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Abstract. The covariance matrix adaptation (CMA) is a concept orig-
inally introduced for improving the single-objective evolution strategy
(ES). CMA varies the classical ES-mutation operator by utilising a mu-
tation distribution adaptation scheme and an evolution path, which takes
the evolutionary history into account. SPEA 2 surely belongs to the most
popular multi-objective evolutionary algorithms. It uses the strength
Pareto concept and a special distribution measure for the evaluation
of offspring individuals. An archive collects non-dominated individuals,
which are used during selection, making the SPEA 2 a typical elitist
strategy.
The new ICSPEA (Integrated CMA-SPEA) combines the powerful muta-
tion concept of the CMA-ES with the evaluation scheme of the SPEA 2.
Tests on selected benchmark functions show the promising features of
this new multi-objective optimisation algorithm.

Keywords:

CMA (Covariance Matrix Adaptation), SPEA 2 (Strength Pareto Evo-
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1 Introduction

The evolution strategy (ES) is a flexible and powerful real value stochastic single-
criterion optimisation strategy. The correlated mutations concept was introduced
by Schwefel 1981 [1]. The idea is to adapt the n standard step sizes σi of the ES in
order to raise the probability of producing successful mutation steps. Generally,
the lines of equal probability density used in the ES form a n-dimensional hyper-
ellipsoid. Without correlated mutations the main axes of this ellipsoid are aligned
with the coordinate axes. The idea of correlated mutations is to turn this hyper-
ellipsoid adaptively towards promising search directions using a n × n rotation
matrix containing (n2 − n)/2 rotation angles. This matrix undergoes variation
and selection together with the step sizes and the objective variables assigned
to each individual [2].

Hansen and Ostermeier identified several shortcomings of the implementa-
tion of the original correlated mutation concept [3]. They proposed a strongly
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de-randomized single-criterion approach called Covariance Matrix Adaptation
Evolution Strategy (CMA-ES). The algorithm utilises two information sources: a
cumulation of selected mutation steps over time, the so called evolution path, and
a covariance matrix, which is adapted by means of singular value decomposition
of the evolution path. The CMA-ES is invariant against affine transformations
such as rotation and translation of the search space [4]. Empirical tests show
that on highly multimodal test functions, such as the scaled Rastrigin function,
the CMA-ES performs better than the conventional ES with mutation control
and ES with correlated mutations [3]. In the tests of Hansen and Ostermeier, the
convergence speed and scaling of the CMA-ES was also excellent, i.e. it scales
between linear to quadratic with the dimensions of the problems. Especially on
non-separable test functions the CMA-ES should be favoured over the ES with
global or individuals step size adaptation, only [3].

Multi-objective problems can be approached with single-objective techniques.
These approaches are useful if enough a-priori knowledge is given or if there is no
demand for compromising solutions (see [5] or [6]). If the user is more interested
in alternative solutions, it is more appropriate to use multi-objective strategies
[7], [8]. Multi-objective evolutionary algorithms (MOEA) are able to produce a
complete Pareto front in one single run. A technique to utilize user preferences
is to guide the MOEA with desirability functions (see [9], [10], and [11]).

There exist a huge number of different multi-objective evolutionary algo-
rithms by now. The best known algorithms are NSGA-II (Non-dominated Sort-
ing Genetic Algorithm, Version 2) introduced by Deb et al. [12] and SPEA 2
(Strength Pareto Evolutionary Algorithm, Version 2) by Zitzler, Laumanns, and
Thiele [13]. These algorithms are widely accepted and often taken as reference
for comparison. NSGA-II and SPEA 2 mainly differ in their fitness assignment
and the selection scheme. SPEA 2 uses an additional archive for storing non-
dominated individuals while NSGA-II does not use an archive at all. SPEA 2
and NSGA-II are both basically elitist strategies, i.e. both algorithms evalu-
ate offspring together with parents or the archive, respectively. In the original
SPEA 2 the individuals were coded as real vectors using polynomial mutation
and the SBX-20 recombination operator [14]. The results show that SPEA 2
and NSGA-II perform similarly well on typical test functions. SPEA 2 provides
a better point distributions while NSGA-II reaches a broader spread of points
along the Pareto front. NSGAII is faster than SPEA 2 with respect to worst-case
complexity. In higher dimensional objective spaces SPEA 2 seems to be advan-
tageous compared to NSGA-II [13], what makes it highly relevant for practical
applications.

