-orthogonal projection in (3.2). We also note that
in [95] the result was proved only for the Stokes case (no nonlinear terms has been treated). Thus we include the
nonlinear terms in the proof of lemma 4 and encounter additional assumption on the size of the time step.
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Lemma 2. The estimate
‖un+1‖1 ≤ m̃‖ũn+1‖1

holds with somẽm independent ofk ∈ (0, 1].

Proof. First note that the pressurepn+1 from (3.2) satisfies the following elliptic equation

divM−1∇pn+1 =
1

k
div ũn+1 (3.8)

[
M−1∇pn+1

]
· n|Γ = 0 (3.9)

with M = [I + kω×]. One can verify [72] that ford = 3 it holds

M−1 = (1 + |ω̃|2)−1[I + ω̃ ⊗ ω̃ − ω̃×], ω̃ = kω, (3.10)

where(ω̃ ⊗ ω̃)ij = ω̃i ω̃j . (For the 2D case the identity (3.10) holds withoutω̃ ⊗ ω̃ term.) Sincẽω is a constant
vector one has̃ω × ∇q = ∇ × (qω̃) for a scalar functionq. Thereforediv(ω̃ × ∇q) = 0 and the equation (3.8)
can be written as

divB∇pn+1 =
1

k
div ũn+1 (3.11)

with thesymmetricdiffusion tensorB =
1

1 + |ω̃|2 [I + ω̃ ⊗ ω̃]. One can easily see that the inequalities

m1|ξ|2 ≤ (Bξ, ξ) ≤ m2|ξ|2 (3.12)

hold withm1 andm2 independent onk, e.g.m1 =
1

1 + |ω̃|2 , m2 = 1. (For the 2D caseB is the scaled identity

matrix.) Furthermore, the boundary condition (3.9) can be rewritten as

∂pn+1

∂l

∣∣∣∣
Γ

= 0 with l = M−1n.

The angleφ(x) between the vectorl(x) and tangential plane toΓ atx ∈ Γ is uniformly bounded from below.
Indeed, it holds:

| sinφ| =
|lT · n|
lT · l =

|nTM−1n|
nTM−TM−1n

≥ |nTBn|
‖M−1‖2

≥ m1

4
. (3.13)

Here we used the identityM−T + M−1 = 2B, inequalities (3.12) and‖M−1‖ ≤ 2. Thus the smoothness
assumption onΩ, (3.12) and (3.13) imply the followingH2 estimate for the solution of (3.8)–(3.9) [59]:

‖pn+1‖2 ≤ mk−1| div ũn+1| ≤ mk−1‖ũn+1‖1

with some constantc independent ofk. Finally, using this result we get from (3.2) and the triangle inequality

‖un+1‖1 ≤ ‖ũn+1‖1 + k‖M−1∇pn+1‖ ≤ ‖ũn+1‖1 + k‖M−1‖‖pn+1‖2 ≤ m ‖ũn+1‖1.

�

It is straightforward to check that the solution to (3.8)–(3.9) satisfies the estimate

|M−1∇pn+1| ≤ mk−1|ũn+1|.

Thus the projection (3.2) is also uniformly stable inL2:

|un+1| ≤ |ũn+1| + k|M−1∇pn+1| ≤ m |ũn+1|. (3.14)
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Lemma 3. Denote
en+1 = u(tn+1) − un+1 and ẽn+1 = u(tn+1) − ũn+1.

Assume(3.3), 2k|ω|2 ≤ m̃ and2k2|ω|2 ≤ 1
2 . It holds:

|eN+1|2 + |ẽN+1|2 + kν

N∑

n=0

{‖ẽn+1‖2 + ‖en+1‖2}

+

N∑

n=0

{|en+1 − ẽn+1|2 + |ẽn+1 − en|2} ≤ mk ∀ 0 ≤ N ≤ T/k − 1 (3.15)

Proof. LetRn be the truncation error defined by

1

k
(u(tn+1) − u(tn)) − ν∆u(tn+1) + ω × u(tn+1)

+ (u(tn+1) · ∇)u(tn+1) + ∇p(tn+1) = f(tn+1) +Rn, (3.16)

whereRn is the integral residual of the Taylor series, i.e.,

Rn =
1

k

∫ tn+1

tn

(t− tn)utt(t)dt.

By subtracting (3.1) from (3.16), we obtain

1

k
(ẽn+1 − en) − ν∆ẽn+1 + ω × ẽn+1

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) +Rn −∇p(tn+1) (3.17)

Taking the inner product of (3.17) with2kẽn+1 and using the identity

(a− b, 2a) = |a|2 − |b|2 + |a− b|2,

we derive

|ẽn+1|2 − |en|2 + |ẽn+1 − en|2 + 2kν‖ẽn+1‖2 + (ω × ẽn+1, 2kẽn+1)

= 2k〈Rn, ẽn+1〉 − 2k(∇p(tn+1), ẽ
n+1) − 2kb(en, ũn+1, ẽn+1)

+ 2kb(u(tn) − u(tn+1), ũ
n+1, ẽn+1) − 2kb(u(tn+1), ẽ

n+1, ẽn+1). (3.18)

Since the Coriolis term vanishes:(ω × ẽn+1, 2kẽn+1) = 0, using the same arguments as in [94] for treating other
terms, see pages 64–65, and applying inequality (3) from [95] one deduces from (3.18) the estimate

|ẽn+1|2 − |en|2 + |ẽn+1 − en|2 + 2kν‖ẽn+1‖2

≤ m̄ k

(∫ tn+1

tn

t‖utt‖2
−1dt+ k

∫ tn+1

tn

|ut|2dt
)

+ 2k2|∇p(tn+1)|2 + m̄ k|en|2. (3.19)

From (3.17) we have
1

k
(en+1 − ẽn+1) −∇pn+1 + ω × (en+1 − ẽn+1) = 0. (3.20)
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Taking the inner product of (3.20) with2ken+1, we get

|en+1|2 − |ẽn+1|2 + |en+1 − ẽn+1|2 − 2k(ω × ẽn+1, en+1 − ẽn+1) = 0.

Then

|en+1|2 − |ẽn+1|2 + |en+1 − ẽn+1|2 − 2k2|ω|2|ẽn+1|2 − 1

2
|en+1 − ẽn+1|2 ≤ 0,

|en+1|2 − (1 + km̃)|ẽn+1|2 +
1

2
|en+1 − ẽn+1|2 ≤ 0, (3.21)

with m̃ = 2k|ω|2. Inequality (3.21) yields

(1 + km̃)−1|en+1|2 − |ẽn+1|2 +
1

2(1 + km̃)
|en+1 − ẽn+1|2 ≤ 0. (3.22)

Since(1 − b) ≤ (1 + b)−1 for b ≥ 0, from (3.22) we derive

|en+1|2 − |ẽn+1|2 +
1

2(1 + km̃)
|en+1 − ẽn+1|2 ≤ km̃|en+1|2. (3.23)

Taking the sum of (3.19) and (3.23) forn = 0, . . . , N (0 ≤ N ≤ T/k − 1), we obtain

|eN+1|2 +

N∑

n=0

{
1

2(1 + km̃)
|en+1 − ẽn+1|2 +

1

2
|ẽn+1 − en|2 + kν‖ẽn+1‖2

}

≤ m̄ k

N∑

n=0

|en|2 + m̄ k

(∫ T

0

t‖utt‖2
−1dt+ k

∫ T

0

|ut|2dt+ sup
t∈[0,T ]

|∇p(t)|2
)

+

N∑

n=0

km̃|en+1|2.

Denotingm = max{m̄, m̃}, we can rewrite the previous inequality as

|eN+1|2 +

N∑

n=0

{
1

2(1 + km̃)
|en+1 − ẽn+1|2 +

1

2
|ẽn+1 − en|2 + kν‖ẽn+1‖2

}

≤ mk

N∑

n=0

|en|2 +mk

(∫ T

0

t‖utt‖2
−1dt+ k

∫ T

0

|ut|2dt+ sup
t∈[0,T ]

|∇p(t)|2
)

+ km̃|eN+1|2.

Thanks to the conditionkm̃ ≤ 1
2 and (3.4)–(3.5) one can write

|eN+1|2 +

N∑

n=0

{
|en+1 − ẽn+1|2 +

1

2
|ẽn+1 − en|2 + kν‖ẽn+1‖2

}

≤ mk

N∑

n=0

|en|2 +mk

(∫ T

0

t‖utt‖2
−1dt+ k

∫ T

0

|ut|2dt+ sup
t∈[0,T ]

|∇p(t)|2
)

≤ mk

N∑

n=0

|en|2 +mk.

Applying the discrete Gronwall lemma to the last inequality, we arrive at

|eN+1|2 +

N∑

n=0

{
|en+1 − ẽn+1|2 + |ẽn+1 − en|2 + kν‖ẽn+1‖2

}
≤ mk (3.24)

Further, lemma 2 provides the estimate
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‖en+1‖1 ≤ m̃‖ẽn+1‖1 (3.25)

Applying (3.25) and the triangle inequality|ẽn+1| ≤ |en+1| + |en+1 − ẽn+1| and (3.24), we also obtain

|ẽN+1|2 + kν

N∑

n=0

‖en+1‖2 ≤ mk

This proves the lemma. �

Lemma 4. Assume(3.3)and ∫ T

0

|∇pt|2 ≤ m. (3.26)

Moreover, assume thatk is sufficiently small, then it holds

N∑

n=0

|ẽn+1 − ẽn|2 + k‖ẽN+1‖2 ≤ mk2 ∀ 0 ≤ N ≤ T/k − 1.

Proof. We shift the indexn+ 1 → n in (3.20) and take the sum with (3.17). This brings us to

1

k
(ẽn+1 − ẽn) − ν∆ẽn+1 + ω × (ẽn+1 − ẽn)

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) +Rn −∇(p(tn+1) − pn) − ω × en (3.27)

We take the inner product of (3.27) withk(ẽn+1 − ẽn) and obtain

|ẽn+1 − ẽn|2 +
kν

2

(
‖ẽn+1‖2 − ‖ẽn‖2 + ‖ẽn+1 − ẽn‖2

)

= −k(ω × en, ẽn+1 − ẽn) + k〈Rn, ẽn+1 − ẽn〉 + k(p(tn+1) − pn, div(ẽn+1 − ẽn) )

+ kb(un, ũn+1, ẽn+1 − ẽn) − kb(u(tn+1),u(tn+1), ẽ
n+1 − ẽn). (3.28)

Now we estimate the terms on the right-hand side of (3.28). Below δ is a positive constant to be determined later.
Using (3.15) we get

−k(ω × en, ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 +mk2|en|2 ≤ δ|ẽn+1 − ẽn|2 +mk3. (3.29)

Thanks to the estimate|Rn|2 ≤ c
∫ tn+1

tn
t|utt|2dt from [95] we have

k〈Rn, ẽn+1 − ẽn〉 ≤ δ|ẽn+1 − ẽn|2 + c k2

∫ tn+1

tn

t|utt|2dt. (3.30)

Let us estimate the pressure-dependent term. Denoteqn = p(tn+1)− pn, sincediv en+1 = 0 anddiv en = 0, we
obtain

k(p(tn+1) − pn, div(ẽn+1 − ẽn) ) = k(∇qn, ẽn − ẽn+1 − en + en+1). (3.31)

Then we deduce from (3.20) and (3.31):

k(p(tn+1) − pn, div(ẽn+1 − ẽn) )

= k2(∇qn,∇(pn+1 − pn)) + k2(∇qn,ω × (ẽn+1 − en+1 − ẽn + en))

≤ −k2(∇qn,∇(qn+1 − qn)) + k2(∇qn,∇(p(tn+2) − p(tn+1)))

+k2(∇qn,ω × (ẽn+1 − en+1) − k2(∇qn,ω × (ẽn − en)) (3.32)
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We estimate the terms on the right-hand side of (3.32) separately:

−k2(∇qn,∇(qn+1 − qn)) =
k2

2
(‖qn‖2 − ‖qn+1‖2 + ‖qn+1 − qn‖2) (3.33)

We obtain from (3.20) the following relation:

kM−1∇(qn+1 − qn) = (ẽn+1 − en+1) − (ẽn − en) + kM−1∇(p(tn+2) − p(tn+1)).

Multiplying by ∇(qn+1 − qn) and using (3.12) and conditionk|ω| ≤ 1
2 we get

k2‖qn+1 − qn‖2 ≤ 5

4
k2(M−1∇(qn+1 − qn),∇(qn+1 − qn))

≤ 5

4
k(ẽn+1 − ẽn,∇(qn+1 − qn)) +

5

4
k2(M−1∇(p(tn+2) − p(tn+1),∇(qn+1 − qn))

≤ 1

2
k2‖qn+1 − qn‖2 +

5

4
(
5

8
+ σ)|ẽn+1 − ẽn|2 +mk2

∫ tn+2

tn+1

|∇pt|2dt, ∀ σ > 0.

Thus, choosing sufficiently smallσ we obtain:

k2

2
‖qn+1 − qn‖2 ≤ 5

6
|ẽn+1 − ẽn|2 +mk2

∫ tn+2

tn+1

|∇pt|2dt (3.34)

The second term on the right-hand side of (3.32) we estimate as follows:

k2(∇qn,∇(p(tn+2) − p(tn+1))) ≤ k3‖qn‖2 +mk2

∫ tn+2

tn+1

|∇pt|2dt (3.35)

For the third and the fourth terms on the right-hand side of (3.32) we have:

k2(∇qn,ω × (ẽn+1 − en+1)) − k2(∇qn,ω × (ẽn − en)) ≤ k3‖qn‖2 +mk
∑

i=0,1

|ẽn+i − en+i|2 (3.36)

Now estimates (3.32)–(3.36) give

k(p(tn+1) − pn, div(ẽn+1 − ẽn) ) ≤ 5

6
|ẽn+1 − ẽn|2 +mk3‖qn‖2

+ k2(‖qn‖2 − ‖qn+1‖2) +mk2

∫ tn+2

tn+1

|∇pt|2dt+mk
∑

i=0,1

|ẽn+i − en+i|2. (3.37)

Further, consider the following splitting:

u(tn+1) · ∇u(tn+1) − un · ∇ũn+1 = u(tn+1) · ∇ẽn+1

+ (u(tn+1) − u(tn)) · ∇ũn+1 + en · ∇u(tn+1) − en · ∇ẽn+1 (3.38)

Based on this splitting we estimate the last two terms on the right-hand side of (3.28). The first three resulting
terms can be estimated in a straightforward manner with the help of (3.6) and a priori estimates (3.4), (3.5):

kb(u(tn+1), ẽ
n+1, ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + k2m ‖u(tn+1)‖2

2‖ẽn+1‖2

≤ δ|ẽn+1 − ẽn|2 + k2m ‖ẽn+1‖2, (3.39)

kb(u(tn+1) − u(tn), ũn+1, ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 +mk3‖ũn+1‖
∫ tn+1

tn

‖ut‖2
2

≤ δ|ẽn+1 − ẽn|2 + k3m, (3.40)

kb(en,u(tn+1), ẽ
n+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + k2m ‖u(tn+1)‖2

2‖en‖2

≤ δ|ẽn+1 − ẽn|2 + k2m ‖en‖2. (3.41)
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Due to (3.6) the last term from the splitting (3.38) is treated as follows:

kb(en, ẽn+1, ẽn+1 − ẽn) ≤ mk‖en‖‖ẽn+1‖‖ẽn+1 − ẽn‖ 1
2 |ẽn+1 − ẽn| 12 (3.42)

≤ mk
3
2 ‖en‖2‖ẽn+1‖2 +

√
kνδ‖ẽn+1 − ẽn‖|ẽn+1 − ẽn|

≤ mk
3
2 ‖en‖2‖ẽn+1‖2 +

kν

2
‖ẽn+1 − ẽn‖2 + δ|ẽn+1 − ẽn|2

Finally (3.28) with (3.29)–(3.30) and (3.37)–(3.43) yieldfor sufficiently smallδ > 0:

|ẽn+1 − ẽn|2 +
kν

2

(
‖ẽn+1‖2 − ‖ẽn‖2

)
+ k2(‖qn+1‖2 − ‖qn‖2)

≤M
(
k3 + k2

∫ tn+2

tn+1

|∇pt|2dt+ k2(‖ẽn+1‖2 + ‖en+1‖2) + k
3
2 ‖en‖2‖ẽn+1‖2

+ k3‖qn‖2 + k
∑

i=0,1

|ẽn+i − en+i|2
)
. (3.43)

We sum up the last inequalities forn = 0, . . . , N and use the assumption (3.26) and the estimate (3.15). This gives

N∑

n=0

|ẽn+1 − ẽn|2 + k2‖qN+1‖2 +
kν

2
‖ẽN+1‖2 ≤M

(
k2 +

N∑

n=0

k3‖qn‖2 +

N∑

n=0

k
3
2 ‖en‖2‖ẽn+1‖2

)
.

This is equivalent to

N∑

n=0

|ẽn+1 − ẽn|2 + k2‖qN+1‖2 + (
kν

2
− Ck

3
2 ‖eN‖2)‖ẽN+1‖2

≤M
(
k2 +

N∑

n=0

k3‖qn‖2 +

N∑

n=1

k
3
2 ‖en−1‖2‖ẽn‖2

)
.

To apply the Gronwall lemma we need(
kν

2
− Ck

3
2 ‖eN‖2) ≥ ckν. Thus we have to assume thatk is sufficiently

small such that
√
k‖eN‖2ν−1 < C holds. This is true for a sufficiently smallk since‖eN‖ is uniformly bounded

due to lemma 3. We believe that the implied restriction
√
kν−1 < c can be pessimistic in practice. In particular

estimate (3.15) suggests‖eN‖2 ≪ 1. Now the discrete Gronwall inequality and the bound for
∑N

n=0 ‖en‖2 from
(3.15) yields

N∑

n=0

|ẽn+1 − ẽn|2 +
kν

2
‖ẽN+1‖2 ≤ mk2 exp(

√
k

N∑

n=0

‖en‖2) ≤ mk2 exp(
√
kM)

�

Thanks to the embeddingH−1 →֒ L2 and theL2 stability of projection, see (3.14), we conclude:

‖en+1 − en‖−1 ≤ m |en+1 − en| ≤ m |ẽn+1 − ẽn|.

