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Abstract. Many real-world problems show both multiobjective as well
as dynamic characteristics. In order to use multiobjective evolutionary
optimization algorithms (MOEA) efficiently, a systematic analysis of
the behavior of these algorithms in dynamic environments is necessary.
Dynamic fitness functions can be classified into problems with moving
Pareto fronts and Pareto sets having varying speed, shape, and struc-
ture. The influence of the dimensions of the objective and decision space
is considered. The analysis will focus on standard benchmark functions
and newly designed test functions. Convergence and solution distribu-
tion features of modern MOEA, namely NSGA-II, SPEA 2 and MSOPS
using different variation operators (SBX and Differential Evolution), will
be characterized using Pareto front metrics. A new path integral metric
is introduced. Especially the ability of the algorithms to use historically
evolved population properties will be discussed.

1 Introduction

An effective optimization of dynamic multiobjective functions using population
based optimization algorithms demands for a systematic case study. New generic
functions are needed to test the distribution and approximation properties of
multiobjective optimization algorithms when dynamically varying Pareto front
and Pareto set structures or changing restrictions for low as well as high di-
mensions of the decision and objective spaces are used. The application of new
multiobjective quality measures (metrics) as well as improved genetic operators
is the consequence of this research. The following empirical analyses give a brief
insight into this field. The application of a standard programming environment
(PISA) allows the adaptation of the results to real-world applications.



2 Dynamic Test Functions

Dynamic multiobjective function optimization is rarely discussed in current lit-
erature. Jin and Sendhoff [1] introduce an open scheme for generating dynamic
test functions from static functions. Farina, Deb and Amato discuss a generic
dynamic scheme that follows the concept of Deb [2],[3]:

D ⊂ IRs
+, E ⊂ IRn−s−1

+ ,D ∩ E = ∅
f1 : D → IR, f2 : D ∪ E → IR
g : E → IR, h : D ∪ E ⊂ IRn → IR

min f1(x) = f1(x1, . . . , xs)
min f2(x) = g(xs+1, . . . , xn) · h(f1(x1, . . . , xs), g(xs+1, . . . , xn))

(1)

The shape of the Pareto front depends on the values of h. A property of the
function set is that for fixed f1 the values of h are weakly and monotonically
increasing in g and for fixed g the values of h are monotonically decreasing in
f1. The first property implies that the Pareto front corresponds with the global
minimum of g. The second property is a precondition for a conflicting situation
between f1 and f2, i.e. for the generation of a multiobjective problem.

Farina et al. use this concept for the generation of bi-objective dynamic test
functions. Their approach follows the ZDT-functions, which are concrete static
realizations of the concept of Deb. They classify the type of dynamics of multi-
objective problems into four classes:

Type I: Static Pareto front, dynamic Pareto set
Type II: Dynamic Pareto front, dynamic Pareto set
Type III: Dynamic Pareto front, static Pareto set
Type IV: Static Pareto front, static Pareto set. The fitness topology may change.

The dynamics can further be classified into sub-classes that correspond to
the dynamics in shape or structure (e.g. connectivity) of the Pareto fronts and
Pareto sets. None, static or dynamic definitions of the feasible set D and the
restrictions of the fitness functions introduce additional subclasses.

In this paper the functions of Farina, Deb and Amato – called FDA1, FDA2
to FDA5 – are used as test cases with known properties. They are representa-
tives for type I, type II and type III behavior. For an explicit definition of the
FDA functions please refer to [2] and [3]. Additionally, new functions such as
DSW and DTF will be introduced next in order to analyse a generalized set of
test cases, functions of different dimensions with moving Pareto sets, separating
Pareto sets, as well as separating Pareto fronts or dynamic restrictions.

In the following the original FDA2 function (type III) was redesigned to get
a Pareto front that is clearly changing in t ∈ [0, 1] from a convex shape to a
concave shape. In the experiments FDA2mod was used.



