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Abstract

Memetic algorithms are popular randomized search heuristics combin-
ing evolutionary algorithms and local search. Their efficiency has been
demonstrated in countless applications covering a wide area of practical
problems. However, theory of memetic algorithms is still in its infancy
and there is a strong need for a rigorous theoretical foundation to bet-
ter understand these heuristics. Here, we attack one of the fundamental
issues in the design of memetic algorithms from a theoretical perspec-
tive, namely the choice of the frequency with which local search is ap-
plied. Since no guidelines are known for the choice of this parameter, we
care about its impact on memetic algorithm performance. We present
worst-case problems where the choice of the local search frequency has
an enormous impact on the performance of a simple memetic algorithm.
A rigorous theoretical analysis shows that on these problems, with over-
whelming probability, even a small factor of 2 decides about polynomial
versus exponential optimization times.

1 Introduction

Solving optimization problems is a fundamental task in computer science. The-
oretical computer science has developed powerful techniques to design problem-
specific algorithms and to provide guarantees on the worst-case runtime and
the quality of solutions. Nevertheless, these algorithms can be quite compli-
cated and difficult to implement. Moreover, practitioners often have to deal
with problems where they have only limited insight into the structure of the
problem, thus making it impossible to design specific algorithms.

The advantage of randomized search heuristics like randomized local search,
tabu search, simulated annealing, and evolutionary algorithms is that they are
easy to design and easy to implement. Despite the lack of performance guar-
antees, they often yield good results in short time and they can be applied in
scenarios where the optimization problem at hand is only known as a black box.
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Therefore, practitioners often apply randomized search heuristics like, e. g.,
evolutionary algorithms to find good solutions during a random search process.
Often the performance of evolutionary algorithms can be enhanced if (problem-
specific) local search techniques are integrated into the search process. These
hybrid algorithms are known as memetic algorithms. Using problem-specific lo-
cal search can provide a better guidance for the random search process while pre-
serving the low costs of implementation. That way, the advantages of problem-
specific algorithms and simple randomized search heuristics can be combined.
It is therefore not surprising that practitioners have applied memetic algorithms
to a wide range of applications, see Moscato [8] for a survey or Hart, Krasnogor,
and Smith [4] for various applications.

However, from a theoretical point of view this situation is unsatisfactory be-
cause these algorithms are presently not considered in the theory of algorithms.
Despite a broad activity in the area of memetic algorithms, theory on memetic
algorithms is hanging behind and rigorous theoretical results are rare.

We present a brief survey of theoretical approaches concerning memetic al-
gorithms. Hart [3] empirically investigates the role of the local search frequency
and the local search depth, i.e., the maximal number of iterations in one local
search call, on three artificial test functions. Goldberg and Voessner [2] present
a macro-level result on the design of global-local search hybrids explaining how
to balance global and local search. Lourengo, Martin, and Stiitzle [6] empiri-
cally analyze the runtime distribution of memetic algorithms on problems from
combinatorial optimization. Merz [7] adapts the parameterization of memetic
algorithms to the given problem by using problem-specific knowledge gained
from empirical analysis of the problem structure. This approach is extended by
Watson, Howe, and Whitley [12] who additionally consider the dynamic behav-
ior of the algorithm. Krasnogor [5] presents a simple PLS-completeness proof for
a class of memetic algorithms and establishes a connection between local search
complexity theory (see Papadimitriou, Schiffer, and Yannakakis [9]) and Kol-
mogorov complexity theory. Finally, Sudholt [11] compares a simple memetic
algorithm with two well-known randomized search heuristics and proves rigor-
ously for an artificial function that the local search depth has a large impact on
the behavior of the algorithm.

Although memetic algorithms are easy to implement, they are not designed
to support an analysis. In fact, the rigorous analysis of these algorithms can be
quite challenging. To the best of our knowledge, [11] and this work are the first
rigorous analyses of memetic algorithms in terms of computational complexity.

In the design of memetic algorithms it is essential to find a proper balance
between evolutionary (global) search and local search. If the effect of local search
is too weak, we fall back to standard evolutionary algorithms. If the effect of
local search is too strong, the algorithm suffers from the disadvantages of pure
local search as it may get stuck in local optima of bad quality. Moreover,
the algorithms is likely to rediscover the same local optimum over and over
again, wasting computational effort. Lastly, when dealing with population-
based algorithms, too much local search quickly leads to a loss of diversity
within the population.

A common design strategy is to apply local search with a fixed frequency, say



every T generations for some 7 € N. At present, there are no guidelines available
for the choice of this parameter. Hence, before trying to establish design guide-
lines, an interesting question is what impact the local search frequency has on
the performance of the algorithm. We will define a simple memetic algorithm
and ask whether the algorithm is robust to the choice of the local search fre-
quency and what can happen in the worst case (w.r.t. the problem instance)
if we choose a wrong parameterization.

