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Abstract. We propose a novel learning technique for classification as result of
the hybridization between support vector machines and evolutionary algorithms.
Evolutionary support vector machines consider the classification task asin sup-
port vector machines but use evolutionary algorithms to solve the optimization
problem of determining the decision function. They can acquire the coefficients
of the separating hyperplane, which is often not possible within classical tech-
niques. More important, ESVMs obtain the coefficients directly from the evolu-
tionary algorithm and can refer them at any point during a run. The concept is
furthermore extended to handle large amounts of data, a problem frequently oc-
curring e.g. in spam mail detection, one of our test cases. Evolutionarysupport
vector machines are validated on this and three other real-world classification
tasks; obtained results show the promise of this new technique.

Keywords: support vector machines, coefficients of decision surface, evolution-
ary algorithms, evolutionary support vector machines, parameter tuning

1 Introduction

Support vector machines(SVMs) represent a state-of-the-art learning technique that
has managed to reach very competitive results in different types of classification and
regression tasks. Their engine, however, is quite complicated, as far as proper under-
standing of the calculus and correct implementation of the mechanisms are concerned.
This paper presents a novel approach,evolutionary support vector machines(ESVMs),
which offers a simpler alternative to the standard technique inside SVMs, delivered by
evolutionary algorithms(EAs). Note that this is not the first attempt to hybridize SVMs
and EAs. Existing alternatives are discussed in§2.2. Nevertheless, we claim that our
approach is significantly different from these.

ESVMs as presented here are constructed solely based on SVMsapplied for classi-
fication. Validation is achieved by considering four real-world classification tasks. Be-
sides comparing results, the potential of the utilized, simplistic EA through parametriza-
tion is investigated. To enable handling large data sets, the first approach is enhanced
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by use of a chunking technique, resulting in a more versatilealgorithm. A second so-
lution for dealing with a high number of samples is brought bya reconsideration of
the elements of the first evolutionary algorithm. Obtained results prove suitability and
competitiveness of the new approach, so ESVMs qualify as viable simpler alternative
to standard SVMs in this context. However, this is only a firstattempt with the new
approach. Many of its components still remain to be improved.

The paper is organized as follows:§2 outlines the concepts of classical SVMs to-
gether with existing evolutionary approaches aimed at boosting their performance.§3
presents the new approach of ESVMs. Their validation is achieved on real-world exam-
ples in§4. Improved ESVMs with two new mechanisms for reducing problem size in
case of large data sets are presented in§5. The last section comprises conclusions and
outlines ideas for further improvement.

2 Prerequisites

Given {ft∈T |, ft : Rn → {1, 2, ..., k}}, a set of functions, and{(xi, yi)}i=1,2,...,m,
a training set where everyxi ∈ Rn represents a data vector and eachyi corresponds
to a class, a classification task consists in learning the optimal functionft∗ that mini-
mizes the discrepancy between the given classes of data vectors and the actual classes
produced by the learning machine. Finally, accuracy of the machine is computed on
previously unseen test data vectors. In the classical architecture, SVMs reducek-class
classification problems to many binary classification tasksthat are separately consid-
ered and solved. A voting system then decides the class for data vectors in the test set.
SVMs regard classification from a geometrical point of view,i.e. they assume the ex-
istence of a separating surface between two classes labelled as -1 and 1, respectively.
The aim of SVMs then becomes the discovery of this decision hyperplane, i.e. its coef-
ficients.

2.1 Classical Support Vector Machines

If training data is known to be linearly separable, then there exists a linear hyperplane
that performs the partition, i.e.〈w, x〉 − b = 0, wherew ∈ Rn is the normal to the hy-
perplane and represents hyperplane orientation andb ∈ R denotes hyperplane location.
The separating hyperplane is thus determined by its coefficients,w andb. Consequently,
the positive data vectors lie on the corresponding side of the hyperplane and their neg-
ative counterparts on the opposite side. As a stronger statement for linear separability,
the positive and negative vectors each lie on the corresponding side of a matching sup-
porting hyperplane for the respective class (Figure 1a) [1], written in brief as:

yi(〈w, xi〉 − b) > 1, i = 1, 2, ...,m.

