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Abstract: A Riemannian metric a in the plane together with a
point A C R? induces a distance function d,(A,-). We investigate
optimization problems that seek for a scalar metric ¢ maximizing
the distance between A and a set B. We find necessary conditions
for optimal metrics which help to determine solutions a. In the
case that the set B is a single point, we determine the optimal
metric explicitly.

1 Introduction

One of the classical problems in real analysis concerns geodesics. To be specific,
let us assume that we are given a metric a : RN — R, on the set RV, N > 1.
This metric, which we consider as scalar for simplicity, measures the lengths of
infinitesimal paths. To every Lipschitz curve 7 : [0,]] — RY we associate the
length

Lu(y) = / () (0)] dt. (L1)

The problem of finding geodesics can now be formulated as follows: Given two
points z,y € RY, find the shortest path that connects z and y. The shortest
path-length induces a distance function on RY by

do(,y) := inf {La(y) : v € Lip([0,1], R?),7(0) = 2,7(I) = y} . (1.2)

This concept received recently considerable attention in the framework of Wasser-
stein distances in spaces of probability measures, [16, 13, 5, 3, 9, 6]. For an overview
on mass transportation problems we refer to [17].

Having described the forward problem of finding geodesics, we can now consider
the corresponding optimization problem. Given a point A € RY (without loss of
generality the origin) and a closed set B C RY, we search for the metric a that

makes the distance
do(A, B) :=1inf{d.(A,y) : y € B} (1.3)

as large as possible, in some admissibility class specified below. We therefore try
to design a geometry that prevents mass from being transported from A to B, and
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one might think of the problem of finding an optimal insulation. We note that the
opposite optimization problem, namely to minimize the distance, always has the
trivial solution of making a small on a straight path from A to B. We remark that
most of our results can also be applied to integrals over the distance d,(A, -), which
correspond to maximizing a Wasserstein distance. Precisely, one can prescribe a
probability measure @ on B, and seek a metric a such that

/B da(A,y) du(y) (1.4)

is maximal. In this paper we focus, however, on (1.3).

In order for the integral (1.1) to exist for all Lipschitz curves we assume the
metric a to be Borel measurable, and in order to have non-trivial solutions we
investigate the problem with a mass constraint; following [7] the metric a is assumed
to have fixed lower and upper bounds 0 < o < 3 < oo. Precisely, we assume that
we are given a number m € R, and consider the metrics a such that

a : R? — R Borel measurable, a(z) € [a, 3] Vo € R?, / (a—a)<m. (1.5)
R2

We say that a is an admissible metric if the conditions (1.5) are satisfied. We
call an admissible metric optimal if it maximizes d,(A, B) of (1.3). We say that
a is a non-trivial optimal metric, if the value of the functional in the optimum is
below the value for the (non-admissible) metric @ = 5. We refer to a region with
a = [ as black, to a region with a = a as white, to a region with a € (a,3) as
gray, and denote an optimal a that uses only its extreme values as a black-white
metric. A related optimization problem with a quadratic energy that admits only
measure-valued solutions was considered in [4].

Our analysis continues the work of Buttazzo, Davini, Fragala, and Macia [7].
Their main result is the existence of a metric a that solves the optimization problem.
In their proof, the easier part is to establish the existence of an optimal Finsler
structure on RY, where the length of a path v is measured with an integrand
©(v(t),7'(t)). The main part of the proof is to replace p(z,£) with a function
oz, &) = a(x)|€] which is conforming to the constraints.

We start our contribution with a thorough analysis of the relation between two
dual formulations of the problem. In the primary problem we seek a metric a, in
the dual problem we seek a Lipschitz function u : R?* — [0,00). For solutions, u
can be compared to the distance function d,(A4, ), see Lemma 2.2. Our second
preparation regards rays: one should imagine them as shortest paths from A to a
point in B. The precise definition (Def. 2.3) demands that rays realize distances.

Our main result is the derivation of Euler-Lagrange equations of the above
optimization problem, i.e., local conditions on the metric, the distance function and
the rays which are necessarily satisfied by solutions of the optimization problem.
Theorem 1.1 and Proposition 4.1 show that, loosely speaking, rays pass through
interfaces without changing their direction. Moreover, rays can pass only in normal
direction through interfaces. Corollary 1.2 is the following: If a is a black-white
solution of the optimization problem (with moderate regularity), then a consists of



a black disk with center A, with white outside. This shape is optimal e.g. if B
is a circle with center A. Instead, for generic sets B, our results imply that the
optimal metric can be black-white only if it has a very low regularity. Theorem 1.3
investigates the distance function in gray regions where a has values in («, 3). In
gray regions, the distance function has isolines that are straight lines.

Our final result is a complete description of the optimal metric in the case that
B is a single point (or a straight line, which, by symmetry, leads to an equivalent
problem). In this case, the Euler-Lagrange equations of the optimization problem
can be used to characterize rays and isolines with explicit formulas. With Theorem
5.1 we include the proof that the construction provides us indeed with the optimal
metric.

The optimization problem in terms of curves

Let a be an admissible metric in the sense of (1.5). It is sometimes convenient to
think of V(z) = 1/a(z) as the speed of a particle in the neighborhood of a point
x. Then, the integral [ a(y)|y/| stands for the time that a particle needs to travel
along the path v. We are looking for paths v such that particles starting from A
reach B as quick as possible.

An optimal metric with intermediate values might be interpreted as an homog-
enization effect, where black and white are distributed in a fine mixture to result
in gray. The problem relates to works of [1] and [8], where the distance functional
(1.2) is considered in an homogenization context. For a family of metrics a. with
periodic oscillations on the scale €, the I'-limit of the functionals d,, is investigated.

Main results

Theorem 1.1 (Rays at black-white interfaces). Let a be a non-trivial optimal met-
ric, w C R*\ B an open Lipschitz set. Assume x € dw \ B\ {A} and p > 0 are
gwen such that a = a on B,(z) Nw, and a = § on B,(z) \ W. Assume Ow to be
differentiable in x, and let v be a ray that passes through x non-tangentially. Then
v 15 a straight line that passes the boundary in normal direction.

Theorem 1.1 is shown in Subsection 3.2, where the condition of non-tangential
passing is defined. It is for example satisfied in the case that v has a derivative
on each side of z, which is not in the tangent space to dw in x. Proposition 4.1
generalizes the result to gray metrics.

We emphasize that a domain with Lipschitz boundary €2 is a set which locally
lies on one side of the graph of a Lipschitz function. This is a stronger assumption
than stating that the boundary 92 is a union of graphs of Lipschitz functions.

Proof. Follows immediately from Proposition 3.2 below. U

Corollary 1.2 (Optimal black-white metrics). Let a be a non-trivial optimal black-
white metric such that the white region has a Lipschitz boundary, and A is in the
interior of the black region. Then all rays are straight lines starting in A. The black
region is a disk with center A.



This Corollary is proven in Section 3.3.
Our second theorem concerns gray domains, its proof is given in Section 4.2.

Theorem 1.3 (Parallel in gray regions). Let a be a non-trivial optimal metric with

distance function u(x) = d,(A, z). Assume that u is continuously differentiable in
an open set w C R*\ {A} \ B, and that, for some p > 1,

a € COw; (0, B)) N WP ().
Then in w the level curves of u are the union of disjoint segments with endpoints
in Ow.

