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Abstract. The computation of a good approximation set of the Pareto
front of a multiobjective optimization problem can be recasted as the
maximization of its S-metric value. A high-precision method for com-
puting approximation sets of a Pareto front with maximal S-Metric is
presented in this paper as a high-level relay hybrid of an evolutionary
algorithm and a gradient method, both guided by the S-metric. First, an
evolutionary multiobjective optimizer moves the initial population close
to the Pareto front. The gradient-based method takes this population as
its starting point for computing a local maximal approximation set with
respect to the S-metric.
As opposed to existing work on gradient-based multicriteria optimization
in the new gradient approach we compute gradients based on a set of
points rather than for single points. We will term this approach indicator-
based gradient method, and exemplify it for the S-metric. We derive
expressions for computing the gradient of a set of points with respect
to its S-metric based on gradients of the objective functions. To deal
with the problem of vanishing gradient components in case of dominated
points in an approximation set, a penalty approach is introduced. We
present a gradient based method for the aforementioned hybridization
scheme and report on first results on artificial test problems.

1 Introduction and Mathematical Preliminaries

In multiobjective optimization, a solution has to fulfill several objectives in the
best possible way. Maximization problems can be reformulated as minimization
problems, thus, without loss of generality, we can restrict our attention to those.
Formally, the problem reads as follows:

f = (f1, . . . , fm)T , f1(x) → min, . . . , fm(x) → min, x ∈ X . (1)

The domainX is called the decision space or search space and contains all feasible
solutions, and the co-domain Y of all m objectives is called objective space. Here
we assume continuous functions, so X ⊆ R

d and Y ⊆ R
m.



Since the objectives are typically conflicting, there is no single best solution
and the aim is to generate sets of good compromise solutions. These solutions
are suggestions to the decision maker who finally chooses one for realization.

A partial order holds among the points, which is defined in the objective
space and is transferred to the preimages in the search space. A point x is said
to (weakly) dominate a point x′ (x ≺ x′), iff f (x) 6= f (x′) and ∀i ∈ {1, . . . , m} :
fi(x) ≤ fi(x

′). A point x strictly dominates a point x′ (x < x′), iff ∀i =
1, . . . , m : fi(x) < fi(x

′). The points that are minimal with respect to the partial
order ≺ within a set are called non-dominated. The non-dominated points within
the whole search space are called efficient set or Pareto set XE and the set of
their corresponding images is called Pareto front YN .

Since continuous problems cannot be expected to be solved optimally, a good
approximation of the Pareto front is aspired. Two sets are already incompa-
rable, if one set contains a point that is incomparable to each point of the
other set. Thus, a qualitative ranking is mostly impossible. Instead, auxiliary
demands which suggest high quality are formulated for sets, such as: (1) many
non-dominated points, (2) closeness to Pareto front, and (3) well-distributed
along the Pareto front. From our point of view the term well-distributed means
to have a regular spacing between points in regions with similar trade-off and a
higher concentration of points in regions with a more balanced trade-off among
the objectives.

Among the developed quality measures, the S-metric or dominated hypervol-
ume by Zitzler and Thiele [1] is of utmost importance. It is defined as

S(X) = Lebesgue{y | ∃y(i) : y(i) ≺ y ∧ y ≺ yref}, (2)

where y(i) = f (x(i)) are the image points of the set X ⊆ X under f , and X
is an approximation of the Pareto set. The reference point yref confines the
dominated hypervolume. Note that the same definition can be used to define the
S-metric for subsets of R

m directly. It is an alleged drawback that the reference
point influences the absolute value of the metric. However, in practical settings
it is often possible to state bounds for the objective function values and thus the
reference point can be chosen as that upper bound vector. In addition, recent
results on generalizations of the S-metric show, that the distribution of points
on the Pareto front can be influenced by weighting parameters according to the
user’s preferences [2].

The maximal S-metric value is achieved by the Pareto front. For compact
image sets of f and appropriately chosen reference points the maximization of
the S-metric for a given number of points always results in a non-dominated set
of solutions. Further properties of the S-metric were studied by Fleischer [3] and
Zitzler et al. [4].

The maximization of the S-metric receives increasingly more attention as a
solution principle for approximating Pareto fronts by means of a well-distributed
non-dominated set. Recently, the S-metric has been used as a single-objective
substitute function to guide the process of multiobjective optimizers. Accord-
ingly, the problem of finding a good approximation of the Pareto front of the



original multiobjective optimization problem can be re-stated as:

S(X) → max, X ⊆µ X (3)

where X ⊆µ X means that X is a set of at most µ elements from X .