In order to achieve the classification goal, SVMs must determine the optimal values
for the coefficients of the decision hyperplane that separates the training data with as
few exceptions as possible. In addition, according to the principle of Structural Risk
Minimization from Statistical Learning Theory [2], separation must be performed with
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a maximal margin between classes. Summing up, classification of linear separable data
with a linear hyperplane through SVMs leads thus to the following optimization prob-
lem:

{

find w∗ andb∗ as to minimize‖w∗‖2

2

subject toyi(〈w
∗, xi〉 − b∗) ≥ 1, i = 1, 2, ...,m.

(1)

Training data are not linearly separable in general and it isobvious that a linear sepa-
rating hyperplane is not able to build a partition without any errors. However, a linear
separation that minimizes training error can be tried as a solution to the classification
problem. Training errors can be traced by observing the deviations of data vectors from
the corresponding supporting hyperplane, i.e. from the ideal condition of data separabil-
ity. Such a deviation corresponds to a value of±ξi

‖w‖ , ξi ≥ 0. These values may indicate
different nuanced digressions (Figure 1b), but only aξi higher than unity signals a
classification error. Minimization of training error is achieved by adding the indicator
of error for every training data vector into the separability statement and, at the same
time, by minimizing the sum of indicators for errors. Addingup, classification of lin-
ear nonseparable data with a linear hyperplane through SVMsleads to the following
optimization problem, whereC is a hyperparameter representing the penalty for errors:

{

find w∗ andb∗ as to minimize‖w∗‖2

2 + C
∑m

i=1 ξi, C > 0

subject toyi(〈w
∗, xi〉 − b∗) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, ...,m.

(2)

If a linear hyperplane does not provide satisfactory results for the classification task,
then a nonlinear decision surface can be appointed. The initial space of training data
vectors can be nonlinearly mapped into a high enough dimensional feature space, where
a linear decision hyperplane can be subsequently built. Theseparating hyperplane will
achieve an accurate classification in the feature space which will correspond to a non-
linear decision function in the initial space (Figure 1c). The procedure leads therefore
to the creation of a linear separating hyperplane that would, as before, minimize train-
ing error, only this time it would perform in the feature space. Accordingly, a nonlinear
mapΦ : Rn → H is considered and data vectors from the initial space are mapped
into H. w is also mapped throughΦ into H. As a result, the squared norm that is in-
volved in maximizing the margin of separation is now‖Φ(w)‖2. Also, the equation of
the hyperplane consequently changes to〈Φ(w), Φ(xi)〉 − b = 0.

Nevertheless, as simple in theory, the appointment of an appropriate mapΦ with
the above properties is a difficult task. As in the training algorithm vectors appear only
as part of dot products, the issue would be simplified if therewere a kernel functionK
that would obeyK(x, y) = 〈Φ(x), Φ(y)〉, wherex, y ∈ Rn. In this way, one would use
K everywhere and would never need to explicitly even know what Φ is. The remaining
problem is that kernel functions with this property are those that obey the corresponding
conditions of Mercer’s theorem from functional analysis, which are not easy to check.
There are, however, a couple of classical kernels that had been demonstrated to meet
Mercer’s condition, i.e. the polynomial classifier of degree p: K(x, y) = 〈x, y〉p and

the radial basis function classifier:K(x, y) = e
‖x−y‖2

σ , wherep andσ are also hyper-
parameters of SVMs. In conclusion, classification of linearnonseparable data with a
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(a) (b) (c)
Fig. 1: (a) Decision hyperplane (continuous line) that separates between circles (positive) and
squares (negative) and supporting hyperplanes (dotted lines). (b) Position of data and corre-
sponding indicators for errors - correct placement,ξi = 0 (label 1) margin position,ξi < 1

(label 2) and classification error,ξi > 1 (label 3). (c) Initial data space (left), nonlinear map into
the higher dimension/its linear separation (right), and corresponding nonlinear surface (bottom).

nonlinear hyperplane through SVMs leads to the same optimization problem as in (2)
which is now considered in the feature space and with the use of a kernel function:

{

find w∗ andb∗ as to minimizeK(w∗,w∗)
2 + C

∑m

i=1 ξi, C > 0

subject toyi(K(w∗, xi) − b∗) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, ...,m.
(3)

The optimization problem (corresponding to either situation above) is subsequently
solved. Accuracy on the test set in then computed, i.e. the side of the decision boundary
on which each new data vector lies is determined. Classical SVMs approach the op-
timization problem through a generalized form of the methodof Lagrange multipliers
[3]. But the mathematics of the technique can be found to be very difficult both to grasp
and apply. This is the reason why present approach aims to simplify (and improve)
SVMs through a hybridization with EAsby utilizing these in order to determine optimal
values for the coefficients of the separating hyperplane (w andb) directly.

2.2 Evolutionary Approaches to Support Vector Machines

EAs have been widely used in hybridization with SVMs in orderto boost performance
of classical architecture. Their combination envisaged two different directions: model
selection and feature selection. Model selection concernsadjustment of hyperparame-
ters (free parameters) within SVMs, i.e. the penalty for errors,C, and parameters of the
kernel,p or σ which, in standard variants, is performed through grid search or gradi-
ent descent methods. Evolution of hyperparameters can be achieved through evolution
strategies [4]. When dealing with high dimensional classification problems, feature se-
lection regards the choice of the most relevant features as input for a SVM. The optimal
subset of features can be evolved using genetic algorithms in [5] and genetic program-
ming in [6]. To the best of our knowledge, evolution of coefficients of the separating
hyperplane within SVMs has not been accomplished yet.

3 Evolutionary Support Vector Machines for Classification

Within the new hybridized technique of ESVMs separation of positive and negative
vectors proceeds as in standard SVMs, while the optimization problem is solved by
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means of EAs. Therefore, the coefficients of the separating hyperplane, i.e.w andb, are
encoded in the representation of the EA and their evolution is performed with respect to
the objective function and the constraints in the optimization problem (3) within SVMs,
which is considered for reasons of generality.

3.1 Evolving the Coefficients of the Separating Hyperplane

RepresentationAn individual encodes the coefficients of the separating hyperplane,w
andb. Since indicators for errors of classification,ξi, i = 1, 2, ...,m, appear in the con-
ditions for hyperplane optimality, ESVMs handle them through inclusion in the struc-
ture of an individual, as well:

c = (w1, ..., wn, b, ξ1, ...., ξm). (4)

After termination of the algorithm, the best individual from all generations gives ap-
proximately optimal values for the coefficients of the decision hyperplane. If proper
values for parameters of the evolutionary algorithm are chosen, training errors of clas-
sification can also result from the optimal individual (those indicators whose values are
higher than unity) but with some loss in accuracy; otherwise, indicators grow in the
direction of errors driving the evolutionary cycle towardsits goal, but do not reach the
limit of unity when the evolutionary process stops. An example of an ESVM which
also provides the errors of classification is nevertheless exhibited for simple artificial
2-dimensional data sets separated by various kernels (Figure 2). In such a situation, the
number of samples and the dimensionality of data are both low, thus accuracy and run-
time are not affected by the choice of parameters which leadsto the discovery of all
training errors.

Initial population Individuals are randomly generated such thatwi ∈ [−1, 1], i =
1, 2, ..., n, b ∈ [−1, 1] andξj ∈ [0, 1], j = 1, 2, ...,m.

Fitness evaluationThe fitness function derives from the objective function of the
optimization problem and has to be minimized. Constraints are handled by penalizing
the infeasible individuals by appointingt : R → R which returns the value of the argu-
ment if negative while otherwise 0. The expression of the function is thus as follows:

f(w, b, ξ) = K(w,w) + C

m
∑

i=1

ξi +

m
∑

i=1

[t(yi(K(w, xi) − b) − 1 + ξi)]
2. (5)

Genetic operatorsOperators were chosen experimentally. Tournament selection,
intermediate crossover and mutation with normal perturbation are applied. Mutation of
errors is constrained, preventing theξis from taking negative values.