FDA2mod: Test function with dynamic PFtrue and static Ptrue

FDA2mod :
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f1(xI) = x1

f2(g, h) = g · h(f, g)
g(xII) = 1 +

∑

xi∈xII
x2

i +
∑

xi∈xIII
(xi + 1)2

h(f1, g) = 1 −
(

f1

g

)H(t(τ))

H(t) = 0.2 + 4.8 t(τ)2

t(τ) = 1
nt

⌊

τ
τt

⌋

,
τ current generation
τ−1
t substep frequenz
nt total number of generations

xI = (x1)
T , x1 ∈ [0, 1]

xII = (x2, . . . , xr1
)T ∈ [−1, 1]r1−1

xIII = (xr1+1, . . . , xn)T ∈ [−1, 1]n−r1−1

(2)

τ is the current generation of the evolutionary process and nt is the total
number of generations. Therefore, time t is always in the interval [0, 1]. In order
to realize a step wise increase of t, a subdivision of the interval in τt steps is
useful. In order to simplify the notation, in the paper t := t(τ) is used.

The new functions DSW1 to DSW3 are motivated by the multiobjective and
static function of Schaffer [4]. In order to extend the dimension of the decision
space of the Schaffer function from 1 to n, a hyper parabolic term can be added.
The basically parabolic character of the functions (also known as sphere model)
is used as a typical test case for the analysis in continuous optimization. The
analytical solution of the static and convex PFtrue of the Schaffer function yields
f∗2 = (

√

f∗1 − 2)2 for f∗1 ∈ [0, 4], Ptrue = [0, 2].
The general scheme (DSW) used for functions with moving Pareto sets is:

DSW :

{

f1(x) = (a11x1 + a12|x1| − b1 ·G(t))2 +
∑n

i=2 x
2
i

f2(x) = (a21x1 + a22|x1| − b2 ·G(t) − 2))2 +
∑n

i=2 x
2
i

(3)

where G(t) : IR → IR is a continuous function with monotonously increasing

values. In the following the definition G(t) := t(τ) · s with t(τ) = 1
nt

⌊

τ
τT

⌋

is

used. In the analyses the DSW functions have been defined as follows:
DSW1: x ∈ [−50, 50]n, a11 = 1, a12 = 0, a21 = 1, a21 = 0, b1 = b2 = 1
DSW2: x ∈ [−50, 50]n, a11 = 0, a12 = 1, a21 = 0, a21 = 1, b1 = b2 = 1
DSW3: x ∈ [−50, 50]n, a11 = 1, a12 = 0, a21 = 1, a21 = 0, b1 = 0, b2 = 1

Analysis with an extended decision space n > 1 of the corresponding func-
tions DSW1 to DSW3 are addressed in the text, respectively.

DSW1 is a test function with a static PFtrue and a shifting Ptrue having a
one-dimensional decision space. In the case of n = 1 the problem of the DSW1
function is to keep the Ptrue values in the interval [G(t), G(t) + 2].

The DSW2 problem has the two separated Pareto sets. These sets depart
diametrically with speed G(t). PFtrue does not change in time and is identical to



DSW1. With n = 1 the Pareto set is Ptrue = [−G(t)−2, G(t)]∪ [G(t), G(t)+2].
For periodical G(t) the Pareto sets will join and depart periodically.

In problem DSW3 the right border of the interval of the Pareto set is moving
while the other interval border is static. This is realized by setting b1 = 0. The
corresponding convex Pareto front increases in size and curvature and moves
slightly upward with increasing t.

The new generic scheme DTF is a generalization of the FDA functions
and allows a variable scaling of the complexity of the dynamic properties. The
number ψ of separated Pareto front sections, the number ω of multi-fronts, the
curvature α of the Pareto front and the optimal argument value γ(t) for all xII

can be adjusted to describe additional characteristics of dynamical problems.
The moving Pareto sets of the DTF functions are identical to the FDA1 Pareto
sets.

DTF :
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f1(xI) = x
β(t)
1

f2(g, h) = g · h(f, g)
g(xII) = 1 +

∑

xi∈xII
((xi − γ(t))2

−cos(ω(t(τ)) · π · (xi − γ(t))) + 1)

h(f1, g) = 2 −
(

f1

g

)α(t)

−
(

f1

g

)

· | sin(ψ(t)πf1)|
α(t)

xI = (x1)
T , x1 ∈ [0, 1]

xII = (x2, . . . , xn)T ∈ [−1, 1]n−1

(4)

A typical definition are e.g. n = 20, α(t) = 0.2 + 4.8t2, β(t) = 102sin(0.5πt),
γ(t) = sin(0.5πt), ψ(t) = t · s, s ∈ IR+, and ω(t) ∝ ψ(t).

