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Abstract

We consider billiard trajectories in ideal hyperbolic polygons and present a

conjecture about the minimality of the average length of cyclically related

billiard trajectories in regular hyperbolic polygons. We prove this con-

jecture in particular cases, using geometric and algebraic methods from

hyperbolic geometry.

1 Introduction

In this article we study billiards in polygons of the hyperbolic plane. Our main
model of the hyperbolic plane is the Poincaré unit disk D = {z ∈ C | |z| < 1}.
The polygons Π ⊂ D under consideration are ideal, which means that all vertices
of Π lie in the boundary at infinity ∂D = {z ∈ C | |z| = 1}.

A billiard curve c : R → Π is a piecewise smooth curve, parametrized by
arc-length and consisting of geodesic arcs which are reflected at the walls of
the polygon. To avoid technical difficulties, we do not consider billiard curves
starting or ending in vertices of the polygon. Moreover, we identify billiard
curves up to (orientation-preserving) reparametrizations, hence leading to the
same trajectory. A natural way to decode a billiard trajectory is to capture
the order in which it hits the polygonal sides. By enumerating the sides of
the polygon counter-clockwise from 1 to k, every billiard trajectory gives rise
to a bi-infinite billiard sequence (aj)j∈Z with aj ∈ {1, . . . , k}. Note that we
identify sequences which are just shifts of each other and denote the set of all
those (identified) billiard sequences by S(Π). In contrast to Euclidean poygonal
billiards, every billiard sequence uniquely determines the corresponding billiard
trajectory in the hyperbolic polygon (see Theorem 2.1 below).
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Obviously, periodic billiard trajectories correspond to periodic billiard se-
quences (aj). A billiard sequence (aj) with period n is also denoted by a =
a0, a1, . . . , an−1 (see Figure 1 for illustration). Let Sper(Π) be the set of all pe-
riodic sequences in S(Π). We can associate to a = a0, . . . , an−1 a closed billiard
trajectory which starts and ends at the side a0 and hits the sides of the polygon
Π in the order a1, . . . , an−1. The (finite) hyperbolic length of this closed piece-
wise geodesic curve is denoted by L(Π,a). In this geometric interpretation, the
shift a1, . . . , an−1, a0 of a corresponds to the same closed billiard trajectory with
a different start point but of the same finite length. As mentioned above, we
identify all shifts in the set of all periodic billiard sequences Sper(Π). Note that
a not only represents an element in Sper(Π), but also contains the information
on its period. Thus, a = a0, a1, . . . , an−1 and b = a0, . . . , an−1, a0, . . . , an−1

both represent the same element in Sper(Π), but we have L(Π,b) = 2L(Π,a).

1

2

3 4

5

6

Figure 1: Illustration of the periodic trajectory 1, 5, 2, 3, 6

Next we introduce cyclically related closed billiard trajectories in a k-gon Π.
a = a0, a1, . . . , an−1 and b = b0, b1, . . . , bn−1 are called cyclically related if there
is a fixed integer s ∈ Z such that

bj ≡ aj + s mod k for all j = 0, 1, . . . , n − 1.

We write a ∼ b, if a and b are cyclically related. Another more geometric way
to view cyclically related billiard trajectories is to keep the symbolic encoding
a0, . . . , an−1, but to change the counter-clockwise enumeration of the sides of
Π, i.e., to choose a different side with the label 1. This leads to different closed
billiard trajectories in Π which have, however, the same combinatorial struc-
ture. Note that “shifts” and “being cyclically related” are completely different
concepts: for example, in a pentagon, 1524 and its shifts (e.g., 5241) repre-
sent the same periodic billiard sequence, whereas 1524 and its cyclically related
sequences (e.g., 2135) are different elements in Sper(Π).

Figure 2 presents two cyclically related closed billiard trajectories. The
average length Lav(Π,a) is defined as the arithmetic mean of the lengths of all
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closed billiard trajectories b which are cyclically related to a, i.e.,

Lav(Π,a) =
1

k

∑

b∼a

L(Π,b).

An ideal k-gon Π ⊂ D is called regular if its symmetry group is the full dihedral
group Dk. If Π is regular, we obviously have L(Π,a) = L(Π,b) for cyclically
related closed trajectories and, therefore, also Lav(Π,a) = L(Π,a).

1
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5

(a) Trajectory 2, 3, 5, 4
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4
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(b) Trajectory 3, 4, 1, 5

Figure 2: Two cyclically related trajectories

We believe that the following statement is true.

Conjecture. Let Π ⊂ D be an ideal hyperbolic polygon with k (counter-clockwise
enumerated) sides and Π0 be a regular ideal k-gon (also equipped with an counter-
clockwise enumeration of its sides). Let a ∈ Sper(Π). Then we have

Lav(Π,a) ≥ L(Π0,a),

with equality if and only if Π is also a regular polygon.

