
TECHNISCHE UNIVERSITÄT DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

PG511 - CI in Games - Final Report

Holger Danielsiek, Christian Eichhorn, Tobias Hein,
Edina Kurtić, Georg Neugebauer, Nico Piatkowski,
Jan Quadflieg, Sebastian Schnelker, Raphael Stüer,

Andreas Thom, Simon Wessing

No. CI-252/08

Technical Report ISSN 1433-3325 August 2008

Secretary of the SFB 531 · Technische Universität Dortmund · Dept. of Computer
Science/LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the Technische Universität Dortmund and was printed with financial
support of the Deutsche Forschungsgemeinschaft.

TECHNISCHE UNIVERSITÄT DORTMUND
FACULTY OF COMPUTER SCIENCE

Project Group 511: CI In Games

Final Report

Holger Danielsiek, Christian Eichhorn,
Tobias Hein, Edina Kurtić,

Georg Neugebauer, Nico Piatkowski,
Jan Quadflieg, Sebastian Schnelker,

Raphael Stüer, Andreas Thom,
Simon Wessing
August 13, 2008

INTERNAL REPORTS

Tutors:
Nicola Beume
Boris Naujoks
Mike Preuß

CONTENTS II

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Chronological development and structure of this report 2

2 Background 3

2.1 Evolutionary Algorithms . 3

2.1.1 Coevolution . 5

2.2 Artificial Neural Networks . 7

2.3 Self-Organizing Maps . 10

2.4 Influence Maps . 11

2.5 Flocking . 13

3 First Project: Pac-Man 15

3.1 Algorithms to control Pacman Ghosts . 15

3.1.1 Ghosts controlled by Randomized-Deterministic Algorithms 18

3.1.2 Ghosts controlled by Artificial Neural Networks 19

3.1.3 Ghosts controlled by Evolutionary Algorithms 20

3.2 Deterministic algorithm to control Pacman 24

3.3 Byproducts of the Pacman project . 24

4 Second Project: Glest 26

4.1 Real Time Strategy Games . 26

4.2 Setting of Glest . 27

4.3 Rules . 27

4.4 Units and buildings . 28

5 Glest (re)coded 29

5.1 Bigger Selections . 29

5.2 Big Endian binary compatibility . 29

5.3 Cache . 29

5.4 Debugging Problems . 30

5.5 Keyboard Layout . 30

5.6 Visualization . 31

CONTENTS III

6 Local AI Group 32

6.1 Selection with SOMs . 32

6.1.1 Architecture . 32

6.1.2 XML Extension . 33

6.1.3 Application . 35

6.1.4 Outlook & Conclusion . 37

6.2 Pathfinding . 37

6.2.1 Precalculation . 37

6.2.2 Pathfinding . 39

6.2.3 Outlook . 40

6.3 Influence Map . 42

6.4 Pathfinding with Influence Maps . 44

6.5 Flocking . 45

6.5.1 Movement in Glest . 46

6.5.2 Our implementation . 48

6.5.3 Integration into Glest . 52

6.5.4 Conclusion and future work . 54

7 Global AI Group 56

7.1 Coevolution in Glest . 56

7.1.1 EA implementation . 57

7.1.2 Results and Discussion . 58

7.1.3 Future Work . 61

7.2 Ultra Massive Attack . 62

7.2.1 Modifying the Attack Rule . 62

7.2.2 Implementational Issues . 63

7.2.3 Future Work . 64

8 Conclusion 65

9 Review 67

9.1 Seminar Phase . 67

9.2 First Semester . 67

9.3 Second semester . 68

9.4 Expectations and experiences . 69

CONTENTS IV

A Techtrees 71

B Glest Units 73

B.1 Unit description . 73

B.1.1 Magic faction . 73

B.1.2 Tech faction . 75

B.2 Unit statistics . 77

B.2.1 Mage units . 77

B.2.2 Tech units . 77

B.3 Unit Advancement . 78

B.4 Unit costs . 79

B.4.1 Mage unit costs . 79

B.4.2 Tech unit costs . 79

C References 83

D Weblinks 85

1 Introduction 1

1 Introduction

“Computer Science is no more about computers than astronomy is about
telescopes.” E. W. Dijkstra, Dutch computer scientist(1930 - 2002)

1.1 Overview

We would like to begin by introducing ourselves and our previous and current work. In
the curriculum of computer science at the Technische Universität (TU) Dortmund each
student has to attend a project group for a period of two semesters. During this period
students have an opportunity to improve their teamwork abilities in order to acquire skills
to cope with demands they might meet at their workplaces after the graduation. So we
formed a group supervised by Nicola Beume, Boris Naujoks and Mike Preuß. Because
of consecutive numbering at the faculty of computer science we received the working
title “project group 511” (PG 511). Our research topic was “CI in games - Methoden
der Computational Intelligence zur Entwicklung von Spielstrategien” (developing game
strategies using methods of Computational Intelligence).

Due to the fact that the Artificial Intelligence (AI) of non-player characters (NPCs) in
computer games often features shortfalls, the PG 511 tried to improve NPCs’ intelligence
by means of Computational Intelligence (CI), such as Artificial Neural Nets (ANN) and
Evolutionary Algorithms (EA). Our hope is that this approach would make their behaviour
less predictable. The main task of the PG 511 was to figure out whether CI methods could
be applied to computer games, how far CI methods can balance the game’s difficulty while
giving the observer an impression that the NPCs behave in a natural, human-like way.

We approached two different projects: During the first semester we worked on a clone
of the arcade game Pac-Man by Namco [9], in which we improved the behaviour and the
intelligence of the ghosts using CI methods. Furthermore we tried to determine whether
a player perceives a game against enhanced ghosts as more interesting than one against
the standard ghosts. Since fun is a fuzzy term, we agreed on the concept of flow from
Mihály Csikszentmihályi’s “Flow Theory” [Csi90] as the working definition which covers
our sense of fun in games. Yannakakis and Hallam [YH04] published a measure of fun for
Pac-Man clones so the PG 511 tried to check this theory by conducting a survey at the
Campusfest, the open day at our university (see section 9.2).

The second semester of the PG dealt with a more complex game named Glest [4]. Glest
is a real time strategy game. In this genre there are more options to integrate CI methods
with the aim of improving the intelligence of the NPC. These options can be divided
into two general parts: On the one hand there is a global intelligence which includes the
main strategy of the NPC such as deciding on when to attack the enemy or which type of
resources to gather. On the other hand there is the local intelligence includes the decisions
of the single unit such as how to choose the correct path to the target or which target to
attack. The techniques belong to the local intelligence could also improve the usability
and convenience of the player by reducing the effort of micromanagement. So we divided
into two subgroups which dealt with the two main topics: The global and local AI.

1.2 Chronological development and structure of this report 2

1.2 Chronological development and structure of this report

As mentioned above we had two semesters for developing CI methods for computer games.
In the first semester we started with a seminar phase in which every member of our PG
had to give a presentation on a special topic related to our later work. This seminar phase
took place in April 2007. The major topics are described in chapter 2. After that we
discussed which Pac-Man clone to redesign and we started with modifications of NJam [3]
at the end of April. Our work was completed in the first week of June and we presented
our progress at the Campusfest, the open day at the Universität Dortmund. We used this
opportunity to collect feedback on whether our enhancements increase playing fun, which
we then analyzed and the results were included in the intermediate report. We finished
this report in the middle of July, right on time for the semester break. The results are
described in chapter 3.

The second semester started in October 2007 with another seminar and we first discussed
which game we would work on now. After we decided to modify Glest we recoded the code
for about three months. Our achievements on this project are described in the chapters 4,
5, 6 and 7. We close this report with a short summary of our work on Glest in chapter 8,
and with one last glance on the past year and the experiences we made during this period
in chapter 9.

2 Background 3

2 Background

“Nature does nothing uselessly.” Aristotle, Greek philosopher (384 BC - 322 BC)

2.1 Evolutionary Algorithms

The algorithmic principle behind Evolutionary Algorithms (EA) is inspired by the theory
of evolution in nature as established by Charles Darwin [Dar59] and his idea of the “survival
of the fittest”. EAs are used for solving search problems and operate on a multiset of
individuals, also called the population. Each individual represents one possible solution in
the search space of the underlying problem. The search space is arbitrary in principal.
Some possible search spaces are the boolean (Bn), or real (Rn) number space, the space
of permutations and trees.

The individuals and therefore the solutions are assessed a value by an evaluation func-
tion, which is called fitness function in the context of the evolutionary computing. A
fitness function evaluates an individual with respect to the quality of the solution that
it represents and ensures that the resulting values establish a partial ordering over all
individuals.

The fitness value can effect the selection process. Usually the fitness function f(s) maps
each individual s from the multiset S to a specific value in R as shown in equation 1.

f(s) : S → R, s ∈ S (1)

Since evaluating a fitness function needs the actual solution to be tried on the problem,
getting the fitness value is usually a rather time-consuming process.

In order to find better solutions the new individuals are iteratively generated until
a maximal predefined number of iterations or a certain fitness value is reached. Each
iteration is called a generation. Generating new individuals is called reproduction and it
follows the idea of reproduction in nature. An offspring is generated from one or more
parents by means of mutations and/or crossover.

At two points during its progress, an EA needs to make a selection of individuals.
Firstly, a subset of individuals (parents) needs to be selected for reproduction in order
to generate new individuals. Secondly, it selects a set of individuals (survivors) from the
sets of new ones (children) and possibly of old ones as well, which will be the starting
population of the next generation. This selection depends on the fitness value. A general
description of an EA is presented in listing 1, while the remainder of this section explains
each step in more detail. In the following we describe only some basic operators. Remark
that there are many more.

Initialization This first step generates the initial population. If few or no information
about the population is available the commonly used method is to choose randomly from
uniformly distributed candidates. Although any candidate solution can be chosen as start-
ing point, it may prove better to initialize the population with promising points (in case
these are known), since the algorithm can converge faster towards a local optimum1.

1This, however, may also go completely wrong resulting in EA getting stuck in a local optimum, even
if a better solution could be found, so using promising points in the search space is a decision which has

2.1 Evolutionary Algorithms 4

t:=0
initialization of the start population P(0)
evaluation of the population P(0)
WHILE terminating condition not satisfied

select the parents
generate offspring from the parents

by the means of recombination and mutation
evaluate offspring
select the following population P(t+1)
t:=t+1

END WHILE

Listing 1: Pseudocode of an Evolutionary Algorithm

Parent selection Selecting individuals for reproduction can be done either uniformly
at random over the entire population (called uniform selection) or it can be related to the
fitness of the individuals. The latter method assigns a selection probability p(s) calculated
as shown in equation 2 to each individual s ∈ S, which means that fitter individuals have
higher probability of being selected.

p(s) =
f(s)∑

x∈S
f(x)

(2)

Parent selection is highly dependent on fitness values and behaves almost deterministically
in case of great differences in fitness values.

Survivor selection In order to select individuals for the next generation the same
operators as in the parent selection can be used. However, it has to be decided which
set of individuals to choose from. In the plus-selection µ individuals are chosen from the
union of old individuals and the offspring. This selection is denoted as (µ + λ), where µ
is the size of the population and λ stands for the number of offsprings. Another type of
selection is comma-selection, denoted as (µ, λ) , that allows to choose new individuals only
from the set of offspring. In both cases the choice is deterministic since the individuals
with highest fitness values are chosen.

Variation Depending on whether one or more parents are needed to generate an off-
spring, we speak of mutation or crossover. While crossover is not used by all EAs, mutation
occurs always, possibly also after a crossover. Variating with crossover means to use parts
of all parents to create an offspring. These parts can be chosen randomly or by a predefined
formula. Figure 1 shows how individuals in Bn are combined using random crossover.

When an individual is mutated, some of its features are randomly changed by a prede-
fined function. The typical mutation operators in Bn are the standard bit mutation and
the k-bit mutation. By means of the former one, each bit is flipped with the probability
pm. This mutation parameter is kept small and usually set to pm = 1

n , with n denoting

to be taken seriously.

2.1 Evolutionary Algorithms 5

Figure 1: An example of variation by crossover. The two parent individuals (left) are in
Bn. For each bit, a value in L,R is chosen randomly, i.e. the information is
taken either from the left or from right parent as the correspondent bit of the
offspring (right).

the length of the bit vector. The 1-bit mutation flips exactly one randomly chosen bit.
These operators can be adapted for use in other search spaces as well.

Parameters The behaviour of an EA is determined by the settings of the parameters
(some of which have been described previously). A static parameter set allows no change on
runtime and as consequence, the EA can progress slowly, since parameter values may vary
while optimization. Thus, it can prove better to change parameter values depending on the
number of generations, or generally optimization progress. This approach is called dynamic
parameter control. Another possibility is to adjust parameters not only depending on time
but on other features as well (i.e. fitness values or the distribution of the population over
the search space), called adaptive parameter control. All these strategies are deterministic;
this property is obvious for static parameter control, while dynamic parameter control
operate according to predefined functions. The adaptation of parameters can also be
included in an evolutionary process, which is then called self-adaptation.

2.1.1 Coevolution

A compact but sufficiently informative introduction to coevolution and all related issues
that we address here can be found in [ES07]. The idea of coevolution is based on the fact
that the survival of some organisms in the nature depends on other species or individuals
of the same species. An easy understandable example of these dependencies is the plant
pollination by insects or a predator-prey relationship. The former type of relationship is
characterized by the cooperative nature of the mutual development. Insects are “helping”
plants to reproduce whereas plants provide nourishment for many insects. The latter
relationship is a competitive one, that is one species is gaining fitness at the other’s
expense.

2.1 Evolutionary Algorithms 6

Drawbacks of coevolution There are some drawbacks in the coevolution paradigm.
One of them is called the Red Queen Effect, named after a passage from Lewis Carrol’s
Alice in Wonderland2 [Car78] (see also [DEH+07]).

To make a progress in space, a Wonderlander has to move twice his highest possible
speed, otherwise he can only manage to keep his current position. In the context of
coevolution this means that by using a fitness value for an individual that depends on
fitness values of other individuals we can never be sure of the type of development the
population is going through: If a fitness value stagnates over a period of time, we cannot
say whether the development of individuals is stagnating as well or increasing at equal
speed.

Furthermore, there is the problem of circularity in the evolution. This effect appears
due to the fact that the optimality of a strategy heavily depends on the strategy of the
current opponent. With the change of the opponent, the optimal strategy might (and
probably will) change. It can thus happen – and this effect was indeed observed – that,
with three strategies A, B and C, we may have a dependency that strategy B beats
strategy A (A ≺ B), B ≺ C and C ≺ A (called “Rock, Paper, Scissors”-situation after the
homonymous children’s game). If such a situation occurs, a global optimum is not present
due to the fact that there is no partial ordering of the individuals and the progress goes
around in circles. These drawbacks can be weakened by means of diversity maintenance.
The most common techniques are crowding and fitness sharing, described in the following.

Crowding is based upon the idea that the offspring are likely to be similar to their
parents. To maintain diversity in a population, similar individuals should be replaced. The
similarity is tested in tournaments between offspring and parents, in which the pairwise
distances between parents and offspring are minimized. Resulting from the competition
between similar offsprings and their parents, the subpopulations in fitness niches become
equally distributed over the peaks of the fitness landscape.

Fitness Sharing is based on the idea that similar individuals have to share their fitness
with each other. The shared fitness f(s)′ of an individual calculates as

f(s)′ =
f(s)
m

(3)

where f(s) is the original fitness of the individual s and m is the size of the niche, in which
the individual is located. It can be computed as a sum of sharing functions sh(d). Often
a bell-shaped curve is used as sh(d) while d denotes the distance between two individuals.
In the context of games such a sharing function is not essential, but it is possible to define
two individuals as similar if they beat the same opponent. As Miles et al. [MQLL07]

2

“’Well, in our country,’, said Alice, still panting a little, ’you’d generally get to some-
where else – if you run very fast for a long time as we’ve been doing.’
’A slow sort of country!’, said the [Red] Queen. ’Now, here, you see, it takes all the
running you can do, to keep in the same place. If you want to get somewhere else,
you must run at least twice as fast as that!”’ [Car78, Page 147]

2.2 Artificial Neural Networks 7

suggest, f(s)′ would then be calculated as

f(s)′ =
f(s)1
m1

+
f(s)2
m2

+ · · ·+ f(s)n
mn

. (4)

Here f(s)j means the score of individual s against individual j and mj means the sum
of all scores against individual j. Though fitness sharing has a runtime of O(|P |2), this
should be insignificant compared to the time for evaluating the fitness function.

2.2 Artificial Neural Networks

The paradigm of Artificial Neural Networks (ANN) is inspired by biological nervous sys-
tems and their processing of information. Due to the complexity of their biological coun-
terparts, these artificial networks are just an abstraction.

Figure 2: Illustration of an artificial neuron.

An ANN consists of a set of nodes called neurons(see figure 2), each representing a
computing unit for itself. These neurons correspond to the nerve cells of the organic
brain. The neurons are connected by directed edges bearing a weight which scales the
signal flow along this edge. Although heavily reduced in their functionality compared to
their biological prototype, a network of highly interconnected artificial neurons can solve
complex problems. Therefore ANNs can be applied to a wide range of application like
data classification, pattern recognition or function approximation.

Neurons A neuron is the basic component used to build an ANN. As stated before, its
functionality is reduced. In short, it processes the incoming signals based on a transfer
function γ and passes the results based on an activation function a. The transfer function
usually sums up the weighted incoming signals (net). As for the activation function several
alternatives exist:

step function

a(net) =

{
1 if γ(net) ≥ θ,
0 if γ(net) < θ

(5)

2.2 Artificial Neural Networks 8

Figure 3: Illustration of a fully connected feed-forward Artificial Neural Network showing
the three different layers.

linear function

a(net) =

1 if γ(net) ≥ 1

2 ,
γ(net) + 1

2 if −1
2 < γ(net) < 1

2 ,
0 if γ(net) ≤ 1

2

(6)

θ describes a given threshold, triggering the activation of the neuron if reached, while
γ(net) describes the previously processed input.

Structure An ANN typically consists of several layers. The neurons without inbound
edges are called the input layer, the neurons without outgoing edges are grouped together
as output layer, the other neurons are said to be in the hidden layer which may consist of
several sublayers. This structure is illustrated in figure 3. The signal flow path starts at
the input layer following its way through the hidden layers to the output layer.

Input layer Neurons on the input layer receive the incoming signals from the ANN’s
environment and are already called sensors. Usually the inputs are, without any
further modification, directed to the layer underneath (the sensors’ activation func-
tion is the identity).

Hidden layer The neurons on the hidden layer(s) are used for computations based on
the signals received by the input layer.

Output layer The output layer, like the input layer, works as an interface, connecting
the ANN to its environment: Depending on the values calculated by the neurons on
the hidden layer, neurons on the output layer are activated, passing the calculated
result on to the external interface.

Several network topologies can be distinguished, two of the best known configurations
will be described in the following:

2.3 Self-Organizing Maps 9

Figure 4: The human brain shown with the different areas of applications

• A net is called a feedforward network if each neuron is connected to each neuron on
the next layer. Additionally, no connections between neurons on the same layer or
connections to prior layers are allowed.

• Recurrent networks allow loops inside the network, i.e. connections targeting a
neuron on a previous layer.

Learning process There is a variety of learning methods for ANN, ranging from super-
vised and unsupervised learning to reinforcement learning [RN03]. The learning process
is based on adjusting the weights of the edges between the nodes inside the network.

In case of supervised learning, a predefined set of training patterns is used, including a
vector of input values and a vector of desired output values. During the learning process
the ANN processes the given input values and adjusts its configuration with respect to
its results compared to the desired outcome. This process may be repeated over several
iterations, resulting in a satisfying configuration of the network which computes acceptable
results for a specific application. It is to be expected that during the learning phase the
configuration and therefore the knowledge of the ANN becomes generalized enough to
make adequate decisions for yet unknown problems.

