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Abstract

This thesis proposes new methods for real-time signal and variability
extraction, presents derivations of their robustness properties and dis-
cusses their value for practical applications to physiological time series.
Although the proposed techniques are developed against the background
of online monitoring in intensive care, they are also applicable to any
other kind of time series.
For Repeated Median regression on an equidistant grid, the distribution
of the position and number of zero residuals is investigated, and the
correlation structure between the residual signs is examined.
For online signal extraction, an adaptive filter is proposed which essenti-
ally relies on a goodness-of-fit test based on residual signs from Repeated
Median regression. After deriving suitable settings for this filter in the
univariate case from a simulation study, the procedure is extended for
application to multivariate time series.
For online variability extraction, three approaches to scale estima-
tion are considered. The robustness properties of the newly proposed
regression-free and model-free techniques are derived, and the different
approaches are compared via an extensive simulation study.
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1 Introduction

Monitoring systems in intensive care are important tools for diagnosing and judging the
state of the critically ill. These systems assess and display measurements of physiological
variables in real-time. As decision support for the medical staff, they also contain alarm
systems and specific diagnosis tools. Currently used alarm systems for certain hemody-
namic variables are essentially based on simple threshold rules where the violation of an
upper or lower limit causes an alarm.

Physiological time series from an intensive care monitoring system often contain spikes due
to technical problems (e.g. defective contacts or loose connections) or sudden movements of
the patient (e.g. caused by coughing). Such outliers contain no information about the true
state of the patient but may influence statistical analyses severely, see e.g. Charbonnier,
Becq and Biot (2004). Furthermore, they cause many false alarms which increases the
stress level for the clinical staff, see e.g. Lawless (1994).

Of course, it also may happen that outliers point at a relevant change of the patient’s
health: for example, arrhythmias may appear as spikes in the heart rate series. How-
ever, such events are controlled by additional monitoring rules, e.g. making use of ECG
recordings.

Extracting the relevant information from the multitude of observations, e.g. by applying
online filters to the time series and comparing the noise- and artefact-free level of the
series to the alarm thresholds provides a possibility to reduce the number of false alarms
(Kuhls, 2008). Further improvement can be expected when incorporating the variability
of a time series into the alarm rules, e.g. by combining level and variability estimates. For
certain variables, such as the heart rate, the variability itself might be a feature which
is worth monitoring since it provides important information about the patient’s health
status and might even be used for early warnings.

In intensive care, methods are required which are computationally fast and also compre-
hensible and interpretable for the medical staff. Therefore, the techniques described in the
following chapters are developed from an application-oriented background to guarantee
their suitability for real-time application in intensive care. In particular, we focus on fil-
tering techniques based on a moving time window. For extraction of the underlying level
of a time series we focus on robust regression-based filters, in particular, on filters which
use the Repeated Median regression. For online variability extraction we also consider
regression-based techniques and compare them with methods which do not require this
regression step.
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Chapter 2 introduces the Repeated Median (or short: RM) regression defined by Siegel
(1982) and states some important properties. For regression performed on an equidistant
grid, some characteristics of the RM slope are investigated in Section 2.1, and Section
2.2 provides a detailed investigation of the RM residuals and their signs. The correlation
structure of the RM residual signs is investigated in Section 2.3 and compared to the
well-known correlation structure of Least Squares residuals. These attributes of the RM
residuals are explored particularly in view of the adaptive signal extraction procedure,
introduced in the following chapter.
Chapter 3 covers different approaches for signal extraction from high frequency time
series. Section 3.1 provides an overview of some robust versions from the broad variety
of univariate filtering methods that exhibit certain characteristics desirable in the online
monitoring context in intensive care. This section particularly emphasises the advantages
of filters based on Repeated Median regression, but the described filters are all based on
moving time windows of fixed width. In Section 3.2 a univariate filtering procedure based
on RM regression is described which chooses the window width adaptively, depending on
the underlying data structure. Section 3.3 extends this approach to a filter for multivariate
time series, taking into account the possible correlation structure between the different
components of the series. All sections include exemplary applications to hemodynamic
time series for proving their usefulness for real-time applications in intensive care.
Chapter 4 addresses the robust online extraction of the variability of the error term
fluctuating around the true signal of a univariate time series. Here, three different types
of scale estimators are considered: Section 4.1 describes a regression-based approach to
scale estimation where the variability of the error term is judged by the residuals of a
robust regression fit; the regression-free scale estimators introduced in Section 4.2 do not
require a preceding regression step, but they rely on a local linear model; the approach
described in Section 4.3 does not need this assumption and hence, we call the resulting
scale estimators ’model-free’. We compare these three different approaches by means of an
extensive simulation study in Section 4.4; Section 4.5 shows applications to a simulated
and a physiological time series, and Section 4.6 concludes the results from this chapter.
Finally, Chapter 5 embraces the preceding chapters by summarising their most important
findings. Furthermore, it provides a debate on the benefits of the investigated methods for
current intensive care alarm systems and discusses possible combinations of the introduced
online signal and variability extraction techniques.
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2 Repeated Median Regression

Let Yn = (Y1, . . . , Yn)′ denote a sample of size n evaluated at equidistant design points
i = 1, . . . , n and consider a simple linear model with noise terms εi:

Yi = µ+ β · i+ εi for i = 1, . . . , n. (2.1)

According to Siegel (1982), the Repeated Median (RM) regression estimates the slope and
the (hierarchical) intercept at design point i = 0 by

β̂RM = med
i=1,...,n

{
med
j 6=i

Yi − Yj
i− j

}
(2.2)

µ̂RM = med
i=1,...,n

{
Yi − β̂RM · i

}
. (2.3)

Here, the median med{·} at an even sample size n is defined as the arithmetic mean of
the (n/2)th and (n/2 + 1)st order statistic. Of course, the regression estimators by Siegel
(1982) are defined for arbitrary designs, but since here it is of interest to apply regression
methods to (samples from) time series measured at equidistant time points, we will focus
on an equidistant design in the following.

As an alternative to (2.3), Siegel (1982) proposes to estimate the RM intercept by

µ̂RM1 = med
i=1,...,n

{
med
j 6=i

j Yi − i Yj
j − i

}
. (2.4)

Both estimators, (2.3) and (2.4), possess the same bounded influence function and asym-
ptotic efficiency at standard normal data. However, the hierarchical intercept (2.3) has
a lower computation time (Hössjer, Rousseeuw and Ruts, 1995) and thus, we will only
consider this estimator. For definitions of the breakdown point, the influence function,
efficiency, and equivariance properties see Appendix A.

In the simple bivariate linear model with fixed regressor variables and a symmetric error
distribution, the RM regression estimator (µ̂RM , β̂RM)′ is unbiased and Fisher consistent
(Siegel, 1982). It has a finite sample breakdown point of bn/2c/n if the data are in general
position, meaning that the regression estimation still yields ’sensible’ results when almost
50% of the data are contaminated by arbitrarily deviating values (Rousseeuw and Leroy,
1987). Since data from intensive care are very likely to be strongly contaminated by
measurement artefacts, this robustness property is indeed required in this context.

Furthermore, the RM estimator is regression and scale equivariant. It is also equivariant
w.r.t. affine transformations of the response variable but not w.r.t. affine transformations
of the explanatory variable, see e.g. Section 2.7 of Schettlinger (2004). However, this is
not a disadvantage here, since we only consider fixed equidistant times as design points.
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A straightforward implementation of the RM estimator requires O(n2) computation time
(Siegel, 1982), but faster algorithms have been proposed by Rousseeuw, Netanyahu and
Mount (1993) and Matoušek, Mount and Netanyahu (1998) with an expected computation
time of O(n log2 n) or O(n log n), respectively. For application to a moving time window,
Bernholt and Fried (2003) have developed an update algorithm which only needs O(n)

time. This is an important prerequisite for the real-time application to intensive care data.

Compared to least squares, the RM intercept estimator has a finite sample efficiency
of almost 70% at standard normal data and even higher efficiencies at heavy tailed or
skewed data (Gather, Schettlinger and Fried, 2006); the asymptotic efficiency at normal
data amounts to 63.7% (Hössjer, Rousseeuw and Ruts, 1995). This means that it possesses
a lower variance than many other robust estimators, causing the RM filter to result in
smoother signal approximations than other robust regression filters for time series (see
Section 3.1).

Hössjer, Rousseeuw and Croux (1994) show that the slope estimator β̂RM is asymptotically
normal and that its influence function is bounded if both, the distribution of the response
variable and that of the explanatory variable, are continuous. Simulations with standard
normal data show that this slope estimator has a finite sample efficiency of up to 61%
while its asymptotic efficiency is only 40.5%. Thus, the RM slope estimator provides
better estimations for small samples (in terms of a smaller variance) than the asymptotics
suggest.

Furthermore, the RM estimator (µ̂RM , β̂RM)′ as defined by (2.3) and (2.2) possesses the
exact fit property :

When at least n− bn/2c+ 1 of the n observations are collinear,
the RM regression line runs exactly through these observations.

(2.5)

Such a situation frequently occurs within the data we have in mind, because of the discrete
measurement scale of the physiological time series extracted from an intensive care online
monitoring system.

Hössjer, Rousseeuw and Ruts (1995), p. 62, point out that estimating the RM location
hierarchically by the trend-corrected observations like in (2.3) causes the median of the
residuals to be zero if both, the independent and the dependent variable, follow a con-
tinuous distribution. For even sample sizes n, this implies the ’balance of residual signs’
which is important for the procedure described in Section 3.2. This means

n∑
i=1

sign(ri) = 0 , (2.6)
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where the RM residuals are given by

ri = Yi −
(
µ̂RM + β̂RM i

)
, i = 1, . . . , n , (2.7)

and the sign function is defined as

sign(r) =


−1 , if r < 0

0 , if r = 0

1 , if r > 0

. (2.8)

Equation (2.6) implies that the RM regression line separates a data cloud into halves: For
an even sample size n, the RM line runs through either two observations or no observation
at all, for an odd sample size n the RM line leads through exactly one observation.

For odd sample sizes, suitable conditions are necessary for (2.6) to hold which will be
addressed in the following. Furthermore, the condition of a continuous carrier distribution
is not fulfilled for the data at hand because we consider equidistant points in time. A
continuous distribution of the response generates a sample which is in general position
with probability one, but this is not sufficient for (2.6) to be valid.

Since the balance of the residual signs (2.6) is a starting point for the procedure proposed
in Section 3.2, it will be shown in the following that the probability for (2.6) not being
fulfilled is negligible under certain conditions. The validity of this property is closely
related with the number and position of residuals with a value of zero within the sample
which will be investigated in Section 2.2. Previous to that, Section 2.1 explores some
properties of the RM slope (2.2) which are essential for the remainder. Section 2.3 finishes
with an investigation of the dependence structure of the signs of RM residuals providing
possible explanations for certain facts found in Section 2.2.

2.1 The Repeated Median Slope

For the ease of notation, denote for any i 6= j ∈ {1, . . . , n} an observational slope by

b(i, j) =
Yi − Yj
i− j

, (2.9)

and denote the inner median of the RM slope by

b̃(i) := med
j 6=i

{b(i, j)} , (2.10)

such that the definition of the RM slope (2.2) can be expressed as

β̂RM = med
i=1,...,n

{
med
j 6=i

b(i, j)
}

= med
i=1,...,n

{
b̃(i)

}
.
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The RM regression line can only lead through more than one observation if the RM slope
β̂RM is equal to one of the slopes between a pair of observations b(i, j) (2.9). If n is odd the
inner median (2.10) is evaluated over an even number of slopes because every set {b(i, j)}
with j 6= i contains n − 1 slopes; if n is even, the outer median in (2.2) is calculated
from the set {b̃(1), . . . , b̃(n)}, containing n elements. This means that for the RM slope
at least one of the repeated medians is calculated from a set containing an even number
of elements and hence, this median corresponds to a mean of two elements. However, it
can still happen that β̂RM = b(i, j) for some i, j ∈ {1, . . . , n} – even for data in general
position. An explanation for this fact is given below.

For the difference between Yi and Yk ∈ Yn = (Y1, . . . , Yn)′ let

∆i,k := ∆i,k(Yn) = Yk − Yi for i < k. (2.11)

Because of the design with equidistant units of size one for the explanatory variable in
the time series context here, the slope between two subsequent observations corresponds
to their first difference, i.e.

b(i, i+ 1) =
Yi+1 − Yi
i+ 1 − i

= ∆i,i+1 .

Thus, every slope b(i, k) between Yi and Yk with i < k ∈ {1, . . . , n} can be calculated by
an arithmetic mean of the first differences of intermediate observations:

b(i, k) =
1

k − i

k−1∑
h=i

b(h, h+ 1) =
1

k − i

k−1∑
h=i

∆h,h+1 .

In general, the slope b(i, k) can be rewritten as a weighted mean of slopes calculated from
Yi, Yk and J ≤ k− i−1 intermediate observations with indices i < j1 < j2 < . . . < jJ < k.

b(i, k) =
1

k − i

k−1∑
h=i

∆h,h+1

=
j1 − i
k − i

· 1

j1 − i

j1−1∑
h=i

∆h,h+1 +
j2 − j1

k − i
· 1

j2 − j1

j2−1∑
h=j1

∆h,h+1

+ . . . +
k − jJ
k − i

· 1

k − jJ

k−1∑
h=jJ

∆h,h+1

=
j1 − i
k − i

· b(i, j1) +
j2 − j1

k − i
· b(j1, j2) + . . .+

k − jJ
k − i

· b(jJ , k) . (2.12)

For this weighted mean, every weight has a value in (0, 1), and the sum of weights corre-
sponds to j1−i

k−i + j2−j1
k−i + . . .+ k−jJ

k−i = 1.
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Accordingly, the slope between Yi and Yi+2m for m ∈ N and i, i + 2m ∈ {1, . . . , n}, can
be expressed as the median of the two observational slopes with the observation centred
between Yi and Yi+2m:

b(i, i+ 2m) =
Yi+2m − Yi

2m
=

1

2

[
Yi+2m − Yi+m

m
+
Yi+m − Yi

m

]
=

1

2

[
b(i, i+m) + b(i+m, i+ 2m)

]
= med

{
b(i, i+m), b(i+m, i+ 2m)

}
. (2.13)

Thus, both – the inner and the outer median in (2.2) – can correspond to an observational
slope (2.9), although at least one of these medians is evaluated on a set containing an
even number of elements and thus, corresponds to an arithmetic mean of two slopes. In
return, this allows for the RM slope to match an observational slope.
For example, consider a sample with even sample size n where b̃(i+m) = b(i, i+m) and
b̃(i+2m) = b(i+m, i+2m) for specific i ∈ {1, . . . , n−2m} and m ∈ {1, . . . n/2−1}. Now,
if b̃(i+m) and b̃(i+2m) are the two central values in the set of ordered b̃(i), i = 1, . . . , n,
then, according to (2.13), the RM slope corresponds to an observational slope:

β̂RM = med
i=1,...,n

{
b̃(i)

}
= med{b̃(i+m), b̃(i+ 2m)} = b(i, i+ 2m) .

Similarly, consider for a sample of odd size the median of the set {b̃(i) ; i = 1, . . . , n}
as β̂RM = b̃(j + m), j ∈ {1, . . . , n − 2m} and m ∈ {1, . . . , (n − 1)/2}. Now, if b̃(j + m)

corresponds to the median of the two observational slopes b(j, j+m) and b(j+m, j+2m),
according to (2.13), the RM slope matches an observational slope:

β̂RM = b̃(j +m) = med{b(j, j +m), b(j +m, j + 2m)} = b(j, j + 2m) .

Furthermore, even for data in general position, it is possible that in the set {b̃(1), . . . , b̃(n)}
values appear repeatedly, such that for an even sample size n, the median of this set is
possibly calculated by the mean of two observational slopes with the same value. Thus,
depending on the intercept estimation, it is possible that the RM line leads through several
observations.

2.2 Zero Residuals in Repeated Median Regression

In this section, the focus lies on residuals from an RM regression which equal a value of
zero, or short: zero residuals. We consider independent standard normal variables such
that we can assume the data to be in general position (with probability one). To evaluate
the probability with which the balance of residual signs (2.6) is not true, we investigate
the number and position of zero residuals within samples of size n = 3, n = 4 and n = 5,
respectively.
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Characterising a sample by the order of first differences, there are (n− 1)! different cases
to investigate for a sample of size n. Half of the cases need not be investigated since the
observations of these cases can be seen as a reflection of the observations from the other
half of the cases along the y-axis. Thus, each case has a corresponding ’mirror case’ for
which the results can be achieved analogously. However, for a unique identification of the
RM slope the order of first differences alone is often not sufficient and the cases need to
be divided into subcases depending on further conditions. For a sample of size n = 6,
(n−1)!

2
= 60 cases possibly need to be divided into subcases, and in each (sub-)case the

evaluation of RM slope and intercept have to take place separately. Therefore, we apply
simulations for sample sizes larger than five.
An extreme case where (2.6) can not be true is given by an exact fit situation (2.5) where
at least k = n − bn/2c + 1 residuals equal the value zero and the signs of the remaining
residuals are arbitrary – they can even be identical (Rousseeuw and Leroy, 1987).

Sample Size n = 3

For n = 3 observations in general position equation (2.6) is never fulfilled: for a sample
(Y1, Y2, Y3)′ the RM regression line always runs through the observations at i = 1 and
i = 3, and the proof of this can be found in Appendix B. The sign of the central residual
determines whether the sum of residual signs is equal to plus or minus one.

Sample Size n = 4

For a sample size of n = 4, there are twelve possibilities of data arrangements which
uniquely define the RM slope and intercept, see Table 2.1. However, six of them correspond
to a simple reflection of the data points along the y-axis and hence, result in expressions
for the estimates analogous to the other six cases. The derivation of these cases and the
calculations of the corresponding probabilities can be found in Appendix B.
Table 2.2 shows that for n = 4 observations in general position, only five different expres-
sions are possible for the RM slope β̂RM . For the cases II(2), III(1), IV(2) and V(1) the
slope estimate β̂RM does not correspond to a slope between a pair of observations, i.e. the
residuals of the corresponding regression line are all different from zero. In all other cases
β̂RM corresponds to an observational slope, namely either b(1, 2), b(2, 3) or b(3, 4). For
data situations where it is β̂RM = ∆2,3 = b(2, 3) (case I(1), I(2), VI(1) and VI(2)), the
RM regression line runs through the observations at i = 2 and i = 3 only in case of an
exact fit situation. This is the case if at least one of the remaining observational slopes
b(1, 2) or b(3, 4) corresponds to b(2, 3). Otherwise, the RM line separates the data cloud
into the sets {Y1, Y4} with corresponding residuals r1, r4 > 0 (or r1, r4 < 0, respectively)
and {Y2, Y3} with r2, r3 < 0 (or r2, r3 > 0, respectively), see Table 2.3.
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case condition additional condition case differentiation

∧ (∆1,2 + ∆3,4 ≤ 2∆2,3) I (1)
I (∆1,2 ≤ ∆2,3 ≤ ∆3,4) ∧ (∆1,2 + ∆3,4 ≥ 2∆2,3) I (2)

∧ (∆2,3 + ∆3,4 ≤ 2∆1,2) II (1)
II (∆3,4 ≤ ∆1,2 ≤ ∆2,3) ∧ (∆2,3 + ∆3,4 ≥ 2∆1,2) II (2)

∧ (∆1,2 + ∆2,3 ≤ 2∆3,4) III (1)
III (∆2,3 ≤ ∆3,4 ≤ ∆1,2) ∧ (∆1,2 + ∆2,3 ≥ 2∆3,4) III (2)

∧ (∆1,2 + ∆2,3 ≤ 2∆3,4) IV (1)
IV (∆1,2 ≤ ∆3,4 ≤ ∆2,3) ∧ (∆1,2 + ∆2,3 ≥ 2∆3,4) IV (2)

∧ (∆2,3 + ∆3,4 ≤ 2∆1,2) V (1)
V (∆2,3 ≤ ∆1,2 ≤ ∆3,4) ∧ (∆2,3 + ∆3,4 ≥ 2∆1,2) V (2)

∧ (∆1,2 + ∆3,4 ≤ 2∆2,3) VI (1)
VI (∆3,4 ≤ ∆2,3 ≤ ∆1,2) ∧ (∆1,2 + ∆3,4 ≥ 2∆2,3) VI (2)

Table 2.1: Data situations for a sample of size n = 4 distinguished by the order of the first differences
∆i,i+1 for i ∈ {1, 2, 3}.

case β̂
RM

µ̂RM

I(1) & VI(2) ∆2,3 1/2 · (Y4 − 6Y3 + 7Y2)

I(2) & VI(1) ∆2,3 1/2 · (−3Y3 + 4Y2 + Y1)

II(1) & V(2) ∆1,2 Y1 − β̂RM = Y2 − 2β̂RM

II(2) & V(1) 1
12

(2∆1,2 + 5∆2,3 + 5∆3,4) no simple expression

III(1) & IV(2) 1
12

(5∆1,2 + 5∆2,3 + 2∆3,4) no simple expression
III(2) & IV(1) ∆3,4 Y3 − 3β̂RM = Y4 − 4β̂RM

Table 2.2: Possible expressions of the coefficients resulting from a Repeated Median regression for a
sample (Y1, Y2, Y3, Y4)′ observed at equidistant times (1, 2, 3, 4)′. The specification of the case
IDs is given in Table 2.1.

case I II III IV V VI

( 1 -1 -1 1) ( 0 0 1 -1) (-1 1 -1 1) ( 1 -1 0 0) (-1 1 -1 1) (-1 1 1 -1)
(1)

0.06693 0.08113 0.10194 0.08113 0.10194 0.06693

( 1 -1 -1 1) ( 1 -1 1 -1) (-1 1 0 0) ( 1 -1 1 -1) ( 0 0 -1 1) (-1 1 1 -1)
(2)

0.06693 0.10194 0.08113 0.10194 0.08113 0.06693

Table 2.3: Order of the RM residual signs and the corresponding probability of occurrence for n = 4

independent observations from a standard normal distribution for the data situations specified
by the cases defined in Table 2.1.
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zero
residuals

r1 r2 r3 r4 r5 (r1 ∧ r3) (r2 ∧ r4) (r3 ∧ r5) (r1 ∧ r5)

prob. 0.1706 0.0478 0.2970 0.0478 0.1706 0.0276 0.0444 0.0276 0.1666

Table 2.4: Probabilities for the position of the zero residuals in a sample of size n = 5 in case of
independent standard normal data.

In the four cases II(1), V(2), III(2) and IV(1) the RM line results in two zero residuals
each, where the line leads through Y1 and Y2 for the cases II(1) and V(2); in case III(2)
and case IV(1) it runs through Y3 and Y4, cf. Table 2.3.

In Section 3.2 a procedure is described which is based on the assumption that for a good
fit at the rightmost position in a sample, the balance of the residual signs (2.6) should also
be true for a certain subset of the sample. The number and the position of zero residuals
both have an impact on the sum of residual signs of such a subset, which is used as a test
statistic in Section 3.2.

Table 2.3 contains the probabilities for the occurrence of a certain order of signs of residuals
from an RM regression fit to n = 4 observations which are independently generated from
a standard normal distribution. With a probability of approximately 0.675, the RM line
does not cross any observation, and with a probability of about 0.268 the RM line does
not have any zero residual but its slope corresponds to the slope between Y2 and Y3, i.e.
β̂RM = b(2, 3) (cases I and VI). The probability for an RM line which runs through the
first two of four observations (cases II(1) and V(2)) is approximately 0.162 which also
corresponds to the probability for the RM line leading through Y3 and Y4 (cases III(2)
and IV(1)). Thus, if there are zero residuals present, they either occur subsequently at
the beginning or the end. However, the balance of residual signs (2.6) is fulfilled with
probability one for n = 4 data generated according to a model with continuous error
distribution.

Sample Size n = 5

Similar to the derivations for sample size n = 4, the probabilities for the number and
location of zero residuals from an RM regression applied to five observations coming from
independent standard normal random variables, can be evaluated by using the characte-
risation of different data situations via the first differences ∆i,i+1. The calculations can be
found in Appendix B. Table B.9 lists all possible orders of residual signs in a sample of
size n = 5 together with their probabilities.
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Summarising the outcomes, Table 2.4 provides the probabilities for all possible positions
of the zero residuals in a standard normal sample of size n = 5. Although the data will
be in general position with probability one, the balance of residual signs (2.6) only occurs
with probability 0.734 and it is

P

(
5∑
i=1

sign(ri) = −1

)
= P

(
5∑
i=1

sign(ri) = 1

)
= 0.1331 .

Furthermore, it can be seen in Table 2.4 that a zero residual rather occurs at locations
with odd position numbers, i.e. at the first, third, or fifth position in the sample.

Sample Sizes Larger Than n = 5

The differentiation between odd and even sample sizes is intuitive, because for data in
general position, the balance of residual signs (2.6) implies that for an odd sample size
there will be one zero residual, and for an even sample size either no or two zero residuals
can occur. However, the previous derivations for the sample sizes n = 3, n = 4 and n = 5

have shown that equation (2.6) is not necessarily always true. This appears in particular
for odd sample sizes as will be shown in the following. All the results in this subsection are
based on 100 000 simulated standard normal data sets for each of the considered sample
sizes n ∈ {6, 7, . . . , 121}.

Even Sample Sizes

For even sample sizes (2.6) is always true, i.e. it occurs for all simulated even sample sizes
with a relative frequency of one. That means that there are either no or two zero residuals
in the sample.

Assuming that there are two zero residuals in the sample, it is of interest at which positions
they occur. Figure 2.1 illustrates the relative frequencies for the positions (i, j) of the two
zero residuals with i, j ∈ {1, . . . , n}, conditional on the fact that there are exactly two
residuals. The larger the square at (position1, position2), the higher the relative frequency
for the two zero residuals appearing at these two positions in the sample.

It shows that some combinations of positions are much more frequent while others do
not occur at all: for example, for a sample of size n = 6 (not shown here) the set of the
zero residual position pairs appearing in 21 120 (out of 100 000) data sets, corresponds to
{(1, 2), (1, 4), (1, 6), (3, 4), (3, 6), (5, 6)}. For larger sample sizes it can also be observed
that the occurrence of both zero residuals at odd, or both at even positions, respectively,
are very rare events (see Figure 2.1). Furthermore, Figure 2.1 shows that at least one of
the two zero residuals is likely to occur at the edge of the sample; often both residuals
appear at the boundaries, i.e. at positions i = 1 and i = n.
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Figure 2.1: Relative frequencies for the positions of two zero RM residuals in samples of even size,
conditional on the fact that there are exactly two residuals.
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Figure 2.2: Relative frequencies of two zero RM residuals for even sample sizes 6 ≤ n ≤ 120 with an
approximation of the underlying probability (red line).
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Figure 2.2 indicates that the relative frequency of zero residuals in a sample of even size
decreases with an increasing sample size. Using the shown simulated relative frequencies,
we can derive the following approximation of the probability of two zero RM residuals in
even sample sizes:

P
(

#{ri = 0, i = 1, . . . , n} = 2
∣∣∣n even

)
≈ −0.0004 +

0.5605

n
+

4.1951

n2
. (2.14)

The red line in Figure 2.2 shows that this approximation fits the simulated relative fre-
quencies nicely. Furthermore, it shows that for even sample sizes larger than n = 20 zero
residuals appear in less than 4%, for n larger than 40 in less than 2% of the cases; and
for n about 60 or larger just about one percent (or less) of the samples contain residuals
with a value of zero.
Of course this approximation should be taken with care: The approximation (2.14) is
achieved by means of simulations of 100 000 data sets for each sample size, and simulated
values represent observations from a continuous distribution only to the extend of the pre-
cision of the computer used for the generation of the pseudo-random numbers. Moreover,
the limited number of simulation runs also restricts the accuracy of the approximation.
For n > 1408 formula (2.14) returns a negative value, and for n = 2 it yields a value
greater than one which both is not acceptable for an approximation of a probability. For
n = 2 an RM line always leads through both observations and hence, the probability for
two zero residuals is equal to one. For n = 4 the probability for two zero RM residuals
under the normality assumption equals 0.32452 as can be derived from Table 2.3 and thus,
an approximation of this probability is only required for n ≥ 6.
For such sample sizes we can assume formula (2.14) to provide an approximation for the
probability of two zero RM residuals under normality with sufficient precision for the
procedure proposed in Section 3.2.
However, for sufficiently large, even sample size we assume the probability of zero residuals
to be negligible, because for large n the approximation yields values very close to zero:
For n = 100 the probability for two zero residuals is approximatively 0.56% and for
n ≥ 102 the approximation yields values smaller than 0.5%. Hence, we propose to set the
approximated probability to zero for n ≥ 100.

Odd Sample Sizes

For an odd number of observations in general position one can expect either one or two
zero residuals resulting from RM regression: As could be seen from the calculations for
standard normal data with n = 5, there is always at least one zero residual (cf. Table
B.9), i.e.

P
(
#{ri = 0, i = 1, . . . , 5} = 0

)
= 0 .
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Furthermore, our simulations revealed no case for any sample size n ∈ {7, 9, 11, . . . , 121}
where an RM regression resulted in no zero residual. Thus, we assume the probability for
no zero residual in a sample of odd size to be zero, and it is

P
(

#{ri = 0, i = 1, . . . , n} = 1
∣∣∣n odd

)
= P

( n∑
i=1

sign(ri) = 0
∣∣∣n odd

)
= 1− P

(
#{ri = 0, i = 1, . . . , n} = 2

∣∣∣n odd
)
.

If there are two zero residuals, the balance of residual signs (2.6) is not true anymore.
Figure 2.3 shows the distribution of the location of two zero residuals within the sample,
conditioned on the fact that the sample size is odd.

Similar to the even sample sizes, in the majority of cases the zero residuals appear at
particular positions, especially at locations with odd position number i, and the zero
residuals are more likely to occur close to the boundaries. This is not very obvious for the
larger sample sizes displayed in the bottom panels of Figure 2.3 which is due to the fact
that these graphics show conditional distributions: they are based on those data sets (out
of the 100 000 simulated ones) which result in exactly two zero residuals; for the sample
size n = 15 there are 864 such data sets, for n = 29 there are still 244, for n = 49 it is 109,
but the plot for n = 99 is only based on the positions of the two zero residuals within 25

data sets.

Figure 2.4 shows the relative frequencies for the occurrence of two zero RM residuals for
an odd sample size; e.g. for n = 99 the frequency corresponds to 0.00025. The red line
gives an approximation of the probability for two zero residuals in samples of odd size
according to

P
(

#{ri = 0, i = 1, . . . , n} = 2
∣∣∣n odd

)
≈ −0.0015 +

0.196

n
− 3.978

n2
+

48.437

n3
. (2.15)

Similar to the approximation (2.14) for even sample sizes, this approximation of the
probability has to be taken with care. In particular, the approximation yields negative
values for n ≥ 111. However, analogous to the case of even sample sizes, we can assume
the probability of two zero residuals to be negligible for sufficiently large n: Figure 2.4
shows that, even for small sample sizes like n = 13, the approximate probability is just
about one percent (or less), and for increasing sample size it is fast decreasing and hence,
we suggest to approximate this probability by zero for n ≥ 101.
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Figure 2.3: Relative frequencies for the positions of two zero RM residuals in samples of odd size,
conditional on the fact that there are exactly two residuals.
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Figure 2.4: Relative frequencies of two zero RM residuals for odd sample sizes 7 ≤ n ≤ 121 with an
approximation of the underlying probability (red line).
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Figure 2.5: Empirical density for the position of one zero RM residual in a small and a medium sized
sample with odd sample size, conditional on the fact that the sample contains exactly one
zero residual. The red horizontal line displays the value 1/n.

Observing two residuals with a value of zero means that the sum of signs of RM residuals
is either minus one or plus one. In our simulations, both events occur with a similar
frequency for each considered odd sample size. This is due to the symmetry of the error
distribution, i.e. the normal distribution, because the distribution of εi corresponds to the
distribution of −εi for i = 1, . . . , n. Hence, it is

P

(
n∑
i=1

sign(ri) = −1
∣∣∣n odd

)
= P

(
n∑
i=1

sign(ri) = 1
∣∣∣n odd

)

=
1

2

(
1− P

(
n∑
i=1

sign(ri) = 0
∣∣∣n odd

))
=

1

2
P
(

#{ri = 0, i = 1, . . . , n} = 2
∣∣∣n odd

)
.

In most samples there is exactly one zero residual resulting from an RM regression fit.
If the residuals were independent the probability of the one zero residual occurring at
position i in the sample would be 1/n, i.e. the zero residual could occur at each position
with equal probability.

Figure 2.5 shows the empirical distribution of the position of a zero RM residual, condi-
tioned on the fact that there is exactly one residual in the sample, derived from simulated
standard normal data for a small sample size of n = 11 and a larger sample size of n = 45.
The red horizontal line marks the value of 1/n for comparison of the empirical conditional
density with the uniform density. The graphics for further odd sample sizes show the same
characteristics, i.e. they look quite similar.

Both panels in Figure 2.5 show that the simulated relative frequencies lie close to the
value of 1/n, but that the occurrence of the zero residual at odd positions in the sample
is more frequent than at even positions. Furthermore, it is more likely to observe a zero
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residual at (or close to) the boundaries, in particular at the positions i = 1 or i = n. This
behaviour does not fade for larger sample sizes (investigated for sizes up to n = 121) but
shows about to the same extent for any sample size.

An explanation for this might be given by the fact that there are more combinatoric pos-
sibilities of data situations which result in a regression line leading through an observation
at an odd position in the sample, especially at i = 1 or i = n. For n = 5 this is shown in
Appendix B, but it also seems to be true for larger odd sample sizes.

Consequently, looking at residuals in the centre of a sample, the probability of one zero
residual occurring at position i could be approximated by 1/n for sufficiently large n, say
n ≥ 15. However, at the edges a value of 1/n would not provide a good approximation
and simulated estimates for the requested probabilities might be more useful.

2.3 The Correlation Structure of the Residual Signs

The dependence structure of the RM residuals and their signs might provide further
explanations for the positioning of zero RM residuals within the sample. Unfortunately,
this structure is unknown so far. Intuitively, it is clear that some sort of correlation
structure has to be present for the signs of the RM residuals. For example, it is easy to
see that for an odd sample size n no RM regression line could result in sign(ri) = −1 for
i = 1, . . . , (n− 1)/2; sign(r(n−1)/2+1) = 0; and sign(ri) = 1 for i = (n+ 1)/2, . . . , n.

While for RM regression usually the residual signs sum up to zero (2.6), Least Squares
(LS) regression is designed such that the residuals themselves sum up to zero. Therefore,
we will investigate the correlations between residual signs from RM regression obtained
from simulations with standard normal data and compare this with the behaviour of LS
residuals for which the correlation structure is well known.

Rewriting model (2.1) using matrix notation, with X being the design matrix and θ
denoting the vector of coefficients, it is

Y1

...
Yn

 =


1 1
...

...
1 n

(µβ
)

+


ε1

...
εn


⇔ Y = Xθ + ε .

The Least Squares (LS) estimator is then defined by

θ̂
LS

=

(
µ̂LS

β̂LS

)
= X(X>X)−1X> Y = HY ,

where H = X(X>X)−1X> denotes the so called hat matrix.
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i = 1 i = 2 i = 3 i = 4 i = 5

i = 1 1.00 −0.76 −0.35 0.00 0.50
i = 2 −0.76 1.00 −0.27 −0.14 0.00
i = 3 −0.35 −0.27 1.00 −0.27 −0.35
i = 4 0.00 −0.14 −0.27 1.00 −0.76
i = 5 0.50 0.00 −0.35 −0.76 1.00

Table 2.5: Correlation matrix for Least Squares residuals for n = 5 observations from a standard normal
distribution.