We confirm this conjecture in Sections 4–6 for special billiard trajectories in
quadrilaterals, pentagons and hexagons. Our methods of proof are elementary;
we use only basic geometric and algebraic techniques in hyperbolic geometry,
namely

• hyperbolic trigonometry,

• general Möbius transformations,

• symmetry arguments.

We point out that the algebraic methods prompt a reformulation of our conjec-
ture which is described in Section 3.

It is natural to ask whether regular ideal polygons Π ⊂ D might have similar
quantum minimality properties, i.e., whether the bottom λ(Π) of the Dirich-
let spectrum of ideal hyperbolic k-gons is minimal if and only if Π is regular.
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For hyperbolic quadrilaterals within a compact geodesic ball B ⊂ D, the min-
imality property of the regular quadrilateral was proved in [KaPe-02]. In the
case of ideal polygons with arbitrarily many sides, it might be possible to deduce
this quantum minimality property from our conjecture via a Selberg/Gutzwiller
trace formula argument (see [Gu-90] for a recommendable and stimulating in-
troduction into quantum mechanics and, in particular, the Gutzwiller trace
formula).

Polygonal and polyhedral billiards in hyperbolic space are not only of the-
oretical interest but appear also in General Relativity in connection with the
Mixmaster Universe (see, e.g., the article [Mi-93] related to unpublished work
of D.M. Chitre) and as Cosmological Billiards (see, e.g., [DHN-03]).

The method of studying geodesics on hyperbolic surfaces with the help of
symbolic dynamics has a long history and turned out to be very successful with
beautiful connections to number theory ([Ha-1898, Ar-24, Se-85, KaUg-07] are
just a few relevant references on this subject).

Other results on billiards in hyperbolic space can be found, e.g., in [BaLo-97,
DJR-03, Fo-02, GSG-99, GuTa-06, GiUl-95, Ve-90]. Quantum aspects of bil-
liards in the hyperbolic plane are considered, e.g., the articles [Ah-07, Gr-99,
Schm-91]. For results about dual (or outer) billiards in the hyperbolic plane
see, e.g., the survey [TaDo-05] and the recent article [Ta-07].

Acknowledgement: Part of this research was supported by the Nuffield
Undergraduate Research Bursary URB/35743 in 2008. We are also grateful to
Anne Taormina for bringing the importance of billiards in hyperbolic polyhedra
in General Relativity to our attention.

2 Billiard sequences

The following theorem describes the coding of billiard sequences in ideal hyper-
bolic polygons.

Theorem 2.1. Let Π ⊂ D be an ideal polygon with counter-clockwise enumer-
ated sides with labels 1, . . . , k. A sequence (aj) ∈ {1, . . . , k}Z is in S(Π) if, and
only if,

(a) (aj) does not contain immediate repetitions, i.e., aj 6= aj+1 for all j ∈ Z.

(b) (aj) does not contain an infinitely repeated sequence of labels of two adja-
cent sides.

Moreover, every billiard sequence corresponds to one, and only one, billiard
trajectory.

A proof of this theorem was given in the article [GiUl-90]. However, for
the reader’s convenience, we present a different proof which is purely geometric
in nature. It should also be mentioned that the uniqueness of the coding in
Theorem 2.1 does not hold for Euclidean polygons: there are strips of parallel
periodic billiard trajectories in Euclidean polygons.

Let us first recall the procedure of unfolding a billiard trajectory and fix some
notations. Let a = (aj) be a billiard sequence in an ideal hyperbolic polygon
Π ⊂ D. Let s1, . . . , sk denote the sides of Π with the labels 1, . . . , k, respectively.
Instead of reflecting a billiard trajectory (corresponding to a) when it hits the
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side sa0
, we can continue its direction and reflect the polygon Π at this side. The

reflected polygon is denoted by Π′ with the sides s′1, . . . , s
′
k (note that the sides

sa0
and s′a0

coincide). Repeating this procedure in both future and past, we
obtain a single geodesic in D piercing through a sequence of isometric polygons
. . . ,Π(−2),Π(−1),Π,Π′,Π′′,Π(3), . . . at their sides

. . . , s(−2)
a
−2

, s(−1)
a
−1

, sa0
, s′a1

, s′′a2
, s(3)

a3
, . . . .

Since Π is an ideal polygon, its repeatedly reflected copies Π(j) only overlap in
the reflection sides. Figure 3 illustrates the first few reflections of the unfolding
of the periodic trajectory 2341 in an ideal quadrilateral.

Note also that we can tile all of D by infinitely many reflected copies of Π.
We denote the set of all vertices of these copies by V(Π) ⊂ ∂D.

