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Abstract. We propose a novel learning technique for classification as result of
the hybridization between support vector machines and evolutionarsitalgs.
Evolutionary support vector machines consider the classification taisksap-
port vector machines but use evolutionary algorithms to solve the optinmzatio
problem of determining the decision function. They can acquire the ciseits

of the separating hyperplane, which is often not possible within classida te
niques. More important, ESVMs obtain the coefficients directly from théuevo
tionary algorithm and can refer them at any point during a run. Theegris
furthermore extended to handle large amounts of data, a problenefréyoc-
curring e.g. in spam mail detection, one of our test cases. Evoluticugryort
vector machines are validated on this and three other real-world classifica
tasks; obtained results show the promise of this new technique.

Keywords: support vector machines, coefficients of decision surface, evolutio
ary algorithms, evolutionary support vector machines, parametergunin

1 Introduction

Support vector machingl§SVMs) represent a state-of-the-art learning technigqa¢ th
has managed to reach very competitive results in diffengred of classification and
regression tasks. Their engine, however, is quite conpli;as far as proper under-
standing of the calculus and correct implementation of teelmnisms are concerned.
This paper presents a novel approaalglutionary support vector machin@sSVMs),
which offers a simpler alternative to the standard techamigside SVMs, delivered by
evolutionary algorithmgEAS). Note that this is not the first attempt to hybridize S¥M
and EAs. Existing alternatives are discussedar2. Nevertheless, we claim that our
approach is significantly different from these.

ESVMs as presented here are constructed solely based on &wNed for classi-
fication. Validation is achieved by considering four realfld classification tasks. Be-
sides comparing results, the potential of the utilized pdigtic EA through parametriza-
tion is investigated. To enable handling large data segsfitht approach is enhanced
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by use of a chunking technique, resulting in a more versatgerithm. A second so-
lution for dealing with a high number of samples is broughtabseconsideration of
the elements of the first evolutionary algorithm. Obtainesuits prove suitability and
competitiveness of the new approach, so ESVMs qualify ddesisimpler alternative
to standard SVMs in this context. However, this is only a fagempt with the new
approach. Many of its components still remain to be improved

The paper is organized as follow§2 outlines the concepts of classical SVMs to-
gether with existing evolutionary approaches aimed at trmgps$heir performance;3
presents the new approach of ESVMs. Their validation iseaghi on real-world exam-
ples in&4. Improved ESVMs with two new mechanisms for reducing peobkize in
case of large data sets are presentegbiriThe last section comprises conclusions and
outlines ideas for further improvement.

2 Prerequisites

Given{ fierl|, fr : R — {1,2,...,k}}, a set of functions, andl(z;,y:) }i=1,2,....m.

a training set where every; € R™ represents a data vector and eggcltorresponds
to a class, a classification task consists in learning thienapfunction f;- that mini-
mizes the discrepancy between the given classes of dataryectd the actual classes
produced by the learning machine. Finally, accuracy of tlaehime is computed on
previously unseen test data vectors. In the classicalteatbre, SVMs reducg-class
classification problems to many binary classification tablet are separately consid-
ered and solved. A voting system then decides the class fanvéators in the test set.
SVMs regard classification from a geometrical point of viee, they assume the ex-
istence of a separating surface between two classes ldtzlel and 1, respectively.
The aim of SVMs then becomes the discovery of this decisigeilane, i.e. its coef-
ficients.

2.1 Classical Support Vector Machines

If training data is known to be linearly separable, thenéhexists a linear hyperplane
that performs the partition, i.€w, z) — b = 0, wherew € R™ is the normal to the hy-
perplane and represents hyperplane orientatiorband® denotes hyperplane location.
The separating hyperplane is thus determined by its cosfiigjiw andb. Consequently,
the positive data vectors lie on the corresponding sideehtlperplane and their neg-
ative counterparts on the opposite side. As a strongemséaiefor linear separability,
the positive and negative vectors each lie on the corresporsitie of a matching sup-
porting hyperplane for the respective class (Figure 1amtititen in brief as:

yi((w,z;) —b) > 1,i=1,2,...,m.

