
TECHNICAL UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Coevolution for Classification

Catalin Stoean, Ruxandra Stoean, Mike Preuss
and D. Dumitrescu

No. CI-239/08

Technical Report ISSN 1433-3325 January 2008

Secretary of the SFB 531 · Technical University of Dortmund · Dept. of Computer
Science/LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the Technical University of Dortmund and was printed with financial
support of the Deutsche Forschungsgemeinschaft.





Coevolution for Classification

Catalin Stoean1, Ruxandra Stoean1, Mike Preuss2, and D. Dumitrescu3

1 University of Craiova, A. I. Cuza, 13, 200585, Craiova, Romania
{catalin.stoean, ruxandra.stoean}@inf.ucv.ro

2 University of Dortmund, Otto-Hahn 14, 44221, Dortmund, Germany
mike.preuss@cs.uni-dortmund.de

3 Babes-Bolyai University, M. Kogalniceanu, 1B, 400084, Cluj, Romania
ddumitr@cs.ubbcluj.ro

1 Introduction

A data mining field with daily, and sometimes even vital, practical applica-
tions, classification has been addressed by many powerful paradigms, among
which evolutionary algorithms (EAs) play a successful role. Nevertheless, as
evolutionary computation (EC) progresses, there appear new possibilities of
developing simpler and yet robust classification techniques.

The aim of this paper is hence to put forward a novel evolutionary classifi-
cation framework which embodies two contradictory prototypes coming from
the state-of-the-art field of coevolution and which has proven to be a viable
alternative.

Coevolution between individuals assumes two opposite interactions: coop-
erative and competitive. Analogously, coevolution for classification assumes
two possible and opposed manners of solving the task. Within both ap-
proaches, the solution of a classification problem is regarded as a set of IF-
THEN conjunctive rules in first order logic. As a consequence, learning will
be driven either by the cooperation between rules towards a complete and
accurate rule set or by the competition between rules and training samples in
the direction of extensive and hard testing on each side.

The paper is organized as follows. The next section introduces a general
point of view upon classification. Section three brings an overview on coevolu-
tion: The cooperative and competitive archetypes are outlined and explained.
Section four describes the proposed manner of approaching classification from
the cooperative side, while section five presents the application of the com-
petitive counterpart. Experiments on three data sets, two benchmark and one
real-world, are depicted in section six and the paper closes with the concluding
remarks.
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2 Classification. A Perspective

Classification can assume different characterizations, however this paper re-
gards it from a general point of view. Given {(xi, yi)}i=1,2,...,m, a training set
where every xi ∈ Rn represents a data sample (values that correspond to a
sequence of attributes or indicators) and each yi ∈ 1, 2, ..., p represents a class
(outcome, decision attribute), a classification task consists in learning the op-
timal mapping that minimizes the discrepancy between the given classes of
data sample and the actual classes produced by the learning machine. Subse-
quently, the learnt patterns are confronted with each of the test data samples,
without an a priori knowledge of their real classes. The predicted outcome is
then compared with the given class: If the two are identical for a certain sam-
ple, then the sample is considered to be correctly classified. The percentage
of correctly labelled test data is reported as the classification accuracy of the
constructed learning machine.

The data are split into the training set consisting of a higher number of
samples and a test set that contains the rest of the data. The training and
test sets are disjoint. In present discussion, the samples that form the training
set are chosen in a random manner from the entire specific data set.

The aim of a classification technique is, consequently, to stepwise learn a
set of rules that model the training set as good as possible. When the learning
stage is finished, the obtained rules are applied on previously unseen samples
within the test set.

3 Evolutionary Approaches to Classification

Apart from the hybridization with non-evolutionary specialized classification
techniques, such as fuzzy sets, neural networks or decision trees, the evolu-
tionary computation community has targeted classification through the de-
velopment of special standalone EAs for the particular task.

On a broader sense, an evolutionary classification technique is concerned
with the discovery of IF-THEN rules that reproduce the correspondence be-
tween the given samples and corresponding classes. Given an initial set of
training samples, the system learns the patterns, i.e. evolves the classification
rules, which are then expected to predict the class of new examples.

Remark: An IF-THEN rule is imagined as a first-order logic implication
where the condition part is made of attributes and the conclusion part is
represented by the class.

There are two state-of-the-art approaches to evolutionary classification
techniques. The first direction ([11]) is represented by De Jong’s classifier
that is an evolutionary system which considers an individual to represent an
entire set of rules. Rule sets are evolved using a canonical EA and the best
individual from all generations represents the solution of the classification
problem. The opposite related approach is Holland’s classifier system ([10],
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[11]). Here, each individual encodes only one conjunctive rule and the entire
population represents the rule set. Thus, detection and maintenance of mul-
tiple solutions (rules) in a multiple sub-populations environment is required.
As a canonical EA cannot evolve non-homogeneous individuals, Holland’s ap-
proach suggested doubling the EA by a credit assignment system that would
assign positive credit to rules that cooperate and negative credit to the oppo-
site.

Another standard method is characterized by a genetic programming ap-
proach to rule discovery ([4], [5]). The internal nodes of the individual encode
mathematical functions (e.g. AND, OR, +, -, *, <, =) while the leaf nodes
refer the attributes. Given a certain individual, the output of the tree is com-
puted and, if it is greater than a given threshold, a certain outcome of the
classification task is predicted.