Related research ANNs in commercial video games are a still rarely used technique
with only few applications already existing. Graham et al. [GMS04] describe an ANN
based pathfinding algorithm suitable for dynamic environments. Kalyanpur and Simon
[KS01] use a hybrid approach of EAs and ANNs to optimize mutation and crossover
probabilities whereas Yannakakis and Hallam [YH04] use a similar hybrid concept to
control the ghosts in Pacman.

2.3 Self-Organizing Maps 10

2.3 Self-Organizing Maps

The Self-Organizing Map (SOM) was conceived by Kohonen [Koh01] in 1982. The main
application of the SOM is in the visualization of complex data in a usually two-dimensional
field to create an abstraction like in many clustering techniques. The paradigm was the
human being, more precisely the brain and its brain maps. It is a fact that various areas
of the brain are organized according to their use. Figure 4 shows the structure and orga-
nization of the brain. More recent experiments have revealed a fine structure within many
areas, where for example visual response signals are obtained in the same topographical
order in which they were received at the corresponding sensors. This ordering is also called
a map. There are many advantages of such brain maps:

• In brain maps the relevant functions are close to each other; the connection lengths
between the functions are thus minimized.

• Due to this topology the interference between functions is minimized.

Competitive learning In the competitive learning process different actors compete
against each other for the same input information. In our case we have a network where
neurons challenge each other. One of those neurons becomes the “winner” with full activ-
ity, who then suppresses the activity of all the other cells by negative feedback. After the
completion of the learning process each neuron becomes sensitized to a different domain
of the input information and acts as a decoder for it. The SOM uses the competitive
learning to define an “elastic net” of points which are fitted to the input signal space to
approximate its density function. For more details about competitive learning we suggest
the reader to consult [Koh01].

SOM algorithm Normally the nodes are arranged in a lattice. The lattice type can
be defined as rectangular, hexagonal or even irregular. A mapping from the input data
space Rn onto a two-dimensional space (lattice of nodes) is defined. A reference vector
ri = (ηi1, ηi2, . . . , ηin)T ∈ Rn is associated with every node i. The ri are initialized
randomly or, if information about the input data space is available, the reference vectors
are set properly. After the creation of the SOM the ri will attain two-dimensionally ordered
values. This is a key effect of self-organization.

Now we start with an input vector x = (ε1, ε2, . . . , εn)T , which is presented by the lattice
of nodes, through parallel connections to all neurons. After comparing x with all the ri the
location of the best match is defined in some metric. If we consider x ∈ Rn as a stochastic
data vector, the SOM can be seen as a “nonlinear projection” of the probability density
function p(x) of the high-dimensional input data vector x onto the two-dimensional display.
We can use any metric for comparing vector x with all the ri. Normally, the Euclidean
distance ||x − ri|| is used. In Glest we have chosen a weighted Euclidean distance for
calculating the best-matching node (see section 6.1). Another possible matching criterion
is for example the dot product of x and ri (see [Koh01] for details).

Another key component of the learning process in which the “nonlinear projection” is
formed is the fact that nodes, which are up to a certain geometric distance topographically
close to each other, will activate each other to learn something from the input x. In other

2.4 Influence Maps 11

words, the best-matching unit (BMU), in the following indicated by the subscript c, and
its neighbourhood learn in a similar way regarding the input data x. The result is a local
smoothing effect on the weight vectors ri of the neurons in this neighbourhood, which
finally leads to a global ordering. We can define the neighbourhood function as shown
in equation 7 with integer t as a discrete time coordinate and a so called neighbourhood
function, defining a smoothing kernel over the lattice of nodes, nci(t).

ri(t+ 1) = ri(t) + nci(t) [x(t)− ri(t)] (7)

For convergence it is necessary that nci(t) → 0 when t → ∞. Two common forms of the
neighbourhood defined by nci(t) are rectangular and hexagonal. We used a rectangular
form for our SOM (see section 6.1). Now let us have a look at the definition of nci(t)
as defined in equation 8 with the learning rate α(t) and the width of the neighbourhood
kernel ω(t).

nci(t) = α(t) ∗ exp(−||pc − pi||2

2ω2(t)
) (8)

pc and pi are the location vectors of the BMU c and node i in the array. The functions
α(t) and ω(t) are monotonically decreasing functions of time. The equation assures that
the BMU and the neighbourhood will be changed in a similar way. Also the magnitude
of modifications corresponds to the iteration count. At the beginning the modifications
of the SOM will be larger than at the end. This algorithm leads to a globally ordered
two-dimensional map with each neuron sensitized to a different domain of the input infor-
mation. For more information about the algorithm we refer to [Koh01].

Related research SOMs are very popular in the unsupervised learning category. Many
fields of science are using SOMs for solving high-dimensional and nonlinear problems. For
example Ritter et al. [RMS92] present how a SOM can be adapted for controlling a robot
arm. Another application is the organization of large document files. Lin et al. [LSM91]
show the use of a SOM in this area. SOMs are used in many areas, like statistics, signal
processing, chemistry or medicine, and introducing it in the area of video games is a quite
interesting and also new approach. Finally, we recommend the book by Kohonen [Koh01]
which presents a good introduction to the topic.

2.4 Influence Maps

Influence Maps (IM) are an Artificial Intelligence (AI) technology used in the context
of computer games. IMs are an areal based representation of the knowledge the AI has
about the current game situation and are usually used for tactical decisions. They exploit
the topographic information of the actual map to represent how the player influences
different areas of the map. An IM may indicate where the units are situated or where the
boundaries of the controlled areas lie. Via IM, a player may find out where enemy units
are concentrated or get information about weak, exposed areas.

IMs may be used in any topology, but in the following we will talk about two-dimensional
environments since these are found in most strategy games. Only a brief introduction is
given in order to illuminate this technology used in section 6.3 and 6.4. A more detailed
explanation can be found in our technical report [DEH+07] in Appendix L. or in [Kir04].

2.4 Influence Maps 12

Figure 5: An example of influence maps generation. The left figure shows the units of
the different faction (male, blue and female, red) placed on the map. The right
figure shows the local influence of the units (+4 for the own and −4 for the
other faction.)

Calculating Influence Maps Usually, a map is divided into tiles. The IM is set to
the same size as the map with typically less tiles than the map. The tiles are initialized
to a value of 0. To calculate the IM for one game situation, an influence value has to be
calculated for every unit. This may be derived from any numeric property that unit has,
for example its lifepoints or its attack strength. This influence is then propagated from
the unit to a given area according to any formula imaginable, usually decreasing with
increasing distance from the unit’s original position.

Figure 6: Continued example of Influence Map generation. The left figure shows the prop-
agation of the influence values through the map, which are summed up in the
center figure. The right figure shows the resulting influence map with the influ-
ence of the own (blue) and the hostile (red) faction plotted on the map. Darker
colours show higher influence values. To clarify, the position of the original units
are shown as well as the borders of the player’s influence (outlined in the player’s
colour).

Example The following example shows how a simple IM is calculated. On a very small
map (see figure 5) with a height of seven and a width of six tiles, there are two factions
(blue and red). Each faction has three units on this map and each unit has an influence
value of four. The influence radius of these units shall be one with a general decrease

2.5 Flocking 13

factor of 2−(radius+1). The result of the propagation is shown in the left image of figure 6.
The influence map is finally retrieved by summing up the influences of all factions. This is
shown in the middle image in figure 6. It should be mentioned that the resulting influence
may exceed the influence of a single unit if two friendly units stand close enough to each
other. Also, the influences of two adversary units may cancel each other out. The right
image of this figure shows a graphical representation of the calculated influence with the
boundaries of the controlled area outlined for each player. The degree of influence is shown
by shades in the player’s colour.

2.5 Flocking

In computer games groups of units often behave very inflexible and each unit shows the
same behaviour. A possible solution to this problem can be found in Craig Raynolds 1987
Siggraph paper “Flocks, herds and schools: A distributed behavioural model” [Rey87],
in which he describes an approach to simulate an animated flock of birds. The motion
of a flock of birds shows significant differences from the conventional motion of a group
because every unit of the group shows a unique behaviour but the group reaches its global
target. He named the individuals of his simulated flock “boids”.

Figure 7: The schematic diagram of the three flocking rules. The left diagram shows the
resulting separation vector in this special situation. The middle diagram shows
the cohesion influence for one boid and the right shows the alignment of a boid
by considering the other boids in its neighbourhood.

2.5 Flocking 14

Figure 8: Angle of view and range of sight of a boid

These boids adjust their behaviour and their motion by following three simple rules
which are shown in figure 7:

Alignment: Boids steer into the same direction as the other boids. Therefore, for each
boid Raynolds calculates the average of the summed up direction vectors of the boids
that are in the angle of view and in range of sight.

Cohesion: The ambition of each boid is to stick together with the others. The boids try
to advance to the centroid of the group.

Separation: Boids try to scatter from other boids. So this rule can be seen as the opposite
of the cohesion rule and represents the collision avoidance within the flock.

The movement direction of a boid is then calculated with the help of the three rules
described above. To realize these three rules each boid has to know some additional
information about its local surroundings especially it has to know where its neighbours
are located, where they are heading and how close they are. So each boid has an angle of
view and a range of sight in which the boid can recognize other boids and its environment
(see figure 8). Obstacle avoidance is an important task of flocking and can be realized
with this additional information so that each boid can avoid fixed obstacles. With the
help of these rules and the information about the local surroundings of a boid the basic
characteristics of flocking behaviour are described.

Flocking is a very useful method to simulate natural flock behaviour in computer games.
Thus flocking is used to simulate flocks of birds or schools of fishes, military units or crowds.
Shen and Zhou [SZ06] describe the use of flocking to steer the behaviour of military units
in the futuristic ego-shooter unreal tournament.

Furthermore Davison [Dav05] mentioned that Half-Life [Val04], an ego-shooter published
by Valve and Enemy Nations [10], and a strategy game created by Windward Studios uses
flocking to control the movement of military units or to coordinate the formation of any
units.

3 First Project: Pac-Man 15

3 First Project: Pac-Man

“Computer games don’t affect kids; I mean if Pac-Man affected us as kids,
we’d all be running around in darkened rooms, munching magic pills and lis-
tening to repetitive music.” Martin Brigstocke, British comedian (1973 - . . .)

In the first semester the project group (PG) concentrated their work on the simple, well
known classic arcade game Pac-Man [9], developed by the Japanese company Namco in
1980. In Pac-Man, the player controls a figure called “Pac-Man” through a maze which
is seen in bird’s eye view. His task is to navigate Pac-Man so that he “eats” all of the
dots (called food-pellets or pellets) lying in the tunnels of the maze, by which he wins the
level and advances to the next. Pac-Man is chased by four computer controlled enemies
(“ghosts”) who eat (and therefore kill) him if they catch him, resulting in player losing
one of his lives. If Pac-Man eats one of four special pellets called “power pills” he is able
to invert the situation for a short period of time and eat the ghosts.

Since Pac-Man is proprietary, we did not use the original game but a reimplementation
(clone) of the game available under GNU General Public License (GPL) [5] called NJam
[3] by M. Babuskov in which we rebuilt Namco’s original Pac-Man level as shown in
figure 9. To use pathfinding algorithms, we transferred the maze used in this level into
a graph. Each crossroad, or better, each tile which allows movement in more than two
directions, is a vertex. The paths between the vertices are annotated with their length
in tiles and a vector of directions absolute to the labyrinth (each direction being element
in {”UP”, ”DOWN”, ”LEFT”, ”RIGHT”}). The labyrinth with numbered crossroads is
shown in figure 10, the resulting graph is shown in figure 11.

A word on spelling: we use the notation “Pac-Man” when referring to the Namco’s
original game or to the player-controlled figure. The notation “Pacman” refers to any
clone or the player’s figure in a clone.

Recent work concerning CI methods in Pacman games focuses on the control of the
Pacman figure [GR03, YH04], whereas control methods for the ghosts are still rather
unexplored [YH05]. In the first semester of our PG we continued the development of the
ghosts.

The aim of good control algorithms for Pacman ghosts is not to optimize their ability
to beat the player – which could be done easily by surrounding Pacman – but to behave
so that the game is attractive for the player, provides fun and some challenge.

These emotions are of course subjective and hard to formalize. Currently, there is no
general consensus about how to analyze the attraction of a computer game. Yannakakis
and Hallam [YH04] as well as one of the PG’s conference papers [BDE+08] propose a
measure for the degree of human interest a Pacman game attracts, based on data of the
game progress.

3.1 Algorithms to control Pacman Ghosts

The algorithms designed in the first period of the PG are described in the following three
subsections. A more detailed description can be found in our CI report [DEH+07].

3.1 Algorithms to control Pacman Ghosts 16

Figure 9: The original maze of Pac-Man (left) and the rebuild level in NJam (right).

Figure 10: The rebuild maze of Pac-Man with numbered crossroads to be transfered into
the gamegraph (see figure 11).

3.1 Algorithms to control Pacman Ghosts 17

F
ig

ur
e

11
:

T
he

gr
ap

h
de

vi
se

d
fr

om
th

e
P
ac

m
an

m
az

e;
th

e
nu

m
be

ri
ng

of
th

e
ve

rt
ic

es
co

r-
re

sp
on

ds
to

fig
ur

e
10

.

3.1 Algorithms to control Pacman Ghosts 18

Figure 12: Routes which Firou may take through the labyrinth. The routes can be walked
in either direction.

3.1.1 Ghosts controlled by Randomized-Deterministic Algorithms

Randomized and deterministic Algorithms were used as test to investigate wether AI
trained by Artificial Neural Networks (ANN) or Evolutionary Algorithms (EA) are as dif-
ficult and fun-providing as manually devised algorithms. This “family” of ghosts is called
Randomized-Deterministic (RD), because they are controlled by deterministic algorithms
which use some randomness to make them less predictable. Apart from this, we also
thought it to be natural to use randomness in the player’s foe since it occurs in many
board- or role-playing games like Ludo [8] or Dungeons and DragonsTM [2] where a dice
is used. The different algorithms we designed are described in the following.

Firou is a very simple RD ghost. He has two routes programmed which may be walked
in either direction. At their starting point he chooses uniformly distributed one of the four
possible routes and walks along the chosen route until he reaches the starting point where
another route is chosen. The routes are shown in figure 12. He is absolutely ignorant of
Pacman and can catch him only if Pacman walks directly into him.

Randegho walks randomly through the maze. Directions blocked by walls receive a
probability of zero. Otherwise the probability for moving to a specific direction is only
affected by the direction he moved last. This prevents the ghost from turning around every
few steps. Randegho, same as Firou, receives no information about Pacman’s position and
does not react to him.

Old Shimer is conceived to be an old and therefore experienced hunter in the labyrinth.
Due to his high skill, he has achieved a very good intuition about his surroundings and

3.1 Algorithms to control Pacman Ghosts 19

has therefore absolute information on the vertices that he has visited and their incident
edges. Since he is very old, his memory is poor and he can only memorize ten vertices.
When he finds the eleventh vertex, he forgets the first seen one in his memory. His field
of view is the area of his memory as well as straight lines in all four directions of maximal
ten tiles (Old Shimer is a bit short-sighted) if not blocked by a wall. If he sees Pacman,
he pursues him until he eats him or Pacman leaves his field of view.

Darmok is thought to be a sly Pacman hunter. He roams randomly through the maze,
imitating Randegho’s behaviour. But he sets traps, which are invisible to Pacman and
the human player. If triggered by Pacman, all Darmoks in the labyrinth are informed of
the player’s position and then walk towards the player’s position using the A?-algorithm
[DP85]. If Pacman walks through his field of view, he chases him until he eats him or
until Pacman leaves his field of view.

Puck is devised to be a shy and maybe very young hunter in the Pacman maze. He
roams through the labyrinth on few, programmed paths directing him in the four corners
of the labyrinth in a randomly chosen order. If, during his walk, Pacman crosses his view,
he chases him until he eats him or Pacman leaves his field of view. If the chase ends
without Pacman being eaten, Puck returns to his starting point and rolls a new order of
corners.

3.1.2 Ghosts controlled by Artificial Neural Networks

As one of the CI based approaches ANNs were used to improve the behaviour of the
computer controlled ghosts in Pacman. The ghosts should learn how to handle certain
situations and react in an appropriate manner, without the use of global knowledge. With
respect to gameplay and fun this should lead to a more natural behaviour instead of a
non-beatable AI which dominates the human player throughout the entire game.

Implementation One of the first goals set was the implementation of a generic frame-
work for ANNs which could be used and adapted in upcoming projects. The decision to
start the development from scratch instead of building up on existing libraries was made
pretty early. The idea was to increase the understanding of the applied technology as well
as to improve the coding skills in regard to the upcoming tasks during the next year. The
framework consists of a set of classes which represent the hierarchy of the network:

PacNNNeuron a class describing a single node of the network.

PacNNEdge a class describing a link between two nodes of the network.

PacNN the class of the network itself connecting instances of nodes.

PacTools a collection of command line utilities.

With the primary design goal in mind the final framework works completely detached
from the game. To make use of the framework an interface was developed to connect the
game to the ANNs by passing certain information describing a current game to the ANN.

3.1 Algorithms to control Pacman Ghosts 20

The description of a situation is based on the sensor data of each ghost. The sensor data
includes basic information like the location of walls relative to a ghost’s position or the
direction of the human player’s location again relative to the ghost’s position (if there is
a direct line of sight). The interface collects and encodes the given information into a
proper format processable by the ANNs. As a result the ANN activates the neurons on
its output layer which represents the next movement of the particular ghost.

Training The process of learning is an important part of the concept of ANNs as well
as of the developed framework. To keep the development on a basic level the simple
backpropagation algorithm was used. As a supervised learning method it is based on
expertise and requires the awareness of the given problem. Given a set of training patterns,
the backpropagation algorithm follows a simple scheme:

1. A pattern is selected, its input vector is fed through the network which calculates a
result vector.

2. The result vector is compared to the pattern’s output vector by an error function.
If the error exceeds a predefined threshold the algorithm adjusts the network back-
wards.

3. The adjustment is done by modifying the connections between the nodes of the
network. The method of steepest descent is used to adjust the weights so that
the error is minimized. As stated earlier this process starts at the output layer
and propagates the modification through the entire network until the input layer is
reached, therefore the name backpropagation.

The data used for the learning process was a set of encoded descriptions of possible game
situations and the desired reactions, precisely the direction to move. This information had
to be created manually based on the developers’ expertise.

3.1.3 Ghosts controlled by Evolutionary Algorithms

As seen in Chapter 2, there are many possible ways to control NPCs by using evolutionary
algorithms. We selected three different approaches to gain a broad overview about the us-
ability of EAs to generate game strategies. Two of the EAs use individuals which describe
the full ingame behaviour of a ghost, the third EA employs playing field coordinates as
individuals and evolves them online every time a ghost needs to be moved.

Implementation To minimize effort we developed a common framework which is used
by all three EA approaches to interact with NJam. We created the singleton class EA-
Manager to gain easy access to all running EAs. This allows combined use of different EA
implementations in a running game. The manager handles instances of the EAController
class which represents an actual EA. Every EAController administrates some EAIndivid-
uals which are connected to the NPC class used by NJam to control the ghosts. By doing
so, we could easily access the NJam objects to gather all needed information to evaluate
the individuals without changing big parts of the NJam code.

3.1 Algorithms to control Pacman Ghosts 21

Game Theory From a game theoretical point of view Pacman can be treated as a
turn-based game between the Pacman player and the Ghost player. An individual may be
considered as a strategy. We developed an EA of pure strategies, where the behaviour in
the game is deterministically defined, and an EA whose individuals are mixed-strategies,
meaning that their behaviour is randomly affected. We consider two kinds of strategies,
because the pure ones are supposed to learn faster and be easier to analyze and for the
mixed ones, we expect slower evolution progress but a more dynamical ingame behaviour.