For an equidistant design as considered here, the hat matrix is given by H = (hij)i,j∈{1,...,n}

with

hij =
1

n(n− 1)

(
2(2n+ 1)− 6i+ j

(
12

n+ 1
i− 6

))
.

This matrix determines the correlation structure for the LS residuals rLSi , because for
rLS = (rLS1 , . . . , rLSn )′, εi

iid∼ N(0, σ2), and In denoting the n-dimensional identity matrix,
it is

Cov(rLS) = (In −H)σ2

⇔ Cov(rLSi , rLSj ) = (1− hij)σ2 and Var(rLSi ) = (1− hii)σ2

⇒ Corr(rLSi , rLSj ) =
1− hij√

1 − hii
√

1 − hjj
.

The values hii on the diagonal of H are increasing towards the boundaries, i.e. towards
i = 1 and i = n. They are called leverages, because they indicate stronger correlations
of any residual with a residual close to the boundary and weaker correlations between
residuals close to the centre. The larger the difference between i and j, the stronger the
correlation. Neighbouring LS residuals are always negatively correlated while those which
are farthest apart are positively correlated. This can e.g. be seen in the correlation matrix
for n = 5 given in Table 2.5.

The top left panel in Figure 2.6 provides a graphical representation of this correlation
matrix; the other two top panels in Figure 2.6 represent the correlation matrices of LS
residuals for the larger sample sizes n = 10 and n = 15 indicating that for increasing
sample size the order of magnitude of all correlations decreases.
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Figure 2.6: Graphical representation of the correlation matrices for residuals from least squares regres-
sion at an equidistant design (top panels) and for the signs of RM residuals (bottom panels)
for some small sample sizes.

i = 1 i = 2 i = 3 i = 4 i = 5

i = 1 1.00 −0.71 −0.26 0.02 0.17
i = 2 −0.71 1.00 −0.21 −0.15 0.01
i = 3 −0.26 −0.21 1.00 −0.20 −0.25
i = 4 0.02 −0.15 −0.20 1.00 −0.72
i = 5 0.17 0.01 −0.25 −0.72 1.00

Table 2.6: Simulated correlation matrix for the signs of RM residuals for n = 5 observations from a
standard normal distribution.

For comparison, Table 2.6 shows the correlation matrix for the signs of RM residuals,
calculated from 100 000 simulated standard normal data sets of size n = 5; and the
bottom panels of Figure 2.6 display graphical representations of the correlation matrices
for the signs of RM residuals for sample sizes n = 5, n = 10 and n = 15.
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Generally, the correlations between RM residual signs are weaker than those between LS
residuals, especially for design points i which are far apart, but the signs of the pairwise
correlations almost always agree (except for correlations close to zero). Often, even the
order of magnitude is the same for correlations between LS residuals and for correlations
between signs of RM residuals – especially for observations in the centre.
Although the distribution and the true underlying dependence structure of the signs of
RM residuals is still unknown, the performed simulations suggest that, at least for a
standard normal error distribution, they have a correlation structure similar to that of
Least Squares residuals. Consequently, there also might be some sort of leverage effect for
the signs of RM residuals towards the boundaries which could provide some explanation
of the more frequent observations of the zero residuals at the boundaries (see Figure 2.5).
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Figure 3.1: Shortcomings of current alarm systems. Measurement artefacts can trigger alarms – even if
alarm delay rules are applied (left). At 10:21h and 10:27h the systolic arterial blood pressure
does not exceed the upper limit for more than four seconds and thus, no alarm is set off
(alarm delay rule). Furthermore, depending on the alarm settings, the overall alarm rate of
current systems can be very high – even in the absence of outliers (right).

3 Online Signal Extraction

Currently, intensive care monitoring systems use alarm rules for variables such as heart
rate, blood pressures or oxygen saturation which are essentially based on simple thres-
holds: violations of the upper or lower control limit activate an alarm – sometimes after
a certain offset time. This mechanism produces many false alarms due to measurement
artefacts, patient movements, or transient fluctuations around the alarm limits.

For example, the monitoring system we study here, triggers an alarm for the systolic
arterial blood pressure if the observed values exceed the upper or lower control limit (set
by the medical staff) for at least four seconds. This offset time provides a possibility
for making the system robust against single measurement artefacts. However, experience
with real data suggests that in practice such artefacts also occur in ‘patches’ of several
consecutive values. Thus, even an offset time for the alarm does not completely avoid
the occurrence of false alarms caused by artefacts as is illustrated in the left panel of
Figure 3.1. Furthermore, the physiological time series may vary around a value very close
to an alarm limit as can be seen in the right panel of Figure 3.1. This causes a sequence
of alarms where one (possibly persistent) alarm would be sufficient to indicate that the
physiological variable has reached a certain limit.

Pre-processing the input data for an alarm system by applying robust online filters and
comparing the filter output with the preset alarm limits can reduce the number of false
alarms (Kuhls, 2008). Such filters have to be able to deal with various levels of noise and
many artefacts. Furthermore, they have to be suitable for time series with trends in the
underlying level and, since a change in the patient’s health status is often accompanied
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by a trend change or a level shift, the applied filtering methods also need to be able to
retain such patterns with no, or a very small time delay.

’Classical’ time series techniques, dynamic linear models, Kalman filters, and methods in
statistical process control often rely on an underlying parametric model. Their sensitivity
to misspecification of the model parameters provides a source of error which is unaccepta-
ble for online monitoring in intensive care. This is possibly the reason why most of these
approaches never got implemented in commercial products (Imhoff and Kuhls, 2006). The-
refore, we focus on simple moving window approaches for robust online signal extraction
and discuss their merits for preserving clinically relevant patterns such as trends, shifts,
or extremes and for the removal of irrelevant outliers.

In this chapter we present procedures for univariate and multivariate signal extraction
which are fast, efficient and robust, and can be used for discretely measured data with
low variability as well as in situations with many outliers in the style of Gather and
Schettlinger (2007).

3.1 Univariate Signal Extraction

As a simple and general working model for a univariate time series (Yt)t∈Z, we assume the
following:

Yt = µt + εt , (3.1)

where µt denotes the underlying signal at time t which is assumed to run smoothly over
time apart from some sudden trend changes or level shifts. The error term εt can further
be decomposed into

εt = εt + νt ,

where (εt)t∈Z is an error process of random variables with E(εt) = 0 for all t ∈ Z and
(possibly time-dependent) variance V ar(εt) = σ2

t ; (νt)t∈Z represents an outlier-generating
process which may be equal to zero for the majority of points in time.

Moving window techniques offer an intuitive and simple approach to extract the signal
level µt from the noisy time series. Moving averages are popular since they trace trends
and they are very efficient for Gaussian samples. However, sudden level shifts are not
preserved as such and outliers can cause considerable bias (Figure 3.2).

Applying a local linear instead of a local constant approximation is known to improve the
smoothing results, see e.g. Cleveland (1979). Local polynomial fits applied for smoothing
date back to the end of the 19th / beginning of the 20th century (Woolhouse, 1870;
Spencer, 1904). Actually, the least squares fit for the centre of a time window corresponds
to the mean of the observations and hence, to the filter output of a moving average, i.e.
these filters are strongly influenced by outliers.
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Figure 3.2: Moving average and running median applied to ten minutes of pulse measurements recorded
on an intensive care unit with a frequency of once per second, both using a window with a
width of n = 61 seconds.

Median filters, as suggested by Tukey (1977), are robust against artefacts, resist up to
bn/2c outliers within one time window of length n, and they are capable of tracing level
shifts. However, they deteriorate in trend periods (see Figure 3.2). An early approach to
robust smoothing using local linear fits is proposed by Cleveland (1979) who assigns small
weights to large residuals in an iterative linear regression procedure.

Using polynomials of orders higher than one for the local regression fit might yield less
biased signal estimations, but at the same time it allows for the modeling of local extremes
which might cause a higher variability of the filter output, see e.g. McDonald and Owen
(1986). In addition, such filters generally require a high computation time.

On the basis of Schettlinger, Fried and Gather (2006), we review univariate filters which
apply at most a local linear regression fit and thus, restrict the computation time; which
are capable of tracing trends well and thus, guarantee a smooth output; and which are
able to limit the bias of their output in the presence of outliers.

3.1.1 Simple Robust Regression Filters

In view of the weakness of running medians in trend periods, Davies, Fried and Gather
(2004) apply robust regression methods to a moving time window of odd width n =

2m+ 1, m ∈ N, to approximate the signal level at the centre of each window. A real-time
application of such a filter means a time lag of m time units for the estimation of the
current signal and hence, we call them retrospective regression filters. Gather, Schettlinger
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and Fried (2006) investigate online filters based on the same principle, where the signal
level is estimated at the most recent time by the last fitted value of a robust regression fit
in each window. This allows a good and reliable approximation of the true signal without
time delay – even in trend periods.

The local linearity assumption for the signal in a window of width n ∈ N, can be expressed
by

µt+i ≈ µt + βt i (3.2)

with i =

{
−m, . . . ,m and n = 2m+ 1 for retrospective filters and
−n+ 1, . . . ,−1, 0 for online filters,

(3.3)

where βt denotes the slope of the line in a window used to approximate the level at t.

For retrospective regression filters Davies, Fried and Gather (2004) compare the use of L1

regression, Repeated Median (RM) regression (Siegel, 1982), and least median of squares
(LMS) regression (Hampel, 1975; Rousseeuw, 1984). For regression on an equidistant grid,
Davies, Fried and Gather (2004) show that L1 only has a finite sample breakdown point
of approximately 0.293 while LMS and RM regression achieve a maximum breakdown
point of about 0.5, or exactly: bn/2c/n, which is the maximum among all regression
equivariant estimators. Furthermore, both methods possess the exact fit property (2.5),
and LMS is regression-, scale- and affine equivariant while RM lacks equivariance w.r.t.
affine transformations of the explanatory variable (see Section 2).

The LMS filter offers the highest robustness against many large outliers and is able to
trace level shifts and trend changes well, but it tends to instabilities and has the highest
computation time among the three compared methods. The RM filter slightly smoothes
extremes and level shifts, but from the investigated methods, it is considered the best
choice for signal extraction because it does not only offer considerable robustness against
outliers, but it is also stable with regard to moderate variations in the data.

A filter based on the least quartile difference (LQD) estimator, introduced by Croux,
Rousseeuw and Hössjer (1994), provides a compromise between the edge-preserving pro-
perty of the LMS filter and the smoothness of the RM filter as can be seen in Figure 3.3.
LQD has with bn/2c/n the same (maximum) finite sample breakdown point like RM and
LMS, and is also regression-, scale and affine equivariant. However, this method requires
high computational effort when using common algorithms.

For signal extraction without time delay, Schettlinger (2004) and Gather, Schettlinger
and Fried (2006) examine online filters based on RM and LMS regression, because both
show certain advantages in the retrospective situation (Davies, Fried and Gather, 2004).
Furthermore, they consider least trimmed squares (LTS) regression (Rousseeuw, 1985),
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Figure 3.3: Comparison of retrospective RM, LQD and LMS regression filters applied to a simulated
time series with standard normal noise, all using a window of width n = 31. The LQD filter
provides a compromise between the smooth output of the RM filter and the shift preservation
of the LMS filter.

since it is pointed out in Rousseeuw, Van Aelst and Hubert (1999) that LMS is outper-
formed by LTS regression because of its smoother objective function which results in a
higher efficiency. Additionally, deepest regression (DR) (Rousseeuw and Hubert, 1999) is
considered because it is expected to deal well with asymmetric and heteroscedastic errors.
Both of these regression methods are regression-, scale- and affine-equivariant, but LTS
achieves the maximum finite sample breakdown point of bn/2c/n, while DR only has a
breakdown point of about 1/3.

It turns out that the differences in the outcomes between the online LMS and LTS re-
gression filters are negligible, and there is little difference between the RM and DR online
filters as shown in Figure 3.4. In the online situation, LMS and LTS track shifts with a
longer delay than their competitors and tend to overshoot shifts, while RM and DR show
more stable results, see also Figure 3.4. A filter based on RM regression is considered the
best competitor from the investigated online filters.

Robust regression methods generally need more computation time than non-robust tech-
niques. To improve the applicability of robust regression filters in real-time, research has
been carried out on the enhancement of the computational speed and on geometrical in-
terpretations of the regression problem, see e.g. Edelsbrunner and Souvaine (1990) and
Mount et al. (1997) for LMS, Rousseeuw and Van Driessen (2002) for LTS, and Langerman
and Steiger (2003) for deepest regression.
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Figure 3.4: Online signals for a time series of systolic arterial blood pressure measurements extracted
with four different robust regression filters using a moving window of width n = 60, i.e. the
estimated signal is based on the last minute of measurements. The top panel shows the LMS
and LTS online signals, the bottom panel shows the RM and DR online signals.

For LQD regression on n bivariate data points Bernholt, Nunkesser and Schettlinger
(2007) propose algorithms with expected running times of O(n2 log2 n), or O(n2 log n),
respectively, and a deterministic running time of O(n2 log2 n). Therefor they apply the
concept of geometric duality which Chazelle, Guibas and Lee (1985) use for solving geo-
metrical problems. This provides a large improvement in computation time on currently
available LQD algorithms: the exact algorithm by Croux, Rousseeuw and Hössjer (1994)
needs O(n5 log n) time, and an adaptation of a fast LMS algorithm by Edelsbrunner and
Souvaine (1990) still leads to a running time of O(n4). Furthermore, the algorithms by
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LQD LMS LTS DR RM

straightforward O(n5 log n) O(n4) O(n3 log2 n) O(n3) O(n2)

update O(n log n) O(n2) O(n2) O(n log2 n) O(n)

Table 3.1: Asymptotic computation times required for a regression fit to a sample of size n for five
robust regression methods. The first line contains the times when using a straightforward
implementation, the second line shows the times required for an update of the regression
estimates using improved algorithms.

Bernholt, Nunkesser and Schettlinger (2007) can be used to perform least quantile of
squares (LQS) regression (Rousseeuw and Leroy, 1987; Rousseeuw and Hubert, 1997) and
LMS regression through the origin in expected running time O(n log n) or deterministic
running time O(n log2 n).

Apart from the improved asymptotic computation times, Bernholt, Nunkesser and Schett-
linger (2007) show in simulations that their proposed approximation algorithm is even
faster for small sample sizes than the asymptotics suggest. Thus, these algorithms might
increase the practical relevance of the LQD filter for online applications.

Another possibility to improve the computational efficiency of robust regression filters, is
provided by the usage of update algorithms as suggested in McDonald and Owen (1986)
for (non-robust) smoothing via local least squares fitting. Here the term ‘update’ means
that estimation takes place using information stored from the last time window – only
inserting the new information given by the most recent data point and deleting that of
the oldest data point. Such update algorithms save a lot of computation time because
the estimates do not have to be calculated for each window from scratch. For the RM
regression line Bernholt and Fried (2003) present an algorithm which only needs linear
time O(n) for an update. This update algorithm turns the RM filter into the one with the
lowest computation time from investigated robust regression filters: Table 3.1 provides a
comparison of the (asymptotic) computation times that the investigated robust regression
filters need for estimating the signal at a particular point in time, and it clearly shows
the predominance of the RM filter in terms of computation. Considering also the good
performance of the RM filter for online signal extraction, it meets the most important
requirements for online application in intensive care (Schettlinger and Imhoff, 2005).

3.1.2 Repeated Median Hybrid Filters

As pointed out above, a simple RM filter does not preserve sudden level shifts as such
(Davies, Fried and Gather, 2004). Heinonen and Neuvo (1987, 1988) emphasise the ad-
vantages of linear median hybrid filters for preserving such signal edges. FIR median
hybrid (FMH) filters are computationally even less demanding than running medians and



28 Online Signal Extraction

preserve shifts similarly well or even better than these. An FMH filter is defined as the
median of several linear subfilters Φi, i = 1, . . . ,M :

µ̂FMH
t = med{Φ1,Φ2, . . . ,ΦM} .

For (retrospective) signal extraction from blood pressure measurements, Heinonen, Kalli,
Turjanmaa and Neuvo (1985) use a simple FMH filter with M = 3 subfilters, consisting
of two one-sided moving averages and the central observation as a central subfilter, i.e.
for a sample yt = (yt−m, . . . , yt, . . . , yt+m)′:

Φ1(yt) =
1

m

m∑
i=1

yt−i , Φ2(yt) = yt , Φ3(yt) =
1

m

m∑
i=1

yt+i

Similar to running medians, such simple FMH filters assume that the signal is locally
constant. Predictive FMH (PFMH) filters use one-sided weighted averages instead of
ordinary half-window averages for tracking linear trends (McDonald and Owen, 1986;
Heinonen and Neuvo, 1988). Combined FMH filters combine the structures for a local
constant and for a local linear signal. However, these filters can only remove single isolated
outliers and hence they are not sufficiently robust for applications in intensive care.
Fried, Bernholt and Gather (2006) construct hybrid filters based on RM regression to
combine the robustness of the repeated median with the better shift preservation of FMH
filters. They investigate several filters, using either the central observation yt or the median
of all observations in the window as a central subfilter. Instead of one-sided means they
use one-sided medians

µ̂Ft = med{yt−m, . . . , yt−1} and µ̂Bt = med{yt+1, . . . , yt+m} ,

and instead of the one-sided weighted averages they apply one-sided RM filters

µ̂RM,F
t = med{yt−m +mβ̂RM,F

t , . . . , yt−1 + β̂RM,F
t } ,

where β̂RM,F
t is the RM slope estimate based on the observations yt−m, . . . , yt−1 and β̂RM,B

t

is defined analogously for the other half of the window. Since these subfilters make pre-
dictions for the central value, the procedures are called predictive (P), or combined (C) if
both median and RM subfilters are used.
In general, RM-based filters are not affected by trends and attenuate both Gaussian and
spiky noise well. The smoothest signal estimations are obtained using the ordinary RM
filter, but on the other hand it also smoothes out shifts and trend changes. In contrast,
the predictive RM hybrid filter

µ̂PRMH
t = med{µ̂RM,F

t , yt, µ̂
RM,B
t }
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can preserve trend changes and level shifts almost exactly — even within trends — but
it attenuates Gaussian noise less efficiently than simple RM filters. Like the other RM
hybrid filters it is affected by many outliers. In addition, RM hybrid filters are designed
for delayed signal extraction and hence, for online signal extraction, different subfilters
have to be applied.

3.1.3 Nested Filters

An approach for combining the smoothness of the moving average with the robustness
and shift preservation of the running median is given by modified trimmed means (MTM)
(Lee and Kassam, 1985). The idea is to calculate the median of all observations in the
window and then ‘trim’, i.e. discard, the observations that deviate by more than a specified
multiple of a robust scale estimate, e.g. the median absolute deviation about the median
(MAD) (Huber, 1981)

σ̂MAD
t = med

i=−m,...,m

{∣∣∣yt+i −med{yt−m, . . . , yt+m}
∣∣∣} (3.4)

The arithmetic mean of the remaining observations is then taken as the signal estimate
in the centre of the time window. These MTM estimates are robust against outliers and
efficient for Gaussian noise. In addition, they can preserve large shifts in an otherwise
constant signal level better than ordinary running medians (Himayat and Kassam, 1993).

Since the location-based MTM deteriorates in trend periods, Gather and Fried (2004)
extend this idea to the trimmed repeated median (TRM). Within each time window an
RM regression line is fitted and the MAD is calculated from its residuals to estimate the
local variability (Gather and Fried, 2003). Observations deviating by more than a multiple
of the residual MAD from the fitted line are trimmed, and the final signal estimate is
derived by a least squares fit to the remaining observations. This TRM filter is almost
as robust as a variant applying another RM regression in the second step, but it is more
efficient for Gaussian errors.

To further improve the preservation of shifts, Bernholt, Fried, Gather and Wegener (2006)
use a smaller window width in the first step for the initial RM fit. Because of the nested
design of the windows for the first and second regression step, the prefix ‘double window’
(DW) is added to the estimates, which results in DWMRM and DWTRM. An illustration
of such a DWTRM fit to a single window containing n = 31 observations is provided by
Figure 3.5.

Using this double-window technique considerably improves the performance of RM filters
in terms of the preservation of shifts. In general, shifts that are large relative to the
observational noise are traced more accurately than smaller shifts.



30 Online Signal Extraction

●

● ●

●

● ●

●

●

●
●

● ● ●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

−2

0

2

4

6

8

10

t−15 t−10 t−5 t t+5 t+10 t+15

Inner window

initial RM fit

trimming boundaries
final least squares fit
 to the trimmed data
signal estimate

Figure 3.5: Fit of the DWTRM filter to a single time window of width n = 31. In the second step, only
the observations within the trimming boundaries around the RM line are used to calculate
the least squares fit.

If the application allows for a relatively large outer-window width, the signal estimation
can also be improved by using a short inner window for the initial RM slope estimation and
a larger outer window for the level estimation. First experiences show that this DWRM
filter seems promising for signal extraction, bearing in mind the demands for robustness
and the allowable time delay. However, these methods have not been investigated carefully
in full online analysis yet.

3.1.4 Weighted Repeated Median Filters

In analogy to the popular weighted median (WM) filters, Fried, Einbeck and Gather
(2007) construct weighted Repeated Median (WRM) filters. While WM filters are based
on the idea that a constant level is more likely for close-by observations, WRM filters
assume that the signal slope is more likely to be the same within short time lags. Suitable
symmetric bell-shaped (in delayed or retrospective analysis) or monotonic (in full online
analysis) weighting schemes allow the use of longer time windows than ordinary running
medians or RM filters that correspond to uniform weights.

Consider a sample {(Xj, Yj)} of size n, where the observations of Xj are not necessarily
equidistant, and two sets of weights wj, w̃j ∈ N, j ∈ {1, . . . , n}. Analogous to the de-
finitions of the RM slope (2.2) and RM intercept (2.3) the weighted Repeated Median
(WRM) estimators for slope and intercept (at design point x = 0) are defined by:

β̂WRM = med
j=1,...,n

{
w̃j3

(
med
k 6=j

w̃k3
Yk − Yj
Xk −Xj

)}
(3.5)

µ̂WRM = med
j=1,...,n

{
w̃j3

(
Yj − β̂WRM ·Xj

)}
. (3.6)
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The operator 3 in (3.5) and (3.6) symbolises replication, i.e. wj3Yj means that Yj is
replicated wj times. In the time series context, the WRM level estimate at time t results
from a WRM fit to the observations in a time window of width n corresponding to the
sample {(j, yj) : j = t+ i} with i defined as in (3.3).
Fried, Einbeck and Gather (2007) compare the WRM filter to L1 and weighted L1 filters.
Among other things, their study determines the minimal window width necessary for the
investigated methods to resist a certain number h of successive outliers, while taking such
deviant values into account if their number is greater than h. The reason for this lies in
the fact that when moving a time window through a series of measurements, at some
point the time series contains h subsequent outliers or ‘spikes’ (which are still regarded
as a sequence of artefacts) while in the subsequent time window the presence of h + 1

successive outliers of the same size and sign may already indicate a shift (Imhoff, Bauer,
Gather and Fried, 2002). In this way, window widths are determined that allow to track
shifts lasting at least h+ 1 observations while eliminating a smaller number of outliers.
For RM-based filters, weighting improves the adjustment to non-linear trends, allows for
larger window widths, and increases the efficiency, while for the L1 filter, weighting can
increase robustness and efficiency.
For online signal extraction, the WRM filter tracks shifts better than the L1 filter, which
has some difficulties in distinguishing relevant from irrelevant patterns. The weighting
reduces the bias of RM, implying that WRM also outperforms the standard RM filter in
tracing shifts. In addition, the WRM filter generally shows the smoothest signal estimati-
ons, while the L1 filter overshoots shifts and is wiggly. In conclusion, a suitably designed
weighted RM filter can be recommended for online signal extraction.
In the retrospective situation, weighted L1 filters provide even better results than the
WRM filters. In particular, for moderate outliers, weighted L1 filters show the least biased
results, and they also trace large shifts with a smaller time delay. However, if several
outlier patches occur close to each other and thus intrude into the same time window, the
standard RM filter may still be the best choice because of its maximal breakdown point.

3.1.5 Extended Robust Regression Filters

In contrast to LMS filters, RM filters are more vulnerable to large outliers, while they
accommodate small outliers well, see e.g. Gather and Fried (2003, 2004). Additionally,
large outliers are usually easier to detect than small ones. Therefore, it is worthwhile
to add automatic rules for outlier detection and replacement to RM filters to increase
the robustness of the signal estimation (Fried, 2004). Likewise, it is possible to apply
automatic rules for level shift detection to the RM filters investigated by Davies, Fried
and Gather (2004) and Gather, Schettlinger and Fried (2006).
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Figure 3.6: Comparison of the simple retrospective RM filter with its extended version including outlier
and shift detection. Both filters use a moving window containing five minutes of observations.

Similarly to the nested filters approach in Section 3.1.3, an observation is regarded as an
outlier if the corresponding absolute deviation from the current regression line is greater
than a specified multiple d of a robust scale estimation, i.e. if |yt+i − µ̂t+i| > d · σ̂t. Howe-
ver, here only the next incoming observation is screened for outlier identification before
entering the actualised time window by extrapolating the previous regression line. Detec-
ted outliers are replaced and no longer considered in the following analysis. In this way
they lose their influence on the estimations. For certain ‘worst case’ scenarios, replacing
outliers by the simple extrapolation of the regression line gives better results than other
‘down-sizing’ replacement strategies at a cost of reduced Gaussian efficiency.

For scale estimation Fried (2004) investigates the advantages of several robust estimators,
including the MAD (3.4), the Sn and Qn estimator of Rousseeuw and Croux (1993) and
the ‘length of the shortest half’ (LSH), see Grübel (1988) or Rousseeuw and Leroy (1988).
Qn and the LSH scale estimator give the best results in case of many large outliers of
similar size, but Qn provides better efficiency, especially when identical measurements
occur, e.g. due to rounding.

For shift detection, a simple majority rule is added to the filtering procedure. Considering
the most recent m observations in the time window, the number of observations with
residuals greater than a certain limit and with same sign is counted. If this number
exceeds m/2, this indicates a level shift and the procedure moves to the next window that
does not overlap the current one. This rule enables the regression filters to detect and
thus preserve shifts, and hence it overcomes the biggest disadvantage of the RM filter,
see Figure 3.6. In addition, the delay in following shifts decreases, ideally to a minimal
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Figure 3.7: Comparison of a nested RM filter (DWTRM) and an RM hybrid filter (PRMH) with the
simple RM filter in an retrospective application to half an hour of blood pressure measure-
ments recorded once per second. For all filters the moving window contains two minutes of
observations.

delay of bm/2c + 1 time units. In this context, regression based filters with additional
shift-detection rules seem preferable to other shift-preserving procedures such as LMS or
FMH filters.

Furthermore, some simple rules can be added to overcome problems in the infrequent
case that too many observations are identified as outliers and replaced by ’suitable’ values
(Fried, 2004). The rules for outlier treatment and shift detection can also be applied for
online signal extraction. However, the minimal delay of shift detection cannot be reduced
further because of the differentiation of shifts and outlier patches required.

3.1.6 Comparisons and Recommendations

The previous sections describe different approaches for filtering methods from which par-
ticularly the RM-based filters seem promising for application to online monitoring data
from intensive care. However, the choice of the appropriate filter should depend on the
characteristics of the underlying signal whenever known.

Summarising the outcomes described above, the following recommendations can be made:
for retrospective signal extraction the predictive RM hybrid (PRMH) filter seems to be
the best choice if the signal is assumed to contain many jumps and trend changes, while
the simple RM filter yields better results if many outliers but no abrupt changes are
expected. A compromise between these two methods is given by the DWTRM filter.
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Figure 3.8: Alarm reduction by signal extraction. A filter based alarm system does not trigger alarms in
case of measurement artefacts . The RM online signal based on a moving window of width
n = 151 represents the level of the heart rate series well, it resists outliers, and it detects
relevant changes.

A comparison of the RM filter with its extended version in Figure 3.6 shows how much
a shift detection rule can improve the simple RM filter. However, local extremes, i.e.
sudden trend changes, cannot be traced as well with this extended RM filter. In this
case, application of the PRMH or the DWTRM filter is more suitable: Figure 3.7 shows
that the predictive RM hybrid filter (PRMH) traces sudden shifts and local extremes
very accurately. However, the PRMH signal shows the largest variability, especially in
relatively constant periods e.g., from 14:30h to 14:40h. The simple RM filter output is
the smoothest, but ’blurs out’ sudden shifts and ‘cuts’ local extremes, see e.g. around
14:40h or 14:50h in Figure 3.7. As pointed out previously, the DWTRM signal provides a
compromise between the RM and the PRMH filter output. It is smoother than the PRMH
signal, but traces trend changes and shifts better than the RM filter.

Real-time applications of these filters imply a time delay of half the window width used
for the signal extraction. Therefore, filters have been examined for their online applicati-
on without any time delay. As shown in Figure 3.4, simple regression filters are suitable
for this purpose, but even the online version of the RM filter still possesses some dis-
advantages, such as the slow reaction to level shifts. Weighted RM filters (WRM) can
possibly improve upon simple online RM filters. Another promising and simple approach
to overcome this problem is given by online filters which can choose the window width
adaptively, depending on the underlying data structure (see Section 3.2).
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Figure 3.9: Alarm reduction by signal extraction. An RM-filter based alarm system can reduce the
overall alarm rate drastically. Here, the RM online signal (red) is based on a moving window
of width n = 121.

Figure 3.8 shows how the comparison of an extracted signal with preset alarms limits
can prevent the triggering of false alarms because of (patches of) outliers while relevant
alarms are preserved. Furthermore, Figure 3.9 shows that comparing an extracted online
signal to the alarm limits can reduce the overall alarm rate.

3.1.7 Discussion

The methods recommended here for univariate signal extraction are based on a simple
linear regression approach. The ordinary Repeated Median regression filter improves on
running medians in trend periods but lacks the property of preserving sudden shifts as
such. Arias-Castro and Donoho (2007) discuss that median filtering does not generally
preserve edges better than linear filtering. However, for the signal-to-noise ratios we con-
sider in this context, this statement still holds true. Different approaches to overcome the
problems of the linear RM regression filter have been proposed and work well for particular
situations, but there is no ‘universal’ procedure without any deficiencies. Double-window
TRM filters are promising for delayed signal extraction, while weighted RM filters are
possible candidates for online analysis.

Further investigations have shown that median-based filters are also robust against auto-
correlations. Compared to procedures based on least squares, robust location or regression
filters based on the median, trimmed means or RM show an increase in relative efficiency
in the frequent case of positive correlations. In this case they also outperform filters incor-
porating autocorrelations explicitly into the analysis, see e.g. Fried (2007b) or Fried and
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Gather (2005). In the infrequent situation of strong negative autocorrelations, a Prais-
Winsten transformation of the data is worthwhile and improves the ordinary RM filter.
With the linear time RM update algorithm developed by Bernholt and Fried (2003) or
its advancement to a linear storage algorithm (Fried, Bernholt and Gather, 2006), the
RM filter is computationally feasible for high-frequency data. This update algorithm also
implies a linear computation time for all the recommended filters. Outlier and shift de-
tection as described above does not add further computation time when using, e.g. an
O(log n) MAD update algorithm (Bernholt, Fried, Gather and Wegener, 2006) for the
scale estimation. Thus, an RM filter with such extensions represents an acceptable choice
for signal extraction.
Similar to the remedian approach of Rousseeuw and Bassett, Jr. (1990), Fried and Gather
(2002) propose to improve the computational speed by dividing the time window into n2

disjoint segments, each of length n1. The level within each segment is then estimated by
an ordinary median or by repeated median regression. Then RM or another procedure
can be applied to this pre-processed output window of width n2. Hence, the computation
time can be shrunk by a factor of n1 when using a linear time algorithm and by n2

1 when
using an algorithm taking quadratic time. For retrospective analyses, computation times
are not as crucial as for real-time applications, but they are still important because of the
possible magnitude of the data sets.
All filters described in this section have been implemented in the robfilter package of
the free statistics software R (Fried and Schettlinger, 2008) and are available on the CRAN
server:

http://cran.r-project.org/web/packages/robfilter/.
For the filtering procedures described above, the window width n has been assumed to
be fixed throughout. The suitable choice of this width is no trivial task and depends
on statistical demands as well as the user-oriented background. Larger window widths
generally imply a smoother filter output, but they also increase the bias.
The following section proposes a filtering procedure for online signal extraction which is
able to choose the window width data-adaptively and thus, does not require the speci-
fication of a ’suitable’ window width prior to the analysis, i.e. when the data are still
unknown. This is indeed a very important prerequisite for the real-time application of a
filter, and especially for the application to online monitoring time series in intensive care.

http://cran.r-project.org/web/packages/robfilter/
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Figure 3.10: Influence of the window width on RM regression filters: an online signal extracted by a
filter with a small window width of n = 30 yields estimations which trace sudden shifts
and trend changes with small delay. An online RM filter using a large window width of
n = 150 displays a much larger delay at such changes, but it achieves a much smoother
signal estimation.

3.2 The Univariate Adaptive

Online Repeated Median Filter

The choice of the window width n for regression filters as described in the previous section
can have a large impact on the extracted signal. Larger window widths assure robustness
against a larger number of outlying values and result in smaller variability of the esti-
mations and thus, yield a smoother extracted signal (see Figure 3.10). However, such
filters also result in a larger bias for the estimated signal and larger computation times.
A smaller window width leads to a smaller time delay in tracing sudden changes in the
signal level but at the expense of higher variability (see also Figure 3.10).

The choice of the ’optimal’ window width or bandwidth, respectively, and the correspon-
ding bias-variance trade-off is a problem that also arises in kernel density estimation and
non-parametric regression. It is well-known that methods based on local bandwidth selec-
tion can adapt better to the structure of the underlying function than methods using a
fixed bandwidth, see e.g. Brockmann, Gasser and Herrmann (1993) or Fan, Hall, Martin
and Patil (1996). Various data-adaptive choices of the ’optimal’ window width for local
polynomial fitting have been described by Friedman and Stützle (1981), Fan and Gijbels
(1995), Fan and Gijbels (1996), Cleveland and Loader (1996), and Ruppert (1997), but
none of these methods is robust against (patches of) outliers. The approach described in
Goldenshluger and Nemirovski (1999) and Katkovnik (1999) can also be used for robust
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filters (see Katkovnik, Egiazarian and Shmulevich (2001) and Chan and Zhang (2004)),
but it is computer-intensive and hence not reasonable for online signal extraction in inten-
sive care. Since the online RM filter outperforms other filters for intensive care applications
(Gather, Schettlinger and Fried, 2006), we focus on a data-driven window width selection
especially for this real-time filter, which can cope with trended data and is robust against
outlying values.
In accordance with Schettlinger, Fried and Gather (2008) we will introduce a version of
an online RM filter which is able to chose the window width n adaptively, depending on
the underlying data structure. Therefore, a goodness-of-fit test is applied to judge the ap-
propriateness of the window width at each point in time. Several versions of this adaptive
procedure are compared with a simulation study and the best settings are determined. We
also propose some modifications of this adaptive online RM filter designed to meet prac-
tical demands. Furthermore, some examples illustrate the performance of the modified
adaptive filters in applications to simulated and real time series from intensive care.