If discussion evolves around those classification evolutionary models that
are specifically for coadapted components, then we must refer the above-
mentioned Holland’s classifier system [10] and the REGAL system [6], where
stimulus-response rules in conjunctive form were evolved by EAs. In Hol-
land’s system, cooperation is achieved through a bucket brigade algorithm
that awards rules for collaboration and penalizes them otherwise. In the RE-
GAL classifier, a problem decomposition is performed by a selection operator,
complete solutions are found by choosing best rules from each component,
a seeding operator maintains diversity and fitness of individuals within one
component depends on their consistency with the negative samples and on
their simplicity [19].

However, the existing evolutionary classification techniques have quite in-
tricate engines and thus their application is not always straightforward: they
use complex credit assignment systems that penalize or reward good rules, as
well as very complicated schemas of the entire system.

To the best of our knowledge, there has been no attempt in applying either
cooperative or competitive coevolution to classification based on individuals
that encode simple conjunctive IF-THEN rules in first order logic.

4 Coevolution. Prerequisites

According to the Darwinian principles, an individual evolves through the inter-
action with the environment. However, a significant segment of its surround-
ings is, in fact, represented by other individuals. As a consequence, evolution
actually implies coevolution. This interactive process may assume collabora-
tion towards the achievement of a specific mutual purpose, or, on the contrary,
competition for the common resources in the spirit of the survival of the fittest.
Accordingly, two kinds of artificial coevolutionary systems exist: cooperative
and competitive, respectively.

In cooperative coevolution, collaborations between two or more individuals
are necessary in order to evaluate one complete potential solution, while in
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competitive coevolution, the evaluation of an individual is determined by a
set of competitions between the current individual and several others.

Coevolutionary algorithms bring an interesting angle of perception upon
evolution, as they promote a different manner of fitness evaluation of a candi-
date solution, which takes into account its relation to the other surrounding
individuals. In addition, the coevolutionary evaluation is continuously altered
throughout the existence of an individual as a result of various tests.

4.1 Cooperative Coevolution

Cooperative coevolution implies a decomposition of a candidate solution of
the problem to be solved into a number of components [18], [25]. Each of
these parts is subsequently attributed to a population (species) of an EA.
The species evolve independently (although concurrently), while interactions
between populations appear only at the moment when fitness is computed.
Each individual of a species stands for a part of the solution, therefore, a
candidate for each component in turn cannot be evaluated separately from
the complementary ones. Hence, when the fitness of an individual is assessed,
collaborators from each of the remaining populations are selected in order
to form a complete solution. The performance of the established solution is
measured and returned as the fitness evaluation of the considered individual.

Evolution is thus directed by the collaboration between species towards
the joint goal of assembling a near optimal solution to the problem.

Algorithm 1 simulates the mechanisms of a canonical cooperative coevo-
lutionary method.

Algorithm 1 A canonical cooperative coevolutionary algorithm
t ← 0;
for each species s do

randomly initialize population Pops(t);
end for
for each species s do

evaluate Pops(t);
end for
while termination condition = false do

t ← t + 1;
for each species s do

select population Pops(t) from Pops(t - 1);
apply variation operators to Pops(t);
evaluate Pops(t);

end for
end while

The evolutionary process starts with the initialization of each population.
In order to evaluate the initial fitness of each individual, a random selection
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of collaborators from each of the other populations is performed and obtained
solutions are measured and attributed accordingly. After this starting phase,
each population is evolved through a canonical EA. Subsequently, the evalua-
tion of a member of one species is performed through its fusion to individuals
of the complementary population, which are this point selected through a
certain strategy.

The main issue within cooperative coevolution concerns the choice of col-
laborators. As a result, there are three attributes (parameters) that control
this option, whose values have to be properly decided.

1. Collaborator selection pressure refers to the manner in which individuals
are chosen from each of the complementary populations with the purpose
of forming complete solutions to the problem; it must be decided whether
we pick the best individual according to its previous fitness score, pick a
random individual or use a classic selection scheme.

2. Collaboration pool size represents the number of collaborators that are
selected from each population.

3. Collaboration credit assignment decides the way to compute the fitness of
the current individual. This attribute appears solely in the case when the
collaboration pool size is higher than one. In this situation, the evaluation
of an individual consists of several collaborations. Since every such col-
laboration has its personal score for the objective function, these multiple
values must be somehow encapsulated into a single quality value. There
are three methods for deciding the final assignment:
a) Optimistic - the fitness of the current individual is the value of its best

collaboration.
b) Hedge - the average value of its collaborations is returned as the fitness

score.
c) Pessimistic - the value of its worst collaboration is assigned to the

considered individual.

Algorithm 2 demonstrates the modality of evaluation of an individual c
with respect to the three mentioned attributes. We presume that we have a
maximization problem.

In order to evaluate an individual c from a certain population, a number of
complete potential solutions are formed according to the chosen collaboration
pool size. In order to aggregate a solution, collaborators from each population
different from that of c are selected through a certain strategy (collabora-
tion selection pressure). Each solution is evaluated according to the objective
function of the current problem. Once all candidate solutions are gathered and
assessed, the preferred type for the collaboration credit assignment decides the
value that will be returned as the performance of the individual c.

Cooperative coevolution was introduced as an alternative evolutionary ap-
proach to function optimization [18]. For this task, one considers as many
populations as the number of variables of the function, i.e. each variable rep-
resents a component of the solution vector and is separately treated using any
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Algorithm 2 Fitness evaluation within cooperative coevolution
for each i = 1, 2, ..., collaboration pool size (cps) do

select one collaborator dj , j = 1, 2, ..., number of species from each population
different from that of c;
form a complete potential solution;
compute the fitness fi of the solution in the terms of the objective criterion;

end for
if Collaboration credit assignment = Optimistic then

evaluation← maxcps
i=1(fi);

else
if Collaboration credit assignment = Pessimistic then

evaluation← mincps
i=1(fi);

else
evaluation← avgcps

i=1(fi);
end if

end if

type of EA. Several functions with multiple local optima and one global op-
timum were considered and the cooperative coevolutionary algorithm proved
to be effective [18], [25].