Stop condition The algorithm stops after a predefined number of generations. As
the coefficients of the separating hyperplane are found, theclass for a new, unseen
test data vector can be determined, followingclass(x) = sgn(K(w, x) − b). This is
unlike classical SVMs where it is seldom the case that coefficients can be determined
following the standard technique, as the mapΦ cannot be always explicitly determined.
In this situation, the class for a new vector follows from computational artifices.
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(a) (b) (c)
Fig. 2: Vizualization of ESVMs on 2-dimensional points. Errors of classification are squared. Odd
(a), even (b) polynomial and radial (c) kernels

3.2 ESVMs for Multi-class Classification

Multi-class ESVMs employ one classical and very successfulSVM technique, the
ONE-AGAINST-ONE (1-a-1) [7]. As the classification problemis k-class,k > 2, 1-a-1
considersk(k−1)

2 SVMs, where each machine is trained on data from every two classes,
i andj, wherei corresponds to1 andj to -1. For every SVM, the class ofx is computed
and ifx is in classi, the vote for thei-th class is incremented by one; conversely, the vote
for classj is added by one. Finally,x is taken to belong to the class with the largest vote.
In case two classes have identical number of votes, the one with the smaller index is
selected. Consequently, 1-a-1 multi-class ESVMs are straightforward.k(k−1)

2 ESVMs
are built for every two classes and voting is subsequently conducted.

4 Experimental Evaluation: Real-World Classification

Experiments have been conducted on four data sets (with no missing values) concerning
real-world problems coming from the UCI Repository of Machine Learning Databases4,
i.e. diabetes mellitus diagnosis, spam detection, iris recognition and soybean disease
diagnosis. The motivation for the choice of test cases was manifold. Diabetes and spam
are two-class problems, while soybean and iris are multi-class. Differentiating, on the
one hand, diagnosis is a better-known benchmark, but filtering is an issue of current
major concern; moreover, the latter has a lot more features and samples, which makes a
huge difference for classification as well as for optimization. On the other hand, iris has
a lot more samples while soybean has a lot more attributes. For all reasons mentioned
above, the selection of test problems certainly contains all the variety of situations that is
necessary for the objective validation of the new approach of ESVMs. Brief information
on the classification tasks and SVM and EA parameter values are given in Table 1. The
error penalty was invariably set to1.

For each data set, 30 runs of the ESVM were conducted; in everyrun 75% ran-
dom cases were appointed to the training set and the remaining 25% went into test.
Experiments showed the necessity for data normalization indiabetes, spam and iris.

4 Available at http://www.ics.uci.edu/ mlearn/MLRepository.html
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Table 1: Data set properties and ESVM algorithm parameter values. Rightmost columns hold
tuned parameter sets for modified ESVMs, ESVMs with chunking, and utilizedparameter bounds.

Diabetes Iris Soybean Spam
Data set description modif. chunk. bounds
Number of samples 768 150 47 4601 (434) (10/500)
Number of attributes 8 4 35 57
Number of classes 2 3 4 2
ESVM parameter values man. tun. man. tun. man. tun. man. tun. tun. tun.
Kernel parameter (p or σ) p = 2 σ = 1 p = 1 p = 1 p = 1

Population size 100 198 100 46 100 162 100 154 51 90 10/200
Number of generations 250 296 100 220 100 293 250 287 180 286 50/300
Crossover probability 0.40 0.87 0.30 0.77 0.30 0.04 0.30 0.84 0.95 0.11 0.01/1
Mutation probability 0.40 0.21 0.50 0.57 0.50 0.39 0.50 0.20 0.03 0.08 0.01/1
Error mutation probability 0.50 0.20 0.50 0.02 0.50 0.09 0.50 0.07 — 0.80 0.01/1
Mutation strength 0.10 4.11 0.10 4.04 0.10 0.16 0.10 3.32 3.75 0.98 0.001/5
Error mutation strength 0.10 0.02 0.10 3.11 0.10 3.80 0.10 0.01 — 0.01 0.001/5