We will prove that in the worst case even small changes to the local search
frequency can totally change the algorithm’s behavior and decide about poly-
nomial versus exponential optimization times, with overwhelming probability.

The investigation of worst-case problems leads us to a class of artificially con-
structed functions that are far away from real-world problems. The long-term
goal is a powerful theory with implications for practical problems. However, in
order to obtain results on practical problems, the first step is to develop a rigor-
ous theoretical foundation and the methodology to analyze memetic algorithms.
Thus, besides the main results, this work is interesting from a methodologi-
cal point of view. By presenting a rigorous theoretical analysis, we show that
memetic algorithms can be analyzed rigorously and we present the methodol-
ogy to do so. Using insights gained by the analysis, we can hope to extend the
analysis of memetic algorithms to a wider range of problems, including practical
problems, in the near future.

The paper is structured as follows. In Section 2 we define a simple memetic
algorithm, the (14+1) Memetic Algorithm. Then in Section 3 we define so-called
race functions where local search effects compete with global search effects.
Section 4 proves rigorously that the choice of the local search frequency has
a large impact on the (14+1) MA on race functions and that even a factor of
2 makes an enormous difference. Finally, we finish with some conclusions in
Section 5.

2 Definitions

The (1+1) Memetic Algorithm ((1+1) MA) is a simple memetic algorithm with
population size 1 that has already been investigated in [11]. It employs the
following local search procedure that stops after a predefined maximal num-
ber of 6 = poly(n) iterations. The algorithm is defined for maximization of
pseudo-boolean functions f: {0,1}" — R including problems from combinato-
rial optimization. H(x,y) denotes the Hamming distance between x and y.

Procedure 1 (Local Search(y) with depth §).

t:=1.

While t <6 and 3z: (H(z,y) =1 and f(z) > f(y)) {
Y=z
t:=1t+4+1.

}

Return y.

If there is more than one Hamming neighbor with larger fitness, z may
be chosen arbitrarily among them as this choice is immaterial to the results



presented hereinafter.

Algorithm 1 ((1+1) Memetic Algorithm ((1+1) MA)).

1. Initialization
gen := 0. Choose x uniformly at random. x := Local Search(z).

2. Mutation
y :=x. Flip every bit in y independently with probability 1/n.

3. Local Search
If gen mod 7 = 0 then y := Local Search(y).

4. Selection
If f(y) = f(x) then z:=y.

5. Loop
gen := gen+1. Continue at line 2.

We do not specify a termination condition as we are only interested in the
number of f-evaluations until a global optimum is found. Note that, in the
worst case, an iteration of local search requires n f-evaluations.

Definition 1. An event E occurs with overwhelming probability (w.o.p.) if
Prob(E) =1 —27%"%) for a constant ¢ > 0, n the search space dimension.

We say that an algorithm A is efficient on a function f iff A finds a global
optimum on [ in a polynomial number of f-evaluations w. o. p.

We say that an algorithm A fails on a function f iff A does not find a global
optimum in an exponential number of f-evaluations w. o. p.

When constructing the race functions, we will make use of so-called long
K-paths. A long K-path is a sequence of Hamming neighbors where all points
are different. The following definition is taken from [1].

Definition 2. Let K,N € N with (N —1)/K € N. The long K-path of
dimension N is a sequence of bit strings from {0,1}Y defined recursively as
follows. The long K-path of dimension 1 is defined as PI = (0,1). Let
PE . = (v1,...,v) be the long K -path of dimension N — K. Then the long
K -path of dimension N is defined by prepending K bits to the search points from
{v1,... v} let So = (05v1,080,, ..., 08wy), Sy i= (18vp, 180,_q,..., 180y),
and B := (0K~ v, 0572120,,...,01%",). The search points in Sy and Sy
differ in the K leading bits and the search points in B represent a bridge between
them. The long K -path of dimension N 1is constructed by concatenating So, B,
and S1.

If N := K?+1, the length of the path is Q(2X). Moreover, for all 0 < i < K
the following statement holds. Let x be a point on the long path. If z has at
least ¢ successors on the path, then the ith successor has Hamming distance 4
of x and all other successors of x on the path have Hamming distances different
from i (a proof is given in [1]). This implies that all successors on the path
except the K next ones have Hamming distance at least K to x.

The index of some search point z on a long K-path will be denoted by i(z).
If z is not on the path, i(z) is defined as i(z) := —1.