In order to achieve the classification goal, SVMs must deitegnthe optimal values
for the coefficients of the decision hyperplane that separtite training data with as
few exceptions as possible. In addition, according to thecgple of Structural Risk

Minimization from Statistical Learning Theory [2], septioa must be performed with
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a maximal margin between classes. Summing up, classificafitnear separable data
with a linear hyperplane through SVMs leads thus to the ¥ahg optimization prob-
lem:

flw* 11

{find w* andb* as to minimize™—-"-

1
subject toy; ((w*, z;) —b*) > 1,i =1,2,...,m. @)

Training data are not linearly separable in general andabigsous that a linear sepa-
rating hyperplane is not able to build a partition withouy @&nrors. However, a linear
separation that minimizes training error can be tried asiiea to the classification
problem. Training errors can be traced by observing theatievis of data vectors from
the corresponding supporting hyperplane, i.e. from thalidendition of data separabil-
ity. Such a deviation corresponds to a valuq%ﬁ, & > 0. These values may indicate
different nuanced digressions (Figure 1b), but only; digher than unity signals a
classification error. Minimization of training error is aeted by adding the indicator
of error for every training data vector into the separap#itatement and, at the same
time, by minimizing the sum of indicators for errors. Adding, classification of lin-
ear nonseparable data with a linear hyperplane through Sedis to the following
optimization problem, wher€' is a hyperparameter representing the penalty for errors:
find w* andb* as to minimizel 1’ 4+ ¢ & ¢ >0 2
SUbjeCt t0y1(<w*7xl> — b*) >1-&,6>0,i=1,2,....m.

If a linear hyperplane does not provide satisfactory resfdt the classification task,
then a nonlinear decision surface can be appointed. Thelisfiace of training data
vectors can be nonlinearly mapped into a high enough dirorakfeature space, where
a linear decision hyperplane can be subsequently builts€parating hyperplane will
achieve an accurate classification in the feature spacehwtilccorrespond to a non-
linear decision function in the initial space (Figure 1cheTprocedure leads therefore
to the creation of a linear separating hyperplane that waddefore, minimize train-
ing error, only this time it would perform in the feature spa&ccordingly, a nonlinear
map® : R" — H is considered and data vectors from the initial space argethp
into H. w is also mapped through into H. As a result, the squared norm that is in-
volved in maximizing the margin of separation is ngd(w)||?. Also, the equation of
the hyperplane consequently change&fitw), #(x;)) — b = 0.

Nevertheless, as simple in theory, the appointment of anoapijate map® with
the above properties is a difficult task. As in the trainingpaithm vectors appear only
as part of dot products, the issue would be simplified if tvegee a kernel functior
that would obeyK (z,y) = (®(z), P(y)), wherez,y € R". In this way, one would use
K everywhere and would never need to explicitly even knowtwhis. The remaining
problem is that kernel functions with this property are thitsat obey the corresponding
conditions of Mercer’s theorem from functional analysi$ieh are not easy to check.
There are, however, a couple of classical kernels that had demonstrated to meet
Mercer's condition, i.e. the polynomial classifier of degge K (z,y) = (z,y)? and

llz—yll

the radial basis function classifieki(z,y) = e~ = , wherep ando are also hyper-
parameters of SVMs. In conclusion, classification of lineanseparable data with a
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Fig.1: (a) Decision hyperplane (continuous line) that separates between gifptesitive) and
squares (negative) and supporting hyperplanes (dotted lines). (@&jidto of data and corre-
sponding indicators for errors - correct placemegt, = 0 (label 1) margin positiong; < 1
(label 2) and classification errog; > 1 (label 3). (c) Initial data space (left), nonlinear map into
the higher dimension/its linear separation (right), and correspondindinear surface (bottom).

nonlinear hyperplane through SVMs leads to the same opiiniz problem as in (2)
which is now considered in the feature space and with the Lad&ernel function:
{find w* andb* as to minimizeM +CY"&6,C>0