The cooperative coevolutionary technique has been recently successfully
applied to develop a rule-based control system for agents; two species were
considered, each consisting of a population of rule sets for a class of behaviours
[20].

4.2 Competitive Coevolution

Within the competitive model [16], the complementary evolution between
species is achieved through an inverse fitness interaction process. This implies
that success attained on one side is regarded as failure among the individuals
of the other side; the latter species will have to react in order to maintain its
chances of survival.

Competitive coevolution represents a predator-prey complex: The strong
evolutionary pressure determines the prey to defend itself better while, as a
response, the predator develops better attacking strategies. This results in a
stepwise adaptation and complexity of involved species. Therefore, the com-
petitive interaction between species represents the force that drives evolution
forward.

Accordingly [17], one species corresponds to certain tests a solution must
satisfy and the other to the potential solutions for the given task. Compe-
tition is achieved through encounters between one individual from the tests
population and one from the solution species. The two selected individuals
are checked against each other and, if the solution passes the test, then the
former is rewarded while the latter is penalized; if it fails, credits are assigned
in a reverse manner. Moreover, each individual has a history of its encounters
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which embodies the penalizations/rewards it has received. The fitness of the
individual is computed on this basis, as the sum of its most recent behaviours
(successes/failures).

An important remark is that, since tests are a priori defined, it is only the
population of potential solutions that evolves; the opposite species contains
the same individuals (tests) until the end of the evolutionary process. The
only fluctuation that appears within the latter population solely regards the
ranking of the individuals according to fitness (their satisfiability hardness). It
must be however noted that, in certain cases when tests cannot be exhaustively
given, the tests population may also evolve.

Canonical competitive coevolution can be described as in Algorithm 3.

Algorithm 3 A canonical competitive coevolutionary algorithm
t ← 0;
randomly initialize solutions population PopSol(t);
create history and evaluate individuals in PopSol(t);
create history and evaluate individuals in PopTest(t);
while termination condition = false do

t ← t + 1;
for i = 1, 2, ..., number of encounters do

select solution from PopSol(t− 1);
select test from PopTest(t− 1);
obtain result from encounter between solution and test;
update history and evaluation of solution according to result;
update history and evaluation of test according to result;

end for
select two solutions from PopSol(t− 1);
apply variation operators to obtain one offspring;
evaluate offspring;
PopSol(t)← PopSol(t− 1)
insert offspring into PopSol(t);

end while

The initial evaluation of the individuals in both populations is based on
the results of random encounters between solutions and tests. When such an
encounter takes place, only the current individual is rewarded / penalized
without the inverse score attribution for its competitor happening as well.

An evolution cycle is then entered. A predefined number of encounters
between solutions and tests takes place. Those opposite individuals that meet
are decided following a ranking selection. As a result, the fittest solutions
and tests are more frequently involved in such ”tournaments”: The best per-
forming solutions must prove their superiority more often, while, concomi-
tantly, the algorithm focuses upon the most difficult tests. As soon as the
reward/penalization is established for the two selected competitors, their cor-
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responding history is updated: The score of the most recent encounter replaces
that of the oldest one and evaluation is revised.

After the considered encounters are finished, a single offspring is created.
Two parents are selected according to the same selection scheme and recom-
bination and mutation on the resulting solution are subsequently applied. A
personal history of the offspring is created through a number of encounters
equal to the defined history length. The tests are again selected according
to a ranking scheme. Following such an encounter, only the history of the
offspring is modified; unlike a standard encounter between a solution and a
test, no simultaneous penalization/reward of the involved test is conducted.
This stems from the simple reason that a mediocre offspring might lead to an
unreliable change in the behaviour of the considered test. After the offspring
is evaluated, it will replace the weakest individual in the solutions population.

During the entire evolutionary process, the tests population suffers no
variation.

The two species thus evolve together, through the inverse fitness interac-
tion mechanism: As soon as the potential solutions satisfy certain tests, the
latter receive a weaker evaluation score which leads to omission from further
selection. As a result, other more difficult tests are subsequently more often
selected for tournaments, while the solutions must evolve to adapt to the new
requirements that must be fulfilled.

The parameters that are associated with competitive coevolution are the
history length of an individual (the number of meetings that provide a measure
of its performance) and the number of encounters between solutions and tests
within an evolutionary cycle.

The importance of the personal history is manifold [16]. For one, it offers
a continuous evaluation of an individual. Then, its partial nature leads to a
major decrease in the computational expense of testing a potential solution
against all the given tests, while it offers dynamics and keep of pace between
the two species.

The competitive paradigm has been applied to a wide range of problems,
i.e. path planning [14], constraint satisfaction [13] and classification. As clas-
sification is concerned, known techniques involve the evolution of neural net-
works [12], decision trees [21], cellular automata rules [8], [15] and the use of
genetic programming for the problem of intertwined spirals [9]. Again, it has
to be stated that to the best of our knowledge, the competitive coevolution
between simple IF-THEN rules and the training set has not been achieved
yet.