3 Race Functions: Where Local Search and Global
Search Compete

Now we will define the aforementioned race functions where local search effects
compete with global search effects. The idea behind the construction is quite
intuitive. We will identify two non-overlapping blocks of the bit string of length
N, referred to as =’ and z” if x is the current bit string. These partial bit strings
span subspaces of the original search space. Then, subfunctions are defined on
these two subspaces such that the value of the original superior function is the
(weighted) sum of the subfunctions’ values for an important part of the search
space.

The two subfunctions are defined as follows. The function on the left block
z' is based on a coherent subpath of a long K-path of adjustable length. The
fitness is increasing on the path, thus it can be optimized efficiently by local
search. The function on the right block 2" consists of a much shorter subpath,
but only every third search point on the path has positive fitness. Hence, this
subfunction contains a sequence of isolated peaks with increasing fitness and
mutation can help to jump to the next peak by mutations flipping three specific
bits.

To conclude, the function on the left block (or shortly, the left path) can be
optimized efficiently by local search and the right path can only be optimized
by mutations. The (14+1) MA on the superior function now optimizes the two
subfunctions in parallel. If the local search frequency is high, we expect the
algorithm to optimize the left path prior to the right path. Contrarily, if the
local search frequency is low, then we expect the right path to be optimized
prior to the left one.

By defining special fitness values for cases where some path end is reached we
obtain a function where it makes a large difference which path is optimized first.
For example, we can define the end of the left path of being globally optimal.
However, if the right path is optimized prior to the left one, the function turns
into a so-called deceptive function giving hints to move away from all global
optima and to get stuck in a local optimum. That way, the (14+1) MA typically
optimizes this function efficiently if the local search frequency is high and it gets
stuck in a local optima if the local search frequency is low. Another function
can be defined analogously where it is globally optimal to reach the end of the
right path.

We now present our main theorem that will be proved in Section 4 according
to the ideas described above.

Theorem 1 (Main Theorem). Let 6,7 € N be defined such that 6 = poly(n),
§>22,8/1>2/n, 7 =wn?3), and T = O(n®) hold. There exist functions

Raceyl, Race)®™: {0,1}" — R such that

o the (1+1) MA with local search frequency 1/7 is efficient on Raucebc_rlft while
the (1+1) MA with local search frequency 1/(27) fails on Raceﬁt and

o the (1+1) MA with local search frequency 1/7 fails on Racezifht while the
. . . right
(1+1) MA with local search frequency 1/(27) is efficient on Race,s" .



Definition 3. Let n = 4N and N = K% + 1 with K/3 € N. Let P; be the ith
point on the long K -path of dimension N.

The (1+1) MA initializes uniformly at random. However, we want the op-
timization of the two paths to start with specific starting points. Therefore, we
use a construction that is explained in detail in Section 3 of [11] (here, we use a
slight transformation of the search space which is immaterial to the algorithm).
In a nutshell, we append additional 2N bits denoted by z’” to the 2N bits used
by the two blocks z’ and z”. The following subfunction ZZO guides the algo-
rithm to reach 2" = 0% (i.e. a concatenation of 2N zeros) and then to reach
specific starting points for 2’ and z”, namely z'z” = 0N P,s_; (n® — 1 is the
multiple of 3 closest to n® due to the choice of K and n). Afterwards, z” is
turned into 2" = 12V. Once all these bits are ones, the optimization of the two
paths begins.

Definition 4. Let x = 2’2" 2" with ', 2" € {0,1}" and 2" € {0,1}*N. We
define ZZ0O: {0,1}" - R as

—H(z",0*N) — 4N if ' #0NPys_q, 2" # 02V,
7Z70(z) := —H(x’x”,ONPns_l) — 2N ifala” £O0NPs_q, 2" =02V,
—H(x”’,lQN) if o'x’" = 0N Ps_;.

Definition 5. Call a search point x = z'x" 2" well-formed iff i(z’) > 0, i(z") >
0,i(z")/3 €N, and 2" = 12N. Given ¢,r € N we define

77.0(z) if H(z",12V) > 3,
i@ -n4i(x") if x well-formed,i(z") < £,i(z") <,
Racelg‘fft(:v) =< 2N+ H(2', Py)  if x well-formed,i(z') < £,i(z") =,

22N if x well-formed,i(z') = ¢,

—00 otherwise.

7ZZ7Z0(x) if H(z",12N) > 3,

i) -n+i(x") if x well-formed,i(z’) < £,i(z") <r,
Race?fht(x) = 2N ¢ H(2", P.) if x well-formed,i(x") = £,i(z") < r,

I

22N if © well-formed, i(x’

—0 otherwise.