Therefore the lemma 4 yields

N∑

n=0

‖en+1 − en‖2
−1 ≤ mk2 ∀ 0 ≤ N ≤ T/k − 1. (3.44)
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3.2 Error estimate

In this section we show that the scheme (3.1)–(3.2) for the Navier-Stokes equations with the Coriolis force (1.2)
has the same order of accuracy as the classical projection scheme [18, 101] for the Navier-Stokes equations (1.1).
The following theorem is the main result of this chapter.

Theorem 1.Assume(3.3) and2k|ω|2 ≤ 1, then bothũn+1 andun+1 are weakly first-order approximations to
u(tn+1) in L2(Ω)d:

kν

T/k−1∑

n=0

{
|en+1|2 + |ẽn+1|2

}
≤ mk2 (3.45)

Additionally assume thatk is sufficiently small and
∫ T

0
|∇pt|2 ≤ m, thenpn+1 as well as(I − k ν∆)pn+1 are

weakly order12 approximations top(tn+1) in L2(Ω)/R:

k

T/k−1∑

n=0

{
|pn+1 − p(tn+1)|2L2(Ω)/R + |(I − k ν∆)pn+1 − p(tn+1)|2L2(Ω)/R

}
≤ mk (3.46)

Proof. (i) Error estimate for the velocity.
Taking the sum of (3.1) and (3.2), we obtain

1

k
(un+1 − un) − ν∆ũn+1 + (un · ∇)ũn+1 + ω × un+1 + ∇pn+1 = f(tn+1). (3.47)

Let us denote
q̃n+1 = p(tn+1) − pn+1.

Subtracting (3.47) from (3.16), we obtain

1

k
(en+1 − en) − ν∆ẽn+1 + ω × en+1 + ∇q̃n+1

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) +Rn. (3.48)

Taking the inner product of (3.48) with2 kA−1en+1, splitting the nonlinear term into three parts, using (3.7)and
noticing that

(A−1u,∇p) = 0, ∀u ∈ H,

we derive (for details see [94] p. 67)

‖en+1‖2
V ′ − ‖en‖2

V ′ + ‖en+1 − en‖2
V ′ +

15kν

8
|en+1|2

≤ −2k(ω × en+1,A−1en+1) + 2k〈Rn,A−1en+1〉 − 2kb(en, ũn+1,A−1en+1)

− 2kb(u(tn+1), ẽ
n+1,A−1en+1) + 2kb(u(tn) − u(tn+1), ũ

n+1,A−1en+1)

+mk|en+1 − ẽn+1|2. (3.49)

The Coriolis term is estimated as follows

|2k(ω × en+1,A−1en+1)| ≤ mk‖A−1en+1‖|en+1|

≤ mk‖en+1‖V ′ |en+1| ≤ νk

8
|en+1|2 +mk‖en+1‖2

V ′ . (3.50)

Applying the same arguments as in [94] we deduce from (3.49) and (3.50) the estimate
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‖en+1‖2
V ′ − ‖en‖2

V ′ + νk|en+1|2 + ‖en+1 − en‖2
V ′

≤ mk‖en+1‖2
V ′ +m (k2 + k3)‖ẽn+1‖2 +mk|ẽn+1 − en| (3.51)

+ mk|en+1 − ẽn+1|2 +mk

(∫ tn+1

tn

t‖utt‖2
−1dt+ k

∫ tn+1

tn

|ut|2dt
)
.

The only modification of the arguments from [94] here is that instead of identity

|ẽn+1|2 = |en+1|2 + |en+1 − ẽn+1|2,

which is no longer true we use the triangle inequality

|ẽn+1|2 ≤ |en+1|2 + |en+1 − ẽn+1|2, (3.52)

Taking the sum of (3.51) forn = 0, . . . , N ,N ∈ [0, T/k − 1], we derive from lemma 3 that

‖eN+1‖2
V ′ +

N∑

n=0

{‖en+1 − en‖2
V ′ + k ν|en+1|2} ≤ mk2 +mk

N+1∑

n=0

‖en‖2
V ′ .

By applying the discrete Gronwall lemma to the last inequality, we obtain

‖eN+1‖2
V ′ +

N∑

n=0

{‖en+1 − en‖2
V ′ + k ν|en+1|2} ≤ mk2 ∀0 ≤ N ≤ T/k − 1.

Then, from (3.52) and lemma 3 we arrive at

k

N∑

n=0

|ẽn+1|2 ≤ k

N∑

n=0

{|en+1|2 + |ẽn+1 − en+1|2} ≤ mk2 ∀0 ≤ N ≤ T/k − 1. (3.53)

(ii) Error estimate for the pressure.
The skeleton of our derivations for the pressure estimate remains the same as in [94]. Remarks from [95] are
applied through lemma 4.

We start from rearranging (3.48) to

∇qn+1
∗ =

1

k
(en+1 − en) − ν∆en+1

∗ + ω × en+1

+ (u(tn+1) · ∇)u(tn+1) − (u(tn) · ∇)ũ(tn+1) −Rn, (3.54)

where{en+1
∗ , qn+1

∗ } = {ẽn+1, q̃n+1}. The same relation holds for{en+1
∗ , qn+1

∗ } = {en+1, qn+1}, whereqn+1 =

p(tn+1) − (I − kν∇)pn+1. Hence we can consider simultaneously the two pressure approximations.
We split the nonlinear term on the right hand side of (3.54) as

(u(tn+1) · ∇)u(tn+1) − (un · ∇)ũn+1

= ((u(tn+1) − u(tn)) · ∇)u(tn+1) + (en · ∇)u(tn+1) + (un · ∇)ẽn+1.

From lemma 3 we derive that
‖un‖ ≤ ‖en‖ + ‖u(tn)‖ ≤ m ∀n.

By using (3.6) we obtain that, for allv ∈ H1
0 (Ω)d,
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((u(tn+1) · ∇)u(tn+1) − (un · ∇)ũn+1,v)

≤ c |u(tn+1) − u(tn)|‖u(tn+1)‖2‖v‖
+ c‖en‖‖u(tn+1)‖‖v‖ + c‖un‖‖ẽn+1‖‖v‖ (3.55)

≤ c̄{‖ẽn+1‖ + ‖en‖ + |u(tn+1) − u(tn)|}‖v‖.

Using the Schwarz inequality we have also, for allv ∈ H1
0 (Ω)d,

(
1

k
(en+1 − en) − ν∆en+1

∗ + ω × en+1 −Rn,v

)
≤

(
1

k
‖en+1 − en‖−1 + ν‖en+1

∗ ‖ + m̃ ‖en+1‖ + ‖Rn‖−1

)
‖v‖. (3.56)

From the inequalities (3.54), (3.55), (3.56) and

|p|L2(Ω)/R ≤ ĉ sup
v∈H1

0
(Ω)d

(∇p,v)
‖v‖ ,

we obtain that

|qn+1
∗ |L2(Ω)/R ≤ ĉ sup

v∈H1
0
(Ω)d

(∇qn+1
∗ , v)

‖v‖ ≤ m

k
‖en+1 − en‖−1

+ m (‖Rn‖−1 + ‖ẽn+1‖ + ‖en‖ + (1 + m̃)‖en+1‖ + |u(tn+1) − u(tn)|).

Therefore, applying lemmas 3 and 4, and the inequality (3.53), we derive

k

T/k−1∑

n=0

|qn+1
∗ |2L2(Ω)/R ≤ mk

T/k−1∑

n=0

{ ‖ẽn+1‖2 + (1 + m̃)‖en+1‖2

+ ‖Rn‖2
−1 + |u(tn+1) − u(tn)|2}

+
1

k

T/k−1∑

n=0

‖en+1 − en‖2
−1 ≤ mk.

The proof of theorem 1 is complete.�

Remark 7.It was discussed in [42] that the assumption
∫ T

0
|∇pt|2 ≤ m, which we need to prove pressure error

estimate does not hold for general flows, but requires a compatibility condition on given data, cf. [42]. The sufficient
assumption for this condition to be valid isf(x, t)|t=0 = 0.
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Treatment of convective term

4.1 DPM framework for rotational form of convection

In the chapters 2 and 3 we considered the system of Stokes equations with the Coriolis force term. However, while
performing numerical calculations for the system of Navier-Stokes equations with the Coriolis force especially for
medium and high Reynolds numbers, one has to take into account the convective term as well. To prevent numerical
oscillations we use the algebraic flux correction scheme of TVD type [56] or the edge-oriented stabilization [107,
81] for the discretization of convection terms. Moreover, adding such stabilization techniques makes multigrid
solvers for the velocity subproblem more effective. Another relevant question is how to include the terms due
to convection in the projection step. As we have seen, cf. remark 2 in § 2.2.2, this issue can be related to the
question of building effective pressure Schur complement preconditioners for the case of dominating convection
terms. This tough question attracted a lot of considerations during the last decade, see an overview in [30] and
[76]. However, we are not aware of any successful attempt to adopt these recently suggested preconditioners in
a projection type scheme. The presence of the Coriolis forcemakes the question even more difficult to address.
Hence the modifications proposed in the previous chapters are expected to improve performance of the projection
scheme mostly for the case of moderate Rossby numbers. A promising approach for the case of large Rossby
numbers is the following. Using the well-known inequality

(u · ∇)u = (∇× u) × u+ ∇
(
u2

2

)

and introducing a new pressure variable (Bernoulli pressure), we can replace the convective operator by the cross
product one:

(u · ∇)u+ 2ω × u+ ∇p = w(u) × u+ ∇P (4.1)

withw(u) = ∇× u+ 2ω andP = p+ u
2

2 .
(∇× u) is a vorticity function. For two dimensions we define

∇× u = −∂u1

x2
+
∂u2

x1

and

α× u = −u× α =

{
−αu2

αu1

.

Therefore, the Coriolis force term and the convective operator can be handled on the second step of the projection
method simultaneously in the same way as described above in the Chapter 2, see [72] for the analysis of similar
approach in the context of the Schur complement preconditioners for the linearized Navier-Stokes problem.
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For ’rotating’ flows in the system of Navier-Stokes equations we can treat convection and rotating forces either
as the right or the left part of (4.1). While both treatments are equal on the continuous level and conservative
(see [72]), they may lead to discrete systems withquite differentproperties. In particular, many reliable methods
for the stabilization of convection dominated flows have been developed by the CFD community. Among them
are streamline-diffusion and upwinding schemes, edge-oriented stabilization, algebraic flux correction, etc. At the
same time, not so much is known about stabilization techniques available for the term(∇ × u) × u. Although
very popular in fluid mechanics, the rotational form did not find much attention among numerical analysts until
the papers of Olshanskii and coauthors [65, 72, 73, 74], see also recent papers [62, 89]. Nowadays rotational form
of convection still deserves more careful analysis.

Many algebraic splitting methods can be interpreted in terms of approximate block factorizations [17, 63, 85, 90,
112, 113]. These splittings naturally lead to preconditioners for Krylov methods both for steady and unsteady
problems ([30], Chapter 8.3.5). Though these preconditioners were designed for the standard form of convection,
some of them can be extended to the rotation form, e.g. Elman’s so-calledB F BT preconditioner [28]. Benzi
and Lia also proposed an approach for treating rotation formof convection -Hermitian/skew-Hermitian splitting
(HSS) [9, 64]. HSS preconditioners guarantee robust behaviour of the algorithm, resp. quality of approximation,
as the viscosityν approaches zero.

The positive sides of the rotation form of the convective operator are:

• Treatment of a zero-order operator (rotational convection) instead of a first-order operator (standard convection)
in linearized equations.

• Natural inclusion of the Coriolis force or any other reactive term which can be written in the cross-product
form.

• Construction of discrete projection methods with explicitly invertible matrices of block-diagonal precondition-
ers.

The discrete projection approach based on the rotation formof convection term from (4.1) is a topic of the next
section.

4.1.1 General-purpose version of the modified DPM

Let us take a closer look at the operatorw(u)×:

• 2D case

∇× u× = w(u)× = w× =

(
0 −w
w 0

)
, (4.2)

• 3D case

∇× u× = w(u)× =



w1

w2

w3


× =




∂u3

x2
− ∂u2

x3
∂u1

x3
− ∂u3

x1
∂u2

x1
− ∂u1

x2




× =




0 −w3 w2

w3 0 −w1

−w2 w1 0


 . (4.3)
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As we will see below, the main properties of the two-dimensional operatorw(u)× are the same as those of the
three-dimensional one. All formulas below are presented for the 3D case. Following the same idea, the interested
reader can easily derive them for the two dimensional case.

From (4.3) we obtain the following properties:

1. w(u)× is skew-symmetric.

2. w(u)× is off-diagonal dominant.

3. det|w(u) × | = 0, i.e. it is singular.

4. (w(u) × u,u)L2
= 0, i.e.Im(w(u)×)⊥u

The resulting matrixF is of the form:

F = (M + νL+w(u)×) =



M + νL 0 0

0 M + νL 0

0 0 M + νL


+




0 −w3 w2

w3 0 −w1

−w2 w1 0




=



M + νL −w3 w2

w3 M + νL −w1

−w2 w1 M + νL


 , (4.4)

whereM is a consistent mass matrix andL is a discrete Laplacian operator. When flow is laminar, i.e.M + νL is
large w.r.t.wi, operatorF is diagonal dominant and therefore is ’easy’ for the solver.When Re increases, values
of wi also increase (rotational motion of vortices becomes more influential on the whole flow), whereasM + νL

stays unchangeable. Therefore, as soon asF becomes more off-diagonal dominant/oriented, its conditional number
increases anddet|F | approaches zero (again, if measured with respect to values of M + νL andwi).

Approximatingwi, for i = 1, 2, 3, on the discrete level by their diagonal counterparts (as wedid for the Coriolis
force term in the previous chapters), we obtain a 3 by 3 operator every entry of which is occupied by a diagonal
matrix. Thus, the obtained global matrix is easy to invert and therefore is easy to use as a preconditioner (see [72]
for a numerical analysis). We will utilize this idea to construct a discrete projection method for the system of
Navier-Stokes equations with convection to be written in the rotational form. Namely, proceeding from (4.4) we
introduce the Schur Complement operatorS in the following form:

S = BTM−1
(laplace+rotation)B (4.5)

with

M(laplace+rotation) =



M + νL −w3 w2

w3 M + νL −w1

−w2 w1 M + νL


 . (4.6)

The preconditionerP of S can be constructed by ’lumping’ or taking only the main diagonal of diagonalM+νL→
diag(M + νL) and off-diagonalwi → w̃i block-matrices to obtain the following(3 × 3) block-diagonal matrix:

M̃(laplace+rotation) =



diag(M + νL) −w̃3 w̃2

w̃3 diag(M + νL) −w̃1

−w̃2 w̃1 diag(M + νL)


 . (4.7)

Thus, we haveP = BTM̃−1
(laplace+rotation)B. The matrixM̃(laplace+rotation) is easy to invert. Its inverse can be used as a

preconditioner forF while solving the velocity equation or constructing the modified Schur Complement operator
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P(laplace+rotation) = BTM̃−1
(laplace+rotation)B.

Now we are ready to write the discrete projection method for the incompressible system of the unsteady Navier-
Stokes equations with convection written in the rotationalform:

1. Solve forũ the ”viscous Burgers” equation

Fũ = g −∆tBpn (4.8)

with C = M̃(laplace+rotation) as a special preconditioner ofF .

2. Solve the discrete ”Pressure Poisson-like” problem

Sq = BTM−1
(laplace+rotation)Bq =

1

∆t
BT ũ (4.9)

with P = BTM̃−1
(laplace+rotation)B as a special preconditioner ofS.

3. Calculate the pressure and the velocity approximations as

p = pn + q +
αD

∆t
M−1

p BT ũ

u = ũ−∆tM−1
(laplace+rotation)Bq (4.10)

with αD = 0 or αD = ν∆t. In the case of DPM setpn+1 = p, un+1 = u or perform several loops of these
steps to get the fully coupled solution at timetn+1.

Anticipated drawbacks of the above DPM in comparison to those with the standard convection are following:

• The memory costs will increase due to the full coupling of equations in the velocity block, see (4.4).

• The stabilization technique for the term(∇× u) × u is not clear.

To overcome the second drawback, which may occur for numerical simulations at medium and large Reynolds
numbers, one has to think about ’recovering’ the diagonal dominance of the resulting matrixF . This can be done,
e.g., by scaling the main diagonal matrixM by some parameterκ, whereM is a consistent mass matrix. Since

M ∼ h2

we obtain
∆twh(uh) ∼ ∆t(|∇ × u| + |ω|)h2.

Therefore, we can choose
κ ∼ ∆t(|∇ × u| + |ω|) + 1.

In practice we will not do it this way. Instead, we note that the edge-oriented stabilization is built in some sense
on the same principle of increasing the main diagonal. Therefore we can apply it to stabilize the rotational term
of convection. The edge-oriented technique will be described later in this chapter. Its influences on the solving
process (4.8)–(4.10) and on the numerical solution will be discussed in chapter 6.

4.1.2 Summary of the DMP framework for rotation form of convection

In this section we introduced the generalized cross-product operatorw(ω,u, ·)×u, which takes into account con-
vection (in its rotational skew-symmetric form), Coriolisforce and/or any cross-product-like terms. The operator
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w(ω,u, ·)×umade it possible to extend the modified discrete scheme (2.43)-(2.45) to a more general case. In the
following we will show that the non-diagonal dominance nature ofw(ω,u, ·) × u may lead to poor convergence
and bad accuracy. Nevertheless, by applying additional techniques one can obtain sufficiently good solutions. In
chapter 6 we will present numerical experiments for the lid-driven cavity and flow around cyclinder benchmark
problems and discuss the obtained results with respect to their accuracy and efficiency.

4.2 Algebraic Flux Correction

While treating convection dominated flows, one has to take into account the possible growth of nonphysical os-
cillations due to the domination of the convective term. Until nowadays this problem is not completely solved.
Nevertheless, numerous efforts of CFD specialists and numerical analysists gave rise to many robust and efficient
methods, which allow to calculate sufficient solutions. As we have already mentioned in the section§ 4.1, among
these methods are upwind and streamline-diffusion schemes, edge-oriented stabilization, algebraic flux correction,
etc. In our realisation we utilize two of them, namely: edge-oriented stabilization and Algebraic Flux Correction
of TVD type techniques. In this section we will give a brief theoretical overview on the Algebraic Flux Correction.
The general idea beyond the algorithm is to modify a discretesystem of the Navier-Stokes equations in some spe-
cific way as to satisfy conditions, which preclude appearance of non-physical oscillations and at the same time to
recover the high-order approximation of the velocity vector field. The algebraic flux correction methodology was
motivated by the pioneering article of Boris and Book [11] in1971. Since then the theory was extended onto the
multidimensional FEM discretizations for the convection-dominated transport equations.