Recent work proposed methods for S-metric maximization that are based on
simulated annealing, particle swarms, and evolutionary algorithms. Evolution-
ary multiobjective optimization algorithms (EMOA, MOEA) [5, 6] established as
efficient and robust optimizers and modern EMOA like IBEA [7], ESP [8], and
SMS-EMOA successfully apply an S-metric based function to evaluate and select
promising solutions, or use it for archiving [9]. The SMS-EMOA by Emmerich
et al. [10] uses the S-metric in the selection method of a steady-state EMOA. It
has been tested extensively on benchmarks and real-world applications, receiv-
ing results competitive or better than state-of-the-art methods in the field. In
this paper we continue in the same spirit, and derive a gradient based method
for solving multiobjective problems.

In this work the gradient of the S-metric at a point, representing an approx-
imation set, is introduced to solve the optimization problem of positioning the
given µ points of the set such that the S-metric value of the set is maximized.
Using this gradient, we apply a simple steepest ascent method. We propose a
hybridization of the gradient method with SMS-EMOA as a high-level relay (cf.
Talbi [11]), meaning that autonomous algorithms are executed sequentially. The
gradient method is applied after SMS-EMOA to locally optimize its final popula-
tion. Thus, we combine efficient local optimization based on a new gradient-based
method, with more exhaustive global optimization techniques.

As opposed to previous work on gradient based multiobjective optimization
(e.g. [12–16]) this approach does not use gradients to improve points of the
population independent of each other but, by aiming at improving the S-metric
(that considers the population as one aggregate), it looks at the distribution of
the entire population.

The paper is structured as follows. The following section relates our approach
to EA/gradient hybridizations and introduces our new paradigm of indicator-
based gradients. In Section 3 expressions of the gradient of the S-metric are
derived and discussed. In Section 4 the maximal S-metric is determined analyt-
ically to verify the gradient formulation. Section 5 introduces a steepest descent
gradient method for S-metric maximization. Afterward, the hybridization of this
method with the evolutionary algorithm SMS-EMOA is proposed and studied
on multimodal test problems (Section 6). The new methods form starting points
for further studies. A summary of the results and discussion of open questions
is provided in Section 7.

2 Related Work

Whereas evolutionary techniques typically aim at achieving a good distribution
of points and closeness to the Pareto front, most gradient-based approaches focus



on the latter, only. Hybridizations of gradient-based and evolutionary techniques
have been proposed in the past to combine advantages of both methods.

Fliege [13] suggests a steepest descent method that searches within the cone of
dominating solutions in the direction where the net decrease of objective function
values is expected to be maximal among all vectors with a given length, added to
the current variable vector. This direction, obtained by quadratic maximization
based on the Jacobian (the matrix of the objective functions gradients), is termed
multi-objective gradient.

Brown and Smith [17] suggest an algorithmic scheme that approximates this
direction from the parents of an evolutionary algorithm’s population. In a similar
approach by Bosman and de Jong [18] local mutations of the current search point
are placed in a cone in which dominating solutions are likely to be found. This
cone is determined by means of the local gradient directions of the objectives.
A similar line of research is given by methods that generate non-dominated
points by linear combinations of the negative gradients with positive weights
[12, 19]. For small step-sizes this yields non-dominated or dominating solutions.
Thereby, the Euler method is used to integrate along a path of such solutions.
Recently, these methods have been hybridized for EMOA by Shukla et al. [14]
by computing favorable directions for generating offspring individuals.

Unlike the aforementioned methods, the continuation method as described by
Schütze et al. [15] uses gradient-based search also for finding a well-distributed
set of points covering the Pareto fronts. The basic idea is to gradually extend the
manifold around a given Karush-Kuhn-Tucker point. However, this method is
only useful under a number of mathematical assumptions such as connectedness
of the Pareto front. In these cases it can yield very accurate approximations.

In our paper we suggest an alternative way of how the gradients can be
used to achieve a well distributed approximation of the Pareto front. This is to
generate a set of new points in the direction of the ‘set-gradient’ for the S-metric,
which is an indicator for the quality of a Pareto front approximation.