First approach - Pure Strategies We designed a (4 + 4)-EA approach to generate
game strategies by mutating randomly initialized strategies. A strategy is a mapping from
situation-codes to legal moves. A move d ∈ D, with D = {up, down, left, right} is called
legal if there is no wall in direction d. Each situation-code is represented by an integer
value, which can easily be calculated by

1. gathering all needed information as seen in table 1,

2. generating a bit vector v ∈ B13,

3. converting v to its decimal value k ∈ N.

The selection, variation and fitness calculation is done every 180 game loops, so the
ghost behaviour will change during game play. The variation is done by remapping 1/5 of
all possible situation-codes to a new legal move. The values where derived from empirical
experiments. One should notice that there are many unused codes, this was improved
while working on the papers (see section 3.3).

Figure 13: Example of a game situation corresponding to the situation encoded for the
red ghost above Pacman in table 1.

Second approach - Mixed Strategies Our mixed strategy approach works very sim-
ilar to our first approach, with the difference that it deals with probability distributions
over legal moves which results in a more chaotic but unpredictable behaviour. The in-
dividual encoding stores a float value out of [0, 1] with every direction. The variation is
done by adding a normal distributed value out of [0, 1] to one randomly selected move
probability followed by a normalization of the distribution vector. Everything else works
just like in the pure strategy approach. For a more detailed description see [DEH+07] and
for our enhancements on this approach see [BHN+08].

3.1 Algorithms to control Pacman Ghosts 22

Table 1: Encoding of the example game situation depicted in figure 13 by a 13-dimensional
bit vector v ∈ B13 for the red ghost above Pacman. Information on the visible
neighbourhood and a short memory are invoked.

0. Is Powerpill active 0
1. Is Pacman left 0
2. Is Pacman down 1
3. Is Pacman right 0
4. Is Pacman up 0
5. Is a wall left 1
6. Is a wall down 0
7. Is a wall right 1
8. Is a wall up 0
9. Was last move left 0
10. Was last move down 1
11. Was last move right 0
12. Was last move up 0

Third approach - Online EA The idea to implement an Online EA is motivated by
the property of evolutionary algorithms to deliver feasible solutions to the underlying op-
timisation problem in each iteration. The advantage of using these intermediate solutions
is that the algorithm can react fast to all occurring events. Our Online EA evaluates thus
the calculated directions online at the runtime. Each individual consists of two coordi-
nates and decodes one position in the maze. The mutation operator generates one new
position by adding a randomly chosen number from the range [−5, 5] to the individual’s
coordinates. Figure 14 shows a possible setting.

Since the mutation does not guarantee that generated positions are actually correct, a
feasibility test is performed after each mutation.

Each individual is evaluated according to its distance to Pacman. As the ghosts are
supposed to chase Pacman, this distance is generally supposed to be minimized, i.e. we
are looking for the shortest path from the ghost’s position to Pacman. For the purpose of
calculating the shortest path, each NPC controlled by Online EA has a global knowledge
of the maze. Apart from the distance to Pacman the fitness function takes the relative
position of the ghosts to each other into account as well as the availability of power pills.
The latter factor is included in the evaluation since we expect the Pacman to target the
cells close to the power pill. Thus the final fitness function is defined as:

fitness = κ ∗ β + 2.2 ∗ ρ − 1.5 ∗ ϕ→ min!, (9)

where β ∈ {−1, 1} denotes whether the power pill is active and ρ ∈ {0, 1} takes the
value 1 if there is a power pill on the current tile. The distance κ ∈ N denotes the length
of the shortest path in the maze. The parameter ϕ controls the distance between the
ghosts:

3.1 Algorithms to control Pacman Ghosts 23

Figure 14: The green ghost can reach all fields in the shaded area.

ϕ =
1
4

4∑
i=1

di, (10)

where di ∈ N is the distance to ghost i. If the positions of the ghosts tend to approach
each other too closely, this parameter will prevent such behaviour by imposing the pun-
ishment on the fitness function. The constants are determined by experimentation and
common sense.

The Online EA proceeds as described in listing 2.

1. Is the ghost ’s position at the center of a tile?
if yes go to step 2, otherwise END

2. start a (1+1)EA with the current individual
(5 generations)

3. calculate the shortest path to the position
of the best individual

4. choose the direction indicated by the shortest path

Listing 2: Online EA algorithm

3.2 Deterministic algorithm to control Pacman 24

3.2 Deterministic algorithm to control Pacman

To train the ghosts automatically, a NPC for Pacman was needed. The implementation
uses a simple rule based approach to decide in which direction to move. The directions
are rated according to table 2. A priority queue is used to store the four pairs of rating
and direction that have to be compared in a situation. The highest rated direction is
always chosen. This approach works good as long as pellets are in sight. When the maze
becomes emptier, Pacman has problems finding the remaining pellets, because he has no
global information.

Table 2: Rating of directions depending on the visible things and the situation Pacman is
in. The direction in which he moved before receives a bonus +0.25.

Rating Condition
5.5 Pellets in sight, the next tile has a pellet, a ghost is in sight,

Pacman has the power pill
5.0 Pellets in sight, ghost in sight, Pacman has the power pill
4.5 Pellets in sight, next tile has a pellet, no ghost in sight
4.0 No pellets in sight, ghost in sight, Pacman has power pill
4.0 Pellets in sight, no ghost in sight
3.0 No pellets in sight, no ghost in sight
2.5 Pellets in sight, next tile has a pellet, ghost in sight
2.0 Pellets in sight, ghost in sight
1.0 No pellets in sight, ghost in sight
0.0 Wall

3.3 Byproducts of the Pacman project

As a voluntary effort, some members of the PG decided to further research topics related
to the work carried out on NJam. This resulted in two scientific papers that are to be
published on the IEEE World Congress on Computational Intelligence (WCCI) 2008:

Measuring Flow as Concept for Detecting Game Fun in the Pac-Man Game
The first paper [BDE+08] deals with the fun players experience while playing NJam. It
presents a fairly large study with human players. The assumption is that player’s fun
relates to the psychological flow concept [Csi90]. The paper’s question then is whether
flow is a more reliable measure than to ask human players directly for the fun experienced
during gaming. In order to detect flow, it introduces a measure based on the interaction
time fraction between the human-controlled Pacman and the ghosts, and compares the
outcome to the results of a fun measure suggested by Yannakakis and Hallam [YH04].

To Model or Not to Model: Controlling Pac-Man Ghosts Without Incorpo-
rating Global Knowledge The second paper [BHN+08] takes a look at the methods
used to implement the ghost controller for Pacman. It concentrates on the CI methods of
EAs and ANNs and their attempts to improve the ghosts’ behaviour. Since the approach

3.3 Byproducts of the Pacman project 25

of these methods differs - the EAs learn while actually playing the game instead of learn-
ing on an abstract model of the game like the ANNs do - performances are evaluated on
a set of custom levels for further comparison. The results show to what extent trained
behaviour can be generalized, thus be applied to new situations.

4 Second Project: Glest 26

4 Second Project: Glest

“AI is always a minefield, and I’m always disappointed by great strategy
games which appear to have the most simple, easy-to-predict AI running your
enemies.” Peter Molyneux, Game Designer (1959 - . . .)

The game we worked on as the second project is Glest, a real time strategy game published
under GNU Public Licence (GPL, [5]) by Figueroa et al. [4]. This report is based on Glest
version 2.0. By the end of our development Glest version 3.0 has been released with an
improved gameplay and balancing. Therefore some of the results and techniques shown
here might not be compatible to the new Glest release without further modification.

4.1 Real Time Strategy Games

Strategy games are usually placed in war or battle situations, where all players start
with equivalent resources and have to build up a base and an army with the goal of
destroying other players’ bases and armies. The base usually consists of different buildings
for storing collected resources which are needed to build buildings, combat units, and
defensive facilities. The army usually consists of different units trained to attack a variety
of weapons or attend to specified tasks (such as harvesting resources or spying on the
enemy). The exact type of these buildings and units depends on the scenario in which
the game is placed. In a mediaeval setting there may be knights, granaries, and towers
equipped with catapults while in a science fiction setting infantrymen with laser guns,
power plants, and laser turrets may be found. Strategy games challenge the player to
build up an army and his base and cover the needs for resources simultaneously.

This genre falls into two sub genres: turn-based and real time strategy games.

In turn-based strategy games, the game is divided in rounds. Each player takes as
much time as he needs to take his turn and then the outcome of his action is displayed.
The actions are carried out simultaneously after each player has finished his turn (for
example in the classic game Battle Isle3).

Real time strategy games do not grant consideration time to the player. The time
flows continuously and each action is carried out as soon as it is triggered by the player
(for example Dune 2)4

Fog of War Every player has limited vision, he can only see what is situated in the
range of sight of his units. Places which are not in the sight of a unit cannot be seen by
the player. This is the idea behind “Fog of War” (FoW). Usually the map is dark when
the player starts a level and he gets to know its features by moving units around and
exploring it. But when the game features FoW, the player cannot see what happens in the

3Battle Isle is a well known round based computer strategy game which was released by the German
computer game developer Blue Byte Software in 1991. Battle Isle featured games of two human players at
the same computer or games of one player against an AI-enemy and is considered to be the classical round
based strategy game for computers.

4Dune 2 is a 1992 released game of the US video game developer Westwood Studios. Its new game
engine affected following game developers and, even if not being the first real time strategy game, coined
the whole genre.

4.2 Setting of Glest 27

Figure 15: Factors to damage dealt by different sources to varying armour types. All three
armour types (circles) dealt damage to all five materials (octagons). For clarity
factors of 1 are not displayed.

explored areas unless he leaves a unit there which guards the place. This way the enemy
may make movement inside already explored areas without being seen by the player (and
vice versa).

4.2 Setting of Glest

Glest is settled in a fantasy mediaeval world. The players can choose to control either
a magic or a tech faction. The magic faction uses wizards as basic units, which can be
trained to become powerful warlocks and may conjure dragons and daemons as fighting
units. The tech faction uses laborer as basic units, who may be trained to become knights,
archers or engineers who are able construct (flying) battle machines. A detailed description
of the units and buildings of each faction can be found in appendix B.

4.3 Rules

In order to win, each player has to eradicate all enemy units and buildings. To achieve
this goal, he has to build up an army consisting of the given units. Since the economic
structure in Glest is a rather simple one, the player only needs to know the techtree of
his faction (described in appendix A) in order to know what is needed to build up specific
units.

Damage and armour In Glest, the actual damage inflicted by an attack of a specific
type of unit differs by the armour type, which the unit is equipped with. The type
of armour is fixed for each unit type and given in appendix B. The multipliers for the
damage are given in figure 15.

4.4 Units and buildings 28

Resources The game economy is based on four resources. Gold, stone and wood are
used by both factions and can be harvested by Workers, Technicians (tech faction) and
Initiates (magic faction). These resources have to be transported to the nearest storage
area, which is a Castle for the tech faction and a Mage Tower for the magic faction, in
order to be used.

Mana, as a form of energy, is required by the magic faction in order to build units and is
generated by building Mana Sources. Instead of mana, the tech faction needs food for the
same purpose, which is gained by building Farms, Cows or Pigs. Unlike gold, wood and
stone, mana and food are not consumed during the building process but during the unit’s
lifetime. This means that the player cannot build any units if he lacks food or mana, and
also his units will die if the source of food or mana which they depend on is destroyed. An
overview of the resources which are required to build a specific unit or building is given in
appendix B.4.

Experienced Units Glest includes an experience model for units, which is based on
the number of kills the unit has done. Each unit type has different promotion levels which
are reached if a fixed number of enemies is killed, i.e. if a unit reaches certain experience
in its field of action. The promotion levels and kills needed are stated in appendix B.3
for each unit type. For each level the unit reaches, its experience, hitpoints and armour
class increase by a factor of 1.5, while its sight increases by a factor of 1.2. Note that the
damage inflicted by the different attacks is not increased by advancing in levels. Units
incapable of advancing in levels are Daemons, Initiates, Summoners and Wicker Daemons
for the magic faction and Catapults, Cows, Pigs, Technicians and Workers for the tech
faction as well as any building.

4.4 Units and buildings

Glest features several units, buildings and enhancements for each faction which are pre-
cisely described in appendix B. There are also tables containing the exact values used in
Glest. Each unit and building has a property called hitpoints (HP) which is a measure of
the unit’s health. When a unit is attacked, the HP are decreased by the damage value of
the attacking weapon. When a unit’s HP reach 0, this unit dies.

5 Glest (re)coded 29

5 Glest (re)coded

“In C++ it’s harder to shoot yourself in the foot, but when you do, you
blow off your whole leg.” Bjarne Stroustrup, creator of the C++ programming language (1950 - . . .)

While implementing our AI enhancements, we added new core functionalities to Glest
and solved some hardware compatibility issues in order to make Glest better fit our needs.

5.1 Bigger Selections

Figure 16: In the original selection of Glest the maximum size of a group is limited to 16
which are displayed as shown in the left screenshot. If there are more units in
a selection they will now be displayed as shown in the right screenshot.

During the testing phase of Self-Organizing Maps (SOM), as described in section 2.3,
we noticed that Glest limits the maximum number of simultaneously selected units to 16
and so a group has a maximum number of members. We raised this limit to 40 to allow
bigger groups. The selected units are displayed in the old Glest style if the number of
units in it is less or equal to 16 and are displayed with one unit icon and their quantity
number if there are more than 16 units in this selection as shown in figure 16.

5.2 Big Endian binary compatibility

Sound, texture and three-dimensional model files used by Glest are all binary files in little
endian byte order. The original Glest code only copied this data into main memory and
thus only ran on the little endian processor architecture. To support Apple’s PowerPC
Mac as well, we ported the code to the big endian architecture. To do this, it was sufficient
to use preprocessor directives to activate the adequate code during compilation of methods
involved in loading data.

5.3 Cache

After first Coevolution tests, described in section 7.1, we realised that Glest reloads all
needed data files on every new game started from the ingame menu. This needs quite a

5.4 Debugging Problems 30

lot of time which slowed down the coevolution runs very much. To solve this problem,
we added a static object cache to all data classes whose constructors load data from
disk on initialisation. The cache heavily decreases loading time and increases memory
consumption by about 30 MB.

5.4 Debugging Problems

Debugging the running game proved to be very difficult. A debug build of the game
is approximately ten times slower than a release build. This makes recreating a certain
situation which caused the game to crash even harder than it already is, in an application
as dynamic as a real time strategy game. Another difficulty is the way a breakpoint
interferes with the time measurement of the game engine. When the game is resumed,
the time spent in the debugger is added to the time elapsed since the last update of the
game simulation. As a side effect, units are “beamed” to their destination, buildings
in construction are finished immediately, etc, all because of the long time spent in the
debugger (while the game was actually halted!). All things considered, it is impossible to
use a normal debugger to debug the running game.

This problem is well known by professional game programmers. The solution is to
integrate debugging tools for the ai directly into the game engine, as described by Paul
Tozour [Toz02]. Unfortunately, Glest lacks such ingame tools and due to time constraints
it was impossible for us to write such tools ourselves, apart from the debug visualization
described below in subsection 5.6, which was already a big help.

5.5 Keyboard Layout

We added new keyboard shortcuts to enable SOM grouping, visualize flocking and
pathfinding features and disable GFX engine.

V to change the mode continuously:

1. position visualizes the actual field of each unit.
2. cell position is the same as position.
3. center position visualizes the center postion for big units requiring more than

one cell because of its size.
4. target position visualizes the end of a move command for each unit.
5. normal path visualizes the original paths for each unit assigned by Glest.
6. flock path visualizes the Flocking path (detailed description in section 6.5).
7. IM visualizes the influences of each unit (detailed description in section 6.3).

X to stop the graphical display of the game and speeding up the game rate.

Y to continue the graphical display after pressing X.

F to give a Flocking move command to a group (detailed description in section 6.5).

G to start grouping via Self-Organizing Map (detailed description in section 6.1).

Function Keys (F1, F2, etc.) to choose the groups created by SOM.

5.6 Visualization 31

5.6 Visualization

In order to illustrate our improvements, we added the possibility to visualize the calculated
paths, flock paths and influence values of the map cells.

Paths If path visualization is activated, the cells which will be trespassed by the selected
unit are highlighted in a gentle green. For groups, the path of each unit is visualized (see
section 6.5, figure 26).

Flock Paths In case of a flock move (see Section 6.5), in addition to the flock path the
precalculated average position of the selected group is highlighted. (See section 6.5, figure
26)

Influence Map To visualize the Influence Map (IM) (see Section 6.3), we disabled the
map textures and coloured each map cell in green, in case of positive influence values and
red, in case of negative influence values. The colour intensity of one cell corresponds to
the absolute influence value. (see section 6.5, figure 17)

Figure 17: Activated IM visualization in four situations. The calculated influence values
are transformed to colour codes and used to colour the ingame map cells. One
can easily differ his own influence domain (green), the enemies influence domain
(red) and the influence free areas (grey).

6 Local AI Group 32

6 Local AI Group

“Think globally, act locally.” René Dubos, French-American environmentalist (1901 - 1982)

The Local AI Group dealt with challenges which affect the human as well as the computer
player. In the following chapter, we present our enhancements in the unit movement and
selection which will result in a more user-friendly gameplay.

6.1 Selecting Units with Self-Organizing Maps

Controlling and grouping units in a strategy game is quite difficult, especially if the number
of units increases. We address this problem by an attempt to make the grouping process
autonomously. The player can concentrate on strategy issues instead of managing his units,
which is also time-consuming. For developing such an autonomous process we choose an
unsupervised learning approach, the Self-Organizing Maps (SOM). As described in section
2.3 using SOMs works fine in clustering processes, which is a key part in building good
groups of units in strategy games. In this chapter we describe in detail the configuration
of the SOM used in Glest and explain how we applied this technique to the building
of groups. Finally, we conclude with an assessment of general applicability of SOMs to
grouping in strategy games.

6.1.1 Architecture

The SOM’s data structure was written from scratch. Although there were plans to port
the ANN framework (section 3.1.2) to the Glest project for further use this idea was later
discarded. Due to the relatively simple structure of a SOM there was no need to port and
adapt the previous work. Furthermore this resulted in tidy code. The SOM consists of a
hierarchy of three basic classes which will be described bottom-up in the following.

SOMnode is the basic class in the hierarchy. The class describes a simple node which is
used to build up the SOM. Each node holds a set of attributes defining its current
position in the two-dimensional grid and a weight vector as well as the respective
methods used for internal calculations.

SOM as a class is based on top of the SOMnode and defines the actual SOM. Therefore
the class manages a vector of SOMnodes beside several other attributes used for the
internal computations. Additionally it offers methods for (re)calculating the SOM
and grouping entities based on a given set of features.

SOMwrapper represents the interface which connects the game to instances of the pre-
viously described SOM. From an arbitrary vector of units the wrapper extracts the
needed information and computes the grouping for the set of units.

6.1 Selection with SOMs 33

<?xml version="1.0"?>
<som>

<specification >
</specification >
<features >
</features >
<grouping >
</grouping >
<uma>

<enemyWeights >
</enemyWeights >
<myWeights >
</myWeights >

</uma>
</som>

Listing 3: Empty frame of a SOM configuration file.

6.1.2 XML Extension

For easier development and debugging a facility for loading a predefined configuration has
been integrated. Since Glest already makes use of the Xerces-C++ [7] XML-parser for
similar purposes, the choice of a proper format was easy. A configuration includes the
setup of the SOM itself as well as the features used for the evaluation. As seen in listing 4
these settings are written in a human readable XML markup and can easily be edited with
simple text editors.

Listing 3 shows the structure of an empty SOM configuration. The section of each
inner node has to be filled with further information regarding the final configuration of
the SOM. Usually each entry uses the same syntax:

〈 < key > value = ” < value > ” 〉

The specific keys are described in the following.

