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Controlled Model Assisted Evolution Strategy with
Adaptive Preselection

Frank Hoffmann, Member, IEEE,and Sebastian Hölemann

Abstract— The utility of evolutionary algorithms for direct
optimization of real processes or complex simulations is often
limited by the large number of required fitness evaluations.
Model assisted evolutionary algorithms economize on actual
fitness evaluations by partially selecting individuals on the basis
of a computationally less complex fitness model. We propose
a novel model management scheme to regulate the number of
preselected individuals to achieve optimal evolutionary progress
with a minimal number of fitness evaluations. The number of
preselected individuals is adapted to the model quality expressed
by its ability to correctly predict the best individuals. The method
achieves a substantial reduction of fitness evaluations on a set
of benchmarks not only in comparison to a standard evolution
strategy but also with respect to other model assisted optimization
schemes.

I. INTRODUCTION

Evolutionary algorithms solve global, complex, high-
dimensional, multi-modal optimization problems without an
explicit analytical description of the underlying fitness func-
tion. This property makes them particular suitable for direct
optimization of real processes, for example in the context of
hard-ware-in-the-loop control system design. However, due
to the large number of evaluations evolutionary algorithms
meet limitations if the computation of the ftness functions
is time-consuming or expensive. This observation motivates
the substitution of costly true fitness evaluations by an ap-
proximate fitness model which is generated from observations
of the true fitness function [1], [2], [3]. It is assumed that
the computational cost to generate and query the model is
negligible compared to the cost of true evaluations.

Fitness modeling has been investigated in several publica-
tions as a means to accelerate evolutionary optimization [1],
[2]. Model management is concerned with the decision of
which individuals are evaluated on the true fitness function
and which ones are solely selected based on their predicted
fitness values. Increasing the number of evaluated individuals
provides additional training data to generate a more accurate
model, thereby reducing the risk of premature convergence of
optimization due to misleading minima of the fitness model.

The paper is organized as follows. Section II introduces
the concept of model assisted evolution strategies. Section
III compares the utility and performance of several instance
based learning schemes in the context of fitness modeling.
Section IV describes the novel scheme to regulate the number
of preselected individuals within the model assisted evolution
strategy with the objective of optimal exploitation of fitness
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evaluations. The results in section V demonstrate that the
approach is efficient and robust as it reduces the number of
evaluations substantially. The paper concludes with a summary
in section VI.

II. MODEL ASSISTED EVOLUTION STRATEGY

The idea of a model assisted evolution strategy (MAES)
is to generate a larger number λp > λ of offspring but only
to evaluate the most promising candidates on the true fitness
function [4].

Preselection picks the λ best individuals according to the
fitness predicted by the model, which are then evaluated on
the true fitness function to determine μ parents. That way
all parents are guaranteed to be tested on the true fitness
function which avoids convergence of the optimization to
misleading minima introduced by the fitness model. The λ
true fitness evaluations at each generation provide additional
training data to refine the fitness model. Notice, that the
total number of true fitness evaluations, namely λ tests per
generation, remains the same. The advance in convergence of
the MAES compared to a standard ES is attributed to the larger
number of λp candidates, which increases the probability to
find solutions that are superior to the previous generation.
Therefore, an MAES is expected to find better solutions
with the same amount of computational effort for fitness
evaluations. However, this improvement is only achievable
if the actually best μ individuals survive the model based
preselection. The current quality of the fitness model does not
depend primarily on the residual model error, but rather on
its ability to correctly predict the ranking of individuals in the
context of selection. In [4] the authors come to the conclu-
sion, that a MAES already advantageous if the model based
preselection performs better than a purely random selection,
as on average superior individuals undergo the true fitness test.
This trend is reversed in case of a misleading model which
performs worse than random selection. This observation leads
to the idea of controlled model assisted evolution strategies
which dynamically adapt the number of offspring λ p to the
accuracy of the model during evolution. If the model performs
better than random selection it is safe to increase λp and
thereby the impact of the model on the evolution strategy. Vice
versa λp is reduced if the model performs worse than random
selection. The novelty of our approach is to regulate λ instead
of λp based on the model quality. From a practical perspective
evolutionary progress should be measured in terms of true
fitness evaluations rather than number of generations as the
former effectively determine the cost and temporal demands
of the optimization. Our results demonstrate that controlling



λ substantially reduces the number of fitness evaluations not
only with respect to a standard ES, but also with respect to
other variants of CMAES.

