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Chapter 1

Introduction

Proteins were first described and named by the Swedish chemist Jöns Jakob Berzelius in

1838. The word protein comes from the Greek word ‘πρωτǫιoς’, which means ‘standing

in the front’, ‘in the lead’.1 More than a century of research has shown that proteins

are central to all living systems due to their involvement in all aspects of cell life,

immune protection, cell-cell communication, physical support (hair and skin), and muscle

movement. The solubility of proteins has been measured for more than a century, and

the concept played a prominent role in the development of protein physical chemistry.2

The majority of proteins in the human body are biologically active in a narrow range of

temperature and pressure, and a ‘folded’ conformation is necessary for biological activity.

Relatively recently, several diseases have been associated with protein aggregation.

Some proteins or protein fragments have been found to undergo a transition from the

normally soluble forms to insoluble fibrils or plaques, which accumulate in various organs

such as liver, spleen and brain. The mature aggregates often have well-defined fibrillar

structures, and are generally known as amyloids, hence the term amyloidosis is used to

describe many of the clinical conditions with which they are associated (see Ref. 3 and

references therein). Protein aggregation is also a relevant issue in pharmaceutical industry,

as it also affects the shelf-life of a protein solution, which is directly related to the economic

viability of a typical protein based pharmaceutical product.4 Hence, the understanding of

protein sequence-structure relationships and the phase behavior of proteins has become a

major research area in the field of biophysics.

1
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1.1 Proteins

Proteins and peptides are built from smaller, individual amino acid units, with each

amino acid containing an α-carbon bonded to an α-amino group, an α-carboxyl group,

one hydrogen, and a side chain, R, of varying lengths and functionalities. There are

twenty naturally occurring amino acids. Their names are commonly abbreviated with

either a three-letter code or a one-letter code. Depending on the chemical structure of

the side chain, the amino acids can be broadly divided into two different classes. The

first class comprises those with hydrophobic side chains (non-polar) e.g. Ala (A), Val

(V), Leu (L), Phe (F), etc. The second class comprises amino acids having hydrophilic

side chains (polar) that are either charged (Lys (K), Glu (E), Asp (D) and Arg (R)) or

uncharged (Gln (Q), His (H), etc). The amino acid glycine (G), the simplest of all the

twenty amino acids, has only a hydrogen atom as the side chain. The growth of a protein

occurs by a condensation reaction between the free amine and the free carboxylic group

of two distinct amino acids, resulting in the formation of amide bonds. The secondary

structure of the α-helix is formed by the hydrogen bonding between the NH and CO

groups of the same strand, whereas the β-strand forms hydrogen bonds with other β-

strands. These β-strands stabilize each other through intermolecular hydrogen bonding,

forming β-sheets. Tertiary structures are built on these secondary structures, with the

corresponding formation of higher-order structures such as βαβ-units, β-hairpins, and α-

helix bundles. If a protein has two or more polypeptide subunits, their spatial arrangement

is referred to as quaternary structure. On the basis of higher level structures, proteins can

be classified into two major groups: fibrous proteins, having polypeptide chains arranged

in long strands or sheets, and globular proteins, having polypeptide chains folded into

a spherical or globular shape. The two groups are structurally distinct: fibrous proteins

usually consist largely of a single type of secondary structure; globular proteins often

contain several types of secondary structures. The two groups also differ functionally; the

structures that provide support, shape, and external protection to vertebrates are made

of fibrous proteins, whereas most enzymes and regulatory proteins are globular proteins.5
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1.2 Protein folding

“Protein folding” is a term used to describe the process by which a polypeptide chain

adopts its three-dimensional “native” conformation. To carry out their functions, proteins

must fold rapidly and reliably. They must satisfy a kinetic requirement (folding must

be completed within a reasonable time) and a thermodynamic requirement (the folded

conformation must be stable under physiological conditions). Due to the vast amount

of configurational space available to a protein chain, predicting protein folding from

its primary sequence still remains one of the most important challenges in science.6 It

has been shown experimentally that, for some proteins, the stable native state of the

protein survives in a closed range in the pressure-temperature plane.7 In these studies,

it was assumed that there are only two possible states of the protein, the native and

the denatured state, and that the transition occurs without any intermediate states.

The Gibbs free energy difference (∆G) between the denatured and the native state was

calculated. The transition line was defined by ∆G = 0 and the curve was found to be

elliptic-like in shape. In the framework of this theory, heat, pressure and cold denaturation

are the three ways of protein unfolding.8

Figure 1.1: Schematic pressure/temperature stability diagram of a typical monomeric protein. The
different routes of unfolding of the native protein (green area) as well as corresponding thermodynamic
properties are depicted. Heat denaturation is often accompanied by irreversible aggregation. The
water/ice phase transition line is also given.9
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Solvent plays a crucial role in determining the state of a polymer. In polymer physics,

it is well known that the compactness of a polymer greatly depends on the type of liquid

in which it is placed. If there is a strong attractive interaction between solvent molecules

and the polymer chain, the solvent is called a “good solvent”. Polymers swell or expand

in a good solvent, in a way similar to the swelling caused by repulsion between various

segments of the chain itself. On the other hand, if there is a much weaker attractive

interaction between solvent molecules and the polymer than between segments of the

polymer molecules themselves, the solvent is called a “poor solvent”. In a poor solvent, the

polymer chain will be forced to adopt a more compact conformation. This is equivalent to

an attractive interaction between the segments of the chain.10,11 Thus, various interactions

between constituent amino acid residues of the protein, and with the surrounding solvent,

determines the preferable structure of protein in a given thermodynamic state. These

interactions include electrostatic and van der Waal interactions between various atoms,

formation of hydrogen bonds within the polypeptide chain or with solvent molecules,

and hydrophobic interactions. The term “hydrophobic interaction” refers to the total

interaction between two or more interacting non-polar solutes in an aqueous solution.

The net attractive interaction between hydrophobic particles was initially explained using

the “iceberg” model. It was believed that water molecules near hydrophobic particles are

“ordered”, i.e., in order to avoid the enthalpic penalty of losing hydrogen bonds, water

molecules arrange themselves around a hydrophobe in a relatively ordered fashion, causing

a loss of entropy, which is to some extent compensated by enhanced hydrogen bonding in

the hydration layer, resulting in the formation of semicrystalline hydration shell. Thus,

if the two hydrophobes comes together, the “structured” water in the region between

them is returned to the bulk, leading to an entropy increase.12,13 This view has been

discredited as many evidences have shown that water does not undergo any structural

enhancement near hydrophobic solutes. The favorable enthalpy of hydrophobic hydration

can be attributed to van der Waals interactions between water and an apolar solute. The

water molecules simply orient themselves near the apolar solutes in such a way that the

O–H bonds are tangential to the solute surface. The increase in either the number or the

size of hydrophobic particles causes the loss of hydrogen bonds between water molecules,

an energetically unfavorable event, and results in aggregation of apolar particles (see

References 14 and 15 for detailed reviews).

One of the main ideas in the theory of protein folding is the energy landscape theory.
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The protein energy landscape is considered to resemble a rugged funnel, i.e. riddled with

traps in which the protein can transiently reside. Native contacts and local conformation

energies are considered more stabilizing than non-native contacts; hence there is an overall

slope of the energy landscape towards the native structure. In the early stages of protein

folding, the funnel guides the protein through many different sequences of traps towards

the low-energy folded (native) structure. There are no pathways, but a multiplicity of

folding routes, and discrete pathways only appear later in the folding process, when most

of the protein has already achieved a correct configuration.16

1.3 Protein aggregation

In 1854, Rudolph Virchow introduced the term “amyloid” to denote a macroscopic tissue

abnormality that exhibited a positive iodine staining reaction. However, it was later

demonstrated that amyloids consist mainly of proteins rather than carbohydrates. The

variety of pathological conditions were related to the inability of certain proteins to fold

correctly or to remain correctly folded, resulting in their aggregation.3,17 The insolubility

of amyloid fibrils has hindered their experimental evaluation for a long time. The X-ray

diffraction examination of amyloid fibrils has led to the general conclusion that fibrils are

made up of a cross-β structure in which the polypeptide chains are organized as β-sheets

arranged parallel to the fibril axis, having their constituents β-strands perpendicular to

the fibril axis. The characteristic cross-β diffraction pattern and the fibrillar morphology

are accepted as a diagnostic hallmark of amyloids, suggesting that the fibrils formed from

different protein precursors share a degree of similarity.18

The process of amyloid fibril formation follows a nucleated growth mechanism, as

depicted in Figure 1.3. In a typical nucleated growth mechanism, a threshold in protein

concentration, called “critical concentration”, is required for aggregation to be initiated.

The critical concentration depends on several factors, such as protein structure, presence

of co-solvents, pH, and presence of interface. If the protein concentration slightly exceeds

the critical concentration, there is a lag time before polymerization occurs. During this

lag time, the addition of preformed fibrillar species or “seeds” causes a shortening of the

lag phase. The length of the lag time drastically depends on the concentration of protein

solution. A protein solution above its critical concentration could remain kinetically
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Figure 1.2: Model of the generic amyloid fibril structure depicting four β sheets running parallel to
the fibril axis with component β strands perpendicular to the fibril axis.18

soluble for a considerable amount of time depending on the level of supersaturation.19

Once the critical nucleus is formed, the monomer concentration decreases exponentially.

After aggregation is complete and the equilibrium is established, the solution contains

predominantly monomers and large aggregates. Nucleation dependent protein aggregation

is also a characteristic of many processes such as protein crystallization, microtubule

assembly, and sickle cell hemoglobin formation.21

Experimental studies have shown that the temperature-concentration phase diagram

for a variety of globular proteins follows the pattern depicted in Figure 1.4.22 This phase

diagram can be obtained by using a very short range interaction between protein molecules

in comparison to their diameter. If the range of attraction is long, the phase diagram

resembles the elementary phase diagram of atoms and molecules where van der Waals

interactions predominate. As illustrated in Figure 1.4, the binodal and spinodal lines

lie completely within the region of fluid-solid phase separation and the critical point

is also below the coexistence curve between the low-density fluid and the solid. At

high temperatures, the fluid to solid phase transition is not interrupted by the glass

transition. As the temperature is lowered below solubility limits, the solution becomes

metastable; however, the fluid-fluid coexistence curve persists in the metastable regime

and for particular temperatures and concentrations, the protein solution separates into a

liquid, dilute in protein, and a liquid, rich in protein.20,22 It can also be speculated that the

phase diagram of amyloid forming proteins that do not have any native structure should

be similar to the above mentioned phase diagram, with the exception that the solid phase
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Figure 1.3: Experimentally observable
formation of an aggregate for a nucleation
dependent process, above its critical con-
centration. Aggregate formation at low and
high concentrations is indicated by a solid
and dashed line, respectively. Addition of
seed also results in rapid aggregation.19

Figure 1.4: Phase diagram for a Yukawa fluid
with screening parameter b=7.5. The crosses
represent the fluid-solid phase transition, the
continuous line is the binodal, and the dashed
one is the spinodal. The filled circle is the
critical point. The glass line (open circles) as
evaluated for mode coupling theory and the
glass line shifted to obtain the experimental
packing fraction φ = 0.58 (stars).20

would not be a crystalline phase, but a solid fibril. In this case, the morphology of the

resulting fibrils could depend on the anisotropy of the protein structure and the kinetics

of the system.

Aggregation and precipitation of proteins also occur upon heating (see Figure 1.1). The

aggregation behavior of proteins in liquid water is similar to the demixing phase transition

of binary mixtures, in general, and to aqueous solutions of organic molecules, in particular.

Many aqueous solutions of simple organic molecules (pyridines, tetrahydrofuran, etc.)

show demixing upon heating23,24. Aqueous solutions of large polymeric macromolecules

(poly-N-isopropylacrylamide, polyoxyethylene, etc.) also show demixing upon heating,

accompanied by drastic changes in polymer conformation25–27. The occurrence of a first-

order demixing phase transition in aqueous solutions of proteins is therefore not surprising,

being a common phenomenon in binary systems. Upon demixing, aqueous solutions of

organic molecules separate into a water-rich phase and an organic-rich phase. When

the thermodynamic conditions are close to ambient conditions, the water-rich phase is a
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liquid phase. The state of the organic-rich phase mainly depends on the phase state of

the corresponding organic substance at ambient conditions. It may be a vapor phase (for

example, in water-methane mixture), a liquid phase (for example, in aqueous solutions

of pyridines) or an amorphous (solid-like) phase (aqueous solutions of macromolecules).

Dry biomolecular substances are typically in an amorphous state at ambient conditions.

Therefore, upon demixing, their aqueous solutions separate into a liquid water-rich phase

having the critical concentration of biomolecules, and a solid-like organic-rich phase, which

could be amorphous or ordered (crystalline or fibrillar).

1.4 Islet amyloid polypeptide

Human islet amyloid polypeptide (hIAPP), also known as amylin, is a pancreatic hormone

secreted by islet β-cells. It is a 37 amino acid residue polypeptide, having a disulfide

bond between the two cysteine residues at position 2 and 7 and an amidated C-terminus,

which is important for its hormonal functions. As hormone, it modulates carbohydrate

metabolism in muscle and liver by stimulating glycogen breakdown and acting as a non-

competitive antagonist of insulin; additionally, IAPP is involved in processes associated

with feeding and maintenance of bone cells, renal proximal tubular cells, and islet β-

cells.28 Fibrillar deposits containing hIAPP have been found in over 95% of type 2

diabetic subjects postmortem and their abundance correlates with the severity of the

disease.29 Studies indicate that islet amyloid is usually juxtaposed with β cell membranes.

Sequence comparison between amylin from different species suggested that amylin (25-

29) could serve as a core recognition motif and lack of proline residues at one or more of

positions 25, 28, and 29 attributes to fibril formation in hIAPP.28 A sequence comparison

between human and rat amylin is depicted in Figure 3.1. The amino acid sequences of

all known amylin molecules are highly conserved at their N- and C-termini, but vary

among themselves to a greater extent in the central segment. In contrast to human

amylin, rodent amylin does not form fibrils. It was further demonstrated that penta-

and hexapeptide sequences, hIAPP(23-27) and hIAPP(22-27), are sufficient for formation

of β-fibrils.30 However, studies have also shown that proline substitutions outside the

core domain diminishes fibril formation and single residue substitutions in rat IAPP from

corresponding positions of human IAPP render rat IAPP competent for fibril formation,
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pointing towards the contribution of other regions in fibril formation.31,32 Several other

fragments of hIAPP have also been shown to form fibrils.29,33,34 Amyloid formation by

short peptides derived from region 10-19 of hIAPP are strongly influenced by pH. His-18 is

considered to play a crucial role in modulating the pH dependent effect on aggregation.35

There are several reports indicating that hIAPP is able to interact with mem-

branes,36–40 and it seems that the interaction results in the formation of fibrillar amyloid

deposits in the extracellular matrix of the β-cells, leading to membrane damage. Details of

the nature of this interaction are still not fully understood. Some studies have suggested

that the binding of hIAPP to the cell membrane is followed by loss of lipids from the

membrane,41 whereas other reports propose insertion of hIAPP into the membranes42. It

has also been observed that phospholipids are able to catalyze hIAPP amyloid formation,

leaving the lipid bilayer intact.43 Also, it is still unclear which of the hIAPP species,

monomers, oligomers, protofibrils, or mature fibrils are mainly involved in these membrane

interactions. Several studies have indicated that hIAPP oligomers, and not the fibrils,

may be involved in the interaction with membranes.43–45 According to Porat et al.39,

oligomers are believed to be intermediate species in the formation of hIAPP amyloid

fibrils. Another report pointed to the possible role of hIAPP monomers in membrane

interactions.46 It has also been suggested that the process of hIAPP amyloid formation

and not the presence of a particular hIAPP species is related to its cytotoxicity.42,43,46

These various results indicate that the interaction between hIAPP and lipid membranes

is still far from being fully understood.