• specification

nodes defines the number of nodes used by the SOM, the value must be a positive
integer.

splitdistance defines the split value for building groups after creating the SOM,
see section 6.1.3 for more information.

mapradius defines the range of the feature map which is used for calculating the
influence for the neighbourhood, see also section 2.3.

epoch defines the number of iterations used for the calculation, the value must be
a positive integer.

startlearningrate defines the learning rate, the value must be a float.

• features

6.1 Selection with SOMs 34

<?xml version="1.0"?>
<som>

<specification >
<!-- size of the som -->
<nodes value="64" />
<!-- distance value -->
<splitdistance value="2" />
<mapradius value="2" />
<!-- iterations of som calculation -->
<epoch value="1000" />
<!-- learning rate -->
<startlearningrate value="0.1" />

</specification >
<features >

<feature value="XPos" />
<feature value="YPos" />
<feature value="HP" />
<feature value="CanFly" />

</features >
</som>

Listing 4: Excerpt of a SOM configuration file used to select units based on their current
hitpoints, their location and the ability to fly.

feature defines a specific feature of a Unit, value can be of HP (Hitpoints), XPos
(x coordinate of current Position), YPos (y coordinate of current Position),
Speed or CanFly (a unit’s ability to fly). Multiple features are allowed.

• grouping

weight defines the weight value for the specific feature. The number of weights
defined is analog to the number of features. Normally for grouping the weights
are initialized to 1.

• enemyWeights

weight defines the weight value for the specific feature used for the Massive Attack
(see section 7.2). The number of weights defined is analog to the number of
features. As described later in section 7.2 XPos and YPos are used to cluster
the enemies. The weights are set accordingly.

• myWeights

weight defines the weight value for the specific feature used for the Massive Attack
(see section 7.2). The number of weights defined is analog to the number of
features. As described later in section 7.2 HP and CanFly are used for grouping
units for the Massive Attack. The weights are set accordingly.

6.1 Selection with SOMs 35

6.1.3 Application

This part describes the SOM from the view of the player. It shows that creating groups
autonomously via SOM is an interesting feature. The workflow can be divided into four
sections:

1. The player activates SOM grouping.

2. The SOM is created on the fly.

3. The groups are created.

4. The groups are presented to the player.

SOM activation In the first step the user activates the grouping function simply by
pressing the key “G” (for the “group”). Note that this function allows more flexibility
in the grouping of the units than the player’s manual group selection. Especially during
combats it is impossible to manually regroup the units, whereas it is a natural feature of
the SOM based grouping.

SOM creation The core of the grouping process is the SOM creation. The unsupervised
learning consists of arranging objects (units) with different features, usually multidimen-
sional, in a two-dimensional space (see section 2.3 for more details). In our case four
features (XPos, YPos, HP, CanFly) are examined to test the quality of grouping. The
SOM receives all movable units the player currently controls and starts evolving. It is also
important to mention that this is a randomized process, so the created SOM can differ
from time to time when the player activates the grouping function. As a consequence the
player may receive different groups even if he activates grouping in a similar situation.

The tested features are the position of a unit (XPos, YPos), the hitpoints (HP) and the
ability to fly (CanFly). For testing purposes only one feature (XPos, YPos are handled
as one feature) is weighted with 1 and the others with 0. As expected, the units were
clustered according to the 1-weighted feature. When more features are considered, the
grouping is a more nondeterministic task. However two observations can be made. If the
units are close to each other, the HP feature will dominate the grouping process. Otherwise
if the distance between the units increases, the coordinate features (XPos, YPos) will start
dominating, leading to groups primarily clustered relative to their coordinates. We refer
to our videos [6] for a presentation of the grouping process.

Group creation We simplify the multidimensional problem of comparing the unit fea-
tures by arranging them in a two-dimensional space using unsupervised learning. Normally
we would assign every unit to its best-matching unit (BMU, see section 2.3). Units that
are classified as similar would then be assigned to the same BMU. Unfortunately we could
not control the number of groups and therefore the quality of the grouping, because we
calculate the SOM online during the game iterating over 1000 cycles only. So we cannot
expect the clustering to be accurate. Similar units can thus be assigned to different BMUs,
increasing the total number of clusters.

6.1 Selection with SOMs 36

Figure 18: Screenshot of the SOM based selection. The left picture shows a group of
friendly units, loosely gathered. The right picture shows a selected group of
dragons (encircled) calculated by the SOM. You can see the debug information
in the left-hand corner of the screen.

Our algorithm receives the SOM and the units as input and returns a dynamic grouping
of the units. For extracting the clustering information from the SOM we use centroids in
the two-dimensional space. In our case the number of centroids and therefore the number
of clusters is dynamic. The algorithm iterates over all units and looks for the BMU in
the SOM. It starts with one cluster, which is initially the BMU of the first unit. We
introduce a parameter called splitdistance (see section 6.1.1), which controls the number
of the groups. A small value of splitdistance results in more groups and, vice versa, a large
value leads to fewer groups. The next step in the algorithm checks whether the next unit
will be assigned to the existent cluster or a new cluster will be created by comparing the
distance of the BMU assigned to the unit with the BMUs of the existing clusters. If the
distance is smaller than the splitdistance, the unit will be assigned to the existent cluster,
otherwise a new cluster is created with the BMU belonging to the unit. Because the units
are already arranged in the SOM only one iteration of the SOM-algorithm is needed for
obtaining good clustering results.

Group presentation Following the completion of the previous three steps, the results
are presented to the player (figure 18). He receives a visual notification about the new
groups and for testing purposes he can select the different groups with the keys F1-F9. As
the observant reader has noticed, we can only assign nine groups in the testing scenario.
For this purpose a multi start procedure was developed. The termination criterion we use
is that the number of groups is between two and nine after the grouping process. This
solved the problem of having only nine keys available to which to assign the groups. Due
to the iteration count of only 1000 cycles for creating it, the SOM terminates sometimes
in a miss, indicated by clustering all units in just one group. In this case, the creation
process will be restarted. Naturally the multistart procedure could be generalized for other
real time strategy games or other break conditions could be defined. After examining the
workflow we see that it is a quite simple process building groups autonomously. The
grouping is also accomplished efficiently with respect to the sensitive time constraints
within the real-time game, so the player can arbitrarily regroup his units.

6.2 Pathfinding 37

6.1.4 Outlook & Conclusion

Our efforts show that the use of SOMs in real-time strategy games has great potential.
As a result of our work we could not help noticing that, surprisingly, creating groups
autonomously and especially using unsupervised learning methods to handle this task
is not a common approach. Although tasks such as the unit selection or grouping can
already be solved with SOMs in a satisfying way, there is still room for improvement.
Similar games could be a new application area for the SOM-technique. Because of this we
decided to continue working on the implementation of the SOM to improve the handling in
Glest. The implementation is comparatively easy, however finding a proper configuration
and a working set of features might be difficult and needs some further attention. We
hope to be able to write a scientific paper about our progress on this topic in the near
future. To sum up, we recognize a SOM to improve the AI and thus leading to a better
gameplay.

6.2 Pathfinding

Sending a unit across the map over a long distance provides difficulties for many games
and of course for real time strategy games as well. Even though efficient algorithms like the
algorithm of Dijkstra [Dij59] or A* [HNR68] are well known, they may not be applicable.
A*, for example, operates on a graph with places represented as vertices V and the ways
between these places represented as edges E annotated with the length of the way. On a
map consisting of tiles, each tile is a vertex of the graph with eight ways (edges) to the
adjacent tiles. The length of these ways is 1 if the target cell is trespassable or ∞ if it is
blocked. A worst case time complexity of O

(
|V |2

)
like the one of A* is too large, because

units are moved all the time and so multiple path calculations using A* are invoked several
times in the game and would slow it down very much. If, to speed up A*, less tiles are
taken into account, the algorithm may fail because the path may lead to a dead end.
Because of this, we developed the heuristic presented in the following which is based on
clipping geometric objects, as it is done in computer graphics. Our goal is to split the
paths where a unit can run into a dead end into shorter parts which can be calculated
faster and then build the complete path out of this parts to avoid calculating very long
paths at high cost.

6.2.1 Precalculation

When a game is started, the tiles on the map which do not allow movement are grouped
into rectangular objects, as axis aligned bounding boxes of the objects. To find the actual
objects on the map, an algorithm called mapScanner is used which works as follows:

The algorithm uses two data structures, an array of pointers, initialized empty, of the
size of a map and a vector for storing obstacles, whereas each obstacle contains vectors of
adjacent x and y coordinates. Semantically the obstacle vector will contain every obstacle
on the map at the end of the algorithm. Each obstacle consists of one or more connected
cells, e.g. a mountain range. The pointer map is used as a lookup structure and stores for
every cell which is already analyzed an empty pointer or a pointer to the obstacle which
is placed there.

6.2 Pathfinding 38

Figure 19: Algorithm for finding bounding boxes. The graphic shows a cut-out of the
map, with the algorith in progress, inspecting the cells of the map row by row
starting in the upper left corner. Gray tiles are still unseen with light gray
cells being free and dark gray being blocked. Red cells are seen, identified as
blocked and gathered together as objects, white cells are already inspected and
identified as free. The shaded cell is actually being analyzed, the cells pointed
at by the arrows are analyzed if they are blocked and belong to an object.

Now the algorithm works as follows: The map is scanned row by row, starting in the
upper left corner with the coordinate (0, 0). Each tile with coordinate (x, y) is scanned
for its trespassability. If it is blocked, the cells at the positions (x − 1, y + 1), (x − 1, y),
(x−1, y−1) and (x, y−1) as visualized in figure 19 in the pointer-array are checked. If one
of them points to an object in the object vector, the pointer is copied to the position of the
current inspected tile and the coordinates of the actual tile are added to the object that is
referenced. If no adjacent object is found, a new object is created with the coordinate of
he actual inspected cell and stored in the object vector. A pointer the the object is added
in the pointer array at the actual position. If several objects are found, these objects are
connected by the actual inspected cell and all objects that are pointed at are collapsed to
one. The algorithm stops when the bottom right cell is inspected. Listing 5 outlines the
mapScanner algorithm.

After the map has been scanned, the biggest and the least x (column) and y (row)
coordinate are selected for each object in the object vector. From these, a bounding box
of the object is saved as a mapObject in the game. Figure 20 shows how objects (left
image) are converted into boxes (right image).

This calculation can be done once when the game is started because the terrain never
changes. So the entire calculation is hidden in the loading process of the game an can be
used for faster pathfinding later on.

6.2 Pathfinding 39

Figure 20: Generation of bounding boxes around objects: The left graphic shows a grid
with tiles that are free (white) and and tiles that are blocked (black). The
right graphic shows the resulting bounding boxes.

Correctness Since every cell is inspected, the algorithm identifies every blocked cell due
to the nature of the look-up process. We examine direct neighbours of all blocked cells.
When a block of such cells is identified and it happens to connect two previously identified
objects, these are combined to a new object comprising the two old ones and the block of
marked cells. So the algorithm finds the biggest possible objects.

Time complexity Every cell is visited once and for every cell, up to four lookups take
place. Therefore on a map of w rows and h columns the algorithm which identifies objects
has a time complexity of O (w · h). Selecting the least and the greatest y value can be done
in O (1). Since the map is scanned row by row, the first coordinate added to an obstacle
in the precalculated obstacle vector has to be the one with the least y coordinate (being
in the top row) and the last has to be the one with the greatest y coordinate (being in
the bottom row). To get the vertical boundaries, we traverse the coordinates saved once,
checking whether the x coordinate of the current inspected is bigger (lower) than the
present found maximum (minimum) by which the maximum (minimum) is replaced with
the current value. With l coordinates saved inside the object, this can be done in O (l).
This can grow to a maximum of O (w · h) if the whole map is blocked. As shown above,
the whole algorithm has a time complexity ι of 2O (w · h) and therefore ι = O (w · h).

Space complexity In addition to the actual map a map of pointers has to be generated,
which will consume space of O (w · h). The objects consist of vectors saving coordinates
which again consist of a single x and a single y value. Like time complexity, the worst case
occurs when every tile on the map is blocked, in which case every tile has to be saved,
leading to a space complexity of O (w · h). No more memory is needed and the algorithm
has a space complexity of O (n ·m).

6.2.2 Pathfinding

Pathfinding using the precalculated data is a recursive process with two major steps:
The algorithm takes two parameters, the start (~s) and target (~t) position as coordinates

6.2 Pathfinding 40

~s = (xstart, ystart) and ~t = (xtarget, ytarget) and calculates the path from ~s to ~t (~s ~t).
The linear distance between these points is checked for intersecting map objects which are
already calculated with the algorithm presented in section 6.2.1.

If the direct line does not intersect with an object, the path ~s ~t is calculated. Our
original idea was to use Bresenham’s line-drawing algorithm [Bre65] for this calculation.
Unfortunately, this was insufficient because dynamic objects like buildings and units might
be on the calculated path which are not inside the prior calculated mapObjects since
they did not exists in the phase of precalculation. So the path is calculated with the
game’s implementation of the A*-algorithm [HNR68] which, in the unmodified, original
implementation of the game, uses the euclidean distance as heuristic and cost function.
This, in addition, allows the pathfinding to be influenced, as shown in section 6.3.

If there are objects intersecting with the direct line, the object (ξ) with the smallest
euclidean distance to the starting point is taken. Starting from this object, the corner
closest to the starting position is chosen as a waypoint ~a with ~a = (xa, ya). From the two
adjacent corners of ξ the corner which is the nearest to the target position, is chosen as
the waypoint ~b. Now the paths ~s ~a, ~a ~b and ~b ~t are calculated recursively and
combined to the searched path ~s ~t. Figure 21 shows a found path between two points
with one obstacle. In order to make this a fair as well as a fast pathfinding method this
does not use global knowledge: the potential clipping objects are considered only if they
are in the range of sight of the unit’s faction.

Known Problems

• Teleport bug Overlapping bounding-boxes (see figure 22) may cause the pathfind-
ing to fail because every calculated subpath may clip one of the overlapping boxes.
If this happens, the pathfinding algorithm will return an empty movement queue for
the given subpath. As described above, the subpaths are combined to a complete
path. This is stored in the unit’s movement queue. In order to move a unit, the
game engine moves the unit along this queue. If, by failed pathfinding, a subpath
between two waypoints is missing, the unit gets moved instantly (“teleported”) from
the first waypoint to the second.

• Wrong direction It may happen that the corner of the bounding-box which is the
nearest to the starting point leads to a longer path around the box. This is more
likely the nearer the starting point is set to the box. The result is a unit walking in
the opposite direction to the one needed to reach the target position in a short time.
Figure 23 illustrates this problem.

6.2.3 Outlook

To avoid the problems named in section 6.2.2, the pathfinding using bounding boxes could
be done using an implementation of A* with a different resolution. In the preprocessing
phase for each box the ways between the corners of every obstacle can be calculated and
saved inside the boxes together with their lengths. Using this information, a graph can be
generated. In this graph, each corner of a bounding box would be represented as a vertex.
The prior calculated paths between the corners would be represented as edges, weighted

6.2 Pathfinding 41

Figure 21: A path drawn by our pathfinding algorithm. The left figure shows the linear
distance (cyan) between start- and endpoint (blue) of the path to be calcu-
lated, which is blocked by one object (red). The figure to the right shows the
calculated way (green) with the waypoints (shaded) found by the pathfinding
algorithm.

Figure 22: An example for overlapping bounding boxes: The blocked tiles (black) in the
left image are combined to the two overlapping bounding boxes shown in the
right figure coloured red (horizontal shaded) and green (vertical shaded).

Figure 23: An example, where a unit may walk in the wrong direction because of the
clipping-algorithm. The starting point (blue, left) is near the bounding-box
(red). The waypoints (shaded green) are calculated as presented (middle left
figure) and the way (green) elapses as shown in the middle right and the right
figure.

6.3 Influence Map 42

with their lengths. Now our algorithm described above has to get the nearest corner of
the obstacle closest to the starting point as well as the nearest corner of the obstacle
closest to the destination. Between this two corners the shortest path can be calculated in
the already constructed graph. This path is represented by a set of waypoints for which
the subpaths between each pair of successive waypoints is being calculated with the A*
algorithm.

The maximum number of different objects that may be found on a map with a width of
w and a height of h is dw2 e · d

h
2 e and therefore the number of vertices would be four times

as high, since each object is represented as rectangular bounding box with four corners;
this would lead to a graph with 2 · w · h vertices with (2 · w · h)! edges wich is two times
as big as the original graph devised from the map.

Since, as described in section 4.3 playing a game of Glest includes setting up buildings of
different sizes, it is to be expected a map that has large free spaces and some, big objects.
So we may assume that there are less objects than w·h

4 , the resulting graph is smaller,
which makes navigating on it more efficient. To keep this modification of our algorithm a
fair one, which does not use global knowledge, the considered vertices have to be checked
against the faction’s knowledge of the map and only used if they are known.

6.3 Influence Map

The idea of including influence maps (IM), described in section 2.4, in the game came
quite early in the design process. The first implementation of IM was done during the
supplementary work specified in section 9.3, but this implementation did not suite the
needs to be included into the game. Another implementation was done in the later phase
of the project to enable a better pathfinding, which is described in the following section
6.4.

Influence of units Each unit u bears its own influence iu which is spread out in
quadrate-“rings” (Taxicab geometry, [Kra86]) up to its sight radius su. This influence
is calculated from the units maximum hitpoints hu and its combat strength cu defined by
the damage da which the unit deals with its most powerful attack. A unit may have up to
two attacks a1 and a2; if a unit only has a primary or no attack, the damage dealt by the
“missing” attacks is set to 0. In order to scale nicely with the radius, the combat strength
is divided by 100. Equation 11 shows, how the combat strength is calculated.

cu =
max{da1 , da2}

100
(11)

The influence is inversely proportional to the radius r of the ring as shown in equation 12.

iu(r) =

{
hu·cu
r for 0 < r ≤ su,

0 otherwise
(12)

It is possible to define other formulas for the unit’s influence and its propagation on the
map. There are generally no restrictions, which formula should be used for the propagation
or the type of the exerted influence, but potentially there is some extra work needed: If

6.3 Influence Map 43

the influence should be calculated on the basis of dynamic attributes rather than static,
some additional calls have to be made in order to modify the IM adequately.

If, for example, the actual hitpoints are being used instead of the maximum, the game
engine has to be modified so that every time the unit takes damage and the influence
spread out by the unit has to be recalculated. In order to do this, first the unit’s influence
is to be removed from the IM, the hitpoints are to be decreased, the unit’s influence is to
be recalculated and finally again added to the IM. Adding and removing influence to or
from the IM is the subject of the following paragraph.

Calculating the map In order to use the influence map for pathfinding, it cannot be
calculated in large time intervals but has to be accurate all the time. This could not be
achieved by traversing through the whole map, because even the linear time complexity
would slow the game down seriously.

Since influence sticks to units, the influence map has to be updated when a unit moves,
but only in the small area of its sight radius. Therefore, every time a unit moves to
another tile, its influence circle is removed from the unit’s old position and added to the
new position. By doing so, only 2 · s2u tiles have to be updated after each movement and
not the whole map. Equation 14 shows, how the influence of the cell ζx,y at position (x, y)
is calculated with units u out of the set of all units U at the positions (xu, yu) and distance
δu (equation 13) to the inspected cell.

δu =
√

(x− xu)2 + (y − yu)2 (13)

ζx,y =
∑
u∈U

iu(δu) (14)

When only one unit u is moved, the old influence ζx,y is updated to ζ ′x,y in the sight range
of the moved unit. Equation 15 shows the influence added for the unit being placed on
a tile; for the earlier discussed removement step of the unit the unit’s influence has to be
subtracted from ζx,y.

ζ ′x,y = ζx,y + iu(δu), x ∈ [xu − su, xu + su], y ∈ [yu − su, yu + su] (15)

In general, it is possible to use another function than summation to add a unit’s influence
to the IM, but it has to be invertible in order to make the removal of the influence from
the IM possible. It should also be kept in mind that this function is being evaluated all
the time for each action which takes place in the game. Therefore a formula should be
used which can be evaluated very fast.