In the case that B is a point, we can determine the optimal metric. Explicit
formulas are provided in Section 5.

Theorem 1.4. Let B be a point with |A — B| = 2, and let m > 0 define a mass
constraint. Then there exists an optimal metric with the distance

m*2(3 — a)/*a'/* cosh(nr)
(sinh(2nm)1/2 ’

where n = a/2(8 — a)~V2. The optimal metric is given in (5.10) below (after
isometries and symmetric extension to the other half-plane). It is piecewise smooth
i each of the white, gray, and black regions; the boundaries are smooth curves
except for four points (distinct from A and B).

Proof. After an isometry we can assume A = 0, B = (2,0). Let d := d,(A, B).
Clearly d < 23. If the inequality is strict, the result follows from Theorem 5.1
(Section 5) applied to B := {1} x R. O

(1.6)

dy(A, B) = min {2@ 200 + 2

Underlying geometric ideas.

We informally present the main geometric ideas that lead to the above results.

Orthogonal at interfaces. Let us consider one of the shortest paths in the optimal
metric and let us focus on a point x where the path leaves the black domain and
enters the white metric, illustrated in Figure 2. We can improve the metric a as
follows: In a thin strip we replace black and white by gray, i.e. with the metric
a = (a+ ()/2. In this way, we make the indicated path longer (it is longer in the
new metric than in the old one), since the old path spent less time in the black
part and more time in the white part. The argument has to be improved in two
respects: One regards the fact that the old path is no longer the shortest path in
the new metric, the other regards paths that travel through edges of the strip. Both
improvements can be performed for C? boundaries.

We observe that the improvement of the metric is not possible when the path
crosses the interface orthogonally. This is the point in Proposition 3.1: Rays hit
interfaces of optimal metrics orthogonally.

Parallel in gray. The rays will in general be curved in the gray domain. A
useful notion of parallel rays in gray is to say that isolines of the distance function
(which are orthogonal to the rays) are straight lines. This is the result of Theorem
1.3 which uses the direction of rays, m = Vu/|Vul, and the optimality condition
divm = 0. A geometric argument why rays must be parallel is shown in Figure 3.
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Figure 1: The optimal metric a preventing mass transport between two points A
and B. The figure indicates regions of black (a = f3, plotted red/dark gray) and
gray (a € («, 3), plotted yellow/light gray) around A. The curves joining A and B
are rays.

2 Preliminaries

2.1 The dual problem

We can formulate the problem as a minimization over functions u : R? — R which
stand for the distance from the point A. We call a function v : R> — R admissible
for the dual problem (or admissible distance function) if it satisfies

u € Lipg(R*, R), u(A) =0, / max{|Vu| — «,0} < m. (2.1)
R2
We search for an admissible function u which solves one of the following.

inf u(y) = sup { inf a(y) : admissible} . (2.2)

yeB yeB

Before we compare the original problem (1.3) with the dual problem (2.2), we
provide some general statements concerning distance functions.

Lemma 2.1 (Distance functions). Let a be an admissible metric and let u = d,(A, -)
be the corresponding distance function. Then

1. u(.) is Lipschitz continuous with constant 3. In particular, u is differentiable
almost everywhere.

2. Let v € R*\ {A} be such that a is continuous in x and u is differentiable in
x. Then |Vu(z)| = a(z).



PE a=a

3 a=o
a qe
a=f a=(a + p)2 a=f
B 52$ a=(a + p)/2
gt a=p

Figure 2: Orthogonality argument. If an optimal path crosses a smooth black-white
interface non-orthogonally, then the metric can be improved: There is a gray metric
that uses less mass and all paths are longer in the new metric. The new metric is
sketched on the right, ¢ and p are chosen suitably, ¢ > 0 small, the small strip on
top is responsible for the saving of mass.

3. let v € R?\ {A} be such that x is a Lebesque point for a and u is differentiable
m x. Then

|Vu(z)| < a(z). (2.3)
4. The distance function u is admissible for the dual problem.

Vice versa, given an admissible u for the dual problem, the metric defined by

a(z) = max {a, lim sup M} (2.0

y—a ly — x|
15 admissible for the primal problem.

We emphasize that the inequality |Vu(z)| > a(z) is false for general metrics
a satisfying the assumptions of (3.). To see this, it suffices to consider the metric
a(xy,z9) = a for x; and x9/x; rational, and a(z,x9) = [ else. The corresponding
distance is d,(z,y) = alxr — y|, since a rational line can be found arbitrarily close
to the segment [z,y|. Accordingly, we have u(x) = «|z|. The derivative satisfies
|Vu| = o and is, at almost every point, strictly smaller than a.

Proof. Ttem 1. is immediate, it suffices to consider, for two arbitrary points, the
straight line between the two points and its length. Regarding 2., the inequality
|Vu(z)| < a(z) follows as in 1. To derive the opposite inequality, fix £ > 0, and
let 0 € (0,e) be such that A € Bs(x), |a(y) — a(z)| < € for all y € Bs(z). By
the definition of u there is v € Lip([0, 1], R?) such that v(0) = A, v(1) = z, and
L,(y) <u(x)+eb. Let s =inf{t € (0,1) : v((¢,1)) C Bs(z)}. Then

uw) = [ a0 <3
= [Cat@h @i+ [ at @bl
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Figure 3: Parallel in gray. Assume that a takes values strictly between o and f.
In the indicated situation of non-parallel rays we can shift mass from region F' to
region F, i.e. increase the metric in £ and decrease it in F'. This construction
yields a new metric which leaves the length of the rays unchanged, but uses less
mass — a contradiction to optimality.

> u(y(s)) + (a(x) —€)ly(s) — 2| —€d.
Therefore we have found a point y = y(s) € 0Bs(x) such that

(@) — u(y)|

> a(x) — 2.
|z =y )

Since u is differentiable in x the conclusion follows.
To prove item 3. we assume the contrary and find § > 0 and a sequence of
points x,, — x such that

|z, — z|(a(z) +9) < u(z,) —u(z).

For every curve v connecting x and x,, one has

wm><><m%mslammwww.

The idea is now to consider a specific collection of curves 7. Firstly, we define a
family of curves connecting (0,0) with (1,0) in the plane. We fix 0 < r < 1/2 and
define, for s > 0, the curve 7, : [0,1] — R? as the curve that connects the points
(0,0), (r,s), (1 —r,s), and (1,0) with straight lines. We choose a parametrization
with 45(r) = (r,s) and 5(1 —r) = (1 —r, s). A rigid motion and scaling applied to
these curves yields a family of curves 7, such that each ~, connects z with z,,.

We now choose r > 0 and sy > 0 small, the size will be specified below. Inserting
the family v, s € (—so, 80) of curves in the above estimate and averaging over s

gives
2 — l(a(z) + 0) Lf /' a(1s(0)) 1L (0)] i ds

2
< org Y% +% ﬂm+f / ) 1. de ds



1—r
< 267/12 + sElr — x| + (1 — 2r)|z — 2, ][ a(vs(t)) dtds.
—soJ T

We therefore have found a rectangle R = {7s(t) : t € (r,1 —7),s € (—s0,50)} of
volume (1 — 2r) - 2s¢ - |z, — x|* such that

1 1
> _ 2 20 > Z
%Ra_ o [a(x)+5 261/ +so] _a(x)+46,

for all r, s < §/(4/3). This is in contradiction with the fact that a(x) is the Lebesgue
value of @ in z. We have thus shown (2.3).