In principle the new approach can be generalized to indicators for approxima-
tion sets other than the S-metric. The general approach to define gradients on the
basis of (quality) indicators for approximation sets we will term indicator-based
gradient approaches. In order to achieve convergence to Karush-Kuhn-Tucker
points, it is advantageous to apply this approach with indicators that fulfill the
monotonicity criterion, i. e. that evaluate an approximation set A as superior to
an approximation set B if all points in B are dominated by points in A.

3 Gradient of the S-metric

In this section we discuss expressions for gradient computation with respect to
the S-metric and discuss its differentiability properties.



3.1 Mathematical Notation

In order to compute gradients of the S-metric, we represent a population P of
size µ, P ⊆µ X , as a vector of length µ · d:

p = (x
(1)
1 , . . . , x

(1)
d , . . . , x

(µ)
1 , . . . , x

(µ)
d )> = (p1, . . . , pµ·d)

>.

For notational convenience we introduce blocks of a µd-vector as

Π(i, p) = (x
(i)
1 , . . . , x

(i)
d ) = (p(i−1)·d+1 . . . pi·d).

The mapping from µd-vectors to populations is defined as:

Ψ(p) = { (x
(i)
1 , . . . , x

(i)
d )> | i ∈ {1, . . . , µ} }. (4)

Different µd-vectors may represent the same population (but not vice-versa).
Every non-empty population P ⊆µ X is represented by at least one tuple of the
form above.

For optimization purposes it is sufficient to work with µd-vectors. This holds,
because the set of global optima of the problem

S(Ψ(p)) → max, subject to Ψ(p) ⊆µ X , p ∈ R
µd (5)

can be mapped to the set of global optima of the original problem (Eq. 3)
via Ψ . Note that for X = R

d the constraint Ψ(p) ⊆µ X is trivially fulfilled.
Moreover, the number of local optima of the new problem is usually increased,
as different µd-vectors may give rise to the same population. Given one µd-vector,
all equivalent representations can be obtained by permuting its blocks.

3.2 Definition and Analytical Calculation of S-metric’s Gradient

A general definition of the gradient for the space of µd-vectors is

∇pS = (
∂S
∂p1

, . . . ,
∂S

∂pµ·d

)> (6)

In order to express the gradient of the S-metric in terms of the gradients of the
objective functions the following structure of the composition of mappings is
applied:

R
µ·d F−→

︸︷︷︸

decision to objective space

R
µ·m S−→

︸︷︷︸

objective space to S-metric

R
+. (7)

where F is defined by using the objective functions f = (f1, f2, · · · , fm)> so that
F(x(1), · · · , x(µ)) = (f (x(1)), f (x(2)), · · · , f (x(µ)))> with the functions fi defined
as above and S as the S-metric function.

The S-metric is defined on sets of points (Eq. 2), but for notational con-
venience, we also apply it directly to vectors which can be interpreted as sets



according to the mapping Ψ (Eq. 5). Using the chain rule the gradient can be
rewritten as follows. Let x(1), x(2), · · · , x(µ) be µ points in the decision space,
then ∇S(p) can be written as:

S′ at







f (x(1))

f (x(2))
· · ·

f (x(µ))







◦








f ′ at x(1) 0 0 · · · 0

0 f ′ at x(2) 0 · · · 0
...

...
... · · ·

...

0 0 0 0 f ′ at x(µ)








(8)

The top level structure of the matrix associated to the linear mapping F′ is a
diagonal matrix of size µ whose diagonal elements are matrices of size m × d
associated to the linear maps f ′ at x(j), where j = 1, 2, · · · , µ and each of the
off-diagonal elements is the zero matrix of size m × d as well.

A more detailed description of this matrix is given as:

0
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@
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1
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| {z }
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F′(x(1),...,x(µ))

(9)

Note that F′(x(1), . . . ,x(µ)) depends solely on the gradient functions ∇fi at the
sites x(1), . . . ,x(µ). Hence, if these m · µ local gradients are known, the desired
gradient ∇S(p) can be computed.

The computation of ∇S(y(1), . . . ,y(µ)) is discussed next. Three cases of the
set {y(1), . . . ,y(µ)} need to be considered: (1) mutually non-dominated sets, (2)
sets with strictly dominated points, and (3) sets with weakly dominated points.