Π

1

2

3

4

(a) Periodic trajectory before unfolding

Π

1

2

3

4

1′2′
4′

1(−1)

3(−1)

4(−1)

(b) Unfolding and reflected polygons

Figure 3: Unfolding a periodic trajectory

The proof of Theorem 2.1 is based on the following fact in hyperbolic geom-
etry (which follows immediately from the Nested Intervals Theorem).

Lemma 2.2. Let x ∈ D be fixed. Every geodesic c ⊂ D which does not contain x,
divides D into two open half spaces H+

c and H−
c with x ∈ H−

c . Let c0, c1, c2, . . .
be a such sequence of geodesics with the additional properties that

(i) cj+1 ⊂ H+
cj

for all j and

(ii) d(cj , x) → ∞.

Then the nested halfspaces H+
c0

⊃ H+
c1

⊃ · · · determine a unique ideal limit
point η ∈ ∂D and every geodesic ray connecting a point y ∈ H−

c0
with η pierces

successively once through each of the geodesics c0, c1, . . . .

Proof of Theorem 2.1. Let us first confirm the necessity of properties (a) and
(b) in the theorem. A billiard trajectory cannot hit the same side twice con-
secutively since two different geodesics cannot intersect twice. Next we explain
the necessity of (b): Let sj , sj+1 (with indices j, j + 1 taken modulo k) be two
adjacent sides of Π. Applying a suitable isometry, we can assume, w.l.o.g, that
these two sides are represented as the vertical geodesics {x = 0} and {x = 1} in
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the upper half plane model H = {z = x + iy ∈ C | y > 0}. A billiard trajectory
not starting or ending in the vertex ∞ of Π must consist of infinitely many arcs
of Euclidean semicircles within {x+iy ∈ H | 0 ≤ x ≤ 1}. Assume there is an arc
hitting both sides sj , sj+1 successsively. Unfolding this arc yields a full semicir-
cle C and the reflected images of sj , sj+1 are still vertical geodesics at x = n,
n ∈ Z, as long as no other sides of Π are hit by the billiard trajectory in the
immediate future or past. But the semicircle C can only intersect finitely many
of these vertical images, so the forward or backward pattern j, j +1, j, j +1, . . .
in the corresponding billiard sequence must be finite.

Now we choose a sequence a = (aj) satisfying (a) and (b) and want to
construct the corresponding unique billiard trajectory in Π. First choose an
arbitrary interior point x ∈ Π. The sequence a tells us how to obtain the

sequence of isometric polygons Π(j) by reflections in the sides cj := s
(j)
aj . The

idea then is to use Lemma 2.2 to obtain two limit points, α ∈ ∂D associated to
the sequence (cj)j≥0 and ω ∈ ∂D associated to the sequence (c−j)j≥1. Provided
α and ω are different and do not lie in V(Π), the geodesic connecting α with
ω will then be the unfolding of the unique billiard trajectory corresponding the
the billiard sequence a.

The sequence (cj)j≥0 obviously satisfies property (i) of Lemma 2.2. Let
d > 0 denote the minimum of all hyperbolic distances of non-adjacent sides of
Π. If aj and aj+1 are the labels of non-adjacent sides, we have

d(cj+1, x) ≥ d(cj+1, cj) + d(cj , x) ≥ d + d(cj , x), (1)

since a geodesic from x to a point of cj+1 must pass through a point of cj . From
this we can see that if there are infinitely many pairs (aj , aj+1) (with j ≥ 0)
corresponding to non-adjacent sides, we must have d(cj , x) → ∞. In this case
property (ii) of the lemma is also satisfied and we have a unique limit point
ω ∈ ∂D.

However, we do not always have an infinite number of pairs (aj , aj+1) cor-
responding to non-adjacent sides. (E.g., the billiard sequence 1234 of a quadri-
lateral has no such pairs.) In this case we consider triplets (aj−1, aj , aj+1) of

sides. If we take the union Π̃ of the two polygons Π(j) and Π(j+1) at either side
of the geodesic cj , we can treat it as though we are passing through side cj−1 in

one half of the resulting polygon Π̃, followed by cj+1 in the other half. cj−1 and

cj+1 are only adjacent sides of Π̃ if aj−1 = aj+1 ≡ aj ± 1 mod k (see Figure 4
for a representative example). In the non-adjacent case we have, again, a fixed
positive increase of distance similar to inequality (1).