Igel, Hansen, and Roth propose the multi-objective MO-CMA-ES [4], which is
an implementation of λMO CMA-ES working in parallel. Each CMA-ES generate
λ offspring from a pool of λMO parents using the CMA mutation scheme. For
selection, parents together with offspring are ordered using either a crowding
distance (as used in the NSGA-II) – referred as c-MO-CMA – or a contributing
hyper-volume relation – referred as s-MO-CMA [4]. The best of offspring and
parent individuals form the next generation of λMO individuals. This makes the
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MO-CMA-ES an elitist strategy. The covariance matrices are updated in parallel
and independently from each other within each single-objective (1+λ)-CMA-ES.
In the work of Igel, Hansen, and Roth the MO-CMA-ES has been compared with
the NSGA-II, which uses a polynomial mutation and the SBX-20 recombination
operator. The NSDE (non-dominated sorting differential evolution) algorithm
of Iorio and Li [15] also competed in the comparison. A hyper-volume indicator
[16] and an epsilon indicator [17] have been used to compare the Pareto fronts.
The results show that especially the s-MO-CMA generally performs statistically
significantly better than NSGA-II on Fonseca’s function, ZDT-functions [18] and
spherical functions with respect to both performance measures. Only on ZDT4
the NSGA-II performs better because this function fits perfectly to the NSGA-
II variation operators. The NSDE did not perform very well compared to the
other algorithms. c-MO-CMA works well an Fonseca’s function and the spherical
models. The unfavourable performance of NSGA-II and c-MO-CMA may be
due to the fact that these algorithms use the crowding distance operator in their
evaluation scheme. This operator may be good to increase the distribution of the
solutions but not favourable for progress in terms of selecting better solutions
[4].

An analysis of the CMA and MO-CMA shows that the CMA-technique has
advantageous over the conventional ES and NSGA-II, respectively. A drawback
in NSGA-II with respect to s-MO-CMA seems to be the evaluation operator.
SPEA 2 has advantageous properties with respect to higher objective space di-
mensions and point distributions along the Pareto front. Laumanns, Rudolph,
and Schwefel [19] showed on the basis of an MO-ES with dominance evaluation
and a multi-objective predator-prey-model that proper adaptation strategies of
the step sizes are especially important for multi-objective problems approaching
the Pareto front.

Looking at the different results of the analyses discussed before, it seems to be
necessary to combine proper variation and evaluation operators to form a new
multi-objective optimisation algorithm. CMA has a very favourable variation
scheme while SPEA 2 shows superior results especially due to its evaluation
scheme. In the following the respective operators of CMA and SPEA 2 have
been joined in order to form the new ICSPEA algorithm. In the following, this
new method will be introduced in more detail. A brief empirical comparison with
SPEA 2 on standard benchmark problems is given to get a first impression of
the algorithm’s features.

2 Concept

The real-value multi-objective optimisation algorithm ICSPEA consists of a
CMA-core, which is used for the variation of the individuals, and a SPEA 2-
core for the evaluation of the individuals. The truncation selection scheme known
from the evolution strategy realises a flexible method for controlling the selection
pressure. An archive is used to store non-dominated individuals.
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Encoding The problems, which can be approached by ICSPEA, are arbitrary
mappings from the n-dimensional real-value decision space subset X ⊆ IRn into
the m-dimensional real-value objective space Y ⊆ IRm. The m-criterion problem
can be stated as:

′min′

x ∈ X

(f1(x), . . . , fm(x))T with x ∈ IRn.
(1)

Each individual is a sample from the decision space x ∈ IRn. In the following,
minimisation of each objective is the general goal. The ICSPEA is an a-posteriori
method that generates a discrete approximation of a Pareto front rather than
finding a single minimum solution. References on the concept of Pareto domina-
tion can be found in [6] or [5]. A good distribution of the discrete approximations
of the Pareto front in combination with its fast and exact approximation inde-
pendently from the size of the decision and objective space is the general goal
of a-posteriori multi-objective evolutionary algorithms.

Mutation and Recombination ICSPEA utilises the variation operators of
the CMA-ES. New individuals xi(g+1), i = 1, . . . , λ, λ ∈ IR+ are sampled using a
n-dimensional normal distribution [20].

xi(g+1) ∝ Ni(m(g), σ
2
(g)C(g)) = m(g) + σ(g)Ni(0,C(g)), (2)

where (g) is the generation counter, σ(g) ∈ IR+ is called step size, and m(g) ∈ IRn

is the mean of the distribution. C(g) ∈ IRn×n determines the orientation of the
distribution ellipsoid.