For detailed analysis of each faction’s strength and weakness the influence of each faction
is stored separately in the IM. The IM grants the possibility to access the influence values
on different levels of detail. To achieve this, the IM simulates the logical structure of a
quadtree: If you query the IM you give the coordinates at which you want to know the
influence together with the level of access. If you query at level one, then you get the most
detailed values, namely only for the coordinates you queried. If you query for level two,
the quad of coordinates to which the given coordinates belong are being calculated as well
as the overall influence for this quad. We actually used simple summation to calculate the
overall influence at a cell or at any higher level, but the formula used for aggregation of

6.4 Pathfinding with Influence Maps 44

the different factions’ influence at the different levels of the quadtree may be a different
one.

Especially, it might be interesting to include the weapon and armour model used by
Glest into the aggregation of the influence map. Since we were running out of time this
was not included and we did not include any passibility restrictions in the spreading of a
unit’s influence (for example, a unit being able only to attack in melee and incapable of
flying should not spread its influence across the sea). For the same reason, the global AI
did not use any abstraction level of the influence map so it can be considered as future
work to do some strength and weakness analysis for strategic purposes.

6.4 Pathfinding with Influence Maps

As described in section 2.4, IMs are usually used to make strategic decisions. As stated
in section 6.3, our IM always shows the accurate influence for each faction on each tile
at any time of the game. Because the influence consists of the inspected unit’s maximal
hitpoints and its mightiest attack, strong opposing influence shows dangerous areas where
units are likely to be hurt or killed.

Since pathfinding, described in section 6.2, makes use of the A* algorithm, the influence
can be used to calculate “safe” paths, which means paths crossing tiles influenced by the
own faction or with no or only weak influence of the adversary. This can be done by
introducing the influence ζx,y in the existing heuristic of the A*, which is the euclidean
distance δ (equation 16) between the current cell (x, y) and the target cell (xt, yt).

δ =
√

(x− xt)2 + (y − yt)2 (16)

In order to prevent the unit from being affected by its own influence at its current
position, the unit’s influence has to be subtracted from the map as described in section
6.3 and the resulting influence ζ ′x,y is used.

ε =
ζ ′x,y − cu

180
(17)

ψ(x, y) =

−1 if ε < −1,

1 if ε > 1,
ε otherwise

(18)

τ = δ · eψ(x,y) (19)

Since we used the unit’s health to calculate the influence, we needed to scale ζ ′x,y − cu
down because the amount of hitpoints of a unit varies very much. 180 has proved as a
good value for scaling. In equation 18 we defined ψ(x, y) as our calculated ε and added
boundaries to avoid τ becoming zero or extremely high. If τ would become zero, a unit
would never reach its destination because A* cannot calculate any cheapest path because
every cell would have costs of zero. In the other way around to expensive costs may result
in dead ends even in open areas because every sorrounding cell is much more expensive
than the one the unit stands on resulting in the unit not moving any more.

6.5 Flocking 45

This leads to the following behaviour: If the influence is lower than τ , the unit is
considered to be strong enough to claim the cell under its own influence and crosses it.
Basically, the unit tries to get to the target position by crossing territory with the smallest
possible enemy control. If not individual units but a flock is moving, the combat strength
of the flock cf is gained by summing up the combat strength of all units u in the flock F
as shown in equation 20.

cf =
∑
u∈F

cu (20)

Now the following question arises: “What happens if there are enemies situated some-
where on the path?” To answer this question we have modified the basic formula above
to include the combat strength of the unit/flock whose path is being calculated: if a unit
is weaker than its enemy and if it is possible to pass around him, then the unit will take
this safe path. If the safe path is too long it becomes more expensive to take the safe path
then to travel through the enemy position and our unit will take the direct path. If our
unit is stronger than the enemy, our modification of the formula says: “This is already my
territory because I can dominate the enemy.” So the unit/flock will take the direct path
and attack the enemy on this path with with all possible attacks.

During our work we encountered the problem that a unit seemed to refuse a given move
command if it leads the unit into the area of strong enemy influence. This happened
because the unit moved as close to the enemy’s influence as possible and after that, every
other movement closer to the target destination got more expensive than the current
position. So the PathFinder comes to the conclusion that the path to the target destination
is blocked because it cannot be reached and therefore ended the move command. To tackle
this problem we weighted the own unit’s influence the more the closer the unit gets to its
target position and got the influence ζ ′′xy as shown in formula 21:

ζ ′′x,y = ζ ′x,y −

{
δ2 · cu if δ < su,

0 otherwise
(21)

This works fine most of the time but does not solve the problem. Some other possibilities
should be taken into consideration but due to time constraints we were unable develop
any other formula.

6.5 Flocking

In computer games, NPCs often have to move in cohesive groups rather than indepen-
dently. In the real time strategy game Glest the player has the possibility to select groups
of units and give every unit of this selection the same target position that it should move
to. In this case, the player wants the units in a selection not to split but to stay to-
gether. Obviously, they should achieve their target as a group and the behaviour of the
selection should be realistic, resembling the birds in a flock. We tried to implement this
type of movement for a group of units. In the following subsections we describe how the
movement is implemented in Glest, our implementation of the flocking rules and their
integration into Glest. Finally, we describe limitations of our implementation and give an
outlook on further work on the subject.

6.5 Flocking 46

Figure 24: Pathfinding using Influence Maps. The left figure shows how a weak unit com-
pletely avoids enemy influence, whereas a unit with medium strength, shown in
the right figure, moves through enemy controlled cells with an influence value
less than its own.

6.5.1 Movement in Glest

This section describes how the movement of units is implemented in Glest. A basic
understanding of this is necessary to understand our implementation of the flock move
and some our design decisions.

Map The map of Glest is divided into discrete cells. Only one ground and one air unit
can stand on a cell at any time. Most units occupy one cell, only a handful of units have
a size of two and therefore occupy a quad of 2 · 2 cells (see appendix B). A consequence
of the discrete coordinates is the fact that a unit can only move in eight directions (see
figure 25).

How Glest processes move commands The Glest engine keeps track of its current
state by an instance of a Glest::Game::Programstate object. The handling of all user input
is delegated to this object and its update and tick methods are called regularly to update
the current state.

During a running game, an instance of Glest::Game::Game, which is derived from
Glest::Game::Programstate, serves as the state object. The Game class itself delegates
most user input to an instance of Glest::Game::Gui, including the mouse click event,
which initiates a move command, if a suited unit or group of units is selected. If the
position the user has clicked on is empty5, the handling is further delegated to the

5If the position is occupied by an enemy, an attack command is generated.

6.5 Flocking 47

Figure 25: Possible directions for a unit to move.

Glest::Game::Commander class, where a move command is created and added to each
unit’s command queue.

The command of each unit contains the target position the unit should move to. If a
group of units is given a move order, each command created contains a different target
position to avoid collisions. Only one unit moves to the position requested by the user,
the target positions of the other units are located around this position. The command
does not contain a path; the path is calculated during the update of a unit (see below),
which takes place independent of the other units. Since the information that a group of
units got the same move order is lost during the creation of the move command and due
to the fact that each unit gets updated and moves independent from each other, the visual
appearance of a group of units moving across the map is unsatisfying: Faster units do not
wait for slower ones and in a worst case scenario, instead of the whole group reaching the
target position at once, the units arrive one after the other, thus becoming cannon fodder
for enemies nearby.

The actual movement of a unit takes place during its update. During each update of
the game simulation, Glest::Game::UnitUpdater::updateUnit is called for every unit of
every faction in the current game. The update of a unit consists of two steps: First,
UnitUpdater calls the update method of the unit. A unit keeps track of the progress of
its current action and if the current action has not yet been finished, the update method
returns false, to indicate that the UnitUpdater does not need to do anything. In the case
of a move command, the action of a unit is to move one step, from its current cell in the
map to the next one. Moving from one cell to another includes the rotation of the unit, if
necessary. If this action has been finished, Unit::update returns true and the UnitUpdater
also performs the second step of the update cycle.

In the second step of the update of a move command, the UnitUpdater compares the
current position of the unit with the target position. If the unit has reached its destination,
the command is finished and removed from the units command queue. Otherwise the unit

6.5 Flocking 48

is told to move to the next position of the calculated path. If the path is empty, a new
path is calculated using the Glest::Game::Pathfinder class. This is the case when the unit
gets updated for the first time after it has been given a move command.

6.5.2 Our implementation

Our implementation is based on the idea that we do not want to have a number of boids
moving randomly and eventually forming a flock, as described in Craig Reynolds original
work (see section 2.5). Instead, the group of units called the flock already exists (the
player selected some units) and the members of the flock should reach a given target (also
selected by the player). A path to the given target can be obtained using the A* algorithm
already implemented in Glest. The flock should than follow this path.

It is a common concept to separate the global pathfinding, which finds a path free of
static obstacles (like buildings) from the local pathfinding, which is the movement along
the found path, avoiding dynamic obstacles (like other units) as described in [Mat02].
In this context, we reimplemented the local pathfinding of Glest, using slightly altered
flocking rules. At first we used the global pathfinding in its original form, later in form of
the advanced version described in section 6.4.

Global Pathfinding The Glest engine provides the class Glest::Game::PathFinder,
which calculates the movement path for each unit as explained in detail in paragraph
How Glest processes move commands. A distinction is drawn between a move command
for a single unit and a move command for units which are centralized to a group. In the
first case, the path starts at the current position of the unit and ends at the target position.
In the second case, each selected unit calculates a path which starts at their respective
current positions. But the target position of each unit of the selection is slightly different
from the chosen target position so that every unit of the selection gets an individual tar-
get position and an individual path. To calculate this path for a unit, Glest uses the A*
algorithm due to the fact that it can calculate a path between start and target position
and the algorithm is quite robust as described in section 6.2. But how do we get the start
position for the group of units when every unit is placed at a different position?

We compute the mean position of the group of units and take that position as the start
position for the path calculation. Because of the fact that units within a flock should
act like individuals in a group, this calculated movement path can be understood as a
reference path, which the units of the group should stick to as described in the section
below.

Instead of using the average direction vector of the neighbours for the alignment rule2.5,
we use a segment of the calculated path, which we call reference vector (vref), to make
the flock follow the given path. Since the path is just a list of n positions on the map,
it is a natural choice to use the difference of position i and i + 1 as one reference vector,
starting with the vector vref0 = pos1 − pos0 when the flock starts to move and ending
with vrefn−1 = posn − posn−1 just before the flock reaches its destination. We call the ith

position last position and the ith + 1 position current position. As the flock moves along
the path, the current and last position have to be updated, to obtain the next reference
vector. We do this, whenever the average position of the units comes closer to the current
position than a given threshold called PathUpdateBound.

6.5 Flocking 49

Debug visualization The missing ingame debug environment provoked us to realize
some visualization to illustrate and debug our improvements. Figure 26 shows some ad-
ditional information about the flocking realization. First of all we visualize the flock path
the units of the group should correspond to. Every cell of this flock or reference path is
highlighted in green. In addition the average position of the group is pointed out in a blue
coloured cell. At least we have to mention the current path segment which is coloured in
red. So we can reconstruct the process of the flock. Figure 26 also shows the standard
calculated path for each unit in the group.

Figure 26: The left picture illustrates the visualization of the flock path. The path of the
flock is highlighted in green, the average cell position of the group is pointed out
in a blue coloured cell and the cell of the current path segment is coloured in
red. The picture on the right shows the standard pathfinding, which calculates
a different path for each unit of the group.

Movement After computing the movement path for the group of units the local
pathfinding with the flocking method set in. For the local movement it is important
to know that the map in Glest is divided into discrete cells. So each unit is located on a
cell and can only move in eight different directions to the cells around as you can see in
figure 25.

The move direction v of one unit is calculated as follows

v = wref · vref + wcoh · vcoh + wsep · vsep (22)

where vref is the reference vector described above, vcoh = posavg − posunit is the vector
from the unit’s position to the average position of the flock, vsep is the separation vector
and wref , wcoh and wsep are the corresponding weights. If an obstacle is found in the
direction v, which is closer than the boundary MaxSearchDistance, the obstacle avoidance
is invoked. We decided to use a simple heuristic, which is based upon the fact that the
reference path contains no obstacles. Therefore, the unit should steer towards the reference
path in hope that it will avoid the obstacle. This leads to a new direction v calculated as

v = wref · vref + wcoh · vcoh + wsep · vsep + woa · voa (23)

where voa is the vector from the unit’s position to the current position of the path and
woa the corresponding weight. The weight woa is inverse proportional to the distance of

6.5 Flocking 50

the obstacle and is multiplied with ObstacleAvoidanceWeight from the ini file (see below)

woa =
MaxSearchDistance−distobstacle

MaxSearchDistance
·ObstacleAvoidanceWeight. (24)

If the new direction is blocked by another unit of the flock, it will wait for a random
amount of time. If the unit is blocked by something else, it tries to move to a randomly
calculated direction.

To make the moving flock appear even more natural, we also alter the speed s each unit
moves along with, depending on its distance from the average position of the flock. This
speed modification is calculated as follows:

snew =
sold

|posavg − posunit|
. (25)

Parameters Due to the fact that flocking depends on a lot of parameters that influence
the flock behaviour of every unit of the flock, a convenient manipulation of these predefined
configurations for better testing and debugging purposes has to be provided. Therefore
we set up a configuration file named glestFlock.ini so that the important parameters can
be sourced out and modified easily and we do not have to compile the whole project in
order to test the parameters.

As shown in listing 6 theses settings are written in a human readable configu-
ration file and easily be edited with simple text editors and are finally applied in
Glest::Game::MrFlock. The specific parameters and how each influences the movement of
the flock group is described in the following.

Figure 27: Parameters of the left picture: SeparationWeight = 4; SeparationDistance =
4; ViewAngle = 45. Parameters of the right picture: SeparationWeight = 4;
SeparationDistance = 4; ViewAngle = 180. The angle of view of the units
causes a different move behaviour of the group. In the left picture the smaller
ViewAngle value causes that the group hangs together and each unit follows
its unit in front. In the right one the group shows a more scattered behaviour
because of the bigger ViewAngle value.

WaitTime: In some situations a unit of the group cannot move to its target position
because the position is blocked by another unit. In this case the unit switches into

6.5 Flocking 51

a wait state and waits a specified wait time which is calculated by:

waittime = randRange(0, 15) + WaitTime (26)

The randomized summand makes sure that units normally do not wait the same
number of cycles and hinder each other. After that time the unit checks if its new
calculated target position is free or is still blocked. If the target position is free the
unit will move to this position. In the other case a new WaitTime is calculated. The
WaitTime is measured in update cycles and is set to 5 cycles by default.

TimeOut: A timeout is necessary in situations a unit cannot move to the rest of the
group and has to be thrown out. TimeOut is measured in update cycles and set to
2000 by default.

PathUpdateBound: Whenever the average position of the units comes closer to the
current position than a given threshold, the PathUpdateBound, the current position
is set to the next position of the reference path. PathUpdateBound is set to 1.5 cells
by default.

ReferenceDirectionWeight: The reference vector as described in section Global
Pathfinding 6.5.2 reflects the direction of the calculated path for the group. Each
unit of the group steers into the direction the calculated path pretends. The Ref-
erenceDirectionWeight offers the possibility to assess this reference direction. The
ReferenceDirectionWeight is set to 5 by default.

SeparationWeight: The separation vector as described in section 2.5 reflects the aim of
each unit to avoid hitting its neighbours. A higher weight improves this direction.
Manipulating this weight causes a significant change of the behaviour of the units in
a group. SeparationWeight is set to 4 by default.

SeparationDistance: This value characterizes which units around the current unit are
considered for calculating the separation vector. Only the units within the Separa-
tionDistance are considered. The SeparationDistance is set to 4 by default.

CohesionWeight: The cohesion vector as described in section Global Pathfinding reflects
the direction of the unit to the average position of the group. Each unit steers to
the mean of the group. The CohesionWeight is set to 1 by default.

ObstacleAvoidanceWeight: The ObstacleAvoidanceWeight offers the possibility to as-
sess the avoidance direction which is given by the avoidance vector as described in
section 2.5. The ObstacleAvoidanceWeight is set to 4 by default.

ObstacleAvoidanceRetries: ObstacleAvoidanceRetries is necessary in situations,
where the real obstacle avoidance with the help of the avoidance vector (see Ob-
stacleAvoidanceWeight) has failed and a unit of the group is blocked by a static
obstacle. So this unit tries a random direction which is given by a random direction
vector. ObstacleAvoidanceRetries controls how often a flock unit tries to move with
the help of a random vector. The ObstacleAvoidanceRetries are set to 5 by default.
If the maximal trials using the random vector are reached, the unit is removed from
the flock.

6.5 Flocking 52

=== Properties File ===

WaitTime =5
TimeOut =2000
PathUpdateBound =1.5
ReferenceDirectionWeight =5.0
SeparationWeight =4.0
SeparationDistance =4.0
CohesionWeight =1.0

ObstacleAvoidanceWeight =4.0
ObstacleAvoidanceRetries =5
MaxSearchDistance =7

ViewAngle =180

Listing 6: Illustration of the configuration file used to set the different parameters that
influence the behaviour of the group.

MaxSearchDistance: MaxSearchDistance constricts the distance a unit can look in
front to search for obstacles. The MaxSearchDistance is set to 7 by default.

ViewAngle: With the help of this parameter a change can be made between different
kind of fields of view. For example, a narrow field of view or a wide field of view. In
the first case, the group behaves like a snake and each unit follows its unit in front
and in the other case the group shows a more scattered behaviour. The effect of
different ViewAngle values can be seen in figure 27.

6.5.3 Integration into Glest

This section describes how we integrated the ideas described above into the existing Glest
Code.

Expanding the move command To be able to quickly compare the old movement
behaviour and our new flock move, we started by defining a modifier key: If the player
holds down the ’f’ key while issuing a move command, a state flag is set in the Gui class.
This flag is passed to the Commander class, which then creates a flock move command
instead of the ordinary move command.

For several reasons, we decided to expand the original command class and use the
existing move skill of the units, instead of writing a new command. It is our understanding
that introducing a new command would have required a new skill for each unit. The
consequence of introducing a new skill would have been that every data file belonging to
a certain unit type had to be modified (the new skill had to be added) thus becoming
incompatible with the normal, unmodified Glest version which we deemed undesirable.
Using the normal move skill and command class also kept the code changes to a minimum:

6.5 Flocking 53

We added a flag isFlockMode and a query method isFlockMove to the command. By doing
this, we are able to execute a different code path, when the handling of a flock move differs
from the handling of a normal move, keeping the original movement behaviour intact.

Several helper functions were added to the Command class, for example to calculate
the average position of the flock, and others. The movement using the flocking rules is
implemented in the UnitUpdater class. If a normal move command has to be updated, the
old method updateMoveCommand is called, otherwise our new method updateFlockMove
is invoked.

Figure 28: A situation, where the calculation of the flock path fails: The group in the upper
picture completely encapsulates its average position, which is the starting point
for the pathfinding. Since the units are regarded as obstacles, no path is found.
The bottom picture shows the same situation after some of the units have been
updated and got removed from the flock, because the pathfinding failed. Since
some units have been removed from the flock, the average position changed and
a path is found. The remaining units start to move, leaving the other units
behind.

Known problems Finding a path for the flock still imposes a problem in certain sit-
uations: As described above, the pathfinding starts at the average position of the whole
group. If the units stand near each other (see figure 28), the pathfinding might fail, because
the average position is surrounded by other units and these are regarded as obstacles. If
no path around the obstacles can be found, the pathfinding fails. In this case, the unit
during whose update cycle the pathfinding for the flock group failed is removed from the
flock group. Since no path has been found, the next unit which gets updated is responsible
for calculating the path for the whole group, which might fail as well. As one or more
units are removed from the group, the group’s average position alters, the path is finally

6.5 Flocking 54

no longer blocked and a way is found (see the bottom graphic in figure 28). The group
starts to move, leaving the units removed from the flock behind.