Therefore the single case remaining is if there are only finitely many pairs
(aj , aj+1) corresponding to non-adjacent sides and a finite number of triples
(aj−1, aj , aj+1) satisfying aj−1 6= aj+1. However, if this were the case, then
there would be a m ≥ 0 such that

aj−1 = aj+1 ≡ aj ± 1 mod k

for all j ≥ m. This would mean that the sequence am, am+1, . . . merely al-
ternates between the labels of two adjacent sides, a situation which we ruled
out in the theorem. Therefore, the sequence (cj)j≥0 determines a unique limit
point ω ∈ ∂D. The same argument can be applied to the sequence (c−j)j≥1

(the effective ‘past’ of the trajectory), giving us again a unique point α ∈ ∂D.
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Π(j)

Π(j+1)

cjcj−1 cj+1

Figure 4: Combining two polygons Π(j) and Π(j+1)

It is clear that the two points α, ω must be distinct: from the above considera-
tions we know that there is a pair (cj , cj+1) or (cj−1, cj+1) of non-intersecting
geodesics with four different end points at infinity. But these geodesics separate
completely the future from the past and we must have α 6= ω.

It remains to show that α, ω do not lie in V(Π) (which would lead to a billiard
trajectory starting or ending in a vertex of the polygon). But it is easy to see
that if ω ∈ V(Π) then (aj)j≥0 would have eventually to alternate between the
labels of two adjacent sides, which is ruled out in the theorem. The same holds
true for the limit point α. This finishes the proof of the theorem.

3 Reformulation of the conjecture

In this section we work in the upper half plane model H with ∂H = R ∪ {∞}.
Let E ⊂ R

k−1 ⊂ (∂H)k−1 be the set of all η = (η1, . . . , ηk−1) with

−1 = η1 < η2 < · · · < ηk−1 = 1.

For η ∈ E , we define Π(η) ⊂ H to be the ideal k-gon with the vertices η1, . . . , ηk−1,
ηk = ∞, with an enumeration such that the side ηl−1ηl (with indices taken mod-
ulo k) carries the label l ∈ {1, . . . , k}. In order to find ξ = (ξ1, . . . , ξk−1) ∈ E
which represents the (unique) regular k-gon in the family {Π(η) | η ∈ E}, we

consider the regular k-gon in Poincaré unit disk D with the vertices e
2πl
k

i ∈ ∂D,
0 ≤ l ≤ k−1. Mapping these vertices back to ∂H by the Möbius transformation

z 7→ i(1+z)
1−z

gives one vertex at ∞ and the other vertices at − cot πl
k

. Normalising
by the factor tan π

k
moves this vertices to ∞ and −1 = ξ1 < · · · < ξk−1 = 1

with

ξl = − tan
π

k
· cot

πl

k
for 1 ≤ l ≤ k − 1. (2)

The simply transitive action of the general Möbius group on triplets (see,
e.g., [An-05, Section 2.9]) implies that every counter-clockwise enumerated ideal
k-gon in H has a unique isometric image Π(η) with η ∈ E , such that the enu-
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meration is preserved. Hence, it suffices to consider only the polygons Π(η) in
our conjecture.

Now we give an algebraic description of the hyperbolic reflections along the
sides of the polygon Π(η). Every reflection along a geodesic is of the form
r(z) = az̄+b

cz̄+d
with ad − bc = −1. For simplicity, we identify the reflection r

with the associated matrix

(
a b
c d

)
of determinant −1. Let rl(η) (l = 1, . . . , k)

denote the reflection along the side ηl−1ηl of the polygon Π(η). Then we have

r1(η) =

(
−1 −2
0 1

)
, rk(η) =

(
−1 2
0 1

)
(3)

and

rl(η) =
1

ηl − ηl−1

(
ηl−1 + ηl −2ηl−1ηl

2 −(ηl−1 + ηl)

)
for 2 ≤ l ≤ k − 1. (4)

As for the lengths of the closed billiard trajectories in Π(η), we obtain the
following identity.

Proposition 3.1. Let η ∈ E and a = a0, . . . , an−1 ∈ Sper(Π(η)). Then

L(Π(η),a) = cosh−1

(
1

2
(trace Ta(η))2 + (−1)n−1

)
,

where Ta(η) = ra0
(η)ra1

(η) · · · ran−1
(η).

Proof. First, recall that every hyperbolic isometry f(z) = Tz with T ∈ SL(2, R)
fixes two distinct boundary points in ∂H, and the geodesic connecting them is
called the axis a of f . f translates all points z ∈ a along the axis by the fixed
distance

d(T ) := d(z, f(z)) = 2 cosh−1

(
1

2
|trace T |

)
.

d(T ) is the so-called translation length of f . Obviously, we have d(T k) = k d(T ).
To simplify notation, we write Ta instead of Ta(η) in this proof. We first

consider a billiard sequence a = a0, . . . , an−1 with n even. Then the correspond-
ing unfolded billiard trajectory agrees with the axis of the hyperbolic isometry
f(z) = Taz, Ta ∈ SL(2, R) (since n is even), and L(Π(η),a) coincides with the
translation length d(Ta). Thus we have