3.2.1 Sketch of the Adaptive Procedure

In Gather and Fried (2004) a procedure with a local window width choice for a delayed
RM filter is proposed using the balance of residual signs (2.6) for assessing the model fit in
each window: after fitting an RM regression to the data in the window, the total number
of positive residuals T+ and negative residuals T− within the first and the last quarter
of the window is evaluated. The window width is reduced and the RM fit is repeated if
either T+ or T− is too small or too large compared to the expected number of residuals
with the same sign in the described subset under a symmetric error distribution, which
corresponds to a value of about n/4. However, this approach is based on a symmetric
window, estimating the signal in the centre of the current time window and, if necessary,
reducing the window by discarding both, the first and the last value in the window. This
is not reasonable for online estimation because it may cause the elimination of the most
recent observation.
The adaptive online filters presented here are based on the simple online RM filter esti-
mating the signal in a sliding time window by (2.3) with the difference that the window
width is not fixed but can vary over time. Therefore, we denote the window width for
estimation at time t by nt.
The fundamental idea of the adaptive window width selection is as follows: if the current fit
is not considered adequate, then the window width used to determine the fit is reduced,
and the RM fit is re-estimated at the smaller sample. If the current fit is considered
adequate, then the window width can be enlarged for the estimation at the next point in
time. Figure 3.11 shows an outline of such an adaptive online RM filter.
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Start: Set t = nt = nmin.
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Figure 3.11: Flow chart of the adaptive online Repeated Median filter.

For application of this filter, the minimum and maximum window width have to be chosen
by the user. The minimum window width nmin controls how many outliers the filter can
handle (within each window) and hence controls robustness. Furthermore, the smallest
window should contain enough observations for a ’sensible’ estimation. In intensive care,
up to five subsequent outliers can occur without indicating a relevant change (Gather,
Fried and Imhoff, 2000). To ensure a minimum robustness against such situations we
choose nmin = 11 in the following.

The maximum window width nmax should be chosen such that our working assumption
(3.2) of local linearity of the signal is still appropriate. The computation time is also
limited by the specification of nmax because of the increasing computational demand with
increasing window width. Moreover, considering that the proposed filter is intended for
real-time application, the current time window should not contain information which
seems ’too old’ for the current estimation. With the background that a patient’s health
status can change within relatively short time, we choose nmax = 121 in the following,
such that the largest window in applications to intensive care time series evaluated per
second includes the current time and the preceding two minutes.
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Here, the first signal estimation takes place when at least nmin observations are present,
i.e. the first time and the initial width for the first window is set to t = nt = nmin.
However, it is also possible to start with the online signal estimation at a later time using
a (possibly) larger window width t = nstart ∈ {nmin, . . . , nmax}.
For each time, the estimation of the current signal level is repeated, either until it cannot
be rejected that the current estimate is appropriate, or until the window width cannot be
reduced any more, i.e. nt = nmin. If the estimation is considered suitable in the first place,
no further iterations need to be performed resulting in a considerable gain of computation
time compared to methods requiring more than one pass over the data, see e.g. Katkovnik,
Egiazarian and Shmulevich (2001).
The core of this procedure consists of the goodness-of-fit test for checking the adequacy
of the current signal estimate, which raises two main questions:

1. Which test should be used?

2. Which subset of residuals should be regarded for the test?

The first question will be addressed in the next section; the second question will be
discussed thereafter, motivating the simulation study described in Section 3.2.6.

3.2.2 Goodness of Fit Test

Let rt,i for i = 1, . . . , nt denote the residuals (2.7) in the window used for estimating the
signal level at time t. Given the balance of the residual signs in the whole window (2.6),
the proposed goodness-of-fit test is based on the idea that the balance of the signs of the
residuals at certain points in time i ∈ It ⊂ {1, . . . , nt} represents the adequacy of the fit
at the last time point in the window: if either the negative or the positive residual signs
prevail, the fit at the end of the window is not considered adequate and the window width
has to be adjusted.
Testing the sign balance of the residuals {rt,i ; i ∈ It} can be done using a sign test for
the location of the error distribution in the selection. Here, we use µ̃Ite , the median of the
distribution of the errors at points in time included in the selection It, as a measure of
location, and we consider the test problem

H0 : µ̃Ite = 0 vs. H1 : µ̃Ite 6= 0 . (3.7)

In Section 2.2 it is proved that an RM residual can equal the exact value of zero with
positive probability – not only for odd but also for even sample sizes or window widths,
respectively. Thus, a test statistic consisting of the number of either all non-negative or
non-positive residuals is not appropriate here, because it is nonspecific about the handling
of residuals with value zero, and counting the zero as non-negative or as non-positive can
make a relevant difference for the test decision.
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Furthermore, the removal of zero residuals from the sample and thus the reduction of the
sample size by the number of zero residuals does not provide a satisfying solution: in the
extreme case of an exact fit (2.5), the number of zero residuals outweighs the number of
residuals with positive or negative sign. In that case the regression line fits the majority
of the data exactly, but by using a test statistic disregarding zero residuals, the regression
fit would be judged solely by the residuals which do not lie on this line and hence, by
the minority of the data. In intensive care an exact fit is not a rare event because the
discreteness of the measurement scale can lead to collinear data.

Consequently, we choose a test statistic which takes into account that zero residuals
support the null hypothesis, and we define the test statistic as

T =
∑
i∈It

sign(rt,i) (3.8)

where rt,i denote the RM residuals with i ∈ It ⊂ {1, . . . , nt}, and the sign function is
defined as in (2.8). If |T | is large, either the positive or the negative residuals in the
chosen subset predominate. Hence, we reject the null hypothesis that the current signal
estimation is appropriate if

|T | > c(nt, It) , (3.9)

where c(nt, It) denotes a critical value depending on the window width nt and the subset
selection It.

An intuitive choice for a critical value consists of a quantile of the distribution of the test
statistic T under the null. Therefore, the following section discusses the derivation of this
unknown distribution. Particular critical values are derived in Section 3.2.5.

3.2.3 Distribution of the Test Statistic

Denote by

• nt the width of the current window,

• kt ∈ {0, 1, 2} the observed number of zero residuals in the current window,

• It ⊂ {1, . . . , nt} the index set indicating the subset of RM residuals whose signs are
added up to evaluate the value of the test statistic T ,

• nIt < nt the number of residual signs added for T , i.e. the cardinal number of It,

• kIt ∈ {0, . . . , kt} the number of zero residuals in the subset of the nIt RM residuals
at times i ∈ It.

The corresponding random variables are denoted by capital letters.
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P (Kt = 0) P (Kt = 1) P (Kt = 2)

nt = 3 0 0 1

nt = 4 0.6755 0 0.3245

nt = 5 0 0.7338 0.2662

Table 3.2: Probabilities for no, one or two zero residuals resulting from an RM regression fit in a window
containing nt ∈ {3, 4, 5} observations from a standard normal distribution.

In particular for small window widths, the values of kt and kIt have a large impact on the
distribution of T . Therefore, we decompose the density of this distribution into conditional
probabilities, depending on the number of zero RM residuals. According to the total proba-
bility theorem, the probability for the test statistic T taking on a value z ∈ {−nIt , . . . , nIt}
can be written as

P
(
T = z

)
=

2∑
kt=0

( kt∑
kIt=0

P
(
T = z

∣∣kIt , kt) · P (KIt = kIt|kt)
)
· P (Kt = kt) . (3.10)

Under the normality assumption, the term P (Kt = kt) can be derived using the results
from Section 2.2. Table 3.2 lists the exact probabilities for nt ∈ {3, 4, 5}. For nt > 5,
simulations are performed in Section 2.2 which lead for P (Kt = 2) to approximation
formulas (2.14) (for an even window width nt) and (2.15) (for an odd window width). It
is also shown there that for an even window width it is P (Kt = 1) = 0 and P (Kt = 0) =

1− P (Kt = 2), and for odd nt it is P (Kt = 1) = 1− P (Kt = 2) and P (Kt = 0) = 0. For
increasing window width or sample size, respectively, Figures 2.2 and 2.4 in Section 2.2
show that P (Kt = 2) tends to zero. Thus, for sufficiently large window widths (nt > 100)
we can take

• P (Kt = 0) ≈ 1 for nt even, and

• P (Kt = 1) ≈ 1 for nt odd.
(3.11)

In Section 2.2 it is also shown that, for standard normal data, zero residuals are more
likely to arise from the first or last observations in a window (see e.g. Figure 2.5) meaning
that zero residuals do not occur at each time with equal probability. In conclusion, the
probability P (KIt = kIt|kt) for a certain number kIt of zero residuals in the chosen subset
strongly depends on the choice of the subset It.

As an example, Table 3.3 gives the probabilities P (KIt = kIt |kt) for two different subsets
out of a window of width nt = 5 under the normality assumption. For the first subset
indicated by It = {1, 5}, i.e. the choice of the first and last RM residual in the window,
it is very likely to observe two zero residuals in that subset while it is impossible when
choosing the subset indicated by It = {3, 4}. Since for every window width nt there is a
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P ( ·
∣∣Kt = 1) P ( ·

∣∣Kt = 2)︷ ︸︸ ︷ ︷ ︸︸ ︷
P (KIt =0

∣∣1) P (KIt =1
∣∣1) P (KIt =0

∣∣2) P (KIt =1
∣∣2) P (KIt =2

∣∣2)

It = {1, 5} 0.5350 0.4651 0.1668 0.2071 0.6260

It = {3, 4} 0.5303 0.4698 0.6260 0.3738 0

Table 3.3: Probabilities for zero, one or two zero RM residuals in two different subsets of size nIt
= 2

resulting from an RM regression fit to a window containing nt = 5 observations from a
standard normal distribution, conditioned on the total number kt ∈ {1, 2} of zero residuals
in the whole window.

multitude of possible choices of a subset It containing nIt values, the following Section
3.2.4 discusses reasonable possibilities for It while in Section 3.2.6 the best choice of It
and nIt for the proposed adaptive procedure is deduced from a simulation study.
If nt is large enough for assumption (3.11) to hold, then P (KIt = kIt |Kt = kt) approxi-
mately corresponds to

P
(
KIt = kIt

∣∣Kt = 0
)

= P
(
KIt = 0

∣∣Kt = 0
)

= 1 for nt even. (3.12)

Although it is always more likely to observe a zero residual close to the boundaries of
a window (for any window width), the probability for a particular location of a zero
residual is the closer to 1/nt, the larger the window width is (see e.g. Figure 2.5). Thus,
for sufficiently large odd nt we can assume that the difference of a uniform distribution
to the distribution of the location of one zero residual is negligible. In that case a zero
residual can occur at any position in the subset It approximately with equal probability
and we can approximate P (KIt = kIt |Kt = kt) by

P
(
KIt = kIt

∣∣Kt = 1) ≈

{
nIt
nt

if kIt = 1

1− nIt
nt

if kIt = 0
for nt odd. (3.13)

Section 2.3 also discusses the correlation structure between the signs of RM residuals which
is similar to the one of least squares residuals: because of some sort of leverage effect, the
correlation between the signs of RM residuals is the stronger, the closer the residuals lie
to the boundaries of the window. However, it can also be seen that the correlations are
the weaker the larger the sample size (see e.g. Figure 2.6). Thus, while this definitely does
not hold for small samples, for sufficiently large window widths we can assume that the
dependence between the signs of the RM residuals is weak.
Assuming independence for the residual signs, and assuming that a positive and negative
sign are equally likely, we can also derive an approximation of P (T = z|kt, kIt) for large
window widths. Let

T+ =
∑
i∈It

1I{1}(sign(rt,i)) and T− =
∑
i∈It

1I{−1}(sign(rt,i))
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denote the number of strictly positive or strictly negative residuals, respectively, in the
selection with indices i ∈ It. Here, 1I denotes the indicator function, i.e. for a set B ⊂ R
and a real value x ∈ R it is

1IB(x) =

{
1 if x ∈ B
0 if x /∈ B

.

With the assumptions stated above, for large nt we can assume that the number of positive
RM residuals T+ follows approximately a hypergeometric distribution, i.e.

T+ ∼ Hyper(nt − kt,
nt − kt

2
, nIt − kIt) . (3.14)

Furthermore, the number of non-zero residuals in the subset indicated by It corresponds
to T+ + T− = nIt − kIt , and we can use this relation to rewrite the test statistic (3.8) as

T = T+ − T− = 2T+ − (nIt − kIt) .

Using this relation and the approximative hypergeometric distribution of T+ (3.14), we
derive an approximation for the density of T via the total probability theorem (3.10).
According to (3.11) and (3.12) for large and even window width nt P (KIt = kIt |kt) and
P (Kt = kt) cancel out from formula (3.10), and only P (T = z) = P (T = z|Kt = 0, KIt =

0) remains. Now let Seven(nIt) := {−nIt ,−nIt + 2, . . . , nIt − 2, nIt}. An approximation of
the density of the test statistic T is then given by

P
(
T = z

)
≈

(
nt
2

nIt+z

2

)(
nt
2

nIt−z
2

)
(

nt

nIt

) · 1ISeven(nIt )
(z) . (3.15)

For large, odd window width nt, using the approximations specified in (3.11) and (3.13),
and letting Sodd(nIt , kIt) := {−(nIt − kIt),−(nIt − kIt) + 2, . . . , (nIt − kIt)− 2, (nIt − kIt)},
we get the following approximation for the density of T :

P
(
T = z

)
≈

(
nt−1

2
nIt+z

2

)(
nt−1

2
nIt−z

2

)
(
nt − 1

nIt

) · 1ISodd(nIt ,0)(z) ·
(

1− nIt
nt

)

+

(
nt−1

2
(nIt−1)+z

2

)(
nt−1

2
(nIt−1)−z

2

)
(

nt − 1

nIt − 1

) · 1ISodd(nIt ,1)(z) · nIt
nt
. (3.16)

The approximations (3.15) and (3.16) for the density of T for large window widths only
depend on the window width nt itself and the number of residual signs nIt which enter T .
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Figure 3.12: RM regression line with indication of the sign of the RM residuals in different subsets of
size nIt = 10 in a window of width nt = 30 containing a level shift (left) and a trend change
(right). The RM online estimate (×) deviates strongly from the true signal (grey line).

3.2.4 Subset Choice for the Test Statistic

The subset It should not be chosen at random but as a representative selection for testing
the goodness of the fit at the most recent time t. Therefore, we will discuss possible choices
of It and the consequences for the distribution of the test statistic.

The current window width needs to be adjusted particularly if the data in the window
exhibit a pattern like a level shift or trend change. Therefore, the residual signs selected
to calculate the test statistic should reflect such data structures. The left panels in Figure
3.12 show a window of width n = 30 containing a positive level shift at time i = 21; the
right panels show a window with a change of the (linear) trend at time i = 16. In both
cases, the online RM signal estimate deviates strongly from the true signal at the most
recent time. Therefore, T should be large in absolute value such that the null hypothesis
(speaking for a ’good fit’) can be rejected and the window width can be reduced.
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Figure 3.12 exemplifies that the choice of the subset used for calculating the test statistic
can have a large impact on the ability of the filter to adapt to certain data structures: For
the level shift (left panels of Figure 3.12), choosing the most recent residual signs seems
the best choice because in this subset there are mainly positive residuals resulting in a
large test statistic, pointing at a bad fit at the most recent time. In the other subsets the
prevalence of positive residuals might not be strong enough to indicate that the window
width needs to be reduced. In case of a trend change (right panels of Figure 3.12), the
residual signs in a subset containing the most recent values are almost balanced and thus
would not lead to a window width reduction. In contrast, a subset containing residuals in
the centre or from both ends of the window would yield a large absolute value of T and
hence would yield a detection of the misfit.

Seeing that different selections It are advantageous in different data situations, we want
to find the selection which results in an adaptive online RM filter yielding the least biased
signal estimates after a sudden change by a simulation study in Section 3.2.6. In Section
3.2.3 it was already pointed out that because of the correlation structure of the signs of
RM residuals the choice of the subset selection It is crucial for the distribution of the
test statistic T (3.8). Of course, the number nIt of residuals within the subset It is also
essential for the distribution of the test statistic and thus, the best choice for this number
is also investigated in the simulation study in Section 3.2.6.

Simulations with independent standard normal data show that, if It contains nIt subse-
quent values, the distribution is the more concentrated around zero, the closer the subset
is to the edge of the window (see Figure 3.13) which is due to the stronger correlations
of the RM residual signs close to the boundaries of the window. For comparison Figure
3.13 also shows the large sample approximation of the density of T according to equation
(3.16), which – even for this small sample size of nt = 11 – is reasonable if the subset It
indicates values close to the centre of the window.

Based on preliminary experiments, we only consider those subsets in the following which
we think provide the most useful information about the fit at the most recent time. In
particular, we consider the subsets such that the test statistic (3.8) consists either of the
sum of the nIt most recent residual signs; of residual signs from the beginning and the
end of the time window; or of residual signs from the centre as e.g. illustrated in Figure
3.12. We define these subsets of times It ⊂ {1, . . . , nt} by

• Icentret =
{
bnt−nIt+1

2
c+ 1, . . . , bnt−nIt+1

2
c+ nIt

}
,

• Ifirstlastt =
{

1, . . . , bnIt/2c, nt − dnIt/2e+ 1, . . . , nt
}
, and

• Irecentt =
{
nt − nIt + 1, . . . , nt

}
.
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Figure 3.13: Empirical density of the distribution of the test statistic T for all possible subsets It
indicating a set of nIt = 7 consecutive out of nt = 15 RM residuals (red) for standard
normal data. For reference, the (large sample) approximation for this density (3.16) appears
in the background (grey).

3.2.5 Critical Values

To approximate the distribution of T for the subset selections It described in the previous
section, we simulate 100 000 windows containing nt ∈ {11, 12, . . . , 121} observations from
a standard normal distribution. Generating the data from a distribution with heavier tails
(like Cauchy) or a skewed distribution (like a lognormal) results in no significant difference
in the distribution of T as the test statistic only considers the signs of RM residuals. This
similarity can be seen by comparing Figure 3.13 to Figures C.1 and C.2 in Appendix C
which show the empirical density of T derived from Cauchy and from lognormal data
with zero mean and unit variance. Although there are slight differences in the empirical
densities based on simulated data coming from different distributions, these differences
are apparently very small – even for this small sample size.
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Figure 3.14: Empirical 0.95-quantiles (top) and 0.05-quantiles (bottom) of the simulated distribution
of T based on standard normal data for the subsets choosing RM residuals in the centre
(left), in the first and last part of a window (middle) and subsets choosing the most recent
RM residuals (right). These quantiles are neither monotone for increasing window width
nt nor for increasing subset size nIt

and hence, they are not suitable as critical values.

As critical values c(nt, It) we investigate the empirical p-quantiles qp(nt, It) of the simu-
lated distributions of T which depend on the size of the sample nt, on the location of the
chosen residuals, indicated by It, and the number of chosen residual signs nIt . Since further
simulations suggest that choosing an approximate level of 0.1 for the test results in a good
performance of the proposed adaptive online filter, we restrict the following descriptions
to the 0.05- and 0.95-quantiles. The results achieved for the 0.025- and 0.975-quantiles
are accordingly.
Figure 3.14 shows the 0.95-quantiles of the empirical distributions of T resulting from the
simulations for nt ∈ {11, 12, . . . , 121} and nIt ∈ {5, . . . , bnt/2c}. These empirical quantiles
are neither monotonically increasing for increasing window width nt and a fixed subset
size nIt ; nor for increasing nIt and a fixed window width; nor for both nt and nIt increasing
at the same time. Actually the montonicity is not even given when considering solely odd
window widths or only even window widths, respectively. Thus, taking these simulated
0.95-quantiles as critical values for the test can lead to inconsistencies in the test decisions.
Consider an exact fit situation in a window of size nt where only the last three observations
at t, t − 1 and t − 2 deviate from the exact fit and produce positive residuals. For the
test statistic applying Irecentt it is always T = 3, because all except the last three residual
signs equal the value zero.
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nt 25 25 25 25 25 25 25 25
nIt 5 6 7 8 9 10 11 12

q0.95(nt, nIt) 3 2 3 2 3 2 2 2

Table 3.4: Non-monotonicity of the simulated 0.95-quantiles for the distribution of T applying Irecentt

for fixed nt and increasing nIt
.

nt 27 28 29 30 31 32 33 34
nIt 10 10 10 10 10 10 10 10

q0.95(nt, nIt) 2 2 3 2 3 2 3 4

Table 3.5: Non-monotonicity of the simulated 0.95-quantiles for the distribution of T applying Irecentt

for increasing nt and fixed nIt
.

Tables 3.4 and 3.5 provide some values of the 0.95 quantiles for the distribution of the
test statistic using Irecentt , i.e. adding up the most recent residual signs, shown in the top
right panel of Figure 3.14. When adding the most recent nIt = 5 residual signs out of
nt = 25, Table 3.4 shows that the null hypothesis can not be rejected at the 0.1-level for
such an exact fit situation, although three out of the five considered residual signs differ
from zero, because the 0.95-quantile q0.95(25, 5) corresponds to three. However, because
of q0.95(25, 12) = 2, using a test statistic adding up nIt = 12 residual signs would lead to
rejection even though the fraction of non-zero residuals in the considered subset is much
smaller.
The same discrepancy arises for a fixed value of nIt and increasing sample size nt: when
considering the most recent nIt = 10 residual signs for the test statistic, Table 3.5 shows
that because of q0.95(29, 10) = 3 the null hypothesis can not be rejected for three out of
nt = 29 non-zero residual signs while it would be rejected if the last three out of nt = 32

signs are positive, since q0.95(32, 10) = 2.
This lack of monotonicity is not due to the simulations but also appears for exact quantiles
of discrete distributions which also causes the quantiles for the approximative distribution
(3.15, 3.16) to lack this property. Let nIt = nt−kt

2
where kt = 0 for nt even and kt = 1 for nt

odd. Table 3.6 contains the 0.95-quantiles qapprox0.95 (nt, nIt) of the approximative distribution
for nt ∈ {20, . . . , 30}. It shows that for increasing nt and nIt these quantiles are not
monotonically increasing. Figure 3.15 further displays that there is also no monotonic
increase for either a fixed window width nt, or a fixed subset size nIt in the quantiles.
However, the similarity of the structure of the approximative quantiles to the simulated
quantiles (top panels of Figure 3.14) is apparent.
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Figure 3.15: 0.95-quantiles of the approximative distribution defined by equations (3.15) and (3.16).

nt 20 21 22 23 24 25 26 27 28 29 30
nIt = nt−kt

2
10 10 11 11 12 12 13 13 14 14 15

qapprox0.95 (nt, nIt) 3 3 2 3 3 3 4 3 3 3 4

Table 3.6: Non-monotonicity of the 0.95-quantiles of the approximative distribution (3.15, 3.16).

To achieve logical consistency in the test decisions (3.9) for all possible settings of nt and
nIt , we set the critical values at the level α to

cα(nt, It) = max
m1≤nt

max
m2≤nIt

{
|qα/2(m1,m2)|, |q1−α/2(m1,m2)|

}
. (3.17)

For α = 0.1 the resulting critical values are shown in Figure 3.16. They fulfill the following
symmetry and monotonicity conditions for all nt and It:

1. −cα(nt, It) = c1−α(nt, It)

2. cα(nt, It) ≤ cα(ns, It) for nt ≤ ns

3. cα(nt, It) ≤ cα(nt, Is) for nIt ≤ nIs .

Examining the right panels of Figure 3.14, the 0.05- and 0.95-quantiles of T applying Irecentt

show a slightly different pattern to the quantiles for the other considered subsets. This is
due to the fact that for fixed nt and increasing nIt the range of the distribution increases.
For the 0.95-quantiles this leads first to an increase but then causes a decrease because of
the stronger concentration of the distribution around zero for large nIt . The right panel
of Figure 3.16 shows that this structure is not maintained after the monotonisation of
the critical values, but therefor logically consistent decisions are achieved by the test for
increasing nt and nIt .
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Figure 3.16: Critical values for the goodness of fit test at an approximate 0.1-level, derived from the
modification of the simulated 0.05- and 0.95-quantiles. The modification ensures monoto-
nicity of the critical values for increasing window width nt and increasing subset size nIt .

Figure 3.17 compares some specific simulated critical values with the 0.95-quantile of the
distribution specified by (3.15) and (3.16). Regarding the colours in Figures 3.15 and 3.16
as heights like in a topographical map, the three panels in Figure 3.17 can be interpreted
as cuts through the three-dimensional shape in Figures 3.15 and 3.16 along the lines
(nt, bnt/4c) (top left), (nt, bnt/3c) (bottom left), and (nt, bnt/2c) (bottom right) showing
the according profiles of the images. The semi-transparent colours in the background of
Figure 3.17 indicate the corresponding ’height’ colours used in the Figures 3.15 and 3.16.

For the displayed choices of nIt , the critical values for tests based on the test statistics
applying Icentret and Ifirstlastt are identical and, due to the choice of the maximum value in
(3.17), they are always larger than the approximate 0.95-quantiles, but the difference is
never larger than two. This is also true for the critical values for Irecentt which are closer to
the approximative quantiles, especially for small nIt . Concluding, these approximations
can provide sensible critical values for tests in large windows for which no simulated
critical values are available.

Using the described simulated critical values causes the true level of the test to be un-
known. Definition (3.17) also means that the critical values are possibly chosen larger than
the true critical value at a specified level such that the test may become conservative.

However, our procedure is meant as an exploratory tool for judging the appropriateness of
the fit based on the current window width. Supporting the null hypothesis causes larger
window widths to be in favour, but since this results in better stability, smaller variance,
larger robustness and smoothness of the signal estimate, it is not a disadvantage for the
performance of the proposed adaptive procedure.
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Figure 3.17: 0.95-quantiles of the large sample approximation (3.15, 3.16) in comparison with the simu-
lated critical values for nIt

in dependence of nt.

3.2.6 Simulation Study

To identify a filter which traces an abrupt change in the data with small time de-
lay, we investigate the performance of the adaptive RM procedure (Figure 3.11) em-
ploying the three subsets Icentret , Ifirstlastt , and Irecentt , specified at the end of Section
3.2.4. To examine the influence of the cardinality of It, we perform the simulations for
nIt ∈

{
bnt/2c, bnt/3c, bnt/4c

}
, i.e. with the cardinal number of It depending on the

window width nt. If nIt is smaller than five, we set nIt = 5 to guarantee a minimal num-
ber of observations in the subset It. Furthermore, we consider a subset containing a fixed
number nIt of most recent values, independent of the current window width nt:

Ifixedt =
{
nt − nIt + 1, . . . , nt

}
with nIt ∈

{
10, 15, 30

}
.

For small window widths nt, this subset may include a dominating part of the window,
and it is even possible that nIt > nt. Thus, if nIt exceeds nt/2, we set nIt = bnt/2c.
We also considered subsets I thirdst which included bnIt/3c values in the first and last part
of the window, and nIt − 2bnIt/3c in the centre. However, the filtering performance was
worse than for the subsets described above in terms of time delay and bias and hence, the
outcomes for such a filter are not shown here.
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Figure 3.18: Noise-free time series with a level shift of size one at t0 = 11 (left) and at t0 = 31 (right),
and online signal estimation by an adaptive RM filter using Icentret and nIt

= bnt/2c. The
extracted RM signal traces the shift with shorter time delay if the constant period before
the shift is shorter.

As simulation settings we look at level shifts and trend changes as e.g. shown in Figure
3.12. The length of the time period before the relevant change can have an impact on the
signal approximation because the window width used by the adaptive filter at the time
of the change can differ. Figure 3.18 illustrates that this transfers to the time delay for
tracing such a pattern, here, a shift. Therefore, we consider different points in time for a
shift and a trend change.

Furthermore, the signal-to-noise ratio may have an effect on the accuracy of the estimati-
ons around a change point. Therefore, different jump sizes for the level shift and different
slopes of linear trends for the trend change are examined. In particular, we investigate
time series with the true signal

µt =

{
µ1(t) for t = 1, . . . , t0 − 1

µ2(t) for t = t0, . . . , 2 · t0
, (3.18)

where t0 denotes the time of the shift or the trend change, respectively.
For a level shift we define

µ1(t) = 0 and µ2(t) = h , (3.19)

and for a trend change we let

µ1(t) = β · t and µ2(t) = 2 β (t0 − 1)− β · t . (3.20)

For the simulations, different settings for h, β and t0 are considered.
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Noise-Free Level Shifts and Trend Changes

As extreme settings, we consider the signal µt (3.18) as a time series without any additional
noise or outliers. Because of the exact fit property and the regression equivariance of RM
regression, the size of the shift h in (3.19) or the size of the slope β in (3.20), respectively,
has no impact on the delay for tracing a change in the signal in noise free situations.

Therefore, we examine

• a level shift of size h = 1 at t0 ∈ {11, 21, . . . , 131} and

• a trend change with β = 1 at t0 ∈ {11, 21, . . . , 131}.

As a measure of performance, we take the delay from the time t0 when the true change
has taken place to the time when the filter first reacts to the change, illustrated in Figure
3.18. Let µ̂t denote the signal estimated by an adaptive online RM filter at time t, the
delay is then defined by

delay = min
{
t : |µ̂t − µ1(t)| > 0, t > t0

}
− t0

with µ1(t) according to (3.19) for a shift and according to (3.20) for a trend change.

Using a different definition for the delay, e.g. the time difference until the estimated signal
exceeds 50%, 75%, 90% or 95% of the difference between µ1(t) and µ2(t) does not change
the findings presented in the following.

Figure 3.19 shows the delay of several adaptive RM filters needed to trace a level shift
induced at different times t0. A level shift after a large period of constancy (large t0)
induces a large window width nt0 at the time of the shift and hence, Figure 3.19 shows, as
expected: the time delay increases with increasing t0. Filters using a test statistic based
on the subsets Icentret or Ifirstlastt show an almost linear increase for smaller t0, while the
delay using Irecentt or Ifixedt stays almost constant – regardless of t0 or nt0 , respectively.

Furthermore, taking a smaller portion nIt into account seems to increase the delay for
filters applying a test statistic based on Icentret or Ifirstlastt whereas the delay with Ifixedt

is a little lesser for some situations. When considering a certain number of residual signs
depending on the current window width nt according to Irecentt , no difference in delay can
be seen for the simulated settings. The outcomes for a trend change are similar to the
outcomes for a level shift (see Figure C.3 in Appendix C).

Concluding, adaptive RM filters based on a test statistic which takes into account the
most recent residual signs by using Irecentt or Ifixedt result in the smallest time delay in
tracing a shift or trend change if the data are noise-free. In these situations, the number
of considered residual signs nIt seems to have no impact on the delay.
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Figure 3.19: Time delay in tracing a level shift at time t0 ∈ {11, 21, . . . , 131} produced by adaptive RM
filters with different settings.

Noisy Level Shifts and Trend Changes

The noisy data we consider are simulated from model (3.1), with the signal µt correspon-
ding to (3.18) and either (3.19) for a level shift or (3.20) for a trend change. The errors
are generated according to εt ∼ N(0, 1) and no outliers are included, i.e. νt = 0 ∀ t. The
situations we consider consist of

• level shifts of size h ∈ {1, 2, 5, 10} at t0 ∈ {11, 61, 121} and

• trend changes with slopes β ∈ {1, 2, 5, 10} at t0 ∈ {11, 61, 121}.

To judge the performance of the different filter settings we use the mean and median bias
right after a shift or trend change, respectively, evaluated on 1000 simulation runs. The
variance and mean squared error (MSE) of the signal estimates are also investigated and
commented on but will not be displayed here for the sake of brevity.
Because of the robustness of the RM filters against patches of subsequent outliers, the
estimated signal continues the linear trend defined by µ1(t) for some time after t0. For
the level shift situations, this results in a bias of approximately −h right after t0, see e.g.
Figure 3.20. In case of a trend change, the linear trend after t0 points into the opposite
direction than the trend before, causing a linear increase of about twice the size of β for
the bias as can be seen in Figure 3.21. A filter for which the bias curve tends more quickly
towards zero after t0 is said to be a method with shorter delay.
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Figure 3.20: The top four panels show the mean bias after a level shift of size h = 5 at time t0 = 61

for the adaptive RM filter with all considered subsets It of size nIt
. The bottom panel

compares the ’best’ mean bias curves from each of the plots on top, i.e. the ones which
indicate the smallest time delay for tracing the shift, for each of the four subsets Icentret ,
Ifirstlastt , Irecentt and Ifixedt .
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Level Shifts

Figure 3.20 displays the mean bias for all considered RM filters after a level shift of size
h = 5 at t0 = 61. The bottom panel compares the bias curves of the best performing
filters for each of the four considered subsets It. It shows that filters based on a test
statistic regarding a small number of the most recent residual signs outperform filters
with other choices. In particular, the filter based on Ifixedt with nIt = 10 results in the
smallest average time delay shown by the fact that the bias curve tends faster towards
zero than for the other filters. This appears even more drastically with either, larger t0 or
larger shift size h.

For smaller shifts or shifts at an earlier time, the differences between the filters are not
that obvious; for a level shift at t0 = 11 almost no difference in mean or median bias
is observed. Considering the median bias for large t0 and large h, it is obvious that the
estimated signal traces a sudden shift at some point in time, whereas the mean bias
suggests a smooth and rather slow transition from the level before, to the level after the
shift. However, since the difference between median and mean bias is generally small, the
median bias is not shown here. All the considered filters have a decreasing time delay
for an increasing shift size h, but increasing time delay for increasing t0. However, this
increase in delay is close to zero for a filter using Ifixedt with small nIt , whereas it appears
prominently for all other filters.

The simulation study shows, as expected, that the variance of the signal estimates is the
smaller, the larger the average window width nt at a certain time t. Since the window
width increases until the time of the shift t0, the variability decreases with time. However,
because each filter has a certain delay in tracing the shift which also depends on the
simulated data around that time, the variability shows a peak right after t0. This peak
is almost negligible for small h and small t0, but the peak is higher, the larger h and
t0. Generally, this peak appears earlier for filters applying subsets It regarding a lesser
number of most recent residual signs and also the variance curve over time returns quicker
to low values while the increased variability can be present for a longer time for Icentret

or Ifirstlastt . For the sake of brevity, the simulation results concerning the variance are not
shown here.

Since the (squared) bias considerably dominates the MSE, this measure confirms the
outcomes described above: The MSE curves for all filter settings show a large peak starting
at t0 and decrease thereafter, and the filter applying Ifixedt with nIt = 10 has the MSE
curve that decreases the fastest. These curves are also excluded from the presentation
here.
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Figure 3.21: The top four panels show the mean bias after a trend change from β = 5 to β = −5 at time
t0 = 61 for the adaptive RM filter with all considered subsets It of size nIt

. The bottom
panel compares the ’best’ mean bias curves from each of the plots on top, i.e. the ones
which indicate the smallest time delay for tracing the trend change, for each of the four
subsets Icentret , Ifirstlastt , Irecentt and Ifixedt .
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Trend Changes

Figure 3.21 shows the mean bias curves for all investigated filters for a trend change from
β = 5 to β = −5 at t0 = 61. Again, the filters using test statistics based on the subsets
Irecentt and Ifixedt with small nIt perform best w.r.t. bias and delay. For a trend change at
t0 = 11, a filter using Ifixedt can perform worse than other filters if the slope is not very
large (β = 1 or β = 2); for all other settings of β and t0 the filter with Ifixedt clearly shows
the best results. The larger β, the lesser the delay in tracing the change.
Analogous to the outcomes for the level shifts, all signal estimates show a peak in their
variance curves after t0. Here, it is even more obvious that those filters applying Irecentt

or Ifixedt with low nIt outperform the other filters because the variance is less, and the
variance curve decreases the fastest after t0. Again, the MSE is strongly dominated by
the bias and thus, the MSE curves also imply using a filter based on Ifixedt with nIt = 10.
Again, the outcomes for the variance and MSE are not shown here.