The distribution mean m of each individual xi = m + σNi(0,C) is up-
dated by a ranked selection of the µ ’best’ individuals and the application of
a weighted intermediate recombination. The individuals are ordered according
to their strength Pareto values (see below). The µ best individuals x′

i form a
new set D. Depending on the strategy, the individuals are chosen from the set
of λ offspring only (non-elitist) or from the united sets of offspring and archive
(SPEA 2 like elitist). An archive of size α stores (mainly) the non-dominated in-
dividuals (see below). The update strategy of the new mean m of each individual
from generation (g) to the next generation (g + 1) is:

m(g+1) =

µ
∑

i=1

wix
′
i(g+1) = m(g) + σ(g)

µ
∑

i=1

wiNi(0,C(g)) (3)

The µ weights wi ∈ IR+ can be arbitrarily chosen but must sum up to one.
The covariance matrix C is updated from generation g to g + 1 using the so

called evolution path [3]. Actually, a sequential principle component analysis is
conducted. On quadratic functions, C approximates the inverse Hessian matrix.
The idea is to adapt C in a way that new successful steps are more likely to
appear during the following generations. The distribution of C is updated by ac-
counting for already successful steps found. The influence of each successful step
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decreases exponentially. The cumulated path pc of successful steps is updated
according to the formula [21]:

pc(g+1) = (1 − cc) pc(g) + hσ(g+1)

√

cc(2 − cc)µeff
m(g+1) − m(g)

σ(g)
, (4)

where cc << 1 and µeff =
∑µ

i=1 w2
i with

∑µ
i=1 wi = 1. The value µeff is termed

variance effective selection mass [20]. The parameter hσ(g+1) is used to stop the
increase of pσ(g+1), if the length of the evolution path ||pσ(g+1)|| is too large.
The Heaviside function is defined following [21]:

hσ(g+1) :=

{

1 if
||pσ(g+1)||√

1−(1−cσ)2(g+1)
< (1.5 + 1

n−0.5E[||N(0, I)||])
0 if otherwise

(5)

A rank-µ updating of the correlation matrix C(g+1) is realized by the weighted
outer product of the µ best selected steps x′

i. The adaptation of C(g+1) follows
the equation

C(g+1) = (1 − ccov) C(g) + ccov

µ
cov

(pc(g+1)pc
T
(g+1) + [(1 − hσ(g+1))cc(2 − cc)]C(g))

+ccov(1 − µ−1
cov) Z,

(6)
where

Z =

µ
∑

i=1

wi

1

σ(g)
[(x′

i(g+1) − m(g))(x
′
i(g+1) − m(g))

T ]. (7)

The path length is adapted according to the next formula:

pσ(g+1) = (1 − cσ) pσ(g) +
√

cσ(2 − cσ)µeff C
− 1

2

(g)

m(g+1) − m(g)

σ(g)
(8)

The step sizes are adapted following the path length control scheme [3]:

σ(g+1) = σ(g) exp

(

cσ

dσ

( ||pσ(g+1)||
E[||N(0, I)||] − 1

))

(9)

A good approximation for E[||N(0, I)||] =
√

2 Γ (n+1
2 )/Γ (n

2 ) is E[||N(0, I)||] ≈√
n(1 − 1

4n
− 1

21 n2 ) [3].
The values cc and ccov are learning rates. The larger the values the faster

the learning and the faster the older data is disregarded. Initially, the covari-
ance matrix is set to the unity matrix I ∈ IRn×n and pc(g+1) = 0 ∈ IRn. The
rank-µ updating is especially useful in large populations with λ > 3n + 10 and

dσ ≈ 1 +
√

µeff

n
[20]. Hansen recommends cc ≈ 4/n, cσ ≈ 4/n, ccov =

µeff

n2 , and

µcov = µeff [20]. The recommended number of parents is 2 ≤ µ ≤ n and the
number of offspring is 0.27µ ≤ λ ≤ 0.5µ [3]. The new offspring population is
termed P ′

(g+1).
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Evaluation After recombination and mutation of the individuals the multi-
objective evaluation scheme of the SPEA 2 assigns a scalar measure, the strength
S(xi), to each individual. The individuals (xi) selected for the evaluation de-
pends on the strategy of ICSPEA. Generally, the selection scheme can use the
offspring population as well as the archive and the parent population in different
combinations. The strengths are calculated as follows:

S(xi) = |{xj |xj ∈ P ′
(g+1) ∧ xi ≺ xj}|, (10)

i.e. counting the individuals j that are dominated by the individual xi. Other
alternatives could be to evaluate archive and offspring, parents and offspring or
all three sets of individuals together. In the current ICSPEA implementation the
strength is evaluated on the offspring population P ′

(g+1) only. Analyses of other

combinations are matter of current research. The raw fitness R(xi) of individual
xi is the sum of strengths of all individuals xj the individual xi is dominating.