4.2.1 One dimensional case

We start our description from the simple 1D cases for the finite difference schemes and will evolve to the noncon-
forming FEM discretization of the Navier-Stokes equationsfor the multidimensional case (2D and 3D).

Let us consider a scalar conservation law
∂u

∂t
+
∂f

∂x
= 0. (4.11)

Settingf = vu, we obtain a 1D convection transport equation

∂u

∂t
+ v

∂u

∂x
= 0. (4.12)

In order to prevent oscillations ofu we require the discrete scheme of (4.11) to satisfy the following properties of
monotonicity:

• No new local extremum should be created.

• Existing local maximum should not increase and local minimum should not decrease.

In other words it means that a total variation

TV (uh) =
∑

i

|uh(xi+1) − uh(xi)|

as a function of the approximate velocityuh is nondecreasing, i.e.



32 4 Treatment of convective term

TV (un+1
h ) ≤ TV (un

h). (4.13)

Next, denotingL to be the discretization operator:

un+1
h = L · un

h, (4.14)

we say that a finite difference scheme (4.14) istotal variation nonincreasing(TVNI) if L satisfies (4.13).

In 1982 A. Harten, see [40], proved the following results:

• a TVNI scheme is monotonicity preserving; i.e. ifun
h is monotone, so isL · un

h

• a semi-discrete scheme of (4.11)
dui

dt
+
fi+1/2 − fi−1/2

∆x
= 0 (4.15)

is total variation nonincreasing if it can be rewritten in a form

dui

dt
= ci−1/2(ui−1 − ui) + ci+1/2(ui+1 − ui), (4.16)

whereci−1/2 ≥ 0, ci+1/2 ≥ 0 andci−1/2 + ci+1/2 ≤ 1.

So constructed scheme will definitely guarantee a nonoscillating profile ofu. On the other hand, according to a
well-known theorem of S. Godunov [35] a finite-linear scheme

un+1
h (xj) =

k∑

l=−k

clu
n
h(xj+l), cl = const

is monotonicity preserving if and only if

cl ≥ 0, −k ≤ l ≤ k.

As a result, any monotonicity preserving scheme and, hence,any TVNI scheme is first order accurate. However, in
the regions of the domain, where the fluxf changes not rapidly, one can recover high orders of accuracy, see [40].
Accumulating both ideas (construction of monotonicity preserving schemes with local recovery of high orders of
accuracy), we introduce an adaptive correction factorΦi±1/2, the purpose of which is to ”diffuse” the change of
flux in domains with steep changes of gradients and to reconstruct high-order approximation in those domains with
smooth changes of flux:

fi±1/2 = fL
i±1/2 + Φi±1/2[f

H
i±1/2 − fL

i±1/2], (4.17)

wherefL
i+1/2 is a discrete value of a low order flux in thei-th mesh point andfH

i+1/2 is a discrete value of a high
order flux.

Numerical experiments showed that forward and central difference methods for a simple 1D convection equa-
tion (4.12) withv > 0 give rise to the oscillating behaviour ofu for some values of the Peclet number (see
e.g. [31]) and, therefore, are not stable. At the same time a backward difference scheme is stable, but it adds some
extra diffusion into the solution. Following the idea (4.17) for the construction of a difference scheme, we take a
backward difference method as a low (first) order non-oscillatory scheme:

fL
i+1/2 = vui. (4.18)
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After substituting (4.18) into (4.15) and rewriting the obtained expression in the form of (4.16), we end up with
the coefficientsci−1/2 = v/∆x and ci−1/2 = 0, which satisfy the Harten’s theorem. Therefore, the obtained
difference scheme is total variation nonincreasing. To recover the second order of accuracy we choose a central
difference as a higher order scheme:

fH
i+1/2 = v

ui+1 + ui

2
. (4.19)

Bringing (4.18) and (4.19) together we end up with

fi+1/2 = vui +
v

2
Φi+1/2(ui+1 − ui). (4.20)

To complete the derivation of the ’non-oscillatory’ schemewe left to specify the flux limiterΦi+1/2 at every mesh
point. It is natural to requireΦi+1/2 to decrease, as soon as the changes in the velocity gradient increase at thei-th
point. Therefore, we construct our flux limiter in the formΦi+1/2 = Φ(ri), where

ri =
ui − ui−1

ui+1 − ui
(4.21)

is the so-called slope ratio. It approaches unity for smoothdomains, is negative for the local extremum and is large
in domains with the rapid change of gradients.

Generalizing flux limiting, A. Jameson in his article [45] introduced the operatorL : R
2 → R as a limited average

of its two variablesu andv with the following properties:
P1.L(u, v) = L(v, u)

P2.L(αu, αv) = αL(v, u)

P3.L(u, u) = u

P4.L(u, v) = 0 if uv < 0, otherwisesign L(u, v) = sign u.
(P1)-(P3) are natural properties of an average and (P4) is needed for the construction of a TVD (in multi dimensions
LED) schemes. Setting

Φ(r) = L(1, r) = L(r, 1) (4.22)

and keeping in mind (P4), we obtainΦ(r) = 0, if r ≤ 0 andΦ(r) > 0 otherwise. At the same time properties (P1)
and (P2) give us

Φ(r) = L(1, r) = rL(1/r, 1) = rΦ(1/r). (4.23)

Applying (4.23) to (4.20) we derive with

Φ(ri)(ui+1 − ui) = L(ui+1 − ui, ui − ui−1) = Φ(1/ri)(ui − ui−1). (4.24)

The equality (4.24) means that an ’antidiffusive’ flux from the i + 1-node into thei-th node is considered to be
’diffusive’ (stabilizing) flux, received by thei-th node from thei− 1 if Φ(1/ri) > 0, and vice versa. Substituting
Φ(ri) into (4.20) we obtain a discrete scheme of the type (4.16) with the following coefficients

ci−1/2 =
v

2∆x
[2 +

Φ(ri)

ri
− Φ(ri−i)], ci+1/2 = 0, (4.25)

whereΦ(·) is chosen as to satisfy the Harten’s theorem. There was proposed a large number of flux limiters in the
literature, the most popular are (for test results and comparative analysis see, i.g. [49, 56])
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minmod Φ(ri) = min{1, ri}

VanLeer Φ(ri) =
2ri

(1 + ri)

MC Φ(ri) =
(1 + ri)

2

Koren Φ(ri) =
(1 + ri)

3
superbee Φ(ri) = max{1, ri}

The main drawback of almost of them is the fact that they were derived for the specific benchmark models and are
based on certain discretizations, i.e. they lack is generalization. In the next sections we will present the extension,
proposed by D. Kuzmin [51], of the flux-limiting methodologyonto arbitrary finite element discretizations on
unstructured grids.

4.2.2 Multidimensional case. Extension of the 1D approach.

Let us consider a nonsteady convective-diffusion equation

∂u

∂t
+ ∇ · (vu− ε∇u) = 0 in Ω, (4.26)

whereΩ ⊂ R
d (d = 2, 3) is a bounded, connected domain with a piecewise smooth Lipschiz boundaryΓ ,

v : Ω × T → R
d is an advection velocity, assumed to be known analytically or computed numerically, and

u : Ω × T → R is either a scalar densityρ or a single component of velocity vector fieldu with prescribed initial
u(x, 0) = u0(x) and Dirichlet and Neumann boundary conditions on corresponding boundary part ofΓ .

Denotingw to be an element from the space of velocity test function, theweak form of (4.26) reads
∫

Ω

w

[
∂u

∂t
+ ∇ · (vu− ε∇u)

]
= 0 ∀w (4.27)

Next, we use the Galerkin method to convert partial differential equations (4.27) to a problem of linear algebra by
approximatingu by

uh =
N∑

i=1

uiφi, (4.28)

whereN is the number of degrees of freedom. As usual, we assume the test function to depend on the space
coordinates (φi = φi(x)) and the ’velocity’ component to depend on the time variablet (ui = ui(t)). Substitution
of (4.28) into (4.27) and integration by parts yield the following system of equations (we consider divergence-free
advective velocity fieldv, which comes naturally from the continuity equation for theincompressible flows):

∑

j

[∫

Ω

φiφjdx

]
duj

dt
+
∑

j

[∫

Ω

φivj · ∇φjdx+ ε∇φi · ∇φjdx

]
ui = 0. (4.29)

Let us rewrite (4.29) in a matrix form. We denote

mij =

∫

Ω

φiφjdx, cij =

∫

Ω

φi∇φjdx, sij =

∫

Ω

∇φi · ∇φjdx, (4.30)

wheremij are entries of a consistent mass matrixMC , cij are due to the convective andsij are due to the diffusive
parts. All coefficients in (4.30) depend on the basis functionsφi only, hence, they can be assembled once during
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the initializing process, by this saving CPU time in future.

Next, we assemble the discrete operatorK = {kij}:

kij = −vj · cij − εsij .

Replacing the consistent mass matrixMC = {mij} by its diagonal counterpartML = {mi}, the so-called lumped
mass matrix, we end up with the system of ODEs:

ML
du

dt
= Ku. (4.31)

For convection dominated flows the nonstabilized convective part of the discrete transport operatorK is not stable,
causing the growth of non-physical oscillations in velocity vector field if some high-order time discretization
technique is used. To conquer this problem we appeal to the already approbated idea of using high-order schemes
in domains with small changes of the velocity vector field andof using low-order diffusive schemes in domains,
where velocity gradients changes abruptly.
We say that a scheme is local extremum diminishing (LED) if a local maximum does not increase and the local

minimum does not decrease. We modify the transport operatorK in such a way that our discrete scheme satisfies
the LED conditions. Using linear basis functions (see section 2.1.1), we note that

∑
j cij = 0,

∑
j sij = 0 and

hence
∑

j kij = 0. Thus, (4.31) can be rewritten as

mi
dui

dt
=
∑

j 6=i

kij(uj − ui) + riui, where ri =
∑

j

kij . (4.32)

riui is a discrete counterpart ofu∇ · v, which vanishes for the divergence-free velocity fields. A semi-discrete
system (4.32) reduces to

dui

dt
=
∑

j 6=i

bij(uj − ui), where bij =
kij

mi
. (4.33)

The discrete scheme (4.33) is stable, i.e. it satisfies the LED conditions, if all off-diagonal entriesbij are nonnega-

tive. Indeed, ifui is a local maximum and hence(uj − ui) ≤ 0, we get
dui

dt
≤ 0 andui cannot increase. Similarly,

if ui is a local minimum and hence(uj − ui) ≥ 0, we get
dui

dt
≥ 0 andui cannot decrease. After discretization in

time, such schemes remain positivity-preserving: the solution updateun+1 → un is equivalent to the solution of
the following system

Aun+1 = Bun, (4.34)

whereA = {aij} in an M-matrix andB = {bij} has no negative entries, see, e.g., [54]. For the system (4.34) one
can show that

if un ≥ 0 ⇒ un+1 = A−1Bun ≥ 0.

Let us remind, thatA is anM-matrix iff A is a Z-matrix (all off-diagonal entries are less than or equal to zero) and
it satisfies the following condition

if Au ≥ 0 ⇒ u ≥ 0.

To provideK with the LED condition we cannot just simply go through its nondiagonal entries and remove
those, which are negative, since the conserved property requires row and column sums of the operatorK to stay
unchangeable. For this reason, we define ageneralized diffusion operatorD = {dij}:

1. dij = dji = max{0,−kij,−kji}. Hence, a low-order operatorL = K + D = {lij} has no negative off-
diagonal entries and, therefore, is of the LED type.
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2.
∑

i dik =
∑

k dik = 0 and the mass conservation property is satisfied.

From 1. we obtain the symmetry of the operatorD. From 2. we see that, in order to guarantee the conservation
property, for everyi-th node we have to modify the{lii, lij , lji, ljj} matrix entries as well:

lii = lii − dij , lij = lij + dij ,

(4.35)

lji = lji + dij , ljj = ljj − dij .

If dij 6= 0, then it nullifies eitherlij or lji matrix entry. Basing on this fact, we can introduce orientation of edges:
we say that the nodei is locatedupwind, if lij = 0 andlji = |kji − kij |.

On the physical level the process of summingD to K can be considered as the addition of some extra diffusion
into the system. In order to make our scheme more accurate, wehave to eliminate the superfluous diffusion where
it is possible. Now we can define a multidimensional variant of the flux limiterΦ(ri) in the mesh pointi, for every
i = 1, N . The purpose ofΦ(ri) and its nature are similar to those from 1D case - the estimation of the steepness
of the velocity vector field in thei-th point. Gathering everything together we construct a discrete scheme with a
modified operator̃K

dui

dt
= K̃ u = (K +D −DΦ)u, (4.36)

whereDΦ is the corrected antidiffusive flux, which is built as the diffusive flux scaled by the limiterΦ.
The last question we left to answer is how to construct the fluxlimiter Φ(ri) in every i-th mesh point for the
multidimensional case. This topic we address in the section4.2.3.

4.2.3 Flux limiter in multidimensions.

There are different approaches proposed in the literature how to construct the antidiffusive flux. One of them is
a slope limiting method. In the slope-limiter FEM-TVD scheme one constructs a limiterΦ(ri) for every edge
ij by analyzing the flux contribution into every surrounding node in the element ”opposite” to theij-direction.
Then, using interpolation technique one finds and allocatessome virtual node, sayk, to calculate the necessary
antidiffusion to be added into the system. Description of this algorithm can be found in papers by Lyraet. al. [66,
67]. The algorithm was implemented and exhaustively testedby Kuzmin from theFeatflow group [55]. He
showed that with the help of the algorithm it is possible to obtain acceptable simulation results for a wide range of
CFD applications. Nevertheless, it was also observed that the issues of the method includes the low convergence
rate of nonconforming FEM on unstructured meshes. This was mainly the reason of choosing a slightly different
way - the so-called generalized approach of the node-based strategy, first proposed by Zalesak in [115]. The
generalized approach allows the construction of pure multidimensional flux limiters for any types of meshes.
In Fig. 4.1 one can see that thei-th node receives fluxes from various directions/neighbouring node. These fluxes
can be either diffusive (those with positive coefficients),which do not give rise to wiggles and therefore harmless,
or antidiffusive (those with negative coefficients), whichhave to be bounded to avoid non-physical oscillations of
the velocity field. Splitting the transport operatorK into the sum of positive (diffusive) fluxes

Qi = Q+
i +Q−

i . Q±
i =

∑

j 6=i

max{0, kij}
max

min
{0, uj − ui} (4.37)

and negative (antidiffusive) fluxes
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Fig. 4.1.Definition of the limiter

Pi = P+
i + P−

i . P±
i =

∑

j 6=i

min{0, kij}
min

max
{0, uj − ui} (4.38)

we obtain ∑

j 6=i

kij(uj − ui) = Pi +Qi.

After calculating diffusive and antidiffusive fluxes received by the nodei, we can define our limiterΦ as the ratio
of these fluxes. Then, applyingΦ to the operatorK, we limit the influence ofΦ from above to avoid excessive
overdiffusion. Mathematically it reads as follows

R±
i = Φ(Q±

i /P
±
i ). (4.39)

Due to the property (P4) there is no need to evaluate eitherRi or Qi, if sign (PiQi) = −1. Moreover, for zero
antidiffusionPi we do not calculateRi as well. Recalling the orientation of edges, which was introduced at the end
of § 4.2.2, we define the antidiffusive fluxfα

ij from the downwind nodej into the upwind nodei in the following
way

fα
ij =

{
min{R+

i dij , lji}(ui − uj), ui ≥ uj

min{R−
i dij , lij}(ui − uj), ui < uj

(4.40)

So modified transport operator̃K satisfies the LED condition and, hence, is safe from the non-physical oscillations
in the velocity field. We make slight changes in (4.39) and (4.40). Namely, we allow flexibility in choice of the
bound forQ±

i :

Q+
i =

∑

j 6=i

qijmax{0, uj − ui}, Q−
i =

∑

j 6=i

qijmin{0, uj − ui}, (4.41)

whereqij is eitherqij = max{0, kij} or qij = max{0, lij}. In this case the antidiffusive flux (those to be
subtracted from the operatorK +D) is calculated as follows

fα
ij =

{
R+

i fij , fij > 0

R−
i fij , fij ≤ 0

fα
ji = −fα

ij , (4.42)

wherefij = kij(uj − ui). This approach is known as theFlux-limiter FEM-TVD scheme.
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Example:
Let us consider a central difference discretization of (4.12):

dui

dt
+
vui+1/2 − vui−1/2

∆x
= 0, vui+1/2 = vui − fα

ij (4.43)

with ri from (4.21) and antidiffusive flux of the TVD type being

fα
ij = max{0,min{2, φi, 2ri}}dij(ui − uj), (4.44)

whereφi = ξ + (1− ξ)ri, 0 ≤ ξ ≤ 1. Then, the antidiffusive flux in the Flux-limiter FEM-TVD scheme reduces
to

fα
ij = max{0,min{1, 2ri}}dij(ui − uj). �

Taking into account (4.42) we rewrite the process of construction of flux limiters [50]:

1. Compute sums for positive and negative antidiffusive fluxes

P+
i = P+

i +max{0, fij}, P−
i = P−

i +min{0, fij}. (4.45)

2. Compute the upper/lower bounds forQ±
i

Q+
i = Q+

i +max{0,−fij},
Q−

i = Q−
i +min{0,−fij},

Q+
j = Q+

j +max{0, fij},
Q−

j = Q−
j +min{0, fij}.

(4.46)

3. Construct the nodal correction factorR±
i for every ’upwind’ (according to the introduces orientation of edges)

nodei
R±

i = min{1, Q±
i /P

±
i }. (4.47)

4.2.4 Resulting algorithm

To summarize section 4.2 we present a sketch of the stabilization technique for the convection dominated flows
by the flux correction algorithm in multidimensions for the nonconforming FEM on unstructured meshes. For the
detailed description of the Flux-limiter FEM-TVD scheme strategy see [56]:

1. Perform a FEM Galerkin discretization in space to obtain ahigh-order semi-discrete linear system

MC
du

dt
= Ku. (4.48)

Transport matrixK is not ’stabilized’. In the sense of LED criteria it means that ∃j 6= i : kij < 0.