3.2.7 Modifications of the Adaptive Repeated Median Filter

In the last section it could be seen that the filter output has a strong bias after a sudden
level or trend change. In extreme situations this may cause the signal estimate to exceed
the range of the observations. This is not really acceptable in practical applications: for
example, if a physiological time series in intensive care shows a drastic change within the
alarm limits it is not the aim to trigger a threshold alarm. However, it is possible that the
approximated signal may cause such an alarm because a continuation of a previous trend
carries the estimation out of the alarm limits. Therefore, we apply the restrict-to-range
rule, which restricts the estimated signal level µ̂t at time t to a value within the range of
a subset of the most recent observations in the current time window:

µ̂t =


min(yt,nrtrt ), if µ̂RMt < min(yt,nrtrt )

µ̂RMt , if min(yt,nrtrt ) ≤ µ̂RMt ≤ max(yt,nrtrt )

max(yt,nrtrt ), if max(yt,nrtrt ) < µ̂RMt

, (3.21)

where µ̂RMt denotes the Repeated Median level estimate at time t; min(yt,nrtrt ) denotes
the minimum, and max(yt,nrtrt ) denotes the maximum, evaluated at the sample yt,nrtrt =

(yt−nrtrt +1, . . . , yt)
′. One possibility is to choose the subset size for the restrict-to-range rule

equal to the window width nrtrt = nt to restrict the signal level estimate to the range of
the observations in the window. However, to prevent that outliers that date back some
time have an influence on the range of the current signal estimate we set nrtrt = nIt in
the following and thus, restrict the signal level to the range of the observations which are
used to evaluate the appropriateness of the current fit when using Irecentt or Ifixedt .
Another issue that needs to be addressed in practical applications is the treatment of
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missing values: intensive care time series can contain missing values at single points in
time due to short-term technical problems as well as long stretches of missing values, e.g.
caused by disconnection of the measurement devices. To ensure reliability of the signal
estimation, a certain number of (non-missing) observations should be available for the
estimation. One possibility is to set the minimum required number of observations within
one window equal to the value of the minimal window width nmin to retain the robustness
properties of the filter. However, for online estimation from data which can be expected to
frequently show missing values, it is sensible to request a certain number of non-missings
at the most recent times such that for the filter applying Irecentt or Ifixedt a minimum
number of observations is available for the test procedure. In the following, we demand
at least five observations at the most recent nIt times; if less observations are present, the
filter returns a missing value for the estimated signal level. In this way a signal estimation
is guaranteed that is up-to-date, and it ensures a continuous signal estimation in case of
short-run technical failures.

3.2.8 Examples

This section compares the adaptive RM filters with the best settings of nIt for each
of the four subsets Icentret , Ifirstlastt , Irecentt , and Ifixedt determined in Section 3.2.6 also
applying the modifications described in Section 3.2.7 to simulated and real time series.
The comparisons also include filters based on fixed window widths.
First, we investigate some well-known examples from the regression context, typically used
for evaluating the performance of non-parametric smoothers and filters. In particular, we
take the Blocks and Doppler functions described by Donoho and Johnstone (1995) as
time series signal µt at equidistant points t according to (3.1). The observations are simu-
lated by adding standard normal noise to the signal µt, which is re-scaled to achieve a
signal-to-noise ratio of five, plus 5% positive, additive outliers of size five at random times.
Figures 3.22 and 3.23 show the signals of these time series extracted by four adaptive RM
online filters. It can be seen that the restrict-to-range rule proposed in Section 3.2.7 does
not avoid the over- or underestimation of the true signal after a level shift or trend change,
but at least it prevents that the estimated signal falls outside the observational range.
Such situations can for example be seen in Figure 3.22, e.g. after the negative level shifts
around times 250 and 400, where the signal approximation is truncated by the minimum
of the observations in the current window.
Furthermore, filters based on a local linear fit tend to be biased in regions of curvature.
If the estimate is evaluated in the centre of a certain neighbourhood, such filters tend to
’trim the hills and fill the valleys’ (cf. Hastie, Tibshirani and Friedman (2001), p. 171).
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Figure 3.22: Signal of adaptive RM filters estimating the Blocks signal (black) from a time series (grey)
with a signal-to-noise ratio of five and 5% positive additive outliers of size five.
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Figure 3.23: Signal of adaptive RM filters estimating the Doppler signal (black) from a time series (grey)
with a signal-to-noise ratio of five and 5% positive additive outliers of size five.
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For an online application, Figure 3.23 shows that the proposed online filters, based on an
estimate at the end of each window, tend to ’augment the hills and deepen the valleys’.

In the first part of the Doppler signal (Figure 3.23), it is difficult to distinguish signal
from noise, hence, all filters yield estimated signals around zero. The filter with Ifixedt and
nIt = 10 traces the true signal close-by from about time t = 100 on while for the other
filters the estimated and the true signal are close-by only from about time t = 200 on.
Thus, the Ifixedt -RM-filter has a better ability to trace patterns occurring in short time
intervals and it also shows the smallest delay in tracing sudden shifts, see Figure 3.22.

Figure 3.24 shows another simulated time series with standard normal noise and 5%
additive outliers of size five. The true signal contains level shifts of different heights as
well as trends and trend changes. Again, it can be seen that using the test statistic
applying Ifixedt causes the smallest delay in tracing sudden shifts.

For comparison Figure 3.25 shows the same time series but compares the estimated online
signal resulting from the adaptive RM filter using the subset Ifixedt with the results from
two online RM filters based on fixed window widths nt = 15 and nt = 50, for all t.

Figure 3.25 illustrates that all these filters are robust against artefacts, e.g. around time
t = 300. The filter with large, fixed window width yields the smoothest signal estimations
but also has the largest delay in tracing changes, most obvious for the shift at time t = 250.
Furthermore, the estimated signal for this filter lies outside the observational range after
the trend change around time t = 75, which could be prevented by applying the restrict-
to-range rule proposed in Section 3.2.7. The RM filter based on nt = 15 follows changes
in the data with the smallest time delay, but exhibits much more variation around the
true signal than the other filters in constant periods, e.g. from t = 300 to 350. Since
the underlying data structure is not known in advance for intensive care time series, the
example shown in Figure 3.25 illustrates the advantages of an RM filter with a data-driven
choice of the window width: the signal approximation is smooth in times of constant or
linear trend, but is also able to follow sudden changes with small delay.

As real data examples, we consider one hour of systolic arterial blood pressure and half an
hour of heart rate measurements displayed in Figure 3.26. Both time series are measured
and stored once per second. In addition to the measurements, the graphics display the
upper and lower alarm limits set by the medical staff. Furthermore, the figure shows the
online signal extracted by an adaptive RM filter with Ifixedt . We used nIt = 30 for these
two examples because application to several intensive care time series showed that a filter
with these settings provides online signal estimates that are sufficiently smooth and have
an acceptable time delay for the detection of relevant sudden changes. Choosing a smaller
value for nIt causes window width reduction for changes that may not be relevant from a
medical perspective and hence, results in a more variable signal estimation.
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Figure 3.24: Comparison of four adaptive RM online filters at a simulated time series with standard
normal noise, a signal-to-noise ratio of five, and 5% additive outliers of size five with random
sign at random times.
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Figure 3.26: Systolic arterial blood pressure (left) and heart rate (right) with upper and lower alarm
limits and a signal estimated by an adaptive RM filter using Ifixedt with nIt

= 30.

For the blood pressure, the currently used alarm system triggers two artefact alarms
caused by outliers, which violate the upper alarm limit, while the true blood pressure
is close to the lower alarm limit. For the heart rate, a number of alarms are triggered
because of lower limit violations while from a medical perspective it would rather be of
interest that the heart rate is close to the lower limit with additional information about
the variability. Using the signal extracted by the adaptive RM filter with Ifixedt as input
to the threshold alarm system prevents the artefact alarms, displayed in the left panel of
Figure 3.26, but still indicates relevant violations of the alarm limits. The right panel of
Figure 3.26 illustrates that the total number of alarms can also be reduced because the
estimated signal crosses the alarm threshold less often than the observed measurements
but still transports the relevant information.

3.2.9 Search Algorithms

Linear Search

In Section 3.2.1 it is described that the adequate window width is determined at each time
t by a linear search algorithm: if the null hypothesis of the goodness of the current fit is
rejected, then the current window width nt is reduced by one in each iteration step. The
final window width is the first width for which the goodness of fit cannot be rejected. In
that way a certain smoothness of the estimated signal is guaranteed because the algorithm
chooses the largest window width possible and thus reduces the variability of the signal.

However, the computing time of this algorithm might become quite large if the window
width has to be reduced drastically because of a sudden change such as a trend change
or level shift. In such a case the number of iterations might be as large as nmax − nmin.
In the following, let nt,` denote the window width used to evaluate µ̂t in the `th iteration
step where at each time t we start with nt,0 = min{nt−1 + 1, nmax} and nt denotes the
final window width chosen at time t.
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Binary Search

The binary search offers a faster approach to find an adequate window width because it
uses nested intervals: if the goodness of fit is rejected in the first iteration for the width
nt,0, at the next step the adequateness of the fit based on the minimal window width nmin
is tested. If H0 is rejected at that step, then nt,1 = nmin is chosen as the final window
width nt because the width cannot be chosen any smaller by definition. However, if H0

is not rejected, the fit in a window with a width nt,2 = d(nmin + nt,0)/2e is evaluated. In
that way the set of possible window widths, limited by nmin and nt,0, is divided into two
halves and depending on the test decision for nt,2 the set of possible widths is reduced
either to {nmin, . . . , nt,2} or to {nt,2, . . . , nt,0}. Repeating this limitation to half intervals
in each iteration step, a maximum of log(nmax − nmin) + 2 iterations is possible.

The following pseudo code describes the procedure of finding an adequate window width
and thus, a suitable signal level estimate at time t with a binary search algorithm. The
final level estimate, which is based on the final window width nt, is denoted by µ̂t, while
an estimate in iteration `, based on the window width nt,`, is denoted by µ̂t,`.

1. (a) Perform RM regression in a window of width nt,0 = min{nt−1 + 1, nmax}.

(b) Test the goodness of fit of µ̂t,0 according to the test problem specified in (3.7).

If H0 is not rejected: Save µ̂t = µ̂t,0, nt = nt,0 and stop.
If H0 is rejected: Set nt,1 = nmin and ` = 1.

2. (a) Perform RM regression in a window of width nt,1 = nmin.

(b) Test the goodness of fit of µ̂t,1.

If H0 is not rejected: Set nlow = nmin, nup = nt,0,
nt,2 = dnlow+nup

2
e and ` = 2.

If H0 is rejected: Save µ̂t = µ̂t,1, nt = nt,1 = nmin and stop.

3. Repeat:

(a) Perform RM regression in a window of width nt,`.

(b) Test the goodness of fit of µ̂t,`.

If H0 is not rejected: Set nlow = nt,`.
If H0 is rejected: Set nup = nt,`.

(c) Set nt,`+1 = dnlow+nup
2
e and ` = `+ 1.

(d) If nt,`+1 = nlow or nt,`+1 = nup:
Determine `m := max{j = 1, . . . , ` : H0 not rejected},
save µ̂t = µ̂t,`m , nt = nt,`m , `t = ` and stop.
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Geometric Search

The geometric search offers a possibility to combine fast computation with the fact that
a window width is searched for which is adequate in the sense that the goodness of fit for
the level estimate from this window cannot be rejected, and which is at the same time as
large as possible, to reduce the variability of the estimated signal.
This search procedure starts by reducing the window width similar to the linear search
algorithm, though here the window width is not reduced by one but by 2`. The window
width in the `th iteration corresponds to nt,` = nt,0 −

∑`
i=1 2i−1. If the goodness of fit for

the level estimate µ̂t,` cannot be rejected at iteration `, a binary search within the limits
nt,` and nt,`−1 is performed.
Like the binary search procedure, the computation time for the geometric width search
is of order O(log(nmax − nmin)). However, this search puts much more weight on large
window widths because it starts with a reduction of n0,t, the largest window width possible
at time t, and reduces it first in small and then in exponentially increasing steps.
Depending on the underlying data, it is possible that the geometric and the binary search
may not find the largest possible window width for which the corresponding fit is consi-
dered adequate. Therefore, a small comparison study will be conducted in the following
to find out about the influence of the search algorithm on the final window width.

Noise-Free Level Shift

To compare the performance of the three different search algorithms, we first apply the
adaptive online RM filter to a noise-free time series

yt =

{
0 , t = 1, . . . 50

h , t = 51, . . . 100
,

with shift size h = 5, whereas the adequacy of the current fit is evaluated on basis
of the five most recent residuals, i.e. we use Ifixedt with nIt = 5, and the estimated
signal is restricted to the observational range of the five most recent observations, i.e.
nrtrt = nIt = 5. The minimal window width is set to nmin = 11 and the maximum
window width corresponds to nmax = 100. This procedure results in the online signal
approximation

µ̂t =

{
0 , t = 1, . . . 54

5 , t = 55, . . . 100
,

regardless of the algorithm used for finding the window width.
On a Linux Workstation with 3.06GHz CPU and 4GB RAM, the procession time for the
analysis by the filter using the linear search corresponds to approximately one second
while the filter applying the geometric search needs about 0.80 seconds; the analysis by
the filter applying the binary search only takes about 0.64 seconds. As an explanation for
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t 51 52 53 54 55 56 57 58 59 60

linear search 1 1 1 44 2 1 2 1 1 1
binary search 1 1 1 2 2 1 3 1 1 1
geometric search 1 1 1 7 2 1 2 1 1 1

Table 3.7: Number of iterations `t required for finding the adequate window width by different search
algorithms after a noise free level shift of size five at time t0 = 51.

these computation times, Table 3.7 shows the number of iterations `t required by each
algorithm at the times right after the level shift. At all other times (t ≤ 50 and t > 60)
the window width is simply increased by one and hence only one iteration takes place at
each time. Since the filter output is the same regardless of the applied search algorithm,
using a binary search would be the best option here, because it is the fastest.

Level Shift with Standard Normal Noise

To compare the influence of the three search algorithms at noisy time series, we apply the
adaptive RM filter to time series of length 100 with i.i.d. standard normal noise, a level
shift at time t0 = 51 and signal-to-noise ratios of zero, one, two and five. For each setting
1000 replications are performed. As performance measures, we consider the computation
time, the window width nt, and the number of iterations `t required by each algorithm at
all times t.

For standard normal data without level shift (meaning a signal-to-noise-ratio of zero)
the computation time is again the lowest for the binary search algorithm although the
difference to the geometric search is not very large (cf. Figure C.4 in Appendix C). The
maximum window width is the same for all search algorithms; the minimum, median and
average window widths are slightly larger when using the linear search algorithm. However
in terms of the maximum number of iterations at one time, it is very obvious that the
binary and geometric search are at an advantage (cf. Figure C.5).

The three top panels in Figure 3.27 show the smallest, the mean, the median and the
largest window width out of the 1000 simulation runs for the setting with signal-to-noise
ratio five at each point in time. The bottom panels show the corresponding summary
statistics for the number of iterations required by the three different search algorithms at
each point in time.

For the simulated time series, an ’optimal’ filter would have an increasing window width
until the time of the level shift, a drastic drop to the smallest window width at the time of
the shift and a width increase thereafter. Figure 3.27 shows that on average this is the case
for all three search algorithms. Further, the maximum widths resulting from the different
algorithms are quite similar for all times – except after the shift where the binary and the
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Figure 3.27: Summary statistics of the window widths nt and the number of iterations `t required by
the adaptive online RM filter at time t when using different search algorithms for the
width. These summary statistics are based on 1000 simulated standard normal time series
of length 100 with a level shift at t0 = 51 and a signal-to-noise ratio of five.

geometric search perform a little better because the width reduction is more drastic than
for the linear search. However, the linear search results less often in nmin = 11 than the
other search algorithms.

Looking at the number of iterations in the bottom panels of Figure 3.27, the advantages
of the binary and geometric search are quite obvious: all three filter versions perform
similar on average in stable time periods, but the maximum, the mean and even the
median number of iterations around the level shift is much higher for the linear search
algorithm. Indeed, the maximum number of iterations is much larger for the linear search
over the whole period of time. Although the binary search requires less iterations than
the geometric search, the difference is not large and the maximum number of iterations
for the geometric search never exceeds eleven. The results for the signal-to-noise-ratios
one and two lead to the same conclusions and are shown in Figures C.7 and C.9.

The higher number of iterations required by the linear search algorithm is reflected by a
generally higher computation time, illustrated in Figure 3.28. This figure shows boxplots
of the computation times needed for the analyses of the 1000 simulated time series. Again
it shows that the binary search is the fastest option, but it also shows that the difference
to the geometric search is not large. The same is true for the signal-to-noise ratios one
and two as can be seen in Figures C.6 and C.8 in Appendix C.
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Figure 3.28: Computation times in seconds required by adaptive online RM filters applying different
search algorithms for the window width, when analysing standard normal time series of
length 100 with a level shift at t0 = 51 and a signal-to-noise ratio of five. The boxplots are
based on 1000 simulation runs each.

Following from the definition, the linear search always results in the largest window width
possible. However, the width found by the linear search is larger than the width found by
a binary search for an average of only 27.7 out of 90 estimation times; for the geometric
search it is just 26.1 times. For 49.8% of the time series the window widths found by all
three search algorithms is the same at at least 49 out of 90 estimation times. In 5.9% the
window widths found by the three algorithms are even identical at all time points. The
similarity of the results of the binary and the geometric search is quite strong, but the
difference to the widths found by the linear search is also small. While the binary search
may need a few less iterations to find an adequate width at one point in time than the
geometric search, the simulations indicate that the latter may result in a larger adequate
window width which, in return, induces a smoother signal estimation.

Figure 3.29 shows an application of the adaptive online RM filter using the three different
search algorithms to a standard normal time series of length 100 with a level shift at
t0 = 51 and a signal-to-noise ratio of five. The minimal window width for this filter is
nmin = 11, the number of most recent observations to test the goodness of fit of the signal
is nIt = 5. Furthermore, the restrict-to-range rule is applied, restricting the online signal
to the range of the most recent nIt observations.

In the top left panel of Figure 3.29 the time series and the corresponding online signal are
displayed. Since the procedure using the geometric search yields exactly the same window
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Figure 3.29: The top left panel shows a standard normal time series of length 100 with a level shift at
t0 = 51 and a signal-to-noise ratio of five together with the online signal extracted by the
adaptive online RM filter using different search algorithms. The remaining panels show the
window width nt resulting from the specified search algorithm at each time t. Those times
where more than one iteration was necessary for the final estimation are indicated by a
grey vertical line; the black dots on the line mark the investigated window widths and the
number below shows the number of iterations `t required at that time.

widths as the linear search, the corresponding signal estimations are identical. The other
three panels show the window width nt determined by each of the three search algorithms
and the number of iterations `t for those points in time where more than one iteration
was performed (here: for t ∈ {52, 72, 80}).

It can be seen that although the binary search requires much less iterations if the window
width has to be reduced drastically (here: after the detection of the level shift at t = 55),
the geometric search is of advantage when the width is only reduced by a small amount,
e.g. at time t = 72 because it then needs `t = 4 instead of the `t = 6 iterations required by
the binary search. Furthermore, a smaller window width found by the binary search leads
to another width reduction at t = 80 such that the binary search results in the smallest
window widths and hence in a more variable signal, see e.g. the times 80− 100 in the top
left panel of Figure 3.29. All these results imply that a geometric search algorithm seems
to be the best choice for an online adaptive Repeated Median filter, because it is almost
as fast as a binary search but may result in smoother signal estimations.
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3.2.10 Conclusions

The proposed time series filter applying Repeated Median (RM) regression to a moving
time window with a data-driven choice of the window width yields a smooth signal ap-
proximation; it is robust against isolated artefacts and small patches of outlying values.
Furthermore, it is able to trace sudden changes with small time delay without applying
different tests for artefact, trend change, and level shift detection. The filter does not re-
quire many parameter specifications, it does not put strong assumptions on the underlying
data structure, and it is applicable to time series containing missing values.
For the best suitable choice of the window width in online applications, we recommend a
filter which chooses the window width based on the sum of a fixed number of the most
recent signs of RM residuals. This number of residual signs should be independent of the
window width used for the signal estimation. For adaptation to sudden data changes with
minimal time delay, we suggest to use a small number of say, fifteen, most recent residual
signs. However, this number should be chosen based on the application-oriented back-
ground, e.g. on the maximally acceptable time delay and the frequency of measurement.
For example, in applications to high-frequency data like time series from an online mo-
nitoring system in intensive care, one may take a larger number of residual signs, e.g. at
the 30 most recent points in time, to ensure that medically irrelevant sudden changes are
ignored while relevant ones are traced with acceptable time delay.
To guarantee the applicability of the filter in real-time, we propose to use a geometric
search algorithm for the window width because it provides the best compromise solution
between a small computation time and a smooth signal estimation.
Like the filters described in the previous section, the adaptive online Repeated Median
filter has been implemented as the function adore.filter in the robfilter package of
the free statistics software R (Fried and Schettlinger, 2008) and is available on the CRAN
server:

http://cran.r-project.org/web/packages/robfilter/.

http://cran.r-project.org/web/packages/robfilter/
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Figure 3.30: One hour of secondly measurements from a multivariate physiological time series including
heart rate (HR) and pulse (PLS) in beats/min; oxygen saturation (SpO2) in per cent; and
the systolic, mean and diastolic arterial blood pressures (ART_S, ART_M, ART_D) in
mmHg.

3.3 The Multivariate Adaptive

Online Repeated Median Filter

Current intensive care monitoring systems consider the observed time series for each
physiological variable separately. However, regarding such a set of univariate time series
as one multivariate time series allows for taking into account the correlation structure
between the single components. Using the extracted multivariate signals instead of the
raw measurements as input to a monitoring system seems a promising approach to reduce
the false positive alarm rate of current alarm systems.

Figure 3.30 shows a part of a physiological multivariate time series measured at an in-
tensive care unit at a frequency of once per second. Evidently, positive correlations are
present – especially between heart rate and pulse, and between the three arterial blood
pressures. Accounting for these multivariate features means incorporating possibly very
important information into the monitoring and judgement process of the patient’s health
status.

Simply generalising univariate robust regression methods, as described in the previous
sections, to the multivariate case does not result in affine equivariant procedures which
causes reduced efficiency for the signal estimates, in particular if the components of the
multivariate series are highly correlated (Chakraborty, 1999). On the other hand, multi-
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variate affine equivariant regression methods with high breakdown point usually require
the data to be in general position. This is often not the case for intensive care data since
the measurements are recorded on a discrete scale.
Lanius (2005) and Lanius and Gather (2007) propose a multivariate signal extraction
procedure for delayed signal extraction which provides a robust and reasonably efficient
solution to this trade-off problem and is particularly designed for the application to in-
tensive care data. Their proposal is based on a moving time window and it consists of two
separate regression steps where first, univariate Repeated Median regression and second,
multivariate Least Squares regression is performed. Similar to the (univariate) nested fil-
ters of Bernholt, Fried, Gather and Wegener (2006) described in Section 3.1.3, the sample
is trimmed between these two regression steps in order to detect and replace (possibly
multivariate) outliers where the outlyingness of an observation is judged w.r.t. the local
covariance structure.
In this section a multivariate, robust regression-based filter for online signal extraction
from multivariate high frequency time series is proposed following the lines of Borowski,
Schettlinger and Gather (2009) and based on the approach of Lanius and Gather (2007).
Unlike parallel univariate filters, the new procedure takes into account the local covariance
structure between the single time series components. Since it is based on high-breakdown
estimates, it is robust against (patches of) outliers in one or several of the components as
well as against outliers with respect to the multivariate covariance structure. Moreover,
this multivariate method makes use of the window width adaptation described in the
previous section for univariate signal extraction and thus, overcomes the problem of the
optimal choice of the window width. Hence, the new filter combines the advantages of the
univariate adaptive online RM filter (Section 3.2) and the multivariate filter by Lanius
and Gather (2007).
Analogous to the univariate case (3.1), we assume for a multivariate, k-dimensional time
series Y t =

(
Yt(1), . . . , Yt(k)

)
∈ Rk, t ∈ Z, a simple additive working model:

Y t = µt + εt + νt , (3.22)

where µt =
(
µt(1), . . . , µt(k)

)′ denotes the k-dimensional, real signal vector at time t;
εt ∈ Rk denotes an error term and νt ∈ Rk indicates an outlier generating process which
most likely consists of the k-dimensional origin 0k most of the time, but may also indicate
outliers in one, several, or all k components.
Furthermore, our working assumption includes that each component of the multivariate
signal is locally linear in a time window of width n, i.e. we assume (3.2) for each component
j = 1, . . . , k:

µt+i(j) ≈ µt(j) + βt(j) · i for i = −n+ 1, . . . ,−1, 0. (3.23)
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Due to these assumptions it is possible to evaluate the multivariate online signal estimate
µ̂t by fitting a multivariate regression model

Y t+i = µt + βt · i+ εt,i for i = −n+ 1, . . . ,−1, 0, (3.24)

where Y t+i ∈ Rk describes the n random variables in the current time window, µt ∈ Rk

denotes the signal vector consisting of the k components µt(j), βt ∈ Rk corresponds to
the slope vector in the current window with components βt(j) and εt,i ∈ Rk denotes an
error term which is assumed to come from a symmetric distribution with zero median and
(time-dependent) covariance matrix Cov(εt,i) = Σt ∈ Rk×k which may contain non-zero
entries aside from the main diagonal.

To begin with, we describe the multivariate online filtering procedure based on a fixed
window width, extending this to a procedure which adapts the window width at each
time t. Corresponding to the description of the univariate adaptive RM filter, we discuss
the treatment of missing values and some modifications of the multivariate filter. Finally,
we exemplarily compare several online filters by an application to the physiological time
series shown in Figure 3.30.

3.3.1 The Procedure

Multivariate Online Filtering With Fixed Window Width

The filtering procedure described by Lanius and Gather (2007) estimates the signal in a
time window (yt+i; i = −m, . . . ,m) of fixed odd width n = 2m+ 1 centered around time
t. Since this means a delay of m time units for each estimation, this filter is more suitable
for retrospective analyses. Here, we describe an online version of this filter which uses a
moving time window (yt+i; i = −n + 1, . . . , 0) with a width n ∈ N which estimates the
signal at the most recent time t.

To achieve a multivariate online signal estimate by the Trimmed Repeated Median-Least
Squares procedure (TRM-LS), the following steps have to be performed within each time
window (yt−n+1, . . . ,yt) of length n and dimension k:

1. Use univariate RM regression to find the signal estimate µ̂t(j) and the slope β̂t(j)
according to (2.3) and (2.2) for each component j = 1, . . . , k, and combine these to
the k-dimensional level and slope estimates

µ̂t =
(
µ̂t(1), . . . , µ̂t(k)

)′
and β̂t =

(
β̂t(1), . . . , β̂t(k)

)′
.

2. Calculate the residuals rt+i = yt+i − (µ̂t + β̂t i ) for i = −n+ 1, . . . , 0.



3.3 The Multivariate Adaptive Online Repeated Median Filter 75

3. Use a robust method to estimate the local error covariance matrix Σt ∈ Rk×k based
on the sample of residuals rt+i ∈ Rk, i = −n+ 1, . . . , 0.

4. Determine St :=
{
i = −n+ 1, . . . , 0 : r>t+i Σ

−1
t rt+i ≤ dn

}
the set of time points within the window at which the residuals rt+i have a squared
Mahalanobis distance w.r.t. the local covariance structure which is not larger than
a specified value dn.

5. Perform multivariate Least Squares regression on the trimmed sample

{(i,yt+i) : i ∈ St}

to obtain the signal and slope estimates µ̂TRM−LSt ∈ Rk and β̂
TRM−LS
t ∈ Rk.

As a suitable estimator for the local error covariance matrix Σt in step 3, Lanius and Ga-
ther (2007) suggest to apply a slightly modified version of the fast computable orthogona-
lised Gnanadesikan-Kettenring estimator (OGK) by Maronna and Zamar (2002) to the re-
siduals rt+i in the window. This estimator is based on the fact that the covariance between
two variables X and Y can be expressed as Cov(X, Y ) = (σ(X + Y )2 − σ(X − Y )2) /4

where σ(·) denotes the standard deviation. Since the multivariate OGK estimator inherits
the explosion breakdown point of the univariate method, used for estimating the standard
deviation, a high breakdown method should be applied to guarantee robustness against
outliers. In a comparison study, Lanius and Gather (2007) find the Qn scale estimator
(Rousseeuw and Croux, 1993) to be a suitable candidate which possesses a maximum
asymptotic breakdown point of 50% if the data are in general position.
Due to the discrete measurement scale of the considered intensive care data, window
samples might contain collinear data. This might cause the estimate σ̂Qnt (·) to be close
to, or even equal to zero. To prevent the singularity of the estimated covariance matrix
Σ̂t (which is required for the inversion at step 4), Lanius and Gather (2007) propose to
use a lower bound of ϑ = 0.02 for the univariate estimates of the standard deviation, i.e.

σ̂t(·) = max{σ̂Qnt (·), ϑ} . (3.25)

At step 4 an upper bound dn for the squared Mahalanobis distance of each k-dimensional
residual vector determines whether an observation is regarded as an outlier or not. If the
residuals were independently normal, the scaled squared distances had a χ2-distribution.
Therefore, Lanius and Gather (2007) follow Maronna and Zamar (2002) in choosing a
scaled χ2-quantile for ’hard’ outlier rejection, i.e.

dn =
χ2
k,α ·med {di; i = −n+ 1, . . . , 0}

χ2
k,0.5

,
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where χ2
k,α is the α-quantile of a χ2-distribution with k degrees of freedom and the term

di = r>t+i Σ
−1
t rt+i, i ∈ {−n + 1, . . . , 0}, stands for the residual squared distances. Lani-

us and Gather (2007) choose this bound because for independent normal residuals the
distribution of the squared distances asymptotically tends to a χ2-distribution.

Multivariate Online Filtering With Adaptive Choice of the WindowWidth

In the following let nmin and nmax specify the extreme values for the possible window
widths, let nt(j) denote the window width used to evaluate the fit at time t for compo-
nent j, and let nIt(j) denote the number of most recent residual signs which are considered
for testing the adequacy of the current signal estimate in the jth component, analogous
to the notation used in Section 3.2, with j ∈ {1, . . . , k}.
Here, we propose a multivariate online filter with adaptive choice of the window width
which replaces the univariate Repeated Median regression in the first step of the multi-
variate TRM-LS procedure, described in the previous section, by the adaptive univariate
RM regression proposed in Section 3.2.
For the first step of this multivariate adaptive online Repeated Median filter the following
has to be carried out:

1. (a) Use the adaptive univariate RM procedure to find the signal estimate µ̂t(j),
the slope β̂t(j) and the window width nt(j) for each component j = 1, . . . , k,
and use nt,0 = min{Nt−1 + 1, nmax} as the starting window width for all k
components.

(b) Set the overall window width for all components to

Nt = min
{
nt(j) : j = 1, . . . , k

}
.

(c) Re-estimate µ̂t(j) and β̂t(j) by univariate RM regression using the window
width Nt for all j = 1, . . . , k.

(d) Combine these values to the k-dimensional level and slope estimates

µ̂t =
(
µ̂t(1), . . . , µ̂t(k)

)′
and β̂t =

(
β̂t(1), . . . , β̂t(k)

)′
.

The remaining steps of the procedure correspond to steps 2 to 5 of the TRM-LS procedure
described above, with the difference that the fixed window width n is replaced by the time-
dependent overall window width Nt.
Similar to Section 3.2 the first online estimation takes place at time t = nmin in a window
of width Nt = nmin. For all other times t, the overall window width Nt is set to the
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minimum of the individual window widths nt(j), j = 1, . . . , k, derived from the adaptive
RM procedure in step 1.(a), to ensure that the local linearity assumption (3.23) holds for
all components and thus, the remaining steps 2 to 5 can be applied.

3.3.2 Modifications and Treatment of Missing Values

For the proposed multivariate filter we also include the modifications proposed for the
univariate case in Section 3.2.7. That means that for each component the signal value is
restricted to the range of the most recent observations from this component, according
to the restrict-to-range rule (3.21). Hence, outliers which date back some time have no
influence on the range of the current signal estimate.

Furthermore, in Section 3.2 it was already stated that physiological time series from
intensive care often contain missing values which might occur at single times; successively;
in one, several or all components. Missing observations in the jth component lead to
the missing of the jth component in the residual vector which in return impedes the
estimation of the local covariance matrix Σ(t) ∈ Rk×k in step 3 of the procedure. Using
only those residual vectors without missing components would mean an unnecessary loss
of information for those components where the observations are present. Therefore, we
suggest to replace missing observations – provided that ’enough’ recent observations are
present.

Generalising the proceeding described in Section 3.2 to the multivariate case, we request
for each component j ∈ {1, . . . , k} at least q non-missing observations at the recent
nq points in time for the performance of an RM regression fit. Let kt ≤ k denote the
number of components which fulfil this requirement. For those kt components each missing
observation in the window is replaced by the fitted value of the RM regression line. For
the k − kt components with more than q missing values at the most recent nq times,
the signal is not estimated and the associated entries in the signal estimation vector are
missing.

Obviously the residual components corresponding to the replaced observations equal the
value zero. On the one hand this makes the estimation of Σt possible because the missing
values are removed, on the other hand this causes a bias towards zero in the estimation.
However, an implosion of Σ̂t is prevented by the lower threshold (3.25) and the robustness
against outliers is not influenced. This is indeed necessary since this matrix is used to
detect outliers w.r.t. the local covariance structure.

According to the univariate case we propose to estimate the signal only for those com-
ponents where at least q = 5 observations are present at the most recent nq = nIt time
points, which are used to evaluate the goodness of fit.
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Figure 3.31: Multivariate physiological time series (semi-transparent colours) with componentwise on-
line signal extraction by the univariate adaptive Repeated Median filter applying Ifixedt

with nIt
= 30, nmin = 60 and nmax = 300 seconds.

3.3.3 Comparisons

Here, the performance of the multivariate adaptive online Repeated Median filter is com-
pared with its univariate counterpart as well as with the multivariate filter based on a
fixed window width at an exemplary time series of hemodynamic variables (cf. Figure
3.30).

Figure 3.31 displays the extracted signals when separately applying a univariate adaptive
RM filter to each of the components of the multivariate time series shown in Figure 3.30
with a minimal window width of nmin = 60 and a maximum window width of nmax = 300.
Thus, any information older than five minutes will be disregarded, and the current state
of the patient is judged only by recent observations.

Figure 3.32 shows the time-dependent window width nt used by the univariate RM filter
for all variables. It shows that during this analysis for no component the maximum window
width of five minutes is reached. Actually, the largest window width used (for the systolic
arterial blood pressure) only amounts to nt = 167 seconds.

