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gedruckt.



Why Comma Selection Can Help with
the Escape from Local Optima?
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Abstract. We investigate (1,λ) ESs using isotropic mutations for opti-
mization in Rn by means of a theoretical runtime analysis. In particular,
a constant offspring-population size λ will be of interest.
We start off by considering an adaptation-less (1,2) ES minimizing a lin-
ear function. Subsequently, a piecewise linear function with a jump/cliff
is considered, where a (1+λ) ES gets trapped, i. e., (at least) an expo-
nential (in n) number of steps are necessary to escape the local-optimum
region. The (1,2) ES, however, manages to overcome the cliff in an almost
unnoticeable number of steps.
Finally, we outline (because of the page limit) how the reasoning and
the calculations can be extended to the scenario where a (1,λ) ES using
Gaussian mutations minimizes Cliff, a bimodal, spherically symmetric
function already considered in the literature, which is merely Sphere

with a jump in the function value at a certain distance from the mini-
mum. For λ a constant large enough, the (1,λ) ES manages to conquer
the global-optimum region – in contrast to (1+λ) ESs which get trapped.

1 Introduction

Since Schwefel has introduced the comma selection in the late 1960s (cf. Schwefel
(1995)), every now and then there have been long debates about whether to
favor elitist or comma selection. Unlike for the discrete search space {0, 1}n

where according to Jansen et al. (2005, p. 415) “the difference between an elitist
(1+λ) EA and a non-elitist (1,λ) EA is less important”, for optimization in the
contiuous domain R

n this difference can be crucial. It seems common knowledge
that comma selection should be auxiliary when a multi-modal function is to
be optimized or when noise makes the function to appear multi-modal to the
evolution strategy (ES) (cf. Arnold (2002)). On the other hand, it seems clear
that on a smooth unimodal function elitist selection will always outperform
comma selection – provided that an adequate mutation adaptation is used.

The insights about the optimzation of multimodal functions, however, base
on intuition and a huge number of experimental investigations of the performance
of a large variety of ESs – rather than on theoretical investigations. One reason
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for this may be that the common progress-rate approach is unapplicable for these
kinds of scenarios since it (implicitly) demands the progress to become stationary
(possibly using some kind of normalization, for instance w. r. t. the distance from
the optimum and/or the search space dimension). Jägersküpper (2005) at least
proves that elitist selection is no good choice when the fitness landscape shows
“cliffs” or “gaps”; the more challenging question whether comma selection would
do better is not tackled.

The present paper tackles this question. Namely, we follow this approach and
contribute to the debates by investigations that base on probabilistic runtime
analysis known from the classical field of the analysis of randomized algorithms
in theoretical computer science.

2 The Simplest Scenario

We consider the linear function Sumn : Rn → R defined by

Sumn(x) :=

n∑

i=1

xi

which is also called OneMax when x ∈ {0, 1}n. For a given function-value a ∈ R

let HSum=a denote the hyper-plane {x | Sum(x) = a} ⊂ R
n. Obviously, HSum=a

and HSum=b are parallel, and it is easy to see that the distance between the two
hyper-planes equals |a − b|/√n. Furthermore, for a search point c ∈ R

n let Hc

abbreviate HSum=Sum(c), i. e. Hc = {x | Sum(x) = Sum(c)}. Thus, for instance,
a mutation of the current search point c corresponds to a Sum-gain of 1 (we
consider minimization!) iff the mutant c

′ = c+m lies in HSum=Sum(c)−1, implying
that dist(c′, Hc) = 1/

√
n, where “dist” denotes to the Euclidean distance – as

we minimize in Euclidean n-space. Furthermore, we focus on the function (class)
LinCliff

∆
n : Rn → R with ∆ : N → R>0 defined by

LinCliff
∆
n :=

{
Sumn(x) for Sumn(x) ≥ 0,

Sumn(x) +
√

n · ∆(n) for Sumn(x) < 0.