2. Satisfy the LED condition by eliminating negative off-diagonal entries and preserve mass conservation prop-
erty. This can be done by applying a generalized diffusion operatorD according to (4.35). Replace the conser-
vative mass matrixMC by its lumped counterpartML. The low-order scheme reads

ML
du

dt
= Lu, (4.49)

whereL = K +D is such thatlij ≥ 0, ∀j 6= i.
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3. Remove excessive diffusion where possible by adding limited antidiffusion operator

ML
du

dt
= K∗u, (4.50)

whereK∗ = K + D − DΦ. Though∃j 6= i : k∗ij < 0, the whole matrixK∗ is LED-equivalent toL∗, i.e.
L∗u = K∗u, wherel∗ij ≥ 0, ∀j 6= i.

The discussed above method shows good and robust behaviour for complex 2D and 3D problems. It takes into
account both mathematical and physical interpretations ofthe problem and is based on the careful step-by-step
modification of the flux in the ’crucial’ regions.

Remark 8.In the content of the modified discrete projection method, convective oriented Pressure Schur comple-
ment preconditioners might also act as sources of nonphysical oscillations in pressure and velocity. This fact leads
to destabilizing behaviour of the algorithm and, as a result, the failure of a solver. Therefore, numerical treatment
of such preconditioners requires additional stabilization or relaxation, which will be introduced in§ 5.3.

4.3 Edge-oriented stabilization

The main idea of the edge-oriented stabilization is to augment the original finite element discretization by an
interior penalty term involving the jump of the function values or of the gradient of the approximate FEM solution.
In the literature, several jump terms were introduced for different situations:

1) Jump terms including function values [46, 109]

j1(u,v) =
∑

edge E

γν
1

|E|

∫

E

[u][v]dσ. (4.51)

2) Jump terms including the gradient [27, 15, 13, 16]

j2,α(u,v) =
∑

edge E

γ|E|α
∫

E

[∇u][∇v]dσ,

j3,α(u,v) =
∑

edge E

γ|E|α
∫

E

[n · ∇u][n · ∇v]dσ,

j4,α(u,v) =
∑

edge E

γ|E|α
∫

E

[t · ∇u][t · ∇v]dσ,

j5,α(u,v) =
∑

edge E

γ|E|α
∫

E

[(t · ∇u) · n][(t · ∇v) · n]dσ.

(4.52)

3) Jump terms including the divergence [13]

j(u,v) =
∑

edge E

γ|E|2
∫

E

[∇ · u][∇ · v]dσ. (4.53)

4) Jump terms including the normal component of function values [14]
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j(u,v) =
∑

edge E

γν
1

|E|

∫

E

[n · u][n · v]dσ. (4.54)

For our purposes we chose a new variant of the jump term, proposed in works by Ouazzi and Turek [79, 81, 107]

〈Juh,vh〉 =
∑

edge E

max(γ∗νhE , γh
2
E)

∫

E

[∇uh][∇vh]dσ, (4.55)

wherehE = |E|. The jump term (4.55) is added to the original bilinear form,resp., discretized stiffness matrices,
and it uses only the gradient of the approximate solution. Numerical experiments showed that the parametersγ, γ∗

can be chosen more or less arbitrarily in the interval[0.0001, 1], with no significant influence on the resulting
accuracy, robustness and efficiency.

4.4 Summary for the treatment of convective term

In this chapter we extended the modified projection method (proposed in chapter 2) to the general-purpose ’cross
product operator’w(ω,u, ·) × u, which may include Coriolis force, convection and/or any other terms to be
written in the cross-product form. We also gave a brief overview of the algebraic flux correction and the edge-
oriented stabilization techniques for the stabilization of the convective term. Our aim was not to propose any
improvements to these techniques, but to thoroughly test them for standard and rotational forms of convection in
the framework of our modified discrete projection method. For the corresponding numerical results the reader is
referred to chapters 5, 6 and 8.
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Numerical results for the modified DPM

In this chapter we present numerical studies of the modified discrete projection method for systems of incom-
pressible Stokes and Navier-Stokes equations with the Coriolis force term for model problems of unit square/cube
geometries (numerical simulations for complex 3D geometries of the Stirred Tank Reactor model will be shown
and discussed in§ 8.1). We will compare accuracy of the modified and nonmodifiedschemes, examine the multi-
grid behaviour for the arising momentum and pressure Poisson-like subproblems for different values of time step,
angular velocity, etc., and observe the (outer) convergence behaviour of the modified DPM scheme for various pre-
conditioners. At the end of this chapter we will discuss someaspects concerning the convective part in the pressure
Schur Complement preconditioner.

5.1 Numerical results for the unit square

In this section we examine the accuracy in time of the pressure and velocity for the modified projection scheme and
compare results with those of the nonmodified scheme (with theω-independent orthogonal projection step (3.2)).
We take a test model of a unit square domain[−1, 1] × [−1, 1] and solve the system of the incompressible Stokes
equations with the Coriolis force term

ut − ν∆u+ 2ω × u+ ∇p = f

∇ · u = 0
(5.1)

with homogeneous Dirichlet boundary conditions for the velocity. The exact solution(u, p) of (5.1) is chosen as
in [37, 38]:

u1(x, y) = πsin(t)sin(2πy)sin2(πx), (5.2)

u2(x, y) = −πsin(t)sin(2πx)sin2(πy), (5.3)

p(x, y) = sin(t)cos(πx)sin(πy). (5.4)

It is easy to calculate the right hand side of (5.1) for the analytical solution(u, p) from (5.2)-(5.3):

f1 = cos(t) sin(2πy) sin2(πx) − 2π3 sin(t) sin(2πy) cos2(πx) + 6π3 sin(t) sin(2πy) sin2(πx)

− π sin(t) sin(πx) sin(πy) + 2ω π sin(t) sin(2πx) sin2(πy),

f2 = − π cos(t) sin(2πx) sin2(πy) + 2π3 sin(t) sin(2πx) cos2(πy) − 6π3 sin(t) sin(2πx) sin2(πy)

+ π sin(t) cos(πx) cos(πy) + 2ωπ sin(t) sin(2πy) sin2(πx).
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We denote

vmean(t) =
1

NDF

NDF∑

k=1

|vanalyt(t, k) − vnumer(t, k)|,

wherevanalyt is the velocity magnitude|u| or the pressurep from (5.2)-(5.4) andvnumer is a corresponding
numerical value,NDF is a number of degrees of freedom. To compute the averaged error until some timeTmes

we use the formula:

verr(∆t) =
1

N

N∑

γ=1

v2
mean(γ ∆t), N =

Tmes

∆t
.

The following setting is chosen:ν = 1, Tmes = 1.8. Then, we perform simulations for various time steps
∆t ∈ {0.025, 0.05, 0.1, 0.15}, angular velocity values|ω| ∈ {1, 5, 10} and mesh sizesh ∈ {1/32, 1/128}.
A uniform cartesian mesh is used.
In Figures 5.1 and 5.2 we show graphics foruerr(∆t) andperr(∆t) with the angular velocities|ω| ∈ {1, 5} and
|ω| = 10, respectively.

Fig. 5.1.Accuracy in time as a function on∆t, |ω| ∈ {1, 5}, h = 1/32,(LEFT)uerr(∆t), (RIGHT) perr(∆t).

Fig. 5.2.Accuracy in time as a function on∆t, |ω| = 10, h = 1/32, (LEFT)uerr(∆t), (RIGHT)perr(∆t).
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Exemplary graphics forumean(t), u1mean(t), u2mean(t) andpmean(t) for the setting∆t = 0.1, |ω| = 10 and
h = 1/32 are shown in Figures 5.3 and 5.4.

Fig. 5.3.Error distribution,∆t = 0.1, |ω| = 10, h = 1/32, (LEFT)umean, (RIGHT) pmean.

Fig. 5.4.Error distribution,∆t = 0.1, |ω| = 10, h = 1/32, (LEFT)u1mean, (RIGHT) u2mean.

As the next step we refine our mesh and evaluate velocity and pressure errors. Numerical results for the case
h = 1/128 and|ω| = 10 we show in Fig. 5.5.

From the presented numerical results one observes that the modified projection scheme for the system of in-
compressible Stokes equations with the Coriolis force termis in general more accurate than the standard one.
Improvement in accuracy is proportional to∆t |ω| value. Naturally, the difference in accuracy between modified
and nonmodified schemes becomes less noticeable if∆t goes to0, then only spatial error is visible.
Though we use very courseQ0-pressure approximation, for higher levels of refinement itis possible to reach con-
vergence state for the modified projection method, when one is able to observe layers with large pressure errors.
This presence of the large pressure errors at the corners of the square domain was reported in [38, 96] and was
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conjectured by the lack of smoothness of the domain. In Fig. 5.6 we show pressure error att = Tmes = 1.8 for a
uniform cartesian mesh with the mesh-size1/128.

Fig. 5.5.Accuracy in time as a function on∆t, |ω| = 10, h = 1/128,(LEFT)uerr(∆t), (RIGHT) perr(∆t).

Fig. 5.6.Pressure error,∆t = 0.1, t = Tmes = 1.8, h = 1/128.

We would like to note that due to the block-diagonal structure of preconditioning matrices, computational resources
required by standard/nonmodified and modified discrete projection schemes remain on the same level.

5.2 Numerical results for the unit cube

Since our end goal is the application of the modified projection scheme for the complex 3D problems of the STR
type, we proceed with the 3D case and examine the behaviour ofthe modified schemes. So, let us take a unit cube
model, which is shown in Fig 5.7. This choice is motivated by the relevant simplicity of the geometry and the
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transparency of all matrix-operator constructions, whichsubstantially facilitates the test of the proposed algorithm
and makes the observation of its numerical behaviour easier. Thus, in this section our aim will be to analyze the
numerical properties of the modified discrete projection method for the system of the Stokes and Navier-Stokes
equations with the Coriolis force term, to compare the efficiency of preconditioners, to evaluate the convergence
rates of the multigrid for velocity and pressure subproblems, to examine the convergence of the outer DPM scheme
depending on preconditioners and to present numerical results for a model problem in the unit cube. As before we
assume that the Coriolis force term corresponds to a rotation around theZ-axis, i.e. the angular velocityω is
parallel toOZ. For space discretization of a unit cube[−1, 1]× [−1, 1]× [−1, 1] we consider a uniform Cartesian
mesh. In the geometric multigrid solver we use several grid levels. In Table 5.1 we adopt the following notation:

Table 5.1. Mesh characteristics of a unit cube with equidistant meshing.

level NEL NAT NVT NEQ
1 8 36 27 116
2 64 125 240 439
3 512 1,728 729 5,696
4 4,096 13,056 4,913 43,264
5 32,768101,37635,973336,896

NEL is the number of elements, NAT is the number of faces, NVT and NEQ are the number of vertices and the
total number of unknowns on different grid levels.

5.2.1 Multigrid method for velocity problems

Step 1 of the projection method involves a solution of the velocity subproblem with matrixS given in (2.17). Here
we test a geometric multigrid method (V-cycle) with smoothing iterations defined in section 2.3.1. We compare it
with the multigrid involving more standard pointwise SOR type smoothing iterations. This smoothing iteration can
be defined as (2.25) with

(0,0,0)

(1,1,-1)

(1,-1,-1)
(-1,1,-1)

2.02.0

2.0

(1,-1,1)

Fig. 5.7.Unit cube, (LEFT) Sketch, (RIGHT) Mesh on the 4th level.
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CSOR =




lower part(A) 0 0

0 lower part(A) 0

0 0 lower part(A)


 ,

CSORcoriol =




lower part(A) 0 0

2ω∆tML lower part(A) 0

0 0 lower part(A)


 or

Ccoriol =



diag(A) −2ω∆tML 0

2ω∆tML diag(A) 0

0 0 diag(A)


 .

Both CSORcoriol andCcoriol matrices take into account convective and Coriolis force terms. However, only
Ccoriol from (2.26) uses the full Coriolis force terms. In Table 5.2 we present the number of multigrid iterations to
gain 3 digits of defect improvement for several problem parameters and various smoothers.

Table 5.2. Number of multigrid iterations of the momentum equation.

Preconditionerω∆t Meshing level

3 4 5
CSOR 0.6 2 2 2
CSORcoriol 0.6 2 2 2
Ccoriol 0.6 2 2 2
CSOR 6 2 2 2
CSORcoriol 6 2 2 2
Ccoriol 6 2 2 2
CSOR 60 div div div
CSORcoriol 60 3 3 3
Ccoriol 60 2 2 2
CSOR 600 div div div
CSORcoriol 600 10 16 12
Ccoriol 600 2 2 2

For larger values ofω∆t the multigrid method withCcoriol-based smoother outperforms the SOR-type smoothers.
Moreover, the block diagonal structure ofCcoriol makes it possible to find the inverse matrix explicitly (use Propo-
sition 2 from§ 2.3.1). This makes the calculation ofC−1

coriol for a given vectorq very fast and easily done in parallel.

5.2.2 Multigrid solver for the modified pressure Poisson problem

We solve both the velocity problem in step 1 of the DPM and the modified pressure equation in step 2 by multigrid
methods. Numerical results of§ 5.2.1 show that the geometric multigrid method with specialsmoothings is very
effective for solving the velocity problem. However the overall efficiency of the DPM also depends on whether a
fast solver is available for (2.44). Lemma 1 and the analysisof § 2.3.2 ensure that the matrixP = BTM−1

(·) B with

M−1
(·) from (2.32) or (2.34) is sparse, symmetric, positive definite and corresponds to a mixed discretization of an

elliptic problem with symmetric diffusion tensor. Thus oneexpects that standard multigrid techniques work well
in this case. Numerical tests however show that the standardgeometric multigrid method with SOR smoother does
not provide a satisfactory solver for this problem in all practical cases. Therefore, we also test ’stronger’ smoothers
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such as ILU(k) and BiCGStab(ILU(k)), k=1,3, see [43].

The procedure to measure the multigrid convergence rates was chosen as follows: for givenω we apply several
DPM iterations until some prescribed stopping criteria aresatisfied. The obtained steady state solution(ũ, p̃) is
used as an initial solution so thatdiag(A) = diag(A(ũ)). Further we solve the pressure equation by the multigrid
method with two different smoothers and various values ofω∆t. In Table 5.3 convergence rates are given for the V-
cycle with four post-smoothing steps (no pre-smoothing) bySOR, ILU(k) iterations, or two post-smoothing steps
by BiCGStab with ILU(k) preconditioning, where k=1,3. Level of the mesh refinement is 3 (on every upper level
there are 8 times more elements than on the previous one). In Tables 5.4, 5.5 and 5.6 we present the comparison of
multigrid rates on the 4th and 5th levels for pressure Schur preconditionersBTM−1

(mass+coriolis)B,BTM−1
(diag)B and

BTM−1
(diag+coriolis)B, respectively. Thus, in either case the computational complexity of the multigrid was approxi-

mately the same. Summarizing our numerical results for the pressure problem, we conclude:

• The convergence rates are almost level independent.

• Numerical results show that for large values ofω∆t the matrixP = BTM−1
(mass+coriol)B tends towards a

tridiagonal matrix. One can check this by substitutingB = {bij} andM(mass+coriol) = {mij} values into
P = BTM−1

(mass+coriol)B for largeω∆t. This explains the excellent convergence rates with the ILU(k) and
BiCGStab(ILU(k)) smoother since they are exact solvers fortridiagonal matrices. However, although the pres-
sure equation with these matrices is easy to solve, the global behaviour of the outer DPM may get worse as the
following section illustrates.

5.2.3 Numerical analysis of the new DPM

For the numerical analysis of the computational performance of the new DPM we consider two different cases. We
start testing the algorithm by solving a quasi-stationary problem and calculate until the steady state is achieved by
pseudo-time-stepping with DPM. In the chapter 8 we will use the modified DPM to compute the fully unsteady
case for the Stirred Tank Reactor (STR) problem. To monitor the convergence to the steady solution we compute
values of‖ut‖l2/‖u‖l2. Values of‖pt‖l2/‖p‖l2 behave in a very similar way. In the ideal case (when the pre-
conditioner is exact) we could expect that the convergence of the solution to the steady case would be very fast.
However, the inversion of the exact pressure Schur Complement as preconditioner is prohibitively expensive and
therefore it cannot be used in practice. The constructed approximating preconditionersM(mass+coriolis),M(diag) and
M(diag+coriol) might loose in the convergence speedup if compared with the exact one, but should definitely de-
liver better convergence behaviour if compared with the original nonmodified preconditionerM(mass). Moreover,
the speedup in the convergence rate should grow bigger, whenlarger valuesω∆t are used. In the following, we
perform the tests for every of the discussed choices for the unit cube geometry. For the STR configurations the
convergence of the DPM has the same tendency, though due to the higher mesh complexity of the STR the relevant
upper bound of theω∆t value is smaller.

Schur Complement preconditioning for the Stokes equation with Coriolis force

Let us consider the system of the Stokes equation:

ut − ν∆u+ 2ω × u+ ∇P = f

∇ · u = 0
in Ω × (0, T ] (5.5)



48 5 Numerical results for the modified DPM

Table 5.3. Multigrid, Level3, NSMP=4 (number of pre/postsmoothing steps for pressure).