In practical applications restrictions introduce severe difficulties into opti-
mization problems. The introduction of dynamic restrictions is also motivated by
the idea to analyze the empirical behavior of Pareto-dominance based algorithms
such as the NSGA II and SPEA 2, which explicitly utilize distribution properties
of Pareto front approximations. The following restrictions can be scaled easily
in positions, size and number. Here, infeasible areas in the objective space of di-
mension m are defined by j = 1, . . . , k m-dimensional spheres with radii rj and
center points {c1j

, . . . , cmj
}. The position of the spheres may change over time.
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Fig. 1. Dynamic restrictions with varying position (left) or radii (right).



The value ǫ ≥ 0 introduces a shift of the center points of the spheres. Moving
circular obstacles in the objective space is another way to analyze the conver-
gence robustness of the optimizing algorithms. The corresponding inequalities
for the restrictions are (see Fig. 1):

gj : r(t)2 − (ǫ · c1j
− f1(x))2 − · · · (ǫ · cmj

− fm(x)2) ≤ 0, j = 1, . . . , k (5)

3 Multiobjective Evolutionary Algorithms

Today, NSGA-II [5] and SPEA 2 [6] surely belong to the most commonly applied
multiobjective evolutionary algorithms. The analyzes of these algorithms implies
a good comparability and applicability of the following results for many research
fields that intend to allow dynamics in optimization problems.
Additionally, the MSOPS (Multiple Single Objective Pareto Sampling) strategy
[7] is used to get an impression of the behavior of a stochastic population based
algorithm that does not utilize the Pareto-dominance principle. MSOPS works
with a weighting and ranking scheme of the fitness function values. In contrast
to conventional linear aggregation approaches, the algorithm is able to find so-
lutions also for non convex Pareto fronts. The multiobjective PISA environment
[8] served as a common interface to well tested genetic operators such as SBX
recombination or polynomial mutation [10]. Differential evolution variation op-
erators DE1 and DE2 [9] were not provided by PISA and added by the authors.
In PISA variation operators can be combined with specific NSGA II, SPEA 2
and MSOPS selection operators. The MSOPS was not provided in PISA and
was added for a comprehensive analysis.

4 Metrics

The solution of multiobjective optimization problems generally focuses on the
approximation of Pareto fronts (a posteriori approach) or the selection of specific
points or areas on the Pareto front (a priori approach). The quality of a Pareto
front approximation is measured by functions. In the MOEA terminology these
measures are typically called metrics3. Different metrics characterize the dis-
tance as well the distribution properties of a MOEA Pareto front approximation
PFapprox.

The generational distance metric was introduced by van Veldhuizen and La-
mont [11]. This measure calculates the average distance of PFapprox to the real
Pareto front PFtrue. Given a set of discrete N solutions of a MOEA in generation
j, the generational distance metric Gj is defined as follows:

Gj :=

√

∑N

i=1 d
2
i

N
(6)

3 The strict mathematical definition of a real metric is not always guaranteed by
MOEA-metrics.



The di are the minimum euclidean distances of one discrete solution to the Pareto
front measured in the objective space.

In the following a new distribution metric – the PL-metric – is introduced.
This approach uses an analytical description for calculating the distances of so-
lutions on the Pareto front via path integrals. A precondition for the calculations
is an analytic closed description of PFtrue. This is e.g. true for the DSW1 and
DSW2 (where f∗2 = (

√

f∗1 − 2))) as well as for the FDA1-3 functions.

A path between [a, b] can be defined by a continuous parametric function γ :
[a, b] ⊆ IR → IRm, γ(t) = (γ1(t), . . . , γm(t))T . For multiobjective problems with
two objective functions with a continuous Pareto front f2(f1) the corresponding
path on the Pareto front follows γ(t) = (t, f2(t)).

Given a path γ(t) : IR → IRm that is continuously differentiable in [a, b] (i.e.
γ ∈ C1[a, b]). Then the corresponding path length function s is continuously
differentiable in [a, b], i.e. s(t) = |γ̇(t)|. The length L(γ, a, b) of a path between
[a, b] on γ is

L(γ, a, b) :=

∫ a

b

|γ̇|dt =

∫ a

b

√

γ̇2
1 + . . .+ γ̇2

mdt (7)

with γ̇i is the derivative of γi in t and | · | is the euclidean norm.