1.5 Computer simulations of protein aggregation

There have been several lattice studies on protein aggregation depicting the relationship

between the stability of the native state and the propensity of aggregation suggesting

distinct mechanisms for polymerization and its dependence on protein sequence .47–49

MD simulation methods have also been used to predict the possible atomic scale amyloid

organization for many peptide fragments. In these studies, several models of β-clusters

were built and MD simulations were used to investigate the structure and stability of such

models.50,51 Simulations starting from random orientations of peptides have also been

carried out to investigate the initial steps in aggregation, either using implicit solvent and
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discrete molecular dynamics52 or explicit solvent molecular dynamics simulations.53 Wu

et al. have reported the formation and elongation of ordered peptide aggregates using

MD simulations with explicit solvent.54,55 The aggregation of small peptide fragments has

also been studied using replica exchange molecular dynamics simulations with implicit

solvent,56,57 and also with explicit solvent.58

1.6 Thesis objectives

Protein aggregation and fibril formation seem to be generic in origin as they can be induced

in proteins of diverse sequences and structures. The demixing of a protein aqueous solution

is similar to the demixing observed in two component systems. Thus, protein aggregation

should be studied as a function of concentration. In molecular simulation studies, the

system size is an additional factor that can have a drastic effect on the simulation results.

Even though studies of peptide aggregation using molecular simulation techniques are

reported in the literature, the effect of concentration and system size on aggregation is

generally neglected. Even the parameters needed to quantify aggregation in simulation

studies have not yet been fully established.

Therefore, the first objective of this thesis is to establish parameters that can be used

to quantify the aggregation process in simulation studies of peptide aggregation. Once

the parameters have been established, systematic studies on the effect of concentration

and system size on aggregation can be studied. These studies will also reveal the extent to

which the finite size effect can distort simulation results meant to reproduce the properties

of macroscopic systems. The finite size effects have been well understood for Ising magnets

and Lennard-Jones fluids, but have never been studied for complex systems like aqueous

solutions of peptides in full atomistic details. The second objective of this thesis is to study

the effect of temperature on peptide aggregation. The change in aggregation parameters

as a function of temperature would provide information about the transition temperature

and the nature of the transition involved. As various experimental studies have shown

that protein aggregation is generally affected by the presence of interfaces, the third and

final aim of this thesis is to study the effect of model surfaces on the peptide aggregation

process.

This thesis has been divided into five chapters: this chapter provides a general
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overview of protein aggregation; the second chapter gives a brief introduction of molecular

simulation techniques and associated issues; the selection of appropriate parameters for

the quantification of peptide aggregation, effect of concentration and system size on

peptide aggregation in the bulk solution are described in the third chapter; the effect of

temperature on peptide aggregation is described in chapter four; the last chapter describes

the effect of surfaces on peptide aggregation by using two different types of amyloidogenic

peptide fragments, in both hydrophobic and hydrophilic pores.
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Chapter 2

Molecular Simulations

Molecular simulation is a generic term encompassing both Monte Carlo (MC) and

Molecular Dynamics (MD) computing methods. These methods can be used to provide

exact results for problems in statistical mechanics which would otherwise only be solved

by approximate methods, or are intractable. Molecular simulations can provide a direct

route from microscopic details of a system to macroscopic properties of experimental

interest. It is also used to obtain information about processes that are difficult to probe

experimentally.

The MD simulation technique follows the natural time evolution of the system,

which allows the prediction of static and dynamic properties of the system directly

from underlying interactions between molecules. However, sampling problems in MD

are connected to the difficulty of spanning broad scales of time and this problem is hard

to surmount because of the need to adhere to the governing dynamics. On the other hand,

the MC method uses random number generators to sample the phase space and clever

algorithms can be developed to optimize the efficiency of the sampling.

2.1 Theory

The microscopic state of a system can be specified in terms of the position and momentum

of the constituent set of particles. If we make the approximation that a classical

description is adequate, the Hamiltonian H of a system of N particles can be written

as a sum of the kinetic and potential energy functions of the set of coordinates qi and

13
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momenta pi of each particle i:59

H(q,p) = K(p) + U(q), (2.1)

q and p are generalized coordinates and conjugate momenta, respectively. To obtain

thermodynamic averages over an ensemble, which is characterized by the macroscopic

variables (N, V, T ), where N is the number of particles, V is the volume and T is the

temperature of the system, it is necessary to know the probability of finding the system

at each and every point in the phase space. This probability distribution is given by the

Boltzmann distribution function

ρ(q,p) =
exp

[

−H(q,p)
kBT

]

Z
, (2.2)

where the canonical partition function Z is the integral over the phase space:

Z =

∫

dq

∫

dp exp

[−H(q,p)

kBT

]

. (2.3)

Once this distribution function is known, it can be used to calculate the phase space

averages of any dynamic variable A(q,p) of interest:

〈A(q,p)〉 =

∫

dq

∫

dp ρ(q,p)A(q,p). (2.4)

However, in order to calculate these thermodynamic averages, it is necessary to

simultaneously know the Boltzmann probability (Eq. 2.2) for each and every state {q,p},
which is not feasible for many particle systems. An alternative strategy for calculating

system wide averages is to follow the motion of a single point through the phase space

instead of averaging over the whole phase space at once, i.e., the motion of a single point

(a single molecular state) through the phase space is followed as a function of time, and

the averages are calculated only over those points that were visited during the excursion.

Averages calculated in this way are called “dynamic averages”. The motion of a single

point through the phase space is obtained by integrating the equation of motion of the

system.60 Dynamic averages of any dynamical variable A(q,p) can now be calculated
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along this trajectory as follows:

〈A(q,p)〉 =
1

τ

τ
∫

0

A
(

q(t),p(t)
)

dt, (2.5)

where τ is the duration of the simulation. It is hoped that the point that is being

dynamically followed will eventually cover all the phase space and that the dynamic

average will converge to the desired thermodynamic average. A key concept that ties the

two averaging strategies together is the ergodic hypothesis. This hypothesis states that,

for an infinitely long trajectory, the thermodynamic ensemble average and the dynamic

average become equivalent to each other.

2.2 Force fields

The core of any force field is the potential energy function used to describe the relationship

of the structure R to the energy U of the system of interest. However, a potential energy

function alone does not make a force field. It is the combination of the potential energy

function with the parameters used in that function, as described below, that yield a force

field;

U(R) =
∑

bonds

Kb(b− b0)
2 +

∑

angles

Kθ(θ − θ0)
2

+
∑

dihedral

Kχ (1 + cos(nχ− δ)) +
∑

impropers

Kimp(ϑ− ϑ0)
2

+
∑

nonbonded

(

ǫij

[

(

Rminij

rij

)12

− 2

(

Rminij

rij

)6
])

+
qiqj
ǫrij

. (2.6)

The equation 2.6 is an example of a potential energy function. It is comprised of a

collection of simple functions to represent a minimal set of forces that can describe

molecular structures. Bonds, angles, and out-of-plane distortions (improper dihedral

angles) are treated harmonically, while dihedral or torsional rotations are described by

a sinusoidal term. Interactions between atoms use a Lennard-Jones (LJ) 6-12 term to

describe the atom-atom repulsion and dispersion interactions combined with electrostatics

treated via a Coulombic term.61
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In Eq.2.6, b is the bond length; θ is the valence angle; χ is the dihedral or torsional

angle; ϑ is the improper angle; rij is the distance between atom i and j. Parameters

are the terms that represent the actual force field. Included in them are the bond force

constant and the equilibrium distance, Kb and b0, respectively; the valence angle force

constant and equilibrium angle, Kθ, and θ0, respectively; the dihedral force constant,

multiplicity and phase angle, Kχ, n, and δ, respectively; the improper force constant and

equilibrium improper angle, Kimp and ϑ0, respectively. Collectively, these represent the

internal or intra-molecular parameters. Non-bonded parameters between atoms i and

j include the partial atomic charges, qi, qj and the LJ well-depth, ǫij , and minimum

interaction radius, Rminij , used to treat the van der Waals interactions. These terms

are also referred to as interaction or external parameters. Typically, ǫ and Rmin are

obtained for individual atom types either by fitting to an experimental data or from

quantum chemical calculations, which are then combined to yield ǫij and Rminij for the

interacting atoms via combining rules.62

2.3 Periodic boundary conditions

The correct treatment of boundaries and boundary effects is crucial to simulation methods.

In order to simulate bulk phases it is essential to choose boundary conditions that mimic

the presence of an infinite bulk surrounding the N particle model system. This is achieved

by employing periodic boundary conditions. The volume containing the N particles is

treated as the primitive cell of an infinite periodic lattice of identical cells. If a particle

leaves the box during the simulation, then it is replaced by an image particle that enters

from the opposite side. The number of particles within the central box thus remains

constant. The intermolecular interactions which are of short range are truncated beyond

a certain cutoff distance.

2.4 Long-range interactions

Intermolecular Lennard-Jones interactions are of short range and decay (1/r6) rapidly

with the distance r. Truncating these interactions to zero beyond a certain cutoff does

not induce large errors. However, this is not the case for Coulombic interactions, which
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vary strongly at small distances and decay slowly at long distances. The Ewald summation

is one of the methods by which long range interactions can be handled appropriately. The

Ewald summation method splits the slowly converging sum over the Coulomb potential

into two exponentially converging sums

1

r
=
f(r)

r
+

1 − f(r)

r
. (2.7)

The splitting function f is chosen in a way that the first part f(r)
r

should be negligible or

zero, beyond a certain cutoff distance. The second part 1−f(r)
r

should be a slowly varying

function of r, such that its Fourier transform can be represented by only a few k vectors.

This permits an efficient calculation of this contribution in the reciprocal space. The

function f is a complementary error function

erfc(r) =
2√
π

∞
∫

r

exp (−t)2dt. (2.8)

The potential energy of the primary box is now given by:

V = V r + V k + V s + V d (2.9)

V r =
1

2

N
∑

i=1

N
∑

j=1

∑

n=0

′ qiqj
4πǫ0

erfc(α|rij + n|)
|rij + n| (2.10)

V k =
1

2

∑

k 6=0

N
∑

i=1

N
∑

j=1

1

πL3

qiqj
4πǫ0

4π2

k2
exp

(

− k2

4α2

)

cos(k · rij) (2.11)

V s = − α√
π

N
∑

k=1

q2
k

4πǫ0
(2.12)

V d =
2π

3L3

∣

∣

∣

∣

∣

N
∑

i=1

qi
4πǫ0

ri

∣

∣

∣

∣

∣

2

, (2.13)

where V r is the contribution from real space, V k the contribution from the reciprocal

space, V s the self energy and V d the dipole correction. The term α is often referred to

as Ewald parameter and it tunes the relative weight of the real space and the reciprocal

space contribution. The real space summation involving the error function converges very
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rapidly, and beyond a certain cutoff distance its value can be considered negligible. The

sum of Gaussian functions in real space includes the interaction of each Gaussian with

itself, thus it needs to be subtracted. In the reciprocal space summation, the vectors

k are reciprocal vectors and are given by k = 2πn/L. If the surrounding medium has

an infinite relative permittivity, then no correction term is required. However, if the

surrounding medium is vacuum, then V d must be added.63

2.5 Finite size effects

Molecular simulations deal with a much smaller number of degrees of freedom (N ≤ 106)

than a typical experiment (N ≈ 1023), an aspect that can lead to artifacts in simulations.

Finite system size effects are particularly large near phase transitions and percolation

thresholds. In an infinite system, a first-order transition is characterized by a delta

function singularity in the first derivatives of the thermodynamic potential, whereas for

finite systems, delta function singularities are rounded off.

The work of formation ∆G of a cluster of size n, according to classical nucleation

theory, is given by:

∆G = −n∆µ − γA, (2.14)

where ∆µ is the difference in the chemical potentials of the vapor and the liquid phase, γ

is the surface tension and A is the interfacial area. In a canonical ensemble with a finite

number of particles far below the thermodynamic limit, the formation of a new phase

causes a rapid consumption of the metastable phase. It can cause discrepancies between

the results obtained from simulations and those of experiments. MacDowell et al.64 have

shown that for a system having a volume V and the total density ρ, the free energy cost

∆Ahom required to increase the density above the coexistence vapor density ρc
g, and the

free energy cost ∆Ainh if the excess vapor condenses to form a droplet, can be given by:

∆Ahom = µc(ρ− ρc
g)V +

1

2

V

κc
g

(

ρ− ρc
g

ρc
g

)2

(2.15)

∆Ainh = µc(ρ− ρc
g)V + kgγ

(

ρ− ρc
g

ρc
l − ρc

g

)2/3

V 2/3, (2.16)

where µc and κc
g are the chemical potential and the vapor compressibility at coexistence,
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kg is the geometric constant that allows the surface to be expressed in terms of V 2/3,

and ρl
c is the coexistence liquid density. For small deviations from ρc

g, the equilibrium

state of the system is a supersaturated homogeneous vapor as ∆Ahom < ∆Ainh. It must

be emphasized that the system is in equilibrium and not in a metastable state. For

larger deviations from ρc
g , ∆Ahom becomes greater than ∆Ainh and condensation takes

place. This is also a system size effect and it vanishes in the thermodynamic limit. It

has also been shown that the density at which condensation takes place, ρt, scales as

ρt − ρc
g ∝ V −1/4; hence, the transition moves towards coexistence with increasing the

system size.