5 Cooperative Coevolution Approach to Classification

The solution to the classification problem is imagined as to be represented by
a set of rules that contains at least one rule for each class. Therefore, the de-
composition of each potential problem solution into components is performed
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by assigning to each species (population) the task of building the rule(s) for
one certain class [22], [23], [24]. Thus, the number of species equals the num-
ber of outcomes of the classification problem. A rule is considered to be a first
logic entity in conjunctive form, i.e.:

if (a1 = v1) ∧ (a2 = v2) ∧ ... ∧ (an = vn) then class k

where a1, a2, , ..., an are the attributes, v1, v2, , ..., vn are the values in their
domain of definition and k = 1, 2, ..., p.

5.1 Training Stage. The Evolutionary Algorithm Behind

Recall the training data set {(xi, yi)}i=1,2,...,m, where xi ∈ Rn and yi ∈ {1,
2, ..., p}. As the task of the cooperative coevolution technique is to build p
rules, one for each class, p populations are considered, each with the purpose
of evolving one of the p individuals.

Representation

Each individual (or rule) c in every population follows the same encoding as
a sample from the data set, i.e. it contains values for the corresponding at-
tributes, c = (c1, c2, ..., cn). As already stated, individuals represent simple
IF-THEN rules having the condition part in the attributes space and the con-
clusion in the classes space. Within the cooperative approach to classification,
an individual will not however encode the class, as all individuals within a
population have the same outcome.

Initialization

The values for the genes of all individuals are randomly initialized following a
uniform distribution in the definition intervals of the corresponding attributes
in the data set.

In case the considered data set is normalized, the values for the genes of
the individuals are initialized in the interval [0, 1], again following a uniform
distribution.

Fitness Evaluation

In order to measure the quality of a rule, this has to be integrated into a
complete set of rules which is to be subsequently applied to the training set.
The obtained accuracy reflects the quality of the initial rule. Of course, the
value of the accuracy very much depends on the other rules that are selected
in order to form a complete set of rules: For a more objective assessment of
its quality by means of the accuracy value, the rule is tested within several
different sets of rules, i.e. different values for the collaboration pool size are
considered.



10 Catalin Stoean, Ruxandra Stoean, Mike Preuss, and D. Dumitrescu

We will further on denote by cps the value for the collaboration pool size
parameter. For evaluating an individual from a certain population–that is a
rule of a certain outcome–a collaborator from each of the other populations is
selected n times according to the collaborator selection pressure choice. Every
time, the set of rules is applied to the entire training collection. Obtained
accuracy represents the evaluation of the current individual. The fitness of an
individual c may be given by the best of the cps acquired accuracies (optimistic
assignment), by the worst one of them (pessimistic assignment) or by the
average of all cps accuracies (hedge assignment). Algorithm 4 describes the
way evaluation takes place in these cases.

Algorithm 4 Fitness evaluation of an individual c by means of either opti-
mistic, pessimistic or hedge collaboration credit assignment

for i = 1 to cps do
correcti = 0;
select a random collaborator from each population different from that of c
according to the collaborator selection pressure parameter;
for each sample s in the training set do

find the rule r from the set of all collaborators that is closest to s; found
class for s = r’s class;
if found class for s = real class of s then

correcti = correcti + 1;
end if

end for
end for
if optimistic then

success = maxn
i=1(correcti)

else
if pessimistic then

success = minn
i=1(correcti)

else
success = avgn

i=1(correcti)
end if

end if
accuracy = 100 * success / number of training samples;

In addition to the classical cooperative coevolutionary ones, we propose
a novel type of assignment (Algorithm 5). For each sample s in the training
set, multiple sets of rules are formed and applied in order to predict its class.
All rules within a set have different outcomes. Scores are computed for the
sample s, for each of the possible outcomes in the following manner: when a
rules set is applied to a sample, a certain outcome is established for it. The
score of that outcome is increased by unity. Each of the cps sets of rules are
applied to s. Finally, the class of s is concluded to be the class that obtains
the highest score.
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Algorithm 5 Score-based fitness evaluation for an individual c

for each sample s in the training set do
set the score for each possible outcome of s to 0;

end for
for i = 1 to cps do

select a random collaborator from each population different from that of c
according to the collaborator selection pressure parameter;
for each sample s in the training set do

find the rule r from the set of all collaborators that is closest to s; increase
the score of r’s class for s by one unit

end for
end for
success = 0;
for each sample s in the training set do

if the real class of s equals the class that had the higher score for s then
s is correctly classified;
success = success + 1;

end if
end for
accuracy = 100 * success / number of training samples;

Independently of the chosen algorithm for calculating fitness evaluations,
the distance between individuals and samples from the data set has to be
computed when one decides which rule is closer to each sample in the train-
ing set. In our conducted experiments, we adopted normalized Manhattan as
the distance measure (1). However, other distance measures may be as well
employed, depending of the considered problem. Note that the distance does
not depend on the class of the sample/individual.

d(c, xi) =
n∑

j=1

| cj − xij |
bj − aj

(1)

We denoted by xi = (xi1, xi2, ..., xin) a sample from the training set,
while by c = (c1, c2, ..., cn) an individual (or rule). aj and bj represent the
lower and upper bounds of the j-th attribute. As usually the values for the
attributes belong to different intervals, the distance measure has to refer to
their bounds. Obviously, if data is normalized, the denominator disappears as
all attributes have their values between 0 and 1.

In both algorithms 4 and 5, the fitness of an individual is computed as the
percent of correctly classified samples from the training set (variable success in
the algorithms specifies the number of samples that were successfully labelled).

In Algorithm 5, situations may appear when, for a certain sample, there
exist more classes that have the same maximum score. In this case, one class
has to be decided and it was considered to choose the first one in the order of
outcomes. As herein all combinations of rules count in the determination of
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accuracies, we might state that the new choice of assignment is closer to the
classical hedge type.