PSC Smoother 2ω∆t

0.05 0.5 5.0 50.0
M(mass) SOR 0.21-01 0.21-01 0.21-01 0.21-01

ILU(0) 0.77-02 0.77-02 0.77-02 0.77-02
ILU(1) 0.17-02 0.17-02 0.17-02 0.17-02
ILU(3) 0.19-03 0.19-03 0.19-03 0.19-03
BiCGStab(ILU(1)), NSMP=20.95-03 0.95-03 0.95-03 0.95-03
BiCGStab(ILU(1)), NSMP=40.27-05 0.27-05 0.27-05 0.27-05
BiCGStab(ILU(3)), NSMP=20.38-04 0.38-04 0.38-04 0.38-04
BiCGStab(ILU(3)), NSMP=40.77-07 0.77-07 0.77-07 0.77-07

M(diag) SOR 0.67-010.25+000.39+000.42+00
ILU(0) 0.46-010.20+000.33+000.36+00
ILU(1) 0.31-010.14+000.23+000.25+00
ILU(3) 0.72-02 0.37-01 0.76-01 0.87-01
BiCGStab(ILU(1)), NSMP=20.37-02 0.51-02 0.75-02 0.13-01
BiCGStab(ILU(1)), NSMP=40.20-05 0.64-06 0.78-06 0.20-05
BiCGStab(ILU(3)), NSMP=20.64-04 0.35-04 0.74-04 0.21-03
BiCGStab(ILU(3)), NSMP=40.79-07 0.83-07 0.1-06 0.82-07

M(mass+coriol) SOR 0.21-01 0.22-01 0.26+000.60+00
ILU(0) 0.77-02 0.80-02 0.25-02 0.57-07
ILU(1) 0.17-02 0.14-02 0.35-05 0.57-07
ILU(3) 0.19-03 0.13-03 0.57-07 0.57-07
BiCGStab(ILU(1)), NSMP=20.95-03 0.70-03 0.73-07 0.56-07
BiCGStab(ILU(1)), NSMP=40.26-05 0.33-05 0.61-07 0.57-07
BiCGStab(ILU(3)), NSMP=20.37-04 0.66-05 0.62-07 0.58-07
BiCGStab(ILU(3)), NSMP=40.77-07 0.64-07 0.63-07 0.57-07

M(diagXY) SOR 0.46-010.13+000.34+000.58+00
ILU(0) 0.17-01 0.26-01 0.28-01 0.61-07
ILU(1) 0.18-02 0.36-02 0.14-02 0.58-07
ILU(3) 0.19-03 0.24-03 0.24-05 0.59-07
BiCGStab(ILU(1)), NSMP=20.79-03 0.11-02 0.85-05 0.56-07
BiCGStab(ILU(1)), NSMP=40.80-06 0.35-05 0.60-07 0.65-07
BiCGStab(ILU(3)), NSMP=20.44-04 0.64-05 0.66-07 0.62-07
BiCGStab(ILU(3)), NSMP=40.74-07 0.63-07 0.60-07 0.63-07

M(diag+coriol) SOR 0.67-010.25+000.38+000.43+00
ILU(0) 0.46-010.18+000.17+000.38+00
ILU(1) 0.31-010.10+000.13+000.25+00
ILU(3) 0.72-02 0.32-01 0.96-02 0.92-01
BiCGStab(ILU(1)), NSMP=20.37-02 0.51-02 0.05-02 0.18-01
BiCGStab(ILU(1)), NSMP=40.19-05 0.52-06 0.76-06 0.20-05
BiCGStab(ILU(3)), NSMP=20.64-04 0.35-04 0.74-04 0.23-03
BiCGStab(ILU(3)), NSMP=40.77-07 0.83-07 0.07-06 0.82-07
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Table 5.4. Multigrid for M(mass+coriol), NSMP=4.

Meshing levelSmoother 2ω∆t

0.05 0.5 5.0 50.0
4 ILU(1) 0.19-020.19-020.77-030.12-06
5 ILU(1) 0.50-020.52-020.47-020.24-06
4 ILU(3) 0.20-030.19-030.64-050.12-06
5 ILU(3) 0.52-030.58-030.49-030.24-06
4 BiCGStab(ILU(1))0.39-030.35-030.12-030.12-06
5 BiCGStab(ILU(1))0.53-030.58-030.70-030.24-06
4 BiCGStab(ILU(3))0.12-030.11-030.15-050.12-06
5 BiCGStab(ILU(3))0.13-030.10-030.64-040.24-06

Table 5.5. Multigrid for M(diag), NSMP=4.

Meshing levelSmoother 2ω∆t

0.05 0.5 5.0 50.0
4 ILU(1) 0.28-01 0.20+000.34+000.35+00
5 ILU(1) 0.13+000.38+000.44+000.45+00
4 ILU(3) 0.87-02 0.13+000.21+000.21+00
5 ILU(3) 0.83-01 0.30+000.38+000.39+00
4 BiCGStab(ILU(1)) 0.95-02 0.45-01 0.79-01 0.78-01
5 BiCGStab(ILU(1)) 0.78-01 0.16+000.19+000.19+00
4 BiCGStab(ILU(3)) 0.23-02 0.54-02 0.53-02 0.39-02
5 BiCGStab(ILU(3)) 0.25-01 0.29-01 0.39-01 0.42-01

Table 5.6. Multigrid for M(diag+coriol), NSMP=4.

Meshing levelSmoother 2ω∆t

0.05 0.5 5.0 50.0
4 ILU(1) 0.28-01 0.20+000.32+000.35+00
5 ILU(1) 0.10+000.31+000.36+000.45+00
4 ILU(3) 0.87-02 0.07+000.10+000.21+00
5 ILU(3) 0.50-01 0.08+000.33+000.38+00
4 BiCGStab(ILU(1)) 0.89-02 0.29-01 0.71-01 0.78-01
5 BiCGStab(ILU(1)) 0.70-01 0.02+000.16+000.18+00
4 BiCGStab(ILU(3)) 0.19-02 0.43-02 0.52-02 0.39-02
5 BiCGStab(ILU(3)) 0.23-01 0.24-01 0.25-01 0.40-01

First we find a steady limit for the solution of (5.5) by the DPMwith homogeneous force termf = 0. The velocity
equation in step 1 of the DPM is solved (almost) exactly. For the projection and correction steps 2 and 3 we examine
two options for choosingM(·). One isM(·) = M(mass) leading to a standard projection method, another choice is
M(·) =M(mass+coriol):

M(mass) =



ML 0 0

0 ML 0

0 0 ML


 , M(mass+coriol) =




ML −2ω∆tML 0

2ω∆tML ML 0

0 0 ML


 .
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It is natural to expect that as soon as the parameterω∆t increases (either∆t gets larger,ω or both), the off-diagonal
block of the matrixM(mass+coriol), which is due to the Coriolis force, plays a more important role and the solution
converges to a steady state in a smaller number of time steps.And vice versa, ifω∆t decreases, the iterative
behaviour of the solver with the preconditionerBTM−1

(mass+coriol)B approaches that obtained with the standard

preconditionerBTM−1
(mass)B. We illustrate this in Fig. 5.8.

Schur Complement preconditioners for the Navier-Stokes case

While considering the system of the Navier-Stokes equations

ut + u · ∇u− ν∆u + 2ω × u+ ∇P = f

∇ · u = 0
in Ω × (0, T ] (5.6)

we can expect to gain a substantial improvement in the convergence rates by applying the Schur Complement
preconditioner with the matrixM(mass+coriol). But in this case we also have to care about the convective term in the
Schur Complement preconditioner. As it was proposed in the previous section, the convective term will be treated
by means of the preconditioning matrixP = BTM−1

(·) B with M(·) to be of the following choice:

M(diag) =



diag(A) 0 0

0 diag(A) 0

0 0 diag(A)




In Fig. 5.9 we see that that the convection-oriented Schur Complement preconditionerM(diag) provides a substan-
tial improvement in the outer-iteration convergence rate,i.e. decrease of‖ut‖l2/‖u‖l2 → 0 and‖pt‖l2/‖p‖l2 → 0.
Some difficulties may arise because of the oscillatory behaviour of the convective part inM(diag). For the discus-
sion of this question we refer the reader to§ 5.3.

Now we are ready to perform the corresponding tests for the Navier-Stokes equation with the full Schur comple-
ment preconditioner inside of the DPM, where both parts of convection and the Coriolis force terms are included:

M(diag+coriol) =



diag(A) −2ω∆tML 0

2ω∆tML diag(A) 0

0 0 diag(A)




This preconditioner covers both the Stokes and Navier-Stokes cases and under the right choice of parameters
guarantees the fastest decrease of considered‖ut‖l2/‖u‖l2 → 0 and‖pt‖l2/‖p‖l2 → 0 values on the outer DPM
loop, see Fig. 5.9.

As the last test case on the unit cube geometry we perform computations with the linearized convective term of
the formU · ∇u. To choose an appropriateU , we first perform the numerical simulation for the Navier-Stokes
equations until steady state. Then we setU = u and solve this linear problem with the DPM which allows now
much higher values ofω∆t, since the convection part becomes linear. For the higher values ofω∆t the matrix
M(diag+coriol) in P ensures significantly better convergence to a steady solution thanM(diag) or other choice. Re-
sults are shown in Fig. 5.10.

All the numerical tests presented above show that the modification of the Schur Complement operator is necessary
to guarantee fast outer convergence of the DPM. Observing the iterative process for large values of∆tω, we notice
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time step units time step units

time step units time step units

time step units time step units

Fig. 5.8.Stokes equations (UPPER)2ω∆t = 0.5; (MIDDLE) 2ω∆t = 1.0; (BOTTOM) 2ω∆t = 10.0.
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Fig. 5.9. Navier-Stokes equations (TOP)2ω∆t = 1.5; (BOTTOM) 2ω∆t = 2.5.

that improvement in the convergence to the stationary solution can be seen even visually. To demonstrate this effect
we present the pressure distribution of the nonmodified DPM with P = BTM−1

(mass)B and of the modified DPM

with P = BTM−1
( diag+coriol)B. In Fig. 5.11 one can see that the pressure for the modified Schur Complement pre-

conditioner has more accurate profile, closer to the stationary state of the pressure, than those for the nonmodified
Schur Complement preconditioner. The same effect could be observed for already presented simulations of the unit
square geometries from§ 5.1. Smaller errors of the modified discrete projection scheme are due to the capability
of the algorithm to ’catch faster’ changes in velocity and pressure fields by considering the Coriolis force and con-
vection in every step of the algorithm. At the same time the nonmodified scheme neglects treatment of these terms
in the second projection step. That is why for some values ofω∆t the standard scheme cannot respond properly to
the changes in(u(t), p(t)) and therefore ’generates’ larger errors.
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Fig. 5.10. Navier-Stokes equations withU · ∇u, (LEFT)2ω∆t = 5.0, (RIGHT)2ω∆t = 10.0.

Fig. 5.11. Pressure,2ω∆t = 0.6, (LEFT)P = BTM−1
(mass)B, (RIGHT) P = BTM−1

(diag+coriol)B.

5.3 Stabilization of convection in the Schur Complement operator

In the previous sections we considered the influence of modified Schur Complement preconditioners on the inner
(multigrid convergence rate) and the outer (convergence of‖ut‖l2/‖u‖l2 and ‖pt‖l2/‖p‖l2 values) numerical
behaviour of the proposed discrete projection method. Nevertheless, the evaluation of one important fact we left
undisclosed until now. Namely, the oscillatory behaviour of the convective part in the preconditioners

M(diag) =



diag(A) 0 0

0 diag(A) 0

0 0 diag(A)


 and M(diag+coriol) =



diag(A) −2ω∆tML 0

2ω∆tML diag(A) 0

0 0 diag(A)


 .
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An exemplary test in Fig. 5.12 shows that the convective partinM(diag) gives birth to wiggles first in the pressure
and then in the velocity field. If not ‘stabilized’, they may cause divergence of the algorithm for some setting of
2ω∆t. The same effect one can also observe while usingM(diag+coriol).

Fig. 5.12.Unit cube,2ω∆t = 2.0, (LEFT) pressure, (RIGHT) velocity.

Numerical experiments allow us to assume that

κ(M(mass)) ≤ κ(M(diag)), (5.7)

whereκ(A) =
σmax(A)

σmin(A)
is the condition number andσmax(A) andσmin(A) are maximal and minimal singular

values, resp., of some matrixA. Indeed, comparing the magnitude of entries inM(mass) andM(diag) and taking
into account the diagonal nature of both matrices, we see that for some large enough|u| (where|u| ∼ |ω × r|)
and some matrix entryi the absolute value of|mdiag

ii | is larger than those of|mmass
ii |, whereM(mass) = {mmass

ii } and

M(diag) = {mdiag
ii }. On the other hand, since again|u| ∼ |ω× r|, there exists an entryk, which corresponds to the

k-th degree of freedom in the mesh geometry, such that the absolute value of|mdiag
kk | is smaller or equal to|mmass

kk |.
Next, sinceB (and, hence,BT ) does not depend neither onω∆t nor onu, the following inequality takes place:

κ(P(mass)) ≤ κ(P(diag)), (5.8)

whereP(·) = BTM(·)B is the Schur Complement preconditioner. For the large|u| condition numberκ(M(diag))

and thereforeκ(P(diag)) increase and make the pressure Poisson-like problem closerto the ill-conditioned case.
As a result, some stabilizing techniques have to be applied.The following methods were suggested and tested for
validity:

1. We have seen that the DPM’s convergencewith the generalized preconditionerP(diag+coriol) = BTM−1
(diag+coriol)B

is much faster than with the standard oneP(mass) = BTM−1
(mass)B. For largeω∆t the standard preconditioner

shows extremely slow descent to the steady state. At the sametime the modified one must deliver much faster
convergence, but it suffers from the destabilizing behaviour of the convective part. To stabilize convective part
in the Schur Complement preconditioners we will restrict “additional” parts in such a way that, on one hand,
no destabilizing jumps appear and, on the other hand, the outer convergence of the DMP is the fastest possible.
Mathematically it reads:
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M(stab) =



ML 0 0

0 ML 0

0 0 ML


 + α1



diag(A) −ML 0 0

0 diag(A) −ML 0

0 0 diag(A) −ML


+

+ α2




0 −2ω∆tML 0

2ω∆tML 0 0

0 0 0


 , (5.9)

whereα1, α2 ∈ [0, 1] are relaxation parameters for convective and Coriolis parts, respectively. Then the Schur
Complement preconditioner is constructed in the followingway:

P(stab) = BTM−1
(stab)B. (5.10)

Let us note that if

• α1 = 0, α2 = 0 =⇒M(mass)

• α1 = 0, α2 = 1 =⇒M(mass+coriol)

• α1 = 1, α2 = 0 =⇒M(diag)

• α1 = 1, α2 = 1 =⇒M(diag+coriol).

It is easy to see that so constructed matrixM(stab) can be inverted explicitly (apply Proposition 2 from chap-
ter 2).

2. The other choice of stabilization for the modified pressure subproblem is based on the fact that we use an
iterative solver:

pn = pn + α∆p, (5.11)

whereα ∈ [0, 1] is a relaxation parameter. If no stabilization is required then we chooseα = 1. In any other
choiceα is taken smaller if stronger suppression of wiggles is required.

The proposed schemes 1 and 2 are in some sense equivalent: both approaches restrict the range of the pressure
after the regular iterative step and thus relax pressure in implicit (the first choice) or explicit (the second choice)
way. That is why numerical appearance of these schemes look pretty much similar.

Now let us have a look at Figures 5.13-5.15. In Fig 5.13 we showthe first 16 iterations in time for the parameter
settingω∆t = 1.0. In the case ofM(diag) one can clearly see zigzags, which appear first in the pressure and then
in some reduced form in the velocity. Relaxation of the convective part in the Schur Complement preconditioner
P(diag) = BTM−1

(diag)B makes the‖pt‖-curve smoother if the lower value of the relaxation parameterα1 from (5.9)
is used. Moreover, one can also note that the‖ut‖-curve is smoothed out as well.

In Fig. 5.14 one can see that the stabilized curve (diag with relaxation) is smoother than those ofdiag, steeper
than those ofmass and, though delivers slightly worse convergence rate in thebeginning, reaches the steady state
almost at the same number of macro time steps asdiag.

From the graphics presented in Fig 5.15 the reader can convince him- or herself that the proposed stabilization
techniques help to significantly increase the convergence to the steady state solution even if the addition of the
convective part in its pure form into the Schur Complement preconditioner is not applicable because of arising
wiggles with the subsequent divergence of the solving process. For the given setting ofω∆t one can also observe
that adiag choice of the Schur Complement preconditioner is destabilizing, whereas standardmass
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Fig. 5.13. Unit cube,2ω∆t = 1.0, (LEFT) pressure, (RIGHT) velocity.

Fig. 5.14. Unit cube,2ω∆t = 2.0, (LEFT) pressure, (RIGHT) velocity.

Fig. 5.15. Unit cube,2ω∆t = 3.0, (LEFT) pressure, (RIGHT) velocity.
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preconditioner converges with the rate of convergence being much slower than those of a relaxeddiag precondi-
tioner.
Basing on the results presented above we can make the following concluding remarks concerning the proposed
relaxation in the pressure subproblem:

• Relaxation helps to fasten the convergence to the steady state solution in comparison to the standard choice of
the Schur Complement preconditioner even if the usage ofdiag in its complete form is not possible.

• If oscillatory jumps in pressure do not lead to the divergence of the solver, thendiag is better than any other
relaxed choice.

At the end of this section we would like to mention an observation, which was obtained during numerical tests
of this kind. Namely, if velocities inZ-direction are small with respect to those inXY -plane, one can substitute
matricesM(diag) andM(diag+coriol) by the following ones:

M(diagXY) =



diag(A) 0 0

0 diag(A) 0

0 0 ML


 and M(diagXY+coriol) =



diag(A) −2ω∆tML 0

2ω∆tML diag(A) 0

0 0 ML


 . (5.12)

The lumped mass matrix in the entry(3, 3) is independent onu and∆t and therefore preserves the whole system
from the rapid growth of condition number and the subsequentdifficulty with the iterative solving process. One
one hand, it plays the stabilizing role of the standard preconditioner and, on the other hand, the upper two-by-two
block matrix with Coriolis and convective parts produces the improved outer behaviour of the DPM.
Drawbacks ofP(diagXY) = BTM−1

(diagXY)B andP(diagXY+coriol) = BTM−1
(diagXY+coriol)B are obvioius:

• Inability to use (5.12) in an arbitrarily oriented system ofcoordinates or when the velocity flow field is large in
theZ-direction.

• Inability to control the smoothing effect of wiggles for‖pt‖- and‖ut‖-curves, i.e. in general the convergence
to the steady state is very far from being optimal.

Convergence behaviour of the iterative process with the preconditionerM(diagXY) is shown in Fig. 5.16 in compar-
ison to those with preconditionersM(mass) andM(diag).

5.4 Summary of the numerical results for the modified DPM

Summarizing these tests, we have shown that:

• The modified discrete projection method delivers better accuracy in time for pressure and velocity for medium
and large values ofω∆t than the classical/nonmodified discrete projection method.

• The proposed explicitly inverted preconditioners both formomentum and pressure Poisson-like equations show
much better convergence rate than corresponding standard preconditioners with the lumped mass matrix.

• Convergence to the steady state solution of the modified DPM is much faster. At the same time multigrid costs
for the proposed Schur Complement preconditioners remain on almost the same level as those for the standard
preconditioner.

• M(diag+coriol) is the most efficient preconditioner among all considered, since it includes parts due to convective
and Coriolis terms. For large values ofω∆t the convective part inM(diag+coriol) may lead to the oscillatory
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Fig. 5.16. Navier-Stokes equations (TOP)2ω∆t = 1.5; (BOTTOM) 2ω∆t = 2.5.

behaviour of the iterative solver and, therefore, has to be stabilized. Proposed relaxation of the convective part
on the stage of preconditioner’s assembly or, later, duringpressure correction step helps to avoid destabilizing
behaviour. Nevertheless, further study of automatic choice of the relaxation parameter is required.