As we minimize, all points x with Sum(x) = 0 are local optima with function
value 0 (there is no global optimum); namely, the hyper-plane HSum=0 contains
all local optima. For x with negative Sum-value a “penalty” of

√
n ·∆ is added,

where ∆ might depend on n. Thus, there are two different hyper-planes with
LinCliff-value 0: one is HSum=0, which contains all local optima, and the other
one is HSum=−√

n∆. Recall that the distance between these two hyper-planes
equals ∆.

When talking about “the gain” of a mutation or a step, we mean the spatial
gain of a mutation/step (unless we explicitely state “Sum-gain”, of course). The
change in the Sum-value is merely used as an indicator whether the mutant of c

lies in the one half-space w. r. t. the hyper-plane Hc or in the other.
As we focus on isotropically distributed mutation vectors, the larger the

length of m, the larger the expected distance between the mutant c
′ and Hc
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(and the larger the expected Sum-gain). To focus on the core of the reasoning,
for the present we consider unit isotropic mutations, i. e. isotropic mutations the
lengths of which are not random but concentrated at 1 (so that the mutation
vector m is uniformly distributed upon the unit hyper-sphere). Later we show
how to extend the calculations to (scaled) Gaussian mutations, the length of
which follows a (scaled) χ-distribution. So, the random spatial gain

G :=

{
dist(c′, Hc) if Sum(c′) < Sum(c)

− dist(c′, Hc) if Sum(c′) ≥ Sum(c)

corresponds to the “signed distance” of the mutant from the hyper-plane con-
taining its parent. Jägersküpper (2003) shows that the density of G at g ∈ [−1, 1]

equals (1 − g2)(n−3)/2/Ψ for n ≥ 4, where Ψ :=
∫ 1

−1
(1 − g2)(n−3)/2 dg lies in the

interval
√

2π
/√

n − [1.5 ± 0.5] (normalization), giving a symmetric bell-shaped

function with inflection points at ±1/
√

n−4 for n ≥ 6.

When the (1+1)ES minimizes Sum, the expected gain of a step, which con-
sists of a (unit isotropic) mutation and selection, equals the expectation of the
random variable (r.v.) G+ := G · 1{G≥0} since the indicator variable “1{G≥0}”
implements elitist selection (in this case). We have

ḡ := E
[
G+

]
=

∫ 1

0

g · (1 − g2)(n−3)/2 dg
/

Ψ = (n − 1)−1/Ψ ∈
[
0.3989√

n+1
,

0.4√
n−1

]
.

For the (1,λ) ES, however, Gλ:λ, the maximum of λ independent copies of G,
equals the gain of a step. The following general property of the second-order
statistic of a symmetric r.v. tells us that the expected one-step gain of the
(1,2) ES (when optimizing Sum) is at least as large as the one of the (1+1)ES
(cf. the appendix for a proof).

Proposition 1. Let the r.v. X be symmetric, i. e., P{X ≥ g} = P{X ≤ −g} for
g ∈ R. Then E[X2:2] ≥ E[X · 1{X≥0}] (= E[X | X ≥ 0]/2).

Hence, also the expected total gain of i steps of the (1,2) ES is at least as large
as the expected i-step gain of the (1+1)ES. There is a crucial difference, though:

Unlike for the (1+1)ES, for the (1,2) ES the total gain G
[i]
2:2 of i steps, which

is formally the sum of i independent copies of G2:2, can be negative, i. e., the
evolving search point may visit the half-space consisting of all points with a

larger Sum-value than the initial search point. Note that G
[i]
2:2 is a generalized

random walk.

We are interested in the r.v. Ginf
2:2 := inf i≥0 G

[i]
2:2, the maximum loss com-

pared to the starting point. In particular, we’d like to know P
{
Ginf

2:2 ≥ 0
}
, the

probability that the evolving search point is never (i. e. even when running the
(1,2) ES ad infinitum) worse than the initial one. (As the very first step yields a
negative gain with probability 1/4, obviously P

{
Ginf

2:2 ≥ 0
}
≤ 3/4.)
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Lemma 2. P
{
Ginf

2:2 ≥ 0
}

= Ω(1).