2.6 Methods

2.6.1 Molecular Dynamics simulations

Molecular Dynamics simulations solve Newton’s equation of motion of molecules to

generate new configurations. For a system of N interacting particles:

mi
∂2ri

∂t2
= Fi, i = 1 · · ·N, (2.17)

where mi is the mass of the particle i, Fi is the force and ri is the position vector

of the particle i. The forces are the negative derivative of given potential functions

U(r1, r2, · · · , rN) :

Fi = −∂U
∂ri

. (2.18)

Solving Newton’s equation of motion requires a numerical procedure for integrating the

differential equation. Finite difference techniques are mainly used for this purpose. These

techniques are used to generate molecular dynamics trajectories with continuous potential

models, which is assumed to be pairwise additive. The integration is broken down into

many small stages, each separated in time by a fixed time δt. The total force on each

particle in the configuration at a time t is calculated as the vector sum of its interactions

with other particles. From the force, accelerations of particles are determined, which are

then combined with the positions and velocities at a time t to calculate the positions and

velocities at a time t+δt. The force is assumed to be constant during the time step, which
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is generally in the range of 0.5–2.0 femtoseconds. The forces on the particles in their new

positions are then determined, leading to new positions and velocities at time t+2δt, and

so on. The leap frog modification of the Verlet algorithm is probably the most widely

used method for integrating the equations of motion. The velocities v(t + 1
2
δt) are first

calculated from the velocities at time t− 1
2
δt and acceleration at time t, as follows:

v(t+
1

2
δt) = v(t− 1

2
δt) + δta(t), (2.19)

the positions r(t+ δt) are then deduced from velocities just calculated together with the

positions at time r(t) using Equation 2.20. Thus, the velocities leapfrog over the position

(hence the name)59

r(t+ δt) = r(t) + δtv(t+
1

2
δt). (2.20)

2.6.2 Monte Carlo simulations

The configurational part of the partition function can also be denoted by Z:

Z ≡
∫

drN exp[−βU(rN )], (2.21)

where β = 1/kBT and rN stands for coordinates of all N particles. If random points are

generated in the configurational space according to the probability density ̺(rN ), where

̺(rN) ≈ exp[−βU(rN )]

Z
, (2.22)

then the average property of a variable A is:

〈A〉 ≈ 1

L

L
∑

i=1

niA(rN), (2.23)

where the number of points ni generated per unit volume around a point rN is equal to

L̺(rN ) and L is the total number of points generated. The main idea of importance

sampling is to generate points in configurational space with a relative probability

proportional to the Boltzmann factor. If o and n are two configurations of the system,
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then the transition probability to go from o to n, π(o→ n) is:

π(o→ n) = α(o→ n) × acc(o→ n), (2.24)

where α(o → n) is the probability to perform a trial move from o to n and acc(o → n)

is the probability of accepting such a trial move. In equilibrium, the average number of

accepted trial moves that results in the system leaving the state o must be equal to the

number of accepted trial moves from all other states n to the state o. Generally, the

detailed balance condition is applied:

̺(o)π(o→ n) = ̺(n)π(n→ o), (2.25)

where the average number of accepted moves from o to n is exactly canceled by the number

of reverse moves. In the Metropolis scheme, the transition probability of going from o to

n is given by:

π(o→ n) = α(o→ n)

= α(o→ n)[̺(n)/̺(o)]

̺(n) ≥ ̺(o) (2.26)

̺(n) < ̺(o).

If α is chosen to be symmetric, then the equation 2.25 can be rewritten as:

̺(o)acc(o→ n) = ̺(n)acc(n→ o) (2.27)

acc(o→ n)

acc(n→ o)
=

̺(n)

̺(o)

= exp{−β[U(n) − U(o)]}.

The metropolis scheme is implemented by attempting a trial displacement and calculating

the change in energy ∆U = [U(n)−U(o)]. If ∆U < 0 then the move is accepted. Otherwise

a random number X is generated and the move is accepted if exp(−β∆U) ≥ X.

2.6.3 Replica Exchange simulations

In order to carry out meaningful simulation studies of biomolecular systems containing

thousands of atoms, a sampling of a huge configurational space is required, and therefore

such studies are extremely time consuming. This problem is more acute at ambient and
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low temperatures, as the system could get trapped in local energy minima and might not

be able to escape from it within the duration of the simulation run. Similar problems

exist in other fields of physics and a parallel tempering technique (or the replica exchange

algorithm) was proposed.65,66 This method was applied to the simulation of biomolecules

in 1997,67 and extended to molecular dynamics simulations.68

Replica Exchange Molecular Dynamics (REMD) is an enhanced sampling technique

based on the parallel tempering Monte Carlo method where multiple copies (or replicas)

of identical systems are simulated in parallel at different temperatures.68 Periodically

state-exchange move are attempted, where two neighboring replicas exchange their

thermodynamic states (their temperatures). The acceptance rule for each state-exchange

move between two neighboring states i and j is chosen to be

P (acc) = min
{

1, exp(1/kBTi − 1/kBTj)(U(rN
i ) − U(rN

j ))
}

. (2.28)

The state-exchange acceptance probability has been shown to obey the detailed balance

condition for an extended ensemble of canonical states.69



Chapter 3

Simulations of Peptide Aggregation

in Water

Molecular simulations can be an efficient tool to characterize aggregation and conforma-

tional changes of biomolecules in water at a molecular level. However, any simulation

study is unavoidably affected by the finite size of the simulated system. Therefore,

the evolution of system properties towards those encountered in the macroscopic limit

should be properly understood and taken into account. The possible occurrence of

phase transitions in the system studied must also be taken into account by choosing an

appropriate ensemble. Nowadays, simulation studies of aggregation of biomolecules can be

performed in simple ensembles, such as those with constant volume or constant pressure.

Typically, these simulations are performed under conditions of strong oversaturation, i.e.,

deeply inside the two-phase region, where the system undergoes demixing. When a finite

size system is in the two-phase region, the behavior of the minor phase noticeably differs

from that encountered in the corresponding macroscopic system.64,70–74 For example, in a

macroscopic one-component fluid, the oversaturated vapor separates into two coexisting

phases, the liquid and the vapor phase, such as a liquid droplet surrounded by saturated

vapor. However, when the fluid volume is finite, a new stable state of the system

emerges at the same density: an evaporated (at least partially) droplet surrounded by

oversaturated vapor. The state with the droplet and the state without the droplet are

both stable and replace each other with time. The occurrence probability of these states

is determined by the level of oversaturation and by the system size. An increase of the

23
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system size eventually stabilizes the droplet state, which is the only stable state in the

macroscopic limit. A state without droplet is just an artificial state, whose properties

have no relation to those expected in the macroscopic limit. A similar behavior may be

expected for an aqueous solution of peptides in small volumes at concentrations exceeding

solubility limits.

To study the effect of the finite system size on the aggregation of peptides, we

chose aqueous solutions of amyloidogenic peptides, which are highly insoluble in water.

Aggregation and subsequent amyloid formation is a central phenomenon in a number

of diseases, such as Alzheimer’s, Parkinson’s and type II Diabetes Mellitus, and seems

to be a key factor in the development of the symptoms of these diseases.75 Upon

formation of amyloid fibrils, protein molecules adopt ordered, stacked cross-β-sheet

structures.21,75–77 It has been discovered that certain short sequence fragments contained

within a respective protein can form amyloids even in isolated forms. Many fragments of

Aβ and hIAPP,30,33,78–80 fragments consisting of residues 10-20 and 105-115 of the protein

transthyretin,81 residues 7-13 of the yeast protein, Sup35, are few such examples.82 Most

of these amyloidogenic peptides have also been shown to be cytotoxic. This makes them

particularly useful for studies of amyloid formation and elongation. However, the fibrils

formed by short peptide fragments may or may not have the same fibril morphology and

the same cytotoxicity as those of the parent protein. Nevertheless, studies of such short

fragments may lead to understanding of fundamental processes taking place in amyloid

formation in large systems. Short peptide sequences also provide a major technical

advantage in MD simulations, as the size of the system containing small fragments will

be much smaller than if the whole protein were to be simulated. Aqueous solutions of the

amyloidogenic fragment of hIAPP corresponding to residues 15 to 19 were chosen for the

present studies. It is one of the shortest peptide fragments capable of self-assembly.

Experimental studies have reported that the aqueous solution of the fragment forms

broad ribbon-like fibrils, with a short lag time.33 All the aspects mentioned above make

this fragment an ideal candidate for studying protein aggregation by using molecular

simulations.
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Human IAPP: KCNTATCATQRLANFLV SSNN G L TNVGSNTY
Rat  IAPP : KCNTATCATQRLANFLV SSNN G L TNVGSNTY

H F I
R L V

A SS
P PP

Figure 3.1: Sequences of human and rat IAPP. Conserved mutations are colored in blue and
nonconserved mutations in red. The sequence of the simulated fragment is depicted by the yellow
box.

3.1 System setup

All atomic MD simulations were performed using Amber99s (C. Simmerlings modifications

of φ and ψ dihedral parameters of the original Amber99).83 The N- and C-termini of the

peptide fragments were capped with acetyl and N-methylamine groups, respectively. All

starting configurations were solvated with the TIP3P water model and the simulations

were carried out in an isothermic-isobaric ensemble and under periodic boundary

conditions, at 330 K and 1 atm pressure, using GROMACS software package.84

The Particle Mesh Ewald (PME) method was used to treat long range electrostatic

interactions.85 SHAKE was applied to constrain all the bonds to their equilibrium

bond lengths allowing a time step of 2.0 fs. Initial equilibration was carried out using

Berendsen’s thermostat for 1 ns, followed by the production run of various lengths

using Nose-Hoover temperature coupling and Parrinello-Rahman pressure coupling. The

number Np of peptides in the simulation box varied from 1 to 56 and the number Nw of

water molecules varied from 591 to 29702. A total number of 12 peptide-water systems

were studied (see 3.1). The peptide weight concentration C is effectively equal to zero

in the case of a single peptide in a simulation box, representing an infinite dilution, and

varied from ∼ 2.5 to 42 % in systems with Np > 1. Accordingly, the lateral size L of the

cubic simulation box was in the range of 2.7 to 9.9 nm.

Initial configurations of these systems were prepared by random insertion of peptides

in a cubic box such that the shortest peptide-peptide distance exceeds a certain minimal

value, which depends on concentration. 1 to 10 different initial configurations were used

for different systems. Equilibration periods, estimated from the time evolution of various

system parameters, varied from 10 to 25 ns, depending on the system size and peptide

concentration. Configurations were saved every 2 to 5 ps and equilibration periods were
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excluded from the analysis.

Np N(sim) box(Å) Nw Cw% T ime(ns)
1 10 26.9 591 5.8 300
3 5 37.4 1590 6.4 250
3 5 29.7 750 12.7 250
6 1 65.0 8600 2.5 100
6 3 48.8 3536 5.8 300
6 3 37.2 1480 12.9 600
6 3 29.2 626 25.9 300
12 3 59.7 6448 6.4 450
12 6 47.5 3079 12.4 750
12 3 36.7 1232 26.2 150
12 1 30.8 586 42.7 160
56 1 99.3 29702 6.4 145

Table 3.1: Table summarizing the simulations carried out depicting the following columns: number
of peptides in the simulation box Np, number of simulations N(sim), averaged box size box, average
number of water molecules in the simulations Nw, concentration of protein in weight percent Cw%,
total duration of simulation runs in nanoseconds T ime(ns).

For the analysis of peptide clustering based on the number of hydrophobic contacts as a

criterion for the connectivity between two peptides, a hydrophobic contact was defined as

follows: one hydrophobic contact between two peptides exists, when the distance between

two sidechain carbon atoms involved (sidechains of F, L and V) does not exceed the

sum of their van der Waals radii plus 2.8 Å. The radius of gyration Rg of the largest

peptide cluster, as well as its maximal extension Lmax, measured as the maximal distance

between two heavy atoms of peptides in the cluster were also calculated. The secondary

structures were determined using the corresponding distributions of φ and ψ dihedral

angles in the Ramachandran plot. A residue was considered to contribute to α-helices,

when -110◦ ≤ φ ≤ −30◦ and -90◦ ≤ ψ ≤ −10◦; to β-sheets, when -180◦ ≤ φ ≤ −100◦ and

60◦ ≤ ψ ≤ 180◦; to polyproline II structures, when -100◦ ≤ φ ≤ −30◦ and 60◦ ≤ ψ ≤ 180◦.

The solvent accessible surface area (SASA) of all peptides was obtained with a probe

radius of 1.4 Å. Water molecules were considered as belonging to the hydration shell of

the peptides, if the shortest distance between a water oxygen atom and at least one of

the heavy atoms of the peptides, did not exceed 4.5 Å. The volume of the surface layer
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of water can be approximated to be Vh = SASA · D. The width D of the water layer

is considered to be 0.3 nm. Thus, the density of the hydration shell ρh is calculated as

ρh = Nh · mwat/Vh. The peptide-peptide and peptide-water hydrogen bonds (H-bonds)

were identified using the following criteria: a H-bond exists if the distance between donor

and acceptor did not exceed 0.35 nm and if the donor-hydrogen-acceptor angle exceeds

120◦.

3.2 Characterization of aggregation

The snapshots of the largest simulated system (Np = 56) are shown in Figure 3.2. Within

the first 0.05 ns, the randomly oriented peptides in the initial configuration form well

distinguished clusters. These clusters grow and merge with time (see snapshots at t = 1

ns and t = 2.5 ns). Two large droplets can be seen at t = 10 ns, which later merge to

form a single droplet at t = 25 ns. The simulation was carried out at a concentration

manyfold higher than the expected critical concentration. It is expected that all the

peptides should belong to the peptide aggregate. However, the system exhibits two stable

states, which interchange with time: state A, where all the peptides are in one large

cluster (lower-middle snapshot in Figure 3.2) and state B, where few peptides break up

from the large cluster (lower-right snapshot in Figure 3.2). The behavior of the system

can be considered as analogous to that of finite Lennard-Jones fluids at a constant density

in the two phase region or finite Ising magnet at constant magnetization, where only the

state A is relevant in the macroscopic systems and state B is an artifact of the finite size of

the simulation box and is not seen in macroscopic systems. As the system size increases,

the effect of state B on the system properties diminishes and vice versa. The snapshots

of the simulation at the same peptide concentration, Cw ≈ 6%, but with only 6 peptides,

are shown in Figure 3.4. Visual comparison with Figure 3.2 shows that the degree of

peptide aggregation is lower in small systems, as a relatively large fraction of the total

aggregate repeatedly breaks up. However, the systematic and quantitative study of the

effects of concentration and system size on peptide aggregation can only be performed by

introducing parameters reflecting the degree of clustering in simulations.
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t = 0.05 ns t = 1 ns t = 2.5 ns

t = 10 ns t = 25  to 145 ns

Figure 3.2: Time evolution of peptide clustering in the system with Np = 56 and C ≈ 6%. After the
nucleation process (t < 25 ns), the system exhibits two stable states (lower-middle and lower-right
snapshots): all peptides are in one cluster (lower-middle snapshot); a few small clusters are separated
from the large peptide cluster (lower-right snapshot). Backbones and side chains are shown in white
and black, respectively.