The admissibility of u follows immediately from (2.3).

It remains to show that the metric a constructed in (2.4) is admissible. It is
clear that a(z) € [, 3] and that (¢ — a)+ = (|Vu| — «)4 almost everywhere. It
only remains to show that it is Borel measurable. Since w is Lipschitz-continuous,
there is a sequence p; — 0 such that

o 1200 = @] e p) — u(a)
B i

for all x. The pointwise lim sup of continuous functions is Borel measurable, and
the same holds for the maximum of two measurable functions. O

We now make precise in which sense the original problem and the dual problem
are equivalent.

Lemma 2.2 (The dual problem). The values of primary and dual problem coincide,

Sa :=sup{da(A, B) : a admissible metric}

2.5
= sup {i%fﬂ :u admissible distance function} =: Sy. (2:5)

If a solves the primary problem, then the corresponding distance function d,(A,.)
solves the dual problem. Vice versa, if u solves the dual problem, then the metric
defined in (2.4) solves the primal problem.

If a is optimal and non-trivial, then

/W(a—a):m.

Furthermore, let u(-) = d,(A,-), and let a be the corresponding metric, defined as
in (2.4). Then a = a almost everywhere.

Proof. Step 1: Equivalence of the dual problem. Let a be optimal and
be the corresponding distance function, the admissibility of u was already checked.
Trivially, infp u = d,(A, B) = S,, hence S, > S,.

Vice versa, let u be optimal and a be the corresponding (admissible) metric. We
calculate, for an arbitrary Lipschitz curve 7 : [0,1] — R? joining A and the a-closest
point b € B

La(7) :/0 a(~(t)) |y (8)] dt Z/O |Ocfu o A](B)] dt = u(b) = Su.



The inequality among the integrals is checked pointwise based on the definition (2.4)
and on the fact that « is almost everywhere differentiable. Since v was arbitrary, we
find d,(A, B) > S,. In particular, S, > S,. This shows equality of the values. In
particular, the above constructions yield solutions to the respective dual problems.

Step 2: Non-trivial metrics. We denote by ¢y := di(A, B) the Euclidean
distance between A and B. Non-triviality of a implies that d,(A, B) = (Bco — 4coly
for some positive lo. We assume that [, (a — ) = m —d; for some positive . Our
aim is to find a contradiction to the optimality of a.

Let v : [0,1] — R? be a Lipschitz path connecting A and b € B. In the
following we will, w.l.o.g., always assume that |y/(¢)] = ¢ for some ¢ > 0 and
almost all ¢ € [0,1]. We note that necessarily ¢ > ¢y, since b has at least the
Euclidean distance ¢q from A. For [ := min{(f8 — «)/2,3/2,ly} and paths with

L,(v) < (8 — 2l)co we calculate the quantity

M :=[{t € [0,1] - a(~(t)) < B = 1}].
We find

1
(8—20)c> (82 > La(7) = 0/ a(y(t)) dt = Mea+ (1 — M)e(B —1).
0
Dividing by ¢ and subtracting § — [ we find
M@B—-—a—=1)>1.

We have therefore a quantitative result stating that good paths see a-values away
from 3 on a set M with uniform lower bound.
We now define a comparison metric a by

a(z) = min{3, a(z) + 6x 5y (2)}-

In this definition we choose first R > 0 large such that |y — A| < R for all v as
above (this is possible because of a > 0), then we choose > 0 small in dependence
of 6y and R, such that a is admissible. We furthermore demand § < [. We can now
calculate

ocl
O—a—1
for all v as above. On the other hand, for paths v with L,(v) > (8 — 2l)cy we find
La(v) > La(7v) > (B = 2l)cg > Bey — 2lgco.
Taking the infimum over all ~ yields

La(v) 2 La(7) + 0cM = Lo(7) +

ocl

d(z(A, B) Z min {560 — 2[060, da(A, B) + m

} > do(A, B),
in contradiction to optimality of a.

Concerning the last statement, we note that u is a solution of the dual problem,
and, accordingly, a is a solution of the primal problem. Since it is necessarily non-
trivial as a, it satisfies [(a — @) = m. On the other hand, u satisfies |Vu| < a
almost everywhere by (2.3), whence we have @ < a. The equality of the integrals,
J(a—a) =m = [(a— «a) provides equality almost everywhere. O
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Regarding the last point of the lemma we include the following warning on
the dual procedure: let u be optimal, let a be constructed from u, and define
@ = du(A,.). Then we cannot expect the equality @ = u. We illustrate this fact
with an example. For A = (0,0) and B = {(1,1)} we study u(y) = |y1|+ |y2|. Then
u(A) = 0 and u(B) = 2, and the corresponding metric is a := |Vu| = /2 almost
everywhere. The distance function for this metric is @(y) = v/2|y — A|. It coincides
with u on the line connecting A and B, but not away from this line. Somehow, u
is optimized for the point B, but not for all points of the plane.

We also mention that |Vu| > « is not true under general circumstances (because
for any solution w of the dual problem the function @ = min{u,infgu} is also a
solution).

2.2 Rays

An important object in the analysis of optimal metrics is the notion of optimal
paths. A technical problem regards the fact that there need not exist curves that
realize the distance between two points. An elementary example is a metric a with
a(x) = ffor x € [0,1] x [0, 1] and a = « outside the rectange. The “ray” connecting
A =(0,0) and B = (1,0) according to our definition will be the straight line even
though the length of this line is 3. Nevertheless, the ray coincides with the intuitive
idea of the shortest path.

Definition 2.3 (Rays). Given a metric a with d,(A, B) = [, we call a continuous
curve 7 : [0,1] — R? with v(0) = A and (1) € B a ray, if for all t1,t5 € [0,1] holds

do(y(t2), ¥(t1)) = [t — tal.
In particular, we demand d,(A,~(t)) =t.

As a consequence of the definition, rays are always embedded and are Lipschitz
continuous.

Lemma 2.4 (Properties of rays). Let a be a non-trivial optimal metric. Then the
following holds.

1. Let v, : [0,]] — R? be a family of Lipschitz curves with v,(0) = A and
Y(l) € B and Lo(vnl04)) — t for allt € [0,1]. Then a uniform limit v of the
famaly v, is a ray. Similarly, every uniform limit of rays is again a ray.

2. Through every point v € R? with d,(A,x) +d,(x, B) = d,(A, B) passes a ray.
Let x be a Lebesgue point of a with a(x) > «. Then there is a ray 7 passing
through x.

For the following we assume additionally that 7 is a ray, v = v(t) € {A} U B, and
that a is constant in a ball B.(z) disjoint from {A} U B, for some € > 0.