The PL-metric is defined by the normalized product of the lengths of each
subsection ξ = L(γ, f(xi), f(xi+1)) between sorted neighboring points on the
true Pareto front (see formula 9) adding 1 to guaranties that a new solutions
increase the value of the metric. Due to the approximative character of MOEA, a
solutions is said to be actually on PFtrue, if it is in an ǫ-region near PFtrue, e.g.
ǫ = 0.01. It can be shown that the PL-metric has a maximum, if the path of the
total length found on the true Pareto Front LPFtrue

is divided into equidistant
sections. In this case the value is

lim
|PFtrue|→∞

(

1 +
LPFtrue

|PFtrue| − 1

)|PFtrue|−1

= eLP Ftrue . (8)

With this condition, the PL-metric can be normalized in [0, 1], yielding

PL :=

∑

f(xi)∈PFtrue
ln(ξxi

)

LPFtrue

. (9)

Schott’s spacing metric S (see e.g. [11]) was used as a standard method for
the estimation of the distribution of PFapprox.

5 Experimental Setup

The analysis have been performed on a standard PC using Linux/Unix. The
modules MSOPS and differential evolution (DE1 and DE2) were implemented
for PISA in C++. The metrics were implemented in MATLAB. Table 5 shows the
parameter settings. Each experiment was performed 20 times and the arithmetic
average solution was used.



Table 1. Setting for the Selection- and Variation Operators

Selection Parameter Setting Variation Parameter Setting

General α pop. size 100 SBX pc crossover rate 0,5
λ parents 100 ηc dist. index 15
µ offspring 100 Uniform pswap prob. 0,5
κ age κ = ∞ Poly. Mut. pm mutation rate 1/|x|
st tournament 2 ηm dist. index 20

DE1 F weight 0,7
MSOPS T target vectors 50 CR insert length prob. 0,5

DE2 F weight 0,85

SPEA2 N archive size 100 λDE weight 0,85
CR insert length prob. 1

6 Results

The analyses focus on the ability of the MOEA to follow the moving or changing
PFtrue or Ptrue. In the first experiments the speed s of the Pareto set is varied.
The functions DSW1, DSW2, FDA1, FDA2mod, FDA4 and DTF functions
were tested in combination with NSGA-II, SPEA 2 and MSOPS. A linear in-
crease c of speed s (starting with s = 0) is indicated by s+ = c.

Analysis with DSW1 and DSW2:
Figure 2 shows that for the DSW1 problem NSGA-II is able keeping the solutions
in the Pareto set for small speed s. From s > 6 the distances Gi increase about
quadratic because the solution cannot be placed in the Pareto set. The values of
the distribution (PL-metric) show stable good values for small s and decrease
about linearly with s > 6. NSGA-II and SPEA 2 show nearly equally good
distribution values over all s. Even for small s the MSOPS distribution values
are worse than that of the other two algorithms. This may be caused by the
explicit distribution measure which is explicitly used in NSGA-II and SPEA 2.
MSOPS focused its points more in the middle of the convex Pareto front. For
high s the performance of MSOPS is similar to NSGA-II and SPEA 2. For high
s values the variation operators SBX with polynomial mutation perform better
on the problems than the DE operators because DE1 and DE2 cause a too
small diversity in the solution sets. For small speed (s = 0.1) the generational
distance values of the SPEA2 with DE1 show the best distance metric values
while NSGA-II with DE1 show best distribution values.

The influence of departing Pareto sets was tested with the DWS2 function.
In the case of SBX recombination combined with polynomial mutation all algo-
rithms show a similarly good distribution and approximation values for small s.
For larger s the algorithms tend to focus on one part of the Pareto set only. DE2
improves the generational distance values of all algorithms also for large s (see
Fig. 3), while DE1 degrade the performances. This may be due to the fact that
DE2 utilizes – in contrast to DE1 – the position of the Pareto ’best’ individuals.
Interactions with these individuals improve the performance of the MOEA with
DE2 on DSW2 significantly.
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A stepwise movement of the Pareto set (s = 10 and τt = 5) together with
a restart after each step to reinitializes the population structure was tested
on DSW1 to analyze the influence of the generational evolution (population
memory effect). The results show that the algorithms using SBX and polynomial
mutation are not affected much by reinitialization. A restart in combination with
DE2 yields significant improvement in the distribution as well as in the distance
values because the structural properties of the DSW1 problem can be exploited.
Only for very high s this effect is reduced.