Proof. Recall that E[G2:2] ≥ ḡ (= E[G+]). Consider the partition of R≥0 given
by the intervals Pi = [ḡ · i3; ḡ · (i+1)3) for i ∈ N0. Note that the width of Pi

equals wi := ḡ · (3i2 + 3i + 1). We identify the current search point with the
corresponding total (spatial) gain. Then we are interested in the probability of
getting from Pi to P>i := ∪j>iPj without hitting R<0. In fact, we want to prove
that, when starting in Pi, the probability of hitting R<0 before hitting P>i is
e−Ω(i). Since, for k a constant large enough,

∑
i≥k e−Ω(i) ≤ 1/2, we would know

that once the current individual has made it into Pk, then with probability at
least 1/2 it would never again visit the half-space corresponding to a negative
total gain. On the other hand, since P{G2:2 ≥ ḡ} ≥ P{G ≥ ḡ} = Ω(1), with

probability P{G2:2 ≥ ḡ}k
3

= Ω(1) each of the first k3 steps yields a gain of at
least ḡ, implying that Pk is hit without visiting R<0. All in all, we’d have shown
that R<0 is never visited right from the start with probability Ω(1) ·1/2 = Ω(1).

It remains to show that the probability of hitting R<0 before P>i when
starting in Pi is in fact bounded by e−Ω(i). Therefore, recall that the width of
Pi equals wi = ḡ · (3i2 + Θ(i)). Thus, the expected number of steps necessary
to get from ḡ · i3 (= min Pi) into P>i (possibly including a visit to R<0) is at
most wi/ḡ = 3i2 +Θ(i) (by using a modification of Wald’s equation). As Pi is at
distance ḡ i3 from R<0, one may already foresee that the probability of a visit
to R<0 becomes smaller and smaller as i increases.

Formally, we want to prove that this probability is e−Ω(i). Therefore, consider
the period starting (ending) with the first visit to Pi (resp. P>i). Assume that
in each mutation in this period |G| was at most

√
i · ḡ. Then in each step G2:2 ≥

−
√

i · ḡ, and thus, more than ḡ · i3/(
√

i · ḡ) = i2.5 steps would be necessary for
a visit to R<0 to be at all possible. For i large enough, the expected conditional
one-step gain (under the condition |G| ≤

√
i ḡ) is at least ḡ/2 (see appendix),

and hence, the expected number of necessary steps (under the condition on
|G|) is at most 2 · (3i2 + Θ(i)) = 6i2 + Θ(i). By Hoeffding’s bound, for i large
enough, 9i2 steps do not suffice with a probability of e−Ω(i) (see appendix). As
the condition on |G| is not met also with probability e−Ω(i) (see appendix), the
total failure probability (of not getting from Pi into P>i within 9i2 steps such
that in each of these steps |G| ≤

√
i ḡ for both mutations) is upper bounded by

e−Ω(i) + 2 · 9i2 · e−Ω(i) = e−Ω(i). Finally note that (under the condition on |G|
and for i large enough) R<0 cannot be reached in 9i2 steps as we have already
seen. In short, with probability 1− e−Ω(i) the search gets from Pi (in particular
from ḡ · i3 = min Pi) into P>i without visiting R<0 in at most 9i2 steps. ut

As “Ginf
2:2 ≥ 0” implies that R<0 is never visited, the probability of observing

b > 0 drop-backs to R<0 is bounded above by (1 − Ω(1))b = e−Ω(b). Thus, the
search drops behind the hyper-plane containing the initial search point at most
nε times w. o. p., where we can choose the positive constant ε arbitrarily small.