3
SUbjeCt tOyZ(K(U)*,.’LZ) — b*) >1- 57.751 >0,i=1,2,...,m. ( )

The optimization problem (corresponding to either sinmtabove) is subsequently
solved. Accuracy on the test set in then computed, i.e. tleeafithe decision boundary
on which each new data vector lies is determined. Classi¢dMsSapproach the op-
timization problem through a generalized form of the methbtlagrange multipliers
[3]. But the mathematics of the technique can be found to bedifficult both to grasp
and apply. This is the reason why present approach aims taliginfand improve)
SVMs through a hybridization with EAsby utilizing these irder to determine optimal
values for the coefficients of the separating hyperplanar(db) directly.

2.2 Evolutionary Approaches to Support Vector Machines

EAs have been widely used in hybridization with SVMs in ortteboost performance
of classical architecture. Their combination envisageal different directions: model
selection and feature selection. Model selection concadisstment of hyperparame-
ters (free parameters) within SVMs, i.e. the penalty fooesC, and parameters of the
kernel,p or o which, in standard variants, is performed through grid dear gradi-
ent descent methods. Evolution of hyperparameters canhievad through evolution
strategies [4]. When dealing with high dimensional clasaiion problems, feature se-
lection regards the choice of the most relevant featuraesmag for a SVM. The optimal
subset of features can be evolved using genetic algorithrfij and genetic program-
ming in [6]. To the best of our knowledge, evolution of coeaéits of the separating
hyperplane within SVMs has not been accomplished yet.

3 Evolutionary Support Vector Machines for Classification

Within the new hybridized technique of ESVMs separation o$ifive and negative
vectors proceeds as in standard SVMs, while the optimizgtimblem is solved by
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means of EAs. Therefore, the coefficients of the separagipgrplane, i.ew andb, are
encoded in the representation of the EA and their evolusgeiformed with respect to
the objective function and the constraints in the optinidzaproblem (3) within SVMs,
which is considered for reasons of generality.

3.1 Evolving the Coefficients of the Separating Hyperplane

RepresentationAn individual encodes the coefficients of the separatingehpiane w
andb. Since indicators for errors of classificatign,: = 1, 2, ..., m, appear in the con-
ditions for hyperplane optimality, ESVMs handle them thgbunclusion in the struc-
ture of an individual, as well:

c= (wlﬂ""wn’b7£17""’€m)' (4)

After termination of the algorithm, the best individual fincall generations gives ap-
proximately optimal values for the coefficients of the dexishyperplane. If proper
values for parameters of the evolutionary algorithm aresehotraining errors of clas-
sification can also result from the optimal individual (teasdicators whose values are
higher than unity) but with some loss in accuracy; othernisdicators grow in the
direction of errors driving the evolutionary cycle towaitisgoal, but do not reach the
limit of unity when the evolutionary process stops. An exéangf an ESVM which
also provides the errors of classification is neverthelebghéed for simple artificial
2-dimensional data sets separated by various kernelsr@~&uln such a situation, the
number of samples and the dimensionality of data are bothtkays accuracy and run-
time are not affected by the choice of parameters which léadse discovery of all
training errors.

Initial population Individuals are randomly generated such thate [—1,1],i =
1,2,..,n, b€ [~1,1]and¢; € [0,1],5 = 1,2, ...,m.

Fitness evaluationThe fitness function derives from the objective functionha t
optimization problem and has to be minimized. Constraireshandled by penalizing
the infeasible individuals by appointitg R — R which returns the value of the argu-
ment if negative while otherwise 0. The expression of thefiom is thus as follows:

f(wa bv 5) = K(wvw) + ngz + Z[t(yz(K(wa xz) - b) -1+ fz)]g (5)
i=1 i=1

Genetic operatorsOperators were chosen experimentally. Tournament sefecti
intermediate crossover and mutation with normal pertiobaire applied. Mutation of
errors is constrained, preventing tf}s from taking negative values.