In order to analyze the influence of the decision space dimensions n > 2
on the solution of the dynamic problem DSW1 the values n = 5, 6, . . . , 20 and
s = 0.1 were chosen. Using SBX and polynomial mutation yields good distance
values. The distribution quality decreases with increasing n. In contrast to the
suggestions in literature to increase the mutation rate per parameter (1/|x|)
for higher dimensions, the dynamic high dimensional DSW1 problem show bet-
ter convergence speed with decreased rates. The application of the differential
evolution operators do not show sufficient results for n > 5.

Analysis with FDA1, FDA2mod and FDA4:
The FDA functions are more complex than DSW . FDA1 has a dynamically
varying Pareto set. The influence of the memory effect of population based op-
timizers is tested with the restarting approach. In the experiments with FDA1
the speed was set to s = 0.1 and the dimensions to n = 20. For τt = 1 no
algorithm succeeds in approximating the Pareto set of FDA1 sufficiently. Only
a small area in the middle between the borders of the oscillation limits of Ptrue

is found. The high variation speed yields an averaging effect. An increase of the
saturation phases to τt = 10 improves the chance to follow Ptrue. The algorithms
tend to loose the optimal solutions after some generations and a delayed averag-
ing effect appears. From about τt = 50 the MOEA are able to follow the Pareto
set correctly. The NSGA-II is the fastest algorithms to place a solution near the
Pareto front (1 percent tolerance) followed by MSOPS and SPEA 2. In FDA1
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a memory seems useful for NSGA-II because a restarting strategy reduces its
approximation property.

The FDA2mod shows a Pareto front with oscillating curvature. Setting g ≡ 1,
τt = 5 and nt = 10 implies that every solution is in Ptrue. The algorithms only
have to keep a good distribution on PFtrue. Algorithms using SBX and polyno-
mial mutation show good distributions after a short tuning time. SPEA2 shows a
significant inertness when the curvature changes from convex to concave. Here,
NSGA-II and MSOPS are more tolerant. The differential mutation operators
DE1 and DE2 seem to be sensitive to dynamic changes in the curvature and
show an inferior behavior.

FDA4 has an increased dimension m > 1 of the objective space. In the ex-
periments the decision space dimension was reduced to n = 12. For s = 0.1 and
τt = 50 all algorithms are able to approximate the Pareto set after each posi-
tion shift. Here, the MSOPS algorithm finds good solutions on the Pareto front
about four times faster than NSGA-II or SPEA 2. This may be explained by the
fact that an increased number of dimensions reduces the number of dominated
solutions found [7]. If only non-dominated solutions exist, all solutions have the
same ranking and only the distance criteria have an effect. This reduces the con-
vergence efficiency of the Pareto dominance based algorithms. The distribution
quality of MSOPS is significantly worse than the values measured for NSGA-II
and SPEA 2.

Analysis with DTF :
The idea of the DFT experiments is to analyze the effects of a dynamically
varying Pareto front structure. The parameter ψ, which characterizes the number
of Pareto front sections, is defined to oscillate in [0, 5]. The parameters τt =
20, γ = 0, α = 0.5, β = 1, ω = 0, s ∈ {0, 1, 5}, and n = 20 were used. The
structure is oscillating between one connected and five separated Pareto front
segments. The dominance based algorithms can separate the solutions on the
dividing Pareto fronts. The speed of the separation has a significant influence
on the solution distribution abilities of the algorithms. A delaying effect can be
watched (see Fig. 4). While MSOPS gets best results for static fronts (s = 0) its
concept seems to be disadvantageous for fast separating Pareto fronts.



7 Summary and Outlook

A comprehensive empirical analysis is performed on standard benchmark func-
tions (FDA) as well as on new functions (DSW and DTF ). A new integral
PL-metric is introduced. In many cases alternative operators such as differential
evolution (DE) and selection methods (MSOPS) show an advantageous behav-
ior on dynamic functions when compared to classic operator combinations. A
statistical search for the best parameter settings as well as the analysis of the
population structure of the MOEA is matter of future research.
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