Selection and Variation Operators

The selection operator presently discussed refers to the selection for reproduc-
tion within each population, not to the collaborators selection. We employed
fitness proportional selection, but any other selection scheme [3] may be suc-
cessfully applied.

Intermediate recombination was used – having two randomly selected par-
ents P and Q, the value of a gene i of the offspring O is obtained according
to (2).

Oi = Pi + R · (Qi − Pi), (2)

where R is a uniformly distributed random number over [0, 1]. The obtained
offspring individual replaces the worst of its two parents.

Mutation with normal perturbation was used for the experiments per-
formed in current paper – a value of the gene i of an individual P is changed
according to (3).

Pi = Pi + R · (bi − ai)/ms, (3)

where R is a random number with normal distribution, bi and ai are the upper
and lower bounds of the i-th attribute in the data set and ms is the mutation
strength parameter. As the domains for the values of the attributes in the
data set have different sizes, we again have to refer to the size of the interval
for each attribute when we perturb the values of the genes through mutation.
In case the data set is normalized, the way the value of the gene i is modified
changes to (4).

Pi = Pi + R · ms (4)

We cannot imagine any obstacle for using any other recombination or
mutation operators [3].

Stop Condition

In our experiments, we set a fixed number of generations for the evolutionary
process.

5.2 Cooperative Coevolution Parameters

In order to achieve the optimal configurations for the parameters of the co-
operative approach, experiments were carried out as follows.

Concerning the collaborator selection pressure attribute, we used random
selection, on the one hand, and, on the other hand, we employed a fitness
proportional scheme.
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All the three types of fitness assignment presented in Algorithm 4 together
with the one based on scores are tested.

As for the collaboration pool size, we varied the number of collaborators
in order to find the optimum balance between accuracy and runtime.

5.3 Test Stage. Rules Application

After the stop condition is reached, we dispose of p populations of rules that
were evolved against the training set. In order to form a complete set of rules,
we have to choose an item from each population. There rules may be selected
randomly, the best ones can be considered or a selection scheme can be used.
In the last two cases, we take into account the final fitness evaluations of the
individuals. It is not always the case that, by selecting the fittest rule from
each population, we obtain the best accuracy on the test set. Even if these
best rules would give very good results on the training set, they may be in
fact not general enough to be applied to previously unseen data.

In the experiments we conducted, for a number of cps times, we randomly
selected one rule from each population in order to form cps complete sets of
rules. Each time, the rule set is applied to the test data in a similar manner
to the fitness calculation in Algorithm 5 and the classification accuracy is
acquired.

6 Competitive Coevolution Approach to Classification

Similarly to the cooperative approach for classification, the aim of the com-
petitive classifier is to construct, based on a training set, a set of rules that
model the data and which will be subsequently applied to the test set. Within
proposed competitive approach, the population of tests is represented by the
samples in the training data, while the other population, that of solutions,
will contain only the rules that are to be evolved.

6.1 Training Stage. The Evolutionary Algorithm Behind

Keeping the same notations as in the cooperative approach, the task in this
case will be once more to build p rules, one for each class. Consequently, in
order to form a solution to the classification problem, a complete set of rules
has to be selected from the solutions population, which must therefore contain
rules for every outcome.

Representation

The same representation for the individuals (rules) as in the cooperative ap-
proach is adopted. The only difference is that herein a better tracking of the
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class for each rule has to be kept. Since, in the cooperative case, the outcome
of each rule was identified with the population class, in present methodology
all rules, indifferent of the class they have, lie in the same population. As a
result, this time the rules will also encode the class, i.e. c = (c1, c2, ..., cn | k),
k = 1, 2, ..., p.

Initialization

As previously stated, at least p rules have to be obtained. Recombination will
take place only between individuals with the same outcome, therefore, the
size of the solutions population has to be of at least 2p individuals, i.e. differ-
entiating two individuals per class. However, we only state here the minimum
size of the rules population; a higher number of individuals would obviously
bring a better covering of the search space.

Fitness Evaluation

For each individual and for each sample from the tests population, we have to
construct a history of the scores they obtained during encounters. The actual
fitness evaluation of each individual/sample will be equal to the sum of all
scores in their history.

The main question is: How are the scores given? When an encounter be-
tween a rule and a sample takes place, the distance (we used the same nor-
malized Manhattan distance as before) between them is computed. The task
for the rules is to be as similar as possible to the samples in the training set,
therefore the aim is to minimize the distance between them and the samples
from the training set with the same outcome. The score that is attached to a
rule is given by the negative value of the distance; the maximum score a rule
aims to attain is thus 0, meaning that the rule is identical to the sample it
encountered.

Conversely, for a sample in the tests population, we attach the actual value
of the distance between it and the rule that it met. As rules get closer to a
certain pattern of samples, they will subsequently encounter other samples
that have larger fitness values (and as a consequence higher chances of being
selected for encounters) because they are very different from those rules. Thus,
new fitter samples are continuously selected in order to adapt the rules so
that they will resemble them too, i.e. evolve the solutions according to a high
variety of tests.

Immediately after the initialization of the rules population, the fitness
evaluations for both the rules and the samples have to be computed. In this
respect, for each rule, a sample with the same outcome as its label is randomly
selected and the encounter takes place: This has to be performed for a number
of times equal to the history length. Each individual will thus posses a history
and, as a result, an evaluation. In a similar manner, for a number of times equal
to the history length, each sample from the training set will be considered and
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random individuals with the same outcome are selected in order to form the
encounters that will complete their histories.