3. W :=~([0,1]) N B-(z) is a straight segment.

4. There exists no ray 7 passing through x with 4([0,1]) N B.(x) # W.

10



5. Assume that w = d,(A,-) is differentiable in x. Then Vu(v(t)) || v'(t).

Proof. Ttem 1. For t; <ty we find

ty = La(Tnl(0,t2)) = La(Wnl(0.41)) + La(Vnl t1,22))-

The fact that La(vnl(0,4)) — t1 implies Lo (Vn|@t,t2)) — t2 — t1. Similarly, we find
Lo(Vnl(t2)) — 1 —to. Since 7, can be used as a competitor, this implies for the
distances limsup,, d,(A, v,(t1)) < t; etc. Since, on the other hand

da(A; Yn(t1)) + da(n(t1), 1n(t2)) + da(Va(t2), B) > 1,

we find lim,, d,(A,v,(t1)) = t1 and lim,, d, (v, (t1), Y (t2)) = te — t;. The continuity
of d, implies the claim.

The second statement follows similarly from the continuity of d,,.

Item 2. For the first statement it suffices to consider curves that realize, up to
an error 1/n, the distances d,(A, z) and d,(x, B). Connecting the two curves with
appropriate parametrization and taking the limit n — oo, we find a ray through z
by item 1.

Concerning Lebesgue-points of a we first claim that, for every € > 0, there exists
a ray passing the ball B.(x). To prove this, we assume the contrary and consider
e € (0,1/2) such that no ray passes B.(z). By the first part of item 2 and the
continuity of d, we have, for some § > 0,

inf  d,(A,&) +du(§,B) =d.(A, B) + 0.

EGBE/Q ($)

Let us now consider the comparison metric @ with @ = a on R? \ B.js(x) and
a = max{ao,a—0} on B./s(x). Then dz(A, B) = du(A, B), since each curve 7y passing
through B, /»(z) has an a-length of at least Lz(y) > do(A, B) +6 —2¢6 > d,(A, B).
We can therefore decrease the used mass without making shortest curves longer.
This is in contradiction with Lemma 2.2.

By now we have shown the existence of a sequence of points z,, — x such that
rays v, are passing through x,. The family v, has a bounded Lipschitz constant
and we can pass to a uniformly convergent subsequence. By item 1 this yields a
ray passing through .

Item 3. We consider s; = inf{t' >t : y(t') ¢ B.(x)} and sy = sup{t’ < t:
Y(t') & B.(x)}. Since s; <t < s, we obtain Lg(7V|(s;,s2)) = 2ca(x), with equality
only if ~([s1,t]) and ~v([t, se]) are segments. Let now ¢; = inf{t : v(t) € B.(z)}
and to = sup{t : 7(t) € B.(x)}, and consider the Lipschitz curve 4 which equals
outside [t1, t5], and is the affine interpolation between ~y(¢;) and v(t2) inside. Then

La(7) = La(|(0,t1)) + a(@)|7(t1) — v(t2)] + La(V](0,61)) < La(7) -

Since v was a minimizer, equality holds throughout. Therefore |y(t1) — v(t2)| = 2e,
i.e., they are diametrically opposite. Further, Lq(vu, s,)) = 0, ie., y([t1,s1]) is a
point (contained in 0B.(x)), analogously for [sq, ta].

Item 4. Let 4 be a ray passing through z which is different from . Then
ANB.(z) is again a straight segment. Since the two segments are different, they form

11



an angle at z. Starting from this situation we can construct a new ray by following
~ until x and 4 beginning at x. This new ray forms an angle and contradicts item
3.

Item 5. By the same argument used in proving 2 of Lemma 2.1, applied to the
ray -, we obtain a sequence t,, — t such that

a0 (t) = u(y(6)
w0 y{t) = (1)

Since |Vu(v(t)| < a(z) the conclusion follows. O

=a(z).

3 Local properties at interfaces

3.1 Wedges of optimal distance functions

With Proposition 3.1, in this subsection we show the key result concerning interfaces
of the metric.

Given two vectors ¢+,6~ € R? and orthogonal unit vectors e, e; € R2, we
define the function b(y) := & for ey -y > 0 and b(y) := £ for e5 -y < 0. Given,
additionally, a point o € R? and a value ug € R, we consider the following piecewise
affine function u.

up+ &Yy fores-y >0,

(3.1)
ug+& -y forey-y <O.

u(zo +y) ::uo—i—b(y)-y:{

The function @ is continuous whenever (£t —&£7) - e; = 0.

Proposition 3.1 (Wedges of optimal distance functions). Let u be an optimal dis-
tance function, xy a point in R? and e1, e € R? an orthonormal basis. Furthermore,
let up € R and £7,&~ € R? with [€%] € [a, 8], € # &, max{|£T],|€7|} > o and
(£t —¢7)-e1=0.

We assume that u defined as in (3.1) is an approximation of u in the vicinity
of xo in the following sense: For every n > 0 there exists € > 0 such that, on
Be = BE(I'O)

|u = ul|z=(5.) < Me, (3.2)
HVul = V||| s, < ne’. (3.3)

Then, necessarily, £, £, and ey are parallel.

Proof. We assume that ¢ = (£ —£7) - ey > 0, otherwise we can swap the sign of e,.
After a change of variables we can assume without loss of generality that xq = 0
and e; and ey are the canonical basis of R?2. We have to show that the tangential
component £t - e; = £ - e; vanishes.

We argue by contradiction and assume from now on that & = & # 0. Our
construction is based on the fact that convex combinations of non-parallel vectors
shorten the length. To abbreviate notation we introduce the convex function

ot R =R, [(la = max{a, [(]}.
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Various small numbers appear in the following. The order is as follows: We
choose first d, then h = h(J), then n = n(J, h), and then € = (4, h, n).

Step 1. Construction of a new distance function. The averaged gradient
shortens the a-length,

_§&+E g = € e + 1€ a

: — 1€l >0

¢:

by the convexity of the norm and since & # & excludes that both vectors £+ are
parallel. We recall that & =& =&, and & =& —¢/2 =&, +¢/2.
The basic building block of our comparison function is the tilted hat function

- c
w(y) =uo+E&-y—Olya| — 0lye| + 5eh

where 6 = ¢/4. A simple computation shows that

o+ 187 la 1
2 2!

|Vwl|, < €] 426 < 54 (3.4)

We define a thin rectangle by R. := {y : |y1| < &, |y2| < he} and our comparison
distance function u by

MNP L1C) for y ¢ R,
v {max{u,w}@) for y € . @)

Our aim is to show that @ is a competitor of v which uses less mass.

Step 2. Choice of h and ¢, continuity of u. We have to verify that « is
Lipschitz continuous. To this end it suffices to make sure that w < u on OR.. By
(3.2) the function v(y) = u(y) — @(y) is bounded uniformly by |v(y)| < ne. From
the definition of £ we have a(y) = up + £ - y + £|y|. Therefore

_ c
(w—=u)(y) = (w—u—v){y) = =] = S|y + S (ch = [ge]) —v(y).  (3.6)
Therefore, on the upper and lower boundaries of the rectangle, i.e. yo = +¢h,
(w—u)(y1, £eh) < =0 y1| — deh +ne < =6 || <0,

provided that 7 has been chosen such that n < dh. Analogously, for the lateral
boundaries of the rectangle and yy € (—he, he),

(w—u)(Ee,y2) < —de + geh +ne <0,

provided h and 7 have been chosen with h < d/c and n < 6/2. We conclude that @
is Lipschitz continuous.