3.2.1 Radius of gyration

The radius of gyration (Rg) of all peptides can be used to characterize aggregation;

however, in MD simulations of several peptide fragments with periodic boundary

conditions, the radius of gyration is not well defined (see Figure 3.3). The following

approach was used to calculate the radius of gyration: one of the peptides was selected

as a reference and the box was translated in such a way that the center of mass of the

reference peptide coincides with the center of the box. The radius of gyration of all the

peptides based on the ith reference peptide can be calculated as:

Rgi =

√

√

√

√

√

√

√

√

N
∑

j=1

mj (Rai − rj)
2

N
∑

j=1

mj

, (3.1)
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Figure 3.3: Figure depicting three particles in a box surrounded by its images. Depending on the
selection of the images of particles, as depicted by colored ellipses, distinct radii of gyration can be
obtained.

where N is the total number of atoms, mj is the mass of atom j, Rai is the center of mass

of all peptides based on the ith reference peptide, calculated form the following equation:

Rai =
1

J

J
∑

j=1

Rj. (3.2)

J is the total number of peptide fragments and Rj is the center of mass of a peptide

fragment j. Note that the center of mass of reference peptide i is also the center of the

box. Rgi is calculated using each peptide fragment as reference and the minimum is

reported: Rg = min(Rgi), where i is iterated sequentially over all the peptides.

Figure 3.4 depicts the time evolution of the radius of gyration for the two systems

at the same concentration, calculated by using the above mentioned method for one of

the simulations. Two states of the system are clearly visible for the small system, i.e.,

the “droplet” state where the total Rg of the peptides is low and all the peptides are

together forming one large cluster, and the “dissolved” state where the peptides split into

smaller clusters with a high total Rg of peptides. The system switches between these two

states throughout the course of the simulation, whereas for the large system Rg varies in

a relatively narrow range. The probability distribution P (Rg) of Rg for the large system
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Figure 3.4: Time evolution of peptide clustering in the system with Np = 6 and C ≈ 6%. Upper
panel: Snapshots of peptides at various time steps, as indicated in the figure. Backbones and side
chains are shown in light grey and black, respectively. Lower panel: Time evolution of the radius of
gyration Rg of all peptides.

is highly symmetric and can be well fitted to a Gaussian function (dashed area in the

lower right panel of Figure 3.5). In contrast, P (Rg) for the smaller system is asymmetric

(upper right panel of Figure 3.5), with the narrow peak of ∼ 1 nm corresponding to a

state where all the peptides form a compact aggregate, whereas the wide tail of P (Rg)

extending towards large Rg values corresponds to a state without a compact aggregate. To

estimate the existence probabilities of these states, the distribution should be decomposed

into two constituents. For the large system where the peptide aggregate dominates and

the distribution is symmetric, the area under the Gaussian can be taken as the existence

probability R1 of a state with peptide aggregate. In the smaller system with 6 peptides,

R1 can be approximated by fitting the Gaussian function to the first maxima of Rg.

The characterization of the degree of peptide aggregation by use of the distribution

P (Rg) does not require any criterion for the connectivity between peptides. This is

the main advantage of the proposed method, as the choice of an adequate connectivity

criterion is not trivial. On the other hand, this approach suffers from a rather ambiguous

extraction of the Gaussian contribution to P (Rg). In particular, it is not applicable in

very small systems (with Np = 3 in our studies), where this contribution to the P (Rg)
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distribution is indistinguishable.
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Figure 3.5: Left panels: Time evolution of the radius of gyration Rg of all peptides for two systems
with the same peptide concentration, but a different number of peptides. For the system with
Np = 6, three time intervals of 75 ns, each from different simulation runs, are placed successively.
Right panels: Probability distribution of Rg for the dependences shown in the left panels (solid
points). Fit of the symmetrical part of the probability distribution to a Gaussian is shown by the
dashed area.

3.2.2 Cluster analysis: search for connectivity criteria

Cluster analysis is the most basic approach for characterizing the arrangement of particles

in a system. It is widely used in various fields of statistical physics. A system of particles

can be described as an ensemble of clusters. Typically, the definition of clusters is based

on a certain criterion for the connectivity between two particles. This criterion can be

based on interparticle distance, potential and relative kinetic energies of two particles, the

existence of H-bonds, etc. The particular choice of a connectivity criterion depends on
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the problem considered. In studies of condensation phenomena, two particles are usually

considered as belonging to the same cluster, if the distance between them does not exceed

a certain critical value rcrit, comparable to the distance between two particles in the

condensed phase.

When considering aggregation of amyloidogenic peptides, the condensed organic-rich

phase appears as fibrillar aggregates. Therefore, the connectivity criterion should be

related to the structure of fibrils. There are two characteristic interpeptide distances in

the case of fibrils: the interstrand distance between the neighboring peptides in the β-

sheets is ∼ 0.5 nm and the intersheet distance is ∼ 1.0–1.1 nm. All peptides in the fibril

belong to one cluster, if rcrit is close to the latter distance. Hence, in the cluster analysis

of peptide aggregate formation in water, two peptides can be considered as belonging

to the same cluster, when the distance between their centers of mass is . 1.0–1.1 nm.

Additionally, we can use a qualitatively different connectivity criterion, based on the

number nc of hydrophobic contacts between two peptides. However, typical values of nc

in fibrils are not known. The choice of a particular value of rcrit or nc should satisfy well-

established aspects of peptide aggregation; in particular, the degree of peptide aggregation

must increase with increasing peptide concentration.

The clustering analysis allows distinguishing the largest peptide cluster, which mimics

an organic-rich phase of the studied system. Accordingly, various properties of the largest

peptide cluster (shape, fractal dimension, density, etc.) can be studied. Additionally, the

fraction f of the peptides in the largest cluster can be used as a parameter reflecting the

degree of aggregation.

3.2.2.1 Distance between centers of mass

To choose the value rcrit for the distance between the center of mass of two peptides, which

adequately characterizes peptide aggregation, we consider the largest system studied with

Np = 56. In this system, almost all peptides form one large aggregate permanently (see

Figure 3.2), hence, the existence probability R of the aggregate state is equal to 1. The

dependence of the existence probability R to find at least fNp peptides in the largest

cluster of this system for various choices of rcrit is shown in Figure 3.6. When rcrit <

0.9 nm, the fraction f of the peptides in the largest cluster never exceeds ∼ 0.2. This

contradicts visual observation and should be considered as unreasonable. When rcrit >
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1.2 nm, the fraction f is always close to 1. At R = 1, a drastic increase of the fraction

f occurs, when rcrit changes from 0.9 to 1.1 nm, in agreement with literature values of

intersheet distances in fibrils.86 The presence of the majority of peptides (0.5 < f < 1.0)

in the largest cluster can be considered as a signature of the state with peptide aggregate.

Even in the largest system studied, f is never equal to 1, since a small fraction of peptides

periodically splits from the main aggregate (see Figure 3.2). Therefore, any value of f ,

which exceeds 0.5 and is not very close to 1, seems to be reasonable for the definition of

the existence probability R of a state with peptide aggregate. In Ising magnets, a fraction

of 2/3 of the excess magnetization forms a droplet at the transition point.73,74 Therefore,

we use f = 2/3 for the definition of R.

The dependence of the existence probability R defined in such a way on rcrit is shown

in the upper and middle panels of Figure 3.7 for systems with Np = 6 and Np = 12,

respectively, and with several peptide concentrations C. As expected, R increases, when
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the connectivity criterion weakens, i.e., rcrit increases. A physically reasonable choice

of the value rcrit should provide an increase of R with increasing peptide concentration

at constant number of peptides. This condition is satisfied for rcrit > 1.0 nm, which

can be considered as the lower limit for rcrit. The existence of such a lower limit for

rcrit is not expected for systems of simple isotropic molecules and evidences a multilevel

structural organization of peptide aggregates. This can be seen, when systems with

approximately the same peptide concentration (C ≈ 6%) but with a different number

of peptides are compared (lower panel in Figure 3.7). When the connectivity criterion

applied is stricter (rcrit < 1.0 nm), the systems with smaller peptide numbers Np exhibit

increased aggregation in comparison with larger systems. This is due to the fact that in

the systems with just a few peptides, the formation of a single β-sheet with interstrand

distance of about 0.5 nm is the main form of aggregation. In contrast, in larger systems,

more then one β-sheet can be formed, and the use of rcrit < 1.0 nm artificially breaks

the peptide aggregate into separate β-sheets even in the case of an ideal fibril. For the

largest system studied with Np = 56, the aggregation parameter R shows a pronounced

sigmoid-like dependence on rcrit with an inflection point at ∼ 1.0 nm. Such sigmoid-like

dependence, although less steep, is still seen in the system with Np = 12, but it disappears

in the systems Np = 6 and 3 (see lower panel in Figure 3.7).

The choice of the connectivity criterion in studies of peptide aggregation should be

meaningful also in the limit Np → ∞, since simulation studies are typically aimed to

reproduce the properties of macroscopic systems. Therefore, a connectivity criterion

of rcrit > 1.0 should be used, keeping in mind that their use overestimates peptide

aggregation in small systems. In the largest system studied with Np = 56, the state

with peptide aggregate exists almost permanently with a probability of R = 1, when rcrit

exceeds 1.1 nm (see lower panel in Figure 3.7). Below, we use the connectivity criterion

rcrit = 1.1 nm for the distance between the centers of mass of two peptides and the minimal

fraction f = 2/3 of peptides in the largest cluster, to estimate the existence probability

of the state with aggregate which is denoted as the aggregation parameter R2.

3.2.2.2 Number of hydrophobic contacts

The connectivity criterion based on the distance between the centers of mass does not

take into account specific interpeptide interactions, such as interpeptide H-bonds or direct
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contact of the atomic groups of two peptides. For the description of the formation of

ordered peptide aggregates, the connectivity criteria which deal with specific interpeptide

interactions might be important. As a first step in this direction, we have also analyzed

peptide aggregation using the number nc of hydrophobic contacts between two peptides

as connectivity criterion.

Thus, if we consider the largest system with Np = 56, the dependence of the existence

probability R to find at least fNp peptides in the largest cluster of this system for various

choices of number of contacts nc is shown in Figure 3.8. The existence probability rapidly

approaches 1 as nc is lowered from 30 to 20 for the f between 0.4–0.7. The dependence

of the existence probability R (with f = 2/3) on peptide concentration is shown in

the upper and middle panels of Figure 3.9 for systems with Np = 6 and Np = 12,

respectively. With decreasing the number of contacts nc, the probability R approaches

1, as expected. The physically justified enhancement of aggregation with increasing the

peptide concentration is observed, when nc ≤ 10. On the other hand, in the system

with Np = 56, the requirement R = 1 is satisfied for nc ≤ 15. We use ≥10 hydrophobic

contacts between two peptides as a connectivity criterion and the corresponding existence

probability of the state with aggregate is denoted as aggregation parameter R3.

3.2.3 Peptide aggregation: concentration and system size

The dependences of the aggregation parameters R1, R2 and R3 on peptide concentration

C are shown in Figure 3.10. All three aggregation parameters used show a qualitatively

similar behavior: the aggregation is fostered with increasing C, when the number of

peptides is fixed. Although such a dependence was, in fact, imposed by the choice

of the connectivity criteria for parameters R2 and R3, this is not the case for the

aggregation parameter R1, which characterizes the degree of aggregation without imposing

any connectivity criterion. The enhancement of aggregation with increasing peptide

concentration is physically obvious and we are not aware of any mechanism, which can

decrease the aggregation propensity when the number of peptide is fixed but the amount

of solvent decreases. This aspect of peptide aggregation did not get proper attention

in simulation studies of aggregation of peptides or other particles in liquid water so far.

The effect of concentration on peptide aggregation is illustrated by the dependence of

the size Smax of the largest peptide cluster on C for the systems with Np = 6 (Figure
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3.12). Obviously, Smax = 1 upon infinite dilution (C = 0%) and Smax = 6 in the absence

of solvent (C = 100%). The steepness of the dependence Smax(C) is determined by the

degree of solubility of the peptides considered. For more soluble peptides, we may expect

a more gradual increase of Smax with C. The data shown in Figure 3.10 also demonstrate

that the degree of aggregation increases strongly when the concentration is fixed but the

number of peptides in the system increases. This is shown explicitly in Figure 3.11, where

the aggregation parameters R1, R2 and R3 are given as a function of the box size L. All

three different aggregation parameters depend on the system size in a drastic way. In fact,

the effect of system size on aggregation (Figure 3.11) is as strong as the effect of peptide

concentration (Figure 3.10). Decreasing the system size has the same effect as decreasing

the peptide concentration: the peptides become apparently more “dissolved” in water.

The physical origin of this phenomenon is the effect of the finite system size on the minority

phase in the two-phase region. The same behavior is seen in simple fluid and magnet
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systems, when they are at constant density or magnetization, respectively.64,70–74 Since

the concentration and the system size strongly affect the degree of peptide aggregation as

measured by different parameters, various other properties of the peptide-water system

should also be strongly sensitive to these two factors. The dependence of the average

number of interpeptide hydrogen bonds per peptide, npp
H , on the system size is shown in

the lower panel of Figure 3.13 for various peptide concentrations. These dependences are

qualitatively similar to those of the aggregation parameters shown in Figure 3.12, i.e., npp
H

increases with increasing concentration C and with increasing system size L. The average

number of peptide-water H-bonds, npw
H , is also strongly sensitive to C and L, although
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this dependence is opposite to that of npp
H . The clear correlation between the aggregation

parameters and other properties of the peptide-water system evidences the reasonable

choice of the aggregation parameters.

The secondary structure content of peptides is an important property, which is used

in the characterization of peptide aggregation both in simulations and experiments. We

have found that the β-sheet and α-helical contents are strongly sensitive to the system

size and concentration, and vary from 0.28 to 0.42 and from 0.11 to 0.33, respectively.

Nevertheless, there is a clear anti-correlation between the α-helical and β-sheet contents

of the peptide-water system (see upper panel in Figure 3.14). In turn, the β-sheet content

is proportional to the average number of interpeptide H-bonds per peptide npp
H (see lower

panel in Figure 3.14).

Important information about the driving forces of peptide aggregation can be obtained

from the analysis of the properties of hydration water. The water-mediated attraction

between hydrophobic groups of peptides as well as Coulombic and H-bonding interactions

between peptides are the main driving forces of peptide aggregation. An analysis of

the effective hydrophobicity/hydrophilicity of the surface of peptide aggregates may give
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insight into the mechanism of aggregation. If the peptide surface exposed to water

becomes more hydrophilic upon aggregation, the attraction between hydrophobic groups

may be considered as the main driving force in aggregation. Otherwise, aggregation

should be attributed mainly to the interpeptide Coulombic and H-bonding interactions.