In a typical run, after random initialization the function ZZO is optimized
guiding the search towards the well-formed search point @ = /2" 2" with i(z') =
0, i(z") = Pys_y, and 2" = 12V, There is a gap between the ZZO-dependent
search points and all well-formed search points since all search points with one
or two zero-bits in the z”/-part have fitness —oo. However, this gap can easily
be jumped over by mutation in expected time O(n?). Moreover, the probability
that at least K = ©(n'/?) bits flip in this jump is exponentially small. Thus, it
is very likely that we reach search points close to the desired starting points in
polynomial time. For a proof of a result similar to the following corollary, we
refer the reader to [11].



Corollary 1. With overwhelming probability, the (1+1) MA on either Racelg‘fft

or Race’”ght reaches some well-formed search point z* with i(z*') < K and

|i(z*") — (n5 —1)| < K within the first n* generations.

4 Analyzing the Impact of the Local Search Fre-
quency

To prove our main theorem, we will investigate the progress of the algorithm
on the two paths. The progress will be estimated by separating the effects of
different operations and proving bounds for the cumulated progress for single
types of operations.

For the rest of the section, we consider the (1+1) MA on Racejt" or Race?fht
after some well-formed search point has been reached. In a generation with local
search, the mutation only affects the algorithm if the outcome of local search is
accepted in the selection step. Thus, we only have to take into account those
mutations where the outcome of the following local search call is accepted.

Lemma 1. Let x = z'2”2"" be the current population, x well-formed, let y =
y'y"'y"" be an offspring created by mutation, and let z = 2'2"2"" be the result of
local search applied to y. Then z is accepted in the selection step only if y has
Hamming distance at most 1 to a well-formed search point.

Proof. Let w = w'w” 12N be a well-formed search point with minimal Hamming
distance to y. We distinguish three cases according to H(y"”’,z"), i.e., the
number of zero-bits in .

o If H(y"”,2") > 2, the function to be optimized during the local search
process is ZZO since the fitness of all search points with one or two zero-
bits in the z/’-part is —oco and the fitness is ZZO(-) > —oo in case of
three or more zero-bits. However, due to the gap between ZZO-dependent
search points and well-formed search points, local search cannot reach a
well-formed search point. Hence, the offspring z is rejected in the selection
step.

e In case y"” = 12V and H(w'w"”,y'y") > 2 we have fitness —oco for y and all
Hamming neighbors of y. Hence, local search stops immediately in this
case.

e Lastly, if H(y",2") = 1 and H(w'w”,y'y”) > 1 we have fitness —oo
and the fitness cannot be increased by flipping single bits in y’y”. The
Hamming neighbor obtained by flipping the unique zero-bit in 3"’ has
fitness —oo and so do all Hamming neighbors with a larger number of
zero-bits in the z’” part. Thus, local search stops immediately, here.

O

An important observation is that mutations followed by local search are in
some sense more powerful than mutations without local search. It is possible



that mutation yields a non-well-formed search point with Hamming distance
1 to a well-formed one. Then local search will reach the well-formed search
point within its first iteration and the outcome of local search may be accepted
by the algorithm (note that Lemma 1 provides a necessary condition, not a
sufficient one). Hence, mutations followed by local search are more likely to
yield an accepted search point than mutations without local search and the first
iteration of local search plays a crucial role, here. As a consequence, we may
in some situations regard the first iteration of local search as being part of the
mutation instead of local search.

Definition 6. An extended mutation is either a mutation reaching a well-
formed search point or a mutation followed by one iteration of local search in
case the mutant is not well-formed.

Using these insights, we now formally define the intuitive notion of progress.
In a generation without local search, the progress by one mutation on, say, the
left path is defined as i(y")—i(z’) if y is accepted and 0 otherwise. In a generation
with local search let « be the current search point, y be the individual obtained
by an extended mutation, and z be the result of local search applied to y. Then
the progress by one extended mutation is defined as i(y’) —i(z’) if 2 is accepted
and 0 otherwise and the progress by local search is i(z’) — i(y’) if z is accepted
and 0 otherwise. The progress on the right path is defined analogously.

In the following lemmas, we will prove lower and upper bounds on the cumu-
lated progress for specific operations, namely mutations in generations without
local search, extended mutations, and the remaining iterations of local search
after extended mutations.

In all proofs we consider a typical run of the algorithm. Events preventing
a run from being typical are called errors and the total error probability is
bounded by the sum of single error probabilities. If there is only a polynomial
number of exponentially small single error probabilities, a run is typical with
overwhelming probability.

First, we consider the progress by mutations in generations without local
search. We will bound the progress by a Chernoff-Hoeffding-type bound due to
McDiarmid, see Scheideler [10] (Theorem 3.44). By adding a hypothesis on the
variance, we obtain slightly simplified terms.