R(xi) =
∑

xj∈P ′

(g+1)
,xj≺xi

S(xj) (11)

The archive P̄(g) is initially assigned the empty set. For later generations it is
updated as described below.

Additionally to the raw fitness, a density function is introduced which helps to
increase the distribution spread of the solutions along the approximated Pareto
front. The density function is the k-th nearest neighbourhood method as used
by SPEA 2. All distances of each individual i to its neighbours in P ′

(g+1) are
assigned the respective individual and the list is sorted in increasing order. The
k-th distance in the list of individual xi is sought for, termed σk

i . The authors

[13] recommend k =
√

N + N̄ in their SPEA 2 algorithm, where N is the size of
the offspring population and N̄ the current size of the archive. For the comma-
strategy of course k =

√
N has to be used.

The density function in SPEA 2 corresponding to xi is defined as follows:

D(xi) =
1

σk
i + 2

(12)

In the ICSPEA a more expensive alternative has been applied. This version puts
a stronger emphasize on the relative distance between each of the individuals.

D′(xi) =

k
∑

j=1

1

σj
i + 2j

(13)

The total fitness F (xi) : IRn → IR of each individual xi is

F (xi) = R(xi) + D′(xi). (14)
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Archiving and Selection ICSPEA has an archive P̄(g) of fixed size α. After
selection, the archive is updated. In the first generation the archive is initialised
the empty set. After the evaluation step, the individuals from the offspring pop-
ulation and the individuals from the current archive P̄(g) are united and the
non-dominated individuals are selected from the united set. The old archive is
deleted and the new P̄(g+1) is filled with non-dominated individuals. If the num-
ber of non-dominated individuals is exactly the size of the archive, the archiv-
ing is finished. If the number of non-dominated individuals is smaller than the
archive size α, the remaining space is filled with individuals with slightly smaller
fitnesses. If the number of non-dominated individuals is larger than the archive
size, then an archive truncation procedure is invoked [13], which chooses indi-
viduals with maximum distance to others in the archive. This ensures a good
distribution of solutions within the archive.

The truncation selection scheme of the classical evolution strategy has been
applied for the ICSPEA. In order to find the most promising offspring popula-
tion, the individuals’ fitness values are evaluated and sorted. The µ best with
respect to their total scalar fitness F are passed on to the next generation. It
should be pointed out that the total fitness F assigned to each solution by the
SPEA 2 concept is actually a scalar value although the problem itself is multi-
objective. It depends on the strategy if individuals from the archive together
with the offspring population are inspected or just the offspring population is
taken into account. The new µ individuals selected replace the former parent
population to become P(g+1).

Termination Criterion The cycle of mutation and recombination, evaluation,
archiving, and selection is repeated until a stopping criterion is satisfied. Like
SPEA 2, ICSPEA uses a limited number of generations. The result of the opti-
mization procedure is the set A of solutions in decision space that corresponds
to the non-dominated individuals in the archive P̄(g). In order to visualize the
Pareto front the individuals with their corresponding m fitness values are dis-
played.

3 Experimental Setup

ICSPEA is tested on several typical benchmark problems. The functions have
been selected to show the special features of the algorithm. Schaffer’s function
and a variation with variable dimension decision space are analysed to reveal
features that are typical for spherical functions. The Pareto front of the complex
Kursawe problem has a convex-concave shape and is partially non-connected.

Each experiment has been carried out 50 times starting with different ini-
tial positions and different random number generator initialisations. Box-and-
whiskers plots show the basic statistical behaviour of the solutions. A statistical
parameter optimisation of the algorithm has not been performed. In order to
be able to estimate the quality of the algorithm, a standard SPEA 2 from the
toolbox PISA [22] has been used. For the SPEA 2, tests with empirically best
known parameter settings have been applied.
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3.1 Test Functions

In the results, first, ICSPEA is applied to Schaffer’s function [23]. This func-
tion has a one-dimensional decision space with two dimensions in the objective
space. The Pareto set is the compact interval [0, 2]. The function has been se-
lected due to its basically quadratic features.