The strength of water-peptide interaction can be characterized by the number of water-

peptide H-bonds npw
H per unit area of solvent accessible surface. The dependence of

this number on the system size L at peptide concentration C ≈ 6 % is shown in the

lower panel of Figure 3.15, where the value for a single peptide is shown by a horizontal

line. With increasing system size (and, accordingly with increasing aggregation), the

surface of peptides exposed to water becomes more hydrophilic. We can conclude that

the hydrophilicity of the peptide surface exposed to water is enhanced upon aggregation

and that the hydrophobic attraction between hydrophobic groups of the peptides studied

is the main driving force of their aggregation. This could be attributed to the presence
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of hydrophobic amino acid residues and hydrophobic caps in the peptide.

The density ρh of water in the hydration shell of peptides can also be used as a measure

of the effective strength of peptide-water interaction: more hydrophobic surfaces cause

a decrease in the density of hydration water. The density ρh of hydration water can be

simply estimated, if the solvent accessible peptide surface as well as the number of water

molecules in the shell of a certain width near the surface are known. The dependence of

the density ρh of hydration water on the system size L at a peptide concentration C ≈
6% is shown in the upper panel of Figure 3.15. The trend towards more dense hydration

water upon aggregation is clearly seen, corroborating our conclusion about the leading

role of hydrophobic attraction in the aggregation of the studied fragments, as derived

from the analysis of water-peptide H-bonding (see lower panel in Figure 3.15).
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3.2.4 Properties of the largest peptide cluster

A clustering analysis provides the possibility to explore various properties of the largest

peptide cluster, which can be considered as an embryo of the organic-rich fibrillar phase.

The time evolution of the size Smax of the largest peptide cluster (lower panel in Figure

3.16) as well as the time evolution of its radius of gyration Rg (upper panel in Figure 3.16)

can be used to characterize the equilibration process. Similar to the radius of gyration Rg

of all peptides, the properties of the largest peptide cluster achieve saturation in about

25 ns. Note that the Rg of all peptides and of the peptides in the largest cluster are very

close due to the strong degree of aggregation in the largest system studied (upper panel

in Figure 3.16).
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of the largest peptide cluster.

The structural properties of the largest peptide cluster may be characterized by the
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relation between its average mass M and volume V . In a first approximation, V can be

estimated from the radius of gyrationRg of the largest peptide cluster, assuming that it is a

spherical body: V = (4/3)π (Rg

√

5/3)3. The obtained dependence M(V ) in the various

systems studied is shown in Figure 3.17. If the peptide cluster is a three-dimensional

object, its density is equal to the slope of the dependence M(V ), which is ρ = 0.66 g/cm3.

Since a spherical shape of the peptide cluster was imposed, the estimation given above

is a lower limit for the aggregate density, as the sphere provides the maximal volume

at a fixed radius of gyration. Information about the shape of the largest cluster can be

obtained from the analysis of the maximal extension Lmax of the largest cluster. The

dependence of the average value of Lmax on the average value of Rg in the various systems

is shown in the upper panel of Figure 3.18.For comparison, the dependence expected for

a spherical object, whose Lmax = 2Rg

√

3/5, is also shown. The dependence Lmax(Rg)

for the peptide cluster deviates from the one expected for spherical objects, indicating an

elongated shape of the peptide clusters.

To gain further insight into the mass distribution within the largest cluster, we plotted

the dependence of M on the radius of gyration, Rg, in a double logarithmic scale (lower

panel in Figure 3.18). The slope of this dependence is equal to the fractal dimensionality

of the object. The fit of the dependence M(Rg), shown in the lower panel in Figure 3.18,

to a power law yields the fractal dimension of the largest peptide cluster equal to 2.8

(solid line), which notably differs from 3 (dashed line), corresponding to compact three-

dimensional objects. A fractal-like structure of the peptide aggregate is also supported

by the dependence Lmax(Rg), which is not linear, but Lmax ∼ R1.1
g , indicating that the

fractal dimension of the peptide clusters is < 3. In fact, the fractal dimensionality of

proteins is always < 3 and, therefore, a low fractal dimension of peptide clusters is not

surprising.87

3.2.5 Time evolution of secondary structure

In order to evaluate the time evolution of the secondary structure of the peptides, each

residue is assigned to a particular secondary structure using SEGNO,88 and a peptide

is assigned to a particular secondary structure, if three consecutive residues have the

same secondary structure and no other consecutive secondary structure is present, else,

the peptide is assigned to a coil. Two peptides are considered to be forming β-sheets
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if both peptides are assigned to β-strands by SEGNO and at least two polar backbone

hydrogen bonds are present between them. Figure 3.19 shows the time evolution of two

representative simulations, Run1 and Run2, at C = 12%. In the initial configuration of

the system, all the peptides were in an isolated strand conformation. A rapid increase in

random coil conformation, accompanied by a corresponding decrease in isolated strands,

is observed within the first 5 ns in both simulations. In Run1, β-sheets increase steadily

up to 100 ns, which correlates well with the decrease in random coils. There seems to

be no other secondary structure surge during this transformation, indicating the direct

transition from coil to β-sheets. Run2 has a very low fraction of β-sheets and most of the
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peptides have no distinct secondary structure; however, the relative amount of peptides

in the helix conformation is higher. The cluster size distribution for both simulations at

various time intervals is shown in Figure 3.20. The power law nS ≈ S−2.2 represents the

behavior of nS at the percolation threshold.89 A hump of nS at a large S and its drop-off
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at intermediate S values indicate the presence of a large aggregate in the case of Run1,

which is missing in Run2. The increase in the amount of β-sheets with time is only seen

in simulations where the droplet survives for multiple nanoseconds.

3.3 Discussion

The results of the simulation studies presented have two main implications. The first

implication is related to the necessity to take into account the finite size of the simulated

system, when one intends to reproduce properties of a real macroscopic system. The

second implication is related to natural systems, where the finite system size is an intrinsic

property.

3.3.1 Finite system size in silico: simulation studies of binary

systems

Generally, the simulation studies are aimed at reproducing the properties of macroscopic

systems. There are various factors, which complicate the realization of this goal, and it is

important to know to what extent these factors make the properties of the simulated

system different from those of its macroscopic analog. For example, the ability of

available force fields to reproduce various system properties is approximate even for simple

fluids and their mixtures. Another complication arises from the necessity to reproduce

correctly the phase behavior of a system of interacting particles that requires application of

sophisticated simulation methods (such as Monte Carlo simulations in the grand canonical

ensemble). Besides, there is another general problem, which accompanies a priori any

simulation studies aimed to reproduce the properties of macroscopic systems; this is the

finite size of the simulated systems, which even in the distant future will not noticeably

approach the size of a macroscopic system.

The effect of the finite system size on its properties is well known in statistical

and computational physics. Finite size scaling allows approaching the properties of the

macroscopic system. This can be achieved by simulations of several systems of different

sizes (measured, for example, by their linear extensions L) with subsequent extrapolation

of the results to the macroscopic limit L→ ∞. The effect of the finite size depends on the

thermodynamic state of the system. For example, it is especially strong in the vicinity of
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the critical point due to the suppression of fluctuations by the finite system size. On the

other hand, when the system is in a thermodynamic state that is distant from the phase

transition, system properties are not strongly affected by its finite size.

Typically, simulation studies of aqueous solutions are performed in constant-volume

or constant-pressure ensembles. As an aqueous solution is a mixture, the concentration of

solutes is a key parameter of such a system, which is also kept constant. Simulations of a

single solute in water can be used for reproducing the properties of a macroscopic system

only at infinite dilution. In this case, the finite size does not affect the system properties

noticeably when the box size essentially exceeds the size of the solute. The addition of

just another solute molecule to the system changes the status of simulations in a drastic

way. Now the clustering (aggregation) of solutes is possible and strongly depends on the

concentration of the solutes and the thermodynamic state of the system.89–91 If this state

is distant from the demixing phase transition, the probability to find a cluster containing

S molecules drops in a drastic way with increasing S and the vast majority of solute

molecules exists as monomers or belongs to small clusters. Of course, the finite system

with only a few solutes fails to reproduce the cluster size distribution of a macroscopic

system. However, this affects mainly the large clusters whose population in solution is

low, whereas the clustering of the majority of solute molecules is not strongly perturbed.

The distorting effect of the finite size on the system properties becomes enormous as

the system enters the two-phase region.64,70–74 This situation is typically encountered

in the simulation studies of strongly aggregating solutes in liquid water, which are

usually performed in one simulation box with the solute concentration deeply inside

the two-phase region. However, the effect of a finite system size is generally neglected

not only in simulations of biomolecules, but also in simulation studies of simple small

hydrophobic solutes in liquid water (see, for example, Refs. 92–94). Moreover, the

effect of concentration on the aggregation of solute molecules was considered in only

few studies.95,96 In large enough systems, the solution may separate into two coexisting

phases with an explicit interface between them. However, this is not the case in the

majority of simulation studies of solute aggregation in water, where the number of solutes

is usually small. The finite system size suppresses the minority (organic-rich) phase

and produces an artificial stable state of the system in which the organic-rich phase is

dissolved. The existence probability of this state increases with decreasing the system

size and with decreasing solute concentration (within the two-phase region). To make the
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simulation studies of such systems relevant to real systems, it is necessary to consider the

type of phase transition, the character of the coexisting phases, and to perform a correct

extrapolation of the simulation results to the macroscopic limit.

3.3.2 Finite system size in silico: simulation studies of peptide

aggregation

In the case of amyloidogenic peptides in water, the organic-rich phase appears as a solid-

like ordered aggregate. Typically, the organic-rich phase is a minority phase and its

properties are strongly affected by the finite system size. When the peptide concentration

exceeds the critical one, the peptides should form highly ordered fibrils in the macroscopic

limit. However, the number of peptides is relatively small in simulations. Just a few

peptides in a simulation box can only to some extent exhibit properties of the peptide

aggregate expected in the macroscopic limit. Therefore, simulation studies of aqueous

solutions of peptides must include the analysis of the effect of the system size on the degree

of aggregation and on all other system properties, and the artificial system properties,

produced solely by the finite size effect, should be excluded from the consideration.

In a finite system of an aqueous solution of peptides whose concentration is within

the two-phase region, there are two stable (equilibrium) states. One state is a state

with the peptide aggregate, which represents an organic-rich phase. Of course, this

phase, reproduced by only a few peptides, differs strongly from the ordered peptide

aggregate seen in macroscopic systems. However, this state will evolve towards its analog

in the macroscopic limit upon increasing the system size (the number of peptides in

the simulation box at fixed concentration). In the other state, the organic-rich phase

is dissolved, either partially or completely. This state is a pure artifact of the finite

system size and has no analog in the macroscopic limit, as it disappears with increasing

the system size. The time intervals of the molecular dynamics trajectory, where the

system exists in such an artificial state, can be determined using, for example, the time

evolution of the total radius of gyration of all peptides (see Figure 3.4). The exclusion

of these time intervals from the analysis should help approaching the properties of the

macroscopic system. Note that an equilibrium between the previously mentioned states

was also observed in simulation studies of three amyloidogenic peptides in implicit water,57

although the origin of such a behavior was not discussed.
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The most important finding of our studies is the drastic effect of the system size on

peptide aggregation. This effect seems to be responsible for the instability of aggregates

consisting from just a few peptides, as seen in simulations.97–99 This effect of the finite

size of a system which is in the two-phase state, is known and well understood for Ising

magnets and LJ fluids, has not been studied so far in more complex systems. To the

best of our knowledge, this is the first study showing the manifestation of this effect

in binary mixtures of complex peptide-water systems with low solubility of the peptide.

This system was chosen due to the importance of simulation studies of the aggregation

of biomolecules in water. Our simulation studies of peptide aggregation with various

peptide concentrations clearly show that the concentration affects all system properties

in a drastic way. This effect is well understood and seems to be obvious. The degree of

peptide aggregation (Figure 3.10), H-bonding (Figure 3.13), secondary structure content

and other system properties strongly depend on peptide concentration. The dependence

of the size of the largest peptide cluster on concentration at a fixed number of peptide

(Figure 3.11) clearly illustrates the necessity to account for the concentration effect in

the simulation studies of aggregation phenomena. This effect is unavoidable, when the

number of aggregating particles exceeds 1. In particular, any property of a system with

just two aggregating particles are concentration dependent.

When studying the effect of concentration and system size on aggregation, it is

important to introduce an adequate parameter characterizing the degree of aggregation.

Although the use of the radius of gyration of all peptides for this purpose does not

require a criterion for connectivity between peptides, it does not allow obtaining of the

cluster size distribution and an analysis of the properties of the largest peptide cluster. A

more detailed analysis of aggregation requires the introduction of a connectivity criterion

between two peptides. Such a choice is not unambiguous, even for simple molecules, and

it becomes even more difficult for biomolecules. In a first approximation, we have used

the distance between the center of mass of two peptides as a measure of connectivity. The

disadvantage of this measure is the inability to distinguish the ordered character of the

peptide aggregate. Clearly, the search for more adequate connectivity criteria in studies

of formation of ordered peptide aggregates is necessary. These criteria should be derived

from the structure of the macroscopic ordered peptide aggregates (fibrils) and include the

interatomic distances between two peptides and H-bonds in particular. It is to be noted

that the effect of the finite system size on the ordered character of a peptide aggregate is
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so far unknown. We may assume that a more ordered aggregate will be more affected by

this effect. However, this assumption should be tested in simulations.

3.3.3 Finite system size in vivo: aggregation of proteins in cells

The effect of the system size on peptide aggregation complicates the attempts to reproduce

the properties of macroscopic systems by simulations of finite systems. However, this is

an intrinsic property of the finite system. Therefore, if the real system of interest is

not macroscopic and contains a relatively small number of peptides, their aggregation

will be suppressed by the finite system size as well. This situation may be relevant in

the case of peptides in small volumes, such as biological cells or their compartments. In

vivo, amyloidogenic peptides can be found both in intracellular and extracellular fluids and

these two pools of peptides often seem to be mutually related.100,101 The extracellular fluid

may be regarded as an essentially macroscopic system and formation of the peptide-rich

phase via the phase transition should largely follow the regularities normally encountered

in in vitro experiments with bulk aqueous solutions of the amyloidogenic peptides. The

picomolar concentrations of islet amyloid polypeptide in the plasma102 and of Aβ in the

cerebrospinal fluid103,104 should be considered as critical for their aggregation, because

the extracellular fluid is in direct contact with amyloid plaques. The production of

amyloidogenic peptides in cells and their accumulation with time100,105,106 evidence that

the intracellular concentration noticeably exceeds the critical one. The absence (or at

least the slowing down) of extensive fibrillation in cells might be due to the effect of

the relatively small volume of cells or their compartments. Due to the high insolubility

of amyloidogenic peptides, the presence of dozens or hundreds of peptides in a cell

may already provide conditions of strong oversaturation. Hence, a small cell volume

should suppress peptide aggregation in general, and formation of ordered aggregates, in

particular. The escape of these peptides into the extracellular fluid (for example, due to

the destruction of the cell membrane upon its death), makes fibrillation unavoidable at

the same peptide concentration. If oversaturation is not too strong, the lag time of fibril

formation may still take many years.