Lemma 2. Let X4,...,X,, be independent random wvariables and S,, := X1 +
o+ X IFf X S E(XG) 4 0b for all 1 < i < n and V(S,,) = O(bd) for some
d>0,

Prob(S,, > E(S,,) + d) = 27¥/b),

Proof. Let v =V(Sy,) and ¢ :=b-d/v. Due to Scheideler [10] (Theorem 3.44)

2
Prob(Sp, > E(Sp) +d) < e~ 705575 |

Since v = O(bd), the e-term is 2~2(4/), O



Lemma 3. Let At (AUSY) pe the progress on the left (right) path in T =

mut mut

Q(n*), T = poly(n) mutations. Then with probability 1 — 2-(n'/?) fore >0

T T
(1—5)-5<A1§ﬁt<(1+a)-—

en
and T T
right
(1—5)$ <Amut < (1+E)$

Proof. In a typical mutation, less than K bits flip simultaneously as the com-
plementary event has error probability 2~ (519 K)  The probability that this
happens at least once in T steps is still of order 2~ (K log K)

Let x = 2'2"”12" be the current search point, « well-formed. Let y = y'y"y""
be a mutant of x. Apart from the special situations when P; or P, is found on
the left or right path, resp., the following holds. The mutant y is accepted if and
only if y is well-formed and either i(y’) > i(z’) or i(y') = i(z’) and i(y") > i(z").

We first prove an upper bound on Al*ft. . Let = be the current well-formed
search point. For 1 < j < K, let b; be bit differing between Pj,/); ;-1 and
Pjzy4j. Let B = {b1,...,bx}. A mutation step creating y from z is called
relevant iff all bits outside of B do not flip, i(y”) > 0 and y"” = 12V. The

probability of i(y”) > 0is (14 0(1))- (1 — %)N since the probability of y” =
is (1 — %)N and the probabilities to reach some other search point on the right

path decrease exponentially with the Hamming distance. Hence, the probability
of a relevant step is

(1+0(1)) - (1 _ l)N_KHMN — (1+o(1)- (1 - l)n_K

n n

< (1+o(1)- (1-%)71. (1—%>n

=(1+o(1)-e?

By Chernoff bounds, the probability to have more than (1 + ¢) - T'/e relevant
mutation steps in 7' mutations is 2~ %T) = 2" for some constant ¢ > 0 that
will be chosen later.

Non-relevant steps cannot lead to a progress by mutation if less than K bits
flip in one step. We estimate the progress in relevant steps as follows. The
mutation operator decides independently for each bit whether it flips or not.
Suppose the mutation operator makes these decisions sequentially and w.1.0.g.
the bits in B are processed in order by, ...,bx. Then the progress in one relevant
step is bounded by the number of flipping bits before the first non-flipping bit
occurs. Thus, the random variable Z describing the progress in this step is due
to a geometric distribution with parameter p := (1 — 1/n) with the exception
that Z is bounded above by K. The variance of a geometric distributed variable
with parameter p = (1 — 1/n) is (1 — p)/p? = (1 +0(1)) - 1/n. Since the upper
bound K can only decrease the variance, V(Z) = (1 + o(1)) - 1/n.

Let Z1,...,Z,, be random variables describing the progress in m relevant
mutation steps. Due to the definition of a relevant step, Z; < K implying



Z; <E(Z)+K. Let S := Z1+- - -+ Z,, then E(S) < m(1-p)/p = (1+0(1))-m/n
and V(S) = ( 1)+ +V(Zn) = (1+0(1)) -m/n. Lemma 2 yields

Prob(S > E(S) + em/n) = 2~ (em/m)/K) g—Smn=?2)

Setting m = (1 + ¢) - T/e, this bound is 2-2T-7"**) = 9-20*"*) " Tuking into
account the error probability 2~ ®(KlegK) — 2-Q(n'/?logn) for not flipping K
or more bits at once, we have shown: the probability to have progress at least
(14c+o0(1)) - (14¢)-T/(en) is 2=2""*) Choosing ¢ such that (1 +c+ o(1)) -
(14 ¢) < (1+¢€) completes the proof of the upper bound.

The progress on the right path can be bounded from above in the same
fashion. The random variable describing the progress in one step is estimated
by a geometric distribution with parameter p := (1 — 1/n3) implying E(S) <
(14 0(1)) - m/n® and V(S) = (1 4+ o(1)) - m/n®. Lemma 2 yields

Prob(S > (1+c+o(1)) -m/n’) = 9=Q(mn="/%)
Setting m = (1 + ¢) - T'/e, the claim follows since T = Q(n*).