After the initial fitness calculation, each time an encounter takes place,
solutions and samples are chosen from each population by means of ranking
selection. As encounters take place only between solutions and samples with
the same outcome, they will occur separately and in turn for each class (Algo-
rithm 6). After the encounter, the new score is added to the history queue and
the oldest score is removed, such that the same history length is maintained.

An individual that is obtained after the variation operators is evaluated as
follows: for a number of times equal to the history length, a sample with the
same outcome as its own is selected using ranking selection and encounters
take place. Its fitness may now be computed by summing all the scores in the
history. It is then included in the population by replacing the individual with
the worst fitness evaluation.

Algorithm 6 The competitive coevolution approach to classification
t ← 0;
randomly initialize solutions population PopSol(t);
create history and evaluate individuals in PopSol(t);
create history and evaluate individuals in PopTest(t);
while termination condition = false do

t ← t + 1;
for j = 1, 2, ..., number of classes do

for i = 1, 2, ..., number of encounters do
select solution labelled by j from PopSol(t− 1);
select test labelled by j from PopTest(t− 1);
obtain result from encounter between solution and test;
update history and evaluation of solution with -result;
update history and evaluation of test with +result;

end for
select two solutions with class j from PopSol(t− 1);
apply variation operators to obtain one offspring;
evaluate offspring;
insert offspring into PopSol(t);

end for
end while

Selection and Variation Operators

In our experiments we only tried the ranking scheme, as it is usually advised
in the general framework of competitive coevolution.

As regards the variation operators, the same types of recombination and
mutation as in the cooperative approach were employed. Recombination takes



16 Catalin Stoean, Ruxandra Stoean, Mike Preuss, and D. Dumitrescu

place only between individuals within the same class and, therefore, the off-
spring inherits the outcome of the parents. The mutation operator does not
apply to the class gene.

Again, any other variation operators may be successfully tried.
Remark: Variation and replacement take place for every class in turn

(Algorithm 6).

Stop Condition

Competitive techniques usually require more iterations than a canonical EA,
as in each generation there is only one new descendant that enters the pop-
ulation. However, in our approach for classification, we apply the variation
operators for individuals of every class in the same generation, a change that
makes several individuals (descendants), i.e. p instances (one for each class),
enter the population within that iteration.

The stop condition we used refers to a fixed number of generations, just
like in the cooperative approach.

6.2 Competitive Coevolution Parameters

There are two important parameters related to the competitive coevolution
technique: The history length and the number of encounters that take place
within one generation. The larger the values for both of them, the more accu-
rate the fitness evaluation is for an individual/sample. Unfortunately, together
with the raise in the values for either of the two, the runtime of the algorithm
also increases.

The value for the number of encounters parameter directly depends on the
population size of the two species: If there are many individuals in any of the
populations, then a high value for the number of encounters have to be set in
order to update the fitness evaluations of a great amount of the individuals.

A value that is too small for the history length parameter could make the
fitness evaluation of an individual/sample change too drastically after each
encounter and thus the fitness evaluation would not objectively reflect the
quality of the individual/sample in contrast to the other population.

6.3 Test Stage. Rules Application

After the evolutionary process stops, one rule for every class is selected and
these are applied to the test set. For each sample in the test set, the dissim-
ilarity to each of the rules is computed. The found outcome of the sample is
taken from the rule it resembles the most.
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7 Experiments

For each of the two coevolutionary approaches for classification, we consider
the same data sets for experiments: Two data sets concerning benchmark clas-
sification problems coming from the University of California at Irvine (UCI)
Repository of Machine Learning Databases4, i.e. Wisconsin breast cancer di-
agnosis and iris recognition, are selected for reasons of validation and com-
parison. Besides, the former is a two-class instance, while the latter represents
a multi-class task, which should reveal whether the classification algorithms
remain flexible and feasible with some increase in the number of outcomes.

Finally, a real-world data set, courtesy of the University Hospital in
Craiova, Romania, is also considered with the purpose of testing and ap-
plication on an unpredictable environment that is usually associated with raw
data. For all grounds mentioned above, the selection of test problems certainly
contains a variety of situations that is necessary for the objective validation
of the new framework of coevolution in application to classification.

In all conducted experiments, for each parameter setting, the training set
is formed of randomly picked samples and the test set contains the rest of
the samples. In order to prove the stability of the approaches, each reported
average result is obtained after 30 runs of the algorithm.

The experiments section is organized as follows: A small description of each
data set is first outlined; it is then continued with the results obtained for both
the cooperative coevolution technique and the competitive counterpart. The
section closes by undertaking a comparison to accuracies obtained by standard
data mining techniques.

7.1 Data sets description

The significant information on the each of the considered classification tasks
is given in the following lines.

Breast Cancer Diagnosis

The data set contains 699 observations on nine discrete cytological factors
and reflects a chronological grouping of the data. The objective is to identify
whether a sample corresponds either to a benign or a malignant tumour.
Class distribution is 65.5% for benign and 34.5% for malignant. There are 16
missing values for attribute 6; we replaced them by the average value for that
attribute.

Iris Plants Classification

There are 150 samples with three possible classes pertaining to this data set.
Each sample consists of four attributes which denote the length and width for
4 Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
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petals and sepals of the iris flowers. Samples are equally distributed among
classes.