In order to evaluate the quality of the preselection it seems
at first necessary to determine the true fitness values of all
λp individuals in order to compare the predicted and the
true ranking. Instead the quality of the model is determined
with respect to the μ out of λ-selection for which the true
fitness values of the preselected individuals are known. The
λ individuals are ranked according to their true fitness and
a weight (λ − i) is associated with the i-th individual which
reflects the notion that the model should identify the highest
ranked individuals. The quality of the model does not only
consider the number of correctly selected individuals but also
their rank. and is calculated by summing their weights

Q =
λ∑

i=1

gi(λ − i) (1)

in which gi = 1 if the i-th individual is correctly selected and
gi = 0 otherwise. The quality distinguishes according to the
true rank, e.g. missing out on the de facto best individual is
more costly than missing out on the second best individual.
In case none of the de facto parents is selected the quality
becomes zero, in case all μ parents are selected correctly the
quality becomes

Qmax =
μ∑

i=1

(λ − i) = μλ − μ(μ + 1)
2

(2)

For a random selection of individuals the expected value of
model quality becomes

Qrand =
μ2

λ

2λ − μ − 1
2

(3)

These quality measures form the basis for adapting the
number of individuals that are subject to the true fitness
evaluation to quality of the model as described in section IV.

III. COMPARATIVE ANALYSIS OF FITNESS MODELS

Fitness modeling is concerned of approximating an un-
known target function based on training data generated from
true fitness evaluations. This section compares the utility and
performance of different supervised learning methods in the
context of fitness approximation. In the case of MAES new
fitness values only become available during evolution, which
requires online learning with the model subject to stepwise
refinement. This requirement excludes off-line learning meth-
ods, such as neural networks which necessitate retraining
with the entire batch of data. In the context of model based
preselection one does not seek a global approximation but
rather emphasizes local models that approximate the fitness
function in the region of search space populated by the
current generation [5]. Local models do not build an explicit
representation of the underlying function but merely store the
training data. For each query they generate a local model that
is valid in the vicinity of the query point. The contribution
of a stored training pair to the local model is weighted by
its distance to the query point. The local methods differ in

the type of local model used for approximation and in the
distance based kernel function that determines the weights.
In the following we describe local linear weighted regression
in detail, as this method was eventually employed within the
controlled model assisted evolution strategy described in the
next two sections.

Local linear regression (LWR) is derived from standard
regression techniques. The data points are weighted by their
distance to the query point in the regression step. The idea
is to attribute more relevance to data points that are close to
the query point and thereby increasing their influence on the
approximating function. That way the approximating function
locally adapts to the vicinity of the query point q whereas the
quality of approximation decreases with increasing distance to
q. This makes sense as a local fitness model suffices to predict
the ranking of the current generation that usually occupies a
limited region of search space. Local regression minimizes an
error function of the form

ε =
k∑

i=1

(
f(x(i)) − f̂(x(i))

)2

· wi (4)

in which the weight wi = wi

(
Δ
(
x(i), q

))
is a function of the

distance between the i-th data point and the query point. In our
case the weight is determined by a Gaussian kernel function

wi(Δ(x(i), q)) = e−Δ(x(i),q)2 (5)

and the distance between two points is defined by a scaled
Euclidean distance

Δ(x, q) =

√∑n
l=1 (xl − ql)2

h
(6)

The scaling factor h is adapted to the distribution of data
points which strongly depends on the state of convergence
of the population. In principle, the optimal value for h can be
determined by means of leave-one-out cross-validation. For
the sake of computational efficiency we suggest a simpler
adaptation mechanism in which h is simply given by the
distance between the query point q and its nearest neighbor.

In local linear weighted regression the approximating func-
tion

f̂(x) = β0 +
n∑

l=1

βlxl (7)

is linear in the data x as well as the parameters β of the model.
The error functional from equation 4 is given by a quadratic
form

ε(β) = (y − H · β)T W (y − H · β) (8)

in which

H =

⎛
⎜⎜⎜⎜⎝

1 x
(1)
1 · · · x

(1)
n

1 x
(2)
1 · · · x

(2)
n

...
...

. . .
...

1 x
(k)
1 · · · x

(k)
n

⎞
⎟⎟⎟⎟⎠ (9)

is the matrix of data points and W = diag
(
(w1, . . . wk)T

)
is a

diagonal weight matrix with wi =
(
Δ
(
x(i), q

))
. The optimal



parameter vector β that minimizes 8 is obtained by means of
least squares

β =
(
HT WH

)−1
HT Wy (10)

Distance weighted averaging operates with a constant re-
gression function

f̂(x) = β0 (11)

Nearest neighbor constitute the computationally most sim-
ple type of local models as the predicted value at the query
point is taken from its nearest neighbor (1-NN) or as the
average of its N nearest neighbors. In other words, the weight
with which a training example contributes is either zero or one
and is not directly modulated by the distance.