Stop condition The algorithm stops after a predefined number of generatiss
the coefficients of the separating hyperplane are foundcléd&s for a new, unseen
test data vector can be determined, followitigss(z) = sgn(K(w,x) — b). This is
unlike classical SVMs where it is seldom the case that caoeffis can be determined
following the standard technique, as the ndagannot be always explicitly determined.
In this situation, the class for a new vector follows from gutational artifices.
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Fig. 2: Vizualization of ESVMs on 2-dimensional points. Errors of classificatiesquared. Odd
(a), even (b) polynomial and radial (c) kernels

3.2 ESVMs for Multi-class Classification

Multi-class ESVMs employ one classical and very succesSWM technique, the
ONE-AGAINST-ONE (1-a-1) [7]. As the classification problesik-class . > 2, 1-a-1
considers’“(’%l) SVMs, where each machine is trained on data from every tvssels

i andj, wherei corresponds td andj to -1. For every SVM, the class ofis computed
and ifxis in clasg, the vote for thé-th class is incremented by one; conversely, the vote
for clasg is added by one. Finally is taken to belong to the class with the largest vote.
In case two classes have identical number of votes, the otfietiné@ smaller index is
selected. Consequently, 1-a-1 multi-class ESVMs aregttrfairward.@ ESVMs

are built for every two classes and voting is subsequentiglaoted.

4 Experimental Evaluation: Real-World Classification

Experiments have been conducted on four data sets (withssingivalues) concerning
real-world problems coming from the UCI Repository of MawhLearning Databasgs
i.e. diabetes mellitus diagnosis, spam detection, irisgeition and soybean disease
diagnosis. The motivation for the choice of test cases wasfold. Diabetes and spam
are two-class problems, while soybean and iris are mudssc| Differentiating, on the
one hand, diagnosis is a better-known benchmark, but fijes an issue of current
major concern; moreover, the latter has a lot more featurésamples, which makes a
huge difference for classification as well as for optimiaatiOn the other hand, iris has
a lot more samples while soybean has a lot more attributesalFeeasons mentioned
above, the selection of test problems certainly contaliibelariety of situations that is
necessary for the objective validation of the new approd&s¥Ms. Brief information
on the classification tasks and SVM and EA parameter valwegieen in Table 1. The
error penalty was invariably set 10

For each data set, 30 runs of the ESVM were conducted; in every5% ran-
dom cases were appointed to the training set and the rerga2&% went into test.
Experiments showed the necessity for data normalizatiatiabetes, spam and iris.

4 Available at http://www.ics.uci.edu/ mlearn/MLRepository.htm|
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Table 1. Data set properties and ESVM algorithm parameter values. Rightmosioslinold
tuned parameter sets for modified ESVMs, ESVMs with chunking, and upiizaheter bounds.

Diabetes lIris Soybean Spam

Data set description modif. chunk. bounds
Number of samples 768 150 47 4601 (434) (10/500)
Number of attributes 8 4 35 57

Number of classes 2 3 4 2

ESVM parameter values man. tun. man. tun. man. tun. man. tun. tun. tun.

Kernel parametenyor o) =2 o=1 p=1 p=1 p=1

Population size 100 198 100 46 100 162 100 154 51 90 10/200

Number of generations 250 296 100 220 100 293 250 287 180 286 50/300
Crossover probability 0.400.870.300.770.300.040.300.84 0.95 0.11 0.01/1

Mutation probability 0.400.21 0.500.57 0.500.390.50 0.20 0.03 0.08 0.01/1
Error mutation probability 0.50 0.20 0.50 0.02 0.500.09 0.500.07 — 0.80 0.01/1
Mutation strength 0.104.110.104.040.100.16 0.103.32 3.75 0.98 0.001/5
Error mutation strength  0.100.020.103.11 0.103.800.100.01 — 0.01 0.001/5

No further modification of the data was carried out and albdabs used in the ex-
periments. Obtained test accuracies are presented in ZabDiferentiated (spam/non
spam for spam filtering and ill/healthy for diabetes) accigmare also depicted. In or-
der to validate the manually found EA parameter values, #rarpeter tuning method
SPO [8] was applied with a budget of 1000 optimization rurtse Tast 4 columns of
Table 2 hold performances and standard deviations of thecbe$iguration of an ini-
tial latin hypersquare sample (LHS) with sit@ x #parameters, and the finally found
best parameter setting. Resulting parameter values areteléjn Table 1. They indi-
cate that for all cases, except for soybean data and chuekihgnced ESVM on the
spam data, crossover probabilities were dramaticallyeim®ed, while often reducing
mutation probabilities, especially for errors. It must betesd that in most cases, results
achieved with manually determined parameter values ageimmroved by increasing
effort (population size or number of generations).