The suppression of aggregation by a small system size has a general physical origin

and, therefore, is unavoidable. However, it is rather difficult to estimate the magnitude

of this effect, which depends on the system and detailed solution conditions considered.
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Additionally, other factors (first of all, surface effects) may be equally or even more

important. We may expect that peptide adsorption on some surfaces is favorable for the

ordered character of their aggregation, whereas confinement in a small volume should

suppress the formation of ordered aggregates. Further studies are necessary to identify

those cases where the finite size of biological cells noticeably affect intracellular peptide

aggregation.



Chapter 4

Effect of Temperature on Peptide

Aggregation

The phase state of a multicomponent solution at a given temperature is the result of the

interplay of various interactions between the constituent particles. As the temperature is

increased, the kinetic energy should become dominant over the potential energy, and at

a certain temperature, the solution should become macroscopically homogenous.

Amyloidogenic peptides are highly insoluble in liquid water and their critical

concentration is generally expected to be in the micromolar to nanomolar range.21

Under ambient conditions, their aqueous solutions are separated into a water-rich phase,

containing the critical peptide concentration, and an organic-rich phase, which appears

as amyloid fibrils. It can be expected that amyloid fibrils dissolve in liquid water

upon heating at a particular temperature and pressure, depending on the peptide

concentration. In this chapter, the temperature-induced demixing phase transition

between the aggregated and the disaggregated states of the peptide system was examined

with the REMD simulation method, using an explicit water model.

4.1 System setup

The simulated system consists of 12 peptide fragments having the amino acid sequence

FLVHS, corresponding to residues 15-19 of hIAPP, and 3079 water molecules, resulting in

a peptide concentration of 12.4 w/w% . The N- and C-termini of the peptide fragments

51
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were capped with acetyl and methylamide groups, respectively. A modified AMBER

force field83 was used for the peptides along with the TIP3P water model.107 The Replica

exchange molecular dynamics (REMD) simulation was performed using the RPMDRUN

package.108 The temperature spacing was calculated by performing initial uncoupled

simulations for 0.5 ns at 36 different temperatures ranging from 275 to 991 K. The

average energies were fitted with a polynomial and Eq. 2.28 was solved iteratively for

the temperature distribution for which P (acc) = 0.20. Sixty replicas distributed over a

temperature range of 286.7 K to 645.5 K were used with a state exchange probability of

0.1 leading to a time of about 3 ps for each replica between two state exchanges. The

SHAKE algorithm was applied to constrain all bonds in order to allow a time step of 2.0

fs. The electrostatic interactions were treated by Particle Mesh Ewald (PME) summation

and the simulation was performed for 49 ns, corresponding to a total simulation time of

2.94 µs.
The intrinsic volume Vp of the peptides was calculated as:

Vp = L3
box − Vh − (N0 −Nw)/ρb, (4.1)

where Vh is the volume of the hydration layer, calculated using the slab approximation

(see section 3.1 of Chapter 3 for details), N0 and Nw are the numbers of water molecules in

the cubic simulation box (with the edge Lbox) and in the hydration shell, respectively, and

ρb is the numerical density of bulk water determined at the same thermodynamic states

in constant-volume simulations of TIP3P water. The radius of gyration, hydrophobic

contacts, hydrogen bonds, and secondary structure were calculated using the methods

described in section 3.1 of Chapter 3.

4.2 Results

In order to study the equilibrium thermodynamic states of the system, the part of the MD

trajectory where system properties vary monotonically with time should be excluded. The

time dependence of various system properties was analyzed by dividing the simulation

run into five non-overlapping segments and calculating the average properties of each

segment. Of all the measured properties, the inter-peptide hydrophobic contacts and

hydrogen bonds needed the longest equilibration time (≈ 25 ns). Other parameters, such
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as the SASA and the radius of gyration, equilibrated much faster. Figure 4.1 shows the

average number of inter-peptide hydrophobic contacts and SASA of all peptides for each

segment of the simulation run. Based on the time evolution of all parameters studied,
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Figure 4.1: Average number of inter-peptide hydrophobic contacts and SASA as a function of
temperature in four non-equilibrium segments of the total MD simulation run and in the equilibrium
run between 26 to 49 ns.

the equilibration period was estimated to be 25 ns. Only the equilibrium results obtained

from the last 24 ns of the REMD simulation run are further discussed.

The radius of gyration Rg of all peptides and its mean-square fluctuations (σ =
〈

R2
g

〉

- 〈Rg〉 2) were shown to be useful parameters for characterizing the phase transition in

aqueous solution of peptides.56,57 The Rg shows a sigmoid-like increase with increasing

temperature, indicating a transition from the state with compact aggregate with Rg ≈
1.25 nm to a disaggregated state with Rg ≈ 2 nm (Figure 4.2). The fit of the Rg(T ) to

a sigmoidal function (dashed line) indicates a midpoint of the transition at T ≈ 450 K

(vertical dashed line) and a smearing of the transition within a range ± 55 K. A transition

temperature can be estimated using the mean-square fluctuations σ, which pass through a

maximum at T = 486 K (vertical solid line). The discrepancy between the two estimations

is ∼ 35 K, which could be due to notable deviations of Rg(T ) from a sigmoidal shape. The

behavior of the radius of gyration as a function of the reversed temperature 1/T was also

analyzed (Figure 4.3, solid squares). The Rg(1/T ) dependence can be almost perfectly
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described by a sigmoidal function, with a better goodness of fit as compared to that of

the Rg(T ) dependence. The inflection point was found to be at T ≈ 465 K ( Figure

4.3, solid vertical line). Similarly, the dependence of SASA on the reversed temperature
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The sigmoid fit of Rg(T ) and location of its
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1/T is much closer to a sigmoid (Figure 4.3) and the goodness of fit is about three times

better as compared to the SASA(T ) dependence. The inflection of the sigmoidal fit of

SASA(1/T ) is located at T ∼= 480 K (Figure 4.3, vertical dashed line).

Peptide aggregation can be quantitatively characterized utilizing cluster analysis. The

probability distributions P(Smax) to find the largest peptide cluster containing Smax

peptides, obtained with a connectivity criterion based on the distance between the centers

of mass of the peptides, are shown in Figure 4.4 for selected temperatures. At the lowest

temperature studied (T = 287 K), the largest cluster consists of all 12 peptides in ∼ 50%

of the observed configurations and only rarely contains less than 5 peptides. Conversely,

at the highest temperature studied (T = 646 K), largest clusters consisting of just 2

or 3 peptides dominate. At T = 440 K, the largest peptide cluster strongly fluctuates,

consisting of 4 to 10 peptides with comparable probabilities. The temperature dependence

of the probabilities to have an aggregate including more than 2/3 of the peptides, based on
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the connectivity criteria of either the distance between the centers of mass of two peptides

(rcrit ≤ 1.1 nm) or the number of hydrophobic contacts between the two peptides (nc ≥
10), are shown in Figure 4.5. Fits to a sigmoidal function give inflection points at 415

and 435 K, respectively.
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The cluster size distribution nS, which is the probability to find a cluster containing S

peptides, can also serve for characterizing aggregation. Examples of the nS distributions

are shown in Figure 4.6 using a double logarithmic scale. Such distributions are very

sensitive to a phase transition. In the one-phase region, where the aqueous solution is

homogeneous at the macroscopic scale, the distribution of nS deviates downwards from

the power law nS ∼ S−2.2.109 Such a behavior is seen from T = 646 K up to 566 K. Phase

separation becomes evident with the appearance of a peptide droplet, and is indicated by

a sharp increase of nS at large S values, e.g., the distributions from T = 287 K to 340 K.

Near the phase transition, nS shows a power-law behavior ∼ S−2.2 in the widest range of
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S. However, such a scenario is only true for dilute macroscopic systems. Due to the finite

size of the simulation box, the probability distribution of large clusters gets distorted and

a hump appears on the nS distribution at large S values. This hump does not indicate

the presence of a droplet, however, and can also be observed at temperatures much higher

than that of the phase transition. These humps can be seen for temperatures T < 557

K, therefore, 557 K should be considered as an absolute upper temperature limit for the

presence of an aggregate.
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Figure 4.6: Size distribution nS of the peptide clusters for selected temperatures (symbols) in a
double-logarithmic plot. The power law nS ∼ S−2.2 is shown by lines.

The average number of peptide-water hydrogen bonds per peptide, nwp
H , closely follows

the temperature dependence of SASA in the temperature range 287 K < T < 430

K (Figure 4.7). In particular, one additional water-peptide H-bond corresponds to an

increase of SASA of about 1.1 nm2. The temperature induced increase of SASA above

430 K is not accompanied by the creation of new water-peptide H-bonds. This means

that the peptide is not able to form H-bonds with more than about 14 water molecules.

The effective hydrophilicity of the surface can be characterized by the number of H-bonds

with water per unit SASA. The increase of the ratio nwp
H /SASA upon cooling indicates

an increasing hydrophilicity of the exposed surface upon aggregation (Figure 4.7, lower
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panel). These results are in agreement with previous studies of aggregation of the same

peptide at T = 330 K, proving that the aggregation of the peptide studied occurs mainly

via contacts between hydrophobic groups. The average number of intermolecular peptide-

peptide H-bonds per peptide, npp
H , is ∼ 2.5 at low temperatures (Figure 4.8, upper panel),

continuously decreases and finally vanishes upon heating, indicating that most of the

peptides are in monomeric form at high temperatures. The average number of intra-

peptide H-bonds, nintra
H , increases slightly up to 450 K, beyond which it remains almost

unchanged. The population of various elements of secondary structure is shown as a

function of temperature in the lower panel of Figure 4.8. In the aggregated state, which

dominates at low temperatures, β-strands are the dominating structural elements. The

fraction of the PPII structure is about 25% at low temperatures and decreases by a few

percents upon heating. The population of random coil conformations increases from 18

to 26 % upon heating, whereas the α-helix content shows a non-monotonic behavior, i.e.,

it increases from ∼ 19% at T = 287 K, passes through a maximum (∼ 23%) at T ≈
475 K, and drops to ∼ 21% at the highest temperature studied. The similarity of the
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temperature dependences of the β-strand content and the number npp
H of inter-peptide H-

bonds (Figure 4.8) indicates their coupling, which is expected as the β-sheets are formed

due to the creation of inter-peptide H-bonds. The degree of such coupling is clearly seen,

when the β-strand content is shown as a function of inter-peptide H-bonds per peptide,

npp
H (Figure 4.9, lower panel). The dependence is linear with a slope of ∼ 0.036 over

the entire temperature range studied. As the presence of intra-molecular H-bonds is an

important condition for the existence of α-helical structures, the α-helical content as a

function of nintra
H is shown in the upper panel of Figure 4.9. Three temperature intervals

with an almost linear relation between the α-helical content and nintra
H (dashed line) can

be distinguished. Up to about 450 K, both properties increase with temperature due

to the dissolution of the peptide aggregate, and a qualitative change of the correlation

between the α-helical content and nintra
H is observed at ∼ 375 K. Upon heating beyond

475 K, the α-helical content starts to decrease, whereas nintra
H remains almost unchanged.
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Additional information about the peptide surface and the character of peptide
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aggregation can be obtained from the behavior of the volumetric properties of the

hydration water and the intrinsic volumetric properties of the peptides.110 The density of

water in the hydration shells of the peptides, ρh = Nw/Vh ·mw, where mw is the mass of a

water molecule, is shown in Figure 4.10 as a function of temperature. ρh was found to be
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Figure 4.10: Dependence of the water density in the bulk ρb (solid circles) and in the hydration
shell ρh (circles) on temperature along the simulated thermodynamic path. Pressure-temperature
diagram of REMD simulations (right panel).

notably lower (∼ 25-30 %) than the bulk density, ρb, in the same thermodynamic states, in

agreement with the pronounced hydrophobic nature of the peptide surface. The densities

of both the bulk and the hydration water strongly depend on the thermodynamic state of

the system, which is characterized by temperature and pressure in the present constant-

volume REMD simulations. The density of bulk water increases with temperature, due to

a strong increase of pressure with temperature (Figure 4.10). In contrast, the density of

hydration water decreases with temperature, and the thermal expansion coefficient of the

hydration water, αh, is estimated to be -2·10−4 K−1 up to T ≈ 450 K, and about one order

of magnitude smaller at higher temperatures. The thermal expansivity of the hydration

water observed in the present REMD simulations is notably smaller than that obtained

near other peptides using constant temperature molecular dynamics simulations at p =

0.1 MPa,110,111 which is probabily due to the very high pressures at high temperatures in

the REMD simulations. However, the qualitative change in the temperature dependence
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of ρh that takes place between 450 and 550 K cannot be attributed to the specific change

of the thermodynamic state of system, as the pressure p increases almost linearly with

temperature.

The intrinsic volume Vp of the peptides varies non-monotonically along the thermo-

dynamic path studied: it slightly decreases upon heating up to T ≈ 350 K and decreases

by about 30% upon further heating. The temperature dependence of lnVp is shown in

Figure 4.11. The slope is equal to the peptide’s intrinsic thermal expansion coefficient

αp. The temperature dependence of lnVp is almost linear between 375 and 575 K, with αp

= -2.3·10−3 K−1 (solid line in Figure 4.11). The temperature dependence of the intrinsic

density ρp of the peptides is shown in the lower panel of Figure 4.11. The density of

the peptides is about 1.75 g/cm3 and increases with temperature and pressure upon the

dissolution of the aggregate.
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Figure 4.11: Temperature dependencies of lnVp (upper panel) and the average density ρp of the
peptides (lower panel).
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4.3 Discussion

The simulation studies of an aqueous solution of the amyloidogenic peptides show that

upon cooling, the solution undergoes a transition from a one-phase state, with peptides

completely dissolved in water, to a two-phase state, where a solid-like peptide aggregate is

in equilibrium with a saturated solution of the peptide. Various properties of the peptide

system show a behavior similar to a conventional first order phase transition of fluids,

which is strongly smeared out due to the finite size of the simulation box. The rounding

of the transition is caused by the destabilization of the minor phase (peptide aggregate) in

any simulated finite system due to thermodynamic reasons.71 This is an intrinsic problem

of any simulation study and it can be minimized by using larger systems. Additional

rounding of the transition may originate from the exchange of configurations between the

one-phase and the two-phase thermodynamic states in REMD simulation methods.