Step 3. Saving in mass. We consider points in R, with w > u, i.e.

D.:={y e R.:u(y) =w(y)}.

13



w>u

R

w<u

Re

Figure 4: Within the diamond shaped region, the distance function u is replaced
by w. The new distance function is admissible and uses less mass. Indicated is,
additionally, a possible interface Y between two regions with different values of
a = |Vul.

With the hat function
P(y) = =lu| = (5 +9) luel + 52h.
equation (3.6) implies that w > u if and only if ' — v > 0, hence
D.={y € R.:v(y) < F(y)}.

This shows that with D, we consider a small perturbation of the diamond shaped
region

DY :={y€R.:F(y) > 0}.

Since |VF| > § a.e. and |v| < ne everywhere, the symmetric difference of the
two domains can be estimated by

D=\ DZ| + | D2\ De| < C(h, d)ne”

where the constant depends on h and §. This estimate is also valid separately on
the two sides of the interface. We write D := {y € D, : 4y, > 0} for the upper
and lower part of it, and estimate

1
1021~ 51081 < € ae

Using first (3.3) and then this comparison of the domains, we can estimate

/ [Vl 2/ Vil —ne® = [DI[E| + D ]1€7] — ne”
D D

> o0 SR o e (37)
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We can now compare the mass related to the original metric a,, = |Vul, with the
mass related to the comparison metric a,, = |Vw|,, exploiting (3.4).

€ e +167]a 1
/Da |Vw|s < | Dy (# - 5(1)
< (ID%] + Cne?) (—w'”‘ T 1q)

2 2
St el 1
2

< |D? 561\1??\ + Cne®

< / IVl + Ce? — gCa(6, h)E2,

where we abbreviate |D?| = Cy(8, h)e?. Choosing 7 sufficiently small we achieve

/|Vw|a</ V..
D D

This is in contradiction with the optimality of u and concludes the proof. O

3.2 Black and white metrics

In this subsection we apply Proposition 3.1 to non-trivial optimal metrics a which
takes only the values a and (. Our aim is to show that, loosely speaking, at a
Lipschitz black-white interface all rays are straight lines. This result, made precise
in Proposition 3.2 below, implies immediately Theorem 1.1. The key idea in the
proof of the Proposition is to study comparison paths consisting of two or three
segments such that long segments lie almost completely in one of the two phases.
Optimality permits to derive the refraction law of geometrical optics and to conclude
sharp bounds for the values of u at the endpoints. In a vectorial context, a similar
idea was used in proving rigidity estimates in [11, 10].

Proposition 3.2 (No changes of direction at black-white interfaces). Let a be a
non-trivial optimal metric, w C R*\ B a Lipschitz set. Assume xq € 0w \ B\ {A}
and p > 0 are given such that a = a on B,(x¢)Nw, and a = 3 on B,(x¢)\w. Assume
Ow to be differentiable in xo with normal v, and let v € Lip([0,1]; R?) be a ray that
crosses tangentially in xo, in the sense that there are t; < ty < ty € (0,1) such
that v(to) = o, one of the two sets y((t1,t0)), v((to,t1)) lies in w, and the other is
disjoint from w. Then, in a neighbourhood of xq, the ray v is a parametrization of
xo + Rv.

Let us introduce some further notation. The assumption on xy implies that, pos-
sibly after making p smaller, there are two orthogonal vectors py, 1o and Lipschitz
function f: (—p, p) — R, with f(0) = 0, such that

w N By(xo) = {x € By(xo) : (& — o) - p2 < f((x —20) - p11)}
and the function f is differentiable in 0. The outer normal to dw in z is then

_ e — f1(0)m
2 = f1(0) |

15



R

Figure 5: Sketch of the construction used in the proof of Proposition 3.2. The point
To is at the center, the points P; are far from =z, the points Q;(y) are much closer
to xg. The wedge delimits the region where dw lies.

Proof. Assume for definiteness that the ray runs from white to black, i.e., that
v((t1,t0)) C w (in the other case one only needs to swap a few indices). From Lemma
2.4(3.) it follows that v((t1,t0)) and v((t,?1)) are segments, affinely parameterized
by 7.

Step 1. Refraction law. This proof uses geometrical considerations and the
construction of competitors for v to prove that the orientation of the segments
v((t1,0)) and v((tg,t1)) satisfies the usual refraction law of geometrical optics.

We define for y € R a point on the tangent to dw by

Qy) ==z + yvt.

Let 6 > 0, and consider the points

Q1(y) := mo +yv- —dlylv,
Qa(y) := mo + yv* + dlylv

(see Fig. 5). Since f is differentiable in 0, for every § > 0 there is ¢ > 0 such that
for all y € (—¢,¢) we have Q1(y) € w, Q2(y) € w.

We set P, = 7(t1), Py = 7(t2). Possibly replacing t; and ¢, by values closer to t,
we may ensure that for all y sufficiently small the two segments [P, Q1] and [P,Qs]
do not intersect dw. We stress that the resulting P, and P, are fixed, and do not
depend on the parameters ¢ and . In the following we always consider three points
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Q, Q1, Q)2, generated from the same y, which remains a free parameter. The points
Py, xg, and P, are considered to be far apart, since their distances remains finite
for y — 0, whereas the points @, Q1, Q2, x¢ are close together since their distances
are of order y.

We study the piecewise affine path joining P, with @)1, then with ()5, and then
with P,. Since |Q1 — Q2| = 20|y| we can calculate

alzg — Py| + B P — o] gda(P17P2)
(2)
< do(Pr, Q1) + do(Q1, Q2) + do(Q2, Pa)

(3)
< a|Q1 — Pi| + B|Q2 — Po| 4260y,

where we used in (1) that the ray realizes distances, passes xg, and is a straight
line on both sides, in (2) the triangle inequality, and in (3) that between () and P
there is no black.

We linearize this inequality in the limit y — 0. In particular, the length of
Q; — P; = (x0 — Pj) + (Q; — xo) can be expressed as

|Qj — Pyl = |zg — Pi| + 75+ (Q — o) +0(y),

where
g — Py and Tg — Py
ry = ———— and ry i= —————
Y oo — By T oo — Pyl
are unit vectors along the two segments [zoF;]. Recalling that |Q — Q;| = d|y|,

inserting above and subtracting a|P; — zo| + 5| Py — x| we find
0 <ar - (Q—z0) + fra- (Q — o) + 430y + o(y)
for all y sufficiently small, and therefore
}(047“1 + Bra) - VL‘ <439
Since 6 was arbitrary, we obtain the desired refraction law,
ary vt fBry vt =0. (3.8)

At this point it is important to note that the vectors r; do not change when we
restrict to a smaller neighborhood of xq in order to have a smaller § > 0.

Step 3. Comparison distance function. We study the distance function
u(+) = dy(A, -) corresponding to the optimal metric a. Our aim is to apply Proposi-
tion 3.1. We set ug = dq(A, 29) = u(rg), e1 = —vt, ea = v, & = ary, £ = fry, and
define the function @ as in (3.1). We shall now verify the assumptions of Proposition
3.1 and then conclude from that that r|||rs|||v, which concludes the proof.