Whereas local linear regression is able to extrapolate beyond
the distribution of data points distance weighted average and
nearest neighbor methods only interpolate between data points.
This constitutes problems as the current population usually
exhibits a different distribution than previous generations
from which the training examples emerge. Our experimental
analysis confirms this concern.

Gaussian processes have been widely used in fitness mod-
eling [6],[3]. Gaussian processes offer the advantage that in
addition to the fitness estimate itself they also provide an
estimate of the uncertainty of the model at the particular query
point. Based on the information about the variance of the
estimate it is possible to compute a probability of improvement
(POI) which states the likelihood that the true but unknown
fitness value actually exceeds a threshold fmin. In [6] the
preselection step identifies precisely those candidates that
possess the largest probability of improvement with respect
to the current best fitness. A detailed discussion of Gaussian
processes is beyond the scope of this paper. The interested
reader is referred to [7] for a detailed introduction.

In the following the performance of the methods nearest
neighbors (NN), distance weighted averaging (DWA), linear
weighted regression (LWR) and Gaussian processes (GP) is
evaluated in the context of MAES on a set of four artificial
benchmarks problems, namely the sphere function

f(x) =
n∑

l=1

x2
l (12)

the Rosenbrock function

f(x) =
n−1∑
l=1

(
10
(
x2

l − xl+1

)2
+ (xl − 1)2

)
(13)

the Griewank function

f(x) = 1 +
1

100

n∑
l=1

x2
l −

n∏
l=1

cos
(

xl√
l

)
(14)

and the Ackley function

f(x) = −20 exp

⎛
⎝−0.2

1
n

√√√√ n∑
l=1

x2
l

⎞
⎠

− exp

(
1
n

n∑
l=1

cos (2πxl)

)
+ 20 + e (15)
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Fig. 1. Evolution of fitness under MAES for nearest neighbor (NN), distance
weighted averaging (DWA), linear weighted regression (LWR) and Gaussian
processes (GP) and a standard evolution strategy (ES) on a set of benchmark
optimization problems.

. The sphere and Rosenbrock function are unimodal, whereas
the Griewank and Ackley function represent multi-modal op-
timization problems with potentially misleading local minima.
All functions assume their global minimum at fmin = f(0) =
0 except for the Rosenbrock function with fmin = f(0) = 1.
In all cases the results are based on an average of 100 runs
and the dimension of the search space is n = 20. Figure
1 shows the evolution of fitness for a MAES with constant
λ = λp/2. It becomes obvious that for some optimization
problems the choice of the approximation function has a
significant impact on the convergence behavior of the MAES.
All models perform equally well on the Rosenbrock func-
tion. On the other hand DWA is prone to cause premature
convergence on the sphere function and in the long run is
actually outperformed even by the standard ES. In general
DWA and NN models are inferior to LWR and GP models.
The later two perform similar across all problems, the GP
shows slightly superior convergence in case of the sphere and
the Ackley function. This minor advantage is annihilated by
the significantly increased computational complexity of GP
compared to LWR, which is the reason for analyzing the
controlled model assisted evolution schemes on the basis of
LWR models. In a practical application, that does not require
the extra burden of multiple runs to obtain reliable statistics
GP models might still be the first option.

A more detailed analysis of the interaction between model
quality and correct selection of parents reveals the shortcom-
ings of the DWA and NN models. The crucial factor of
MAES is its ability to reliably preselect the de facto best
individuals. For that purpose figure 2 depicts the ratio μ r/μ
of correctly selected parents, in which μr is the fraction of
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Fig. 2. Analysis of the accuracy of the preselection step in terms of the
ratio of correctly selected parents under a MAES for nearest neighbor (NN),
distance weighted averaging (DWA), linear weighted regression (LWR) and
Gaussian processes (GP).