Comparison to worst and best found results of differentri@gkes, either SVMs
or others, was conducted. Assessment cannot be objecbwevir, as outlined meth-
ods either use different sizes for the training/test setstluer types of cross-validation
and number of runs or employ various preprocessing proesdir feature or sam-
ple selectionDiabetes diagnosiaias approached ifV A1'*9" [9] where an accuracy
of 76.95% was obtained and Critical SVMs [10] with a resul8&f29%. Accuracy on
spam detectiois reported in [11] where k-Nearest Neighbourhood on noproeessed
data resulted in 66.5% accuracy and in [12] where functibimahetwork wrapped into
a genetic algorithm for input and output feature selectiavega result of 92.44%. 1-a-1
multi-class SVMs on théris data setwere perfomed in [7] (accompanied by a shrink-
ing technique) and [13]; obtained results were of 97.33% 28.67%, respectively.
Results for theSoybean small dataet were provided in [14], where, among others,
Naive Bayes was applied and provided an accuracy of 95.5€86hing 100% when a
pair-wise classification strategy was employed.
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Table 2: Accuracies of different ESVM versions on the considered test setciarp.

Average Worst Best StD LHS;..: StD SPO StD

ESVMs

Diabetes (overall) 76.30 71.3580.73 2.24 75.82 3.2777.312.45
Diabetes (ill) 50.81 39.19 60.27 4.53 49.35 7.47 52.645.32
Diabetes (healthy) 90.54 84.80 96.00 2.71 89.60 2.3690.212.64
Iris (overall) 95.18 91.11 100.0 2.48 95.11 2.9595.112.95
Soybean (overall) 99.02 94.11 100.0 2.23 99.61 1.47 99.801.06
Spam filtering (overall) 87.74 85.74 89.83 1.06 89.27 1.3790.590.98
Spam filtering(spam) 77.48 70.31 8250 2.77 80.63 3.5183.762.21
Spam filtering (hon spam) 94.41 92.62 96.30 0.89 94.82 0.94 95.060.62
ESVMs with Chunking

Spam filtering (overall) 87.30 83.13 90.00 1.77 87.52 1.3188.371.15
Spam filtering(spam) 83.47 75.54 86.81 2.78 86.26 2.66 86.352.70
Spam filtering (non spam) 89.78 84.22 92.52 2.11 88.33 2.48 89.682.06
Modified ESVMs

Spam filtering (overall) 88.40 86.52 90.35 1.02 90.06 0.9991.250.83
Spam filtering(spam) 79.63 75.39 84.70 2.16 82.73 2.2885.522.08
Spam filtering (non spam) 94.17 91.34 95.84 1.05 94.89 0.9295.000.72

5 Improving Training Time

Obtained results for the tasks we have undertaken to soleegraven to be competitive
as compared to accuracies of different powerful classifinaechniques. However, for
large problems, i.e. spam filtering, the amount of runtimedeel for training is< 800s.
This stems from the large genomes employed, as indicatoerifors of every sample
in the training set are included in the representation. Eguently, we tackle this prob-
lem with two approaches: an adaptation of a chunking praeeithside ESVMs and a
modified version of the evolutionary approach.

5.1 Reducing Samples for Large Problems

We propose a novel algorithm to reduce the number of sampiese run of ESVMs
which is an adaptation of the widely known shrinking teclugiqvithin SVMs, called
chunking [15]. In standard SVMs, this technique impliesitlentification of Lagrange
multipliers that denote samples which do not fulfill residns. As we renounced the
standard solving of the optimization problem within SVMs flee EA-based approach,
the chunking algorithm was adapted to fit our technique (Atgm 1).