Now we prove a lower bound on A, A relevant mutation step increasing
the position on the path by at least 1 is called a progressing relevant step.
The probability of a progressing relevant step is at least 1/n - (1 — 1/n)""! >
1/(en) since it suffices to reach the next successor on the path with a 1-bit-
mutation. The expected number of progressing relevant steps in 7" mutation
steps is T'/(en) and by Chernoff bounds, the probability to have less than (1 —
¢)T/(en) progressing relevant steps is 2-2("),

The lower bound on Afr‘mt can be obtained in the same manner, except that
changes on the left path can dominate changes on the right path due to the
larger weight in the definition of the functions. A relevant mutation step where
the index on the right path is decreased due to a progress on the left path is
called a regressing relevant step. The probability of a regressing relevant step is
(14 0(1)) - 1/n*. Let Zi,..., Z,, describe the regress in m mutations, then for
S=27Z1++ -+ Zy both E(S) = (1+0(1)) -m/n* and V(S) = (1 +o(1)) - m/n*
holds. Lemma 2 yields

Prob(S > (14 o(1)) -m/n* +c-m/n®) = 9= Q(mn=7?)
Thus, the probability to have a total regress of (1 + o(1)) - em/n? is 2-0(n'/?)
if m = (14 c¢)-T/e. Setting progress against regress, the net progress on the
right path is (1 —c— (1 +0(1))c) - T/(en?) with probability 2-?(" "), Choosing
¢ such that (1 —¢— (14 0(1))c) > (1 — &) completes the proof.
o

Lemma 4. Let Agﬁ‘t be the progress on the right path in T = O(n*) extended
mutations of parents whose index on the right path is greater than 0. Let § > 6,

then with probability 1 — 2_9("1/4)
AT3/4 1/ 4T3/4
- right 1/2
n3/2 n Aenh < n3/2 +no

10



Proof. Like in the proof of Lemma 3, we only consider mutations flipping less
than K bits as the complementary event is considered an error. Consider the
case that we have Hamming distance at least K to both the start and the end
of a path. Then an extended mutation creating the offspring where the index
increases by some ¢ < K has the same probability as an extended mutation
creating the offspring where the index decreases by i. The upper bound on
the progress will turn out to be ignorant of the fact that the algorithm may get
closer than K to the end of the path. This implies that for the created offspring,
a progress of 0 < i < K is at least as probable as a regress of ¢ (i.e. a progress
of —i). Taking into account the effects of selection, this property also holds for
the selected individual. As a consequence, an upper bound on the progress on
either path also represents an upper bound for the regress on that path and it
suffices to prove an upper bound on the progress.

We distinguish two cases according to T. Let T < n°/2/9. The probability
to have progress 3i for some 1 < i < K/3 in one extended mutation can be
computed as follows. With probability (1/n)% - (1 —1/n)"3" P* := Py 43,
is reached directly by mutation. Moreover, there are 3¢ Hamming neighbors of
P* with a Hamming distance of 3i — 1 to  and n — 37 Hamming neighbors of P*
with a Hamming distance of 37 + 1 to x. Thus, the probability to have progress
3¢ on the right path is

13’i 1 n—31 1 3i—1 1 n—3i+1 1 3i+1 1 n—3i—1
G) (=3) (z) (-3) +e-m(G) (-3)
n n n n n n
n—K 31 .
1 1 _3
(1——) (—) [1+3i-n+n ’}
n n n
1
e

(14 o0(1)) - 3i-n=3F1

IN

Now imagine a sequence of binary random variables of infinite length where
each variable takes value 1 with probability p = 3n~2. The probability to obtain
a block of i > 1 consecutive variables with value 1 is

Prob(block of ¢ consecutive ones)

=3i-n_2i-(1—p)

Z 3 - n73i+1 X (1 _p)
1 .

>~ (1+o0(1))-3i-n 3*!
e

> Prob(progress 3i on the right path)

since (1 —p) > 1/e- (1 4+ o(1)) if n large enough.
Hence, the random process describing the number of ones among the first

T random variables stochastically dominates the random process describing the
progress on the right path divided by 3. We can now apply Chernoff bounds on

11



the former process since all random variables are independent.

1/2
right 1 e(n'/?/(pT)—1)pT
Prob(Acnh Z n / ) S W
<o @)
< e711/2 .3_711/2 _ 2—Q(n1/2)
where the last inequality follows from 7' < n°/2 /9.

Now let T > n°/2/9. The probability to have progress of at least 6 or at
most —6 in one extended mutation is O(n~°). By Chernoff bounds, it is easy
to show that the probability to have more than n'/2? of those larger steps within
T steps is 2-9n"")  Even if we assume that all these steps yield a progress of
K, the total progress by larger steps is less than n.