Now consider the minimization of LinCliff
∆
n where ∆ > 0. Recall that there

are two different hyper-planes with LinCliff-value 0: HSum=0, which contains
all local optima, and HSum=−√

n∆. The distance between these two hyper-planes
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equals ∆. Call the half-space HSum≥0 = {x | Sum(x) ≥ 0} local-optimum region.
Then a mutant c

′ of c ∈ HSum≥0 that hits HSum<0 (i. e., it leaves the local-
optimum region) such that LinCliff

∆
n (c′) ≤ LinCliff

∆
n (c) must necessarily

yield a spatial gain of at least ∆. Then P{G ≥ ∆} equals the corresponding
probability of such a successful mutation. For unit isotropic mutations, the eli-
tist (1+λ) ES cannot overcome the cliff if ∆ ≥ 1, of course. Jägersküpper (2005)
investigates how the chances of (1+λ) ES (using isotropic mutations) to get over
cliffs/gaps depends on how the size of the cliff relates to the step length/mutation
strength. Note that, unlike for the spherical symmetric function Cliff∆

n consid-
ered therein, for LinCliff

∆
n there is always a good chance of getting over the

cliff if only the step length is made appropriately large.

In the present paper, however, we show that a (1,2) ES manages to overcome
the cliff in a “short” time independently of how large ∆ is. The challenge is
to show that drop-backs to HSum≥0 become more and more unlikely with the
number of escapes and, in particular, to prove an upper bound on the number
of steps necessary to get that far away from the local-optimum region such
that there is w. o. p. no drop-back. The next result tells us that, if the current
search point is “close to the cliff” in the local-optimum region, then with a
“considerable” probability the local-optimum region is left in the next step once
and for all.

Lemma 3. Let the (1,2) ES minimize LinCliff
∆
n using unit isotropic muta-

tions. Assume that after t steps the current search point c
[t] lies in the half-space

HSum≥0 such that P
{
c
[t] + m ∈ HSum<0

}
= Ω(1). Then, independently of ∆,

P
{
c
[t+j] ∈ HSum<0 for j ∈ N

}
= Ω(1).

Proof. Obviously, we will follow the proof of Lemma 2. With a probability of

P
{
c
[t] + m ∈ HSum<0

}2
= Ω(1) both mutants of c

[t] generated in the next step

lie in HSum<0 so that one of them becomes c
[t+1]. Subsequently, with a probability

of (P{G ≥ ḡ} · 1/2)k3

= Ω(1) for the constant k from the proof of Lemma 2, in
each of the k3 following steps both mutants yield positive gains such that one of
them is at least ḡ. Then a drop-back to HSum≥0 is precluded within these steps,
and moreover, the distance from HSum≥0 is at least k3ḡ after these steps. From
here on (when i ≥ k), exactly the same reasoning about getting from Pi into P>i

without ever dropping behind HSum=0 as in the proof of Lemma 2 applies. ut

As a consequence, w. o. p. we observe at most nε drop-backs, where the con-
stant ε > 0 can be chosen arbitrarily small. The question is how many steps
it takes the (1,2)ES until this has happend. Therefore, we must show first
that, when in HSum≥0, the search gets close enough to the cliff HSum=0 for
P{c + m ∈ HSum<0} to be Ω(1). Note that (as Jägersküpper (2003) shows) in
fact P{c + m ∈ HSum<0} = Ω(1) ⇐⇒ dist(c, HSum<0) = O(E[G+]). The next
result tells us that, when the search approaches the cliff, as long as the distance
from the cliff is at least four times the (stationary one-step) drift on Sum, the
drift towards the cliff is at least a quarter of this drift.
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Lemma 4. Let the (1,2) ES minimize LinCliff
∆
n in R

n using unit isotropic
mutations. If the search point c lies in the local-optimum region HSum≥0 such
that dist(c, HSum=0) ≥ 4E[G+] then E[G2:2 · 1{G1,G2≤dist(c,HSum=0)}] ≥ E[G+]/4.