Various parameters were used to characterize the peptide aggregation and to locate

the temperature of the demixing transition which separates these two distinct states of the

system. One type of parameters reflects the properties of the whole system of peptides,

e.g. the total radius of gyration or SASA, the total number of hydrophobic contacts or

H-bonds, etc. Such an approach is valid, when the critical peptide concentration in the

water-rich phase (the solubility limit) is so small that it is effectively reproduced by pure

water, while all the peptides in the simulation box almost permanently belong to the

organic-rich phase. This situation corresponds to the aqueous solution of amyloidogenic

peptides at low temperatures. However, upon heating, the critical peptide concentration

increases and the essential part of the peptides at this point belongs to the water-rich

phase. Hence, the ability of parameters that utilize the properties of all the peptides to

describe the formation of a peptide aggregate degenerates as they become less sensitive

to the formation of the peptide aggregate in the organic-rich phase. This results in the

smearing out of the temperature dependences of these parameters in a wide temperature

range, and a shift of the midpoint of the transition towards higher temperatures (see

dependences in Figures 4.2 and 4.3). Therefore, the inflection points of these dependences

(450 to 485 K) give overestimated temperatures for the corresponding phase transition.

In a similar analysis of the temperature-induced transition of amyloidogenic peptides in

implicit water, the transition was found to be smeared out in an essentially narrower

temperature interval, despite the use of a smaller number of peptides,56,57 which could be
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due to the lower peptide concentrations used in these studies.

The appearance of the aggregated phase can be seen in the size distribution of the

peptide clusters (Figure 4.6). The distortion of these distributions due to the small

system size containing a few peptides only prevents an accurate location of the transition

temperature. The clustering analysis can be used to recognize the largest peptide

aggregate that represents an organic-rich phase and offers the possibility to analyze its

properties. The probability distribution of the size of the largest peptide cluster (Figure

4.4) shows largest fluctuations at ∼ 440 K. The temperature dependence of the probability

to have an aggregate including more than 2/3 of peptides, based on the connectivity

criterion of the distance between the centers of mass of two peptides (rcrit ≤ 1.1 nm),

gives an inflection point at T = 415 K. As this is one of the most robust parameters for

characterizing aggregation of this particular peptide, the midpoint of the demixing phase

transition can be expected to be located at ∼ 415 K.

Similar to the previously reported studies of the same peptide at T = 330 K, the

hydrophilicity of the total exposed surface increases upon aggregation (Figure 4.7). This

conclusion is also supported by the increase in the density of hydration water upon

aggregation (left panel in Figure 4.10). It is to be noted that this is not related to a

decrease in temperature, as a corresponding decrease in pressure leads to an even more

drastic decrease in the density of bulk water.

The thermal expansivity of the peptides in an aggregated state is close to zero (Figure

4.11), indicating a solid-like structure of the aggregate. As the aggregate dissolves with

increasing temperaure, the thermal expansivity αp of the peptides becomes negative.

This is expected for a random chain, and was also observed for the amyloidogenic peptide

Aβ42 and an elastin-like peptide in water.110 In the latter case, a random chain behavior

was confirmed by analyzing the structural properties of the peptide.112 Therefore, a

negative value of αp obtained for the peptide system studied indicates a random chain

conformational behavior of single peptides in the disaggregated state, which dominates

at high temperatures.

The density of the peptide aggregate (1.75 g/cm3) largely exceeds the density (0.66

g/cm3) estimated for the same peptide at 330 K in the previous Chapter. This could be

due to the fact that the latter value was obtained by estimating the Vp from the radius of

gyration Rg of the largest peptide cluster and assuming its shape to be spherical. Since a

sphere provides the maximal volume at a fixed radius of gyration, the value estimated was
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the lower limit for the aggregate density. However, in this study, Vp was calculated from

Eq. 4.1, where the volume of the hydration shell was calculated using a slab approximation

with a cutoff 0.35 nm, which could lead to systematic errors in absolute values of Vp. The

dissolution of the peptide aggregate upon heating leads to the disappearance of the loosely

packed structure with numerous voids, inaccessible to water molecules. Accordingly, the

observed intrinsic density of the peptides, ρp, increases upon heating (Figure 4.11, lower

panel).

β-sheet conformations are predominant in the peptide aggregate and the dissolution of

the aggregate upon heating leads to the formation of α-helical structures (upper panel in

Figure 4.8). Some qualitative changes in this process, presumably related to the demixing

transition, occur between 350 and 375 K. A drastic change of the correlation between the

α-helical content and the number of intra-peptide H-bonds occurs at about 475 K and

2.5 kbar. This indicates a change in the conformational behavior of individual peptides

in liquid water, which occurs essentially above the demixing transition temperature.

Approximately at the same state point, the dependence of the density of hydration water

also changes qualitatively (see the left panel in Figure 4.10), whereas this is not the case

for bulk liquid water. These changes point towards a possible relation between the state

of the hydration water and the conformational behavior of the peptides.
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Chapter 5

Simulations of Peptide Aggregation

Near Surfaces

Spontaneous adsorption of protein molecules at interfaces is generally observed as an

aqueous solution of the protein comes into contact with an interface.113 Protein side

chains vary widely in their hydrophobicity, which renders them amphiphilic. Thus, there

is a general tendency of proteins to reside at the interface between two phases of different

polarity. As the folded conformation of the proteins is only marginally stable against

unfolding, an interface-induced conformational change of protein can lead to an optimized

contact between the interface and the protein.114 The presence of surfaces can induce a

concentration gradient in a protein solution, and in turn affect its aggregation. The two

dimensional nature of the surfaces can also induce orientational ordering of peptides, and

thus lead to the formation of two dimensional aggregates.

Since the effects of surfaces on peptide aggregation are multifacet, it would be useful to

analyze them separately. The direct interaction between peptides and surfaces includes

contributions from Coulombic interactions, dispersion interactions, hydrogen bonding,

etc. The presence of the solvent causes the appearance of solvent-induced interactions

between the peptides and the surface. Hence, the effective peptide-surface interaction is

determined by relative strengths and ranges of direct peptide-surface, solvent-surface and

peptide-solvent interactions.

In order to study the effects of solvent induced peptide-surface interactions on peptide

aggregation, two types of peptide fragments were used, i.e., fragment A, with the amino

65
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acid sequence NFGAIL, having a molecular weight of 634 Dalton, and fragment B, with

the amino acid sequence GNNQQNY and a molecular weight of 837 Dalton. Fragment

Figure 5.1: Fragment A, the hydrophobic
fragment.

Figure 5.2: Fragment B, the hydrophilic
fragment.

A is part of hIAPP (residue number 25-29) and fragment B is part of the Sup35 yeast

protein (residue number 7-13). Sup35 is a 685 residue yeast protein. It is a subunit of

the translation termination factor and its normal cellular role is to terminate translation.

Yeast harboring the [PSI+] determinant exhibits increased translation read-through of

stop codons due to aggregation and subsequent loss of function of Sup35. The first 123

residues constitute the prion determining domain and are sufficient for fibril formation.115

The sequence GNNQQNY has been shown to display the same amyloid properties as

Sup35.81 Even though both fragments are capable of forming fibrils, they differ greatly

in their amino acid composition. Fragment A mainly consists of hydrophobic amino

acids, whereas fragment B is made up of polar amino acids. Figures 5.1 and 5.2 show

the molecular surfaces of both the fragments, colored with values according to the

hydrophobicity scale of Kyte and Doolittle,116 with colors ranging from dodger blue for

the most hydrophilic amino acid residue (-4.5) to white at 0.0, and towards orange-red

(4.5) for the most hydrophobic residue . In the following text, fragments A and B are

referred to as the “hydrophobic” and the “hydrophilic” fragment, respectively.
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5.1 System setup

All simulations were performed using the Gromacs software, OPLS force field117,118 and

SPCE water molecules.119 The short range cutoff of 1.2 nm was used for LJ and Coloumbic

interactions. LINCS algorithm was used to constrain all the bonds to their equilibrium

bond lengths, allowing an integration time step of 2 fs. The neighbor list was updated

every 20 fs and the coordinates were recorded every 2 ps. The following systems were

simulated:

1. Water in slit-like pores.

2. The liquid-vapor interface of water.

3. Peptides in bulk water.

4. Peptides in slit-like pores and at the liquid-vapor interface.

5.1.1 Water in slit-like pores

The interaction of water molecules with the surfaces was represented using the 9-3

potential

U(r) =
4πǫnwallσ

3

6

[

2

15

(σ

r

)9

−
(σ

r

)3
]

(5.1)

= πnwall

(

Aij

45r9
− Bij

6r3

)

,

where Aij =
√

AiAj , Ai = 4πǫiσ
12
i , Bij =

√

BiBj, Bi = 4πǫiσ
6
i . The “hydrophilic

wall” was represented by σ and ǫ values of 0.373 nm and 0.030800 kJ/mol, respectively,

whereas the “hydrophobic wall” interacts with σ and ǫ values of 0.373 nm and 5.2 kJ/mol,

respectively (see Figure 5.3). The number density of the wall nwall was set to 100 nm−3.

Simulations were carried out on SPCE water molecules in a cubic box of length 6 nm with

the model walls at 0 and 6 nm in the z dimension. PME with 3dc geometry was used

to calculate long range Coloumbic interactions. In 3dc geometry, the reciprocal sum is

still performed in 3d, but a force and potential correction are applied in the z dimension

to produce a pseudo-2d summation.120 For Ewald summation, a scaling factor of 3 was
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Figure 5.3: Potential energy as a function of distance, between an oxygen atom of water and the
hydrophilic or the hydrophobic wall are representated by black and red lines, respectively.

used to scale down the interaction in the z direction. The system was simulated for 20 ps

at 600 K and subsequently for 300 ps at 330 K for initial equilibration. Water molecules

were added or removed from the system until the density at the center of the box matched

that of the bulk density of SPCE water molecules (see Figure 5.4).

5.1.2 Liquid-vapor interface

The cubic box of length 6 nm was filled with 6400 SPCE water molecules. The box was

extended in the z direction in such a way that an empty space of 6 nm exists between the

two periodic images in z direction. The box was equilibrated for the duration of 10 ns at

330 K in an NVT ensemble using periodic boundary conditions in all three directions.
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5.1.3 Peptides in bulk water

Six copies of one fragment were added randomly into a cubic box of 6 nm length in

such a way that the fragments were at least 0.8 nm away from each other. The boxes

were solvated with water molecules. Five simulations were started at different initial

velocities for each of the systems, i.e., five simulations for the hydrophobic fragment and

five simulations for the hydrophilic fragment. Each system was initially equilibrated for 1

ns with position restrains on the peptide fragments. After 1 ns, the position restrains were

removed, and the system was further simulated for the duration of 70 ns. The number of

water molecules for the systems with hydrophobic and hydrophilic fragments were 6439

and 6394, respectively. All the simulations were carried out in an NVT ensemble. An

equilibration period of 30 ns was estimated from the time evolution of various system

parameters and was excluded from the analysis of system properties.

5.1.4 Peptides in slit-like pores and at liquid-vapor interface

The interaction between wall and peptide atoms was represented by Aij = 0.0 kJ mol−1

nm12 and Bij = 0.0 kJ mol−1 nm6, which lead to no interaction between the peptide atoms

and the pore walls. Six copies of the peptide fragment were added randomly into the box in

such a way that each fragment is at least 0.8 nm away from other fragments and at least 1.5

nm away from the walls. The water molecules overlapping with the peptides were removed.

The system was equilibrated for 1 ns using Berendsen’s temperature coupling121 with a

coupling constant of 0.5 ps. In the case of peptides with a liquid-vapor interface, position

restrains were used on peptides during the initial 100 ps. After 1 ns of equilibration using

Berendsen’s temperature coupling, the system was switched to Nose-Hoover temperature

coupling122,123 with a coupling constant of 1.5 ps and thereupon further simulated for 70

ns. Five NVT simulations, each starting with a different distribution of initial velocities

at 330 K and 1 atm pressure, were carried out for each of the following systems:

1. Fragment A with hydrophilic walls: 6689 water molecules and 6 peptide fragments.

2. Fragment A with hydrophobic walls: 6189 water molecules and 6 peptide fragments.

3. Fragment A with a liquid-vapor interface: 6184 water molecules and 6 peptide

fragments.
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4. Fragment B with hydrophilic walls: 6643 water molecules and 6 peptide fragments.

5. Fragment B with hydrophobic walls: 6145 water molecules and 6 peptide fragments.

5.2 Results

The density profiles of liquid water in the two pores and the density profile in the slab of

liquid water are shown in Figure 5.4. There is a pronounced density depletion of liquid

water near the hydrophobic surface caused by the domination of the effect of missing

neighbors over the weak water-surface attractive potential. The depletion of water density

is more gradual near the liquid-vapor interface. Conversely, there are two pronounced

and highly ordered water layers near the hydrophilic surface. The high value of the local

density at the maximum of the first peak does not correspond to an enhancement of water

density in the first layer, but rather to a narrow localization of water molecules in a plane

parallel to the surface.

The radius of gyration Rg of the peptides, calculated using the method described

in Chapter 3, decreases rapidly within 30 ns in all the simulations, while the number

of inter-peptide hydrogen bonds increases during the same time period, indicating that

the peptides aggregate in all the simulation runs. The equilibration period of 30 ns was

estimated from the time evolution of various system parameters. The time dependence

of the probability distribution of the center of mass of the peptides in pores and in the

slab of liquid water is shown in Figure 5.5. After the random insertion of hydrophobic

peptides into the liquid water in the hydrophobic pore or in the slab of liquid water,

system equilibration requires up to 30 ns. After equilibration, all peptides are adsorbed

at the interfaces. Usually the peptides are adsorbed on the two opposing interfaces, but

sometimes all the peptides are adsorbed at only one of them. The situation is quite

different in hydrophilic pores, where both hydrophilic and hydrophobic peptides quickly

become localized in the center of the pore. A similar trend is also observed for hydrophilic

peptides in the hydrophobic pore.

The density profiles of peptide in pores, calculated after the equilibration period of 30

ns, are shown in Figures 5.6 and 5.7. The degree of peptide localization in the pore center

is quite similar for both the hydrophilic and hydrophobic peptides in the hydrophilic pore.