6

Numerical results for the rotation form of convection

This chapter addresses numerical aspects of the theoretical results described in the chapter 4.1. We are mainly
interested in the behaviour of the rotation form of convection and the influence of the modified pressure on the
iterative process and numerical solution of the incompressible system of the Navier-Stokes equations

ut +w(u) × u− ν∆v + ∇P = f ,

∇ · u = 0,
(6.1)

with w(u) = ∇ × u andP = p + u
2

2 . As it was shown before, in the case of the coordinate transformation the
Coriolis force can be naturally added intow(u) and the centrifugal force intoP . We choose driven cavity and flow
around cylinder benchmark problems to compare obtained numerical solutions for various Reynolds numbers with
highly-accurate solutions available in literature [12, 62, 73, 108, 105]. Then, we examine the iterative behaviour of
the algorithm, discuss some issues and suggest techniques to resolve them.

6.1 Driven cavity benchmark problem

We solve (6.1) inΩ = [0, 1] × [0, 1] with Dirichlet boundary conditionuflow = (1, 0)T |y=1. For a space dis-
cretization we take a uniform Cartesian mesh. In geometric multigrid solver several grid levels are used, the finest
level of which possesses 131584 degrees of freedom (edges),66048 vertices and 65536 elements. We define the

Reynolds number asRe =
U L

ν
, whereL is a length of the upper lid,U is a velocity value of the upper lid andν

is a parameter of viscosity. Reynolds numbers were taken in the following range: Re∈ {100, 500, 1000}.

Numerical tests showed that with the increase of Reynolds numbers the iterative solver suffers in the nonlinear
convergence. For example, forRe = {1000} a fixed-point method with the linearized termw(un) × un+1 does
not converge. To overcome this problem we did as follows:

• First, we implement a Newton-like method, when the contribution of the Fréchet derivativew(un+1) × un is
added to the linearized termw(un) × un+1.

• Second, we use the edge-oriented stabilization of the convective term, which was described in§ 4.3. By varying
the edge-oriented parameterγedge we can control in some sense the diagonal/nondiagonal ratio.

• Third, it was shown in [62, 73] that large norms of the Bernoulli pressure gradient∇P = ∇P (u) compared
to the velocityH2 norms may lead to a poor convergence of the finite element velocity if one does not include
∇div stabilization into the momentum equation of (6.1):
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ν(∇uh,∇vh) +N(uh,uh,vh) + γdiv(divuh, div vh) − (Ph, div vh) = (f ,vh) ∀vh ∈ Uh, qh ∈ Qh

whereN(uh,uh,vh) is a nonlinear term due to convection,Uh andQh are spaces of test functions for the
velocity and the pressure, respectively. Otherwise, the dependence of‖u − uh‖1 on ν is much milder. On
the other hand, too large values ofγdiv “overstabilize“ the problem and make corresponding linearalgebraic
system poor conditioned.

The proposed techniques help us to obtain convergence of nonlinear iterations for all Reynolds numbers (with
different accuracy, of course). The comparison of profiles for u1 andu2 along cutlinesx = 0.5 andy = 0.5,
respectively, with those of reference solutions is presented in Figures 6.1-6.3.

Fig. 6.1. Re=300 (TOP)u1|x=0.5; (BOTTOM) u2|y=0.5.

Fig. 6.2. Re=500 (TOP)u1|x=0.5; (BOTTOM) u2|y=0.5.

We notice that the discrepancy between numerical and references solution get bigger, if larger Re is used. Edge-
oriented stabilization and Newton-like methods help to obtain the nonlinear convergence. At the same time the
∇div stabilization helps to improve accuracy, see Figures 6.2 and 6.3. Moreover, while using∇div-stabilization
one can perform simulation for smaller values ofγedge, which are not possible otherwise.



Fig. 6.3. Re=1000 (TOP)u1|x=0.5; (BOTTOM) u2|y=0.5.

Table 6.1. Kinetic energy. Comparison of standard and rotation form ofconvection.

structured mesh Energy Energy
Level cells without pressure separation with pressure separation

Standard form of convection,γedge=0.05
4 1024 5.007440861022897E-002 5.211682419890467E-002
5 4096 4.726577915032740E-002 4.825706662364793E-002
6 16384 4.504907900502248E-002 4.548087349148145E-002
7 65536 4.451536462306269E-002 4.470287712512187E-002
8 262144 4.447346732722830E-002 4.455086811892013E-002
9 1048576 4.449511194952627E-002 4.452439567412509E-002

Rotational form of convection,γedge=0.05γdiv=0.6
4 1024 5.917218667382527E-002 6.034126831523878E-002
5 4096 5.160284164224632E-002 5.198083422220890E-002
6 16384 4.651826977387501E-002 4.661805861205227E-002
7 65536 4.493929188531996E-002 4.496463428798708E-002
8 262144 4.460509057916964E-002 4.460508688884178E-002
9 1048576 4.453347774356769E-002 4.453346723495192E-002

Standard form of convection,γedge=0.2
4 1024 4.697275081040202E-002 4.751183897739284E-002
5 4096 5.060866534334785E-002 5.098802583646743E-002
6 16384 4.670217951963666E-002 4.686025705766404E-002
7 65536 4.495614575196347E-002 4.502254198984097E-002
8 262144 4.457381775562132E-002 4.460223628885603E-002
9 1048576 4.451922086434779E-002 4.451922885437246E-002

Rotational form of convection,γedge=0.2
4 1024 4.534717050856769E-002 4.708663256505627E-002
5 4096 4.900355289002138E-002 5.064787120518587E-002
6 16384 4.583846271124172E-002 4.672960606432790E-002
7 65536 4.455734529223019E-002 4.498479522355114E-002
8 262144 4.439685360860982E-002 4.459296577837202E-002
9 1048576 4.444239174269192E-002 4.452908673732455E-002
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Aiming for the better accuracy we also examine the use of the pressure separation technique (PSepA) [108]. Its
purpose is to improve the incompressible flow simulations for problems with large pressure gradients, exactly what
we need in the case of large Bernoulli pressure gradient∇P = ∇P (u). In Table 6.1 we present the kinetic energy
for various mesh levels, calculated with and without pressure separation technique, and compare its values with
those obtained for the standard convection. For the numerical results in the case of the standard convective term
and the corresponding discussions the reader is referred to[108].

From graphics in Figures 6.1, 6.2, 6.3 and values of kinetic energy in Table 6.1 we see that:

• Numerical solution for the Navier-Stokes equations with the rotational convection is more accurate if smaller
Reynolds number is used. ForRe = 300 the reference solution and the numerical solution of the ’rotational
convection’ almost coincide. For larger Reynolds numbers discrepancies in velocity profiles are observable.

• For larger Reynolds one observes a poor convergence rate of nonlinear iterations for the Navier-Stokes equa-
tions with the rotational convection. For example, forRe = 1000 the solver does not converge if no additional
techniques are implemented. The Newton-like method the andedge-oriented stabilization help to improve non-
linear convergence and accuracy of numerical solutions.

• Accuracy of the numerical solution, which we estimate by values of kinetic energy in Table 6.1, is better if
finer mesh is used.

6.2 Flow around cylinder benchmark problem

As the second test case we take the flow around cylinder benchmark problem. The coarse mesh is shown in
Fig. 6.4. The finest mesh level of the geometric multigrid solver possesses 267072 d.o.f., 133952 vertices and
133120 elements.

Fig. 6.4.The coarse mesh for flow around cylinder benchmark.

In this case we again define the Reynolds number asRe =
U L

ν
, whereU is an average velocity of inflow,L is a

diameter of a cylinder andν is a parameter of viscosity. For small Reynolds numbers (i.e. Re< 20) discrepancies
between the obtained velocity field for rotation convectionand those for standard convection are very small and
iterative behaviour of our solver shows almost no difficulties. For large Reynolds numbers (Re≥ 20) one has to
resort to the help of stabilization techniques described inthe previous section. We perform simulations for Re= 20,
measure drag and lift forces on the boundaries of the inner cylinder and compare their values with those obtained
for the case of standard convection [108]. Results are presented in Table 6.2.
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Table 6.2. Darg and Lift. Comparison of standard and rotation form of convection.

structured mesh Without pres. separation With pres. separation
Level cells Drag/Lift Drag/Lift

Standard form of convection,γedge=0.3
3 2080 0.77197D+01 / 0.21923D-01 0.79200D+01 / 0.23073D-01
4 8320 0.58216D+01 / 0.11291D-01 0.58517D+01 / 0.11433D-01
5 33280 0.56091D+01 / 0.10591D-01 0.56096D+01 / 0.10640D-01
6 133120 0.55822D+01 / 0.10513D-01 0.55784D+01 / 0.10529D-01

Rotational form of convection,γedge=0.3
3 2080 0.77898D+01 / 0.23215D-01 0.79742D+01 / 0.24085D-01
4 8320 0.58423D+01 / 0.11326D-01 0.58537D+01 / 0.11402D-01
5 33280 0.56142D+01 / 0.10612D-01 0.56154D+01 / 0.10609D-01
6 133120 0.55835D+01 / 0.10526D-01 0.55799D+01 / 0.10519D-01

In general, for the flow around cylinder test case one encounters the same problems of diagonal nondominance,
slow nonlinear convergence rate and large norm of the Bernoulli pressure gradient as in the case of the lid-driven
cavity from § 6.1. From the results of Fig. 6.2 we conclude that with the help of edge-oriented stabilization for
convective term,∇div-stabilization for the pressure gradient and Newton-like method for ‘improved’ nonlinear
convergence one can tend to the sufficient level of accuracy.

6.3 Summary of the numerical results for the rotation form of convection

In numerical simulations of the Navier-Stokes equations with convective term written in the rotation form (6.1) for
medium and large Reynolds numbers one has to take care of two major problems. The first one is a slow nonlin-
ear convergence. Numerical experiments showed that in order to improve nonlinear convergence one may add a
contribution of the Fréchet derivativew(un+1) × un to the linearized termw(un) × un+1. The second problem
is a large gradient of the Bernoulli pressureP = p + ∇u

2

2 . Large gradients of the Bernoulli pressure have to be
resolved on a very fine mesh, otherwise they lead to the loss ofaccuracy for the velocity fieldu. Without some
extra techniques to be implemented the simulation is not possible. We showed that the edge-oriented stabilization
and the∇ div-method help to guarantee convergence and to obtain sufficiently accurate solution.





Part II

Implementation and Future Extensions
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Implementation

For the simulation of the Navier-Stokes equations a lot of CFD software are available. One can choose either be-
tween commercial codes such asCFX [44], StarCD [100],Fluent [32] or non-commercial codes, among which
areOpenFoam [77],Deal.II [26],MooNMD [70] and many others. While choosing any of them, one should take
into account many aspects, e.g. price of a license, sufficient accuracy of the obtained results, capability to modify
desired subroutines and parts of a code, etc. As the 1995 DFG benchmark showed [110], even commercial CFD
packages can fail already for laminar flow calculations. Forthe numerical calculations presented in this work we
chose the home-developed free-source CFD codeFeatflow, which fulfils all our requirements. In this chapter
we will give a short introduction intoFeatflow, describe its structure and aspects of pre- and post-processing
steps, show specific details concerning the realisation of our modified projection scheme (2.43)-(2.45) and mention
direction of further development and modernization of the software. Detailed information aboutFeatflow can
be found in [6], [105] and references therein or at www.featflow.de.

7.1 About Featflow

Featflow is ”Finite element software for the incompressible Navier-Stokes equations”. It was developed at the
University of Heidelberg within the working group of R. Rannacher and S. Turek (the list of involved persons
can be found in Appendix B of [5]).Featflow is a set of programs/solvers based on the finite element libraries
Feat2D [10] andFeat3D [39], which were originally written inFortran 77. The most advantageous charac-
teristics ofFeatflow are following:

1. powerful geometric multigrid solver [80, 105],

2. mixed Finite Element method with stable nonconforming Rannacher-Turek elements [88],

3. fast projection schemes for the system of the Navier-Stokes equations [104, 105].

In 2007 Michael Köster from TU Dortmund completely reorganized old packages into carefully documented data-
encapsulated code written inFortran 90, by this giving birth to the second release ofFeatflow 2 available
at www.featflow.de.

The structure ofFeatflow can be divided into two parts: an outer ‘user-setting’ part,to be described in§ 7.2.2,
and an inner solution part, which provides an approximate solution of discretized system for the given configura-
tion. The inner part can be considered as a ”solver engine”, which has to be modified only if some changes in the
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algorithmic flow of a scheme is supposed, e.g. realisation ofthe modified projection scheme.

By treating the nonlinear problemsFeatflow solvers can be divided into two approaches:

1. In the first one the nonlinearity is treated by outer nonlinear iterations of fixed-point or quasi-Newton type or
by a linearization technique through extrapolation in time. Then the obtained linear indefinite subproblems of
Oseen type are solved by a coupled or a splitting approach (cc2d/cc3d solvers).

2. In the second one, the coupled system is first split to obtain definite subproblems inu (Burgers-equations)
as well as inp (linear pressure-Poisson problems). Then the nonlinear subproblems inu are treated by an
appropriate iteration or a linearization technique (pp2d/pp3d solvers).

These approaches form the Navier-Stokes tree ofFeatflow solvers. Numerical tests [103] have shown that the
solverspp2d/pp3d are superior tocc2d/cc3d, especially for highly nonstationary flows. Moreover, one can
easily verify that thepp2d/pp3d approach fits into the concept of the modified projection scheme (2.43)-(2.45).
This was the reason why we took its code as a basis for the programming realisation of the proposed modified
projection scheme (2.43)-(2.45).

At the end of this section we would like to add couple words about potentials for aFeatflow user. Namely, in
aFeatflow code one can easily include any extrenal mathematical library, such asBLAS, LAPACK, UMFPACK,
etc. A user can couple it with some external mathematical or engineering tools, e.g for aFeatflow-Matlab cou-
pling see [41], for aFeatflow-Parsival interaction see [52]. The open source nature helps to modifyany part
of pre-, post- or solving steps. AFeatflow user can choose from large variety of stabilization techniques, pre-
conditioners, viscous stress tensors, building-blocks for convection-diffusion transport equations and other helpful
already implemented features. At the moment a large scientific group of Stefan Turek in TU Dortmund keeps
working on further extensions of theFeatflow code in the directions of population balance and turbulencemod-
els, visco-elastic flows, optimization techniques, particulate flows, parallelization, etc. Detailed information can be
found at www.mathematik.uni-dortmund.de/lsiii.

7.2 Preprocessing

The preprocessing phase inFeatflow consists of construction of an appropriate mesh, which has to be written
according to theFeatflow format, setting of required data parameters, prescriptionof boundary conditions for
the velocity, assignment of the right hand side and parametrization/smoothing of a mesh for finer levels. Mesh
construction will be described in§ 7.2.1. Setting of data parameters, boundary conditions, etc., will be provided
in § 7.2.2.

7.2.1 Grid generation

As it was mentioned in the chapter 2, a grid for theFeatflow simulation must be constructed of quadrilateral
elements for the 2D case and of hexahedrons for the 3D case. The main restrictions on the mesh are following:

1. All elements have to be convex and contain no ‘hanging’ nodes, see Fig. 7.1.

2. Every element is described by a series of vertices. In 2D a series consists of4 vertices, orders of which must
correspond to anticlockwise direction. In 3D a series consists of2 × 4 vertices, where the first and the last4

vertices should form quadrilaterals in anticlockwise direction.
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3. No element can have vertices, which belong to different boundaries of a given geometry.

4. Elements should be of moderate aspect ratios, i.e. too long and thin elements should be avoided, if possible.

Fig. 7.1.Forbidden elements, (LEFT) hanging node, (RIGHT) non-convex element.

In general, it is much more complex to cover a domain with quadrilateral elements than with triangular ones.
Nevertheless, the recently developedDeViSoRGrid3 [68] offers a user broad opportunities concerning mesh
construction and visualization. This java-written program with a friendly interface can provide a user with helpful
information about nodes, edges, elements and boundaries ofa mesh. It can automatically fulfil a domain with
quadrilaterals of a given radius/mesh size, check the constructed mesh for validity, etc. Having a 2D mesh (e.g.
again to construct it inDeViSoRGrid3), one can easily prolong it into the three-dimensional space by a layer-to-
layer algorithm, the so-called ‘sandwich’ mesh generation. If direct ‘sandwich’ style of construction is not possible,
e.g. in the case of considered stirred tank reactor geometries from Figures 8.1 and 8.2, one can resort to the help
of special scripts, which rewrite boundaries of a domain in the required format and automatically fulfil a domain
with quadrilaterals. For the latest release ofDeViSoRGrid3 check www.featflow.de.

7.2.2 User settings

We would like to note, thatFeatflow programs solve the Navier-Stokes equations in their dimensionless form.
To characterizes the flow field one can think of the Reynolds number. Thus, if one works with experimental data,
all required parameters and boundary conditions for velocity have to be scaled in such a way as to correspond to a
certain Reynolds number.
User settings in Featflow are divided into two categories:

1. solver parameters,

2. code prescribed settings.

Solver parametersare the corresponding parameters for the differential subproblems. They are located in the
separatepp2d.dat or pp3d.dat files and can be changed in their values without recompiling the program. A
list of some solver parameters together with their short descriptions for the code of the modified discrete projection
method is shown in Table 7.1.

Code prescribed settingsinclude boundary conditions for the velocity, assignment of the right hand side and
parameterisation/smoothing of a mesh for finer levels. All of them are to be written in the user-oriented files
in Fortran programming language. After changes are made, the program has to be recompiled. An advanced
Featflow user can modify not only these files, but any block ofFeatflow solver orFeat2D, resp.,Feat3D
libraries, as long as he or she clearly understands interaction of added blocks with specifics of the original code,
which can be either read in documentation or found out from developers.



Table 7.1. Short list of selected parameters for the modified projection code.