L(Π(η),a) = 2 cosh−1

(
1

2
|trace Ta|

)
. (5)

Using the identity trace (T 2) = (trace T )2 − 2 > 0 for hyperbolic T ∈ SL(2, R),
we derive

L(Π(η),a) =
1

2
d(T 2

a
) = cosh−1

(
1

2
(trace Ta)

2 − 1

)
,

proving the proposition in this case.
If n is odd, Ta is a matrix with determinant −1 and we have trace (T 2

a
) =

(trace Ta)
2 + 2. Let b = a0, . . . , an−1, a0, . . . , an−1. Then, applying (5) to

L(Π(η),b), we obtain

L(Π(η),a) =
1

2
L(Π(η),b) = cosh−1

(
1

2
(trace Ta)

2 + 1

)
,

finishing the proof of the proposition.
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Our reformulation of the conjecture reads as follows.

Reformulated Conjecture. Let a = a0, . . . , an−1 be a periodic billiard se-
quence of an ideal hyperbolic k-gon. Then the function Fa : E → R

+,

Fa(η) =
1

k

∑

b∼a

cosh−1

(
1

2
(trace Tb(η))2 + (−1)n−1

)
(6)

assumes its unique minimum at η = (ξ1, . . . , ξk−1) with ξl given in (2). Recall
that

Tb(η) = rb0(η) · · · rbn−1
(η),

and rl(η) were defined in (3) and (4).

Remark 3.2. The above minimization problem becomes particularly simple if
all billiard sequences cyclically related to a = a0, . . . , an−1 are obtained by cyclic
shifts of a0, . . . , an−1. For example, this is the case when a = 1, 2, . . . , k. Then
(6) simplifies to

Fa(η) = cosh−1

(
1

2
(trace Ta(η))2 + (−1)n−1

)
,

and straightforward monotonicity arguments yield that it suffices to prove that
the function

Ga(η) = |trace Ta(η)| = |trace (ra0
(η) · · · ran−1

(η))|

assumes its unique minimum at η = (ξ1, . . . , ξk−1).

Remark 3.3. Let us give a short argument which shows, for the basic cyclic
sequence a = 1, 2, . . . , k, the existence of ideal k-gons Π = Π(η) minimizing the
length function Lav(Π,a) = L(Π,a). We need this existence result in Subsection
6.2. Proposition 3.1 implies that the map η 7→ L(Π(η),a) is continuous. If the
difference ηl+1 − ηl tends to zero, then the hyperbolic distance between the side
ηlηl+1 and at least one of the sides {x = −1} or {x = 1} becomes arbitrarily
large. This distance is obviously a lower bound for L(Π(η),a). Therefore, there
is a small ǫ > 0 such that L(Π(η),a) cannot approach its infimum for η outside
the compact subset E0 = {η ∈ E | ηl+1−ηl ≥ ǫ ∀ l}. Consequently, the continuous
length function must assume a global minimum which lies inside the set E0.

4 Quadrilaterals

4.1 Proof for the billiard sequence 1, 2, 3, 4

We will prove our conjecture for this case by elementary hyperbolic geometry.
Consider an ideal quadrilateral Π in the Poincaré unit disk D. The the two
heights of the pairs of opposite sides are axes of reflective symmetry for Π and
meet at a right angle; see Figure 5(a). Without loss of generality, we may
assume that we are in the symmetric situation where the intersection point is
the centre of the disk, so that the two heights are segments of perpendicular
diameters of D, having lengths 2a and 2b, respectively; see Figure 5(b).

It follows that, in this symmetric situation, the geodesic segments through
consecutive intersection points of the two heights with each side of Π form a
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(a) The general situation

a

b

(b) The symmetric situation

Figure 5: An ideal quadrilateral in the unit disk model D

periodic billiard trajectory corresponding to the sequence 1, 2, 3, 4. Each of the
four geodesic segments has the same length, say c, so that

Lav(Π, 1, 2, 3, 4) = 4c.

In order to prove our conjecture, we have to show that c = c(Π) attains its
unique minimum when Π is regular, i.e., when a = b.

Note that Π consists of four identical quadrilaterals, each of which has two
finite sides of lengths a and b, as well as three right angles and one ideal vertex.
It follows that a and b must satisfy

sinh(a) · sinh(b) = 1 (7)

(see, e.g., [Bea-83] or [Bu-92]). On the other hand, the three segments of lengths
a, b and c, respectively, form a right angle triangle which implies that

cosh(c) = cosh(a) · cosh(b). (8)

Therefore, in view of (7), we obtain

cosh2(c) = (1 + sinh2(a))
(
1 +

1

sinh2(a)

)
=
(

sinh(a) +
1

sinh(a)

)2

. (9)

In order to minimize c for positive values, it is necessary and sufficient to mini-
mize cosh(c), i.e., the function u 7→ u + 1

u
with u = sinh(a) > 0. This function

attains its unique minimum at u = sinh(a) = 1, which corresponds precisely to
the case of the regular ideal quadrilateral where a = b with sinh(a) = 1, in view
of (7).