The extracted online signal in Figure 3.31 runs relatively smooth, it is not influenced by
outliers, e.g. around 13:35 or 13:45, and it reacts quickly to sudden changes, for example
around times 13:25 or 13:30 for the arterial systolic blood pressure (ART_S). However, the
parallel application of the univariate filter disregards possible dependences which might
contain useful information for the signal extraction. For example, the sudden changes at
the times given above, appear in all three systolic blood pressures at the same time and
hence, they should evoke the same reaction for the window width chosen by the filter for all
three components at the same time. This is not necessarily the case when regarding each
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Figure 3.32: Window widths nt used by the univariate adaptive online Repeated Median filter for the
single variables. The corresponding signals are shown in Figure 3.31.

component separately. Consider e.g. the window widths chosen for the three arterial blood
pressures in the right hand side panels of Figure 3.32. One would expect the window width
to increase, stay constant or decrease about at the same times at least for such highly
correlated components, but the plots show obvious differences.

Figure 3.33 shows the signals extracted by a multivariate filter based on a fixed window
width of 1.5 minutes, including the local correlation structure in the analysis. Comparing
the window width of n = 90 seconds to the time-dependent window widths nt shown in
Figure 3.32, it is no surprise that the extracted signal of this multivariate filter is generally
smoother, because most of the time n = 90 is larger than the window widths used for the
univariate component-wise RM filters. However, the delay in tracing sudden changes is
larger for this multivariate filter, and possibly important short term trends are not traced
properly, see e.g. the signal for the arterial systolic blood pressure around 13:10.

Applying the multivariate adaptive online RM filter proposed in this section, and using
the same settings as for the univariate filter, yields an extracted signal which is shown
in Figure 3.34. The effect of the restrict-to-range rule is here more obvious than for the
univariate filter: some of the estimated signals look ’cut-off’, e.g. the peaks of the signal
for the arterial blood pressure around 13:10.
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Figure 3.33: Multivariate physiological time series (semi-transparent colours) with signals extracted by
the multivariate online Trimmed Repeated Median - Least Squares filter based on a fixed
window width of 90 seconds.

overall window
width Nt

60 61 62 63 64 65 66 67 68-71

relative
frequency in %

91.25 3.61 2.03 1.47 0.71 0.45 0.23 0.14 0.03 in each case

Table 3.8: Relative frequencies in per cent for the overall window widths Nt determined by the multi-
variate adaptive online Repeated Median filter with a window width range from nmin = 60

to nmax = 300 seconds.

Generally, the signal extracted by the multivariate adaptive filter reacts to sudden changes
in the series as fast as the signal resulting from the univariate filter version, but unfortu-
nately the former shows more variability. This is due to the fact that this filter generally
chooses a quite small window width, because the overall window width for the multiva-
riate Least Squares step is chosen as the minimum of the window widths determined for
each component separately.

Table 3.8 lists the relative frequencies (in per cent) for the overall window width Nt

determined by the multivariate adaptive online Repeated Median filter in this application.
For 91.25% of the analysed time points, the overall window width matches the minimal
window width nmin = 60. Furthermore, the window width never exceeds a value of 71.
Using such small window widths leads to a smaller efficiency of the adaptive multivariate
RM filter compared to the other filters.

In order to increase the efficiency of this filter, it is sensible to use prior information on the
correlation structure of the data and to apply the multivariate filter to blocks of highly
correlated variables. Here, it is well known that heart rate and pulse are highly correlated
as well as systolic, mean and diastolic blood pressures (Gather, Imhoff and Fried, 2002).
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Figure 3.34: Multivariate physiological time series (semi-transparent colours) with signals extracted by
the multivariate adaptive online Repeated Median filter with the window width (possibly)
ranging from nmin = 60 to nmax = 300 seconds.

Therefore, we apply the multivariate adaptive filter including the restrict-to-range rule to
these two ’blocks’ of variables and use the univariate adaptive filter for the oxygen satu-
ration. Figure 3.35 shows the signals resulting from this application; Figure 3.36 shows
the corresponding window widths for the blood pressures as well as heart rate and pulse.
The window widths for the oxygen saturation are displayed in Figure 3.32 (bottom left).
The application of the multivariate filter to blocks of variables results in slightly smoo-
ther signal estimations than the simultaneous application of the multivariate filter to all
components, see e.g. the time period 13:40-13:45 for the systolic arterial blood pressure in
Figure 3.35 and Figure 3.34. This is due to the fact that larger window widths are chosen
here (cf. Figure 3.36 and Table 3.8):
In about 43% of the time the overall window width Nt chosen for heart rate and pulse is
larger than that chosen by the multivariate filter applied to all components simultaneously;
for the blood pressures this percentage amounts to approximately 54% . However, Nt still
matches nmin = 60 for 53.64% of the analysed time points for heart rate and pulse, and
Nt = nmin for 43.37% of the time for the blood pressures.

3.3.4 Summary

The multivariate adaptive online Repeated Median filter proposed in this section combines
the advantages of the univariate adaptive online Repeated Median filter, introduced in
Section 3.2, and the multivariate filtering procedure by Lanius and Gather (2007).
It separates relevant signals online from noise and, possibly multivariate, outliers; it is able
to deal with missing values in one, several or possibly all components of the multivariate
time series; it takes the correlation structure between the components into account; and
it is able to choose the window width depending on the underlying data structure.
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Figure 3.35: Physiological time series (semi-transparent colours) with signals from the multivariate ad-
aptive online RM filter applied to the three arterial blood pressures and separately to heart
rate and pulse. The signal for the oxygen saturation is extracted by the univariate adaptive
RM filter. The minimum window width is set to 60, the maximum to 600 seconds.

time
13:00 13:10 13:20 13:30 13:40 13:50 14:00

60
65
70
75
80
85
90
95

 w
in

do
w

 w
id

th

time
13:00 13:10 13:20 13:30 13:40 13:50 14:00

60
65
70
75
80
85
90
95

 w
in

do
w

 w
id

th

Figure 3.36: Window widths nt used by the multivariate adaptive online Repeated Median filter applied
to the two-dimensional series of heart rate and pulse (left) and to the three arterial blood
pressures (right). The corresponding signals are shown in Figure 3.35.

Application to a physiological time series from intensive care shows that this filter works
quite well when applied to blocks of highly correlated variables. The extracted signals
trace relevant changes in the time series with a very short time delay. However, this
multivariate adaptive filter still lacks efficiency compared to the univariate adaptive RM
filter. Several attempts to overcome this problem have not succeeded, for example choosing
the overall window width equal to the mean or the median instead of the minimum of the
component-wise window widths. Therefore, increasing the efficiency of this filter is still
a challenge for future research. Furthermore, this filter is here only compared by means
of an exemplary application. To find out more about its properties, extensive simulations
and comparisons still have to be performed.
Analogous to the previous sections, an implementation of this multivariate adaptive
online Repeated Median filter is available as madore.filter function in the robfilter
R-package (Fried and Schettlinger, 2008) on the CRAN server:

http://cran.r-project.org/web/packages/robfilter/.

http://cran.r-project.org/web/packages/robfilter/


83

4 Online Variability Extraction

The variability of a time series is an important feature which helps understanding, inter-
preting, and forecasting complex dynamic systems in various fields of application, espe-
cially when combined with information on other significant characteristics like e.g. the
location of the signal level or the direction of a trend.

In intensive care the heart rate variability is for example used as a predictor for arrhyth-
mias, for prediction of severity of illness and the mortality risk, or for choosing the right
therapy for a patient. Changes in the variability of physiological variables contain useful
information about the patient’s state of health and thus, variability analysis is particularly
useful in critical care units where a large number of variables is measured continuously
and altered conditions have to be detected online since the patients are severely ill. An
overview over several techniques to characterise the variability over time, especially for
complex biological systems, can be found in Seely and Macklem (2004).

Since the time series considered here are measured at high frequencies, the methods app-
lied for variability analysis should have a low computation time to deliver results with a
minimal time delay. As could be seen in the previous chapter, such high frequency mea-
surements typically lead to ’unclean’ and noisy time series containing irrelevant outliers.
Therefore, we focus on methods for variability extraction which possess certain robustness
properties.

Physiological time series usually cannot be assumed to be generated by a mechanism
following a ’clean’ model: these series are generally not stationary because they can contain
trends, sudden trend changes and level shifts and thus, classical time series techniques are
not appropriate.

The scale estimators considered here, are able to deal with a certain amount of outliers,
with trends or even shifts in the level, they are reasonably efficient, and they are compu-
table online, i.e. they are able to present results in real-time. Since we assume the global
structure of the observed time series to be unknown and quite complex, we focus on mo-
ving window techniques such that our assumptions are restricted to the local structure
around a certain point in time.

In this chapter three different approaches for extracting the time-varying variability of
a time series are compared: The first approach concerns scale estimators based on the
residuals of a local linear regression; hence, we call it the regression-based approach. If
the time series level is also of interest, the regression-based approach offers a reasonable
and efficient possibility of estimating the variability around the underlying signal level
(Gather and Fried, 2003). However, if the signal level is not estimated correctly this also
affects the scale estimation.
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The second approach includes methods which assume the time series to be locally linear
but do not require the preceding regression step for the scale estimation. We call this the
regression-free approach. Rousseeuw and Hubert (1996) propose such estimators which are
based on the vertical heights of triangles formed by three observations from the sample.
Here, two different regression-free scale estimators are investigated and a (yet unknown)
finite sample breakdown is derived.
Third, an approach is considered where no assumptions on the underlying location, i.e.
the time series level, are necessary and which is referred to as the model-free approach.
This kind of scale estimator is particularly useful when the underlying level cannot be
approximated by a locally linear trend. We derive the maximum finite sample breakdown
point for the considered model-free scale estimators and discuss further properties.
In particular, the computational demands, the efficiency, and certain robustness properties
like the breakdown point or the influence function of the estimators are discussed for each
type of estimator. Definitions of these measures can be found in Appendix A.
For a systematic comparison of these three different types of robust online scale estimators
with respect to their bias and mean squared error we conduct a simulation study where
we compare (i) their finite sample efficiency, (ii) their behaviour in the presence of isolated
and patchy outliers, (iii) their behaviour in the presence of level and scale shifts, (iv) their
behaviour in the presence of a non-linear trend or volatility, and (v) their reaction towards
temporal correlation. Furthermore, we compare their performance in an application to
intensive care data and discuss their individual advantages.
Analogous to Section 3.1, we adopt the simple signal plus noise model (3.1) for a univariate
time series (Yt)t∈Z: Yt = µt + εt ,

where µt, the underlying signal at time t, is assumed to be relatively smooth apart from
some sudden trend changes or level shifts, and

εt = εt + νt ,

denotes an error term, where (εt)t∈Z is a process coming from a symmetric distribution
with median zero and (time-dependent) variance V ar(εt) = σ2

t , and (νt)t∈Z represents an
outlier-generating process.
Our aim is to find adequate estimators for the variability of the errors εt without time
delay, reflecting the variability of the process at time t without being influenced by outliers.
Suppose that the scale σt of the error term can be assumed to be approximately constant
within a time window of width n, i.e.

σt−n+i ≈ σt , i = 1, . . . , n. (4.1)

An online scale estimation can then be achieved by applying a scale functional to the
observations within the most recent time window (yt−n+1, . . . , yt)

′.
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Gather and Fried (2003) compare the finite-sample performance of several high-breakdown
scale functionals, including the MAD, see equation (3.4) in Section 3.1.3, the length of the
shortest half (Grübel, 1988) and the Sn and Qn scale estimators (Rousseeuw and Croux,
1993). They find these estimators to be strongly biased if the underlying signal µt is locally
not constant. This is due to the fact that for a non-constant signal, the application of
a scale functional to the raw data does not result in estimation of the variability of the
error term alone, but includes the estimation of the variability of the signal.

It is possible to remove the trend from the data prior to the scale estimation, e.g. by using
robust regression estimators, resulting in regression-based scale estimates as described in
the next section. This requires the assumption of a locally linear signal, cf. equation (3.2)
in Section 3.1.1:

µt+i−n ≈ µt + (i− n) βt , i = 1, . . . , n.

Another way of dealing with such trends is the application of scale functionals to trend-
adjusted data, e.g. to a sequence of first differences. However, such techniques often show
only small finite sample efficiencies as e.g. the median of the absolute first differences
(Gather and Fried, 2003). Here, we consider online scale estimators which are unbiased at
trended data, which are able to achieve reasonable efficiencies at standard normal data,
and offer a certain robustness against outliers.

For the ease of notation, we will drop the time index t in the following, such that the time
window containing the n observations considered for the estimation of the most recent
scale σt is denoted by (y1, . . . , yn)′.

4.1 Regression-Based Scale Estimators

4.1.1 Definition

Gather and Fried (2003) propose to estimate the variability of the error term ε by applying
a robust scale functional to the residuals {ri; i = 1, . . . , n} resulting from a robust linear
regression fit to the current window. In particular, they propose to use residuals from
Repeated Median regression (Siegel, 1982), cf. equations (2.2) and (2.3) in Chapter 2.

Let ri for i = 1, . . . , n denote the residuals from Repeated Median regression, defined in
equation (2.7) and illustrated in Figure 4.1. The RM-based Qn scale estimator is then
defined as an order statistic close to the quartile of the absolute differences of the RM
residuals

Qn = cQn(n) · { |ri − rj| : 1 ≤ i < j ≤ n}(bn/2c+1
2 ) (4.2)

where cQn(n) denotes a factor for achieving unbiasedness at samples of size n coming from
a model with specified error distribution.
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Figure 4.1: Repeated Median regression line in a window containing n = 10 observations. The variability
of the error term can be estimated by applying the Qn estimator to the Repeated Median
residuals ri, i = 1, . . . , n.

When focussing on the estimation of the variance E(ε2), or here: the standard devia-
tion, the measure of scale requires the specification of an appropriate correction factor
c depending on the underlying error distribution. However, here we aim at estimating
the variability of a time series which may also be represented by a multiple of the stan-
dard deviation of the true, but unknown, local error distribution. For the pure descriptive
purpose of monitoring the time-dependent scale, distributional assumptions on the noi-
se component (e.g. the existence of second order moments) are not required, and the
scale estimates may be computed omitting the correction factors. The sequence of scale
estimates will, up to a scalar factor, be the same.

4.1.2 Properties

For a scale estimator the breakdown point is determined by the minimal amount of con-
tamination such that the estimated scale becomes either infinite (explosion) or zero (im-
plosion), see Appendix A. For data in general position the finite sample breakdown point
of Qn corresponds to bn/2c/n, i.e. the estimate is bounded and stays away from zero even
if almost 50% of the data are contaminated. Furthermore, it has a smooth and bounded
influence function (Rousseeuw and Croux, 1993).

Gather and Fried (2003) compare several robust scale estimators for variability extraction
from time series in a simulation study and find the Qn scale estimator to perform best. For
independent Gaussian data,Qn is more stable than other high-breakdown scale estimators:
it offers an asymptotic efficiency of 82% (relative to the empirical standard deviation)
which is much larger than e.g. the asymptotic efficiency of the MAD, being only 36%.

In an online application to moving time windows of width n, the MAD can be updated
in O(log n) time (Bernholt, Fried, Gather and Wegener, 2006), while the application
of the fastest offline algorithm for the Qn estimator needs O(n log n) time (Croux and
Rousseeuw, 1992).



4.2 Regression-Free Scale Estimators 87

Therefore, Nunkesser, Fried, Schettlinger and Gather (2008) propose an update algorithm
forQn which requiresO(n log n) time in a worst case scenario but runs much faster in prac-
tical applications. They compare the Qn estimator to the MAD, a 10%-trimmed standard
deviation and a τ -estimator of scale (Maronna and Zamar, 2002) in online applications
to simulated time series with stationary errors and a real data example.

As compared to widely-used standard methods like the trimmed standard deviation, Qn

leads to similarly good results in case of Gaussian data, but it provides a much higher
resistance against large numbers of outliers.

Compared to other highly robust scale estimators, Qn yields less variable estimations
than the MAD and performs similar to the τ -estimator in case of GARCH(1,1) errors
and for models with a piecewise constant variability. They find that, irrespective of the
existence of autocorrelations, the proposed Qn update algorithm can directly be used in
a nonparametric manner to estimate the marginal local volatility of a time series.

Moreover, due to its definition via pairwise differences, Qn does not require an estimate of
the local mean and hence, it is less biased than its competitors, including the τ -estimator,
in the presence of outlier patches or level shifts. Fried (2007a) and Nunkesser, Schettlinger
and Fried (2008) show that standardising a test statistic based on the medians of two time
windows by Qn leads to robust tests for the detection of abrupt level shifts which are more
powerful than tests using a standardisation by other highly robust and less efficient scale
estimators (like the MAD).

However, the online scale extraction investigated by Fried (2007a), Nunkesser, Fried,
Schettlinger and Gather (2008) and Nunkesser, Schettlinger and Fried (2008) is restricted
to mean stationary time series and may become strongly biased for time series with a
trend in the underlying signal.

Applying RM-based Qn (4.2) for online scale estimation avoids the bias for trended data.
Using the update algorithm for Qn by Nunkesser, Fried, Schettlinger and Gather (2008) in
combination with the linear time RM update algorithm by Bernholt and Fried (2003) an
estimation can also be achieved in O(n log n) time which makes the RM-based Qn scale
estimator quite attractive for online application.

4.2 Regression-Free Scale Estimators

4.2.1 Definition

Rousseeuw and Hubert (1996) propose several scale estimators based on triangular heights.
Here, we adapt their approach to data observed on an equidistant design space, namely
discrete time. Within the recent time window, we consider the vertical heights of triangles
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Figure 4.2: Illustration of a height h(i, j, k) of a triangle as it is used for regression-free scale estimation
(left panel). The R and Qαall estimators both consider the heights of all possible

(
n
3

)
triangles

illustrated in the right panel.

with vertices given by three observations yi, yj and yk with i, j, k ∈ {1, . . . , n}:

h(i, j, k) =

∣∣∣∣yj − yi − (yk − yi)(j − i)
(k − i)

∣∣∣∣ . (4.3)

This vertical height does not match the ’height’ defined as the perpendicular length of
a triangle; the term ’height’ as defined in (4.3) equals the non-zero residual of an L1

regression fit to the three considered data points and is illustrated in the left panel of
Figure 4.2.

Corresponding to the idea of the Repeated Median slope estimator (2.2), based on slopes
between pairs of observations, Rousseeuw and Hubert (1996) propose a scale estimator
based on a repeated median of the heights (4.3) formed by triples of observations:

R = cR(n) ·med
i

{
med
j 6=i

{
med
k 6=i,j

h(i, j, k)
}}

. (4.4)

As alternative to this approach they also introduce an α-quantile of the
(
n
3

)
heights

Qα
all = cαQall(n) · {h(i, j, k); 1 ≤ i < j < k ≤ n}(bα(n3)c)

. (4.5)

The terms, cR(n) and cαQall(n) denote factors which result in unbiasedness at a specified
error distribution for samples of size n.

4.2.2 Properties

Let fsbp+(S, Fn) denote the finite sample explosion breakdown point of a scale estimator
S at an empirical distribution Fn of a sample yn of size n according to definition (A.3)
in Appendix A. Analogously, define fsbp−(S, Fn) the finite sample implosion breakdown
point after (A.4).
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According to (A.2) the finite sample breakdown point is then given by

fsbp(S, Fn) = min
{
fsbp+(S, Fn), fsbp−(S, Fn)

}
.

Davies and Gather (2007) show that the upper bound for the finite sample breakdown
point of affine equivariant scale functionals at samples in general position corresponds to
bn/2c/n, see Appendix A.

Breakdown Point of R

Rousseeuw and Hubert (1996) prove for the R estimator that for any sample in general
position with empirical distribution function Fn it is

fsbp+(R,Fn) =

⌊
n−1

2

⌋
n

and fsbp−(R,Fn) =

⌊
n
2

⌋
n

.

Thus, the breakdown point of R is given by

fsbp(R,Fn) = b(n− 1)/2c/n , (4.6)

which means that it almost attains the upper bound of bn/2c/n.
Furthermore, Rousseeuw and Hubert (1996) point out that the finite sample breakdown
point tends to a meaningful limit which they call asymptotic breakdown point. For the R
estimator this asymptotic breakdown point corresponds to abp(R) = 50%.

Breakdown Point of Qα
all

For the Qα
all estimator Rousseeuw and Hubert (1996) state that the asymptotic explosion

breakdown point corresponds to apb+(Qα
all) = 1 − 3

√
α while the asymptotic implosion

breakdown point is given by

apb−(Qα
all) =


1
2
− 1

2
cos(ϕα) +

√
3

2
sin(ϕα) if 0 < α < 1

2
1
2

if α = 1
2

1
2

+ 1
2

cos(ϕα) +
√

3
2

sin(ϕα) if 1
2
< α ≤ 1

where ϕα = 1
3
arc tan

(√
α(1−α)

1/2−α

)
. Thus, Qα

all achieves its maximum asymptotic breakdown

point of abpmax(Qα
all) = 34.7% when setting α = αasympmax := 0.278.

In Appendix D we derive the finite sample explosion and implosion breakdown points
of Qα

all at samples of size n with empirical distribution function Fn. A graphical repre-
sentation of fsbp+(Qα

all, Fn) and fsbp−(Qα
all, Fn) for different sample sizes n is provided

in Figure 4.3 which shows that the implosion breakdown point increases with increasing
value of α while the explosion breakdown point decreases. For comparison, Figure 4.3 also
shows the asymptotic explosion and implosion breakdown points.
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Figure 4.3: Finite sample explosion and implosion breakdown point of the regression-free Qαall estimator
(fsbp+(Qαall) and fsbp−(Qαall)) with resulting finite sample breakdown point fsbp(Qαall) for
all possible values of α ∈ [1/

(
n
3

)
, 1] and different sample sizes. The grey area at the x-axis

marks the α-interval for which fsbp(Qαall) reaches its maximum value. The light grey lines
in the background show the curves for the asymptotic explosion and implosion breakdown
points abp+(Qαall) and abp−(Qαall).
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Figure 4.4: Maximum finite sample breakdown point fsbpmax(Qαall) for sample sizes n ∈ {10, . . . , 200}
in comparison with the maximum asymptotic breakdown point abpmax(Qαall) = 0.347 (left),
and corresponding interval limits for the values of α leading to a maximum fsbp, in compa-
rison with the asymptotic value αasymax (right). The upper interval limits are plotted in full
colours (black line), the lower interval limits are plotted in lighter colours (grey line).

Figure 4.3 shows that for each sample size n the maximum finite sample breakdown point
is reached for a range of values for α. This interval is marked by a grey block on the x-axis
in Figure 4.3. It can be seen that the length of this interval depends strongly on the sample
size n. However, for increasing sample size, both interval limits tend to the asymptotic
value of αasymax = 0.278 and the maximum fsbp tends to the asymptotic breakdown point
abpmax(Qα

all) = 0.347.

This shows even more obvious in Figure 4.4, displaying the maximum finite sample break-
down point for sample sizes n ∈ {10, . . . , 200} together with the corresponding interval
limits for the values of α which lead to the maximum fsbp. The sawtooth pattern of the
curves shown in both panels of Figure 4.4 can be explained by the fact that the estimator
consists of a quantile which, for finite samples, corresponds to an order statistic with an
integer order (here: bα

(
n
3

)
c).

Additionally, Figure 4.4 shows that there is some sort of regular pattern in the curves of
the breakdown point as well as the interval limits, depending on whether n, n+ 1 or n+ 2

is divisible by three. It is striking that – even when only considering every third value –
both, the fsbp as well as the corresponding interval limits, do not tend monotonically to
their asymptotic values but still in some sort of sawtooth pattern.

For example, for sample sizes n ∈ {3k + 1 : k ∈ N}, where n − 1 is divisible by three,
the maximum fsbp increases monotonically towards the asymptotic value for increasing
n up to n = 55, where at the same time not only the corresponding interval limits for α
monotonically tend towards αasymax, but also the length of the interval decreases. For n = 58,
the maximum fsbp suddenly jumps to a value quite close to the maximum asymptotic
breakdown point abpmax, but for sample sizes increasing from n = 58 to n = 127 the
maximum fsbp decreases and thus increasingly departs from abpmax.
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We also investigated the behaviour of the maximum fsbp curves at those sample si-
zes which are k ∈ {6, . . . , 150} steps apart, but did not find any monotonic beha-
viour. This finding is supported by the fact that the top peaks of the three coloured
sawtooth curves in the left panel of Figure 4.4 appear for sample sizes from the set
{12, 35, 58, 84, 107, 130, 156, 182}, and there is no obvious regularity in these values.

With the above results for fsbp(Qα
all, Fn) it is possible to give a range of α-values for

which Qα
all achieves its maximum finite sample breakdown point. However, the choice of

α poses a trade-off problem between high efficiency and high robustness (in terms of high
breakdown point), respectively. Therefore, for applications we propose to choose a value
of α = 0.5 as a compromise.

The estimator Q0.5
all still reaches an asymptotic breakdown point of abp(Q0.5

all ) = 1− 3
√

0.5 ≈
0.2063 and achieves reasonable efficiency (cf. Section 4.4). For finite samples, the break-
down point might even be higher than the asymptotic value which will be shown below.
This can also be seen, e.g. in the panel showing the fsbp for n = 12 in Figure 4.3, when
comparing the finite sample breakdown point with the asymptotic value at α = 0.5.

Although generally there is no simple expression for the implosion breakdown point
fsbp−(Qα

all, Fn), it is possible to derive the following formula for quantiles close to the
median (cf. Appendix D):

fsbp−(Qα
all, Fn) =

b(n− 2)/2c
n

for α ∈

[
1

2
,

1

2
+

1(
n
3

)) . (4.7)

For these values of α, the explosion breakdown point fsbp+(Qα
all, Fn) corresponds to

fsbp+(Qα
all, Fn) =

1

n
du+ v + (n− 1)e (4.8)

with u :=
3

√√√√−3

(⌊
α

(
n

3

)⌋
− 1

)
+

√
9

(⌊
α

(
n

3

)⌋
− 1

)2

− 1/27

and v :=
3

√√√√−3

(⌊
α

(
n

3

)⌋
− 1

)
−

√
9

(⌊
α

(
n

3

)⌋
− 1

)2

− 1/27 .

Unfortunately fsbp+(Qα
all, Fn) ≤ fsbp−(Qα

all, Fn) for all n ≥ 6, and thus the finite sample
breakdown point of Qα

all for n ≥ 6 does not correspond to the short and simple expression
(4.7) but to (4.8), i.e.

fsbp(Qα
all, Fn) = fsbp+(Qα

all, Fn) for
1

2
≤ α <

1

2
+

1(
n
3

) . (4.9)
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Figure 4.5: Finite sample breakdown point fsbp(Q0.5
all , Fn) of the Qαall estimator with α = 0.5 for sample

sizes n ∈ {10, . . . , 200} in comparison with its asymptotic breakdown point (red line).

Figure 4.5 displays the finite sample breakdown point of the Qα
all estimator with α = 0.5

for sample sizes ranging from ten to two hundred. It shows that for most sample sizes
fsbp(Q0.5

all , Fn) is larger than the asymptotic value of about 20.6%, reaching values of up
to 25% for n = 10 and ranging from 20.3% to 21.8% for sample sizes n ∈ {50, . . . , 100}.

Further Properties

Both estimators, R and Qα
all are regression invariant, i.e. a transformation f(yi) = yi+ i ·v

of the observations yi with i = 1, . . . , n and v ∈ R does not change the outcomes of
the scale estimation. However, a straightforward implementation of both regression-free
estimators requires O(n3) computation time. For online application, update algorithms
should be used to reduce the computational complexity. Other properties of R and Qα

all,
particularly concerning their robustness, are to the best of our knowledge unknown so far.

The estimators (4.4) and (4.5) defined in this section are regression-free in the sense that
they can estimate the variability of the error term around a locally linear signal without
previously estimating the trend of data via a regression fit. However, they do require that
the local linearity assumption (3.2) is valid. If this assumption is violated these methods
also estimate the variability of the signal to some extent.
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Figure 4.6: Illustration of the n − 2 triangle heights hadji , i = 1, . . . , n − 2, used for model-free scale
estimation by the Qαadj , TM

α
adj and TMSαadj estimators.

4.3 Model-Free Scale Estimators

Analogous to the methods described in the previous section, the scale estimators discussed
in this section are regression-free, i.e. they do not depend on a local regression fit for the
estimation of the variability of the error term.

Furthermore, they do not require any modeling of the underlying signal, and neither of the
variability process. In this sense, the approach described here is not only regression-free
but also model-free.

4.3.1 Definition

In this section we introduce an approach which, similarly to the R and Qα
all estimators

(4.4) and (4.5), relies on triangle heights but here, the scale estimators are based on the
n − 2 vertical heights of triangles formed by three consecutive observations yi, yi+1 and
yi+2 with i ∈ {1, . . . , n − 2}, illustrated in Figure 4.6. For these heights formula (4.3)
simplifies to

hadji =

∣∣∣∣yi+1 −
yi + yi+2

2

∣∣∣∣ , i = 1, . . . , n− 2. (4.10)

Rousseeuw and Hubert (1996) propose a scale estimator based on an α-quantile of these
adjacent heights:

Qα
adj = cαQadj(n) · {hadj1 , . . . , hadjn−2}(bα(n−2)c). (4.11)

This estimator corresponds to the bα(n− 2)c-th value in the sequence of ordered heights
hadj(i) , i = 1, . . . , n, with cαQadj(n) a constant to achieve unbiasedness at a specified error
distribution, depending on the window width n. Similar to the quantile of all triangle
heights Qα

all (4.5), the value of α controls the trade off between robustness and efficiency
and will be addressed later on.
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Gelper, Schettlinger, Croux and Gather (2009) further propose an α-trimmed mean of
adjacent heights

TMα
adj = cαTMadj

(n) · 1

bα(n− 2)c

bα(n−2)c∑
i=1

hadj(i) (4.12)

and the square root of the α trimmed mean of squared adjacent heights

TMSαadj = cαTMSadj
(n) ·

√√√√ 1

bα(n− 2)c

bα(n−2)c∑
i=1

(hadj(i) )2. (4.13)

Again, the values cαTMadj
(n), and cαTMSadj

(n) are factors to achieve unbiasedness at a spe-
cified error distribution which also depend on the window width n and the value of α.
The trimming proportion equals (1−α) where α can vary between zero and one. As for the
Qα
adj estimator, it controls the trade off between efficiency and robustness. Note that for

α = 1, the estimator defined in (4.13) is not robust and coincides with the residual variance
estimator in nonlinear regression proposed by Gasser, Sroka and Jennen-Steinmetz (1986).

Consistency Factors

For a normally distributed noise component in the local linear model (3.2), Gelper, Schett-
linger, Croux and Gather (2008) derive the consistency factors for the three model-free
scale estimators defined in (4.11), (4.12) and (4.13). In particular, they show that the
asymptotic consistency factor for the Qα

adj estimator is given by

cαQadj = (Qα
N)−1 with Qα

N :=

√
3

2
Φ−1

(
α + 1

2

)
, (4.14)

where Φ(z) is the standard normal cumulative distribution function at a value z ∈ R, and
the index N refers to the assumption of normality.
Under the same assumptions, with Qα

N as defined in (4.14), and ϕ(z) the standard normal
density associated with Φ(z), the asymptotic consistency factors of TMα

adj and TMSαadj

can be written as

cαTMadj
=

α
√

6
[
ϕ(0)− ϕ(

√
2/3Qα

N)
] , (4.15)

cαTMSadj
=

√
α/3√

α/2−
√

2/3Qα
N ϕ(

√
2/3Qα

N)
. (4.16)

For example, for α = 0.5 it is cQαadj = 1.21, cαTMadj
= 2.51, and cαTMSadj

= 2.16.

The consistency factors (4.14), (4.15) and (4.16) are evaluated at the population level.
However, extensive simulations showed that these values provide good approximations for
finite samples of size n = 20 already (Gelper, Schettlinger, Croux and Gather, 2008).
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Since the windows considered for online scale estimation are of limited size, the finite
sample behaviour is indeed important here. To achieve unbiasedness at finite samples for
a Gaussian distribution e.g. of the Qα

adj estimator, the factor cαQadj can be replaced by its
finite sample counterpart cαQadj(n) which can e.g. be obtained by means of Monte-Carlo
simulations.
For the finite sample consistency factor c0.5

Qadj
(n) of the Qα

adj estimator applying α = 0.5

Gelper, Schettlinger, Croux and Gather (2008) derive the simple approximation formula

c0.5
Qadj

(n) ≈ 1.21
n

n+ 0.44
. (4.17)

4.3.2 Properties

Breakdown Points

Let Sαadj denote any of the model-free scale estimators (4.11), (4.12) or (4.13) based on
adjacent triangle heights. The maximum number of observations which may be replaced
by arbitrary values within a sample of size n with empirical distribution function Fn, such
that the Sαadj scale estimate remains positive, corresponds to

n∆(Fn) = bα(n− 2)c − 1 .

According to Davies and Gather (2005) an upper bound for the finite sample breakdown
point of the considered scale estimators is then given by

fsbp(Sαadj, Fn) ≤
⌊
n− bα(n− 2)c

2

⌋
/n ,

see definition(A.5) in Appendix A. Note that this upper bound is not reached for the
model-free scale estimators Qα

adj, TMα
adj and TMSαadj as will be shown below.

For the Qα
adj estimator Rousseeuw and Hubert (1996) derive the finite sample breakdown

point in a regression setup with random design and come to the conclusion that the
maximum asymptotic value for this estimator corresponds to abp(Qα

adj) = 20% when
taking α = 0.4.
However, here we consider a fixed design with equidistant time points which implies that
possibly higher values can be achieved for the finite sample breakdown point. Thus, in the
following we derive the breakdown point of Qα

adj for an equidistant design and also derive
expressions for the maximum finite sample breakdown point, depending on the sample
size n. The results are also valid for the TMα

adj and TMSαadj estimators, since all of them
only consider the bα(n−2)c smallest ordered adjacent triangle heights and thus, the finite
sample breakdown point is the same for all three considered model-free scale estimators.
Let yn denote a sample of size n and ykn a sample where k out of the n values of the
original sample yn are replaced. Now, suppose that yn is in general position and define

B := bα(n− 2)c .
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If the replacement sample ykn is chosen with k = B − 1 such that B + 1 observations are
collinear, then this results in B−1 zero triangle heights and n−B−1 heights larger than
zero. Hence, the Bth largest value of the ordered heights will be positive which implies
for the finite sample implosion breakdown point for any of the model-free scale estimators
Sαadj that fsbp

−(Sαadj, Fn) ≥ B/n. On the other hand, replacing B observations such that
B + 2 observations are collinear implies that at least B heights will be zero and therefore
fsbp−(Sαadj, Fn) ≤ B/n. We thus obtain for the finite sample implosion breakdown point
as defined in (A.4)

fsbp−(Sαadj, Fn) = bα(n− 2)c/n .

For the explosion breakdown point (A.3), we follow the proof of Theorem 3 in Rousseeuw
and Hubert (1996) and obtain

fsbp+(Sαadj, Fn) =

⌈
n− 1− bα(n− 2)c

3

⌉
/n .