Proof. Recall ḡ := E[G+]. The appendix shows E[G+ · 1{G≤
√

2/n}] ≥ ḡ/2 as

well as 4ḡ ≥
√

2/n, and why this implies E[G2:2 · 1{G1,G2≤4ḡ}] ≥ E[G+]/4. ut

As a consequence, we merely get an additional factor of 4 in upper bounds on
the number of steps necessary for the distance from HSum<0 to drop below 4 ḡ.

Theorem 5. Let the (1,2) ES minimize LinCliff
∆
n in R

n using unit isotropic
mutations. Assume that the current search point c lies in HSum≥0 such that
dist(c, HSum=0) = O(E[G+]). Then, independently of ∆, after 3n0.4 steps w. o. p.
HSum≥0 has been left once and for all.

Proof. Let δ := dist(c, HSum≥0) within this proof and notice that δ > 0 implies
c ∈ HSum<0. The proof of Lemma 2 directly implies (by choosing i = n0.1, i. e.
i3 = n0.3) that once δ has exceeded n0.3 ḡ, the local-optimum region HSum≥0

is never visited again w. o. p., namely with probability 1 − e−Ω(n0.1). Using a
pigeonhole-principle-like argument, we will show that, if δ does not exceed ḡ n0.3

within at most 3n0.4 steps, then w. o. p. there must be at least n0.1 drop-backs
(from HSum<0 back into HSum≥0). Consequently, there would also be n0.1 tran-
sitions from HSum≥0 into HSum<0, and since for each of those there is a Ω(1)
probability of never dropping back (Lemma 3), those n0.1 drop-backs happen

only with probability e−Ω(n0.1). Thus, since our assumption “δ does not exceed
ḡ n0.3 within 3n0.4 steps” implies the occurrence of an event which does not hap-
pen w. o. p., this assumption does not hold true w. o. p. In other words, w. o. p.
δ does exceed ḡ n0.3 in at most 3n0.4 steps, finally implying the theorem.

Consider 2n0.3 steps, namely the r.v. S defined as the sum of 2n0.3 indepen-
dent copies of G2:2. A straightforward application of Hoeffding’s bound (just like
the one in the appendix) shows that w. o. p. S exceeds E[S]/2 = n0.3

E[G2:2] ≥
n0.3 ḡ. Thus, right after a step in which HSum≥0 was left, w. o. p. within at most
2n0.3 steps either there is a drop-back or δ exceeds n0.3ḡ. In the latter case we
are done; if there is a drop-back, however, the question arises how many steps it
takes until the next transition from HSum≥0 into HSum<0 takes place w. o. p.

Therefore note that c’s distance from HSum<0 right after a drop-back is at
most n0.1ḡ w. o. p. Thus, the number of steps until the distance from the cliff
drops below 4ḡ again is upper bounded by 4 ·2n0.1 w. o. p. (a rather loose bound;
the factor “4” stems from the lemma preceding the theorem, the factor “2”
from considering twice the number of steps that would suffice in expectation
to apply Hoeffding’s bound again). Recall that dist(c, HSum<0) = O(ḡ) implies
P{c + m ∈ HSum<0} = Ω(1). Thus, w. o. p. within at most n0.2 steps after a
drop-back, HSum≥0 is left anew (again a rather loose bound since one of nε trials
succeeds already w. o. p.). After this leave it takes w. o. p. at most another 2n0.3

steps until either a drop-back occurs again or δ > n0.3 ḡ, and so on. Hence, our
initial assumption “δ ≤ n0.3 ḡ for 3n0.4 steps” finally implies that w. o. p. at least
3n0.4/(2n0.3 + n0.2) ≥ n0.1 drop-backs take place. This was to be shown. ut
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We note that the theorem remains true if we substitute “3n0.4” by “nε, ε ∈ R>0”.
Recall that a (1+λ) ES (using unit isotropic mutations) is incapable of conquer-
ing the cliff for ∆ := 1, for instance. It would stay in HSum≥0 forever and keep on
converging towards HSum=0 at a declining rate – a really noticeable difference.