Thus, the minimal average length of a periodic billiard trajectory corre-
sponding to the sequence 1, 2, 3, 4 is actually attained precisely for the regular
ideal quadrilateral, proving our conjecture in this case.

4.2 Proof for the billiard sequence (1, 4)n
, 2

Let us now consider the case of periodic billiard trajectories in a quadrilateral
corresponding to the sequence a = (1, 4)n, 2. For the proof of our conjecture in
this situation, we will use its reformulation described in Section 3.

10



Recalling from Section 3, we denote by −1 = η1 < η2 < η3 = 1 the three
vertices of the quadrilateral that lie on the real axis; for simplicity, we set η2 = x
and Π = Π(η). Then, in view of (3) and (4), the (matrices associated to the)
reflections along the sides of the quadrilateral are given by

r1 =

(
−1 −2
0 1

)
, r2 =

1

x + 1

(
x − 1 2x

2 1 − x

)
,

r3 =
1

1 − x

(
1 + x −2x

2 −(1 + x)

)
, r4 =

(
−1 2
0 1

)
.

Then we have

r1r4 =

(
1 −4
0 1

)
= + N

with N2 = 0, which implies

(r1r4)
n = ( + N)n = + nN =

(
1 −4n
0 1

)
.

Consequently, the matrix associated to the sequence a = (1, 4)n, 2 is given by

Ta(η) = (r1r4)
nr2 =

1

x + 1

(
x − 1 − 8n 2x − 4n + 4nx

2 1 − x

)
.

Since the path (1, 4)n, 2 has always an odd number of reflections, Proposition 3.1
tells us that

L(Π,a) = cosh−1

(
1

2
(trace (Ta))

2 + 1

)
= cosh−1

(
1 +

32n2

(1 + x)2

)
. (10)

In order to calculate the function Fa(η) from (6) we would need to compute
the matrices Tb for all four sequences b ∼ a. It is simpler, however, to rotate
the quadrilateral such that ∞ 7→ −1, a 7→ 1 and 1 7→ ∞, find the new vertex
x′ ∈ (−1, 1) (the image of 1 under the rotation), and compute the new matrix
Tb by replacing x by x′ in (10). Rotating the quadrilateral once yields x′ = −x,
so that rotating twice leads to the vertex x again. Therefore, its average length
Fa(η), being a function of the real variable x, is given by

F (x) =
1

2
cosh−1

(
1 +

32n2

(1 + x)2

)
+

1

2
cosh−1

(
1 +

32n2

(1 − x)2

)
, (11)

and we need to determine the minimal value of F over all x ∈ (−1, 1).

Writing F (x) = f(x) + f(−x) with f(x) = 1
2 cosh−1

(
1 + 32n2

(1+x)2

)
, we see

that F is an even function so that F ′(x) = 0 is equivalent to f ′(x) = f ′(−x).
But since f is strictly concave, this implies that x = 0. Since limxց−1 F (x) =
limxր1 F (x) = ∞, we conclude that the unique quadrilateral of minimal average

length is the regular one, proving our conjecture for the case a = (1, 4)n, 2.

5 Pentagons

For the case of pentagons, we use the same ideas as for quadrilaterals developed
in Section 4.2. Again, we assume that one vertex of the pentagons Π under
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consideration is ∞ and the other four are −1 = η1 < η2 < η3 < η4 = 1; we call
η2 = x and η3 = y.

In order to compare to the regular pentagon, we must know what values x
and y take for the regular case. Evaluating (2) in the case k = 5 yields the
values x = 2 −

√
5 and y = −x =

√
5 − 2.

In view of (3) and (4), the matrices associated to the reflections along the
sides of the pentagon are

r1 =

(
−1 −2
0 1

)
, r2 =

1

x + 1

(
x − 1 2x

2 1 − x

)
, r3 =

1

y − x

(
y + x −2xy

2 −(y + x)

)

r4 =
1

1 − y

(
1 + y −2y

2 −(1 + y)

)
, r5 =

(
−1 2
0 1

)
.

5.1 Proof for the billiard sequence 1, 2, 3, 4, 5

Following Remark 3.2, we just have to prove that the function G(x, y) =
|trace (Ta)| with Ta = r1r2r3r4r5 attains its unique minimum at x = 2 −

√
5

and y =
√

5 − 2. Straightforward calculations show that

|trace (Ta)| = |8f(x, y) − 4| with f(x, y) =
1

y − x
+

2

(1 + x)(1 − y)
.