Hence, the finite sample breakdown point (A.2) of any model free scale estimator Sαadj
defined by (4.11), (4.12) or (4.13) corresponds to

fsbp(Sαadj, Fn) =
1

n
min

{⌈
n− 1− bα(n− 2)c

3

⌉
, bα(n− 2)c

}
. (4.18)

Figure 4.7 shows that for increasing values of α ∈ [1/(n− 2), 1], the explosion breakdown
point is decreasing while the implosion breakdown point is increasing. However, the ma-
ximum value for fsbp(S, Fn) depends not only on the choice of α but also on whether n
is divisible by four or not, see Figure 4.7 and Table 4.1. The derivations of the maximum
finite sample breakdown point can be found in Appendix D.
Table 4.1 shows that, depending on n, more than one quantile might be chosen to achieve
an estimate with maximum finite sample breakdown point with the order of the empirical
quantile being bα(n− 2)c ∈

{⌊
n+1

4

⌋
, . . . , n+ 1− 3

⌊
n+1

4

⌋}
.

If collinear observations are rather expected than outliers, the best choice to prevent
implosion is to set α to the maximal value within the range given in Table 4.1, i.e.

α−max =
n+ 1− 3

⌊
n+1

4

⌋
(n− 2)

.

However, if the aim is to prevent explosion it is recommendable to take the smallest
empirical quantile possible, i.e. α should be set to

α+
max =

n+ 1

4(n− 2)
. (4.19)
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maximum value reached for corresponding
fsbpmax(Sαadj, Fn) αmax ∈ bα(n− 2)c ∈

n ∈ {4k − 1, k ∈ N}: n+1
4n

[
n+1

4(n−2)
, n+5

4(n−2)

) {
n+1

4

}
n ∈ {4k, k ∈ N}: 1

4

[
n

4(n−2)
, n+8

4(n−2)

) {
n
4
, n+4

4

}
n ∈ {4k + 1, k ∈ N}: n−1

4n

[
n−1

4(n−2)
, n+11

4(n−2)

) {
n−1

4
, n+3

4
, n+7

4

}
n ∈ {4k + 2, k ∈ N}: n−2

4n

[
n−2

4(n−2)
, n+14

4(n−2)

) {
n−2

4
, n+2

4
, n+6

4
, n+10

4

}
Table 4.1: Maximum values for the finite sample breakdown point fsbp(Sαadj , Fn) with corresponding

values of α and the rank bα(n − 2)c of the adjacent triangle heights with Sαadj representing
one of the scale estimators Qαadj , TM

α
adj or TMSαadj .
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Figure 4.7: Finite sample breakdown points, explosion and implosion breakdown points of the model-
free scale estimators Sαadj for all possible values of α ∈ [1/(n − 2), 1] and different sample
sizes. The light grey lines in the background show the curves for the asymptotic explosion
and implosion breakdown points abp+(Qαall) and abp−(Qαall).
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Figure 4.8: Finite sample breakdown point fsbp(S0.5
adj , Fn) of the model-free Sαadj estimators with α = 0.5

for sample sizes n ∈ {10, . . . , 200} in comparison with their asymptotic breakdown point (red
line).

The bottom panels in Figure 4.7 illustrate that all interval limits for the α attaining the
maximum fsbp tend to 0.25 as n goes to infinity. So, the maximal asymptotic breakdown
point for the considered scale estimates is abpmax(Sαadj) = 0.25 for α = 0.25. For other
values of α, the asymptotic breakdown point equals abp(Sαadj) = min{(1− α)/3, α}.

In particular, the finite sample breakdown point (A.1) for the model-free estimators ap-
plying α = 0.5 corresponds to

fsbp+(S0.5
adj, Fn) =

⌈
n− 1− b(n− 2)/2c

3

⌉
/n , (4.20)

and the asymptotic breakdown point is given by

abp(S0.5
adj) = 1/6 .

From Figure 4.7 it can be derived that the finite sample value might be larger than its
asymptotic counterpart for some sample sizes, e.g. when considering the panel showing the
results for n = 13. Figure 4.8 displays the finite sample breakdown point of the model-free
scale estimators Sαadj with α = 0.5 for sample sizes n ∈ 10, . . . , 200 in comparison with the
asymptotic value of one sixth. It clearly shows that for all sample sizes the finite sample
breakdown point is larger than or equal to 1/6, reaching values of up to 23% (for n = 13).
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Influence Functions

The influence function (IF) quantifies the difference in estimated scale due to adding small
amounts of outliers to the data (cf. definition (A.11) in Appendix A). Its derivation re-
quires an appropriate definition of the considered functional. Therefore, we first introduce
the functional forms of the considered model-free estimators before stating the results for
the influence functions achieved by Gelper, Schettlinger, Croux and Gather (2008).
For the derivation of the influence functions, we consider the data to fulfill the assumptions
of a local linear signal (3.2) and a locally constant scale within each time window (4.1)
although these assumptions do not have to be fulfilled for application of the model-free
estimators.
Because of the regression invariance of the considered estimators, we can assume without
loss of generality that the underlying signal stays constantly at zero, i.e. the time series
only consists of an error term and can locally (in a time window of length n) be represented
by

yi = εi for i = 1, . . . , n,

where for the error term we assume εi
iid∼ F and F denotes a probability distribution with

mean zero and variance σ2.
Considering observations sampled from a continuous distribution F , the corresponding
triangle heights will also have a continuous distribution with distribution function HF . In
that case, the functional form of the Qα

adj estimator (4.11) corresponds to

Qα
adj(F ) = cαQadj ·H

−1
F (α) (4.21)

with the consistency factor cαQadj defined according to (4.14).
The vertical heights hadji (4.10) are serially correlated, but under appropriate mixing
conditions the empirical quantile will still converge to the associated population quantile.
In particular, if the error terms in (3.1) are independent, then the vertical heights are
only autocorrelated up to order two, and the estimator (4.11) will converge to (4.21).
Analogously, the functional forms of the estimators TMα

adj and TMSαadj can be derived:
let TMα

p denote a trimmed moment functional which is for a random variable X ∼ G

defined as the α-trimmed pth central moment to the power of 1/p

TMα
p : F 7→ TMα

p (F ) = E(Xp|X ≤ H−1
F (α))1/p . (4.22)

The functional form of the TMα
adj and TMSαadj estimators (4.12) and (4.13) is then given

by
TMα

adj(F ) = cαTMadj
· TMα

1 (HF ) (4.23)

and
TMSαadj(F ) = cαTMSadj

· TMα
2 (HF ) . (4.24)
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The correction factors cαTMadj
and cαTMSadj

are defined according to (4.15) and (4.16).
For the Qα

adj functional (4.21) and a standard normal error distribution F = N(0, 1) the
influence function is given by

IF(x,Qα
adj, N(0, 1)) = cαQadj

−G(Qα
N , x)

2
√

2/3 ϕ
(√

2/3 Qα
N

) , (4.25)

where cαQadj and Q
α
N are defined according to (4.14) and

G(Qα
N , x) = −3

(
2Φ(
√

2/3Qα
N)− 1

)
+ Φ(

√
2(Qα

N − x))− Φ(
√

2(−Qα
N − x))

+ 2
(
Φ(
√

(4/5)((x/2) +Qα
N))− Φ(

√
(4/5)((x/2)−Qα

N))
)
. (4.26)

LetM denote one of the moment based functionals defined in equations (4.23) and (4.24),
then its influence function at the standard normal distribution F = N(0, 1) is given by

IF(x,M,N(0, 1)) =
cp

pα

[
− (Qα

N)pG(Qα
N , x)− 3

α

cp
+
√

2
(
Ip√

2,
√

2
+ Ip−

√
2,
√

2

)
+2

√
4

5

(
Ip√

1/5,
√

4/5
+ Ip√

1/5,−
√

4/5

)]
, (4.27)

with p = 1 and c = cαTMadj
(4.15) for TMα

adj while p = 2 and c = cαTMSadj
(4.16) for the

TMSαadj estimator, and the integral

Ipa,b =

∫ QαN

0

hpϕ(ax+ bh)dh ,

can be computed numerically. For the derivation of the expressions of the influence func-
tions (4.25) and (4.27) we refer to Gelper, Schettlinger, Croux and Gather (2008).
Figure 4.9 shows the influence functions of the the Qα

adj, TMα
adj and TMSαadj estimators for

α = 0.25 and α = 0.5 for a standard normal distribution F = N(0, 1). All these influence
curves exhibit three important properties: they are smooth, bounded and symmetric.
Smoothness implies that a small change in one observation results in a small change of the
estimated scale. Boundedness means that large outliers only have a limited impact on the
scale estimator. For outlier sizes exceeding a certain threshold, all influence functions run
(almost) parallel to the x-axis, i.e. the exact magnitude of the outlier is not of importance
for the amount by which the bias of the scale estimation increases. Furthermore, all these
influence functions are symmetric around zero, i.e. negative and positive outliers of the
same size have the same effect on the scale estimation.
The influence functions of the three mode-free scale estimators with the same breakdown
point, i.e. the same value of α, are remarkably similar. Furthermore, Figure 4.9 shows the
decreased robustness of the estimators for a larger value of α: compared to the influence
functions of the estimators based on α = 0.25, the influence functions for α = 0.5 converge
at a slightly larger value for x→ ±∞.
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Figure 4.9: Influence functions of the Qαadj , TM
α
adj and TMSαadj estimators for α = 0.25 (top) and

α = 0.5 (bottom) in case of an underlying standard normal distribution, i.e. F = N(0, 1).
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Figure 4.10: Influence functions of the non-robust TM1
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adj estimators for an underlying
standard normal distribution, i.e. F = N(0, 1).

Figure 4.10 shows the influence functions of the non-robust estimators TMα
adj and TMSαadj

with α = 1. They are also smooth and symmetric around zero, but they are unbounded.

As expected, the influence function of the TMS1
adj is quadratic, while the one of TM1

adj re-
sembles the absolute value function. For decreasing values of α, the difference between the
influence functions of the two trimmed mean approaches becomes much less pronounced
as can e.g. be seen in Figure 4.9.

Efficiency

The efficiency describes the precision of an estimator in relation to another estimator, see
definitions (A.12) and (A.13) in Appendix A.

Gelper, Schettlinger, Croux and Gather (2009) discuss the efficiency of the robust model-
free estimators Sαadj relative to the non-robust mean of squared heights TMS1

adj shown
in the left panel of Figure 4.11. Therefor they derive the asymptotic variances of these
estimators for independent standard normal data and derive the asymptotic efficiencies
(A.12) from that.
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Figure 4.11: Asymptotic (left) and finite sample efficiency for a standard normal sample of size n = 20

(right) for the three model-free estimators Sαadj for varying α ∈ (0, 1) in relation to the
non-robust mean of squared heights estimator TMS1

adj .

The TMSαadj estimator (4.13) with α = 1 is equivalent to a scale estimator proposed by
Gasser, Sroka and Jennen-Steinmetz (1986) who prove that for normally distributed data
(TMS1

adj)
2 is asymptotically unbiased and strongly consistent for σ2. These properties are

also true for any other value of α.

Figure 4.11 shows that, generally, the efficiency increases with increasing value of α for all
considered estimators – asymptotically as well as for the finite sample case. The right panel
of Figure 4.11 shows the finite sample efficiencies of the model-free estimators relative to
TMS1

adj for a standard normal sample of size n = 20. It appears that the finite sample
efficiency is reasonably close to the asymptotic efficiency, even for this small sample size.

For twenty observations there are (n− 2) = 18 triangle heights and thus, each estimator
can only result in eighteen different estimates where each of the eighteen values can be
achieved for α ∈ [k/(n − 2), (k + 1)/(n − 2)], k = 1, . . . , n − 3. Hence, the curves of the
finite sample efficiencies look like step functions.

Surprisingly, the quantile version of the model-free estimators is for α < 0.85 more efficient
than the trimmed mean of heights or even the trimmed mean of squared heights. Hence,
replacing the quantile by a trimmed sum does not result in an increase of efficiency for a
large range of values of α. The TMSαadj estimator is slightly more efficient than the TMα

adj

estimator for all values of α, but for small values of α the efficiencies of all estimators are
quite similar. For values of α close to one, the efficiency of Qα

adj is smaller than that of
the other estimators, because the quantile tends to the maximum order statistic which is
known to show a high variability.

For α = 0.25 where the maximum asymptotic breakdown point of 25% is reached, Q0.25
adj

only achieves an efficiency of 25%, and the trimmed mean estimators only achieve an
efficiency of about 20%. Hence, the price paid for the maximal breakdown point is high.
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Taking the median of the heights with α = 0.5, results in an asymptotic efficiency of
49% for Qα

adj, in 38% for the TMα
adj and in 43% for the TMSαadj estimator, while the

asymptotic breakdown point equals 16.7%. The finite sample breakdown point for n = 20,
however, is even higher because according to (4.20) it is fsbp(S0.5

adj) = b10/3c/20 = 0.2,
allowing for four outliers in a window of size n = 20. Since this seems to provide a
reasonable compromise between robustness and efficiency, we propose to choose α = 0.5

for applications.

Further Properties

One striking advantage of the model-free scale estimators introduced in this section is
their low computation time: an update of any of the adjacent-type estimators can be
achieved in only O(log n) time. Furthermore, Qα

adj, TMα
adj and TMSαadj do not rely on the

local linearity assumption (3.2) but can also estimate the variability of the error term if
the signal is non-linear in any sense, e.g. if it is quadratic or contains sudden level shifts
or trend changes. In this sense, the adjacent-type estimators are model-free.

4.4 Simulation Study

In the following, we consider time series generated from the simple signal plus noise mo-
del Yt = µt + εt (3.1) with t = 1, . . . , T and the length of the time series corresponding
to T = 1000. The simulation schemes we investigate, consist of time series with inde-
pendent standard normal errors with and without contamination and of time series with
autocorrelated errors. As contamination we consider isolated outliers, patches of outliers,
and even level shifts. Furthermore, the effect of a sudden scale shift, the violation of the
assumption of a locally constant scale and the violation of the linearity assumption for
the underlying signal are examined. A description of this simulation study can also be
found in Schettlinger, Gelper, Gather and Croux (2009).

For each setting S = 1000 time series are generated and the performance of the online
scale estimators is judged at each point in time t ∈ {n, . . . , T} by the mean bias

MBt =
1

S

S∑
i=1

σ̂t(i)− σt
σt

,

and the root mean squared error:

RMSEt =

√√√√ 1

S

S∑
i=1

(
σ̂t(i)− σt

σt

)2

.
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Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn

n = 20 1.240 2.293 1.996 1.023 0.838 1.312 1.136 1.939

n = 50 1.221 2.427 2.094 1.023 0.824 1.301 1.145 2.092

Table 4.2: Finite sample correction factors c(n) for all scale estimators, achieving unbiasedness at normal
samples of size n ∈ {20, 50}.

Here, n denotes the window width, σt is the true (uncontaminated) scale at that time,
and σ̂t(i) is the online scale estimate at time t ∈ {n, . . . , T} for the ith simulated time
series, i ∈ {1, . . . , S}. The estimate σ̂t(i) is obtained by applying one of the considered
scale estimators to the observations at times (t− n+ 1, . . . , t) in time series i.

For the Qα
all estimator (4.5) and the model-free scale estimators Qα

adj (4.11), TMα
adj (4.12)

and TMSαadj (4.13), we consider the estimators with α = 0.5 which offer a good com-
promise between a high breakdown point and high efficiency, see Sections 4.2 and 4.3.
Furthermore, the non-robust alternatives TM1

adj, i.e. the mean of all triangle heights, and
TMS1

adj, the square root of the mean of squared heights, are included for comparison.

The regression-based standard deviation

sd =

√√√√ 1

n− 2

n∑
i=1

(rLSi )2 , (4.28)

calculated from least squares residuals rLSi is included as non-robust alternative, and the
Qn estimator based on the RM residuals (4.2) is included as robust and regression-based
reference method.

In the simulations we consider the two widths n = 20 and n = 50 for the windows which
are moved over the whole length of the time series, resulting in T − n + 1 online scale
estimates for each series. We use finite sample consistency factors c(n) which are derived
from simulations, where each of the estimators was applied to 10 000 standard normal
samples of size n ∈ {20, 50}. The factors were calculated by inverting the mean of the
10000 scale estimates, to achieve an unbiased estimation of the standard deviation. They
are given in Table 4.2. For an approximation of the correction factor for Q0.5

adj for large
sample sizes the formula c0.5

Qadj
(n) ≈ 1.21 · n/(n+ 0.44) could also be used, see Section 4.3

and Gelper, Schettlinger, Croux and Gather (2008).

A method performs best if it both, has a small mean bias MBt and is efficient, i.e. if it
has a small RMSEt, not only on average but preferably over the whole period of time.
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Figure 4.12: Boxplots of the RMSEt of online scale estimators using a window width of n = 50 for time
series with independent non-contaminated (left) and contaminated N(0, 1) errors (right).
The contaminated observations come from a N(3, 12) distribution for t ≤ 500 and from a
N(1, 32) distribution for t > 500.

Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn sd

n = 20 0.325 0.360 0.341 0.240 0.229 0.230 0.194 0.210 0.167
n = 50 0.200 0.225 0.213 0.147 0.141 0.135 0.115 0.120 0.102

Table 4.3: Average root mean squared error RMSE of the online scale estimators for time series con-
sisting of Gaussian white noise.

4.4.1 Standard Normal Errors

The time series in this setting are generated according to model (3.1) with µt ≡ 0 and
εt

iid∼ N(0, 1), i.e. yt = εt for all t = 1, . . . , T . All investigated methods yield unbiased
online estimates of the scale. For the standard deviation a slight negative bias can be
observed which is due to the fact that sd as defined in (4.28) asymptotically achieves
unbiasedness at normal data while for all robust estimators finite sample correction factors
are applied. In consequence, the standard deviation underestimates the true scale on
average when using a small sample size. However, this effect diminishes for larger samples.
The left panel of Figure 4.12 shows boxplots of the RMSEt of all estimators for n = 50;
results for n = 20 look similar but are not presented here. Here, the standard deviation
based on least squares residuals is, as expected, the most efficient method, showing the
smallest RMSEt. Furthermore, Table 4.3 contains the mean of the root mean squared
error, averaged over the whole observed time period:

RMSE =
1

T − n+ 1

T∑
t=n

RMSEt .

The non-robust TM1
adj and TMS1

adj are even less efficient than the robust R, Q0.5
all and

Qn. The three robust model-free estimators show the largest RMSEt with Q0.5
adj performing

best among these three.
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4.4.2 Standard Normal Errors with 5% Contamination

To investigate the performance of the online scale estimators in the presence of contami-
nation, we consider standard normal time series where 5% gross-error outliers are induced
at fixed time points. For the first half of the time period, the contamination distribution
corresponds to a N(d, 1)-distribution leading to additive outliers of size d in the level.
In the second half, a N(0, d2)-distribution is used to generate scale outliers. We consider
values d ∈ {1, 2, 3, 4, 5}, generating small, moderately sized and large outliers. (For d = 1

only small additive outliers are generated in the first half of the time series.)
For both types of contamination five single outliers, two patches of two, two patches of
three and one patch of five subsequent outliers is generated. In addition, for the additive
outliers a stretch of ten successive level outliers is incorporated into the simulation scheme
to investigate the behaviour of the scale estimators for a level shift.
In particular, the additive outliers are induced at t ∈ W1 and the scale outliers appear at
t ∈ W2 with

W1 = {51, 71, 81, 86, 91, 101, 102, 151, 152,

201, 202, 203, 241, 242, 243, 301, . . . , 305, 401, . . . , 410}

and W2 = {551, 571, 581, 586, 591, 601, 602, 651, 652,

701, 702, 703, 741, 742, 743, 801, . . . , 805}.

Figure 4.13 shows the mean bias averaged over time

MB =
1

T − n+ 1

T∑
t=n

MBt

as well as the root mean squared error averaged over time RMSE for the considered
methods applied in a moving window of width n = 50. Plots for n = 20 look similar, but
are excluded from the presentation here. For all methods MB and RMSE increase along
with the magnitude of the outliers, determined by the value of d.
It shows clearly that the size of the outliers has a considerable influence on the bias of
the non-robust scale estimators, while the mean bias does not increase as drastically with
increasing d for the robust methods. Particularly the MB of the model-free estimators
increases the least with d, and all three model-free estimators perform very similar –
better than the other methods – for all values of d.
However, in terms of efficiency measured by the root mean squared error, the model-free
estimators perform worse than the other robust estimators, and for small outliers, i.e.
small d, they even have a higher RMSE than the non-robust methods. All methods show
some increase in RMSE for increasing d, but this increase is much more pronounced for
the non-robust methods.
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Figure 4.13: Average mean bias (top) and average RMSE (bottom) of online scale estimators applied to
a moving window of width n = 50 for time series consisting of independent N(0, 1) errors
with 5% contamination. The contaminated observations come from a N(d, 12) distribution
for t ≤ 500 and from a N(1, d2) distribution for t > 500 with the level of contamination
d ∈ {1, 2, 3, 4, 5}.

For small to moderate sizes of outliers the non-robust TM1
adj and TMS1

adj scales even
outperform its robust counterparts in terms of RMSE, but for larger sizes of outliers the
robust methods clearly perform better.

The right panel of Figure 4.12 shows boxplots of the RMSEt in the setting with d = 3

where the contamination comes either from a N(3, 12) or a N(0, 32) distribution. The
average RMSEt for each of these boxplots corresponds to the corresponding RMSE value
at d = 3 in the bottom panels of Figure 4.13. Although Figure 4.13 shows that the
running standard deviation on average performs similar to the model-free non-robust
methods for small outlier sizes, in Figure 4.12 it is evident that sd is heavily affected by
the contamination. The TMS1

adj estimator is similarly affected, though not as bad, while
TM1

adj still achieves reasonably efficient results for a non-robust estimator. These findings
are confirmed for other simulation settings with d ∈ {1, 2, 4, 5}.
Figure 4.12 further shows that from the robust methods R, Qn and Q0.5

all perform best in
terms of RMSEt, with R showing the best overall performance. From the robust model-free
estimators Q0.5

adj shows the best performance again.

To evaluate the influence of the different types and number of consecutive outliers, Figure
4.14 shows the mean bias MBt over time for a normal series with contamination from a
N(3, 12) distribution for t ≤ 500 and from a N(0, 32) distribution for t > 500. For other
values of d the graphics look (up to a factor) very similar. Apparently, all robust methods
show some sort of reaction towards outliers but not as drastic as the non-robust scale
estimators. Furthermore, there is almost no difference between the three robust model-
free scales.
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Figure 4.14: Mean bias MBt over time resulting from online scale estimation in a moving window of
width n = 50 for time series with independent standard normal errors and 5% contamina-
tion. The contaminated observations come from a N(3, 12) distribution for t ≤ 500 (left)
and from a N(1, 32) distribution for t > 500 (right). The vertical grey lines mark the times
where the outliers or outlier patches occur. The patch of ten outliers after t = 400 can also
be interpreted as a temporary level shift.
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Because all methods estimate the scale online, i.e. at the right endpoint of a time window,
the increase in the bias appears after the time where the outlier(s) occur. All methods,
regardless whether regression-based, regression-free or model-free, show an increasing MBt
after the occurrence of outliers, a brief period of constantly increased mean bias and then
a decrease; the time period until the decrease depends on the window width n.
Furthermore, it can be seen in Figure 4.14 that a set of single outliers results in a larger bias
than consecutive ones for the model-free scale estimators and the number of subsequent
outliers has no impact on the magnitude of the bias. In contrast, for the scale estimators
R, Q0.5

all and Qn, requiring the local linearity of the signal, it can be observed that MBt
increases with the length of the outlier patch when additive outliers occur – most obvious
for the level shift after t = 400.
Scale outliers seem to have a smaller influence on the MBt for R, Q0.5

all and Qn, while for
the robust model-free estimators their effect is similar to that of additive level outliers.
For the non-robust model-free estimators, the influence of scale outliers is much worse
than that of additive outliers, where the non-robust estimators perform even similar to
their robust counterparts.
The biggest advantage of the model-free estimators, namely its independence of the local
linearity assumption, appears most obviously for subsequent additive level outliers or level
shifts, respectively, which cause a much smaller bias for this type of estimator compared
to the other ones.

4.4.3 Scale Shift

In this setting, the scale of the data-generating normal distribution jumps from σt = 1 to
σt = 5 at time t = T/2+1 = 501 while the level stays constant, µt ≡ 0 for all t = 1, . . . , T .
Because of the online estimation at the right end point of each time window, all methods
trace the scale shift with some time delay. However, concerning the magnitude of MBt
right after the shift and the duration until the bias returns back to zero, there is no real
difference between the methods. The delay basically corresponds to the chosen window
width.
In this setting it is MBt ≈ −0.8 right after the shift, regardless of the method or window
width used (see the left panels of Figure 4.15).
Since all observations come from a normal distribution, the results for the root mean
squared error basically correspond to the outcomes for the non-contaminated standard
normal setting. Even the order of magnitude of RMSE is quite similar to this setting,
cf. Tables 4.3 and 4.4, i.e. the standard deviation sd is the most efficient method, Q0.5

all ,
Qn and R perform not much worse, while the robust model-free estimators lack some
efficiency.
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Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn sd

n = 20 0.331 0.365 0.347 0.244 0.233 0.237 0.200 0.217 0.171
n = 50 0.219 0.244 0.232 0.162 0.153 0.155 0.135 0.139 0.115

Table 4.4: Average root mean squared error RMSE of the online scale estimators for time series con-
sisting of normal errors with a scale shift from σt = 1 to σt = 5.
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Figure 4.15: Mean bias MBt for a time interval around the time t0 = 500 where the scale of the
independent error term shifts from σt = 1 to σt = 5 (left) and MBt for time series with
independent N(0, t2) errors (right) for the window width n = 20.
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Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn sd

n = 20 0.321 0.354 0.336 0.240 0.230 0.232 0.198 0.213 0.174
n = 50 0.215 0.236 0.226 0.168 0.161 0.161 0.145 0.147 0.132

Table 4.5: Average root mean squared error RMSE of the online scale estimators for time series con-
sisting of normal errors with a linearly changing scale σt = t.

Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn sd

n = 20 0.422 0.434 0.419 0.361 0.360 19.7 18.7 28.9 30.2
n = 50 0.385 0.400 0.390 0.333 0.318 114.3 109.1 165.1 189.0

Table 4.6: Average root mean squared error RMSE of the online scale estimators for normal time series
with a quadratically increasing signal µt = t2.

4.4.4 Slow Scale Change

Here, the time series are generated from a model with constant level µt ≡ 0 for all
t = 1, . . . , T and independent errors from a N(0, t2) distribution, i.e. the assumption of a
locally constant scale (4.1) is violated because the scale σt = t changes linearly over time.

Because all methods estimate the scale at the end of a time window, all previous observa-
tions yt−n+1, . . . , yt−1 come from distributions with a smaller variance than σ2

t . Therefore,
all methods underestimate the true scale resulting in a negative MBt over the whole period
of time, and on average the mean bias is quite similar for all methods.

Since MBt evaluates the bias relative to the true scale the deviation of the estimate from
the true value is proportionally the largest for small values of σt. As the true scale σt
increases, the mean bias MBt tends to zero (see the right panels of Figure 4.15). For the
larger window width of n = 50, MBt is further away from zero than for n = 20.

In terms of RMSEt, the results are, even in order of magnitude, similar to the standard
normal and the scale shift setting (cf. Tables 4.3 and 4.5); that means that all investigated
methods perform well even if the scale is locally not constant, for the price of a small bias.

4.4.5 Quadratic Trend Change

To investigate the performance of the online scale estimators when the assumption of a
local linear signal within each time window is violated, we generate time series from a
model with independent N(0, 1) errors εt but a quadratically changing trend µt = t2.

In this setting MBt and RMSEt stay almost constant over the whole period of time and
RMSEt strongly depends on the underlying bias which is quite large for all methods
that rely on the assumption of a local linear signal (3.2), i.e. the regression-based and
regression-free estimators.



4.4 Simulation Study 113

Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn sd

n = 20 0.360 0.377 0.368 0.322 0.316 0.238 0.206 0.225 0.192
n = 50 0.312 0.321 0.317 0.296 0.293 0.146 0.128 0.134 0.119

Table 4.7: Average root mean squared error RMSE of the online scale estimators for time series with
AR(1) errors.

Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn sd

n = 20 −0.284 −0.287 −0.286 −0.279 −0.276 −0.070 −0.095 −0.061 −0.080
n = 50 −0.281 −0.282 −0.282 −0.279 −0.278 −0.029 −0.043 −0.026 −0.033

Table 4.8: Average mean bias MB of the online scale estimators for time series with AR(1) errors.

Table 4.6 shows the RMSE, the average of the RMSEt values over time, for all methods
and both investigated window widths. The huge difference in RMSE between the model-
free scale estimators and regression-based as well as regression-free estimators emphasise
the fact that the model-free scale estimators achieve much better estimations if there are
non-linearities in the underlying signal. The regression-free estimators R and Q0.5

all perform
better than the regression-based Qn and sd. TMS1

adj performs best here w.r.t. RMSE,
but the robust model-free estimators do not perform much worse.

4.4.6 AR(1) Errors

Departing from the assumption of independent errors, we consider model (3.1) with a
constant level µt ≡ 0 and autocorrelated errors. In particular, we generate the errors
according to an AR(1) model, i.e.

εt = ϕεt−1 + et , t ∈ Z

with innovations et ∼ N(0, σ2
e ) for all t = 1, . . . , T . The unconditional variance of εt is

then given by
σ2
εt = Var(εt) =

1

1− ϕ2
σ2

e .

For the simulations we use standard normal innovations and choose the parameter for
the AR(1) model ϕ = 0.4 for moderate correlation between successive observations. This
results in a marginal standard deviation of σεt = 1.091 for all t.
In case of AR(1) errors all methods loose some efficiency compared to the standard normal
setting, in particular when using the larger window width (cf. Table 4.7). However, the
results for the RMSE are still similar to the situation of independent N(0, 1) errors, only
TM1

adj and TMS1
adj are much less efficient here. This can also be seen when comparing

the boxplots for the RMSEt values in case of AR(1) errors in the left panel of Figure 4.16
with those in the standard normal situation, shown in the left panel of Figure 4.12.
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Figure 4.16: Boxplots of RMSEt for time series with AR(1) errors (left) and GARCH(1,1) errors (right)
using the window width n = 50.

The increase in RMSEt is partly due to the fact that because of the positive autocorre-
lation all scale estimators show a negative bias (see Table 4.8). The regression-based and
regression-free methods are only a little biased, and Qn is the least biased method. The
model-free estimators have a larger bias which approximately has the same magnitude for
all estimators of this type, independent of the window width n = 20 or n = 50 or of the
fact whether they are robust or not. Thus, we do not recommend to use the model-free
estimators on time series where autocorrelations can be expected.

4.4.7 GARCH(1,1) Errors

As a further deviation from our model assumptions we investigate time series with auto-
correlated errors and a slowly varying scale, i.e. in model (3.1) we consider µt ≡ 0 and εt
following a GARCH(1,1) model with parameters α0, α1, β1 ∈ R

εt = σtet , t ∈ Z

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 ,

where et ∼ N(0, σ2
e ) for all t = 1, . . . , T . For the simulations we use σ2

e = 1, α0 = 0.1,
α1 = 0.1 and β1 = 0.7 guaranteeing stationarity and moderate autocorrelation. The mean
bias MBt and root mean squared error RMSEt are calculated w.r.t. the conditional σt in
the uncontaminated model.
The right panel of Figure 4.16 shows boxplots of the RMSEt values for each of the consi-
dered methods when applying the methods to a GARCH(1,1) process using the window
width n = 50. Similar results are achieved for n = 20, only that Qn loses some efficiency
while TMS1

adj gains some when using this smaller window width.
Figure 4.16 shows that the running standard deviation is the most efficient method for
AR(1) and GARCH(1,1) errors, but the robust methods Qn, Q0.5

all and R are also quite
good and more efficient than TM1

adj and TMS1
adj. The three robust model-free estimators

are least efficient for GARCH(1,1) errors whereas Q0.5
adj is the best one from these three.
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Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn sd

n = 20 0.326 0.358 0.341 0.249 0.244 0.243 0.210 0.222 0.183

n = 50 0.220 0.241 0.231 0.181 0.184 0.174 0.162 0.158 0.148

Table 4.9: Average root mean squared error RMSE of the online scale estimators for time series with
GARCH(1,1) errors.

Q0.5
adj TM0.5

adj TMS0.5
adj TM1

adj TMS1
adj R Q0.5

all Qn sd

n = 20 −0.023 −0.025 −0.024 −0.014 −0.008 −0.006 −0.012 −0.004 −0.021
n = 50 −0.023 −0.025 −0.025 −0.005 0.006 0.001 −0.002 0.003 0.001

Table 4.10: Average mean bias MB of the online scale estimators for time series with GARCH(1,1)
errors.

Table 4.9 contains the corresponding RMSE values, showing that compared to the N(0, 1)

setting (cf. Table 4.3) there is a loss in efficiency for all methods although the results are
quite similar in both situations.

Just like in the AR(1) setting, a negative bias can be observed for all considered methods
where the absolute value of the MB is the largest for the robust model-free scale estimators.
However, for GARCH(1,1) errors the magnitude of the bias is much smaller than in the
AR(1) setting, and it is always close to zero, see Table 4.10. While a larger n improves the
bias for sd, Qn, Q0.5

all , and R, i.e. all estimates which require that the signal can be locally
approximated by a line, it has no positive effect on the bias of the model-free estimators.

All investigated methods provide sensible information on the slowly varying conditio-
nal scale although they estimate the local unconditional scale. However, the model-free
estimators do not cope as well with autocorrelations as the other methods.

4.5 Applications

4.5.1 Simulated Time Series

An application to a simulated time series exhibiting various features can accentuate the
advantages of the different scale estimation approaches. Figure 4.17 shows such a simu-
lated series with its underlying true signal level µt where the errors εt are independently
generated from a normal distribution with mean zero and a standard deviation correspon-
ding to the black line in the right hand side and bottom panels in Figure 4.17. This time
series contains periods of a constant signal level, a level shift and periods with a linear
or quadratic trend in the signal. Furthermore, the time-dependent scale of the error term
also contains a shift, constant periods and periods with a linear and quadratic trend. The
impact on the simulated observations can be seen in the top left panel of Figure 4.17.
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Figure 4.17: The top left panel shows a normal time series with varying signal level (black line), changing
scale and 5% contamination. The remaining panels show the corresponding online scale
estimates based on the window width n = 50 together with the underlying true scale
(black line). The top right panel shows the non-robust scale estimates, the bottom panels
display the robust scales.

Furthermore, at 50 time points (i.e. 5% of the time) outliers are generated by replacing
the data with observations coming from a N(0, 152) distribution.

It clearly shows that the non-robust scale estimators are not suitable if outliers are present
because they drastically overestimate the true scale in all windows containing at least one
outlier (see the top right panel of Figure 4.17).

All robust methods achieve online scale estimates which trace the course of the true scale
quite nicely, only with a certain time delay because of the online estimation at the right
endpoint of each time window. The three robust model-free estimators Q0.5

adj, TM0.5
adj and

TMS0.5
adj, shown in the bottom left panel of Figure 4.17 perform very similar. Compared to

the regression-based Qn and regression-free Q0.5
all and R estimators (bottom right panel),

the lower efficiency of the model-free estimators is reflected by a much larger variability in
their estimations. However, they do not show the peak at t = 200 where a level shift in the
signal of the series results in a drastic overestimation of the scale for all methods requiring
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Figure 4.18: Sequence of 1000 RR interval lengths in msec (top left panel) with corresponding online
scale estimates based on the window width n = 20. The top right panel shows the non-
robust scale estimates, the bottom panels display the robust scales.

a local linear signal, i.e. Qn, R and Q0.5
all . The difference in the online scale estimates from

these three methods shown in the bottom right panel of Figure 4.17 is very small, but it
appears that the R estimator achieves the smoothest scale estimation.