Obviously, the units within the flock should not be regarded as obstacles. We tried to
alter the methods which are called by the A* algorithm to determine if a cell in the map
is blocked by an obstacle. If a cell is occupied by a unit which belongs to the flock, the
modified methods return “no obstacle found”. After these changes, the behaviour became
better but the problem did not disappear completely. We assume that we actually did not
modify every method necessary but due to time constraints, no further work was spent on
the issue.

6.5.4 Conclusion and future work

Our present work show that steering groups of units with flocking can provide a natural
behaviour in real time strategy games. But there is still some work for us because some
special cases, as described in the previous section, are not perfect. Furthermore our results
would look better if the units can move to continuous coordinates and not only in eight
different directions so that the flocking behaviour looks more realistic and fluent.

Although the Glest code is readable the missing documentation causes that everything
needed to be reverse engineered and the missing ingame debug environment makes testing
an development hard.

But after all there is still room for improvement especially getting a selection of units to
move as a natural flock, cohesive can be seen as the basic task to be solved. As mentioned
above further time could be spent on finding better parameter sets.

In the end we have to mention that some refactoring concerning our implementation
might be useful because the current code is the result of a lot of experimentation and
should be reorganized. Some bugs remain to be fixed but due to the limited possibilities
to debug the game at runtime we do not intend to do so.

6.5 Flocking 55

objectVector : VECTOR <mapObject >
maxX : WIDTH_OF_MAP
maxY : HEIGH_OF_MAP
pointerArray : ARRAY <Pointer <mapObject >>[maxX , maxY]

// init each as NULL

FOR (y = 1 TO maxY){
FOR (x = 1 TO maxX){

IF(isBlockedCell(x,y)){
adjacendObjects : VECTOR <Pointer <mapObject >>

FOR EACH ([x-1, y], [x-1, y-1],[x, y-1],[x+1, y-1])
AS adjacendCell{

IF(NOT_NULL (pointerArray[adjacendCell])){
PUSH pointerArray[adjacendCell]

INTO adjacendObjects
addCoordinateToObject ([x,y],

&pointerArray[adjacendCell])
pointerArray[x,y]= pointerArray[adjacendCell]

}
}
IF (SIZE_OF(adjacendObjects) == 0){

newMapObject : NEW mapObject
addCoordinateToObject ([x,y], newMapObject)
pointerArray[x,y] = newMapObject*
PUSH newMapObject INTO objectVector

}
IF(SIZE_OF(adjecendObjects) > 1){

joinObjects(adjacendObjects)
updatePointerArray ()

}
}

}
}

Listing 5: Pseudocode-outline of the of the mapScanner-algorithm

7 Global AI Group 56

7 Global AI Group

“It is common sense to take a method and try it. If it fails, admit it frankly
and try another. But above all, try something.” Franklin D. Roosevelt (1882 - 1945)

The “global” subgroup dealt with those issues of Glest’s AI concerning global decision
making and strategic behaviour. The Glest AI is a deterministic rule-based one with a
fixed set of parameters controlling the activation of each rule (see listing 7). The main
drawback of determinism in this case is the predictability of the opponents behaviour,
which significantly lowers the fun after playing only a few games.

Having identified several sources of suboptimal decisions which the AI makes during a
typical game, we decided to tackle two of them. On the one hand we tested whether there
are learnable configurations of parameters in the rule base. An evolutionary approach
was chosen to accomplish this first milestone in the hope that the winning strategies will
survive over less well performing ones. On the other hand the simplicity of the attack rule
led to rather naive – though at first efficient – attack strategies. The basic attack principle
was to send all available military units to fight as soon as any opponent’s unit is in sight.
This strategy, also called rush, was improved by a novel idea of using self organizing maps
(see section 7.2.3).

7.1 Coevolution in Glest

Using coevolution (background information on coevolution is given in section 2.1) to evolve
players’ strategies follows the evolutionary processes in nature where individuals develop
depending on other individuals in the environment. They can either evolve together by
cooperating with each other or compete against each other. A successful strategy in a
game is the one that beats the others, thus we can evaluate the quality of a strategy by
comparing it to others. Coevolution allows to deal with the population of game strategies
in exactly this manner. Since tactical games are competitive by design, we evolved the
AI strategies using coevolution like described in section 2.1. Due to time constraints, the
coevolution has been run for the tech faction only.

Precondition:
* At least one idle unit exists ,

which can mine resources

Perform:
* Select randomly one idle unit
* Select resource ,

which is currently least available
* Send unit to nearest resource mine

Listing 7: Sample rule RefreshHarvester

7.1 Coevolution in Glest 57

;=== Properties File ===

CoEvo =0
CoEvoGen =2
CoEvoLambda =5
CoEvoMinimap =0
CoEvoMu =5
CoEvoGameEnd =50000
CoEvoTest =0

Listing 8: Parameter configuration for coevolution

7.1.1 EA implementation

Coding the population For simplicity we decided to leave the set of rules unchanged.
This limited us to coevolving the rules’ parameters. Each individual represents two valid
parameter sets of the rule base. We divided the game into two phases: The first is the
“building” phase and describes the beginning of the game. It is characterized by the high
amount of units built (both characters and buildings) and the concentration on harvesting
resources, without taking any notice of the opponent. The second phase begins with
the first battle, since the main concern of the AI afterwards is to gain military strength.
We expect that the AI focuses on different goals (resource harvesting in the first one vs.
building combat units in the second) and thus behaves differently.

Variation New individuals are generated by a crossover between two parents. The
crossover is implemented as an n-point crossover, with full sets of parameters for each
rule chosen interchangeably between the parents. The resources are mutated by shifting
some amount from one resource to another, maintaining the property of a probability
distribution. In all other cases a variable is mutated with a probability of 1

n , where n is the
number of variables. Integer values are mutated by adding a uniformly distributed number
from {−1, 0, 1}. Floating point numbers are mutated by adding a normal distributed
number with a mean of 0 and a variance of 0.04.

Selection The µ Individuals with best fitness are selected for the next generation. In
case of equal fitness values an individual is selected randomly.

Configuration All parameters that are relevant for the coevolution runs are specified
in the file named “GlestExtd.ini” (see listing 8). The usage of this file simplifies varying
the parameters of the EA (number of parent individuals “CoEvoMu”, number of offspring
“CoEvoLambda” and number of generations “CoEvoGen”). Additionally, we have speci-
fied the flag “CoEvoGameEnd” whose value stands for the number of update cycles after
which the game will be forced to end. This forced ending prevents games from getting stuck
and running for an arbitrary long period of time without any of the opponents being able
to win the game. The remaining flags (“CoEvo”, “CoEvoMinimap” and “CoEvoTest”)
have been used for testing purposes only and their value is irrelevant.

7.1 Coevolution in Glest 58

Initialization We decided to use a (5+5)-EA with elitistic selection and fitness sharing.
The choice of µ = λ = 5 is a compromise between runtime and population size. In a first
attempt, the starting population contained individuals with parameters of the standard
Glest AI. For the sake of higher diversity, we then decided to randomly initialize the
individuals.

Fitness Function The fitness of an individual corresponds to the outcome of the game.
If an individual’s AI wins the game, its fitness is increased by 1. Since this fitness assess-
ment leads to circularities among the individuals (an effect described in section 2.1), fitness
sharing is employed at the end of each generation, like shown in equation 4. The basic
idea is to reward individuals that won against seldom beaten ones in order to maintain
high diversity.

7.1.2 Results and Discussion

We expected that the amount of harvested resources is a good indicator of the individual’s
performance. Furthermore, we expected that the variable building ratio, which controls
the amount of triggered build-rules, differs between the two game phases (before and after
the first attack).

The results are obtained by running automated games for a predefined number of gen-
erations. Since one evaluation of the fitness function requires a completed game, running
the EA is very time consuming. The effect of a certain parameter setting is evaluated sub-
jectively by an observation of games against a standard Glest AI as the reference, because
an appropriate measure of an individual’s quality is not obvious.

Building The parameter building ratio is used by one of the AI’s rules to trigger the
construction of new buildings. It works simply by checking if the proportion of buildings
in the total of all units is below the building ratio threshold. Alternatively, the rule can
be triggered by the absolute number of buildings falling below a threshold. If one of those
is fulfilled, a building type is determined by another mechanism and finally built. The
order to produce buildings is as follows: First the defensive buildings, then the buildings
for warrior productions and finally the storages are built.

As stated earlier, we distinguish between two different game phases. Figure 29 shows
how an individual’s building ratio thresholds for the two phases developed during an
evolution over 34 generations after they have been randomly initialized. At the beginning
of the game there are only a few buildings. This is of course the expected state, since
it’s the player’s task to build more. The evolution results in a low threshold in the first
phase, encouraging the AI to quickly expand its base. The high value of the threshold
in the second stage of the game indicates that most of the buildings in the base are
present. Thus, the AI spends the available resources on the production of units rather
than buildings.

Harvesting For the sake of isolated observation of the harvesting behaviour we have
excluded all parameters but the harvesting distribution from the evolutionary process. All
results related to harvesting have been obtained from a randomly initialized population

7.1 Coevolution in Glest 59

0

0.15

0.30

0.45

0.60

1 5 10 15 20 25 30 34

B
u

ild
in

g
 R

a
ti
o

Generation

Phase 1 Phase 2

Figure 29: The favoured values of the building ratio threshold are different between two
stages of the game. A low value leads to more initiated building tasks, whereas
a high ratio suggests that building is less important. The graph shows how the
randomly initialized thresholds reach a rather steady state after five generations
only.

evaluated over 27 generations. To understand the obtained results, it is important to
explain how the learned parameters are being processed. Originally, the AI was simply
harvesting the current most urgently needed resource. Trying to introduce some planning,
we added information about how much of a resource should generally be kept in reserve by
the player. This information would then be learned by evolution and was represented as
a probability distribution over the three affected resources gold, stone and wood. We also
set it off against the current distribution of stored resources to consider the real demand.
In equation 27 is shown how the learned distribution l and the distribution of current
available resources c are combined to a resulting distribution r. All three are probability
distributions over the three resources, meaning li, ci, ri ∈ [0, 1] and

∑3
i=1 ci =

∑3
i=1 li =∑3

i=1 ri = 1.

ri = max{0, li − ci} (27)

After calculating the ri, they have to be normalized to fulfill the condition
∑3

i=1 ri = 1.
Then the resource to harvest can be drawn randomly from the probability distribution r
and a worker is assigned the task to harvest it. The learned distribution over the resources
is somewhat counter-intuitive. Figure 30 shows a tendency to keep stone or wood in reserve
rather than gold. We would, however, expect that gold is the preferred resource, since
it is needed in a significantly larger amount than the other two (see also the resource
requirements described in techtrees appendix A).

Since the learned distribution contradicts the common sense expectations, we investi-
gated, if the amount of harvested resources is affected by the learned distribution at all.
As already mentioned, we expect the winning strategy to harvest more, in general. Fig-
ure 31 shows a comparison between the amount of each resource of the winner and the
loser AI. Generally, the winner is harvesting more resources. Related to this effect, we
have to mention, that if the end of a game is caused by our forced timeout, we declare
the AI with more resources to be the winner. The impact of these games is, however,
not significant because it only occurs in four games out of 45 on average. The figure also

7.1 Coevolution in Glest 60

0

0.15

0.30

0.45

0.60

1 5 10 15 20 25 27

P
ro
p
o
rt
io
n

Generation

Gold Stone Wood

Figure 30: The distribution for harvesting of resources shows no learning progress over
time. The values are averaged over the survivors in each generation respec-
tively.

0

2750

5500

8250

11000

1 5 10 15 20 23

A
v
e
ra

g
e
 H

a
rv

e
s
te

d
 G

o
ld

Generation

0

2750

5500

8250

11000

1 5 10 15 20 23

A
v
e
ra

g
e
 H

a
rv

e
s
te

d
 S

to
n

e

Generation

0

2750

5500

8250

11000

1 5 10 15 20 23

A
v
e
ra

g
e
 H

a
rv

e
s
te

d
 W

o
o

d

Generation

Winner Loser Winner Loser Winner Loser

Figure 31: Average amount of harvested resources. The winning AI is generally harvesting
more resources than the losing one. The diagrams also show that gold is needed
most, followed by wood and stone.

shows that the amounts of harvested resources do not change much over generations. So,
we conclude that the learned distribution has no real effect on the player’s behaviour. If
this is due to a programming error or the frequent execution of the harvest rule by the AI
remains an open question.

Observations The ultimate test for the coevolved AIs is obviously its performance in a
game against a reference AI. The reference is, logically, the standard AI as implemented
in Glest, since we want to show the improvements of our development. In the test setting,
we let one of the individuals from the last available generation play against the standard
AI, assuming it to be the best available one. The experimental method we employed was
“test by direct observation” and included observing the games between the standard and
our coevolved AI. The games have been evaluated subjectively by 7 PG members. We
observed all possible combinations of tech and magic factions. Generally speaking, the

7.1 Coevolution in Glest 61

trained AI used as tech faction wins most games against tech factions. Since we only
trained the AI as tech against tech faction, we expected this outcome. The observations
showed that the trained AI shows different behaviour at the first stage of the game. The
trained AI first tries to collect as much resources as it can and mainly develops the base
during this period. Military forces are developed after the game has been running for a
while.

The learned strategy is a non rushing strategy, whereas the standard AI follows a rushing
strategy so that in test games the first attack is always performed by the standard AI.
Defending this first rush is a difficult task for the trained AI, but always worked out in the
end. After the rush, the trained AI had a better starting position in terms of resources
and a further developed base. This defines a turning point in the game and the trained AI
beats the standard AI. The weak beginning with respect to the military strength makes
it difficult for the trained AI to defeat the magic faction.

The magic faction has the ability to create many daemons rather fast and without
exhausting resource consumption by the summoners. This leads to very fast rushes by the
magic faction, which cannot be beaten by the trained AI. It was discussed by the group if
this behaviour is a bug in the original game because we would rather expect well balanced
factions. The remaining test cases are those in which the trained AI (trained as a tech
faction) plays the role of a magic faction against both the standard magic and tech faction.
Again nearly all games against the magic faction are won, which can be explained by the
building-stage. In games against the standard tech AI the trained AI using the magic
faction has much more problems. Our interpretation is that the magic faction is more
powerful in rushing strategies, but less effective on long term. As soon as the techs have
developed an adequate base, they win the game due to their technological dominance.

Discussion One main problem is to understand the meaning of the resulting parameters
learned. The rule base with all parameters mutated is a very complex subject and the
resulting behaviour can be hardly described theoretically. In order to reduce complexity
we also trained the AI only by mutating the distribution of the resources. Observing the
behaviour of such AIs shows that resource distribution is the main factor of improving AI
behaviour. The test games are won in the same way as with all parameters changed.

7.1.3 Future Work

One major unhandled issue is to adapt the performing strategy to the enemy behaviour.
This implies an analysis of the game state, which includes rating the enemy state and
the own state. For simplicity we distinguished only two situations, which are separated
by the amount of existing units. Of course, this static rule provides no interaction with
the current game state. Increasing the number of distinguished game states alone will
have no influence on adaptation anyway. Instead, an online learning process needs to be
established. As coevolution uses no information about the underlying problem, it would
probably be to slow for such a task.

7.2 Ultra Massive Attack 62

7.2 Ultra Massive Attack

The standard AI implemented and used by all opponents in Glest consists of 13 rules.
Every rule contains a time interval specifying the frequency at which it is being tested.
So, this approach is analogous to polling (see [Tan01, page 285]) in electrical engineering
and computer science. (In section 7.2.3, we propose to use an event driven approach
instead to simplify enhancements to the game.)

We tried to improve one of these rules called Massive Attack, which worked as follows:
As soon as an opponent’s unit gets within the range of vision the Massive Attack rule is
triggered. The system then decides whether the home base is stable or not, i.e. whether
the player has enough warrior units to defend the home base. The second factor to be
considered is whether the opponent is seen close to the home base or not. So there are
different outputs depending on these two factors.

• The base is stable ⇒ All combat units are sent to the field where the opponent’s
unit was seen.

• The base is not stable and the opponent is seen out of the base range. ⇒ Nothing
happens.

• The base is not stable. The opponent is seen inside the base range ⇒ All units
including workers give up their current command and start to defend their home
base.

To trigger this rule the original AI usually sends a Scout Patrol to the known opponents’
starting positions all over the map to scan the areas they reach for the adversary units.
The scouts are thus bound to find an opponent rather soon. As the human player is able
to memorize the deterministic starting positions after few games, too, we do not consider
this knowledge of the AI as cheating.

7.2.1 Modifying the Attack Rule

We started to rewrite the Massive Attack rule to create an Ultra Massive Attack (UMA)
and therefore had to modify the Scout Patrol rule as well. The UMA focuses on the attack
on the enemy base only. For defending issues the old Massive Attack is used and it only
triggers in case an enemy attacks within the base radius.

The UMA is closely interrelated to the scouting. We changed the way of sending scouts
to find the adversary base. First, we increased the number of scouts sent out. We expect
to receive more information on the strength of the enemy and the distribution of his units
by sending out more scouts. This information is used for further decisions in the UMA.
In order to improve the scouting only the fastest units are selected as scouts, because fast
units are able to collect more information in less time. Additionally, scouts are not sent all
to the same target position but rather to slightly different positions. This strategy leads
to a broader covering of the enemy base and each scout gathers different information.

As previously stated, the UMA is closely coupled with the scouting. Due to the afore-
mentioned lack of an event system, the UMA is only triggered if all scouts are killed, being
the only available information. Another aim behind this method is that we try to gather

7.2 Ultra Massive Attack 63

as much information as possible in order to decide how to perform the attack. The UMA
is restricted to the old Massive Attack in the way the attack is performed. Up to now all
units with an attack skill were sent to the target position of the Massive Attack. They
showed no trace of structured or intelligent behaviour. Neither was the enemy analyzed
in any way nor an intelligent attack position was targeted. The new UMA tries to take
this aspects into account.

The main idea behind the UMA is that the enemy units sighted by the scouts are
dynamically clustered by their position. Clustering is realized by a Self-Organizing Map
(SOM, see section 2.3). The clustered groups can then be analyzed in detail and each
group stands for a possible attack position. The goal of the clustering is to classify enemy
groups by a certain feature (for example strength), so that an appropriate group of our own
units can be assembled, which is expected to be able to defeat the considered adversary
group.

Due to time constraints and fast approaching deadlines, we were only able to implement
a simple, manually designed mechanism to partition the combat units appropriately to face
the adversary’s units. The clustering of the UMA’s units is again realized by a SOM. Unlike
the hostile units, the UMA’s units are clustered by their health points and their ability
to fly. A fitness function then assesses the appropriateness of a group against an enemy
group. As shown in figure 15, there are five different types of armour in the game. Firstly,
the percentage of health points that belongs to flying units y in the group is calculated.
The fitness value f is designed to give information which enemy group is best matched to
a specific own group. It is calculated as

f =
U∑
u=1

T∑
t=1

S∑
s=1

(mts · aus · fs). (28)

In this equation, U is the number of units of the own group, T is the number of armour
types in the game, S is the number of attack skills unit u possesses, mts is the damage
multiplier between armour t and attack skill s (see figure 15) and aus is the attack strength
of attack skill s of unit u. Fitness value fs, defined by equation 29, reflects the probability
that an attack skill is useful against a specific enemy group.

fs =

1 if s is a field and air attack,
y if s is an air attack only,
1− y if s is a field attack only

(29)

In the matching process, each group is assigned an enemy group. Hence, like the original
Massive Attack, an UMA once triggered always takes place, no matter how hopeless it is.
After matching each enemy group, the assembled own groups are sent to attack their
matched enemy group. This offers the opportunity to attack at specific positions with
grouped units, which are able to defeat the resident hostile units.