SCH1 :
f1(x)= x2

f2(x)= (x − 2)2
(15)

with restriction x ∈ [−106, 106].

A generalised Schaffer’s function for higher dimensions n > 1 of the
decision space is used. The original version with n = 2 was introduced by [24].
The variant SCHn for variable dimensions n has the Pareto set x1 ∈ [0, 2] and
x2 = . . . = xn = 0.

SCHn :
f1(x) =

∑n
i=1 x2

i

f2(x) = (x1 − 2)2 +
∑n

i=2 x2
i

(16)

with restriction x1, x2 ∈ [−106, 106]2.

The two-criterion Kursawe function [25] has a mixed-shaped convex-concave
Pareto front. In the tests with ICSPEA the number of dimensions have been set
to n = 20. The area of feasible solutions is [−100.0, 100.0]n.

f1(x) =

n−1
∑

i=1

−10e(−0.2·
√

x2
i
+x2

i+1) (17)

f2(x) =
n

∑

i=1

(|xi|0.8 + 5 sin(xi)
3) (18)

Convergence assessment Due to the fact that the Pareto sets of both func-
tions SCH1 and SCHn are known, the average distance of all current solutions
in the archive of size α to the line [0, 2] can be taken for estimating the conver-
gence speed. Like in single-objective optimisation the distance of the solutions
to known best solutions is calculated. Here the measures MeSCH1 and MeSCHn,
respectively, determine the average distance of the approximating Pareto set to
the true Pareto set.

In the case of SCH1, the distance measure for each one-dimensional individ-
ual xi, i = 1, . . . , α is:

d(xi) =







(xi − 2) if (xi > 2)
−xi if (xi < 0)
0.0 if (0 ≤ xi ≤ 2)

MeSCH1 = 1
α

∑α

i=1 d({xi})

(19)
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The measure MeSCHn works for experiments with SCHn. Here the distance
of n-dimensional individuals xi, i = 1, . . . , α to the line structure [0, 2] × 0n−1

has to be measured. The first component xi1 of each individual xi is treated
as in MeSCH1 yielding d(xi). The remaining components are projected to the
coordinate axes and the total of the absolute lengths of these projections is added
to d(xi). Like in MeSCH1, the average of the total of all distances is measured
for the complete archive.

d(xi) =







(xi1 − 2) if (xi1 > 2)
−xi1 if (xi1 < 0)
0.0 if (0 ≤ xi1 ≤ 2)

MeSCHn = 1
α

∑α
i=1

√

d(xi)2 +
∑n

j=2 xi
2
j

(20)

Convergence measures for Kursawe’s functions have not been done. Refer-
ences on quality assignments for Pareto fronts can be found in [26], [8], or [27].

3.2 Parameter Settings

Table 1 shows the parameter settings used. µ ∈ IN+ defines the size of the
panmictic parent population, λ ∈ IN+ is the size of the offspring. In case of a
comma-strategy, the value of λ must be bigger than the number µ of parents. The
experiments feature only the comma strategy. α ∈ IN+ is the size of the archive.
σ0IR+ is the initial step size of the algorithm. The internal covariance matrix is
initialized C(0) = I and the evolutionary paths pc(0) = 0 and pσ(0) = 0, respec-
tively. As recommended by [3] the initial distribution mean m(0) should be set
generally problem depending within the area of feasible solutions [min,max]n.
The value k ∈ IN+ is used to determine the distance measure D(xi) utilized in the
strength Pareto evaluation. The maximum number of generations is gen ∈ IN+.
This value also depends on the problem. In PISA the SPEA 2 algorithm uses
a fixed k = 1. In the experiments the specific SPEA 2 parameters pm = 1

n
,

pc = 0.5, ηm = 20, and ηm = 15 were used and the SBX-variation operator was
applied.

Table 1: The ICSPEA parameter settings
Problem µ λ α σ0 m(0) k Gen. dim.
SCH1 5 50 60 375.0 uniform in [−106, 106] 10 40 1
SCHn 5 50 60 375.0 uniform in [−106, 106]n 10 400 20
Kursawe 5 50 60 1.0 uniform in [−100.0, 100.0]n 10 40 2
Kursawe 5 50 60 1.0 uniform in [−100.0, 100.0]n 10 40 10
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4 Results

ICSPEA has been applied to Schaffer’s function with one-dimensional and 20-
dimensional decision space. The convergence speed of the algorithm is nearly
linearly in logarithmic scaling during the first 30 steps (see Figure 1 on the left).
After reaching the Pareto set only slight variations appear.
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Figure 1: Convergence plots for ICSPEA with 5 parents and 50 offspring
applied to the one-dimensional (left) and 20-dimensional Schaffer function

(right). An archive of size 60 was used.