The refraction law (3.8) implies ({7 — &™) - e; = 0, which is equivalent to conti-
nuity of u. The fact that dw is differentiable in z, implies (3.3). It remains to show
(3.2). We argue by contradiction and assume that, for some n > 0, there exists a

sequence x¥ = (2%, 25) — ¢ such that

lu(2®) — a(2®)| > na® — x| VE €N (3.9)
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In the following, we will show that (3.9) is in contradiction with the refraction law.
The key of the argument is that all the paths P;QQ P> of Step 2 give the optimal
length up to a small error d|y|, and we can choose ¢ small compared to 7.

The refraction law (3.8) implies that

alrg — Pi| + B P2 — mo| = a|Q(y) — Pi| + B1Q(y) — Pa| + o(y).

We therefore consider the comparison path 7, that connects P, with Q(y) with P,
by two straight segments. Since at most a length Cd|y| of ther segment P,Q(y) is
outside w, we find

La(vy) < do(P2, Pr) + C(B — a)dly| + o(y).

Therefore, the path -, realizes the distance up to small errors. Then the path
realizes the distance, up to the same error, on every point. We can choose @) in
order to hit z¥, i.e. zF =, (t) € [P, Q] U [Q, P2]. We conclude that

C(B—a)dly| + o(y) > La(vyl0) — da(z®, P1)

> [a(2") — a(Pr)] - [u(z®) — u(P)]

> a(z®) — u(a®) > 0.
For an appropriate choice of §, using y = O(z*—1y), this is the desired contradiction
with (3.9). O

3.3 Global situation

Proof of Corollary 1.2. Let Y be the interface between black and white region, a
one dimensional Lipschitz-continuous object. By the lemma of Sard, almost all
straight half-lines starting in A hit ¥ non-tangentially. Furthermore, since ¥ is
differentiable in almost all points, almost all (with respect to the angle variable)
straight lines hit ¥ in a point of differentiability. We conclude that almost all (and
hence all) rays coincide with a straight line. Since 3 hits rays normally, it must
coincide with circles around A. Since a white ring between black regions is not
optimal, the best metric consists of a single black disk. O

4 Local properties for gray regions

4.1 Interfaces

Our next result can be seen as a version of Proposition 3.2 for the case of interfaces
of which one side is gray. It also follows from Proposition 3.1.

Proposition 4.1 (No changes of direction at gray interfaces). Let a be a non-
trivial optimal metric, u = dq(A, ). Let wy and wy be two disjoint open sets with
Lipschitz boundary, and x € Ow; and € > 0 be such that B:(zg) C Wy U wy, with
both boundaries differentiable in xq, with normal +v.

We assume that Vu and a have continuous extensions to @; for j =1,2. Let £+
be the two limits of Vu in xo from the two sides and assume that min{|{T|, |7} >
a. Then
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1. Vu/|Vu| is continuous in x.
2. If |Vul| is not continuous in xg, then Vu is orthogonal to 3.

Proof. A piecewise affine function u can be constructed from &+ and u(wg) as in
(3.1). The approximation estimates (3.2) and (3.3) follow from the continuity of Vu
on both sides of the interface. If max{|{"|,[{7|} > a then Proposition 3.1 yields
1 and 2, since £ and £~ are parallel and, if £T # £, then they are orthogonal to
the interface. 0

4.2 Parallel in gray regions

Our aim here is to prove Theorem 1.3, which states that level sets of w in the gray
domain are straight lines.

Proof of Theorem 1.3. We are given a non-trivial optimal metric a, its distance
function u(.) = d,(A,.) and an open subset w C R?\ B on which a and u obey the
stated regularity properties.

Step 1. The regularity of a and u together with Lemma 2.1 yields |Vu(z)| =
a(x) in w. The distance function u is a minimizer of the functional

/min{\vuy,a}dx

with respect to its own boundary values in the class of all 3-Lipschitz functions.
Let ¢ € C®°(w) be fixed. Since a < |Vu| <  on the compact support of ¢, by
continuity of a = |Vul|, for small € > 0 we have a < |V(u+¢ep)| < § and hence the
function u + € is a possible competitor. We conclude

d
0= —
de

\%
/\Vu—l—ano\da::/—u-Vgpdx,
e=0Jw w ’VU‘

which is the weak form of the equation

div Gvu) =0. (4.1)

Since a is continuous and has a weak derivative in L?, by standard elliptic regularity
we obtain that u € W?P() for every compactly contained subset @ C w.
Therefore the normalized gradient n = Vu/a belongs to WhP(w; S') for all
compactly contained subsets @ C w, and has zero distributional divergence.
Step 2a. Equation (4.1) implies the theorem by a result on the Eikonal equation
by Jabin, Otto and Perthame [14]. We explain this conclusion in Lemma 4.2.
Step 2b. For the convenience of the reader we present an elementary self-
contained argument in the case p > 2. The vector field n obeys

TrVn =20, n-Vn=20 a.e.

The first condition corresponds to divn = 0, the second one comes from the fact
that 0 = V1 = Vn? = 2nVn. Both are valid a.e. in @ for any @ CC w, hence a.e.
in w.
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We now observe that for any F' € R**? and v € R? \ {0} one has

Tr F =0 and FTv = 0 implies Fot =0,

where vt = (—wvy,v;) (to see this, it suffices to express F in the basis (v,v1)).

Applying this observation to F' = Vn(z) and v = n(z) we obtain
Vn(z)nt(r) =0 ae. in w. (4.2)

We shall first present a simple formal calculation for the rest of the argument,
and then give the proof. One key fact used below is that, since p > 2, the condition
u € W*P(©) implies u € CH*(@), for some a > 0.

Formal calculation. Pick a point x € ©. We can use the implicit function
theorem to find an isoline of u, more specifically, a path ¢ € CY*((—p, p); @) such
that |o'| =1, 0(0) = z, and u(o(t)) = u(z) for all . We compute

d

0=2
a

(0(t)) = Vu(o(t)) o'(t) = an - o'(t)
which implies o/(t) = £nt(o(t)), by continuity only one sign is used, say +. A
formal computation using (4.2) reads

d
g(a'(t)) =Vntooo =Vnt-nt=0.

This result would prove that o is affine. This is however incorrect, since we cannot
assume globally o € WP, at least not for all points .

Proof. Pick z € @, and assume n;(z) # 0. Consider the function U(y) :=
(u(y), y2), which is C1* around z. Since det VU (x) = dyu(z) # 0 we can apply the
implicit function theorem, and obtain open neighborhoods I of x and J of U(x) =
(u(z), xq) such that U is a diffeomorphism of I onto J. Let v = U~! € CY*(J; 1)
be the inverse. We note that ¢ has the special form ¥ (z) = (¢1(2), z2) and inherits
the regularity of U. The formula for the inverse of a 2 x 2-matrix shows that

YU(y) = <a(y)n(y)) 7 Vo)) = <1/(an1)(y) _n2/n1(y)) |

€2

Since U is bilipschitz on I, this implies Vi) o U € WHP(I;R?), and analogously
Vi € WHP(J;R?). The above expressions show that for all z € J

9 ey =~ (w(2)).