We now concentrate on steps yielding a progress of 3. The expected number
of these steps is at most 37n~2 and the probability to have less than 27'n~2 or
more than 47712 of these steps is 2-02(n'?) by Chernoff bounds. Let s be the
number of +3-steps and let X;,..., X, € {—1,41} be random variables such
that 3.X; describes the progress by the ith +3-step. Then

B(A% | X1, X) - B(ATR | Xy X )| <1

and we can apply the method of bounded martingale differences (Theorem 3.67
n [10]). Let X := X; +--- 4+ X, then

Prob(X >E(X) + 33/4> < o—s/2/(25) < )

Since s > 2Tn~2 = Q(n'/2), the e-term is 2"

Now we bound E(X). Let « be the current well-formed search point, y the
offspring obtained by an extended mutation and z be the search point obtained
by applying local search to y. In case another well-formed search point is reached
with z, it is very likely that due to improvements by local search i(z’) > i(a’)
holds and z is accepted regardless of i(z”). Hence, as long as we do not reach the
end points with indices 0 and r on the right path, a progress of 3 has the same
probability as a progress of —3. Thus, the progress of £3-steps can be modelled
by a symmetric random walk. The only exception is an extended mutation
yielding a large regress on the left path such that i(z’) = i(2’). In such a case,
the sign of i(z”) — i(2”) determines whether z is accepted or not. However,
since § > 6, the probability for such a pathological step is O(n~°). Even if we
estimate the progress in such a step by the trivial bound K, the contribution
of all these steps in T' = O(n*) extended mutations to the expected progress is
o(1).

Since in non-pathological steps progresses of 3 and —3 have the same prob-
ability, the expected progress by these steps is 0. Thus, we have shown E(X) =
o(1) and ATEM < (4Tn=2)3/44n40(1) < 4T3/*n=3/2 with probability 2-2("*).

O
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Lemma 5. Let Ale‘ffl be the progress on the left path in T > n'/2, T = poly(n)
1/2
extended mutations. Then with probability 1 — 2~ ) fore>0

T T
Lemma 6. Let Al*™ be the progress on the left path in T = poly(n) calls of
local search. Then with probability 1 — 2=*T) for ¢ >0

(5—1).(1_5)-¥ SA{S&S5~(1+5)-¥.

Proof. The probability that an extended mutation leads to an offspring that is
accepted after local search is at least (1—1/n)"+(1—1/n)""! = 2/e—o(1) since
a sufficient condition is to flip at most one bit in the mutation step. Afterwards,
as long as the end of the left path is not found, local search leads to a progress of
0 —1 or 4. By Chernoff bounds, the probability to have less than (1 —¢)-2/e-T
of these events in T steps where local search is called is 277). Thus, the
probability that local search leads to a progress less than (6 —1)- (1 —¢)-2T/e
is 27T,

The upper bound can be proved similarly. It is easy to show that the proba-
bility that an extended mutation leads to an offspring accepted after local search
is bounded above by (1 + o(1)) - 2/e. By Chernoff bounds, the probability to
have more than (1+¢)-2/e-T of these events in T generations with local search
is 27T Thus, the probability that local search leads to a progress larger than
§-(1+¢) 2T /eis 27T, O

Finally, we are able to prove our main theorem.

Proof of the Main Theorem. Let £ = 1—25 : (n3 + M) be the length of the
left path and r = n® — 14+ 1= . 4 4272 4 31/2 L 9 he the length of the right

path for a small enough constant >T 0. W.Lo.g. /3 € Ng.

We investigate typical runs of the (1+1) MA with local search frequency 1/7
and 1/(27) on Racelgfﬁt and Racezifht. The following statements hold w.o.p. By
Corollary 1, the (1+1) MA reaches some well-formed search point zg,s with
i(zf,) < K and [i(zf ) — (n® — 1)| < K within the first n* steps.

We consider a period of n? generations of the (14+1) MA with local search
frequency 1/7 after rg,s has been reached. Let A be the total progress on
the left path and A'&P be the total progress on the right path in n* generations.
Then we apply Lemmas 3, 5, and 6 w.r.t. n* —n*/7 mutations, n*/7 extended
mutations or n*/7 local search calls, respectively. We obtain

3 4 4

. off 1-¢ n 14+e n 2n
Z(Ii/"irst)_'—AlttZ o '(ng_?)_ e ?"’(5_1)(1_5)?

1-—¢ 3 14+ 1\ n* 260t
= nt =12+ + -] —+
e l—e¢ n/) 1 T
l

1-¢ (n3 N (25—4)n4> _

e T
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if e < 1/3 and n is large enough. Thus, the end of the left path is reached within
the considered period.