3 Extension to Cliff and Gaussians (Extended Outline)

As already noted, when LinCliff
∆
n is minimized, for a fixed ∆ we can always

choose a step length such that also a (1+λ) ES can overcome the cliff in a short
time. On the other hand, for a fixed length of an isotropic mutation, there is
always a choice for ∆ disabling a (1+λ) ES from conquering the cliff. One may
argue that commonly the length of an isotropic mutation is also random. For
instance, the length of a Gaussian mutation m̃ ∈ R

n (each component of which
is independently standard-normal distributed) follows a χ-distribution with n
degrees of freedom. Then arbitrary large lengths are possible. However, since the
density of |m̃| = ` equals `n−1 · e−`2/2 · 21−n/2/Γ (n/2) (a unimodal distribution

having its mode at
√

n − 1 and inflection points at
p

n − 1/2 ±
√

2n − 7/4), the
probability that the length exceeds ` drops exponentially for ` ≥

√
3n. In short,

the length of a Gaussian mutation is too concentrated, and hence, if ∆ is by a
factor of nε, ε ∈ R>0, larger than the expected length of a Gaussian mutation,
then the probability that a mutation conquers the cliff is exponentially small. An
ad hoc solution to this problem could be to choose a different distribution for the
length of a mutation to make large step lengths more probable, e. g. a Cauchy
distribution. If the lower-level sets (success regions) are bounded (which is not
the case for LinCliff), however, all this is pointless: Steps with immoderate
length are vain anyway (they fail to hit the lower level set with high probability).

Therefore, consider the spherically symmetric function Cliff∆
n : Rn → R

Cliff
∆
n (x) :=

{
|x| + ∆(n) if |x| < 1 − ∆(n),

|x| otherwise,

where ∆ : N → (0, 0.3], introduced by Jägersküpper and Witt (2005). All points
in the hyper-sphere {x | |x| = 1 − ∆} ⊂ R

n are local, non-global optima. The
best chances to get over the cliff, however, are at unit distance from the optimum;
cf. Jägersküpper (2005). There the ratio of the gain necessary to overcome the
cliff (of ∆ towards the optimum/origin o ∈ R

n) to distance from o is minimal.
Consider the well-known Sphere-function (Sphere(x) = |x|2 =

∑n
i=1 xi

2).
For any (1+, λ) ES using isotropic mutations there is a distinct normalized (here
w. r. t. to the distance from the origin/optimum, not(!) w. r. t. to n) length of
an isotropic mutation resulting in maximum expected one-step gain. As we are
interested in the number of function evaluations – which equals λ times the
number of steps –, we are particularly interested in constant λ, i. e. λ is not
a function of n. Then the optimum expected one-step gain (progress rate) is
O(d/n) where d := |c| equals the distance from the global optimum (d.g.o.).
For the (1+1)ES on Sphere, an isotropic mutation of length ` = Θ(d/

√
n)
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results in an expected gain of Θ(d/n). A (1,2)ES (using isotropic mutations) is
incapable of realizing an expected one-step gain of Ω(d/n) for Sphere. However,
a straightforward calculation (Jägersküpper, 2006) shows:

1) For the (1,λ∗) ES with λ∗ a constant large enough, isotropic mutations with
a length of Θ(d/

√
n) result in an expected one-step gain of Θ(d/n) on Sphere.

Now we can follow the reasoning for “the simplest scenario”. Namely, we’d show:

2) For the (1,λ∗) ES using isotropic mutations of fixed length ` := Θ(d[0]/
√

n)
there is a Ω(1) probability that the d.g.o. never exceeds d[0], the initial one.

3) For d[0] ∈ [1−∆; 1−∆+ `/
√

n ] there is a Ω(1) probability that the first step
conquers the cliff and that the search never drops back to the local optimum
region afterwards, i. e. P

{
d[i] < 1 − ∆ for i ∈ N

}
= Ω(1).