7.2.2 Implementational Issues

Implementing the new UMA did not require many changes. Firstly, we had to restrict
the existing Massive Attack so that the Massive Attack only triggers in case of defending

7.2 Ultra Massive Attack 64

the own base. Further on, only the function sendScoutPatrol was modified. The changes
extend the function in a way that more scouts are sent out to random positions. The main
problem was that we had to define a point in time, when the UMA is triggered. Glest
contains an observer design pattern for units that can be used to monitor the lifecycle of
a Scout Patrol. A “kill-event” was used to make a snapshot of the last seen hostile units.
When the last scout is dead, the UMA is started.

7.2.3 Future Work

A problem that still remains untouched is to decide if an attack is promising at all. This
could probably not be done without redesigning the entire attack rule. Another problem is
that the information used to design the attack might be outdated when the groups arrive
at the battlefield. This is of course mainly due to the hostile units’ mobility. It is difficult
to track the progress of an action, because Glest lacks a proper event system and the AI
lacks any kind of memory. Every given order is immediately forgotten. Especially the
omission of the event system complicates adding functionality a lot. Also, it negatively
affects the game’s runtime because in every game cycle the AI has to iterate over all units.
Instead, a data structure containing all active units should be maintained. This would
allow to leave out all idle units.

One important general issue of a Massive Attack is the group behaviour. It is not very
intelligent to attack the enemy by sending the own units to specific positions. The attack
should always be performed as a group. This implies that the units act as a group and
move together to the attack position. Otherwise units arrive at the enemy base one after
another and can be killed easily.

As previously discussed our project group introduced a method named Flocking (see
section 6.5). The integration of the Flocking into the UMA did not work smoothly. The
idea was to move the assembled groups with a flock move. This procedure did not work
properly so that further work has to be done. Main problems were that the Flocking
method has problems with grouping units, which are locally dispersed, and moving several
flocks through tight terrain.

8 Conclusion 65

8 Conclusion

“A year spent in artificial intelligence is enough to make one believe in
God.” Alan J. Perlis , American computer scientist (1922 - 1990)

In the second project carried out by the PG511, the usability of the CI methods was tested
in the complex real time strategy game Glest. The originally available AI was modified
both on overall strategic level (described in chapter 7 in detail) and on local level of single
or groups of units (see chapter 6 for details).

Although we are quite happy with the results, there are a few issues, both positive
and negative, worth mentioning now that we are able to look back and reflect on the
entire project. To begin with, it has to be stated that our version of Glest includes
some interesting new features. The player now has the possibility to group his units
automatically by using SOMs (see section 6.1) or to see different influence areas of his
and adversary’s units by visualizing the influence map (see section 6.3). Thanks to the
implementation of flocking for the control of motion over the map (see section 6.5), the
groups of units are now moving to their shared target position as a group rather than each
unit at its individual speed (thus possibly and probably splitting the group and leading
to a man by man annihilation). These concepts are rather new in the range of real time
strategy games.

Our modifications of Glest were implemented without using available libraries. This
was a deliberate decision since we had the impression that the overall learning effect
both in improving programming skills and in understanding the CI methods would suffer.
Additionally, by using libraries like the boost library [1] we used in the first term would
have unduly increased the projects weight.

On the downside, there is a whole list of difficulties which we identified during the work
with Glest. Firstly, there are insufficiencies in the implementation of the game itself. On
the whole we can say that the usage of CI methods in any aspect of the implementation
needs to be considered within the original design. Especially the runs of the coevolution
(see section 7.1) were influenced by the lack of possibility to manipulate the game timers
and thus reduce the duration of the games for some significant period of time.

Further on, we badly missed proper debugging functions. If a game is started inside
a debugger and halted on a breakpoint, the ingame clock is not stopped but continues
running which makes debugging of ingame methods quite difficult. We tested our methods
mostly by starting a game in a modified setting and by careful observation of the behaviour.
The setting at the beginning was chosen to suit the intended test: the number and types of
units were varied as well as the outlines of the maps. Additionally, a variety of visualization
modes was implemented in order to make new properties in motion control (6.5) and
calculations of the influence map (6.3) visible and thus enable some debugging.

Our version of Glest shows some deficiencies concerning its performance. Especially
when all new features are active, the performed calculations are taking too long to com-
plete. The code is not optimized regarding the runtime of single functions, that is because
we accepted some computational overhead of quadratic or cubic runtime when better
runtime would have probably been possible. This problem has not been solved, partly
because of the approaching end of term and partly because the necessary modifications

8 Conclusion 66

would require most of the game code to be restructured completely. It would have been
easier, however, if Glest was equipped with a proper event system that kept the history
of events during the game for individual units.

Although the implementations were tested and demonstrated for each group individually
– and we find that they show some impressive behaviour – the dependencies between all
new features has not been tested thoroughly. The short tests we ran and the performance
problems we met led to the conclusion that the code in its current version needs lots of
fine tuning. Some functions that work fine in their original setting tend to disturb other
functions. If, for example, a unit reaches the enemy terrain and its influence map shows
that it is easily overpowered by the enemy, the unit will strive not to enter the enemy
territory. But if this unit happens to be a scout, patrolling the map for information on an
enemy, we want it to get killed in order to trigger the UMA (like described in section 7.2).
Opposing tendencies of this type are difficult to track since it requires time consuming
observations and figuring out all possible test scenarios.

To sum up, we consider our work as enrichment to the existing game. Although CI
methods do not play a big role in commercial computer games yet, the methods presented
in this report are well suited for their tasks. After dealing with Glest for one semester we
strongly discourage further work on this game if it is only for a short period of time. Our
impression is that Glest offers great potential for improvement and that implementational
efforts should be granted sufficient testing time.

9 Review 67

9 Review

“Parting is such a sweet sorrow.” William Shakespeare, “Romeo and Julia”, act 2, scene 2

As stated in chapter 1, a project group is a course that every student of computer science
in Dortmund has to take. One has to apply to offered PGs ordering them by personal
preference and submitting his academic transcript of the intermediate examinations. From
the applicants, eight to twelve students, which are considered qualified to cope with the
demands of the particular topic, are accepted. If possible – which usually is the case –
the students’ personal prioritization is respected. By this, a group of students is cobbled
together by their marks and preferences. This may lead to a group not being able to work
together because of different characters – a problem which luckily has not occurred during
our project phase.

9.1 Seminar Phase

In the first part of the PG, seminars are held by the participants in order to introduce the
PG to the topics related for the upcoming work. The written compositions were submitted
to the tutors for review. Since there was no cross-validation of the reviews, the results
differed a lot, depending on the actual reviewer. While some issues were tolerated by one
tutor, they were chalked up by another. However, the overall rating was quite positive
and a good exercise for the upcoming work during the following year.

The actual seminar phase was held during a two day stay in the Universitätskolleg
Bommerholz, which is the conference/guest house of the TU Dortmund. During this
phase, the presentations were held. Every presentation was followed by a feedback round
in which the participants and the tutors commented on the style of presentation and slides.
A tense situation at first, since the estimated expectations were pretty high, but it eased
up during the course of the day. The group finally started to warm up at the end of the
first day at the casual gathering in the in-house bar. Unfortunately the tutors did not take
part which would have been appreciated by the participants, nonetheless it was a great
evening. Due to the residential seminar the participants got to know each other better
and the otherwise time-consuming process of seminars was shortened a lot. We think this
was a great advantage over other PGs holding their seminar phase at the University over
a couple of weeks.

9.2 First Semester

As already mentioned in chapter 1, the PG phase was split into two projects planned to
last for one semester each. In the first semester, we evolved Pacman’s adversaries. A
detailed description of our work is given in chapter 3 and our CI report [DEH+07].

Working in the first phase seemed a bit over-directed. Reports on the progress had to be
given in every meeting, which were scheduled twice a week. At the end of every meeting
a feedback was given to the person moderating the session with comments on the overall
course of the meeting and its outcomes. This practise, which was thought to teach us
better skills in actually running meetings, sometimes seemed to be criticism for criticism’s

9.3 Second semester 68

sake (it was said, that “the climate was bad” or “the meeting was boring”). While our
skills in meeting moderation improved (a lot, actually), the feedback round shortened and
was later dropped in favour of more urgent issues.

In the beginning, our tutors regarded it as an obligation for the students to be present
at every meeting. When one member was unable to take part in the very first meeting (for
good reasons), he was given a formal warning, that this behaviour would not be tolerated
again. That struck us as being a bit disproportionate, since everyone might be unable to
attend a meeting at one point or the other during a one year period, be it for personal
reasons, illness or work. Luckily, one member of the PG intervened and reminded our
tutors of the fact that a PG should regulate itself as long as possible without outside
interference. An agreement was settled, that a member can be absent from a meeting
with valid excuse, if he notifies the group of his absence in advance and the PG does not
veto the planned absence.

During the semester, we gained the impression that one participant’s work as well as his
motivation were far below the others’. We conferred about this and scheduled a meeting
without the tutors to discuss the matter between ourselves, giving this person a clear
warning that his efforts will have to intensify significantly because we did not feel it is
fair for eleven students to do the work of twelve. He apologized and assured to do more
stressing that he had to sit several examinations during this term but would do much more
in the second semester. The apology was accepted, the topic therefore dropped and we
returned to work to achieve the given goal as a group of twelve.

We completed our modifications in time and showed the upgraded game on the Campus-
fest, the university’s open day. The visitors who played against our ghosts were asked to
fill out a questionnaire by which we tried to verify the formula of Yannakakis and Hallam
[YH04] which measures the perceived fun in a game. The verification did not work out
because the data contained to much noise, we blamed this effect to our questionnaire and
the disturbing surroundings of our stand. Some participants of the PG decided to make
another try at the verification and submit the outcomes to the IEEE World Congress on
Computational Intelligence6, while another subgroup wrote a paper about the techniques
used which was to be submitted to the same conference. Section 3.3 deals with those
papers both accepted for the conference.

The last task of the first semester was to write an intermediate report about our work,
which was published as CI report [DEH+07]. The semester finished with an agreement to
start the second semester with a kickoff meeting at Bommerholz and to report our results
of the first semester in front of the colloquium at our chair.

9.3 Second semester

In the second semester, the PG modified the real time strategy game Glest. As decided,
we started with a two day residential in the Universitätskolleg Bommerholz where we split
into two subgroups, each dealing with the local or global AI. These are described in the
chapters 6 and 7. During this meeting, one of our participants annoyed the PG as well as
the tutors by not having prepared his part of the presentation for the colloquium at our
chair (which was to be rehearsed during the residential) as well as not keeping the decided

6http://www.wcci2008.org/

http://www.wcci2008.org/

9.4 Expectations and experiences 69

schedule and being absent from a part of the meetings, which lead to an extra task of
writing the minutes for the next five meetings and a formal warning.

Although not being a draconic punishment, the PG had problems with this decision
because our problematic participant mentioned earlier did not, as promised, work more
but rather went on with his slack participation. So this problem was put to a meeting
schedule. The PG as well as himself was given an opportunity to put forward their opinion
on his working manners and he was given the task by the tutors to write down his share
of the work in the first semester to check whether his efforts were sufficient or not. This
report was discussed with the PG, which showed he did significantly less work than the
others.

In order to assess his achievement individually, he was given the task to implement an
Influence Map for Glest using Fuzzy Logic. His work was timed to last two weeks and at
the end he had to report about his achievements. These were noted as not being adequate
to compensate his lack of commitment and initiative in the past so the tutors decided that
it is not possible for him to pass this course any more, which resulted in him leaving this
PG and starting in a new one.

Considering the events it might have been our fault to some part as well. Trying to
settle occurring problems internally without the help of our tutors was the wrong decision.
Their role within the PG is supporting us if needed. Addressing the problems in a public
discussion might have been less time-consuming and less stressful.

During the first two months of the second semester, we worked on the tasks discussed
during the residential, and some participants voluntarily worked on the mentioned two
papers (see section 3.3), dealing with the techniques used to control the ghosts and the
problem of measuring and calculating fun or flow during a game against the modified
adversaries. Although it was a very interesting work, doing research for writing a confer-
ence paper and the actual writing was a new experience for all participants and consumed
quite a lot of time. Our tutors’ support proved invaluable: they reviewed the text, gave
leads on doing the actual research and used their reputation at the university to help us.
Nevertheless our concentration and time was split between the two tasks and the time
used for the submissions was taken at the expense of the PG’s project of enhancing Glest.

In addition, the subgroup dealing with pathfinding wanted to use the influence map in
their work. This was slowed down by the extra task of the special student for about three
weeks because implementing it in the subgroup would have made the task obsolete. Sadly,
movement was crucial for the other groups, so the whole modification aimed on getting
units from one tile to another slowed down the work of the flocking group as well.

At the end, the pathfinding was completed with delay and the subgroups could integrate
it in their methods. Due to the problems described in section 6.2, the movement, and
therefore the behaviour of the units, was far away from being perfect.

9.4 Expectations and experiences

The expectations before the project started were quite similar among the participants.
When asked about the personal expectations and reasons for taking part the most common
answers included the high interest in methods of CI and their application in computer
games and gaining insight for further studies or, if possible, a master thesis. Everyone was

9.4 Expectations and experiences 70

highly curious about the next year and the achievements to come, although we already
knew a lot of work had to be done.

Taking a look back on the past months most of us agree that our expectations have
been delivered. Working on a pretty new area of research and solving certain problems in
an interesting and unique style the project was a huge, yet personal success for everybody.
However comparing the pro and contra arguments for the PG as an educational course,
the opinions sometimes differ among the participants. We had a lot of fun while working
on our project which has been supported by the PG itself. Of course we had no influence
on the composition of the group and its constellation must not always work out that well,
yet we had the luck that we soon became a team of colleagues working on a common
goal. Improving the soft and social skills like organization, leadership, scheduling tasks
and moderating discussions and meetings are just some of the things a PG offers. However
the time and work that is needed to achieve the goals set must not be underestimated.
Twenty hours a week in addition to the official meetings were quite common, even more
prior to pending deadlines. It has to be considered that there is not much time left for
other courses beside the PG.

So we close saying that this course is a difficult and hard one but useful in the academic
training and thank ourselves for a year of interesting and learnful work and our tutors for
providing this experience for all of us.

A Techtrees 71

A Techtrees

“Character cannot be developed in ease and quiet. Only through experience
of trial and suffering can the soul be strengthened, ambition inspired, and
success achieved.” Helen Keller, US blind & deaf educator (1880 - 1968)

Techtrees describe which unit, building or technology has to be available to build a specific
one or, the other way round, which advancement is made and which units are enabled by
constructing the given building or unit or by researching some subject. The techtrees of
the two factions in Glest are shown in figure 32 for the magic and in figure 33 for the tech
faction.

Figure 32: Techtree of the magic faction. The graphic shows the techtree of the magic
faction, it was taken from [4]

A Techtrees 72

Figure 33: Techtree of the tech faction. The graphic shows the techtree of the tech faction,
it was taken from [4]

B Glest Units 73

B Glest Units

“You can’t say that civilization don’t advance, however, for in every war
they kill you in a new way.” Will Rogers, US humorist (1879 - 1935)

B.1 Unit description

B.1.1 Magic faction

The magic faction can build 9 units, all of which can be used as fighting units, 6 buildings
and 1 unit that is considered as a building (the Golem).

Buildings

• Archmage tower The Archmage Tower can be build if the faction is in control
of a Library. Archmage Towers enable the Dragon Call and the Advanced Magic
enhancement.

• Golem For game purposes, the Golem is considered as a building, though it is
capable of moving. Its movement is slow and energy points consuming, and a Golem
might only take 10 steps of continuous movement before it is forced to stop and
regenerate. It attacks by throwing stones at opponents’ ground units, making it a
moving defense device with quite high damage. In mediaeval terms, the Golem can
be compared to a siege tower.

• Libraries are needed for the mana compression enhancement and to build Golems.
In order to build Libraries, a Summoner Guild must have already been built.

• Mage Tower The Mage Tower is the central building of the magic faction. In
towers, resources are stored. Mage Towers are needed to build Initiates.

• Mana Source Mana is the special resource needed to build any magic unit. Each
Mana Source grants the player 14 points of mana.

• Summoner Guild The Summoner Guild is the building which produces Sum-
moner units. Here the enhancement Advanced Summoning may be researched. A
Summoner Guild is needed to build Libraries.

• Tower of Souls The Tower of Souls is the magical Defense Tower dealing quite
high damage against flying units. Since flying units are achieved later in the game,
the Tower of Souls is too expensive to be build in the early game but may be useful
if the game lasts longer. A Library is needed to build the Tower of Souls, as well as
a Summoner and therefore the Summoner Guild. If the player controls a Tower of
Souls he may upgrade his Daemons to Daemon Giants.

B.1 Unit description 74

Units

• Archmages are powerful fighting units. Equipped with Advanced Magic, they deal
the highest damage of all units in the game both at flying and at ground units. Their
regular attack damage is quite high as well. Their only weakness is the low hitpoints
value, so if an Archmage is attacked, it will be killed very soon.

• Battlemage The Battlemage is the second best fighting mage and can be evolved
from the Initiate without further buildings or enhancements needed. With Libraries
build, he may be promoted to Archmage. His attack deals damage to ground and
flying units as well and deals mediocre damage.

• Daemons may be conjured by Summoners. They are basic fighting units dealing
about the damage of an Initiate but having more hitpoints.

• Daemon Giant The Daemon Giant is an evolved Daemon and quite a strong unit
for face-to-face combat. He hat thrice the hitpoints of the Daemon and deals about
twice the damage.

• Dragon The Dragon is one of the most powerful units of the magic faction. It is
capable of flying and deals high damage.

• Drake Rider The Drake Rider is technically a Summoner riding a saurian. He
bears two attacks, one dealing mediocre damage to ground units at medium range
and one dealing medium damage to flying units at long range (which is identical to
the Summoner’s attack).

• Initiate The Initiate is the basic unit of the magic faction. Initiates are used to
harvest resources, construct or repair buildings and can be upgraded to become
Battlemages. Initiates themselves are very weak fighters.

• Magic armour Unlike it is conjecturable by the name, the Magic armour is no
enhancement but a fighting unit. In the story of the game, it is a magically animated
armour for hand-to-hand fighting. It does not deal a great round of damage, but its
quite high hitpoints together with the cheap summoning costs make it quite a good
infanterist.

• Summoner The Summoner is a weak fighting unit, only having slightly more hit-
points and dealing slightly more damage than the Initiate. His strength lies in the
ability to conjure monsters like the Daemon or the Dragon or becoming a Drake
Rider.

Enhancements

• Dragon Call is, together with Advanced Summoning, needed for Summoners to
conjure Dragons.

• Advanced Summoning is, together with Dragon Call, needed for Summoners to
conjure Dragons.

• Advanced Magic grants the ability for static fire attack to the Archmage.

B.1 Unit description 75

• Mana Compression is an enhancement for Battlemages, Summoners and Arch-
mages. It increases their energy, damage and attack range.

B.1.2 Tech faction

The tech faction can build 8 units, from which three do not have any fighting ability, 7
buildings and 8 enhancements.

Buildings

• Airodrome An Airodrome is needed to build Ornithopters and Airships.

• Barracks are training grounds for Swordman and Archers, the basic fighting units
of the tech faction. They may be upgraded with a Training Field to produce at
greater speed.

• Blacksmith A Blacksmith is needed for the Barracks to build armoured Sword-
man. Also the enhancements Shield Level 1 and 2 and Sword Level 1 and 2 can be
researched by a Blacksmith.

• Castle The Castle is the central building of the tech faction. In Castles, resources
are stored. Castles are needed to build Workers.

• Defense Tower A Defense Tower is capable of firing arrows at walking and flying
units at great distance with slightly higher damage than an Archer.

• Farm A Farm provides food for the units as well as may produce Cows and Pigs
which also provide food.

• Technodrome A Technodrome is needed to produce the Technician. In a Techn-
odrome, Advanced Architecture and Robotics can be researched.

Units

• Airship The Airship is the strongest fighting unit of the tech faction. It is capable
of flying and fires air to ground missiles which deal the second highest damage in
the game.