preselected individuals from the set of the μ actual parents
assuming full knowledge. Notice, that a de facto parent is
correctly selected as long as it appears among the λ preselected
individuals as then the subsequent fitness evaluation reveals
its true quality. The poor convergence behavior of DWA in
case of the sphere function becomes apparent from the decline
in correctly selected individuals after the 50th generation. In
this case the model becomes counterproductive as the rate
drops below the 50% that a random selection of a model free
standard ES achieves on average. For the GP and the LWR
model almost 100% of the true parents are preselected. Only in
case of the Rosenbrock function the rate decreases for the GP
model during the final generations. The NN model is reliable
in so far as it permanently outperforms a random selection
but is only marginal efficient with a correct selection rate of
about 70%. The results confirm the hypothesis that the MAES
improves the convergence as long as the preselection performs
better than a random selection. They also show that the gain in
convergence increases with the accuracy and robustness of the
preselection process. Figure 3 depicts how the rate of incorrect
selections depends on the number of preselected individuals.
It reveals that the MAES might operate with a substantially
smaller number of preselected individuals λ < λp/2 without
a substantial sacrifice on the rate of correctly selected parents.
This observation advocates a strategy to regulate λ based on
the quality of the fitness model in comparison to a random
selection process to achieve an optimal trade-off between
the cost of additional true fitness evaluations andthe risk of
rejecting potential parents due to an erroneous fitness model.
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Fig. 3. Rate of incorrect selections as a function of λ for at 1st, 5th, 20th
and 50th generation for μ = 10, λp = 100. The dashed line corresponds to
λ = λp/2 = 50.

IV. λ-CONTROLLED MODEL ASSISTED EVOLUTION

STRATEGY

Our experiments indicated that the strategy of controlling
the number of offspring λp is not successful for the task of
regulating the impact of the fitness model on the evolutionary
process. The data in figure 2 shows that at least for GP and
LWR and λ = λp/2 almost 100

In order to guarantee that the model based preselection
performs better than random selection we propose a strategy,
named λ − CMAES that regulates λ in order to maintain
model quality. The number of offspring λp is kept constant.
The key idea is to prefer model based selection over true
fitness evaluations as long as the model is able to discriminate
among the best individuals. At each generation λ-CMAES
compares the actual model quality Qg observed over the set of
preselected individuals with the expected quality of a random
selection according to Eq. 3. If Qg > Qrand the current
model performs better than random selection and the number
of evaluated individuals in the next generation g + 1

λg+1 = max

(
λg − Qmax − Qg

< Qrand >
δλ, μ

)
(16)

is reduced. The gain δλ determines the rate of adaptation and
is chosen small enough to suppress random fluctuations. In
contrast, if the current model quality falls below the random
selection quality Qg < Qrand, the evolution puts less trust
into the model by increasing the number of true evaluations
according to

λg+1 = min

(
λg +

Qmax − Qg

Qmax− < Qrand >
δλ, λp

)
(17)

λ-CMAES aims to adjust the quality of the preselection
process to that of a random selection. This raises the question
of how λ-CMAES then still performs better than a standard
ES. Notice, that the selection quality is measured with respect



to the λ individuals, but that the model is expected to dis-
tinguish fitness between the overall λp offspring. A quality
of Qg > Qrand means that the information provided by the
model is not fully utilized for preselection, as some individuals
with lower expected fitness are still evaluated on the true
fitness function. It is more economic to spare these evaluations
and consequently only evaluate individuals that the model fails
to discriminate in terms of fitness. The results presented in the
next section demonstrate that λ-CMAES achieves a faster yet
robust convergence and that the expected benefit is actually
realized. Despite the reduced number of fitness evaluations
the evolution scheme generates a sufficient number of training
data to improve the model.

In order to have a sufficient statistical basis for the eval-
uation of model quality according to eq. 1 the lower limit
for λ was initially set to λμ = 2μ. However, in some of the
benchmark problems λ-CMAES attains this lower limit within
a few generations, which indicates a saturation of λ even
though according to the controlλ might be further reduced.
Therefore, the lower limit for λ is reduced to λ = μ. This
limit might cause instability of the λ-regulation, in particular
in the case λ = μ all individuals are guaranteed to be correctly
selected as parents. Therefore, the quality of the model in
case of λ < 2μ is evaluated on the basis of λ/2 out λ-
selection. That way there are at least μ/2 independent samples
available to assess the model quality. The equations 2 and 3
that determine Qmax and Qrand are modified as μ is replaced
by the nominal value

μ̃ =
{

μ, if λ ≥ 2μ
λ
2 , if λ < 2μ

(18)

.