It is clear that (1+x)(1−y) > 0 and 0 < y−x < 2, so we have f(x, y) > 1
2 , and

hence 8f(x, y) − 4 > 0; we can therefore drop the modulus signs if we consider
x, y ∈ (−1, 1). Setting ∇f(x, y) = (0, 0) is equivalent to the equations

(1 + x)2(1 − y) = 2(y − x)2, (12)

(1 + x)(1 − y)2 = 2(y − x)2. (13)

Subtracting (13) from (12), and using x, y ∈ (−1, 1), we conclude that

x = −y (14)

and, therefore, 2(y − x)2 = 8x2. Hence (12) reads (1 + x)3 = 8x2 with the
solutions x = 1 and x = 2 ±

√
5, respectively; the only solution in the interval

(−1, 1) is given by x = 2 −
√

5 which, in combination with (14), yields the
desired result.

5.2 Proof for the billiard sequence 1, 3, 5, 2, 4

For a = 1, 3, 5, 2, 4, we proceed exactly as we did in Section 5.1 for the sequence
1, 2, 3, 4, 5. Now the matrix Ta = r1r3r5r2r4 satisfies

|trace (Ta)| = |40f(x, y) − 4|

with the same f(x, y) as above. Therefore, the same calculation as in Section 5.1
prove our conjecture also for the case a = 1, 3, 5, 2, 4.
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6 Hexagons and beyond

6.1 Proof for the billiard sequence 1, 4

Note that the length of the billiard trajectory associated to 1, 4 in an ideal
hyperbolic hexagon is equal to twice the length of the height between the sides
1 and 4. Moreover, we have the following useful fact about the heights.

Proposition 6.1. For any ideal hyperbolic hexagon, the three heights meet at
a common point.

The concurrency of the heights holds also for compact right-angled hexagons
(see [Bu-92, Thm 2.4.3]). However, this is no longer true if we consider ideal
2n-gons for n ≥ 4.

Proof. Consider an arbitrary ideal hexagon in D. If we ignore one pair of op-
posite sides (say 3 and 6) then we are left with four sides defining two heights;
these two heights must clearly intersect. By applying a suitable isometry, we
can assume that the intersection point is the origin of D, i.e., the two heights
are diameters. If α denotes the angle of the two heights between adjacent sides,
then the total boundary arc encompassed by either pair of adjacent sides is 2α
(see Figure 6(a)). We label the angles of the boundary arcs covered by the sides
we dropped (namely, 3 and 6) by β and γ (see, again, Figure 6(a)). The geodesic
connecting the midpoints of the two boundary arcs corresponding to the angles
β and γ must also be a diameter, since we have 2α + β/2 + γ/2 = π. By sym-
metry, this geodesic meets the sides 3 and 6 at right angles, and therefore is an
extension of the third height, which also passes through the origin of D. This
shows the concurrency of the three heights.

2α

α

β

γ

(a) Two intersecting heights of the hexagon

αi

liαi

2

(b) Boundary angle αi and distance li of
the side to the origin

Figure 6: Notions related to a hexagon in the Poincaré disk

In view of the above proof, it suffices to consider only ideal hyperbolic
hexagons with all three heights intersecting in the origin of D. The distance
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between the origin and one side of the hexagon - say side i - depends only on
the angle αi of the boundary arc covered by this side (see Figure 6(b)). Using
hyperbolic trigonometry for right angled triangles, this distance li satisfies

cosh li =
1

sin αi

2

,

and, consequently,

li = ln

(
1

sin αi

2

+

√
1

sin2 αi

2

− 1

)
= − ln tan

αi

4
.

Note that the length of the height between the sides 1 and 4 is given by l1 + l4.
Our conjecture thus states that the expression

1

3
(2(l1 + l4) + 2(l2 + l5) + 2(l3 + l6)) = −2

3
ln

(
6∏

i=1

tan
αi

4

)

is uniquely minimized in the case of the regular hexagon, i.e., when we have
α1 = · · · = α6 = π

3 (note that the angles αi always add up to 2π). This leads
to the optimisation problem

maximize f(x1, . . . , x6) = tanx1 · · · tan x6

subject to x1, . . . , x6 ≥ 0,
∑

xi =
π

2
,

by renaming αi/4 into xi. We have f ≥ 0 and, since tanx tan(π
2 − x) = 1,

f vanishes at all boundary values. This guarantees the existence of a global
maximum in the interior. Applying the method of Lagrange multipliers, we
conclude that maxima can only lie at points satisfying xi ∈ {x1,

π
2 − x1} for

all i = 2, . . . , 6. The constraints imply that there is only one maximum at the
point x1 = · · · = x6 = π

12 . This proves our conjecture for the billiard sequence
1, 4.