(1) Mutually non-dominated sets. For m = 1 holds ∂S

∂y
(i)
1

= 1, and for m = 2

holds (assuming vectors are sorted y(i) in descending order of f):

∂S
∂y

(i)
1

= y
(i−1)
2 − y

(i)
2 and

∂S
∂y

(i)
2

= y
(i−1)
1 − y

(i)
1 , i = 1, . . . , µ (10)

as illustrated in Fig. 1. Note that extremal points need special treatment, as
their contribution to the gradient is influenced by the reference point. In three
dimensions (m = 3), the computation of the partial derivative gets more tedious.
The general principle is sketched in Fig. 2.
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Fig. 1. Partial Derivative of the S-metric for m = 2 and non-dominated sets. The
lengths of the line-segments of the attainment curve correspond to the values of the
partial derivatives of S. Only for extremal points do the values of the partial derivatives
depend on the reference point.

A
(i)
j = ∂S/∂y

(i)
j

−f3

f2

f1

dy
(2)
3
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(2)
3

yref

y(1)

y
(2)

y(3)

Fig. 2. Partial derivative for m = 3. By changing a point y(i) differentially in the j-th
coordinate direction, the hypervolume grows with the area A

(i)
j of the ‘visible’ face of

the exclusively contributed hypervolume of that point in the direction of the movement.
Hence A

(i)
j is the partial derivative ∂S/∂y

(i)
j .
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Fig. 3. The penalty function is defined as the sum of the euclidean distance (dashed
lines) of the dominated points (gray) to the attainment curve (solid line) shaped by
the non-dominated points (black) and bounded by the reference point r. The penalty
is subtracted from the S-metric value to give an influence to the dominated points.

(2) Sets with strictly dominated points. The gradient equals zero in case of
dominated points—provided that a slight perturbation does not make them
non-dominated—since no improvement of the S-metric can be observed for any
movement. Therefore, dominated points do not move during a search with gra-
dient methods but just remain in their position. To enable an improvement of
dominated points, a penalty value can be subtracted from the S-metric value,
that is negative if and only if points are dominated and otherwise zero. For
each dominated point, the minimal Euclidean distance to the attainment sur-
face shaped by the non-dominated points is calculated (Fig. 3). The sum of these
values is subtracted from the S-metric value of the whole set of points. This way,
the movement of dominated points influences the improvement of the penalized
S-metric and a local gradient of the dominated points is computed that points in
the direction of the nearest point on the attainment curve. In a gradient descent
method the movement of the non-dominated points is delayed by the dominated
ones. Anyway, this drawback is a smaller deficit than completely losing the dom-
inated points. Since any non-dominated point contributes to the S-metric value,
the primary aim is to make all points non-dominated.

(3) Sets with weakly dominated points. Points that are dominated but not strictly
dominated (we call them weakly dominated) lie on the attainment surface of the
non-dominated points. Slight movements can make the points either remain
weakly dominated, become strictly dominated or non-dominated. Thus, the gra-

dient at these points is not continuous. The left-sided derivative ∂−
S

y
(i)
j

may be

positive, while the right-sided derivative ∂+
S

y
(i)
j

is always zero. For m = 2 positive

one-sided derivatives can be determined as the length of the segment of the at-
tainment curve. Let y(iL) determine the neighbor of the weakly dominated point



y
(iL)

y
(i)

y1 or f1

∆S

y
2

o
r

f
2

(y
(iR)
1 , y

(iL)
2 )

case ∆y
(i)
2

< 0 : (y
(i)
1

, y
(i)
2

+ ∆y
(i)
2

)

y
(iR)

y
ref

Fig. 4. Partial derivative for weakly dominated points in 2D. These points are domi-
nated but not strictly dominated.

y(i) on the upper left corner of the attainment curve, and y(iR) the neighbor on
the lower right corner (see Fig. 4). If the point y(i) lies on the segment y(iL) to

(y
(iR)
1 , y

(iL)
2 )>, then ∂+

S

∂y
(i)
1

= 0 and ∂−
S

∂y
(i)
2

= y
(iR)
1 − y

(i)
1 (see also Fig. 4); else if

the point lies on the segment y(iR) to (y
(iR)
1 , y

(iL)
2 )>, then ∂−

S

∂y
(i)
1

= y
(iL)
2 − y

(i)
2

and ∂+
S

∂y
(i)
2

= 0. The fact that S(p) is in general not continuously differentiable

at weakly dominated points makes it problematic to work with gradient-based
methods that make use of second order derivatives.