4.5.2 Real Time Series

In intensive care, the heart rate in beats per minute is derived from the continuous elec-
trocardiogram (ECG) signal. However, to prevent an intermediate calculation step, the
heart rate variability is generally evaluated not from the heart rate measurements which
are updated once a second but from the ECG itself: Therefore, the length of the time
intervals between consecutive heart beats, conventionally named RR intervals, is measu-
red in milliseconds and the heart rate variability is calculated from a sequence of such
lengths. Technically, such a sequence is not a time series, because the sampling period is
not equidistant. It would be easy to convert this sequence to a time series measured e.g.
once per second, where an observation corresponds to the length of the last RR interval.
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However, the difference to the sequence of true RR interval lengths would be minimal
while there would be some loss in information and also in computation time.

The top left panel of Figure 4.18 shows a sequence of 1000 RR interval lengths in millise-
conds from a patient taking part in the Cardiac Arrhythmia Suppression Trial (CAST).
The data set is obtained from the Interbeat (RR) Interval Database on PhysioNet (Gold-
berger et al., 2000). It can be seen that the interval lengths do not permanently vary
around a constant level but also show trends and trend changes (see e.g. the observations
from 40 to 80 and the change thereafter).

For presentational reasons positive outliers with a size larger than 120msec are cut off. In
this stretch of 1000 observations there are 25 such measurements with their values ranging
between 653 and 5363, meaning a total percentage of 2.5% of very large outliers. However,
some smaller values might also be considered as outliers because of the generally smaller
variability of the observations at the time of observation, see e.g. the observations x811

and x812.

Some very large observations are given by x72 = 4838 and x97 = 2032, as well as by
x737 = 5363 and x755 = 1185. For the windows including these observations, it is quite
obvious that the non-robust scale estimators, shown in the top right panel of Figure 4.18,
’break down’ because they reach huge values of more than 1000. It can also be seen
that, according to the simulation results shown in the previous section, from the non-
robust scale estimators the mean of adjacent triangle heights TM1

adj does not show such
a strong reaction to outliers as TMS1

adj and the standard deviation. This appears even
more obvious when using a larger window width like n = 50 (not shown here).

In contrast, the robust online scale estimators displayed in the bottom panels of Figure
4.18 perform well in the presence of outliers and – from looking at the data – also yield
sensible estimations of the true scale. All robust methods indicate the increased variability
from about 130 to 210 and from about 610 to 730 and also after 400.

The outcomes of the three robust scale estimators based on adjacent triangle heights
are quite similar again, only that in times of increased variability Q0.5

adj tends to larger
estimations than TM0.5

adj and TMS0.5
adj. Furthermore, they all show some sort of reaction if

several outliers occur within the window used for the estimation, especially if the window
width is as small as, say, n = 20. This is due to their breakdown point of about 1/6.

From the regression-free estimators relying on the local linearity assumption (3.2) the Q0.5
all

scale estimator performs similar to the adjacent-type estimators while R is more robust
towards the outliers and also more efficient because the R estimations do not show such
a large variability. The robust Qn scale estimator based on the RM residuals performs
similarly good as R but shows larger variability.
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4.6 Conclusions

The robust methods compared in this chapter provide useful tools for the online extraction
of time varying variability. Because of the moving window approach all estimators have
a computation time which allows for real-time application and they have given proof of
their usefulness at a real data example. The methods are able to deal with contaminated
data, trends and trend changes and work well even if the true scale cannot be assumed
as locally constant within one time window, or if the errors are autocorrelated.

From the model-free adjacent-type scale estimators the two non-robust estimators TM1
adj

and TMS1
adj are reasonably efficient at standard normal data and perform much better

than the standard deviation in the presence of contamination. However, outliers cause
considerable bias.

The three robust model-free estimators perform very similar in all settings but Q0.5
adj is

slightly more efficient than TM0.5
adj and TMS0.5

adj. Gelper, Schettlinger, Croux and Gather
(2009) further investigate the behaviour of the model-free scale estimators with maximum
breakdown point in a simulation study, but for their considered contamination models the-
se estimators provide no advantage compared to the more efficient model-free estimators
based on α = 0.5, i.e. considering a half of the triangle heights.

The advantages of the model-free scale estimators consist in their very low update com-
putation time of only O(log n) and the fact that they work well in the presence of non-
linearities in the signal level such as quadratic trends or level shifts. In case of a linear
change in the scale they also perform reasonably well, but for autocorrelated errors they
show some bias and loss of efficiency.

Compared to the model-free estimators the investigated regression-free methods, R and
Q0.5
all , have higher breakdown points and are much more efficient. Furthermore, their per-

formance in the presence of autocorrelated errors is similar to the case of independent
errors. If no contamination is present Q0.5

all is slightly more efficient than R, but in com-
parison R shows a better overall performance because of its higher robustness against
outliers.

The Qn estimator based on the residuals from a local Repeated Median regression is also
highly robust and efficient (even at non-contaminated data) and it has a much lower
computation time than the regression-free estimators. It also provides good estimations
for autocorrelated errors. However, this scale estimator strongly relies on the underlying
signal estimation which can cause a large bias for the scale if estimated wrongly.

If only a low percentage of additive or level outliers can be expected and the signal level
of the time series is likely to contain many trend changes and level shifts and / or if the
computing time is very limited, the model-free scale estimator Q0.5

adj should be chosen for
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online scale estimation with a medium-sized window width, yielding a good compromise
between robustness and efficiency. However, if temporal correlations are expected or if
outliers are very likely to occur, a more robust and more efficient method like R or Qn

should be applied with a window width as large as possible but still ensuring the local
linearity of the signal level within this window.



121

5 Discussion

In this thesis, several approaches for online signal and variability extraction from time
series are introduced and compared with each other. Especially such methods are focussed
on, which are able to deal appropriately with a certain amount of collinear observations
and to resist or ignore a certain amount of outliers. For an appropriate identification of
outliers and the exact times of their appearance, additional outlier detection rules should
be applied to be able to specify and explain the underlying contamination component.

In particular, in Section 3.2 it is shown that a univariate online Repeated Median filter
with adaptive choice of the window width works well for the removal of random noise and
artefacts from time series which do not follow any known model. The basis for this filter is
provided in Chapter 2, addressing especially those properties of Repeated Median (RM)
regression which are important for the univariate adaptive RM filter.

The advantages of the univariate adaptive RM filter, particularly the high robustness
and fast computation, also hold for the multivariate adaptive online RM filter, described
in Section 3.3 which additionally takes into account possible correlations between the
variables. However, since this filter often chooses a small window width when applied to
intensive care time series, a high variability can be observed in the extracted signal. Thus,
further research should be carried out to improve the efficiency of the multivariate filter.

From the three approaches for online variability extraction, introduced in Chapter 4, the
regression-based and regression-free approaches offer robust and efficient scale extractions
while they do not work well if there are non-linearities in the signal level of the time series.
The first approach further relies on a previous regression fit, i.e. the scale estimate can be
highly biased if the regression fit is not suitable. However, the introduced regression-free
methods require a lot of computation time. The development of update algorithms for
these estimators could improve their applicability for high frequency time series.

The introduced model-free scale estimators have a very low update time and hence, they
are suitable for the application to ultra-high frequency time series. However, they are
not as robust and efficient as the other approaches. Concluding, for online variability
extraction from intensive care time series, a combination of a robust model-free scale
estimator with a robust regression-based scale estimator could provide a solution which
incorporates the processing of all relevant information.

For example, while e.g. a regression-based estimate could be used for monitoring the
variability of a time series, the difference to a model-free estimate could be monitored
alongside as a measure of correctness. For application to time series where the variability
alone is of interest and the underlying signal is not extracted, a regression-free estimator
could be used instead of a regression-based one.
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An important issue which has not been raised yet, is the choice of the window width for
the scale estimation. Of course, this is of crucial importance: while the model-free scale
estimators seem to work better with small window widths, larger window widths improve
the efficiency and robustness for the regression-free and regression-based scales. However,
since we do not know the time series structure beforehand, it is not possible to determine
an optimal window width for a real-time application and thus, the window width has to
be determined from an application-oriented background or adaptively: either a technique
for the data-driven choice of the window width has to be developed for the considered
scale estimators, or they could be applied to windows where the window width is chosen
by the adaptive RM signal filter.
Combining information about the signal level with information about the local variabili-
ty offers a possibility for improved alarm systems, for example, by developing new alarm
rules for early warnings. Of course, such rules can only be proposed based on expert know-
ledge from clinicians. The online extracted variability could also be displayed along with
the online extracted signal on bedside patient monitors, e.g. illustrated by ±3σ bounds
around the signal. Even if the variability is not monitored, it could still provide essential
information for diagnosis, treatment of the patient or simply for re-setting monitoring
parameters like the alarm thresholds.
Another issue which has not been addressed appropriately so far, is the occurrence of
collinear observations: for the physiological time series we have at hand, the secondly
measurements from the monitoring system, e.g. the heart rate values displayed on the
bedside monitor, are evaluated on a discrete scale. This discrete measurement scale and
the fact that a patient often is in a steady state for a longer period of time, e.g. caused by
sedation, results in collinear or even identical measurements for certain stretches of time.
For the introduced scale extraction techniques, this increases the probability of implosion
– which quite frequently occurs when applying the proposed methods to intensive care
data. If an alarm rule were based on the extracted variability as well as the signal, then
estimating a scale of zero could lead to an unwanted increase in the number of (false)
alarms. Therefore, further research should be carried out to overcome this problem.
Finally, it should be stated that the spectrum of application for the introduced methods
is not restricted to the clinical context. The usefulness of the online scale extraction
methods for monitoring the volatility of financial time series of stock returns has been
shown by Nunkesser, Fried, Schettlinger and Gather (2008) for the regression-based scale
estimators, and for the model-free estimators by Gelper, Schettlinger, Croux and Gather
(2009). However, a broad range of further possible fields of application is imaginable for
the online signal and variability extraction techniques investigated in this thesis.
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A Supplementary Definitions

Breakdown Point

The breakdown point is often used for representation of the global robustness of a func-
tional or an estimator. A definition of the finite sample breakdown point can be found in
Donoho and Huber (1983); Davies and Gather (2005, 2006, 2007) provide further discus-
sions on the notion of breakdown point.

Let yn = {y1, . . . , yn} be a sample of size n with empirical distribution function Fn, and
let T denote an estimator taking on values in the parameter space Θ which we consider
equipped with a metric D satisfying

sup
θ1,θ2∈Θ

D(θ1, θ2) =∞ .

Further, let ykn denote a sample obtained from the original sample yn with k ∈ {1, . . . , n}
observations replaced by ’contaminated’ observations with corresponding (contaminated)
empirical distribution function F k

n .

The finite sample breakdown point (fsbp) of the estimator T at the sample yn, or at the
empirical distribution function Fn, respectively, is defined by

fsbp(T, Fn, D) = min
1

n

{
k ∈ {1, 2, . . . , n} : sup

Fkn

D
(
T (Fn), T (F k

n )
)

=∞

}
, (A.1)

For a regression estimator as introduced in Chapter 2, the parameter space is given by
Θ = R2 and as a suitable metric D the simple L2 norm can be chosen. For such estimators
contamination is generated by replacing values from the original sample yn by points which
are arbitrarily far away from that sample.

For scale estimators S, like those investigated in Chapter 4, the parameter space cor-
responds to Θ = (0,∞). Loosely speaking, the breakdown point of a scale estimator is
the minimal amount of contamination such that the estimated scale becomes either in-
finite (explosion) or zero (implosion). For evaluating the breakdown point of such scale
estimators, the metric

D(θ1, θ2) = | log(θ1/θ2)| , θ1, θ2 ∈ (0,∞),

seems a suitable choice as it yields ∞ in both cases, explosion and implosion. Here,
contamination is generated either by replacing k observations from the original sample
yn by observations which are arbitrarily far away from the original sample (causing the
scale estimate to explode) or by collinear observations (causing implosion).
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The finite sample breakdown point (A.1) of a scale estimator S can also be expressed as

fsbp(S, Fn) = min
{
fsbp+(S, Fn), fsbp−(S, Fn)

}
, (A.2)

where

fsbp+(S, Fn) = min
1

n

{
k ∈ {1, 2, . . . , n} : sup

Fkn

S(F k
n ) =∞

}
(A.3)

is called explosion breakdown point, and

fsbp−(S, Fn) = min
1

n

{
k ∈ {1, 2, . . . , n} : inf

Fkn

S(F k
n ) = 0

}
(A.4)

the implosion breakdown point.
Under suitable equivariance assumptions Davies and Gather (2005) derive an upper bound
for the finite sample breakdown point (A.1) which is given by

fsbp(T, Fn) ≤
⌊
n− n∆(Fn) + 1

2

⌋
/n . (A.5)

For a p-dimensional sample in general position, where no more than p − 1 observations
lie on a (p− 1)-dimensional hyperplane, it is n∆(Fn) = p− 1 and thus the upper bound
for a regression equivariant regression estimator T : Rp×n → Rp is given by

fsbp(T, Fn) ≤ (bn− p
2
c+ 1)/n (A.6)

For a one-dimensional sample in general position it is n∆(Fn) = 1 and thus, the upper
bound for the finite sample breakdown point of an affine equivariant scale estimator
S : R→ (0,∞) is

fsbp(S, Fn) ≤
⌊n

2

⌋
/n , (A.7)

cf. Davies and Gather (2007).
Apart from the definitions given above, there exist further definitions of the breakdown
point, but throughout this thesis we only refer to the ones cited. Furthermore, different
versions of breakdown points are often related: for example, Zuo (2001) shows that ge-
nerating contamination via the replacement of observations (like described above) and
generating contamination by adding observations to the sample which are generated from
a contaminated distribution (leading to the so called finite sample addition breakdown
point) asymptotically lead to the same result. Here, the limit of any finite sample break-
down point fsbp(T, Fn) is referred to as the asymptotic breakdown point which can be
characterised by

abp(T ) = lim
n→∞

fsbp(T, Fn) .

However, this value should be handled with caution, because it is not always obvious to
which limit the empirical distribution function Fn converges.



Supplementary Definitions 125

Equivariance Properties

Let X := ((x1, y1)′, . . . , (xn, yn)′) denote a sample of size n where xi ∈ Rd is a d-
dimensional row vector, describing the design, and yi ∈ R is a one-dimensional response,
i = 1, . . . , n.

Equivariance towards certain transformations of a sample describes the ability of an esti-
mator T to change accordingly to the alteration of the data. The following definitions can
be found in Rousseeuw and Leroy (1987).

An estimator T : R(d+1)×n → Rd is called regression equivariant if for the data set X and
any column vector v ∈ R it is

T
({

(xi, yi + xiv)′
})

= T
({

(xi, yi)
′
})

+ v ∀ i = 1, . . . , n . (A.8)

T is called scale equivariant if for any constant c ∈ R it is

T
({

(xi, c yi)
′
})

= c · T
({

(xi, yi)
′
})

∀ i = 1, . . . , n . (A.9)

If a linear transformation of xi also transforms the estimate achieved by T accordingly, the
estimator T is called affine equivariant. That means, for any nonsingular square matrix
A ∈ Rd×d it is

T
({

(xi A, yi)
′
})

= A−1 T
({

(xi, yi)
′
})

∀ i = 1, . . . , n . (A.10)

Influence Function

The influence function, introduced by Hampel (1974), describes the effect of point mass
contamination on the considered estimator. Illustratively, a smooth influence function
means that a single outlier at one particular point has a similar effect on the estimator if
it is located at a nearby point; bounded influence means that the effect on the estimator
cannot get arbitrarily large.

Formally, let T denote a functional which maps a distribution F ∈ F from the family of
probability measures F onto the parameter space Θ. Furthermore, define δx0 the point-
mass at x0 ∈ R, and ↓ describes the ’limit from the right’. The influence function of the
functional T is then defined as

IF(x0, T, F ) = lim
ε↓0

T
(
(1− ε)F + εδx0

)
− T

(
F
)

ε
. (A.11)



126 Appendix A

Efficiency

The efficiency can be seen as a measure of precision of a particular estimator T relative to
another estimator T0, usually the maximum likelihood estimator or an estimator attaining
the Cramér-Rao bound.
Consider a random variable X ∼ F and a functional T : F → Θ mapping a distribution
F from the family of probability measures F onto the parameter space Θ with T ∼ GF ,
and T0 : F → Θ with T0 ∼ GF

0 . The asymptotic efficiency of T relative to T0 at the
distribution F is then defined as

eff(T, T0, F ) =
ASVGF0

(T0)

ASVGF (T )
(A.12)

=
EGF0

[
(T0 − EGF0 (T0))2

]
EGF

[
(T − EGF (T ))2

] ,
where ASV denotes the asymptotic variance, see e.g. Maronna, Martin and Yohai (2006),
Section 2.2.2.
For unbiased estimators the finite sample efficiency is usually defined as the ratio of their
population variances. However, these are often hard to derive and thus, the finite sample
efficiency has to be estimated.
Consider the estimators T and T0 evaluated at n random samples X1, . . . , Xk ∼ F . Let
Tk(i) and T0,k(i) denote the estimates derived from applying T or T0 to the ith sample,
i = 1, . . . , n, and let GF

n , GF
0,n denote their empirical distribution functions. Replacing

the population variance by its finite sample counterpart, the empirical variance Var, we
estimate the finite sample efficiency of the estimator T relative to T0 at the distribution
F by

fs eff(T, T0, F ) =
VarGF0,k(T0)

VarGFk (T )
(A.13)

=
1

n−1

∑n
i=1

(
T0,k(i)− 1

n

∑n
i=1 T0,k(i)

)2

1
n−1

∑n
i=1

(
Tk(i)− 1

n

∑n
i=1 Tk(i)

)2 .

For biased estimators, the empirical variance is usually replaced by the mean squared error.
Furthermore, T0 does not have to be an estimator achieving the Cramér-Rao bound: the
efficiency can also be used to measure the precision in relation to any estimator.
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B Zero Residuals in Repeated

Median Regression – Proofs and Tables

In Section 2 it is described that Repeated Median (RM) regression for a simple linear
model (2.1) generally leads to a separation of the data cloud into halves. This means that
the number of positive residuals equals the number of negative residuals and hence, the
sum of residual signs is zero (2.6). However, this is only true if the data fulfil certain
requirements – the assumption of data in general position is not sufficient for all sample
sizes.
In the following, we derive the RM regression coefficients for all possible combinations of
observational arrangements for some small sample sizes. Furthermore, we calculate the
probabilities for the location and the number of zero residuals in standard normal samples
of size n = 4 and n = 5. For larger sample sizes these probabilities are approximated by
simulations. According to (2.9), b(i, j) denotes the observational slope between Yi and Yj,
and the difference between Yi and Yk is denoted by ∆i,k (2.11).

Sample Size n = 3

According to equation (2.10), the inner medians for the RM slope calculation are defined
as b̃(i) := med

j 6=i
{b(i, j)}, (here) with i = 1, 2, 3 and j 6= i. Furthermore, it is

b̃(1) = med{b(1, 2), b(1, 3)} = 1
2
[b(1, 2) + b(1, 3)] = 3

4
∆1,2 + 1

4
∆2,3

∧ b̃(2) = med{b(1, 2), b(2, 3)} = 1
2
[b(1, 2) + b(2, 3)] = 1

2
∆1,2 + 1

2
∆2,3

∧ b̃(3) = med{b(1, 3), b(2, 3)} = 1
2
[b(1, 3) + b(2, 3)] = 1

4
∆1,2 + 3

4
∆2,3.

From this, it follows for the RM slope (2.2) that

β̂RM = med
{

3/4∆1,2 + 1/4∆2,3, 1/2∆1,2 + 1/2∆2,3, 1/4∆1,2 + 3/4∆2,3

}
= 1/4(∆1,2 + ∆2,3) + 1/2 ·med

{
∆1,2, 1/2(∆1,2 + ∆2,3), ∆2,3

}
=

(2.12)
1/4(∆1,2 + ∆2,3) + 1/2 · 1/2(∆1,2 + ∆2,3) = 1/2(∆1,2 + ∆2,3)

= b(1, 3) ,

and for the RM intercept (2.3) at design point i = 0 it is

µ̂RM = med
{
Y1 − b(1, 3), Y2 − 2 · b(1, 3), Y3 − 3 · b(1, 3)

}
= med

{
1/2 · (3Y1 − Y3), Y1 + Y2 − Y3, 1/2 · (3Y1 − Y3)

}
= 1/2 · (3Y1 − Y3) = Y1 − b(1, 3) = Y3 − 3 · b(1, 3) .

Thus, the RM regression line always runs through the observations at i = 1 and i = 3.
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Sample Size n = 4

In a sample of size n = 4 there are the six different observational slopes

b(1, 2), b(1, 3), b(1, 4), b(2, 3), b(2, 4) and b(3, 4) .

For a unique identification of the RM regression coefficients (2.2) and (2.3), the order
of these observational slopes has to be known. This order is uniquely defined by the
increasing order of observations which in turn can be characterised by the first differences
∆i,i+1, defined by (2.11).
The second column in Table 2.1, Section 2.2, lists the six possible permutations of the
order of first differences. However, the sole specification of this order is not sufficient for
a unique identification of the order of increasingly sorted observational slopes.

Example:
For case I, the condition ∆1,2 ≤ ∆2,3 ≤ ∆3,4 with b(i, i + 1) = ∆i,i+1 and equation
(2.12) uniquely specifies the following order of slopes:

b(1, 2) ≤ b(1, 3) ≤ b(2, 3) ≤ b(2, 4) ≤ b(3, 4)

and with (2.12) it is b(1, 3) ≤ b(1, 4) ≤ b(3, 4) and b(1, 2) ≤ b(1, 4) ≤ b(2, 4)

⇒ b(1, 3) ≤ b(1, 4) ≤ b(2, 4) .

However, the order of b(1, 4) and b(2, 3) is not uniquely specified, and it depends on an
additional condition on the first differences. Here, we have

b(1, 4) ≤ b(2, 3)

⇔ 1/3 · (∆1,2 + ∆2,3 + ∆3,4) ≤ ∆2,3

⇔ ∆1,2 + ∆3,4 ≤ 2∆2,3 ,

and analogously ∆1,2 + ∆3,4 ≥ 2∆2,3 ⇔ b(1, 4) ≥ b(2, 3).
Thus, we specify the sub-case I(1) by the conditions (∆1,2 ≤ ∆2,3 ≤ ∆3,4) and
(∆1,2 + ∆3,4 ≤ 2∆2,3) which uniquely determine the order

b(1, 2) ≤ b(1, 3) ≤ b(1, 4) ≤ b(2, 3) ≤ b(2, 4) ≤ b(3, 4) .

For both subcases of case I, cf. Table 2.1, the median slopes (2.10) correspond to

b̃(1) = med{b(1, 2), b(1, 3), b(1, 4)} = b(1, 3)

∧ b̃(2) = med{b(1, 2), b(2, 3), b(2, 4)} = b(2, 3)

∧ b̃(3) = med{b(1, 3), b(2, 3), b(3, 4)} = b(2, 3)

∧ b̃(4) = med{b(1, 4), b(2, 4), b(3, 4)} = b(2, 4) ,

and because of b(1, 3) ≤ b(2, 3) ≤ b(2, 4) the RM slope in case I corresponds to

β̂RM = med
{
b̃(1), b̃(2), b̃(3), b̃(4)

}
= b(2, 3) .
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Furthermore, it is for subcase I(1)
∆1,2 ≤ ∆2,3

⇔ Y2 − Y1 ≤ Y3 − Y2

⇔ Y2 − 2(Y3 − Y2) ≤ Y1 − (Y3 − Y2)

,


∆2,3 ≤ ∆3,4

⇔ Y3 − Y2 ≤ Y4 − Y3

⇔ Y2 − 2(Y3 − Y2) ≤ Y4 − 4(Y3 − Y2)

and


∆1,2 + ∆3,4 ≤ 2∆2,3

⇔ Y4 − Y3 + Y2 − Y1 ≤ 2Y3 − 2Y2

⇔ Y4 − 4(Y3 − Y2) ≤ Y1 − (Y3 − Y2)

,

and thus, the RM intercept estimator in this subcase corresponds to

µ̂RM = med
{
Y1 − b(2, 3), Y2 − 2b(2, 3), Y3 − 3b(2, 3), Y4 − 4b(2, 3)

}
= med

{
Y1 − (Y3 − Y2), Y2 − 2(Y3 − Y2), Y3 − 3(Y3 − Y2), Y4 − 4(Y3 − Y2)

}
=

1

2

(
Y4 − 6Y3 + 7Y2

)
.

This means: if additional to the underlying assumption of general position the conditions
of case I(1) are satisfied, the RM regression line does not run through any observation.
Analogously, this can be proved for case I(2).

The additional conditions, consisting of inequalities for the first differences and defining
the sub-cases (1) and (2) for each of the cases II to VI, can be derived similarly. They
specify the unique order of increasingly sorted slopes and hence, they also allow the
determination of the coefficients µ̂RM and β̂RM . The last column of Table 2.1 in Section
2.2 contains the case IDs which uniquely define the order of the slopes given in Table B.1.

While generally sub-case (1) and (2) result in different RM coefficient estimations, the
RM estimates are identical for (1) and (2) if equality is fulfilled in the additional condition
specified in the third column of Table 2.1. This also means that some observational slopes
are identical. For example, if in case I not only ∆1,2 ≤ ∆2,3 ≤ ∆3,4 is fulfilled, but
additionally it is ∆1,2 + ∆3,4 = 2∆2,3, then the order of slopes is identical for sub-case (1)
and (2) because it is b(1, 4) = b(2, 3). The slopes which are identical, if the equality holds
in the additional condition, are emphasised in bold blue in Table B.1.

For case I (1), the derivation of a closed form expression for the RM coefficients is shown
above. This can be done analogously for all other cases. However, the derivations only
have to be performed for half of the cases because the cases IV to VI describe the reversion
of the cases I to III, i.e. the reflection of the data along the y-axis. Thus, the RM estimates
can be expressed in the same way for two sub-cases each. Case VI(2), for example, can be
seen as a reflection of case I(1) such that the observational slopes appear in the same order
but reversed (cf. Table B.1). The obtainable expressions for the RM slope and intercept
estimates for a sample of size n = 4 are given in Table 2.2 in Section 2.2.
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case order of slopes

I (1) b(1, 2) ≤ b(1, 3) ≤ b(1,4) ≤ b(2,3) ≤ b(2, 4) ≤ b(3, 4)

I (2) b(1, 2) ≤ b(1, 3) ≤ b(2,3) ≤ b(1,4) ≤ b(2, 4) ≤ b(3, 4)

II (1) b(3, 4) ≤ b(2,4) ≤ b(1,4) ≤ b(1,2) ≤ b(1, 3) ≤ b(2, 3)

II (2) b(3, 4) ≤ b(1,2) ≤ b(1,4) ≤ b(2,4) ≤ b(1, 3) ≤ b(2, 3)

III (1) b(2, 3) ≤ b(2, 4) ≤ b(1,3) ≤ b(1,4) ≤ b(3,4) ≤ b(1, 2)

III (2) b(2, 3) ≤ b(2, 4) ≤ b(3,4) ≤ b(1,4) ≤ b(1,3) ≤ b(1, 2)

IV (1) b(1, 2) ≤ b(1,3) ≤ b(1,4) ≤ b(3,4) ≤ b(2, 4) ≤ b(2, 3)

IV (2) b(1, 2) ≤ b(3,4) ≤ b(1,4) ≤ b(1,3) ≤ b(2, 4) ≤ b(2, 3)

V (1) b(2, 3) ≤ b(1, 3) ≤ b(2,4) ≤ b(1,4) ≤ b(1,2) ≤ b(3, 4)

V (2) b(2, 3) ≤ b(1, 3) ≤ b(1,2) ≤ b(1,4) ≤ b(2,4) ≤ b(3, 4)

VI (1) b(3, 4) ≤ b(2, 4) ≤ b(1,4) ≤ b(2,3) ≤ b(1, 3) ≤ b(1, 2)

VI (2) b(3, 4) ≤ b(2, 4) ≤ b(2,3) ≤ b(1,4) ≤ b(1, 3) ≤ b(1, 2)

Table B.1: Order of the observational slopes for a sample of size n = 4. If equality is fulfilled for the
additional condition given in the third column of Table 2.1, then the equality also holds for
the slopes marked in bold blue, and the sub-cases (1) and (2) do not differ.

Probabilities for Possible Data Situations in a Sample of Size n = 4

Under the assumption that y1, y2, y3, y4 are observations of independent, identically stan-
dard normally distributed random variables Y1, Y2, Y3, Y4, we will derive the probability of
each of the cases listed in Table 2.1. For this we use the fact that for a linear transformation
Z1 = BZ0 of a multivariate, normally distributed random vector Z0 it is:

Z0 ∼ N(µ ,Σ) ⇒ Z1 ∼ N
(
Bµ,BΣB>

)
. (B.1)

To calculate the probability for the occurrence of a certain data situation characterised
by the conditions given in Table 2.1, it is possible to find a linear transformation of the
random vector Y = (Y1, Y2, Y3, Y4)′ representing this case. Since Y1, Y2, Y3, Y4 are i.i.d.
N(0, 1)-distributed, Y has a multivariate standard normal distribution, i.e. with 04 being
the four dimensional origin and I4 the (4× 4) identity matrix, it is Y ∼ N(04, I4).

Case I

The probability for case I(1) (cf. Table 2.1) is equal to

P
(
(∆1,2 ≤ ∆2,3 ≤ ∆3,4) ∧ (∆1,2 + ∆3,4 ≤ 2∆2,3)

)
= P

(
(∆2,3 −∆1,2 ≥ 0) ∧ (∆3,4 −∆2,3 ≥ 0) ∧ (∆3,4 −∆2,3 ≤ ∆2,3 −∆1,2)

)
,

where ∆i,i+1 = Yi+1 − Yi for i ∈ {1, 2, 3}.
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Let SI,1 = ∆2,3 − ∆1,2 and SI,2 = ∆3,4 − ∆2,3. The probability of case I(1) occurring is
then given by

P
(
(SI,1 ≥ 0)∧ (SI,2 ≥ 0)∧ (SI,2 ≤ SI,1)

)
= P

(
(SI,1 ≥ 0)∧ (SI,2 ≥ 0)∧ (SI,2−SI,1 ≤ 0)

)
.

Furthermore, let T I =


SI,1

SI,2

SI,2 − SI,1

 , i.e. T I = BIY withBI =


1 −2 1 0

0 1 −2 1

−1 3 −3 1

 ,

a three dimensional random variable, corresponding to the second and third differences
of Y . The probability we search for can then be evaluated via the distribution of T I .

According to (B.1), it is T I ∼ N
(
03,ΣTI

)
with ΣTI = BIB

>
I =


6 −4 −10

−4 6 10

−10 10 20

 .

With fT I
denoting the density of the distribution of T I and t = (t1, t2, t3)′ an observation

of this random variable, the probability of the occurrence of case I(1) corresponds to

P
(
(∆1,2 ≤ ∆2,3 ≤ ∆3,4) ∧ (∆1,2 + ∆3,4 ≤ 2∆2,3)

)
= P

(
(SI,1 ≥ 0) ∧ (SI,2 ≥ 0) ∧ (SI,2 − SI,1 ≤ 0)

)
=

∫ ∞
0

∫ ∞
0

∫ 0

−∞
fT I

(t) dt3 dt2 dt1

= 0.06693 .

Analogously, the probability for case I(2) is given by

P
(
(∆1,2 ≤ ∆2,3 ≤ ∆3,4) ∧ (∆1,2 + ∆3,4 ≥ 2∆2,3)

)
= P

(
(SI,1 ≥ 0) ∧ (SI,2 ≥ 0) ∧ (SI,2 − SI,1 ≥ 0)

)
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

fT I
(t) dt3 dt2 dt1

= 0.06693 ,

where the results for these (and the following) integrals have been calculated numerically.
Thus, the probability for case I corresponds to

P
(
∆1,2 ≤ ∆2,3 ≤ ∆3,4

)
= P

(
(SI,1 ≥ 0) ∧ (SI,2 ≥ 0)

)
= 0.06693 + 0.06693 = 0.13386 .

Case II

The probabilities for case II(1) and II(2) can be derived similarly to the first case, using the
distribution of T II =(SII,1, SII,2, SII,2−SII,1)′ with SII,1 =∆1,2−∆3,4 and SII,2 =∆2,3−∆1,2.

With BII =


−1 1 1 −1

1 −2 1 0

2 −3 0 1

 and ΣTII = BIIB
>
II =


4 −2 −6

−2 6 8

−6 8 14
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it is T II = BIIY ∼ N(03,ΣTII), and if fT II
denotes the density of the corresponding

normal distribution, the probability for case II(1) is given by

P
(
(∆3,4 ≤ ∆1,2 ≤ ∆2,3) ∧ (∆2,3 + ∆3,4 ≤ 2∆1,2)

)
= P

(
(SII,1 ≥ 0) ∧ (SII,2 ≥ 0) ∧ (SII,2 − SII,1 ≤ 0)

)
=

∫ ∞
0

∫ ∞
0

∫ 0

−∞
fT II

(t) dt3 dt2 dt1

= 0.08113 .

The probability for case II(2) corresponds to

P
(
(∆3,4 ≤ ∆1,2 ≤ ∆2,3) ∧ (∆2,3 + ∆3,4 ≥ 2∆1,2)

)
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

fT II
(t) dt3 dt2 dt1

= 0.10194 ,

and hence, the probability of the occurrence of case II equals
P
(
∆3,4 ≤ ∆1,2 ≤ ∆2,3

)
= 0.18307 .

Case III

Analogously, the probabilities for case III(1) and III(2) can be derived via the distribution
of T III = (SIII,1, SIII,2, SIII,2−SIII,1)′, where SIII,1 = ∆3,4−∆2,3 and SIII,2 = ∆1,2−∆3,4.

With BIII =


0 1 −2 1

−1 1 1 −1

−1 0 3 −2

 and ΣTIII = BIIIB
>
III =


6 −2 −8

−2 4 6

−8 6 14


it is T III = BIIIY ∼ N(03,ΣTIII). For fT III

denoting the density of the corresponding
normal distribution, the probability for case III(1) is equal to

P
(
(∆2,3 ≤ ∆3,4 ≤ ∆1,2) ∧ (∆1,2 + ∆2,3 ≤ 2∆3,4)

)
= P

(
(SIII,1 ≥ 0) ∧ (SIII,2 ≥ 0) ∧ (SIII,2 − SIII,1 ≤ 0)

)
=

∫ ∞
0

∫ ∞
0

∫ 0

−∞
fT III

(t) dt3 dt2 dt1

= 0.10194

and the probability for case III(2) corresponds to

P
(
(∆2,3 ≤ ∆3,4 ≤ ∆1,2) ∧ (∆1,2 + ∆2,3 ≥ 2∆3,4)

)
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

fT III
(t) dt3 dt2 dt1

= 0.08113 .