822 nq

With the function f: R?\ ({0} x R) — R, f(m) = —msy/m;, and abbreviating its
gradient by F':= V f, we compute, in the sense of LP functions,

0 0 0
a—zgwl(Z) = 3—22[1” onoy(z)] = Vf(n(y(2))) - Vn(y(z)) - 3—22w(z>

=F-Vn- <—Z—j(¢(z)), 1) :iF-VnWLl:O

ny
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by (4.2).

We found that 1) is a W?2? function with a vanishing second derivative. Therefore
for a.e. value of z; the expression (21, ) is in WP of an interval, and its second
derivative is zero, which means that ¢;(2) = q(z1) + z2r(21) (for a.e. z1). But since
1 is continuous, we conclude that the same holds for all z;. By u(1(z)) = 21, for
any fixed z; the function

22 = u(q(21) + 22r(21), 22) = 21
is constant, which is the thesis. O

We now come to the statement that divergence-free vector fields with values in
S are orthogonal to straight lines. This result depends crucially on the regularity
of the vector field. A proof for the case m € W'? was given by Jabin, Otto and
Perthame in [14], writing the divergence-free condition as a kinetic equation and
considering suitable entropies. Their argument builds upon previous results on the
eikonal functional and on two-dimensional models in micromagnetics [2, 15, 12] and
holds without significant changes also for W' functions, as we now show.

Lemma 4.2. Let w C R? be open, m € Whl(w;R?) obey |m| = 1 almost everywhere
and divm = 0 almost everywhere. Then m is constant along segments orthogonal
to m contained in w. More precisely, let x + (—a,b)m(x)* C w for some a,b > 0,
then m(y) = m(x) for all y € x + (—a,b)m(x)*.

Proof. Let ®, ¥ € C5°(R?;R?) and a € C5°(R?* R) be related by
DP(z) = —¥(2) ® 2+ a(z)Id .

Since m € WH! we obtain ® o m € W'l and the chain rule gives, in the sense of
L'-functions,

div(® om) = tr[(D®)(m) - Vm] = tr[—¥(m) @ m - Vm] + a(m)divm.

This expression vanishes, since divm = 0 almost everywhere and m? = 1 implies
m - Vm = 0. We conclude that all vector fields ® o m are divergence-free.

The arguments in [12] (Lemma 2.5) yield the following. Let £ € S! be arbitrary
and x(z, &) be one if £ -m(x) > 0 and 0 else. Then &-Vx(-,£)) = 0 distributionally
in w. Lemma 3.1 and Proposition 3.2 in [14] show that m is constant along segments
orthogonal to m contained in w, in the sense specified in the statement. O

We next show that also the metric has a very special form in the gray domain.

Corollary 4.3 (The metric in the gray region). Let a, u and w be as in Theorem
1.3 and let T be a connected component of an isoline of u contained in w (which is
a segment by Theorem 1.3). Let Iy, be the straight line containing I'. Then there
erist aoe € R and x, € 'y, such that

either a(-) =as onT

or a(y) = as|y — 1oo| Tt Wy €T
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Proof. Lemma 2.2 implies a = |Vu|. We have to show a purely geometrical fact: If
all isolines are straight lines, then |Vu| is necessarily of the asserted form.

Let I' be an isoline segment with normal n. For the rest of the proof we fix
x € T and choose a sequence w 3 x; — = with (z; — x) - n = |z; — z|. We write I;
for the isoline segment through z; and denote the tangent of the angle between T';
and I' by t;. For an appropriate subsequence and some limit value B, € R we find

. li
P Tl ]

The boundedness of the sequence on the left hand side follows from the fact that
isolines can not intersect.

Let now y € I" be another point on the isoline. We consider the points y; € I';
with (yv; —y) - n = |y — y|. Exploiting that u is differentiable and that Vul|n, we

can calculate, with d = (z — y) - n™t,
1 1 .oon-(yi—y) . one(r—x)+t; - d 1
= = lim ———F— =1 = + Bz d.
aly)  Vu(y)-n oo fu(y) —u(y)] v fu(z;) — u(z)] a(x)

In the case B, = 0 we find that a is constant and we have derived the first case of
the claim. In order to recover the geometric expression that appears in our claim
for B, # 0, we write

1 B!

a(y) = &(.77)71 + B, (.77 _ y) nt ‘[L’ + a(x)*lB:;an_ — y‘.

Since y was arbitrary on I', this provides the claim. O

5 The optimal metric for two points

With the following Theorem we solve the optimization problem explicitly in the
case that B C R? is a straight line. By symmetry, the solution is equivalent to the
solution of the two-point problem.

Theorem 5.1. Let A = (0,0), B={(1,0)} xR, 0 < a < 3, d € (o, 5]. Assume
that a : 2 — [0, (] is Borel-measurable and generates distance at least d, i.e.,

/0 a(y () (0] dt > d (5.1)

for all v € Lip([0, L], R?) with v(0) = A and y(L) € B. Then the minimal used
mass is given by

Ca (d — «)? sinh(2n7)
/Q(CL e 2 2(8 — a)2a1/?(cosh(nm))?’ (5.2)

withn = a2 /(B—a)'/?. Furthermore, the metric ay defined in (5.9)-(5.10) satisfies
(5.1) and renders (5.2) an equality.
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Before giving the proof we sketch the main ideas and illustrate how the explicit
expressions can be found. In the entire argument we assume enough regularity so
that the statements of the previous sections can be applied. The final expression
we derive justifies this assumption.

The key idea is to parametrize the boundary of the black region (2, in polar
coordinates by a function f : [—m, 7] — (0, 00), so that a point pey € 2, whenever
p € [0, f(0)], see Figure 6. In this region rays are segments starting from A and
u(z) = Blz|. The angle 6 is taken with respect to the negative horizontal axis, so
that eg = (— cos @, sin ) (this choice renders f’ positive in the computations below).
We shall focus in the heuristics on the set {z2 > 0}, the construction in the lower
half-plane is symmetric.

The next layer contains a gray region, along which level sets of u are segments
(by Theorem 1.3). Since on 02, the gradient of u does not change direction (Prop.
4.1), every x = f(0)ey € O, is contained in a level set parallel to e;. Let g(6) be
the width of the gray region along this direction (see Figure 6). For all s € [0, g(0)]
we have

u(f(0)eq + seg) = u(f(0)es) = B (). (5.3)

This defines u in the gray region. Rays in gray are then automatically defined as
integral curves of Vu (an expression is given in (5.9) is given below). It remains
to determine the boundary between gray and white, i.e., to fix g. By Proposition
4.1 an interface which is not perpendicular to the ray is only possible if |Vu| is
continuous; therefore we determine g by locating the point where |Vu| (which is
completely determined by (5.3), once f is given) reaches the value a.

A direct computation shows that

O (1(0)en + seb) = (F(6) + s)eo — f(O)er |

26
. 7'0)
VU(f(e)@g + 863_) = ﬂmeg.
Hence demanding |Vu| > « is equivalent (for f’ > 0) to
—a,,
s<9(0) =22 10). (5.4)

Therefore the gray region is Ugep . f(0)es + [0, g(0)]e; (plus the symmetric part
in the lower half-plane); the white region €, will be the rest of R?. The condition
that a equals |Vu| on €, completely defines the metric for each f.