Weakly dominated points can also cause non-dominated points to have dis-
continuous local derivatives, which is comprehensible by arguments similar to
the ones above. Besides degenerate points in the search space can cause discon-
tinuous derivatives. These are, loosely defined, search points (or blocks) with the
same image.

3.3 Empirical Determination of the Gradient

In practice the computation of the gradient can be approximated for example by
using numerical differentiation. Since weakly non-dominated points of the popu-
lation are not continuously differentiable, we need to take one-sided derivatives
in both directions into account. For a small positive ε we compute them via:

∂S
∂pi

≈ S((p1, . . . , pi ± sε, . . . , pµd)
>) ± S((p1, . . . , pi, . . . , pµd)

>)

ε
(11)



The algebraic signs we need to use depend on the gradients of the objective
function. In case of continuously differentiable objective functions, it is numer-
ically safer to compute the derivatives of the objective functions first, and then
use the chain rule to compute the derivatives of the S-metric taking special care
of weakly non-dominated points whenever they occur. Both the computation of
Equation 11 and the computation of the gradients of all objective functions at
all points (that can be used to compute the gradient via the chain rule) requires
µd evaluations of the objective function vectors.

4 Analytical solution of S-metric Maximization

We exemplarily verify the maximization of the S-metric with the gradient by an
analytical calculation for a problem with a linear Pareto front {(y1, y2) | y2 = 1−
y1 and y1 ∈ [0, 1]} and a fixed number of points. Using analytical arguments and
partial derivatives, the optimal positions of the points are calculated. Later we
will use this problem and its solution for testing the local convergence behavior
of the gradient-based method.

Due to the monotonicity of the S-metric the µ points of the approximation set
that maximizes S lie on the Pareto front. In order to consider the hypervolume
of the approximation set we fix (1, 1) as the reference point and we consider
µ + 2 points on this Pareto curve whose y1-coordinates we denote by ui, with
i = 0, . . . , n + 1. For any such collection of n + 2 points we always require
u0 = 0 and un+1 = 1. We want to maximize the hypervolume with respect
to (1, 1). This is equivalent to minimizing the sum of the area of the triangles
which are bounded by the Pareto curve and the sides of the rectangles shaping
the attainment curve. Let vi denote the length of the interval between ui and
ui+1, then

∑v+1
i=1 v2

i is twice the area we want to minimize under the constraints
∑n+1

i=1 vi = 1 and ∀i : 0 ≤ vi. This area is minimal in case the n + 2 points are
uniformly distributed (with the understanding that two of the points are the end
points). It is easy and worthwhile to prove this fact geometrically, yet we revert

to an analytical verification as follows. Let g :=
∑n+1

i=1 v2
i . Incorporating the

constraint vn+1 = 1− ∑n

i=1 vi yields g =
∑n

i=1 v2
i + (1 − ∑n

i=1 vi)
2. Computing

the partial derivatives of g results in ∂g
∂vj

= 2vj−2(1−
∑n

i=1 vi) where j = 1, . . . n.

Each of these partial derivatives has a value of zero at v1 = 1
n+1

, . . . , vn = 1
n+1

and at this point the minimum occurs. Translations back to the original problem
result in v1 = 1

n+1 , . . . , vn = 1
n+1 and vn+1 = 1

n+1 . Hence, the points maximizing
the S-metric are equidistant (with two occupying the end points).

Note that by approximating the Pareto front {(y1, y2) | yi ∈ R with 0 ≤ y1 ≤
1 and y2 = 1 − y2} with a set consisting of µ points plus two extremal points
(0, 1), (1, 0) the maximal S-metric is 1

2 · µ
µ+1 . Moreover this maximum value can

only be attained if the µ non-extremal points are equally spaced between the
two extremal points.

With the generalized Schaffer problem Emmerich and Deutz [20] proposed a
scalable-dimension problem that gives rise to the discussed linear Pareto front
{(y, 1 − y) | y ∈ [0, 1]} for α = 0.5: f1(x) = 1

dα (
∑d

i=1 x2
i )

α → min and f2(x) =



1
dα (

∑d

i=1(1 − xi)
2)α → min for xi ∈ R+, where i = 1, ..., d. In the following

section, this problem and its solution set are consulted for a proof of concept
result for the numerical optimization routines.

5 Gradient-based Pareto Optimization

Algorithm 1 Gradient-ascent S-metric maximization.