Consequently, the probability of case III occurring is the same as for case II:
P
(
∆2,3 ≤ ∆3,4 ≤ ∆1,2

)
= 0.18307 .
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Cases IV, V and VI

Because of the symmetry of the normal distribution, the probabilities of the remaining
cases do not have to be calculated explicitly; they simply follow from the probabilities
derived above: The probability for the occurrence of case IV(1) corresponds to the proba-
bility of case III(2) and similarly, the probability for case IV(2) is equal to the probability
for case III(1) because TIV = −TIII with BIV = −BIII and ΣBIV

= ΣBIII
. Likewi-

se, it is T V = −T II with BV = −BII and ΣBV = ΣBII , as well as T V I = −T I with
BV I = −BI and ΣBVI = ΣBI .
The probabilities resulting for all cases specified in Tables 2.1 and B.1 are given in Table
2.3 in Section 2.2.
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case condition prob. case condition (reverse to I - XII)

I (∆1,2 ≤ ∆2,3 ≤ ∆3,4 ≤ ∆4,5) 0.022 XXIV (∆4,5 ≤ ∆3,4 ≤ ∆2,3 ≤ ∆1,2)
II (∆1,2 ≤ ∆2,3 ≤ ∆4,5 ≤ ∆3,4) 0.026 XXIII (∆3,4 ≤ ∆4,5 ≤ ∆2,3 ≤ ∆1,2)
III (∆1,2 ≤ ∆3,4 ≤ ∆2,3 ≤ ∆4,5) 0.038 XXII (∆4,5 ≤ ∆2,3 ≤ ∆3,4 ≤ ∆1,2)
IV (∆1,2 ≤ ∆3,4 ≤ ∆4,5 ≤ ∆2,3) 0.060 XXI (∆2,3 ≤ ∆4,5 ≤ ∆3,4 ≤ ∆1,2)
V (∆1,2 ≤ ∆4,5 ≤ ∆2,3 ≤ ∆3,4) 0.038 XX (∆3,4 ≤ ∆2,3 ≤ ∆4,5 ≤ ∆1,2)
VI (∆1,2 ≤ ∆4,5 ≤ ∆3,4 ≤ ∆2,3) 0.048 XIX (∆2,3 ≤ ∆3,4 ≤ ∆4,5 ≤ ∆1,2)
VII (∆2,3 ≤ ∆1,2 ≤ ∆3,4 ≤ ∆4,5) 0.026 XVIII (∆4,5 ≤ ∆3,4 ≤ ∆1,2 ≤ ∆2,3)
VIII (∆2,3 ≤ ∆1,2 ≤ ∆4,5 ≤ ∆3,4) 0.033 XVII (∆3,4 ≤ ∆4,5 ≤ ∆1,2 ≤ ∆2,3)
IX (∆2,3 ≤ ∆3,4 ≤ ∆1,2 ≤ ∆4,5) 0.038 XVI (∆4,5 ≤ ∆1,2 ≤ ∆3,4 ≤ ∆2,3)
X (∆2,3 ≤ ∆4,5 ≤ ∆1,2 ≤ ∆3,4) 0.065 XV (∆3,4 ≤ ∆1,2 ≤ ∆4,5 ≤ ∆2,3)
XI (∆3,4 ≤ ∆1,2 ≤ ∆2,3 ≤ ∆4,5) 0.059 XIV (∆4,5 ≤ ∆2,3 ≤ ∆1,2 ≤ ∆3,4)
XII (∆3,4 ≤ ∆2,3 ≤ ∆1,2 ≤ ∆4,5) 0.048 XIII (∆4,5 ≤ ∆1,2 ≤ ∆2,3 ≤ ∆3,4)

Table B.2: Case differentiation for data situations in a sample of size n = 5 distinguished by the order
of the first differences ∆i,i+1 and the corresponding probability of occurrence of each case
for independent standard normal data.

Sample Size n = 5

For a sample size of n = 5, the probabilities for two, one or no zero residual will be
derived in the same way as for sample size n = 4. Here, we have the

(
n
2

)
= n(n−1)

2
= 10

observational slopes

b(1, 2), b(1, 3), b(1, 4), b(1, 5), b(2, 3), b(2, 4), b(2, 5), b(3, 4), b(3, 5), and b(4, 5).

The order of the increasingly sorted slopes is again determined by the arrangement or
order of the observations which, as above, can be characterised by the first differences
∆i,i+1. The (n − 1)! = 24 possible orders of the first differences, specifying the different
cases, are given in Table B.2. Since the cases XIII to XXIV correspond to mirrored versions
of the cases I to XII, they yield analogous expressions for the RM regression estimates.
Because the calculations are similar for each case we will only show the derivations for
the cases I to III.
The conditions on the first differences listed in Table B.2 are not sufficient to uniquely
determine the order of increasingly sorted slopes. To be able to do so, for some cases
additional conditions are necessary. These will be derived below, together with the cor-
responding order of observational slopes and RM coefficients. To calculate the probabilities
for the occurrence of each of the cases for n = 5 independent observations coming from
standard normally distributed random variables Y1, Y2, Y3, Y4, Y5, we use equation (B.1).
Therefore, let Y = (Y1, Y2, Y3, Y4, Y5)′ ∼ N(05, I5) with 05 = (0, 0, 0, 0, 0)′ and I5 the
(5× 5) identity matrix.
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Case I (∆1,2 ≤ ∆2,3 ≤ ∆3,4 ≤ ∆4,5)

Let S1 = ∆2,3 − ∆1,2, S2 = ∆3,4 − ∆2,3 and S3 = ∆4,5 − ∆3,4, with ∆i,i+1 denoting the
random variables of first differences of the Yi. For the probability of case I we have

P
(
∆1,2 ≤ ∆2,3 ≤ ∆3,4 ≤ ∆4,5

)
= P

(
(∆1,2 ≤ ∆2,3) ∧ (∆2,3 ≤ ∆3,4) ∧ (∆3,4 ≤ ∆4,5)

)
= P

(
(S1 ≥ 0) ∧ (S2 ≥ 0) ∧ (S3 ≥ 0)

)
.

This can be evaluated via the joint distribution of S1, S2 and S3. Let TI0 = (S1, S2, S3)′.

According to equation (B.1) it is TI0 ∼ N(03, ΣI0) with ΣI0 =


6 −4 1

−4 6 −4

1 −4 6

 .

Numerical integration yields P
(
∆1,2 ≤ ∆2,3 ≤ ∆3,4 ≤ ∆4,5

)
= 0.02219. The probabilities

of all cases are listed in the third column of Table B.2.
Since we are interested in the number and position of zero residuals in the sample, we will
now derive the RM coefficients for case I. With equation (2.12) we can deduce that

b(1, 2) ≤ b(1, 3) ≤ b(1, 4) ≤ b(1, 5)

∧ b(1, 2) ≤ b(2, 3) ≤ b(2, 4) ≤ b(2, 5)

∧ b(1, 3) ≤ b(2, 3) ≤ b(3, 4) ≤ b(3, 5)

∧ b(1, 4) ≤ b(2, 4) ≤ b(3, 4) ≤ b(4, 5)

∧ b(1, 5) ≤ b(2, 5) ≤ b(3, 5) ≤ b(4, 5)

⇒



b̃(1) = med{b(1, 3), b(1, 4)} = 1
12

[5∆1,2 + 5∆2,3 + 2∆3,4]

∧ b̃(2) = med{b(2, 3), b(2, 4)} = 1
4

[3∆2,3 + ∆3,4]

∧ b̃(3) = med{b(2, 3), b(3, 4)} = 1
2

[∆2,3 + ∆3,4] = b(2, 4)

∧ b̃(4) = med{b(2, 4), b(3, 4)} = 1
4

[∆2,3 + 3∆3,4]

∧ b̃(5) = med{b(2, 5), b(3, 5)} = 1
12

[2∆2,3 + 5∆3,4 + 5∆4,5]

.

In addition, we have b̃(1) ≤ b̃(2) ≤ b̃(3) ≤ b̃(4) ≤ b̃(5) and thus

β̂RM = med{b̃(1), b̃(2), b̃(3), b̃(4), b̃(5)} = b̃(3) = b(2, 4) .

Furthermore, it is Y3 − 3β̂RM ≤ Y2 − 2β̂RM = Y4 − 4β̂RM ≤ Y5 − 5β̂RM and
Y4 − 4β̂RM ≤ Y1 − β̂RM . Hence, we get

⇒ µ̂RM = Y2 − 2β̂RM = Y4 − 4β̂RM .

This means that the RM line runs through Y2 and Y4 for data fulfilling the conditions of
case I. If the strict inequality is true in all of these conditions, we have for the corresponding
residuals r1 > 0, r2 = 0, r3 < 0, r4 = 0 and r5 > 0, i.e.

∑n
i=1 sign(ri) = 1. Hence, the

balance of residual signs (2.6) is not fulfilled here. Nevertheless, the median of the residuals
is zero.
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case II condition order of slopes

(i) ∆1,2 + ∆3,4 + ∆4,5 ≥≤ 3∆2,3 b(1, 5) ≥≤ b(2, 3)

(ii) ∆1,2 + ∆3,4 ≥≤ 2∆2,3 b(1, 4) ≥≤ b(2, 3)

(iii) ∆1,2 + ∆2,3 + ∆3,4 ≥≤ 3∆4,5 b(1, 4) ≥≤ b(1, 5) ≥≤ b(4, 5)

Table B.3: Additional conditions on the first differences and resulting order of observational slopes for
case II in a sample of size n = 5. The operator ≥≤ can be replaced by either ≤ or ≥ in each
of the conditions.

operator ≥≤ in
case

(i) (ii) (iii)
order of observational slopes

II(1) ≤ ≤ ≤ b(1, 2)≤b(1, 3)≤b(1, 4)≤b(1, 5)≤b(2, 3)≤b(4, 5)≤b(2, 5)≤b(2, 4)≤b(3, 5)≤b(3, 4)

II(2) ≥ ≤ ≤ b(1, 2)≤b(1, 3)≤b(1, 4)≤b(2, 3)≤b(1, 5)≤b(4, 5)≤b(2, 5)≤b(2, 4)≤b(3, 5)≤b(3, 4)

II(3) ≥ ≥ ≤ b(1, 2)≤b(1, 3)≤b(2, 3)≤b(1, 4)≤b(1, 5)≤b(4, 5)≤b(2, 5)≤b(2, 4)≤b(3, 5)≤b(3, 4)

II(4) ≥ ≥ ≥ b(1, 2)≤b(1, 3)≤b(2, 3)≤b(4, 5)≤b(1, 5)≤b(1, 4)≤b(2, 5)≤b(2, 4)≤b(3, 5)≤b(3, 4)

Table B.4: Definition of sub-cases of case II for sample size n = 5 by specification of the inequality
signs replacing the operator ≥≤ in Table B.3. The last column gives the resulting order of
observational slopes; under the condition (∆1,2 ≤ ∆2,3 ≤ ∆4,5 ≤ ∆3,4) for case II no other
order of observational slopes is possible.

Case II

The probability of case II occurring for n = 5 observations from standard normal i.i.d.
variables can be derived similar to case I by using the joint distribution of the random
variables S1 = ∆2,3 − ∆1,2, S2 = ∆4,5 − ∆2,3 and S3 = ∆3,4 − ∆4,5. However, further
case differentiations are necessary here, to determine the cases in which zero residuals
occur and at which positions within the sample they are located. The probabilities for
such subcases can again be derived via the joint distribution of S1, S2, S3 and suitable
linear combinations of them.

To be able to uniquely sort the ten observational slopes, the appropriate inequality signs
to replace the operator ≥≤ in the additional conditions specified in Table B.3 have to
be known. Below, we will use the notation (i)≥ if the operator ≥≤ is replaced by ≥ in
the first row of Table B.3; and we use (i)≤ if ≥≤ is replaced by ≤. For example, (iii)≤
corresponds to ∆1,2 + ∆2,3 + ∆3,4 ≤ 3∆4,5 and thus it is b(1, 4) ≤ b(1, 5) ≤ b(4, 5). In
particular, we have for the three conditions from Table B.3 (i)≤ ⇒ (ii)≤ ⇒ (iii)≤, and
(iii)≥ ⇒ (ii)≥ ⇒ (i)≥. In consideration of these implications, four possible sets of ordered
observational slopes remain for case II, see Table B.4.

The unique order of observational slopes is not enough for a unique identification of
expressions for the RM coefficients. Table B.5 gives further conditions for that and Table
B.6 lists the corresponding results with their probabilities and the order of residual signs
showing that (2.6) is fulfilled with probability one in case of continuous errors.
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cases additional conditions

II(1), II(2), II(3) (a) (4∆2,3 + ∆3,4 ≤ 5∆4,5) ∧ (2∆2,3 + ∆3,4 ≤ 3∆4,5)
II(1), II(2), II(3) (b) (4∆2,3 + ∆3,4 ≤ 5∆4,5) ∧ (2∆2,3 + ∆3,4 ≥ 3∆4,5)
II(1), II(2), II(3) (c) (4∆2,3 + ∆3,4 ≥ 5∆4,5)

II(4) (a) (4∆2,3 + ∆3,4 ≤ 5∆4,5)
II(4) (b) (4∆2,3 + ∆3,4 ≥ 5∆4,5) ∧ (3∆1,2 + ∆2,3 + ∆3,4 ≤ 5∆4,5)
II(4) (c) (4∆2,3 + ∆3,4 ≥ 5∆4,5) ∧ (3∆1,2 + ∆2,3 + ∆3,4 ≥ 5∆4,5)

Table B.5: Further case differentiation of the cases II(1) to II(4) for n = 5 by specifying additional
conditions for the unique determination of the RM regression coefficients.

order of
case β̂

RM
µ̂RM

residual signs
probability

II(1)(a) 1
4

[2∆2,3 + ∆3,4 + ∆4,5] Y4 − 4β̂RM (1 -1 -1 0 1) 0.00232
II(1)(b) 1

4
[2∆2,3 + ∆3,4 + ∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00076

II(1)(c) 1
6

[∆2,3 + ∆3,4 + 4∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00146

II(2)(a) 1
4

[2∆2,3 + ∆3,4 + ∆4,5] Y4 − 4β̂RM (1 -1 -1 0 1) 0.00167
II(2)(b) 1

4
[2∆2,3 + ∆3,4 + ∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00024

II(2)(c) 1
6

[∆2,3 + ∆3,4 + 4∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00017

II(3)(a) 1
4

[2∆2,3 + ∆3,4 + ∆4,5] Y4 − 4β̂RM (1 -1 -1 0 1) 0.01036
II(3)(b) 1

4
[2∆2,3 + ∆3,4 + ∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00203

II(3)(c) 1
6

[∆2,3 + ∆3,4 + 4∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00079

II(4)(a) 1
4

[2∆2,3 + ∆3,4 + ∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00122
II(4)(b) 1

6
[∆2,3 + ∆3,4 + 4∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00103

II(4)(c) 1
6

[∆2,3 + ∆3,4 + 4∆4,5] Y5 − 5β̂RM (1 -1 -1 1 0) 0.00371

Table B.6: Expressions for the RM coefficients for all sub-cases of case II for n = 5. The fourth column
gives the corresponding order of residual signs, the fifth column contains the probability of
this event occurring for standard normal data.

Case III

Table B.7 shows five additional conditions for a unique identification of the RM coeffi-
cients. For these conditions we have (i)≤ ⇒ (iii)≤ ⇒ (v)≤, (i)≤ ⇒ (ii)≤, (iv)≤ ⇒ (v)≤,
(v)≥ ⇒ (iii)≥ ⇒ (i)≥, (ii)≥ ⇒ (i)≥, (v)≥ ⇒ (iv)≥ as well as ((ii)≤ & (iii)≥)⇒ (iv)≥

and ((ii)≥ & (iii)≤)⇒ (iv)≤. Thus, there are ten possibilities for ordering the obser-
vational slopes. Table B.8 lists these cases together with the according RM regression
coefficients and their probabilities at standard normal data. Here, all sub-cases result in
the order (1, -1, 0, -1, 1) for the residual signs, i.e. (2.6) is fulfilled with probability one.
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case III conditions order of slopes

(i) ∆1,2 + ∆2,3 + ∆4,5 ≥≤ 3∆3,4 b(1, 5) ≥≤ b(3, 4)

(ii) ∆1,2 + ∆2,3 ≥≤ 2∆3,4 b(1, 3) ≥≤ b(1, 4) ≥≤ b(3, 4)

(iii) ∆1,2 + ∆4,5 ≥≤ ∆2,3 + ∆3,4 b(1, 5) ≥≤ b(2, 4)

(iv) ∆3,4 + ∆4,5 ≥≤ 2∆2,3 b(3, 5) ≥≤ b(2, 5) ≥≤ b(2, 3)

(v) ∆1,2 + ∆3,4 + ∆4,5 ≥≤ 3∆2,3 b(1, 5) ≥≤ b(2, 3)

Table B.7: Additional conditions on the first differences and resulting order of observational slopes for
case III in a sample of size n = 5 where the operator ≥≤ can be replaced by ≤ or by ≥.

operator ≥≤ in
case

(i) (ii) (iii)(iv) (v)
β̂
RM

µ̂RM probability

III(1) ≤ ≤ ≤ ≤ ≤ 1
4

[3∆3,4 + ∆4,5] Y3 − 3β̂RM 0.00209
III(2) ≥ ≤ ≤ ≤ ≤ 1

4
[3∆3,4 + ∆4,5] Y3 − 3β̂RM 0.00399

III(3) ≤ ≤ ≤ ≥ ≤ b(2, 4) Y3 − 3β̂RM 0.00323
III(4) ≥ ≤ ≤ ≥ ≤ b(2, 4) Y3 − 3β̂RM 0.00262
III(5) ≥ ≤ ≥ ≥ ≤ b(2, 4) Y3 − 3β̂RM 0.00262
III(6) ≥ ≤ ≥ ≥ ≥ b(2, 4) Y3 − 3β̂RM 0.00323
III(7) ≥ ≥ ≤ ≤ ≤ b(1, 5) Y3 − 3β̂RM 0.00706
III(8) ≥ ≥ ≥ ≤ ≤ b(1, 5) Y3 − 3β̂RM 0.00433
III(9) ≥ ≥ ≥ ≥ ≤ 1

4
[∆1,2 + 3∆2,3] Y3 − 3β̂RM 0.00399

III(10) ≥ ≥ ≥ ≥ ≥ 1
4

[∆1,2 + 3∆2,3] Y3 − 3β̂RM 0.00209

Table B.8: Expressions for the RM coefficients for all sub-cases of case III for n = 5. The last co-
lumn contains the corresponding probability of occurrence for data from a standard normal
distribution.

Cases IV – XII

For the cases IV to XII the expressions for the RM coefficients, the resulting order of
the residual signs and the corresponding probabilities for standard normal data can be
derived analogously. Table B.9 summarises the outcomes by listing all possible orders of
residual signs in a sample of size n = 5 together with their probabilities for standard
normal data. A comprised interpretation of the results is given in Section 2.2.
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sign(r1) sign(r2) sign(r3) sign(r4) sign(r5) probability

0 1 1 -1 0 0.02711
0 -1 -1 1 0 0.02711
0 1 -1 1 0 0.02910
0 -1 1 -1 0 0.02910
0 1 -1 -1 0 0.02711
0 -1 1 1 0 0.02711

0 1 0 -1 1 0.00714
0 -1 0 1 -1 0.00714
0 1 0 1 -1 0.00664
0 -1 0 -1 1 0.00664

1 0 -1 0 1 0.02219
-1 0 1 0 -1 0.02219

1 -1 0 1 0 0.00714
-1 1 0 -1 0 0.00714
1 -1 0 -1 0 0.00665
-1 1 0 1 0 0.00665

0 1 -1 1 -1 0.03661
0 -1 1 -1 1 0.03661
0 1 -1 -1 1 0.04879
0 -1 1 1 -1 0.04879

1 0 -1 -1 1 0.02391
-1 0 1 1 -1 0.02391

1 -1 0 1 -1 0.08296
-1 1 0 -1 1 0.08296
1 -1 0 -1 1 0.06552
-1 1 0 1 -1 0.06552

1 -1 -1 0 1 0.02391
-1 1 1 0 -1 0.02391

1 -1 1 -1 0 0.03661
-1 1 -1 1 0 0.03661
1 -1 -1 1 0 0.04865
-1 1 1 -1 0 0.04865

Table B.9: All possible orders of the signs of RM residuals for a sample of size n = 5 with the corres-
ponding probability of occurrence for independent standard normal data.
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C The Univariate Adaptive Repeated Median

Filter – Supplementary Graphics
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Figure C.1: Empirical density of the distribution of the test statistic T for all possible subsets It in-
dicating a set of nIt = 7 consecutive out of nt = 15 RM residuals (brown) for Cauchy
data. For reference, the (large sample) approximation for this density (3.16) appears in the
background (grey).
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Figure C.2: Empirical density of the distribution of the test statistic T for all possible subsets It indi-
cating a set of nIt

= 7 consecutive out of nt = 15 RM residuals (dark red) for data from a
lognormal distribution with mean zero and unit variance. For reference, the (large sample)
approximation for this density (3.16) appears in the background (grey).
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Figure C.3: Time delay in tracing a trend change at time t0 ∈ {11, 21, . . . , 131} produced by adaptive
RM filters with different settings.
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Figure C.4: Computation times in seconds required by adaptive online RM filters applying different
search algorithms for the window width when analysing standard normal time series of
length 100. The boxplots are based on 1000 simulation runs each.
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Figure C.5: Summary statistics of the window widths nt and the number of iterations `t required by the
adaptive online RM filter at time t when using different search algorithms for the width.
These summary statistics are based on 1000 simulated standard normal time series of length
100.
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Figure C.6: Computation times in seconds required by adaptive online RM filters applying different
search algorithms for the window width when analysing standard normal time series of
length 100 with a level shift at t0 = 51 and a signal-to-noise ratio of one. The boxplots are
based on 1000 simulation runs each.
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Figure C.7: Summary statistics of the window widths nt and the number of iterations `t required by the
adaptive online RM filter at time t when using different search algorithms for the width.
These summary statistics are based on 1000 simulated standard normal time series of length
100 with a level shift at t0 = 51 and a signal-to-noise ratio of one.
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Figure C.8: Computation times in seconds required by adaptive online RM filters applying different
search algorithms for the window width when analysing standard normal time series of
length 100 with a level shift at t0 = 51 and a signal-to-noise ratio of two. The boxplots are
based on 1000 simulation runs each.
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Figure C.9: Summary statistics of the window widths nt and the number of iterations `t required by the
adaptive online RM filter at time t when using different search algorithms for the width.
These summary statistics are based on 1000 simulated standard normal time series of length
100 with a level shift at t0 = 51 and a signal-to-noise ratio of two.
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D Breakdown Points

of Robust Scale Estimators

Finite Sample Breakdown Point of the Qα
all Scale Estimator

Explosion Breakdown Point of Qα
all

Let ykn denote a sample yn with k ∈ {1, . . . , n} observations altered to arbitrary values
such that only the

(
n−k

3

)
heights as defined by (4.3) in Section 4.2 of triangles formed

by three points from the original sample yn are bounded. Rousseeuw and Hubert (1996)
state that Qα

all applied to the sample ykn explodes if and only if(
n

3

)
−
⌊
α

(
n

3

)⌋
+ 1 ≤

(
n

3

)
−
(
n− k

3

)
(D.1)

⇔
(
n− k

3

)
<

⌊
α

(
n

3

)⌋
,

i.e. Qα
all explodes if the number of bounded heights is smaller than the order of the quantile⌊

α
(
n
3

)⌋
defining the estimator.

To determine the exact finite sample explosion breakdown point of Qα
all we have to find

the smallest integer k ∈ {1, . . . , n} fulfilling (D.1), i.e.(
n− k

3

)
=

⌊
α

(
n

3

)⌋
− 1

⇔ 0 =

⌊
α

(
n

3

)⌋
− 1−

(
n− k

3

)
. (D.2)

For the ease of notation define
Q :=

⌊
α

(
n

3

)⌋
. (D.3)

The solution of equation (D.2) is given by k∗ := dx∗e where x∗ ∈ R+ is a solution of the
following transformation of this equation:

x3 − (3n− 3)x2 + (3n2 − 6n+ 2)x− n3 + 3n2 − 2n+ 6(Q− 1) = 0 . (D.4)

Substituting y := x− (n− 1), equation (D.4) reads

y3 − y + 6(Q− 1) = 0 , (D.5)

and a solution to this can be derived using Cardano’s formula, see e.g. Lorenz and Lem-
mermeyer (2007), Chapter 15.
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Setting p := −1/3 and q := 3(Q − 1) with Q according to (D.3), equation (D.5) has
exactly one real solution y∗ if the discriminant D := q2 + p3 = 9(Q − 1)2 − 1/27 is
larger than zero. Since D is always strictly positive for Q ≥ 2, the real solution y∗ for
all values α ≥ 2/

(
n
3

)
is given by y∗1, defined below. For a negative discriminant D, i.e. for

α < 2/
(
n
3

)
, there are three real solutions y∗1, y∗2 and y∗3 to equation (D.5).

Define
u =

3

√
−q +

√
D and v =

3

√
−q −

√
D. (D.6)

According to Cardano’s formula the solutions for equation (D.5) are then given by

y∗1 := u+ v

y∗2 :=
1

2
(−1 +

√
3i) · u+

1

2
(−1−

√
3i) · v = −1

2
(u+ v) +

√
3

2
(u− v)i (D.7)

y∗3 :=
1

2
(−1−

√
3i) · u+

1

2
(−1 +

√
3i) · v = −1

2
(u+ v)−

√
3

2
(u− v)i , (D.8)

where i ∈ C denotes the imaginary part of a complex number. Since we search for the
smallest solution such that x∗ is positive, define

y∗ := min
{
{y∗1, y∗2, y∗3} ∩

(
− (n− 1),∞

)}
.

The smallest number of replaced observations in the sample such that the number of
bounded heights is smaller than Q is then given by

k∗ = dx∗e = dy∗ + (n− 1)e ,

and the finite sample explosion breakdown point of Qα
all at a sample with empirical dis-

tribution function Fn corresponds to

fsbp+(Qα
all, Fn) =

k∗

n
. (D.9)

Figure 4.3 in Section 4.2 provides a graphical representation of fsbp+(Qα
all, Fn) for α ∈

[1/
(
n
3

)
, 1] and a comparison with its asymptotic counterpart apb+(Qα

all) = 1 − 3
√
α for

different sample sizes n.

Implosion Breakdown Point of Qα
all

Here, let ykn denote a sample yn (in general position) with k ∈ {1, . . . , n} observations
replaced such that k+ 1 observations are identical. In that case,

(
k+1

3

)
+
(
k+1

2

)
(n− k− 1)

of the triangle heights are zero. Rousseeuw and Hubert (1996) show that the estimator
Qα
all stays strictly positive when replacing k observations in the described manner with(

k + 1

3

)
+

(
k + 1

2

)
(n− k − 1) ≤

⌊
α

(
n

3

)⌋
− 1 .
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Hence, we have to find the smallest value of k ∈ {1, . . . , n} such that(
k + 1

3

)
+

(
k + 1

2

)
(n− k − 1) ≥

⌊
α

(
n

3

)⌋
. (D.10)

Denote the desired value by k∗. Setting k∗ := bx∗c, we have to search for the smallest
solution x∗ ∈ R+ which solves the following equation, derived from a transformation of
(D.10):

x3 − 3n− 6

2
x2 − 3n− 4

2
+ 3Q = 0 , (D.11)

with Q as defined in (D.3).
Substituting y := x− n−2

2
, equation (D.11) reads

y3 + 3py + 2q = 0 (D.12)

with p = −
(
n− 2

2

)2

− n− 2

2
− 1

3

and q = −
(
n− 2

2

)3

− 3

2

(
n− 2

2

)2

− 1

2

(
n− 2

2

)
+

3

2
Q .

Analogous to the derivation of the explosion breakdown point, equation (D.12) can be
solved using Cardano’s formula, inserting p and q (as defined above) into equations (D.6)
and (D.7).
Here, we haveD = q2+p3 < 0 for all values n ∈ N and α ∈ [1/

(
n
3

)
, 1], i.e. there always exist

three real solutions to equation (D.12). However, since we seek a non-negative solution
for (D.11), we choose

y∗ := min
{
{y∗1, y∗2, y∗3} ∩

(
− n− 2

2
,∞
)}

and let
k∗ = bx∗c = by∗ +

n− 2

2
c .

The finite sample implosion breakdown point of Qα
all at a sample of size n with empirical

distribution function Fn is then given by

fsbp−(Qα
all, Fn) =

k∗

n
. (D.13)

Figure 4.3 in Section 4.2 provides a graphical representation of fsbp−(Qα
all, Fn) for α ∈

[1/
(
n
3

)
, 1] and a comparison with its asymptotic counterpart apb−(Qα

all), defined in (4.7),
for different sample sizes n.
For 1

2
≤ α < 1

2
+ 1

(n3)
, we can also give a simple expression for the finite sample implosion

breakdown point: if α lies in the specified interval, it is q = 0, leading to y∗ = 0, and
(D.13) corresponds to

fsbp−(Qα
all, Fn) =

b(n− 2)/2c
n

for α ∈

[
1

2
,

1

2
+

1(
n
3

)) .



150 Appendix D

Maximum Finite Sample Breakdown Point

of the Model-Free Scale Estimators

Let Sαadj denote any of the model-free scale estimators Qα
adj (4.11), TMα

adj (4.12) or TMSαadj

(4.13) based on adjacent triangle heights (4.10), described in Section 4.3. In the followi-
ng, we determine the maximum value possible for the finite sample breakdown point
fsbp(Sαadj, Fn) at a sample yn of size n with empirical distribution function Fn. Further-
more, we derive the corresponding values of α for which the maximum breakdown point
is achieved. Therefor consider the quantities

A :=

⌈
n− 1− bα(n− 2)c

3

⌉
and B := bα(n− 2)c .

According to definition (A.2) and with the considerations from Section 4.3, the finite
sample breakdown point corresponds to

fsbp(Sαadj, Fn) = min{A,B}/n .

For increasing values of α ∈ [1/(n−2), 1], the quantity A is decreasing while B is increasing
(see Figure 4.7 in Section 4.3). Hence, the maximum breakdown point is equal to B/n
for certain α ∈ [αmin, α1), and it equals A/n for certain α ∈ [α1, αmax). The maximum
value for fsbp(Sαadj, Fn) is reached for any value of α for which A = B, whenever this is
possible. To determine the bounds αmin and αmax, we distinguish between the four cases
where either n+ 1, n, n− 1 or n+ 2, respectively, is divisible by four.

Case I: n ∈ {4k − 1, k ∈ N}

(a) Let α = n+1
4(n−2)

− ε with arbitrary small ε > 0. Then

B =

⌊(
n+ 1

4(n− 2)
− ε
)

(n− 2)

⌋
=

⌊
n+ 1

4
− ε(n− 2)

⌋
<
n+ 1

4
.

Hence B/n < n+1
4n

for α < αmin := n+1
4(n−2)

.

(b) Consider x ∈ [n+ 1, n+ 5) and α = x
4(n−2)

. Then B = bx/4c = (n+ 1)/4,

A =

⌈
n− 1−B

3

⌉
=

⌈
n− 1− (n+ 1)/4

3

⌉
=

⌈
n+ 1

4
− 2

3

⌉
=
n+ 1

4
= B

and hence A/n = B/n = n+1
4n

for α ∈
[

n+1
4(n−2)

, n+5
4(n−2)

)
.
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(c) For α = n+5
4(n−2)

it is B = b(n+ 5)/4c = (n+ 1)/4 + 1 and

A =

⌈
n− 1− (n+ 1)/4− 1

3

⌉
=

⌈
n+ 1

4
− 1

⌉
=
n+ 1

4
− 1 .

Thus, A/n < n+1
4n

for all α ≥ αmax := n+5
4(n−2)

.

From (a), (b), (c) with A decreasing and B increasing in α, the maximum value for
fsbp(Sαadj, Fn) = n+1

4n
is reached for α ∈

[
n+1

4(n−2)
, n+5

4(n−2)

)
.

Case II: n ∈ {4k, k ∈ N}
Analogous to Case I we can show:

(a) For α = n
4(n−2)

− ε, ε > 0, it is B =
⌊
n
4
− ε(n− 2)

⌋
< n

4
and hence 1

n
B < 1

4
for

α < αmin := n
4(n−2)

.

(b) (i) Consider x ∈ [n, n + 4) and α = x
4(n−2)

. Then B = bx/4c = n/4 and A =⌈
n−1−n/4

3

⌉
=
⌈
n
4
− 1

3

⌉
= n

4
, and thus A/n = B/n = 1/4 for α ∈

[
n

4(n−2)
, n+4

4(n−2)

)
.

(ii) For x ∈ [n + 4, n + 8) and α = x
4(n−2)

, it is B = bx/4c = n/4 + 1 and

A =
⌈
n
4
− 2

3

⌉
= n

4
. Following it is A/n = 1/4 < B/n for α ∈

[
n+4

4(n−2)
, n+8

4(n−2)

)
.

(c) For α = n+8
4(n−2)

it is B = b(n+ 8)/4c = n/4 + 2 and A =
⌈
n
4
− 1
⌉

= n
4
− 1 . Hence, it

is A/n < 1
4
∀ α ≥ αmax := n+8

4(n−2)
.

Thus, the maximum value 1/4 for the finite sample breakdown point fsbp(S, Fn) is reached
for α ∈

[
n

4(n−2)
, n+8

4(n−2)

)
.

Case III: n ∈ {4k + 1, k ∈ N}
Here, we can show

(a) 1
n
B < n−1

4n
for α < αmin := n−1

4(n−2)
.

(b) (i) 1
n
A = 1

n
B = n−1

4n
for α ∈

[
n−1

4(n−2)
, n+3

4(n−2)

)
.

(ii) 1
n
A = n−1

4n
< 1

n
B for α ∈

[
n+7

4(n−2)
, n+11

4(n−2)

)
(c) 1

n
A < n−1

4n
∀ α ≥ αmax := n+11

4(n−2)
.

Thus, the maximum value n−1
4n

for fsbp(Sαadj, Fn) is reached for α ∈
[

n−1
4(n−2)

, n+11
4(n−2)

)
.
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Case IV: n ∈ {4k + 2, k ∈ N}

Here, it is

(a) 1
n
B < (n− 2)/4n for α < 1/4.

(b) 1
n
B = n−2

4n
for α ∈

[
1
4
, n+2

4(n−2)

)
.

(c) 1
n
A = n−2

4n
for α ∈

[
n+2

4(n−2)
, n+14

4(n−2)

)
.

(d) 1
n
A ≤ n−2

4n
− 1

n
for any α ≥ n+14

4(n−2)
.

From (a), (b), (c) and (d) we can conclude that the maximum finite sample breakdown
point fsbp(Sαadj, Fn) = n−2

4n
is reached for α ∈

[
1
4
, n+14

4(n−2)

)
. Note that in this case, the

equation A = B does not hold for any value of α ∈ [0, 1] because:

A = B

⇔
⌈
n− 1− bα(n− 2)c

3

⌉
= bα(n− 2)c

⇔ bα(n− 2)c − 1 < n−1−bα(n−2)c
3

≤ bα(n− 2)c

⇔ n− 1

4
≤ bα(n− 2)c <

n+ 2

4
.

By definition bα(n− 2)c ∈ N. However, for n ∈ {4k + 2, k ∈ N} there is no integer in the
interval [n−1

4
, n+2

4
).
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