Hepatic Cancer Early Diagnosis

Hepatocellular carcinoma (HCC/hepatoma) is the primary malignancy (can-
cer) of the liver that ranks fifth in frequency among all malignancies in the
world. In patients with a higher suspicion of HCC, the best method of diag-
nosis involves a scan of the abdomen, but only at a high cost. A cheap and
effective alternative consists in detecting small or subtle increases for serum
enzymes levels. Consequently, based on a set of fourteen significant serum
enzymes, a group of 299 individuals and two possible outcomes (HCC and
non-HCC), we aim to provide an efficient computational means of checking
the consistency of decision making in the early detection of HCC at signifi-
cantly low expense.

7.2 Experiment 1: Cooperative Classification Validation

Pre-experimental planning: In preliminary experiments, we tested differ-
ent settings for the coevolutionary parameters in order to verify their suit-
ability for the classification problems. However, in these initial experiments,
we tested the technique only on the breast cancer and iris data sets.

We observed that there are not major differences between results obtained
when different types of collaboration credit assignments are used: Slightly
better results appeared to be achieved for the score-based fitness.

As it was expected, when the collaboration pool size value is increased, the
runtime of the algorithm also raises. As concerning the results, they also seem
to be improved to some extent by the increase of the value for this parameter.
The technique had been tested from one up to seven collaborators.

As regards the collaborator selection pressure parameter, we initially em-
ployed random selection which drove the coevolutionary process to very com-
petitive results. We then chose the best individual from each population for
collaborations, but, surprisingly, the obtained results were worse than in the
case of a random selection pressure. The next step we took was that of using
a selection scheme for choosing the collaborators. Proportional selection was
employed and it proved to be efficient as results were slightly better than
those obtained through random selection.
Task: We want to evaluate whether the cooperative approach produces vi-
able results if compared to those obtained by other approaches (information
on these is given in subsection 7.4) and how appropriate parameters will be
chosen.
Setup: The values for all the parameters were manually tuned. Table 1 con-
tains the values for both the parameters of the EA and the coevolutionary
ones. The population size refers to the number of individuals from each of
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the considered species. We only outlined the values for which we obtained the
best average results in 30 runs. In each of the runs, the training and test sets
are formed from randomly selected samples.

Table 1. Parameter values for the cooperative coevolution approach

Breast Cancer Iris Hepatic Cancer

Evolutionary Parameters

Population size 100 150 100
Recombination probability 0.5 0.4 0.5
Mutation probability 0.6 0.6 0.6
Mutation strength 0.01 150 100
Generations 120 200 100

Cooperative Coevolution Parameters

Collaboration pool size 3 3 5
Collaborator selection pressure proportional proportional proportional
Collaboration credit assignment hedge hedge worst

The only normalized data were the ones regarding breast cancer.
For all considered implementations, we used fitness proportional selection,

intermediate recombination - two-parent and one offspring - and mutation
with normal perturbation. The offspring replaces the parent only if fitter.
Results: Table 2 outlines the average results obtained by the cooperative ap-
proach with the chosen parameter values. For all three data sets, the technique
proved to be competitive and stable.

Table 2. Average results after 30 runs for the cooperative coevolution approach

Data set Average accuracy (%) Standard deviation (%)

Breast cancer 94.5 1.8
Iris 95.4 3.0
Hepatic cancer 90.5 2.4

Observations: In order to verify how many generations are necessary for the
algorithm to reach a constant and good result, we applied the evolved rules
to the test set from an early stage of the evolution process. This test was
performed solely on the breast cancer data set. In the initial (approximatively
10) generations, the results were very unstable, jumping from 20% to 80%
and in-between, reaching then a certain stability of about 80% accuracy and
growing slowly, but constantly. In the final generations, there are only minor
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modifications of the test accuracy of up to one percent. However, the results
greatly depend of the way the training/test sets were generated as there exist
cases when the accuracy starts with 80% even from the early stages of the
evolutionary process.

It has to be noted that there is not a very strong dependence between
the EA parameters and obtained results as very competitive accuracies are
obtained for a large scale of their values.

Concerning the coevolution parameters, changes within the collaboration
credit assignments do not bring vital modifications to the final average results:
The differences between various settings as regards the final accuracies do not
overcome one percent.

As previously stated, the collaboration pool size parameter directly influ-
ences the runtime of the program that implements the approach; the final
test accuracy is also affected by the increase in this value, but a balance has
to be established between runtime and accuracy. For the two test problems
we considered in the pre-experimental stage, better results were obtained for
an odd number of collaborators. Another important observation is that when
a certain threshold for the collaboration pool size parameter is surpassed no
further gain in accuracy is reached. We generally achieved the best results
when three collaborators were considered.

The cooperative parameter that brought the most important change in
the final result of the algorithm was the collaborator selection pressure. A
selection scheme is preferred to a random selection; selecting only the best
collaborator seems to be the worst of the three choices.
Discussion: The proposed classification approach based on cooperative co-
evolution provides very accurate results in a relatively small amount of time.
For instance, on the breast cancer data set, the runtime lasts from 7 seconds
per run when the collaboration pool size is one, up to 24 for three collabora-
tors and to around 37 seconds when five collaborators are used. Note that for
experiments, we used a computer with the following characteristics: Pentium
IV CPU 3.0 GHz and 1 GB of RAM.

7.3 Experiment 2: Competitive Classification Validation

Pre-experimental planning: The same two benchmark data sets from the
UCI repository were used for preliminary experiments. The first observation
in these tests refers to the high amount of time necessary for the algorithm
to run: The explanation lies in the fact that the tests population is very large
and, at the beginning of the evolutionary process, all samples are evaluated.
This means that for each sample, for a number of times equal to the history
length, an individual is selected and an encounter takes place between the
two, assigning a score to the sample.