1: input variables: initial population as µd vector p

2: control variables: accuracy of line search αmin, step reduction rate τ ∈ (0, 1)
3: α← 1 {Initialize step size α}
4: i← 0;pbest← p0

5: d(0) ← ∇S(pbest) {Initialize search direction}
6: while |d(i)| > ε {Gradient larger than ε} do

7: α← 1
8: while α > αmin {Line search in gradient direction} do

9: pnew ← pbest + αd(i) {Try positive direction}
10: if S(Ψ(pbest)) ≥ S(Ψ(pnew)) then

11: pnew ← pbest − αd(i) {Try negative direction}
12: if S(Ψ(pbest)) ≥ S(Ψ(pnew)) {No success with both moves} then

13: α← α · τ {Reduce step size α}
14: pnew ← pbest {New current best point is old current best point}
15: end if

16: end if

17: pbest← pnew

18: end while

19: d(i+1) ← ∇S(pnew), i← i + 1 {Compute new gradient direction}
20: end while

21: return pbest

Due to the known problems with second-order gradient methods, which re-
quire twice continuous differentiability, a first-order gradient method, namely
the steepest descent/ascent method with backtracking line search has been im-
plemented [21]. The pseudo-code of our implementation is provided in Algorithm
1. The line-search algorithm has been kept simple to maintain transparency of
the search process. It will however converge to a local maximizer relative to the
line search direction. Note, that the line search may move to the same point in
two subsequent iterations. In this case the evaluation of the objective function
vectors of the population can be omitted. The convergence speed and accuracy
of the line search can be controlled with the parameters τ and αmin, respec-
tively. We recommend a setting of τ = 0.1, while the setting of αmin depends
on the problem. Since the length of the gradient decreases when the algorithm
converges to the optimum of a differentiable function, αmin does not have to be
very low, because the length of the gradient influences the step-size as well.



6 SMS-EMOA-Gradient Hybrid

The gradient-descent method requires a good starting point in order to converge
to the Pareto front. For this purpose an EMOA is applied which generates a good
approximation of the Pareto front. We propose the SMS-EMOA because it has
shown excellent results concerning the optimization of test functions and real-
world problems (cf. [10, 22, 23]). The SMS-EMOA uses a steady-state selection
scheme, i.e. in each generation one new solution is generated and one solution is
discarded. A population of µ individuals is optimized without additional archives
(which are often used in other EMOA). The S-metric is used within the selection
operator to determine the subset of µ individuals with the highest S-metric
value. Thereby, the individual with the least exclusive contribution of dominated
hypervolume is discarded. As mentioned in Section 1, the maximization of the
S-metric results in a well-distributed solution set with an emphasis of solutions
in regions with fair trade-offs. The SMS-EMOA’s final population functions as
the starting point of the gradient strategy which does only a fine-tuning of the
solutions. This sequential application of autonomous algorithms is called high-
level relay hybridization according to the taxonomy introduced by Talbi [11].
The total number of function evaluations is partitioned among the algorithms.

Experiment on the generalized Schaffer problem: We conducted two experi-
ments to analyze the limit behavior of the hybrid algorithm on the generalized
Schaffer problem (Section 4) which reads f1(x) = 1/dα(

∑d
i=1 x2

i )
α, f2(x) =

1/dα(
∑d

i=1(1 − xi)
2)α, x ∈ X = [0, 1]d, α ∈ R

+, and both objectives to be mini-
mized. The first 1000 evaluations are always performed by SMS-EMOA. Figures
5 and 6 show a clipping of the subsequent behavior of typical runs, at which
SMS-EMOA is always started using the same random seed.

In Fig. 5 the results pertaining to the generalized Schaffer problem with
d = 10, α = 1

2 (hence the Pareto front is linear, cf. Section 4) of the following
experiment are shown. The population size µ is 5, 10, or 15, and dimension d is
10, 15, or 20. The purpose of this experiment was to study the convergence be-
havior of the gradient part of the algorithm. We see that the convergence (after
a reasonable starting population has been found by the SMS part) is linear or
almost linear. The former is especially true for small sizes of the approximation
sets. The dimension of the search space has less effect on the speed of the meth-
ods. This can be explained by the relatively long time needed to perform line
searches, as the dimension of the search space only influences the time needed
for the gradient computation.