ESVM with chunking was applied to the spam data set. Valuepdoameters were
set as before, except the number of generations for each Eéhwhnow set to 100.
The chunk size, i.6V, was chosen as 200 and the number of iterations with no im-
provement was designated to be 5. Results are shown in TaBlefage runtime was
of 103.2s/run. Therefore, the novel algorithm of ESVM wittuoking reached its goal,
running 8 times faster than previous one, at a cost of losedaracy of 0.4%.
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Algorithm 1 ESVM with Chunking

Randomly choose N samples from the training data set, equally distributedke a chunk;
while a predefined number of iterations passes with no improvednt
if first chunkthen
Randomly initialize population of a new EA,;
else
Use best evolved hyperplane coefficients and random indicatorsrtoseo fill half of
the population of a new EA and randomly initialize the other half;
end if
Apply EA and find coefficients of the hyperplane;
Compute side of all samples in the training set with evolved hyperplanéaesfs;
From incorrectly placed, randomly choose (if available) N/2 sampleslcdistributed;
Randomly choose the rest up to N from the current chunk and add a# toethi chunk
if obtained training accuracy if higher than the best one obtained sodfiar
Update best accuracy and best evolved hyperplane coefficiehtsisevement to true;
end if
end while
Apply best obtained coefficients on the test set and compute accuracy

5.2 A Reconsideration of the Evolutionary Algorithm

Since ESVMs directly provide hyperplane coefficients atiales, we propose to drop
the indicators for errors from the EA representation andteiad, compute their val-
ues in a simple geometrical fashion. Consequently, this,tindividual representation
contains onlyw andb. Next, all indicatorst;, ¢ = 1,2,...,m are computed in order
to be referred in the fithess function (5). The current irdlial (which is the current
separating hyperplane) is considered and, following [dpp®rting hyperplanes are de-
termined. Then, for every training vector, deviation to tteeresponding supporting
hyperplane, following its class, is calculated. If sign evétion equals class, corre-
spondings; = 0; else, deviation is returned. The EA proceeds with the saahees for
parameters as in Table 1 (certainly except probabilitielsstep sizes for thgs) and, in
the end of the run, hyperplane coefficients are again dyractjuired. Empirical results
on the spam data set (Table 2) and the average runtime of 686sts support the new
approach. It is interesting to remark that the modified algor is not that much faster,
but provides some improvement in accuracy. In contrasteactiunking approach, it
also seems especially better suited for achieving high pamgecognition rates, in or-
der to prevent erroneous deletion of good mail. Surprigir§PO here decreases effort
while increasing accuracies (Table 1), resulting in furseedup.

6 Conclusions and Future Work

Proposed new hybridized learning technique incorporaiesision upon classification
of SVMs but solves the inherent optimization problem by nseainevolutionary algo-
rithms. ESVMs present many advantages as compared to SMisoFall, they are
definitely much easier to understand and use. Secondly anel important, the evo-
lutionary solving of the optimization problem enables tloguirement of hyperplane
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coefficients directly and at all times within a run. Thirdaccuracy on several bench-
mark real-world problems is comparable to those of statéhefart SVM methods or

to results of other powerful techniques from different ettmachine learning fields. In

order to enhance suitability of the new technique for anggifacation issue, two novel

mechanisms for reducing size in large problems are alsoogeay obtained results
support their employment.

Although already competitive, the novel ESVMs for classifiocn can still be im-
proved. Other kernels may be found and used for better s&paralso, the two ap-
pointed classical kernels may have parameters evolved bysnaf evolutionary algo-
rithms as in some approaches for model selection. Alsor pileprocessing techniques
can be considered; feature selection through an evolutiadgorithm as found in lit-
erature can surely boost accuracy and runtime. Definitéfierovays to handle large
data sets can be imagined; a genetic algorithm can also lbefmssample selection.
Finally, the construction of ESVMs for regression problama task for future work.
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