CPARM name of parameterisation file
CMESH name of coarse mesh file
CFILE name of protocol file
ISTART input of start vector

=0: start with homogeneous vector (only boundary conditions)
6=0: read start vector

CSTART name of start vector file
ISOL output of solution vector

=0: no output;6=0: output
CSOL name of solution vector file
NLMIN / NLMAX minimal / maximal multigrid level
IMASS parameter for mass matrix type (lumped of real mass matrix)
IMASSL parameter for element type of lumped mass matrix
IUPW parameter for convective terms (streamline diffusion, upwinding or edge-oriented

stabilization)
INLMIN / INLMAX minimal / maximal number of nonlinear iterations used for the solution

of the nonlinear transport-diffusion equations
INLMIN = INLMAX = 1: linear extrapolation in time
INLMIN = INLMAX = -1: constant extrapolation in time

ICYCU / ICYCP parameter for multi-cycle for velocity / pressure (F-, V-, or W-cycle)
ILMINU / ILMINP minimal number of multigrid steps for velocity / pressure
ILMAXU / ILMAXP maximal number of multigrid steps for velocity / pressure
ISMU / ISMP parameter for multigrid-smoother for velocity / pressure

(Jacobi, SOR, SSOR or ILU(k))
ISLU / ISLP parameter for multigrid-solver for velocity / pressure

(SOR, BiCGSTAB, CG, ILU(k), or BiCGSTAB+ILU(k) / CG+ILU(k))
IJUMP kind of the jump term
DJUMP relaxation parameter for the jump
INEWTON Newton method: 1=in, 0=out
DNEWTON relaxation parameter of the Newton method
BCORLS Coriolis force term: TRUE=in, FALSE=out
BMSCMP projection scheme: TRUE=modified, FALSE=nonmodified
BRCONV type of convection: TRUE=rotation, FALSE=standard
DHDIV parameterγ for ∇div stabilization
ANGVEL angular velocity
RE parameter for viscosity (Reynolds number)
NITNS maximum number of macro time steps
TIMENS absolute start time
THETA parameter for time-stepping value (Implicit Euler or Crank-Nicolson, only

used ifIFRSTP=0)
TSTEP starting time step
IFRSTP parameter for time-stepping scheme (one-step or fractional step scheme)
DTGMV time difference forgmv-output
IGMV level forgmv-output
TIMEMX maximum absolute time
IADTIM parameter for adaptive time-step control

=0: no control, fixed time stepTSTEP is used
6=0: time step control is used

DTMIN / DTMAX minimal / maximal time step during adaptive control
DTFACT factor for largest possible time step changes
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7.3 Postprocessing

For visualization of obtained numerical results we use a freely available visualizationGMV program (short for
General Mesh Viewer), see [78].GMV is a quite powerful postprocessing tool, at least if to compare among
freely available software. KnowingGMV format, one can prescribe the output of any wanted parameters: i.e. to
calculate and to output required vector/scalar fields, to set and to colour materials and boundaries, to prescribe
cutlines, cutplanes, iso-lines/surfaces, to set various visual attributes and so on.

The proposed idea of the coordinate transformation conceptbrings us to the necessity of calculating and setting
boundary conditions for the transformed velocity and pressure, but outputting non-transformed user-accustomed
values of the velocity and pressure during the postprocessing phase. Thus, prescription of Dirichlet boundary
conditions for the velocityv = −ω × r for problems, presented in Figures 8.1 and 8.2, will look as follows:

!*****************************
...
angvel = -some_positive_value

...

! v_x component
fdatin = y*angvel

...
! v_y component

fdatin =-x*angvel
!*****************************

where we assume that blades of a propeller rotate clockwise direction with the angular velocity
ω = (0, 0,−somepositivevalue).
After calculating inFeatFlow the approximation tuple(v, P ), but before outputting its values into thegmv-
formatted file, we have to perform a ‘backward’-coordinate transformation to output a user-acquainted values
(u, p), see Fig 7.2.

Fig. 7.2.Transformation for the GMV output

A ‘backward’-coordinate transformation of geometry is done according to the formula
x = UT ξ. In theFeatflow-code it reads as follows:

!*****************************
alpha = angvel*timens

...
x_trans_coord = real(dcorvg(1,ivt))

y_trans_coord = real(dcorvg(2,ivt))
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x_coord = cos(alpha)*x_transformed_coord -

sin(alpha)*y_transformed_coord
...

y_coord = sin(alpha)*x_transformed_coord +

cos(alpha)*y_transformed_coord
!*****************************

A ‘backward’-transformation for the velocityv = −ω × r can be written in the code as

!*****************************
! v_x component
write(munit,1000) (v_x(ivt)-real(dcorvg(2,ivt))*angvel)

...
! v_y component

write(munit,1000) (v_y(ivt)+real(dcorvg(1,ivt))*angvel)

!*****************************

For a ‘backward’-pressure transformationP = p− 1
2 (ω × r)2 one can write

!*****************************
write(munit,1000) (p(ivt) + &

0.5*angvel*angvel* &
( dcorvg(1,ivt)*dcorvg(1,ivt) + &

dcorvg(2,ivt)*dcorvg(2,ivt) ) )
!*****************************
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Future Extensions

The proposed approach of coordinate transformation was motivated by extensive work lead in the numerical sim-
ulation of population balance models for turbulent flow fields in stirred tank reactor geometries [41, 52, 91, 92].
Here, the moving boundaries of a propeller have to be approximated in a very precise way not only because they
are sources of main ‘perturbations’ in the velocity flow fieldto be used further in the population balance modeling,
but also because in many turbulence models (e.g.k − ε, k − ω, etc.) the prescription of boundary layers is of
supreme importance, see e.g. [47, 60, 114]. The main purposeof the current chapter is to show that the modified
projection scheme can be used not only for simple test problems presented in the cahpter 5, but also for complex
3D simulations of real-life models. As a representative of such models we chose the stirred tank reactor. In the
subsequent text we will apply the modified DPM to calculate the flow field in the stirred tank. Afterwards, we
will examine convergence of the iterative solver for various preconditioners, among which are newly proposed and
classical ones. Then, we will use a particle tracing tool to obtain a visual understanding of the flow field in a tank.
And finally, we will give a brief insight into the future CFD extensions, where the modified projection method
can be of big importance. This is, namely, the population balance modeling for turbulent flows in the stirred tank
reactor.

8.1 Numerical results for the Stirred Tank Reactor

In the chapter 5 we observed that the modified discrete projection method performs in a very advantageous manner
delivering good multigrid rates and faster convergence to the steady state solution. Nevertheless, it is a known fact
that very often the mesh complexity plays a crucial role in the numerical behaviour of the algorithm. Taking this
fact into consideration one might ask a fair question. Namely, what if the proposed algorithm is applied to some
complex real-life 3D model, will it produce the same numerical behaviour as we expect and which we observed
for the unit cube geometry?

To give an answer on this question we decided to consider two configurations from a class of Stirred Tank Reactors
(STR). This choice was due to the following reasons:

• Geometrical: STR possesses complex enough geometry.

• Transforming: STR makes it is possible to transform from the usual inertial frame of reference to the nonitertial
one, and thus to substitute the system of the Navier-Stokes equations by a new one with rotational forces.
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• Scientific: STR is widely used in industry and was intensively exploredin the series of works: modeling and
simulation of drop size distributions in stirred liquid-liquid systems [52, 91, 92] and flow control of turbulence
models [41].

Drafts of the STR configurations 1 and 2 are presented in Figures. 8.1 and 8.1, respectively. Mesh characteristics
are given in Table 8.1, where notation is similar to those used in Table 5.1.

4.0

10.0
6.0

0.6

1.0

Fig. 8.1.STR configuration 1, (LEFT) Design draft, (RIGHT) Mesh on the2d level.

0.6

22.0

6.02.0

10.0

3.0

3.0

5.0

Fig. 8.2.STR configuration 2, (LEFT) Design draft, (RIGHT) Mesh on the2d level.
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Table 8.1. Characteristics of STR meshes.

level NVT NAT NEL NEQ
One-propeller STR configuration

1 510 1,216 352 4,000
2 3,450 9,088 2,816 30,080
3 25,074 70,144 22,528 232,960
4 190,434 550,912 180,2241,832,960

Three-propellers STR configuration
1 1,406 3,528 1,048 11,632
2 9,864 26,688 8,384 88,448
3 73,100 207,360 67,072 689,152
4 560,9161,634,304536,5765,439,488

8.1.1 Multigrid with smoother C for velocity problems

In the same way as we did in§ 5.2.1 we test three preconditioning approaches for solvingthe velocity subprob-
lem (2.25) for the chosen STR configurations. The first two schemes include standard pointwise SOR methods
with the following preconditioners:

CSOR =




lower part(A) 0 0

0 lower part(A) 0

0 0 lower part(A)




CSORcoriol =




lower part(A) 0 0

2ω∆tML lower part(A) 0

0 0 lower part(A)




The third variant is the block-diagonal preconditionerCcoriol from (2.26). Both configurations gives almost the
same data results (see Table 8.2), which are equivalent to those presented in Table 5.2.

Table 8.2. Number of multigrid iterations of the momentum equation.

Preconditionerω∆t Meshing level

2 3 4
CSOR 0.6 2 2 2
CSORcoriol 0.6 2 2 2
Ccoriol 0.6 2 2 2
CSOR 6 2 2 2
CSORcoriol 6 2 2 2
Ccoriol 6 2 2 2
CSOR 60 div div div
CSORcoriol 60 3 4 4
Ccoriol 60 2 2 2
CSOR 600 div div div
CSORcoriol 600 >100 >100 >100
Ccoriol 600 2 2 2
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8.1.2 Multigrid solver for the modified pressure equation

As the next step, we check the convergence behaviour of the modified pressure Poisson equation and show that
the observed behaviour of multigrid convergence rates has the same tendency as those shown in Tables 5.3–5.6. It
can be also seen that the mesh complexity increases values ofthe average multigrid factor, which are presented in
Tables 8.3 and 8.4.

Table 8.3. Multigrid convergence rates for different preconditionersP = BTM−1
(·)

B with 4 smoothing steps, resp., 2 smooth-
ing steps for BiCGStab, 3d level.

Smoother 2ω∆t

0.05 0.5 5.0 50.0
M(mass)

SOR 0.50+000.50+000.50+000.50+00
ILU(1) 0.17-01 0.17-01 0.17-01 0.17-01
ILU(3) 0.75-03 0.75-03 0.75-03 0.75-03
BiCGStab(ILU(1)) 0.19-02 0.19-02 0.19-02 0.19-02
BiCGStab(ILU(3)) 0.47-03 0.47-03 0.47-03 0.47-03
M(mass+coriol)

SOR 0.50+000.51+000.81+00 div
ILU(1) 0.17-01 0.19-01 0.59-01 0.26-01
ILU(3) 0.75-03 0.75-03 0.48-02 0.28-02
BiCGStab(ILU(1)) 0.18-02 0.18-02 0.61-02 0.30-02
BiCGStab(ILU(3)) 0.47-03 0.36-03 0.21-02 0.18-02
M(diag)

SOR 0.46+000.31+000.41+000.49+00
ILU(1) 0.13-01 0.32-01 0.20+000.35+00
ILU(3) 0.23-02 0.76-02 0.81-01 0.19+00
BiCGStab(ILU(1)) 0.31-02 0.83-02 0.45-01 0.88-01
BiCGStab(ILU(3)) 0.96-03 0.18-02 0.20-02 0.43-02
M(diag+coriol)

SOR 0.46+000.34+000.56+000.68+00
ILU(1) 0.13-01 0.34-01 0.14+000.16+00
ILU(3) 0.23-02 0.79-02 0.38-01 0.40-01
BiCGStab(ILU(1)) 0.31-02 0.85-02 0.23-01 0.28-01
BiCGStab(ILU(3)) 0.96-03 0.17-02 0.13-02 0.19-02

8.1.3 Unsteady simulation for the STR configurations

Now we are ready to perform full unsteady numerical simulations for two configurations of the Stirred Tank
Reactor. The main characteristics besides the presented inFig. 8.1 (left) and Fig. 8.2 (left) are chosen to be as
follows (all measures are given in non-dimensional form):

1. Configuration 1: Kinematic viscosityν = 0.1, velocity of inflowuinflow = 40, angular velocityω = 2π,

Ekman numberEk ≈ 0.0004, whereEk :=
ν

ωL2
blade

. In the case of mixers the Ekman number is such that

Ek =
1

Re
, whereRe is the Reynolds number.

2. Configuration 2: Kinematic viscosityν = 0.1, velocity of inflowuinflow = 40, angular velocityω = 2π,
Ekman numberEk ≈ 0.0004.
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Table 8.4. Multigrid convergence rates for the preconditionerP = BTM−1
(diag+coriol)

B for different levels with 4 smoothing
steps, resp., 2 smoothing steps for BiCGStab.

level 2ω∆t

0.05 0.5 5.0 50.0
SOR

2 0.35+000.35+000.57+000.65+00
3 0.46+000.34+000.56+000.68+00
4 0.40+000.40+000.60+000.65+00

BiCGStab(ILU(1))
2 0.85-03 0.91-03 0.45-02 0.76-02
3 0.31-02 0.85-02 0.23-01 0.28-01
4 0.53-02 0.98-02 0.23-01 0.38-01

Out

In

In

Out

Fig. 8.3.Numerical simulation, (LEFT) For the configuration 1, (RIGHT) For the configuration 2.

In every case fluid enters the tank through an inlet near the bottom, then it is ’mixed’ by the rotating propeller
and leaves the stirred tank through an outlet located on the top, see Fig. 8.3. Inlet and outlet are prescribed on
the outside wall as inhomogeneous Dirichlet and homogeneous Neumann boundary conditions, resp. The inlet is
prescribed as a triangular region:

• Configuration 1: width φ ∈ [− π

32
,
π

32
], heightZ ∈ [0.2, 1.2].

• Configuration 2: width φ ∈ [− π

32
,
π

32
], heightZ ∈ [1.0, 4.0].

Outlet is located on the opposite side of the tank and defined as follows:
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• Configuration 1: width φ ∈ [π − 3π

64
, π +

3π

64
], heightZ ∈ [2.8, 3.8].

• Configuration 2: width φ ∈ [π − 3π

64
, π +

3π

64
], heightZ ∈ [18.0, 21.0].

The coordinate transformation made it possible to preservethe mesh aligned with the boundaries of the propeller
such that even the small-scale flow features are resolved. Atthe end of the simulation, in the postprocessing phase,
the backward coordinate transformation (from the noninertial to the inertial one) is performed and the velocity field
is changed respectively to provide the user with the ’standard’ motion of the propeller in the stirred tank reactor, see
Fig. 8.4. Movies of the velocity field can be found at www.mathematik.uni-dortmund.de/lsiii/download/sokolow.

Particle tracing

Usually, it might be a difficult task to make concluding remarks about the flow field in the 3D geometry. Moreover,
very often the main interest of the simulation is not the flow field itself, but a mixture of some sources/species inside
of the reactor. Injection of the particle tracers into the geometry of the STR helps to evaluate both the propagation
of the velocity field and the mixture of the particles.

For these reasons we took the explicit time-stepping particle tracing toolGMVPT [1], which was developed by Jens
Acker at TU Dortmund.GMVPT matches withFeatflow output data in theGMV format and uses these data to
calculate propagation of particles in the obtained flow field. For the best visualization one can choose number of
sources, their colours, location of source injectors and other helpful features.

Here we demonstrate a pair of postprocessing simulations done by a particle tracing toolGMVPT. In the first case
prescribed near the inlet three sources of particles, whichcan be distinguished by its colour: green, yellow and
red, respectively (see Fig. 8.5). Six snapshots at the succeeding time steps give a realistic understanding of the
flow motion and show a good mixing process of particles. In thesecond case, the domain of prescription we
leave the same, but now we colour particles with respect to their duration of stay in the tank: starting from blue
as the youngest particle and following the RGB colour scale up to red as the oldest particle. Six snapshots at the
succeeding time steps are shown in Fig. 8.6. Movies of particle distributions can be found at www.mathematik.uni-
dortmund.de/lsiii/download/sokolow.

As a remark, we would like to point out that the simulated STR configurations can be significantly more complex
(curvature and number of blades, shape of the tank, etc.) without any loss from the side of the numerical behaviour
of the proposed DPM.

The considered discrete projection method shows a robust and accurate behaviour for such complex unsteady
problems as a stirred tank reactor. The developed code also exploits advanced CFD techniques such as stable
non-conforming finite elements [88], robust high-resolution stabilization of the convective term [56], multigrid
solvers [105], etc. Furthermore, the approach can be extended to population balance models or turbulent flows
(k − ε turbulence model), which will be discussed shortly in sections§ 8.2 and§ 8.3.



Fig. 8.4.Distribution of the velocity field in the STR.
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Fig. 8.5.Distribution of particles at consecutive time steps in the STR. Particles are colored by sources.
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Fig. 8.6.Distribution of particles at consecutive time steps in the STR. Particles are colored by the duration of their stay in the
tank.
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8.2 Turbulence model

To model the relevant processes appearing in such a system asa stirred tank reactor, one has to account for the
turbulent flow. Mathematically the turbulent flow is defined by a system of Navier-Stokes equations with a high
Reynolds number (Re = UL/ν, whereU is a characteristic velocity,L is a characteristic length andν is a
kinematic viscosity). While dealing with three-dimensional flows at high Reynolds numbers, the numerical costs of
DNS (Direct Numerical Simulation) are extremely high. For example, for a 3D simulation of the stirred tank reactor
with Reynolds numberRe = 30 000 this would require aboutRe

9
4 ≥ 10 000 000 000 nodes (see e. g. [36], [92]),

which is not feasible with today’s computing power. Therefore, some kind of turbulence modelling has to be used.

A k-ε turbulence model was added to FEATFLOW, in order to make the calculation of such flows on meshes of
moderate size possible. The corresponding CFD codepp3d-kewas developed by Kuzmin building on the laminar
Featflow version [57]. The mathematical foundations of the program can be described as follows.

We consider the following system ofReynolds-averaged Navier-Stokes(RANS) equations:

∂u

∂t + u · ∇u = −∇p+ ∇ · ((ν0 + νT)D(u))

∇ · u = 0
(8.1)

whereu = (u1, u2, u3)
T is a time-averaged velocity andp = p(t,x) is a time-averaged pressure, both defined on a

time-space domain(0, T )×Ω with T > 0 andΩ ⊂ R
3. D(u) = ∇u+(∇u)T is a strain tensor andνT = Cµ

k2

ε

is a turbulent eddy viscosity. The turbulent kinetic energyk and its dissipation rateε are modelled by the following
scalar transport equations:

∂k

∂t
+ ∇ ·

(
ku− νT

σk
∇k
)

= Pk − ε,

(8.2)
∂ε

∂t
+ ∇ ·

(
εu− νT

σε
∇ε
)

=
ε

k
(C1Pk − C2ε),

wherePk = νT

2 |∇u + ∇uT |2. The default values of the involved empirical constants are: Cµ = 0.09,C1 = 1.44,
C2 = 1.92 , σk = 1.0, σε = 1.3.