The linear convergence supports the hypothesis that the CMA step size adap-
tation performs very well on sphere like problems. Although the fitness values
assigned to the individuals during the SPEA 2 evaluation are not absolutely
quadratic, the basically quadratic characteristics of the partial functions f1 and
f2 of Schaffer’s problem may be the reason for the good performance of ICSPEA
in this simple problem. The small heights of the boxes in the figures indicate that
the runs show only slight variations. Large outliers do not appear in all 50 runs.
In some cases the algorithms found the true Pareto set (e.g. after about 37 gen-
erations), i.e. all values of the individuals are in the interval [0, 2].
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Figure 2: Convergence plots for (5 + 50)-SPEA 2 for the one-dimensional
Schaffer function after 40 generations (left). The same algorithm applied to

20-dimensional Schaffer function after 400 generations (right).



11

The 20-dimensional Schaffer problem is more difficult, because all values
in the genome have to be zero except the first parameter, which has to be in
the [0, 2] interval. In figure 1 on the right the values for MeSCH1 have been
plotted with logarithmic scaling. A box plot for every tenth generation is shown.
The median values after generation 400 do not change any more for higher
generation numbers. They have been omitted in the plot. The results show that
the variations over all 50 runs are quite small. Small deteriorations of the fitness
values of MeSCH1 are due to the characteristics of the SPEA evaluator that
intends to spread the solutions along the Pareto front. Some solutions, which
are already within the desired solution area, are ’pushed out’ of the interval
again yielding a slight deterioration in the fitness values.

It is interesting to compare ICSPEA with results of the standard SPEA 2 from
the software package PISA [22]. For the evaluation of the approximation quality
of SPEA 2 again the measures MeSCH1 and MeSCH20 have been applied. One
can see in figure 2 that the step size adaptation of SPEA 2 leads to a very early
stagnation of the convergence towards the Pareto front. As already mentioned in
[19] the SBX technique is not optimal. An alternative to the technique proposed
by [19] is CMA. The application of the CMA in ICSPEA increases the power
of the standard SPEA 2 as can be seen in figure 1. The advantageous features
coming from the strength Pareto selection such as the even distributions of the
solutions along the Pareto front is maintained in ICSPEA. This can be seen in
the following figures.
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Figure 3: Five different runs approximating the Pareto front of Kursawe’s
function with a two dimensional decision space using a ICSPEA with 5 parents

and 50 offspring (left). Approximation of the Pareto front of Kursawe’s
function with a 10-dimensional decision space. The generations 40 (red),

60 (green), 80 (blue), 100 (yellow) to 800 (black) are displayed.

The function of Kursawe is more complex than Schaffer’s function. The func-
tions f1 and f2 are nonlinear and the Pareto front has a partially convex and
concave shape. The complexity of the problem was varied by changing the dimen-
sion of the decision space from 2 to 10. Figure 3 shows that in both dimensions
ICSPEA is able to approximate the Pareto front nicely. The shape and values
are identical to [25]. The SPEA 2 evaluation scheme is, as expected, not influ-
enced by the shape of the Pareto front. The scheme finds equally distributed



12

solutions along the Pareto front. In figure 3 various Pareto front approximations
are shown. ICSPEA generates approximations with only few variations of the
results. The convergence of the populations towards the Pareto front in the case
of a 10-dimensional decision space is shown in figure 3 on the right.

4.1 Summary

The research on the Covariance Matrix Adaptation (CMA) in single-objective
evolution strategies yielded very promising variation operators with a nice step
size adaptation mechanism. The SPEA 2 algorithm is supplied with a powerful
evaluation method that helps to find well spread Pareto front approximations.
First tests on typical benchmark functions show that the combination of both
concepts seems to be a very promising concept. A proper parameter adaptation
scheme is surely a key issue in optimisation. In ICSPEA, especially the CMA
step size adaptation mechanism is emphasised. The key idea in ICSPEA is – as
long as no a-priori knowledge is available – that all data gathered during the
stochastic search process should be used as efficiently as possible to increase the
success probability of a multi-objective optimization algorithm.
In order to further improve ICSPEA, a sound statistical analysis of the best ini-
tial parameter settings should be performed. Alternative methods for the evalu-
ation of parents, offspring, and archive are matter of current research.
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