We also noticed at this stage the importance of the two competitive co-
evolution parameters: history length and the number of encounters. They also
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significantly influence the runtime of the program that implements the algo-
rithm. However, a more exact evaluation of an individual or sample is obtained
if the history length value is large and, on the other hand, a high value for
the number of encounters updates the evaluations of individuals/samples.
Task: It will be investigated if the competitive classification technique can
perform as well as the cooperative approach.
Setup: The values for the parameters were manually tuned, like in the coop-
erative case. Found values are indicated in Table 3.

In the current experiment, in order to enhance the speed of the algorithm,
we tried to reduce the population size as much as possible: Less individuals
means they will have more encounters with samples from the other species
and their fitness will be updated very often.

None of the considered data sets was normalized.

Table 3. Parameter values for the competitive coevolution approach

Breast Cancer Iris Hepatic Cancer

Evolutionary Parameters

Population size 100 50 100
Mutation probability 0.5 0.5 0.4
Mutation strength 8 1 10
Generations 100 300 150

Competitive Coevolution Parameters

History length 30 30 30
Number of encounters 20 30 20

Results: The average results that were obtained after 30 runs by applying
the competitive classification technique are illustrated in Table 4.

Table 4. Average results after 30 runs for the competitive coevolution approach

Data set Average accuracy (%) Standard deviation (%)

Breast cancer 92.9 2.9
Iris 91.1 3.5
Hepatic cancer 84.7 3.4

Observations: The average results show that the competitive approach is
significantly weaker than the cooperative one. Not only the final results prove
that this approach is much poorer than the cooperative one, but there is also
a great difference as concerns runtime: To make an objective comparison,
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we measured the average runtime for the same breast cancer data set, by
using the competitive approach with the parameters indicated in Table 3; the
obtained value was of around 480 seconds, that is almost 13 times slower than
the cooperative approach with 5 collaborators.

The standard deviation of the results is also significantly higher, which
indicates the fact that this technique is not as stable as the cooperative ap-
proach. Nevertheless, it has to be stated that in an objective judgement, there
are not too many perturbations that appear in 100, or even 300 generations,
since only two individuals per class recombine during one generation and mu-
tation is applied solely to the obtained offspring. To conclude, at least 1000
generations would probably be necessary for the variation operators to con-
siderably change the population. That would, on the other hand, slow down
the program even more.
Discussion: The obtained results and the large runtime of the competitive
technique indicate the cooperative approach as much more viable as com-
pared to the state-of-the-art techniques for classification. Note however that
this is only the first time the competitive approach for classification is pro-
posed and we believe that it represents a good starting point, as there is
definitely potential within this technique as well. To outline some ideas for fu-
ture research concerning the competitive technique for classification, perhaps
a preprocessing technique step could be first applied to the training data in
order to substantially reduce them. In conjunction with that (or by itself),
we presume that employing a chunking technique in order to pick only small
parts from the training set and use them as the static species could signifi-
cantly improve runtime (maybe even the accuracy). Then, after the rules are
specialized on the selected samples, the tests species could bring new ones,
while the dynamic population of rules could resume the evolution.

An important enhancement could be brought if the very good rules that
are evolved at a certain point could be blocked for further modifications:
Make one such individual a tabu rule and maybe move it in a rules archive
that will be applied when the termination condition is reached. In the way
the technique is now built, these good rules have the highest chances to be
selected over and over again, therefore modified many times, maybe for the
worse.

In the end of the evolutionary run, the best rule of each class in the final
population was taken and the entire formed set was applied to the test data.
Obviously, a different way of choosing the rules could be imagined, e.g. take
several rules for one class or apply an archive variant as suggested above.

7.4 Comparison to Standard Data Mining Approaches

Comparison of obtained results can be made only for the breast cancer and
iris data sets, since they are public benchmark problems. The resulting rules
of the hepatic data set were however confronted with the specialized opinion
of the physician and were found to be consistent with the medical diagnosis.



Coevolution for Classification 23

A summary of best and worst accuracies in literature concerning the two
considered UCI data sets is presented in Table 5. These results come from
surveys on several canonical data mining techniques in [1], [2] and [7]. Com-
parison cannot be objective, however, as outlined methods either use different
sizes for the training/test sets or other types of cross-validation and num-
ber of runs or employ various preprocessing procedures for feature or sample
selection.

Table 5. Comparison to accuracies of data mining techniques reviewed in [1], [2]
and [7]

Task Worst reported accuracy Best reported accuracy

Breast cancer 94.2% 97.2%
Iris 93.47% 96.31%

The highest and lowest obtained accuracy for the breast cancer diagnosis
problem are reported in [1], [2]. However, the authors used 10-fold cross-
validation and removed the samples that had missing values.

On the other hand, the two results for iris are given in [7]; a similar way of
selecting the training and test sets was used. The difference to our approach is
that 80% of the samples from the Iris data were used for training and the rest
(less samples than in our approach) for testing and that average accuracies
are obtained after 500 runs.

8 Concluding Remarks

The two types of coevolution within which species either cooperate or compete
are herein proposed as tools for solving classification tasks. The cooperative
approach, probably even due to the fact that it has been more extensively
tested, proved to be more much efficient than the competitive one, as con-
cerns both the accuracy and runtime. An important drawback of the cooper-
ative technique is however the fact that that the number of populations must
increase with the number of classes of the problem.

The presented coevolution framework brings a natural manner of targeting
classification, with a simple and concise representation and a straightforward
fitness assignment as an advantage over existing evolutionary possibilities.

We have consequently assembled this work with the purpose of showing
that coevolution can provide new insights and successes into the demanding
and crucial field of classification.
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