4) We’d show that 1), 2), 3) remain true when using Gaussian mutations scaled
by a mutation strength σ ∈ R>0 that is Θ(d[0]/n) (we would utilize the concen-
tration of the χ-distribution already mentioned at the beginning of this section).

5) When started at a distance, say, d[0] ∈ [1.2, 1.3] then w. o. p. after t = O(n)
steps d[t] ∈ [1 − ∆; 1 − ∆ + σ] such that 3) applies. After at most n0.1 trials
of conquering the cliff within at most 3n0.4 steps, the global-optimum region
{x | |x| < 1 − ∆} ⊂ R

n is conquered such that it is never left again w. o. p.

After another O(n) steps, w. o. p. d drops below 1.2/2 = 0.6 ≤ 1 − ∆ − 0.1,
implying the following result:

Theorem 6. Let a (1,λ) ES minimize Cliff
∆
n using Gaussian mutations scaled

by a fixed σ. Assume that after initialization |c[0]| ∈ [1.2, 1.3] and σ = Θ(|c[0]|/n).
Then, independently of ∆, for λ a constant large enough, the number of steps t
until |c[t]| ≤ 0.6 (i. e. the distance from the optimum is halved) is O(n) w. o. p.

Since λ is a constant, the (1,λ) ES gets by with O(n) function evaluations to
halve the d.g.o. Finally, compare this with the (1+1)ES on Sphere: It needs
w. o. p. Ω(n) function evaluations to halve the d.g.o. even if the length of isotropic
mutations would be adapted perfectly in each step! Thus, indeed, the cliff does
not keep the (1,λ) ES from halving the d.g.o. within the asymptotically smallest
possible number of function evaluations, which is Θ(n).

Since the 1/5-rule (non-endogenous σ-adaptation) uses an observation phase
of Θ(n) steps, and since conquering the cliff takes place in a sub-linear number
of steps, we are even able to extend the theorem: When the 1/5-rule is used,
the number of Cliff-evaluations to reduce the d.g.o. to a 2−b-fraction of the
initial one is O(b ·n) w. o. p. – wherever the initial starting point lies (given that
1 ≤ b = poly(n) and σ[0] = Θ(|c[0]|/n, though). This concludes the outline.
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Jägersküpper, J. (2006): Probabilistic runtime analysis of (1+, λ) ES using
isotropic mutations. Accepted for the Genetic and Evolutionary Computation
Conference (GECCO).
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Appendix

Proof of Proposition 1. Note that P{X ≥ 0} = P{X ≤ 0} ≥ 1/2 due to the
symmetry. As X2:2 = max{X1, X2}, where X1, X2 are independent copies of X ,

E[X2:2] = E[X2:2 · 1{X1,X2≥0}] + E[X2:2 · 1{X1≥0,X2≤0}]

+E[X2:2 · 1{X1,X2≤0}] + E[X2:2 · 1{X1≤0,X2≥0}].

The first summand can be bounded from below by

E[X2:2 · 1{X1,X2≥0}] ≥ E[X1 · 1{X1,X2≥0}]

= E[X1 · 1{X1≥0}] · P{X2 ≥ 0}
≥ E[X1 · 1{X1≥0}] · 1/2.

Analogously, one obtains E[X2:2 · 1{X1,X2≤0}] ≥ E[X1 · 1{X1≤0}]/2 as well as
E[X2:2 · 1{Xi≥0,X3−i≤0}] ≥ E[Xi · 1{Xi≥0}]/2 for i ∈ {1, 2}. Altogether,

E
[
X2:2

]
≥ 3 · E[X · 1{X≥0}]/2 + E[X · 1{X≤0}]/2 = E[X · 1{X≥0}]

since E[X · 1{X≤0}] = −E[X · 1{X≥0}] because of the symmetry. ut

Moreover, if u > 0 such that E[X · 1{u≥X≥0}] ≥ E[X · 1{X≥0}]/2, then

E[X2:2·1{X1,X2≤u}] ≥ 3 · E[X ·1{X≥0}]

2

/
2 − E[X ·1{X≥0}]/2 = E[X ·1{X≥0}]/4.