Fig. 6 shows the results for the generalized Schaffer problem with α = 1, the
dimension of the search space d = 10, and a population size (i.e., the size of the
approximation set) of 10. The Pareto front is equal to {(y1, y2) | y2 = 1−2

√
y1 +

y1 and 0 ≤ y1 ≤ 1} and the maximally attainable S-metric is 1 − 1
6 ≈ 0.833333.

The discontinuities in the progress correspond to the end of a line search, and
a gap indicates that function evaluations are spend on the gradient calculation.
The picture shows that once the gradient part of the hybrid method is supplied
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with a reasonably good approximation set to the Pareto front the gradient part
of the method outperforms the pure SMS-EMOA.

Studies on the ZDT Test Suite: Fig. 7 refers to the experiments run on the
problem ZDT6 of the ZDT benchmark [5]. The size of the approximation set
was chosen to be 20. Runs without penalty (Fig. 7, top) and with penalty (Fig.
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Fig. 7. Convergence of the hybrid algorithm for different switching points at which
the gradient based solver takes over on the 10-D ZDT6 problem. In the upper (lower)
figure the strategy is without (with) penalty. The numbers in the legend determine the
number of function evaluation before and after switching. All strategies computed a
total of 2000 evaluations and used a population size of 20.

7, bottom) on dominated points have been conducted. The total number of func-
tion evaluations in each run was 2000. Five different strategies were performed,
listed with increasing number of function evaluations dedicated to the SMS part:
20, 200, 400, 1000, and 2000, respectively. The remainder of the 2000 function
evaluations was used for the gradient part.

The pictures reveal that it pays off to apply the gradient part of the algorithm
as soon as a rough approximation set has been found. The speed-up occurs
especially at the beginning and thus the hybrid approach is useful in case you
would like to get very good results with few function evaluations. Secondly the



picture also shows that giving a penalty to points in the population which are
dominated gives far better approximation sets w.r.t. the S-metric.

The finding of a reasonable approximation set to be used as a starting point
for the gradient method is always done by the SMS. In the nearly pure gradient
method also a very tiny fraction of the total number of functions evaluations is
used by SMS-EMOA (20 evaluations). Clearly, the hybrid algorithm converges in
each case to a population with maximum S-metric. Also the pure SMS method
eventually catches up with the hybrid algorithm and converges to the maximum.

Table 1 shows the results of running the hybrid algorithm on the ZDT test
suite (ZDT1 - ZDT4, and ZDT6). On each of the five problems the five different
distributions of 2000 function evaluations among the hybrid parts are applied: (1)
SMS: 20, gradient: 1980, (2) SMS: 500, gradient: 1500, (3) SMS: 1000 gradient:
1000, (4) SMS: 1500, gradient: 500, (5) SMS: 2000, gradient: 0. Each version
of the hybrid algorithm is repeated five times with different random seeds. The
reference point for each of the first four ZDTs was chosen as (5, 5) and for ZDT6
it was (10, 10). There are three checkpoints (at 1000, 1500, and 2000 evaluations)
at which the minimal, average, and maximal S-metric are recorded (calculated
concerning the five repetitions of a strategy). All strategies used the penalty
function for dominated points. For ZDT1 and ZDT2 it is clear that the hybrid
method is outperforming the pure SMS algorithm. In case of ZDT3 the pure
gradient method is somewhat worse than the pure SMS on the other hand in
case the first half of the function evaluations is spent on SMS (line 3 of ZDT3)
the hybrid method outperforms the pure SMS again. A similar remark can be
made about ZDT4 except that the pure gradient method in this case does not
give good results due to reference point sensitivity. The reference point has been
chosen too close to the Pareto front so that no point dominates it after a small
number of function evaluations and the gradient strategy cannot work. The
reference point sensitivity is not present in the SMS part of the algorithm as
it only looks for relative increments of the hypervolume and (if d = 2) always
selects extremal points directly. We see that when 500 or more evaluations are
first spent on the SMS the hybrid is again competitive with the pure SMS. In
case of ZDT6 which is multimodal the hybrid strategies do worse than the pure
SMS. In all cases we see that the gradient method gives a speed-up especially in
the beginning of the optimization.