V. RESULTS

The performance analysis of λ − CMAES uses the set of
benchmark optimization problems introduced in section III and
is based on the average of hundred test runs in each scenario.
The plots in figure 4 compare the evolution of fitness between
the λ-CMAES, a standard ES and a MAES with constant
λ = λp/2. The plots also contain the evolution of λ(g)
over the generations, the horizontal dashed lines correspond
to λ = μ and λ = 2μ. The adaption rate is given by δλ = μ/2
and the initial value is λ(0) = λp/2. As to be expected λ-
CMAES performs better than a standard evolution strategy but
is outperformed by MAES if progress is measured in terms of
elapsed generations. The evolution of λ(g) indicates that λ-
CMAES requires substantially fewer actual fitness evaluations
compared to MAES. After a few generations the number of
fitness evaluations decreases rapidly and then stabilizes at a
value of approximately λ ≈ 2μ for the unimodal problems
and λ ≈ 1.5μ for the multi-modal problems.

As the number of fitness evaluations per generation is no
longer constant it only seems fair to compare λ-CMAES with
MAES on the basis of actual fitness evaluations as these
determine the eventual effort of an evolutionary optimization.
Figure 5 depicts the evolution of fitness in terms of actual
fitness evaluations and reveals the superiority of λ-CMAES.
with the same number of evaluations λ-CMAES achieves
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Fig. 4. Evolution of fitness for the benchmark functions in terms of number
of generations for a standard ES, a MAES with constant λ and the λ-CMAES.
The plot also shows the evolution of λ(g)
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Fig. 5. Evolution of fitness in terms of number of fitness evaluations for a
standard ES, a MAES with constant λ and the λ-CMAES.

fitness values that are several orders of magnitude better than
a standard ES. Vice versa λ-CMAES achieves the same fitness
value as an ES with less than one third of the computational
cost. For the MAES the number of offspring λp is increased
and set to optimal values λp ∈ [300 − 800] determined in
an earlier independent analysis. The number of preselected
individuals in MAES is kept constant at λ = 35 for the
unimodal and λ = 50 for the multi-modal problems. Notice,
that even though MAES requires more effort as the model
estimates the fitness for more individuals its performance is
clearly inferior to λ-CMAES.

Figure 6 shows that after a few generations λ fluctuates
slightly around an average value. This raises the question if
the control of λ is actually necessary or whether a MAES
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with a lower but constant value of λ does not achieve the
same performance. It turns out that in general the optimal
value of λ is problem specific and not necessarily constant
throughout the evolution. The following results are based on
the optimization of the Griewank-function for problem sizes
n = 10 and n = 30. For n = 10 the parameters for
the MAES and λ-CMAES are μ = 5, λ = 35, λp = 70
and μ = 15, λ = 100, λp = 200 for n = 30. The tests
included two additional MAES with small constant values
for λ = μ and λ = 2μ which correspond to the range to
which λ-CMAES tends to converge. The results show that
for the Griewank-function with dimension n = 10 the value
of λ further decreases after about 300 generations and is not
constant throughout evolution. The MAES with small constant
values of λ achieved similar performance as λ − CMAES
in a large number of individual runs, but do not provide
robust optimization. In particular for Griewank function with
dimension n = 10 the constant strategy often suffers from
premature convergence of the MAES in local minima. Notice,
that the density of local minima of the Griewank function
increases for smaller dimensions. λ-CMAES proofs robust
with respect to local minima and the particular characteristics
of the optimization problem.

VI. CONCLUSION

This paper proposes a novel scheme for evolutionary opti-
mization which attempts to exploit a limited number of actual
fitness evaluations in the most effective manner. The model
assisted evolution strategy reduces the number of actual fitness
evaluations by preselecting offspring on the basis of a local
fitness model. Our results show that weighted linear regression
is most suitable for fitness function approximation due to its
limited computational complexity, its ability to incorporate

new training data online, its capacity of extrapolating beyond
the current distribution of data and finally its accuracy in the
reliable preselection of the best individuals.

The novel model management scheme λ-CMAES perma-
nently adapts the number of preselected individuals to the
quality of the current model, thus using the fitness evaluations
in the possible most efficient manner. The model quality
is regulated such that it performs barely better than a ran-
dom selection on the preselected individuals but nevertheless
reliably discards inferior solutions in advance. λ-CMAES
achieves a substantial reduction of fitness evaluations on a
set of benchmarks not only in comparison to a standard
evolution strategy but also with respect to other model assisted
optimization schemes. Our analysis shows that the optimal rate
of fitness evaluations is problem dependent and varies with the
convergence of the population which confirms the necessity of
adapting this parameter online.
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