• Air Ballista The Air Ballista is the tech faction’s air raid defense, firing arrows at
flying units even farther than the Defense Tower. Its high hitpoints and high speed
make it a dangerous unit. The only drawback is, that flying units are build very late
in the game.

• Archer The Archer is one of the two basic fighters of the tech faction. High speed,
good reach, armour and the capability to hit ground and flying units as well make
him a cheap and interesting fighting unit in the early time of the game. The quite
low damage, however, reduces his use later in the game.

B.1 Unit description 76

• armoured Swordman The armoured Swordman is the enhancement of the Sword-
man and can be produced if the player is in control of a smith. He is a relative cheap
unit with mediocre hitpoints and damage and below average speed. The capability
to be upgraded with Shield 1 and 2 and Sword 1 and 2 makes him an interesting
unit for the mid of the game or hand to hand combat against any magic unit. If he
manages to close up, he even proves as match for the Archmage.

• Battle Machine The Battle Machine, available with a Technodrome, Robotics and
Blacksmith, is a strong fighting unit. With speed like the armoured Swordman, good
armour and high hitpoints, he proves as hard to kill threat against enemy forces
dealing high damage in hand-to-hand combat and also being attacking at range
with medium damage to weaken approaching enemies. His only drawback may be
the high production costs of 300 wood that exceed even the tech’s building costs.

• Catapult As the Battle Machine, the Catapult needs Robotics researched and a
Blacksmith and a Technodrome under control of the player in order to be build.
It has quite high hitpoints, below average speed and fires missiles that deal good
damage against ground based units.

• Cow The Cow is a unit for food production only. The player may move Cows
around, but they are incapable of doing anything else.

• Horsemen can be produced if the player is in control of a Blacksmith and a Farm
and has researched the Stables enhancement. He is the fastest unit of the tech
faction.

Enhancements

• Advanced Architecture can be researched in a Technodrome and allows the con-
struction of Defense Towers and Airodromes.

• Shield Level 1 and 2 can be built by a Blacksmith and increases the armour class
of armoured Swordmen.

• Sword Level 1 and 2 can be built by a Blacksmith and increases the damage of
armoured Swordmen.

• Training Field A Training Field, built by Barracks, increases the production speed
of the Barracks.

• Robotics The Robotics enhancement, researched in the Technodrome is needed to
build Battle Machines and Catapults.

• Stables may be built if Advanced Architecture is researched and allow training of
Horsemen.

B.2 Unit statistics 77

B.2 Unit statistics

B.2.1 Mage units

Hitpoints, armour and attack statistics for the units and buildings of the magic faction. If
an attack is applicable only to ground units or only to air units it is noted with a subscript
g (ground) or a (air). If nothing is stated, damage is dealt to walking and flying creatures
as well.

Unit or building Hitpoints
Armor Attack

Type Class
primary secondary

Type Damage Type Damage
Archmage 350 Organic 0 magicg 190-370 magic 650-750
Archmage Tower 10 000 Stone 0 — — — —
Battlemage 700 Leather 20 magic 100-180 — —
Daemon 700 Organic 3 swordg 60-140 — —
Daemon Giant 2 500 Organic 50 swordg 300-350 — —
Dragon 2 500 Organic 20 magic 210-290 — —
Drake Rider 1 300 Organic 50 magicg 135-235 magic 120-220
Energy Source 1 400 Stone 0 — — — —
Golem 2 000 Stone 45 magicg 50-450 — —
Initiate 450 Organic 0 magicg 60-140 — —
Library 5 000 Stone 0 — — — —
Mage Tower 900 Stone 0 — — — —
Magic Armor 900 Plate 2 magicg 110-190 — —
Summoner 500 Organic 0 magic 120-220 — —
Summoner Guild 7 000 Stone 0 — — — —
Tower of Souls 6 000 Stone 0 magica 250-350 — —
Wicker Daemon 1 400 Stone 0 — — — —

B.2.2 Tech units

Hitpoints, armour and attack statistics for the units and buildings of the tech faction. If
an attack is applicable only to ground units or only to air units it is noted with a subscript
g (ground) or a (air). If nothing is stated, damage is dealt to walking and flying creatures
as well.

B.3 Unit Advancement 78

Unit or building Hitpoints
Armor Attack

Type Class
primary secondary

Type Damage Type Damage
Aerodrome 6 000 Wood 0 — — — —
Airship 1 700 Wood 20 magicg 250-550 — —
Air Ballista 3 000 Wood 20 arrowa 225-375 — —
Archer 700 Leather 20 arrow 50-150 — —
Armored Swordsman 900 Plate 20 swordg 80-140 — —
Barracks 6 000 Stone 0 — — — —
Battle Machine 2 200 Wood 45 swordg 370-430 arrow 125-275
Blacksmith 6 000 Wood 0 — — — —
Castle 9 000 Stone 0 — — — —
Catapult 1 500 Wood 10 magicg 300-600 — —
Cow 500 Organic 0 — — — —
Defense Tower 7 000 Wood 20 arrow 70-170 — —
Farm 3 000 Wood 0 — — — —
Horseman 1 300 Plate 50 swordg 190-240 — —
Ornithopter 1 200 Wood 15 arrow 100-200 — —
Pig 300 Organic 0 — — — —
Swordman 700 Leather 20 swordg 60-120 — —
Technician 550 Leather 0 magicg 25-375 — —
Technodrome 6 000 Wood 0 — — — —
Worker 600 Leather 0 — — — —

B.3 Unit Advancement

Unit
Level 1 Level 2 Level 3

Name Kills Name Kills Name Kills
Archmage Expert 5 Master 15 Legendary 30
Battlemage Expert 3 Master 10 — —
Daemon Giant Ancient 10 — — — —
Dragon Ancient 10 — — — —
Drake Rider Expert 5 Master 10 — —
Golem Ancient 10 — — — —
Air Ballista Elite 10 — — — —
Airship Elite 12 — — — —
Archer Elite 5 — — — —
Armored Swordsman Elite 4 — — — —
Battle Machine Elite 10 — — — —
Archer Elite 5 — — — —
Horseman Elite 6 — — — —
Ornithopter Elite 10 — — — —
Swordsman Elite 3 — — — —

B.4 Unit costs 79

B.4 Unit costs

In order to construct, train or summon buildings, units or creatures the player has to
expand resources in the amount given in table B.4.1 for the magic and table B.4.2 for the
tech faction.

B.4.1 Mage unit costs

Costs for the constructions of units and buildings of the magic faction in Glest. Units
followed by an asterisk (∗) are buildings (the Golem is considered as building for game
purposes). Entries followed by a diamond (�) are enhancements. Negative values indicate
the production of a resource.

Unit or building
Resources

Gold Wood Stone Energy
Archmage 200 — — 2
Archmage Tower∗ 200 150 300 —
Battlemage 125 — — 1
Daemon 50 — — 1
Daemon Giant 250 — — 2
Dragon 350 — — 2
Drake Rider 125 100 — 2
Golem∗ 250 — 250 2
Initiate 75 — — 1
Library∗ 100 150 250 —
Mage Tower∗ 175 150 400 —
Magic Armor 175 — — 1
Mana Source∗ 150 — 100 −14
Summoner 175 — — 1
Summoner Guild∗ 100 50 100 2
Tower of Souls∗ 200 — 250 3
Wicker Daemon� — 200 — —

B.4.2 Tech unit costs

Costs for the constructions of units and buildings of the tech faction in Glest. Gold, wood
and stone are costs that accrue only once for the production of the unit, while food is a
permanently consumed resource. Negative values indicate the production of a resource.
Units followed by an asterisk (∗) are buildings.

B.4 Unit costs 80

Unit or building
Resources

Gold Wood Stone Food
Airodrome∗ 150 200 — —
Air Ballista 250 200 — 1
Airship 500 250 — 1
Archer 100 50 — 1
Armored Swordsman 150 75 — 2
Barracks∗ 100 150 50 —
Battle Machine 150 300 — 1
Blacksmith∗ 100 150 — —
Castle∗ 200 150 350 —
Catapult 100 200 — 1
Cow 95 — — −10
Defense Tower∗ 250 250 — —
Farm∗ 150 150 150 −10
Horseman 250 100 — 3
Ornithopter 275 200 — 1
Pig 50 — — −5
Swordman 75 25 — 1
Technician 150 — — 1
Technodrome∗ 100 250 — —
Worker 75 — — —

LIST OF FIGURES 81

List of Figures

1 Variation by crossover . 5

2 Illustration of an artificial neuron. 7

3 Fully connected feed-forward ANN . 8

4 Brain . 9

5 Influence Map generation A . 12

6 Influence Map generation B . 12

7 Description of separation, alignment and cohesion vector 13

8 Angle of view and range of sight of a boid 14

9 Pac-Man and NJam Mazes . 16

10 Maze with numbered crossroads . 16

11 Game graph of Pacman . 17

12 Routes of Firou . 18

13 Example of EA Ghost game situation . 21

14 Reachable fields for the Online EA . 23

15 Damage factors for armour types . 27

16 Changes made in group selection . 29

17 Visualization of the Influence Map . 31

18 Screenshot of SOM based selection . 36

19 Algorithm for finding bounding boxes . 38

20 Bounding Box generation . 39

21 Path drawn by the pathfinding algorithm 41

22 Overlapping bounding-boxes . 41

23 Misleading bounding-box . 41

24 Pathfinding using Influence Maps . 46

25 Possible directions for a unit to move. 47

26 Visualization of the flock path and the standard move path 49

27 Change of the behaviour depends on the angle of view 50

28 Situation in which the calculation of a flock path fails 53

29 Difference within the game favoured building ratio 59

30 Distribution for harvesting of resources . 60

31 Average amount of harvested resources . 60

32 Techtree of magic faction . 71

LIST OF TABLES 82

33 Techtree of tech faction . 72

List of Tables

1 Example of EA Ghost encoding . 22

2 Deterministic Pacman direction rating . 24

C References 83

C References

“When you steal from one author, it’s plagiarism; if you steal from many,
it’s research. ” Wilson Mizner, American playwright, (1876 - 1933)

[BDE+08] Beume, Nicola ; Danielsiek, Holger ; Eichhorn, Christian ; Naujoks, Boris
; Preuss, Mike ; Stiller, Klaus ; Wessing, Simon: Measuring Flow as
Concept for Detecting Game Fun in the Pac-Man Game. In: Proceedings of
the 2008 IEEE World Congress on Computational Intelligence, 2008

[BHN+08] Beume, Nicola ; Hein, Tobias ; Naujoks, Boris ; Neugebauer, Georg ;
Piatkowski, Nico ; Preuss, Mike ; Stüer, Raphael ; Thom, Andreas: To
Model or Not to Model: Controlling PacMan Ghosts Without Incorporating
Global Knowledge. In: Proceedings of the 2008 IEEE World Congress on
Computational Intelligence, 2008

[Bre65] Bresenham, Jack E.: Algorithm for computer control of a digital plotter. In:
IBM Systems Journal 4.1 (1965)

[Car78] Carrol, Lewis: Through the Looking-Glass. Neuauflage 2003. PENGUIN
Group Inc : London, 1978

[Csi90] Csikszentmihályi, Mihály: Flow: The Psychology of Optimal Experience.
HarperCollins : New York, 1990

[Dar59] Darwin, Charles R.: On the Origin of species by means of natural selection :
or the preservation of favored races in the struggle for life. London, 1859

[Dav05] Davison, Andrew: Killer Game Programming in Java. O’Reilly Media, Inc.,
2005. – ISBN 0596007302

[DEH+07] Danielsiek, Holger ; Eichhorn, Christian ; Hein, Tobias ; Kurtić, Edina
; Neugebauer, Georg ; Piatkowski, Nico ; Puchowezki, Michael ; Quad-
flieg, Jan ; Schnelker, Sebastian ; Stüer, Raphael ; Thom, Andreas ;
Wessing, Simon: Zwischenbericht der PG 511 / Technische Universität of
Dortmund. 2007. – Technical Report of the Collaborative Research Centre 531
Computational Intelligence (236/07). – in German

[Dij59] Dijkstra, Edsger W.: A note on two problems in connexion with graphs. In:
Numerische Mathematik. 1, 1959, S. 269–271

[DP85] Dechter, Rina ; Pearl, Judia: Generalized best-first search strategies and
the optimality af A?. In: Journal of the ACM 32 (1985), S. 505–536

[ES07] Eiben, Agoston E. ; Smith, James E.: Introduction to Evolutionary Comput-
ing. Springer-Verlag : Berlin, 2007

[GMS04] Graham, Ross ; McCabe, Hugh ; Sheridan, Stephen: Neural Networks
for Real-Time Path Finding In Computer Games. In: Institute of Technology
Blanchardstown Research Conference (2004)

C References 84

[GR03] Gallagher, Marcus ; Ryan, Amanda: Learning to play pac-man: An evolu-
tionary Rule-based Approach. In: Proceedings of the 2003 Congress on Evolu-
tionary Computation (CEC’03), 2003, S. 2462–2469

[HNR68] Hart, Peter E. ; Nilsson, Nils J. ; Raphael, Bertram: A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. In: Transactions on
Systems Science and Cybernetics SSC4 (2), 1968, S. 100–107

[Kir04] Kirmse, Andrew: Interdisciplinary Systems Research. Bd. 26: Game Pro-
gramming Gems 4 . B&T : Basel, 2004

[Koh01] Kohonen, Teuvo: Self-Organizing Maps. Springer : Berlin, 2001

[Kra86] Krause, Eugene: Taxicab Geometry. Dover Publications : New York, 1986

[KS01] Kalyanpur, Aditya ; Simon, Mohan: Pacman Using Genetic Algorithms and
Neural Networks. University of Maryland, 2001

[LSM91] Lin, Xia ; Soergel, Dagobert ; Marchionini, Gary: Information Retrieval.
In: Proceedings, 14th Ann. Int. ACM/SIGIR Conf. on R&D, 1991, S. 262

[Mat02] Kapitel 3.1 Basic A* Pathfinding Made Simple. In:Matthews, J.: AI Game
Programming Wisdom. Bd. 1. Charles River Media, 2002, S. 105–113

[MQLL07] Miles, Chris ; Quiroz, Juan ; Leigh, Ryan ; Louis, Sushil J.: Co-evolving
influence map tree based strategy game players. In: CIG, IEEE, 2007

[Rey87] Reynolds, Craig W.: Flocks, herds and schools: A distributed behavioral
model. In: SIGGRAPH ’87: Proceedings of the 14th annual conference on
Computer graphics and interactive techniques. ACM : New York, NY, USA,
1987. – ISBN 0–89791–227–6, S. 25–34

[RMS92] Ritter, Helge ; Martinetz, Thomas ; Schulten, Klaus: Neural Computa-
tion and Self-Organizing Maps: An Introduction. Addison Wesley : München,
1992

[RN03] Russell, Stuart J. ; Norvig, Peter: Artificial Intelligence : A Modern Ap-
proach. Prentice Hall, 2003

[SZ06] Shen, Zhuoqian ; Zhou, Suiping: Behavior Representation and Simulation for
Military Operations on Urbanized Terrain. In: Simulation 82 (2006), Nr. 9, S.
593–607. – ISSN 0037–5497

[Tan01] Tanenbaum, Andrew S.: Modern Operating Systems. Prentice Hall PTR :
Upper Saddle River, NJ, USA, 2001. – ISBN 0130313580

[Toz02] Tozour, Paul ; Rabin, Steve (Hrsg.): AI Game Programming Wisdom. Bd. 1.
Charles River Media, 2002. – 39–45 S.

[Val04] Valve: Half-Life 2 - Raising the bar. Prima Games, Division of Random
House, Inc., 2004

[YH04] Yannakakis, Georgios N. ; Hallam, John: Evolving Opponents for Inter-
esting Interactive Computer Games. In: Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB’04) (2004), July

D Weblinks 85

[YH05] Yannakakis, Georgios N. ; Hallam, John: A Generic Approach for Gener-
ating Interesting Interactive Pac-Man Opponents. In: Proceedings of the 2005
IEEE Symposium on Computational Intelligence and Games, 2005, S. 94–101

D Weblinks

“Basic research is what I am doing when I don’t know what I am doing.”
Wernher von Braun, US (German-born) rocket engineer (1912 - 1977)

[1] Boost C++ Libraries, 2007. URL http://www.boost.org. July 9, 2007.

[2] Dungeons & dragons, 2008. URL http://www.wizards.com/dnd/. June 17, 2008.

[3] M. Babuskov. NJam, 2003. URL http://njam.sourceforge.net/. October 10,
2007.

[4] Martiño Figueroa, José González, Tucho Fernández, Félix Menéndez, and Marcos
Caruncho. Glest, a free 3d real time strategy game, 2007. URL http://www.glest.
org. December 16, 2007.

[5] GNU Software Foundation. Gnu general public license, version 2, June 2001. URL
http://www.gnu.org/licenses/gpl-2.0.html. November 18, 2007.

[6] PG511. Ci in games. URL http://www.ciingames.de. January 30, 2008.

[7] The Apache Software Foundation. Xerces c++ parser. URL http://xerces.apache.
org/xerces-c/. January 22,2008.

[8] Wikipedia. Ludo — wikipedia, the free encyclopedia, 2008. URL http://en.
wikipedia.org/wiki/Ludo_%28board_game%29. June 17, 2008.

[9] Wikipedia. Pac-man — wikipedia, the free encyclopedia, 2007. URL http://en.
wikipedia.org/w/index.php?title=Pac-Man\&oldid=172015326. November 18,
2007.

[10] Windward Studios. Enemy nations. URL http://www.enemynations.com/. Febru-
ary 11, 2008.

http://www.boost.org
http://www.wizards.com/dnd/
http://njam.sourceforge.net/
http://www.glest.org
http://www.glest.org
http://www.gnu.org/licenses/gpl-2.0.html
http://www.ciingames.de
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://en.wikipedia.org/wiki/Ludo_%28board_game%29
http://en.wikipedia.org/wiki/Ludo_%28board_game%29
http://en.wikipedia.org/w/index.php?title=Pac-Man\&oldid=172015326
http://en.wikipedia.org/w/index.php?title=Pac-Man\&oldid=172015326
http://www.enemynations.com/

	CI25208.pdf
	25208.pdf
	Introduction
	Overview
	Chronological development and structure of this report

	Background
	Evolutionary Algorithms
	Coevolution

	Artificial Neural Networks
	Self-Organizing Maps
	Influence Maps
	Flocking

	First Project: Pac-Man
	Algorithms to control Pacman Ghosts
	Ghosts controlled by Randomized-Deterministic Algorithms
	Ghosts controlled by Artificial Neural Networks
	Ghosts controlled by Evolutionary Algorithms

	Deterministic algorithm to control Pacman
	Byproducts of the Pacman project

	Second Project: Glest
	Real Time Strategy Games
	Setting of Glest
	Rules
	Units and buildings

	Glest (re)coded
	Bigger Selections
	Big Endian binary compatibility
	Cache
	Debugging Problems
	Keyboard Layout
	Visualization

	Local AI Group
	Selection with SOMs
	Architecture
	XML Extension
	Application
	Outlook & Conclusion

	Pathfinding
	Precalculation
	Pathfinding
	Outlook

	Influence Map
	Pathfinding with Influence Maps
	Flocking
	Movement in Glest
	Our implementation
	Integration into Glest
	Conclusion and future work

	Global AI Group
	Coevolution in Glest
	EA implementation
	Results and Discussion
	Future Work

	Ultra Massive Attack
	Modifying the Attack Rule
	Implementational Issues
	Future Work

	Conclusion
	Review
	Seminar Phase
	First Semester
	Second semester
	Expectations and experiences

	Techtrees
	Glest Units
	Unit description
	Magic faction
	Tech faction

	Unit statistics
	Mage units
	Tech units

	Unit Advancement
	Unit costs
	Mage unit costs
	Tech unit costs

	References
	Weblinks