Additional Calculations for the Proof of Lemma 2. Recall that here
G corresponds to the spatial gain of a unit isotropic mutation. The r.v. “G ·
1{|G|≤

√
i·E[G+]}” is also symmetric, and thus, Proposition 1 applies, that is,

E[max{G1, G2} · 1{|G1|,|G2|≤u}] ≥ E[G+ · 1{|G|≤u}]. Thus, it suffices to show that

1) E[G+ · 1{|G|≤
√

i·E[G+]}] ≥ E[G+]/2 for i large enough.

Recall that the density of G at g ∈ [−1, 1] equals (1−g2)(n−3)/2 ·√n·(1−Θ(1/n))
(for n ≥ 4). We use (1 − t/n)n ≤ e−t for 0 ≤ t ≤ n. Then for i ∈ [0, n]

E
[
G+ · 1{|G|≤

√
i/n}

]
=

∫ √
i/n

0

g · (1 − g2)(n−3)/2 dg · 1/Ψ =

[
(1 − x2)(n−1)/2

−(n − 1)

]√i/n

0

· 1/Ψ =

(
1

n − 1
− (1 − (i/n))(n−1)/2

n − 1

)
· 1/Ψ

=

(
1 − (1 − (i/n))(n−1)/2

︸ ︷︷ ︸

)
· 1

n − 1
· 1/Ψ

︸ ︷︷ ︸
≤ e−(i/n)(n−1)/2 = E

[
G+

]

and e−(i/n)(n−1)/2 ≤ e−i·3/8 < 1/2 for i ≥ 2 (yet i ≤ n ≥ 4; for i > n the indi-
cator variable becomes meaningless). Thus E[G+ · 1{G≤

√
2/n}] > E[G+]/2 and,

hence, finally E
[
G+ · 1{G≤4E[G+]}

]
> E[G+]/2 (since E[G+] ≥ 0.3989/

√
n+1)
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2) We want P

{
|G| >

√
i/n

}
= e−Ω(i).

We assume (solely for better legibility) that
√

i as well as
√

n are integral.

P

{
|G| >

√
i/n

}
= 2

√
n · (1 − Θ(1/n)) ·

∫ 1

√
i/n

(1 − g2)(n−3)/2 dg

≤ 2
√

n

√
n∑

k=
√

i

(1 − k2/n)(n−3)/2 · 1√
n

≤ 2

√
n∑

k=
√

i

e−(k2/n)(n−3)/2 < 2

∞∑

k=
√

i

e−k2/8

Since e−(k+1)2/8
/
e−k2/8 = e−(2k+1)/8 < 1/2 for k ≥ 3, for i ≥ 32 we obtain

P{|G| >
√

i/n } ≤ 2 · 2 · e−i/8 = e−Ω(i).

3) The application of Hoeffding’s bound to obtain a probability of e−Ω(i) that
9i2 steps do not suffice to get from Pi into P>i (given that in each mutation
|G| ≤

√
i · ḡ, where i is large enough such that the expected conditional one-step

gain is at least ḡ/2).
Hoeffding (1963, Theorem 2) tells us that for the r.v. S defined as the sum

X1 + · · · + Xk of k independent r.v.s Xj ∈ [aj , bj ] for j ∈ {1, . . . , k} we have

P{S ≤ E[S] − t} ≤ e−2·t2/
P

k
j=1

(bj−aj)
2

for t ≥ 0. In our case, k := 9i2 so that
E[S] ≥ 4.5 i2ḡ, and furthermore, aj = −

√
i · ḡ and bj =

√
i · ḡ. Since the necessary

gain is at most wi = ḡ · (3i2 + Θ(i)) ≤ 4 i2ḡ for i large enough, we can choose

t := 0.5 i2ḡ. Thus, the exponent becomes −2 · (0.5 i2ḡ)2/
∑9i2

j=1(2
√

i ḡ)2 = −i/72.