No further modification of the data was carried out and all data was used in the ex-
periments. Obtained test accuracies are presented in Table2. Differentiated (spam/non
spam for spam filtering and ill/healthy for diabetes) accuracies are also depicted. In or-
der to validate the manually found EA parameter values, the parameter tuning method
SPO [8] was applied with a budget of 1000 optimization runs. The last 4 columns of
Table 2 hold performances and standard deviations of the best configuration of an ini-
tial latin hypersquare sample (LHS) with size10 × #parameters, and the finally found
best parameter setting. Resulting parameter values are depicted in Table 1. They indi-
cate that for all cases, except for soybean data and chunkingenhanced ESVM on the
spam data, crossover probabilities were dramatically increased, while often reducing
mutation probabilities, especially for errors. It must be stated that in most cases, results
achieved with manually determined parameter values are only improved by increasing
effort (population size or number of generations).

Comparison to worst and best found results of different techniques, either SVMs
or others, was conducted. Assessment cannot be objective, however, as outlined meth-
ods either use different sizes for the training/test sets orother types of cross-validation
and number of runs or employ various preprocessing procedures for feature or sam-
ple selection.Diabetes diagnosiswas approached inSV M light [9] where an accuracy
of 76.95% was obtained and Critical SVMs [10] with a result of82.29%. Accuracy on
spam detectionis reported in [11] where k-Nearest Neighbourhood on non preprocessed
data resulted in 66.5% accuracy and in [12] where functionallink network wrapped into
a genetic algorithm for input and output feature selection gave a result of 92.44%. 1-a-1
multi-class SVMs on theIris data setwere perfomed in [7] (accompanied by a shrink-
ing technique) and [13]; obtained results were of 97.33% and98.67%, respectively.
Results for theSoybean small dataset were provided in [14], where, among others,
Naive Bayes was applied and provided an accuracy of 95.50%, reaching 100% when a
pair-wise classification strategy was employed.
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Table 2: Accuracies of different ESVM versions on the considered test sets, in percent.

Average Worst Best StD LHSbest StD SPO StD
ESVMs
Diabetes (overall) 76.30 71.35 80.73 2.24 75.82 3.27 77.312.45
Diabetes (ill) 50.81 39.19 60.27 4.53 49.35 7.47 52.645.32
Diabetes (healthy) 90.54 84.80 96.00 2.71 89.60 2.36 90.212.64
Iris (overall) 95.18 91.11 100.0 2.48 95.11 2.95 95.112.95
Soybean (overall) 99.02 94.11 100.0 2.23 99.61 1.47 99.801.06
Spam filtering (overall) 87.74 85.74 89.83 1.06 89.27 1.37 90.590.98
Spam filtering(spam) 77.48 70.31 82.50 2.77 80.63 3.51 83.762.21
Spam filtering (non spam) 94.41 92.62 96.30 0.89 94.82 0.94 95.060.62
ESVMs with Chunking
Spam filtering (overall) 87.30 83.13 90.00 1.77 87.52 1.31 88.371.15
Spam filtering(spam) 83.47 75.54 86.81 2.78 86.26 2.66 86.352.70
Spam filtering (non spam) 89.78 84.22 92.52 2.11 88.33 2.48 89.682.06
Modified ESVMs
Spam filtering (overall) 88.40 86.52 90.35 1.02 90.06 0.99 91.250.83
Spam filtering(spam) 79.63 75.39 84.70 2.16 82.73 2.28 85.522.08
Spam filtering (non spam) 94.17 91.34 95.84 1.05 94.89 0.92 95.000.72

5 Improving Training Time

Obtained results for the tasks we have undertaken to solve have proven to be competitive
as compared to accuracies of different powerful classification techniques. However, for
large problems, i.e. spam filtering, the amount of runtime needed for training is≈ 800s.
This stems from the large genomes employed, as indicators for errors of every sample
in the training set are included in the representation. Consequently, we tackle this prob-
lem with two approaches: an adaptation of a chunking procedure inside ESVMs and a
modified version of the evolutionary approach.