6.2 Proof for the billiard sequence 1, 2, 3, 4, 5, 6

Let a = 1, 2, 3, 4, 5, 6. We consider ideal hexagons in the upper half plane model
H. In contrast to Section 3, we place our hexagons Π (by a suitable isometry)
in such a way that two adjacent vertices are ∞, 1 ∈ ∂H and the vertex opposite
to ∞ is 0 ∈ ∂H. The remaining vertices, denoted by x, y, z ∈ R, then have to
satisfy x < y < 0 < z < 1. Assume that Π is such a hexagon and minimizes the
length function L(Π,a). Its existence is guaranteed by Remark 3.3. We split Π
along the positive imaginary axis into two quadrilaterals (see the dashed line in
Figure 7(a)) and consider the length of the billiard trajectory associated to the
sequence a on either side of the split; call these lengths L− and L+ for the left
and right side, respectively.

We first show that L− = L+: Let us assume L− > L+ instead. We then
reflect the right-hand side of the hexagon in the dotted line, along with the
part of the trajectory in that section. We denote the new symmetric polygon
by Π′. The parts of the trajectory joining sides meeting at either 0 or ∞ may
no longer form a geodesic segment but, by the triangle inequality, the geodesic
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segment joining the two points on the sides met by the two fragments will be
shorter (see Figure 7(b)), meaning this new closed loop has a length less than or
equal to 2L+ < L− + L+. This may not be a proper billiard trajectory, but its
length is certainly an upper bound for the length of the closed billiard trajectory
associated to a in the polygon Π′. Hence, we found another (symmetric) polygon
Π′ with a smaller L(Π′,a), which is a contradiction. The case L− < L+ is
treated similary.

x y z0 1

(a) Splitting of Π along dashed line

z0−1 −z 1

(b) New symmetric polygon Π′

Figure 7: Symmetrization of a hexagon and trajectory

Next, we show that the vertices x < y < 0 < z < 1 and ∞ of a length
minimising hexagon Π satisfy z = 1

3 and y = x
3 : From the above considerations

we see that the symmetric hexagon Π′ with the vertices −1 < −z < 0 < z < 1
and ∞ is also length minimising. For this symmetric hexagon, we have the
following matrices of reflection:

r1 =

(
−1 −2
0 1

)
, r2 =

1

1 − z

(
−z − 1 −2z

2 z + 1

)
, r3 =

1

z

(
−z 0
2 z

)

r4 =
1

z

(
z 0
2 −z

)
, r5 =

1

1 − z

(
1 + z −2z

2 −z − 1

)
, r6 =

(
−1 2
0 1

)
.

To find the value z ∈ (0, 1), for which Π′ is length minimising, we have to find
the minimum of |trace (r1 · · · r6)|. We obtain

|trace (r1 · · · r6)| = 2 +
16

z(z − 1)2
= f(z).

Since

z(z − 1)2 =
4

27
−
(

4

3
− z

)(
z − 1

3

)2

≤ 4

27
,

we conclude that f : (0, 1) → [0,∞) assumes its unique minimum at z = 1/3.
The proof of y = x

3 is similar, but this time we reflect the left-hand side of the
original minimising hexagon Π and apply an isometric homothety which sends
x and y to −1 and −y/x, respectively.

In the last step we show that the length minimising hexagon must satisfy
x = −1. In view of the previous step, we only have to minimize the length of
the cyclic trajectory amongst hexagons with the vertices x < x/3 < 0 < 1/3 < 1
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and ∞. In this situation, the reflection matrices are given by

r1 =

(
−1 2x
0 1

)
, r2 = − 1

2x

(
4x −2x2

6 −4x

)
, r3 = − 1

x

(
x 0
6 −x

)

r4 =

(
1 0
6 −1

)
, r5 =

(
2 −1
3 −2

)
, r6 =

(
−1 2
0 1

)
,

and we obtain

|trace (r1 · · · r6)| = 56 + 27

(
−x − 1

x

)
,

with x ∈ (−∞, 0). The unique minimum in this case is assumed at x = −1.
We conclude that the function L(Π,a) on hexagons with vertices x < y <

0 < z < 1 and ∞ is minimal if and only if the vertices are chosen to be
−1,−1/3, 0, 1/3, 1 and ∞. Checking with (2), this means that Π is a regular
hexagon and the proof is complete.

Finally, we like to mention that a further refinement of the above sym-
metrization techniques leads to a proof of our conjecture for the cyclic trajectory
associated to 1, 2, 3, 4, 5, 6, 7, 8 in the octagon. However, we decided to omit this
proof, since it does not contain any conceptually new aspects.
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