Moreover, we show that the end of the right path is not reached within this
period. First, we consider the very last search point with index i(z{l, ) + Aright
on the right path and show that the probability of i(zf ) + A&ht > r — K
is exponentially small, i.e., the last considered search point is by at least K
path points away from the end of the right path with overwhelming probability.
This is done by applying Lemmas 3 and 4 where Lemma 4 can be applied since
i(zff ) > n®—1—K and n* steps can only decrease the index by n*- K implying
that the index on the right path cannot become 0.

We obtain

. v 1+e¢ 4n>/?
izl )+ ATER < 5 1 4 Ky PR Ly

+n'?=r - K.

Observe that the probability to reach the end of a path cannot increase with
decreasing number of generations. Hence, this bound also holds for all other
search points reached within the period and the error probability increases by
a factor of n.

Together, the (14+1) MA with local search frequency reaches the end of the
left path within O(n*) generations and O(n* + n - §/7) = poly(n) function

evaluations. This implies that on Raceleeﬁt, a global optimum is found and the

(1+1) MA is efficient. On Rabce;‘ght however, since i(x] )+ Atght < r— K the
Hamming distance to the end of the right path is at least K. As all search points
closer to P, now have worse fitness, the only way to reach a global optimum is
a direct jump flipping at least K bits. The probability for such an event is at
most n~K = 2=9("?108m) thyg the (1+1) MA fails on Race“ght.

The argumentation for the (141) MA with local search frequency 1/(27) is
symmetric. We now consider a period of v/2n* generations of the (141) MA with
local search frequency 1/(27) after za,st has been reached and define Alft and
A&t according to this new period. Then we apply Lemmas 3, 5, and 6 w. 1. t.
V2n* — /2n*/(27) mutations, v/2n?/(27) extended mutations or v/2n*/(27)
local search calls, respectively.

We will show that i(zf )+ A& > rand iz}, )+ A" < /— K. Repeating
the line of thought from above, the (1+1) MA is efficient on Racefzifht and it

gets trapped on Racelet.

First, we prove z(:cﬁrst) + Aright > 1 using Lemmas 3 and 4. We have

: v Vant — Vont/(2r)  213/8p3/2
Z(xgrst) +A ght > TL5 -1-K+ (1 - E) ) en3 B 73/4 - n1/2

913/8,,3/2

73/4

c Von—

=n°—1- —o(n).

By hypothesis 7 = w(n?/3) implying 229/8 . ZZ—Z +n'/?2 £ 3K = o(n). Adding
the left hand side and another term —o(n) yields

© Vot

i(xfh ) + AT > b 7 + n'? + 2K — o(n).
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If ¢ > 0 is small enough such that (1 —¢)-+2 > (14 ¢) and n is sufficiently
large,

1+e¢ 4n3/2

+ +nl/2 2K =1,
n 7—3/4 n T

i(xgrst) + Aright > n5 -1+

Finally, we show i(zf,.,) + Al*f* < ¢ — K using Lemmas 3, 5, and 6.

1 4 _ 4 2 4 4
) b A < K +6.@.(%/(7>+”_+5.”_)
.

e 2T
4
<K+1+E.\/§.(n3+w)
e T
4
_1+E.\/§.(n3+w)_[{+o(n3)
e T

where the last equality follows from 2K = o(n?). If € is small enough such that
(14+¢)-v2< (1 —¢)-3/2and n is large enough,

1-— 1 4
(@) + AT < f.(é.nug.M)_K

e 2

-
I e O S A D G ) L W
e 2n T 2 T

By hypothesis, /7 > 2/n and § > 22 implying (§ — 11)/7 > 1/n. Plugging this
into the above equality yields

1- —11 n? 1)n4
() + A < E.<n3+5_.n_+§.m>_z<
T 2
n

€

p— —_— . 4
:1 E.<n3+u _K=¢—K.
e

5 Conclusions

We presented a rigorous theoretical analysis of a simple memetic algorithm,
the (141) MA, thus showing that these randomized search heuristics can be
analyzed in terms of computational complexity. On worst-case instances we have
shown that the choice of the local search frequency has an enormous impact on
the performance of the (1+1) MA: with overwhelming probability, even altering
the parameterization by a factor of 2 turns a polynomial runtime behavior into
an exponential one and vice versa.

Furthermore, we have gained insights into the behavior of memetic algo-
rithms and into the interplay of mutation and local search. Although more
work has to be done to obtain rigorous analyses of more complex memetic al-
gorithms on real practical problems, this work is a valuable contribution to this
promising research area.
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