5.1 Reducing Samples for Large Problems

We propose a novel algorithm to reduce the number of samples for one run of ESVMs
which is an adaptation of the widely known shrinking technique within SVMs, called
chunking [15]. In standard SVMs, this technique implies theidentification of Lagrange
multipliers that denote samples which do not fulfill restrictions. As we renounced the
standard solving of the optimization problem within SVMs for the EA-based approach,
the chunking algorithm was adapted to fit our technique (Algorithm 1).

ESVM with chunking was applied to the spam data set. Values for parameters were
set as before, except the number of generations for each EA which is now set to 100.
The chunk size, i.eN , was chosen as 200 and the number of iterations with no im-
provement was designated to be 5. Results are shown in Table 2. Average runtime was
of 103.2s/run. Therefore, the novel algorithm of ESVM with chunking reached its goal,
running 8 times faster than previous one, at a cost of loss in accuracy of 0.4%.
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Algorithm 1 ESVM with Chunking
Randomly choose N samples from the training data set, equally distributed, tomake a chunk;
while a predefined number of iterations passes with no improvementdo

if first chunkthen
Randomly initialize population of a new EA;

else
Use best evolved hyperplane coefficients and random indicators for errors to fill half of
the population of a new EA and randomly initialize the other half;

end if
Apply EA and find coefficients of the hyperplane;
Compute side of all samples in the training set with evolved hyperplane coefficients;
From incorrectly placed, randomly choose (if available) N/2 samples, equally distributed;
Randomly choose the rest up to N from the current chunk and add all to the new chunk
if obtained training accuracy if higher than the best one obtained so farthen

Update best accuracy and best evolved hyperplane coefficients; set improvement to true;
end if

end while
Apply best obtained coefficients on the test set and compute accuracy

5.2 A Reconsideration of the Evolutionary Algorithm

Since ESVMs directly provide hyperplane coefficients at alltimes, we propose to drop
the indicators for errors from the EA representation and, instead, compute their val-
ues in a simple geometrical fashion. Consequently, this time, individual representation
contains onlyw andb. Next, all indicatorsξi, i = 1, 2, ...,m are computed in order
to be referred in the fitness function (5). The current individual (which is the current
separating hyperplane) is considered and, following [1], supporting hyperplanes are de-
termined. Then, for every training vector, deviation to thecorresponding supporting
hyperplane, following its class, is calculated. If sign of deviation equals class, corre-
spondingξi = 0; else, deviation is returned. The EA proceeds with the same values for
parameters as in Table 1 (certainly except probabilities and step sizes for theξis) and, in
the end of the run, hyperplane coefficients are again directly acquired. Empirical results
on the spam data set (Table 2) and the average runtime of 600s seem to support the new
approach. It is interesting to remark that the modified algorithm is not that much faster,
but provides some improvement in accuracy. In contrast to the chunking approach, it
also seems especially better suited for achieving high non spam recognition rates, in or-
der to prevent erroneous deletion of good mail. Surprisingly, SPO here decreases effort
while increasing accuracies (Table 1), resulting in further speedup.

6 Conclusions and Future Work

Proposed new hybridized learning technique incorporates the vision upon classification
of SVMs but solves the inherent optimization problem by means of evolutionary algo-
rithms. ESVMs present many advantages as compared to SVMs. First of all, they are
definitely much easier to understand and use. Secondly and more important, the evo-
lutionary solving of the optimization problem enables the acquirement of hyperplane
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coefficients directly and at all times within a run. Thirdly,accuracy on several bench-
mark real-world problems is comparable to those of state-of-the-art SVM methods or
to results of other powerful techniques from different other machine learning fields. In
order to enhance suitability of the new technique for any classification issue, two novel
mechanisms for reducing size in large problems are also proposed; obtained results
support their employment.

Although already competitive, the novel ESVMs for classification can still be im-
proved. Other kernels may be found and used for better separation; also, the two ap-
pointed classical kernels may have parameters evolved by means of evolutionary algo-
rithms as in some approaches for model selection. Also, other preprocessing techniques
can be considered; feature selection through an evolutionary algorithm as found in lit-
erature can surely boost accuracy and runtime. Definitely, other ways to handle large
data sets can be imagined; a genetic algorithm can also be used for sample selection.
Finally, the construction of ESVMs for regression problemsis a task for future work.
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