7 Conclusions and Outlook

This paper introduces the gradient computation of the S-metric with respect to
a population of points. Using the chain rule, the gradient of the S-metric can
be computed from the gradients of the objective functions. It is important to
distinguish between strictly dominated, weakly dominated, and non-dominated
points. While for non-dominated sets differentiability is inherited from the objec-
tive functions, in the presence of weakly dominated points one-sided derivatives
occur. For strictly dominated points sub-gradients with value zero occur. They



Problem ST MIN 1000 AVG 1000 MAX 1000 MIN 1500 AVG 1500 MAX 1500 MIN 2000 AVG 2000 MAX 2000

ZDT1 1 21.876223 23.275247 24.199412 21.876223 23.850845 24.487564 21.876223 23.903422 24.505799
ZDT1 2 21.118595 23.384878 24.342832 23.403862 23.974269 24.449935 23.604535 24.121280 24.457263
ZDT1 3 17.202933 20.021265 21.845488 23.774588 24.101479 24.361921 24.175715 24.375030 24.482113
ZDT1 4 17.202933 20.021265 21.845488 21.583049 22.643311 23.524577 24.113695 24.256499 24.403682
ZDT1 5 17.202933 20.021265 21.845488 21.583049 22.643311 23.524577 23.060069 23.726008 24.365373

ZDT2 1 19.162475 21.245294 24.064990 19.412864 22.237161 24.106690 19.412880 22.808071 24.127194
ZDT2 2 18.126020 20.581421 23.101347 19.060637 21.727331 23.428600 19.695295 22.106164 23.962237
ZDT2 3 14.661332 18.103744 19.873194 14.661332 20.404380 23.680670 14.661332 20.654252 23.686246
ZDT2 4 14.661332 18.103744 19.873194 18.657467 19.972369 21.240527 19.999733 22.152473 23.640263
ZDT2 5 14.661332 18.103744 19.873194 18.657467 19.972369 21.240527 19.995868 20.817935 22.205402

ZDT3 1 22.399148 25.882488 27.149451 22.399148 26.109937 27.331745 22.399148 26.242184 27.373348
ZDT3 2 24.461667 26.156686 27.223846 24.517026 26.290136 27.464974 24.535586 26.645181 27.488230
ZDT3 3 19.142756 21.624740 23.348263 23.360338 25.773577 27.284952 23.797245 25.967965 27.398976
ZDT3 4 19.142756 21.624740 23.348263 22.030572 24.145441 25.792775 23.555302 26.097489 27.326041
ZDT3 5 19.142756 21.624740 23.348263 22.030572 24.145441 25.792775 24.719521 25.779436 27.260427

ZDT4 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ZDT4 2 1.991208 8.738555 12.296512 1.992431 9.560956 15.533157 1.993505 10.070364 17.979625
ZDT4 3 6.070645 10.526529 14.042237 9.518876 12.649215 16.239738 10.526157 13.008094 16.239738
ZDT4 4 6.070645 10.526529 14.042237 8.052115 11.965294 15.086376 8.052115 12.311928 16.310129
ZDT4 5 6.070645 10.526529 14.042237 8.052115 11.965294 15.086376 8.587789 12.613113 16.121092

ZDT6 1 57.826184 70.856967 78.100751 60.275019 72.771141 79.744496 60.364094 73.882299 83.297907
ZDT6 2 36.830943 61.742804 72.663663 38.297947 68.691263 78.227012 51.547110 72.630236 79.137021
ZDT6 3 38.012356 51.377244 63.308468 62.527358 68.822536 77.404330 71.326729 78.212762 85.345639
ZDT6 4 38.012356 51.377244 63.308468 53.872935 75.230301 83.236934 75.959491 80.438820 85.029665
ZDT6 5 38.012356 51.377244 63.308468 53.872935 75.230301 83.236934 81.736268 88.169766 91.648977
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make it impossible to improve these points by means of gradient methods. This
problem can be partly circumvented by introducing a penalty approach.

However, the experiments in this paper show that it is advantageous to start
the search with non-dominated sets close to the Pareto front, computed by
an evolutionary algorithm, preferably one which maximizes the S-metric, too.
Therefore, the proposed relay hybrid between the SMS-EMOA and a gradient
method seems promising, though refined rules for phase switching still needs
to be worked out. The study on the generalized Schaffer problem shows the
potential of the new approach to find high precision approximations of finite
populations maximizing the S-metric.

Future research should extend the empirical work on benchmarks and study
problems of higher objective space dimension. Though some basic ideas of the
gradient computation for more than two objectives using the chain rule have
been sketched, details of the implementation need to be worked out.
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