Hydrophilic peptides show weaker localization in the center of the hydrophobic pore. An
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Figure 5.4: Density profile of liquid water in a hydrophobic pore, hydrophilic pore, and in a slab of
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opposite behavior is observed for the hydrophobic peptides in the hydrophobic pore or

in the slab of liquid water: in all simulation runs, peptides are strongly adsorbed at

the interfaces (Figure 5.7). The degree of peptide localization near interfaces essentially

exceeds that in the pore center, as can be seen from the comparison of the width of

the density distributions shown in Figures 5.6 and 5.7, respectively. The probability

distribution of the angle α between the pore surface and the vector connecting two most

distant peptide heavy atoms are shown in Figure 5.8. When peptides are repelled from

the pore walls and localized in its center, the orientations of their longest axes are highly

isotropic (left panel in Figure 5.8) and only a slight preferential orientation of these axes

parallel to the wall can be noticed. The situation is quite different in the case of a strong

adsorption of peptides at the interfaces (right panel in Figure 5.8). The localization near

the interfaces essentially enhances the orientational ordering of peptides and makes their

longest axes align parallel to the interfaces.
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The droplet probability R to have more than four peptides in a cluster based on the

distances between the centers of mass of two pepties as a function of the distance rcrit

used as cutoff is shown in Figure 5.9. The degree of aggregation of the hydrophobic and

hydrophilic peptides in bulk solutions is quite similar (see upper panel in Figure 5.9). It
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Figure 5.7: Density profiles of hydrophobic
peptides in the slab of aqueous solution (left
panel, POSV) and in aqueous solution in the
hydrophobic pore (right panel, POSO). The
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can be compared with that of the FLVHS peptides studied in Chapter 3. The degree of

aggregation is noticeably weaker in the latter case in a wide range of rcrit. This could be

due to a weaker propensity of these peptides to aggregate, the presence of methyl caps in

the FLVHS peptides, or due to the different force fields. The aggregation of hydrophilic

peptides becomes weaker in both hydrophilic and hydrophobic pores (see middle panel in

Figure 5.9), as it can be inferred from a shift of the dependence R(rcrit) to higher values

of rcrit. For hydrophobic peptides, the situation is opposite (lower panel in Figure 5.9).

The aggregation of hydrophobic peptides becomes slightly stronger upon confinement in

hydrophilic pores, and it is enormously enhanced by confinement in the hydrophobic pore.

The average peptide-water and inter-peptide hydrogen bonds, peptide-water contacts

and the density of the hydration layer of the peptides for the various systems investigated

are shown in Figure 5.10. The average number of peptide-water and inter-peptide

hydrogen bonds is higher in the simulation runs with hydrophilic fragments, due to

a higher number of polar atoms. Hydrophilic peptides also have fewer peptide-water

hydrogen bonds upon bulk phase aggregation compared to the aggregation in pores.
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Figure 5.8: Probability distribution of the angle α between the pore wall or the liquid-vapor interface
and the vector connecting two most distant peptide heavy atoms.

The number of water molecules in contact with the aggregate follows a similar trend:

we observed a 12% increase in the number of water molecules around the aggregate in

pores as compared to the aggregate in the bulk. In the case of hydrophobic fragments,

the number of peptide-water hydrogen bonds and water molecules in contact with the

peptides decreases upon adsorption to the hydrophobic surface. As the peptides are

aligned parallel to the surface, the formation of β-sheets is facilitated, thus compensating

for the decreased peptide-water hydrogen bonding by formation of inter-peptide hydrogen

bonds. As a result, an increase in the number of peptides adopting a β-sheet conformation

is observed upon adsorption.

The density of the hydration layer of the peptides for the various simulation runs

(except for the hydrophobic peptides in hydrophobic pores) is shown in Figure 5.10

(bottom left panel). In the case of hydrophilic peptides, the higher shell densities found

for aggregates in pores as compared to aggregates in the bulk can be attributed to the

suppression of aggregation of hydrophilic peptides in pores. The trend towards a more

dense hydration shell upon increased aggregation has also been observed in the case of the

hydrophobic fragment studied in Chapter 3 (see Figure 3.15). A similar trend is observed

for the hydrophobic fragment in the hydrophilic pore, where aggregation is enhanced, as
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compared to the bulk simulations.
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values.
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5.3 Discussion

The effect of water mediated peptide-surface interactions is determined by the balance of

peptide-surface, peptide-water and water-surface interactions. For simplicity, the direct

peptide-surface interactions are switched off in these studies. The hydrophilic peptide is

composed of residues having multiple polar atoms in its side chains, which makes water-

peptide interactions much more favorable as compared to the case of the hydrophobic

peptide. This prevents the adsorption of hydrophilic peptides at both hydrophilic and

hydrophobic surfaces, as the adsorption would decrease the number of favorable peptide-

water hydrogen bonds. On the contrary, the hydrophobic peptide has many apolar atoms,

which makes direct peptide-water interactions much weaker as compared to water-water

interactions. Hence, adsorption of hydrophobic peptides decreases the overall amount of

hydrophobic surface exposed to water, and the formation of inter-peptide β-sheets leads

to further stabilization. However, this trend can be overcome if the surface is hydrophilic

enough. Near a hydrophilic silica-like surface, the tendency of the surface to be hydrated

overcomes the tendency of the hydrophobic peptides to be dehydrated, which leads to

their desorption from the surface.

Depending on the nature of the peptide and the surface, either an enhancement or

a retardation of peptide aggregation can be observed. The adsorption of hydrophobic

peptides on hydrophobic surfaces foster the aggregation drastically by facilitating the

formation of inter-peptide β-sheets, which is a key structural element of amyloid fibril

formation. A small increase in the aggregation propensity is also seen by confining

hydrophobic peptides in hydrophilic pores, whereas confinement of hydrophilic peptides

in either hydrophobic or hydrophilic pores decreases their aggregation propensity.
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Summary

Protein aggregation is involved in various biological processes and is particularly

associated with many diseases such as Alzheimer’s, Parkinson’s and type II Diabetes

Mellitus. The aggregation of amyloidogenic proteins resulting in the formation of amyloid

fibrils has been shown to follow a nucleated growth mechanism. The separation of

an aqueous solution of a protein into solid fibrils and a saturated protein solution, in

equilibrium with each other, is quite similar to the demixing phase transition of binary

mixtures. As protein aggregation in cells is affected by various factors such as surfaces,

the finite size of the cells and the presence of cosolutes, it is important to understand their

effects on the aggregation process. Protein aggregation can be studied using computer

simulations of model peptide fragments, which behave in a similar way as the parent

proteins themselves. These studies can be very helpful in providing details at the

molecular level. In this thesis, the effects of finite size, temperature, and the influence of

surfaces on protein aggregation were studied.

In any computer simulation studies involving phase transitions, finite size effects

must be properly considered, before any attempt is made to extrapolate the results of

the simulations to macroscopic systems. Therefore, the effect of finite size on peptide

aggregation was studied by molecular dynamics simulations of aqueous solutions of peptide

fragments, at various concentrations and system sizes. Three different parameters were

used to quantify the aggregation process and calculate the degree of aggregation. The

aggregation was enhanced with increasing the peptide concentration at a fixed system

size, and with increasing the system size at a fixed peptide concentration. The observed

decrease in the degree of peptide aggregation with decreasing system size was attributed to

the appearance of an artificial state in which the minor phase, i.e. the peptide aggregate,

was “dissolved”. As the system size approaches macroscopic dimensions, this artificial
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state eventually disappears. Thus, at a concentration where an aqueous solution of

peptides will form an aggregate in a macroscopic system, the aggregation of the peptides

will be suppressed in small (microscopic) systems. There are two major implications of

these studies: Firstly, the finite system size has a drastic effect on peptide aggregation

and is responsible for the instability of aggregates consisting of only a few peptides, hence

it must be considered in any simulation study designed to reproduce the aggregation

in macroscopic systems. Secondly, if the real system of interest is not macroscopic and

contains a relatively small number of peptides, their aggregation will be suppressed by

the finite system size as well. This situation may be relevant in the case of peptides in

small volumes, such as biological cells or their compartments, where it might be playing

a significant role in the suppression of protein aggregation.

The effect of temperature on peptide aggregation was studied using replica exchange

molecular dynamics simulations. Upon cooling, the aqueous solution of peptides was

found to undergo a transition from a one-phase state, where the peptides were completely

dissolved in water, to a two-phase state, where the peptide aggregates are in equilibrium

with the saturated solution of the peptides. Various properties of the peptide-water system

showed a behavior similar to conventional first order phase transitions of fluids. The

transition was smeared out due to the finite system size. The midpoint of the transition

was located at ∼ 415 K.

The effect of hydrophobic and hydrophilic surfaces on peptide aggregation was studied

by simulating aqueous solutions of peptides in slit-like pores. Two types of peptide

fragments having an amino acid composition that renders them either hydrophobic or

hydrophilic, were used in these studies. The adsorption of hydrophobic peptides onto

hydrophobic surfaces was accompanied by enhanced aggregation and β-sheet formation.

The confinement of hydrophobic fragments in hydrophilic pores slightly increased their

aggregation propensity, whereas confinement of hydrophilic fragments retarded their

aggregation, irrespective of the nature of the surface.

The studies presented in this thesis demonstrate the pronounced effects of finite size

and surfaces on peptide aggregation. Based on the results obtained, qualitative predictions

can be made for changes in peptide aggregation, both in small volumes and near surfaces,

which could be helpful in understanding the process of peptide aggregation in biosystems

and finding innovative ways to extend the shelf-life of protein-based pharmaceutical

products.



Zusammenfassung

Die Aggregation von Proteinen spielt in verschiedenen biologischen Prozessen eine

Rolle und wird insbesondere mit vielen Krankheiten wie Alzheimer, Parkinson oder

Type II Diabetes Mellitus in Verbindung gebracht. Es wurde gezeigt, dass die

Aggregation amyloidogener Proteine im Falle der Ausbildung von amyloiden Fibrillen

einem keimbasierten Wachstumsmechanismus folgt. Die Aufspaltung einer wässrigen

Proteinlösung in eine gesättigte Proteinlösung und feste Fibrillen, die sich miteinander

im Gleichgewicht befinden, ist vergleichbar mit der Entmischung in binären Systemen.

Weil die Proteinaggregation in Zellen zusätzlichen Einflüssen wie der Anwesenheit

verschiedener Oberflächen und Cosolventien und einer begrenzten Zellgröße unterliegt, ist

es wichtig, den Effekt dieser Einflüsse zu verstehen. Einen Beitrag zur Aufklärung kann

auch durch Computersimulation von Modellpeptidfragmenten, die sich ähnlich verhalten

wie das Protein, aus dem sie entnommen wurden, geleistet werden. Solche Studien haben

den Vorteil, dass sie Informationen auf molekularer Ebene liefern können. In dieser

Arbeit wurden die Auswirkungen einer endlichen Systemgröße, der Temperatur und der

Wechselwirkung mit Oberflächen auf die Aggregation untersucht.

In jeder Computersimulation, die sich mit Phasenübergängen beschäftigt, müssen

Oberflächeneffekte in die Überlegungen auf geeignete Weise einbezogen werden, bevor

die Ergebnisse auf makroskopische Systeme übertragen werden können. Aus diesem

Grunde wurde im Rahmen dieser Arbeit der Einfluss einer begrenzten Systemgröße auf

die Aggregation von Peptiden mit Hilfe der molekulardynamischen Simulation wässriger

Peptidlösungen unter Verwendung verschiedener Konzentrationen und Systemgrößen

untersucht. In diesem Zusammenhang wurden drei verschiedene Parameter verwendet,

um den Aggregationsprozess zu quantifizieren und den Aggregrationsgrad zu berechnen.

Zunehmende Aggregationsgrade ließen sich durch Erhöhung der Peptidkonzentration bei
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gleich bleibender Systemgröße oder durch Erhöhung der Systemgröße bei gleich bleibender

Peptidkonzentration erreichen. Die Abnahme des Aggregationsgrades mit der Abnahme

der Systemgröße wurde auf das Auftreten eines künstlichen Zustandes zurückgeführt, in

dem die weniger stark vertretene Phase, in diesem Fall das Peptidaggregat, beeinflusst

wird. Sobald sich die Systemgröße an die Größe makroskopischer Systeme annähert,

verschwindet dieser künstliche Zustand schließlich. Folglich wird eine Aggregation, die

bei einer bestimmten Konzentration in einem makroskopischen System auftritt, bei

der gleichen Konzentration in kleinen (mikroskopischen) Systemen unterdrückt. Aus

den durchgeführten Studien ergeben sich hauptsächlich zwei Schlussfolgerungen: Zum

einen hat die endliche Systemgröße einen drastischen Einfluss auf die Aggregation von

Peptiden und ist verantwortlich für die Instabilität von Aggregaten, die aus nur wenigen

Peptiden bestehen. Wie bereits oben angesprochen, muss dies bei der Übertragung

auf makroskopische Systeme berücksichtigt werden. Zum anderen ist auch klar, dass

sobald ein reales nicht makroskopisches System von Interesse ist, die Aggregation

ebenfalls durch die endliche Systemgröße unterdrückt werden kann. Dies mag im

Falle von Peptiden in kleinen Volumina, wie zum Beispiel in biologischen Zellen oder

deren Kompartimenten, von Bedeutung sein. Auf diese Weise könnte der begrenzten

Systemgröße im Falle biologischer Zellen eine Schlüsselrolle bei der Verhinderung der

Ausbildung von Proteinaggregaten zukommen.

Der Einfluss der Temperatur auf die Aggregation von Peptiden wurde mittels replica

exchange-molekulardynamischer Simulation betrachtet. Während des Abkühlens durch-

lief die wässrige Proteinlösung einen Übergang von einem einphasigen Zustand, in dem die

Peptide vollständig in Wasser gelöst sind, zu einem Zustand, in dem sich eine feste Phase

(Peptidaggregat) mit einer flüssigen Phase (wasserreiche Peptidlösung) im Gleichgewicht

befindet. Das Peptid-Wasser-System zeigte ein mit einem Phasenübergang erster Ordnung

in Flüssigkeiten vergleichbares Verhalten. Allerdings war der Phasenübergang durch den

Effekt einer endlichen Systemgröße verschmiert. Der Mittelpunkt des Übergangs war bei

∼ 415 K zu finden.

Die Auswirkung hydrophober und hydrophiler Oberflächen auf die Aggregation von

Peptiden wurde untersucht, indem eine molekulardynamische Simulation der Peptidlösung

zwischen zwei unendlich ausgedehnten Platten durchgeführt wurde. Hierzu wurden zwei

Peptidfragmente verwendet, die sich so in ihrer Aminosäuresequenz unterscheiden, dass

sie jeweils entweder eher hydrophile oder eher hydrophobe Eigenschaften aufwiesen. Im
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Falle des hydrophoben Peptids führte die Adsorption an einer hydrophoben Oberfläche

zur erhöhten Aggregation und Ausbildung von β-Faltblattstrukturen. Beim Einschluss

hydrophober Peptide zwischen hydrophilen Oberflächen wurde hingegen nur ein le-

ichter Anstieg der Aggregationstendenz verzeichnet. Für hydrophile Proteine konnte

unabhängig von der Art der Oberfläche festgestellt werden, dass die Aggregationstendenz

leicht zurückging.

Zusammengefasst demonstrieren die Ergebnisse dieser Arbeit den deutlichen Einfluss

von endlicher Systemgröße und Oberflächen auf die Aggregation von Peptiden. Auf Basis

dieser Ergebnisse lassen sich qualitative Vorhersagen über das Aggregationsverhalten in

kleinen Volumina oder in der Nähe von Oberflächen machen. Dies könnte schließlich dabei

helfen, den Prozess der Aggregation in biologischen Systemen besser zu verstehen und

neue, innovative Wege zu finden, die Lebensdauer von proteinbasierten pharmazeutischen

Produkten zu verlängern.
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