In the above construction the level set corresponding to § = £ is parallel to
eL, hence a vertical line through the point (f(r),0). The value of u on this line
is Gf(m). For larger x the function u is affine, with gradient (c,0). This implies
that the line R x {0} contains no gray, and computing along that line, we obtain
u(B) = ff(m) + a(l — f(m)). Therefore we can determine f(7) € (0, 1] by

Bf(m) +a(l - f(r) =d. (5.5)
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Figure 6: The construction of the optimal metric. Indicated is the boundary of
the black region where rays are straight lines. Outside the central shape is a gray
region where level sets of u are straight lines. The two are orthogonal to each other
on the interface.

It remains to determine the function f. This should, given this constaint, min-
imize the mass, which corresponds to the integral of (a — ). If f is even and
increasing on (0, 7),

/Q(CL—OZ)+:(ﬂ_a)|Qb|+2/0ﬂ/Og(9) (ﬁ#—a) (f'(6) + s)dsdb.

After some rearrangement this gives
Ja=ar=@=a) [ (7 as, (5.6)
0

where 7 = (a/(8 — a))'/?. Explicit minimization (with even f) gives

f(0) = ccosh(nh)

where ¢ is determined by the boundary condition (5.5). Together with relation (5.4)
for g we have determined all unknowns.

In order to show that the construction provides indeed an optimal metric, a
different approach is more convenient, which focusses on the rays instead of u. We
shall consider a one-parameter family of rays, each ray parameterized by ¢ which
coincides with the value of u [i.e., u(y(0,¢)) = ¢]; the family shall be parameterized
by the angle # in the initial black region.

Proof of Theorem 5.1. Step 1. Construction of the family of rays v and of

the metric ag. We define )
1/2
«
U] <6 — a) (5.7)
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and p
—«
©*= = a) coshlnm) 58)
so that the function f(6) = ccosh(né) obeys (5.5). The condition d € («, 3] ensures
that 0 < ccosh(nm) < 1. We define v : (—m, 7] x (0,d) — Q by

%f@g if 0 < ¢ < ¢fcosh(nh),
v(0,0) := %Eet + r(sinh(nt) — sinh(nf))e; if ¢ cosh(nf) < £ < uy,
["‘70 + %] er + 1 (sinh(nm) — sinh(nf))er if £ > g
(5.9)
where t = t(¢) is defined by ¢ cosh(nt) = ¢, ey = (— cos 0, sin 6), the perpendicular
unit vector is eg = (—sinf, —cosf) = —dpey, and ug = cfcosh(nr). From the

definition of ¢ one can check that ug < d. The three cases correspond to intervals
where (0, ) is in the black, gray and white region (see Figure 1).

The map < is continuous and injective, we set w = y((—m, 7] x (0,d)) (to check
injectivity one can e.g. verify that det Vy > 0 and consider the behavior of v on
the boundary of (—m,7) x (e, d), for some € € (0,¢f3)). We define

1
ap = (@)
O 1o

-t (5.10)

in w, and and ap = « outside w. We compute, for ¢ cosh(nf) < ¢ < wug, the
derivatives O,t = 1/(cfnsinh(nt)),

Opy = —ccosh(nh)e;- (5.11)
1 csinh(nt) — sinh(n&)] B [1 1 sinh(nh)

=Bty coysinn(n) o~ i smh(nt)

We emphasize that « is constructed such that no component along e arises in 9y
(this motivated by the form of the isolinies discussed above). In particular, (5.12)
implies % < |0y < £, hence it is admissible. We observe that for each § € (—, 7]
the curve ¢ — ~(0, () is a Lipschitz curve with y(6,0) = A and v(0,d) € B. Along

these curves condition (5.1) is an equality for ay by definition of ay. Furthermore,
Oy and Opy are orthogonal and hence | det V| = |0py||0py].

e (5.12)

Step 2. Estimates for an arbitrary metric a. Let a be any admissible
metric with induced distance at least d. Let 7 be as in (5.9). Since 7 is injective
we have

T d
/(a—a)+d:ﬂ2/(a—a)+dw:/ /(aov—a)Jr\detV”y]dde
Q w —m JO
7r d
— [ [t@en—a)ionlion dds.
—m JO

Replacing a by max{a,a} we can assume without loss of generality a > .
The idea of the proof is to show that the factor |0py| in the last integral can,
in the relevant region, be replaced by a constant. Then the remaining integral in ¢
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has the form of the a-length of the curve ¢ +— ~(6, ¢), which we know to be bounded
from below by d.
The factor |0py| obeys, by the definition of ~,

|09y](0, €) < ccosh(nb), (5.13)

with a strict inequality in the first (black) region, i.e., in the region corresponding
to ag = 3. The precise estimate will be made comparing the expression containing
a with the corresponding expression containing the optimal metric ayg. For each
value of § we can estimate via Lemma 5.2, with Q = (0,d), f = |0¢y|, g = | det V|,
and A = ccoshn#,

d d
/(aov—a)\am\@ev\dﬁz/ (ﬁ—a)(g—mdﬁﬂ/ (a0 — )| dt.
0 (0,d) 1 0

where (0,d), = {s € (0,d) : g < Af} (and, by (5.13), (0,d)_ = 0). The first
integral does not depend on a (also the set (0,d) only depends on 7). The second
one contains one term which corresponds to the a-length of the curve (0, ), and
which is estimated by fod aov|0py| > d, and another one which does not depend on
a.

At the same time, by (5.13) and the choice of A the corresponding estimate
obtained from Lemma 5.2 in the case of ag is an equality,

d d
/(aoov—aﬂamawmf:/ (ﬂ—a)(g—Af)de/ (a0 7 — )]0 dt
0 (0,d)+ 0

Analogously, the construction of ag ensures that the estimate of the last term via
the ag-length of the curve (6, -) is also an equality (precisely, fod ag o y|0py|dl = d).
We conclude that

d d
/ (a0 — )0 dt > / (a0 07 — 0)|]|80| de
0 0

for all #. Integrating over # shows the optimality inequality

/ (a —a)ydx > / (a® — a), da. (5.14)
R2 R2

The value of the right hand side appears in (5.2) and is determined with a straight-
forward computation, which essentially amounts to integrating (5.6) with the given
parameters.

Step 3. Optimality of ag. It remains to prove that ag obeys (5.1) for all
curves v (we have checked it in Step 1 only for our special curves). We define
u € Lip(R?) by u(reg) = fBr if r < ccosh(nf), u(ccosh(nf)ey + sey) = Beccosh(nb)
for all s > 0, u affine on (ccoshnm, oo) x R. This corresponds to u(y(6,¢)) = ¢ on
w. Then |Vu| = ag, and for any admissible curve ¥

[ wtsonrwi= [

This concludes the proof. O
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Lemma 5.2. Let Q C R", f,g: Q — (0,0), 0 < a < 5, a: Q — [«a,f], all
measurable, N > 0. Then

/Q<a—a>gz/m(ﬂ—a)(g—xfwx/ﬂ(a—a)f,

where Q. = {\f > g}. FEquality is achieved whenever a = 3 on Q4 and a = o on
Q- ={\f <g}.

Proof. We calculate

Ja=ay=a[@-arr = [@-a)g-an
:w—a)/m@—xf)+/Q+<ﬁ—a><Af—g>+/ (a—a)(g—Af),

where each integral is nonnegative. O
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