Additionally, appropriate boundary conditions foru, k andε have to be prescribed∂Ω = Γin ∪Γout∪Γwall ∪Γsym.

As usual, Dirichlet boundary conditions foru, k andε are prescribed on the inflow boundaryΓin:

u = g, k = cab|u|2, ε = Cµ
k3/2

l0
, (8.3)

wherecab is an empirical constant [58] andl0 is a mixing length.

Let us denoten to be the unit outward normal to the boundary. At the outletΓout the following ’do-nothing’
boundary conditions are prescribed:

∂u

∂n
= 0,

∂k

∂n
= 0

∂ε

∂n
= 0, n · [pI − νTD(u)] = 0. (8.4)

In thek − ε model the behaviour of a fluid near an impervious solid wall ismodelled by wall functions. The com-
putational wall boundaryΓwall is located at a distanceδ from the real geometrical wall boundary. In our case we
assume that the computational domain is already reduced by alayer of widthδ, which is a user-defined parameter.
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We set the following boundary conditions onΓwall:

n · u = 0, n · D(u) = −u
2
τ

νT

u

|u| , k =
u3

τ√
Cµ

, ε =
uτ

κδ
, (8.5)

whereκ = 0.41 is the von Kármán constant anduτ is the friction velocity. Hereuτ is the solution of the logarithmic
wall law equation:

|u| = uτ (
1

κ
log y+ + 5.5), (8.6)

wherey+ = uτδ/ν is the local Reynolds number.

A detailed mathematical derivation of thek− ε turbulence model can be found, e.g. in [61, 69]. The realization of
the numerical algorithm is described in [58].

We would like to note that the wall boundary conditions (8.5)and (8.6) in thek − ε turbulent model are based on
the experimentally measured behaviour of flow in a channel. Since no data about wall boundaries in the stirred tank
is available, we have to assume that they do not differ substantially from those in the channel flow. The coordinate
transformation led not to the rotation of the blades of the propeller, but to the outside wall, which shape is more
similar to the plain deck, especially if the curvature of thewall of the tank is small. Moreover, since the outside
wall of the tank rotates (again, if to consider from the noninertial frame of reference), the main role plays not
normal, but the tangential component of velocityu. Thus, the boundary conditions (8.5) and (8.6) are modified in
the following way:

n · u = n · ẋ,
∣∣n⊥ · (u− ẋ)

∣∣ = uτ (
1

κ
log y+ + 5.5), (8.7)

whereẋ is velocity of the wall andu · n⊥ = u− (n · u)n.
Basing on the Reynolds-averaged Navier-Stokes equations (8.1) and the generalized boundary conditions (8.7) we
can propose the coordinate transformation concept for the better treatment of a rotating propeller boundaries. This
can lead to the application of the proposed modified discreteprojection method. Careful numerical analysis of the
modified DPM in the direction of the Reynolds-averaged turbulence modeling we leave as a topic for future.

8.3 Population balance

Population balance is a well-established method used to analyse the size of the dispersed phase during our mod-
elling of the phenomena that occur in the stirred tank. We have to describe the behaviour of this dispersed phase
and as a result to account for the population dynamical processes of the drops: to describe how the number of drops
of a certain size changes with time. On the one hand, when two drops collide, they may form a larger drop. That
means a new larger drop is generated, whereas two smaller drops disappear. On the other hand, a drop may also
collide with an eddy such that it breaks up into some smaller drops. In this case, some smaller drops are formed
and the larger, the so-called mother drop, is destroyed. Theconfluence of drops is called coalescence, the breakup
is called dispersion.

In simulation the following assumptions can be made:

• Only binary coalescence is considered (since the probability that three or more drops collide in a time interval
(t,t+ dt) at a certain point is negligibly small compared to the probability that two drops meet).

• Source term in the population balance equation are assumed to be only due to break-up and coalescence (ex-
pansion, growth and other processes are ignored).
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The continuity equation for the dispersed phase, accounting for the changes in the particle size, is of the
form [86], [97]:

∂

∂t
ρα+ ∇ · ραu +

∂

∂r
ραṙ = 0, (8.8)

wheret is time,ρ is density,α is volume fraction,u is velocity,r is a particle radius anḋr is the rate of change in
particle radius. The first term of this equation represents changes of particle concentration in time, the second term
the convection in physical space and the third term the changes in size.
Let us denote

S = − ∂

∂r
ραṙ

to be the source/sink termS = S(V,x, t) and
f = −ρα

to be the average number density functionf = f(V,x, t), i.e.f describes how many drops of volumeV are at a
certain pointx at timet.
Applying Reynolds averaging to the population balance equation (8.8), we obtain:

∂f

∂t
+ ∇ · (uf) −∇ · (ct∇f) = S, (8.9)

where the diffusion term−∇ · (ct∇f) is due to the modelling∇ · (u′f ′) = −∇ · (ct∇f). Here,u′ is velocity
of small eddies,f ′ is an average number density function of the small eddies,ct = νT /(ρSct), whereνT is a
turbulent eddy viscosity andSct is the turbulent Schmidt number. Further information can befound in the book by
D. Ramkrishna [86]

The coalescence and breakup phenomena are taken into account by means of the terms in the right-hand side
of this integro-differential equation. There are different approaches can be found in literature on how to model
source/sink termS. In our case we will assume that sink is only due to the sink of coalescences−coal and breakup
s−break, and, in the same way, source is only due to the source of coalescences+coal and breakups+break. Therefore
S(V,x, t) = s+coal + s−coal + s+break+ s−break.

The terms due to coalescence are modeled by:

s−coal(x, V, t) = −f(x, V, t)

∫ Vmax−V

0

Rcoal(V, V
′,y(x, t))f(x, V ′, t)dV ′,

s+coal(x, V, t) =

∫ V

0

Rcoal(V
′, V ′′,y(x, t))f(x, V ′, t)f(x, V ′′, t)dV ′.

Here,Rcoal(V
′, V ′′,y(x, t)) denotes the coalescence rate, which describes the probability that two drops with vol-

umesV ′ andV ′′ coalesce. Vectory is the so-called continuous phase vector, which is dependent on the properties
of the continuous phase that influence the coalescence and breakage processes. Thus, the vectory may consist of
pressure, temperature, or other values that we get from the calculation of the flow field.
On the other hand, the source and sink terms due to breakages±break(x, V, t) are modelled by:

s−break(x, V, t) = −Rbreak(V,y(x, t)) f(x, V, t),

s+break(x, V, t) =

∫ Vmax

V

n(V ′,y(x, t))γ(V, V ′,y(x, t))Rbreak(V
′,y(x, t))

f(x, V ′, t)dV ′.

Here,Rbreak(V
′,y(x, t)) denotes the breakage rate, which accounts for the probability that a drop with volume

V ′ breaks up. Furthermore,γ(V, V ′,y(x, t)), the so-called distribution of daughter drops, describes the probabil-
ity that the breakage of a drop with volumeV ′ leads to at least one daughter drop with volumeV . The quantity
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n(V ′,y(x, t)) gives the number of daughter drops that are formed by the breakage of a drop with volumeV ′.

Physically, the following boundary conditions should be prescribed onΓwall = Γstirrer∪ Γtank:

u = ustirrer onΓstirrer

u = 0 onΓtank

f(x, V, t) = 0 on Γwall

whereΓstirrer describes the stirrer, andΓtank the boundary of the tank. The initial conditions are chosen such that
they are consistent with the boundary conditions. Further details about the modelling of stirred liquid-liquid sys-
tems can be found in [52, 91, 92].

In practice it is often assumed that drops belong to some fixedsize groups, the number of which is finite. Hence,
discretizing (8.8) in respect to size, we obtain a continuity equation for the size group-i:

∂

∂t
ραi + ∇ · ραiu = Si, (8.10)

whereSi is the rate of mass transfer into or out of the size group due tobreak-up and coalescence. It is obvious,
that the sum of all particle volume fractions equals the volume fraction of the dispersed phase:

∑
αi = α.

As before, we can rewrite the individual size-group volume fraction in terms of the total as:

fiα = αi

and rewrite (8.10):
∂

∂t
ραfi + ∇ · ραufi = Si, (8.11)

wherefi is the fraction of the dispersed phase volume fraction in group-i. This equation has the form of the trans-
port equation of a scalar variablefi in the dispersed phase.

Due to one way coupling we can apply the coordinate transformation technique to calculate the velocity fieldu,
which will be used later in the population balance equation (8.9). Numerical experiments in this direction we will
also leave as a topic for future.

8.4 Conclusions

From the previous two sections we observe that the coordinate transformation concept and therefore the modified
discrete projection framework are applicable for the numerical simulation of population balance and ’Reynolds-
averaged’ turbulence models, where precise calculation ofa flow field along moving boundaries is important. We
showed that the modified discrete projection method is suitable for simulation of complex industrial models. We
also noticed that for complex 3D simulations presented in this chapter the iterative solver demonstrates the same
properties already observed for test models of the chapter 5. The particle tracing tool gives a realistic behaviour of
the flow field in the stirred tank reactor. At the moment, theFeatflow group at TU Dortmund continues intensive
research in the directions of turbulent flows [53] and populations balance modeling [4]. As future extensions one
can choose simulation of such complex models by a general-purpose scheme (4.8)–(4.10), where convection and
the Coriolis force term are written in a form of the cross-product operatorw(u,ω, ·) × u.
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Conclusion and outlook

In this thesis we proposed a new discrete projection method for the incompressible Stokes and Navier-Stokes
equations with Coriolis force which includes new multigridand preconditioning techniques for the arising sub-
problems for pressure and velocity. In particular, the constructed multigrid method for the velocity matrix shows
a robust convergence behaviour for a wide range ofω∆t values. Moreover, its explicit inversion does not require
any additional memory or computational resources. The modified discrete pressure Poisson-like operator in a pro-
jection step was deduced using pressure Schur complement preconditioning technique. It appears to be much more
efficient both in accuracy in time and in convergence to the steady state solution than the standard one since con-
vective as well as rotational parts were taken into account.The numerical results showed that the modified DPM
is more efficient and robust with respect to the variation in problem parameters than the standard projection scheme.

Furthermore we analysed the accuracy of the modified projection scheme. It was proven that the proposed DPM for
the Navier-Stokes equations with the Coriolis force (1.3) has the same order of accuracy as the classical projection
scheme for the Navier-Stokes equations (1.1). Namely, the velocity is weakly first-order approximation and the
pressure is weakly order12 approximation.

As the next step we introduced the rotational form of convection. By doing so, we extended the framework of the
modified scheme to the general case, which made it possible totreat any terms written in a form of the cross-product
operatorw(u, ·)×u. Though we did not gain advantageous numerical behaviour ofthe rotation form of convection
with respect to those of the standard form, we showed that with the help of edge-oriented and∇ div-stabilization
techniques one can obtain sufficiently accurate results up to medium Reynolds numbers. As test models we took
the lid-driven cavity and the flow around cylinder benchmarkproblems.

Finally, with the code for the modified discrete projection scheme we performed nonsteady simulations for two
configurations of stirred tank reactor models. In the obtained flow field we injected virtual particles and observed
their distribution and mixture. These tests showed that theproposed DPM can be successfully used for real-life
models. We also showed possible applications of our DPM for turbulent flows in the stirred tank reactor, where
prescription of boundary layers is of primary importance. Numerical analysis of this model by a general scheme
with coriolis-convection operatorw(u,ω, ·) × u we leave as a topic for the future.
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Appendix A

10.1 Derivation of the modified system of the Navier-Stokes equations

As we have already seen, for the case of the stirred tank reactor it is reasonable to perform a coordinate transfor-
mation in such a way that blades of the propeller remain stationary, but the outside wall of the stirred tank reactor
rotates in a direction opposite to those of the propeller before coordinate transformation, see Fig. 10.1. In other
words, we assume that the observer is placed into the middle of the propeller. By doing so, we have to turn to
consider the system of the Navier-Stokes equations with theso-called rotational forces – forces, which arise in the
system due to this coordinate transformation. In our derivations we make the following assumptions:

1. The propeller in the stirred tank rotates around theZ-axis. The general case can be easily obtained by accu-
mulating the same idea, presented below.

2. Angular velocity is constant, i.e.ω = (0, 0, ω)T , whereω = const.

3. The tank is filled with homogeneous liquid.

Fig. 10.1.Systems of coordinates

We say that an inertial frameK is a preferable frame of reference and anything causing a particle to be accelerated
relative to it is regarded as a true force. We denote a basis inK by {x1, x2, z}.
At the same time, the non-inertial reference frameS (in which body violates Newton’s Laws of Motion) has a
commonOZ-axis and rotates in an anticlockwise direction with some ’speed’ω relative toK. Let us choose an
arbitrary pointP = P(x) = P(ξ), wherex = (x1, x2, z)

T are its coordinates inK, andξ = (ξ1, ξ2, z)
T are
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coordinates inS. There can be established the following relation betweenx andξ:




x1 = r cos θ

x2 = r sin θ

ξ1 = r cos(θ − ωt) = r cos θ cosωt+ r sin θ sinωt

ξ2 = r sin(θ − ωt) = r sin θ cosωt− r cos θ sinωt

z = z

(10.1)

wheret is a time variable. Rewriting (10.1) in a matrix form, we get

ξ = Ux, (10.2)

whereU =




cosωt sinωt 0

− sinωt cosωt 0

0 0 1


 is a matrix of the coordinate transformationx → ξ. One can easily check that

U is orthogonal, i.e.UTU = UUT = I. Hence,

x = UT ξ. (10.3)

Differentiating (10.2) with respect tot, one obtains




ξ̇1 = ẋ1 cosωt+ ẋ2 sinωt− x1ω sinωt+ x2ω cosωt

ξ̇2 = −ẋ1 sinωt+ ẋ2 cosωt− x1ω cosωt− x2ω sinωt

ż = ż

(10.4)

The matrix form of (10.4) is
ξ̇ = U ẋ− ω × r(ξ), (10.5)

wherer(ξ) = (ξ1, ξ2, z)
T is a radius vector. Again, differentiating (10.3) with respect tot, one gets

ẋ = UT ξ̇ + ω × r(x). (10.6)

Let us turn our attention to the relation between the rate of change of an arbitrary vectorOP = p in K and its rate
of change inS. If we fix p, which can be in general a function of time, then its rate of change will appear different
in both systems. If the tip of the vector is at rest inS, then, as seen fromK , a perpendicular componentω×p adds
up per unit of time. In general, whenp is not fixed inS, either in direction or in magnitude or both, we shall have:

(
dp

dt

)

K

=

(
dp

dt

)

S

+ ω × p. (10.7)

Next, let us denote by

u = ẋ =

(
dr

dt

)

K

and v =

(
dr

dt

)

S

=



x1ξ1

ξ̇1 + x1ξ2
ξ̇2

x2ξ1
ξ̇1 + x2ξ2

ξ̇2
ż


 = UT ξ̇ (10.8)

velocities inK andS frames, respectively. Then, from (10.6) we can derive
(
du

dt

)

K

=

(
dv

dt

)

K

+ ω × u. (10.9)

Substitutingu into the last term of (10.9) we obtain
(
du

dt

)

K

=

(
dv

dt

)

K

+ ω × v + ω × (ω × r). (10.10)
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Next, applying (10.7) tov one gets
(
dv

dt

)

K

=

(
dv

dt

)

S

+ ω × v. (10.11)

Substituting (10.11) into (10.10) we come to the final equality
(
du

dt

)

K

=

(
dv

dt

)

S

+ 2(ω × v) + ω × (ω × r). (10.12)

As we know, in the inertial frame of referenceK the system of Navier-Stokes equations reads:

∂u

∂t
+ u · ∇u = −∇p+ ν∆u (10.13)

∇ · u = 0 (10.14)

We perform a term-by-term modification to get its view in the noninertial frameS.

First, taking into account the incompressible property (10.14) we obtain

∆u = ∇ ·
(
∇u+ ∇uT

)
= 2∇ · D(u).

The tensor components ofD(u) are ‘transformed’ as follows:

uik =
1

2

(
∂ui

∂xk
+
∂uk

∂xi

)
=

1

2

(
∂vi

∂xk
+
∂vk

∂xi

)
+

+
1

2

[
∂

∂xk
(ω × r)i +

∂

∂xi
(ω × r)k

]
=

1

2

(
∂vi

∂xk
+
∂vk

∂xi

)
= vik,

since

∂

∂xk
(ω × r)i +

∂

∂xi
(ω × r)k =

∂

∂xk
(εilmωlxm) +

+
∂

∂xi
(εklmωlxm) = ωl (εilmδmk + εklmδmi) = ωi(εilk + εkli) = 0,

whereεilm = 1, if (i, l,m) is an even permutation, andεilm = −1, if (i, l,m) is an odd permutation.

We see that the componentsvik are built from the vector fieldv in the same way as the componentsuik are built
from the vector fieldu. Because the pressure term is trivial to evaluate, the second and the last step to do is to
‘transform’ the equation (10.14) for the incompressibility as follows:

∇ · u = ∇ · (v + (ω × r)) = ∇ · v + ∇ · (ω × r) =

= ∇ · v +
∂

∂xk
(ω × r)k = ∇ · v +

∂

∂xk
εklmωlxm = ∇ · v.

Thus, in the noninertial frame of referenceS the system of Navier-Stokes equations becomes of the form:

∂v

∂t
+ v · ∇v + 2ω × v + ω × (ω × r) = −∇p+ ν∆u (10.15)

∇ · u = 0 (10.16)

where2ω × v is theCoriolis forceandω × (ω × r) is theCentrifugal force.

At the end we would like to prove two auxiliary propositions,which were used in§ 1 and throughout the thesis.
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Proposition 1. Letω ⊥ r. Thenω × (ω × r) = −ω2r

Proof. By direct calculation. �

Proposition 2.ω × (ω × r) = −1

2
∇(ω × r)2

Proof.
(ω × r)2 = (ω × r) · (ω × r) = (r × (ω × r)) · ω = ω2r2 − (r · ω)2

∇(ω × r)2 = 2ω2r − 2(r · ω)ω = −2ω × (ω × r)

Proposition is proved. �
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