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CONTINUOUS CONVOLUTION HEMIGROUPS
INTEGRATING A SUB-MULTIPLICATIVE FUNCTION

WILFRIED HAZOD

Abstract. In [19, 20] E. Siebert obtained the following remark-
able result: A Lévy process on a completely metrizable topolog-
ical group G, resp. a continuous convolution semigroup of prob-
abilities satisfies a moment condition

∫
fdµt < ∞ for some sub-

multiplicative f if and only if the jump measure of the process resp.
the Lévy measure η of the continuous convolution semigroup satis-
fies

∫
{U

fdη < ∞ for some neighbourhood U of the unit e. Here we
generalize this result to additive processes on (second countable)
locally compact groups resp. to convolution hemigroups (µs,t)s≤t.

Introduction

A probability ν on a normed vector space (V, || · ||) possesses a
k−th moment, if

∫
||x||kdν < ∞, equivalently, if f : x → 1 + ||x||k

is ν−integrable. f is continuous, sub-multiplicative, symmetric and
satisfies f(0) = 1. Hence moment conditions are integrability condi-
tions for (particular) sub-multiplicative functions.

For investigations in limit theorems on more general structures, in
particular on locally compact groups, investigations of integrability of
sub-multiplicative functions provide interesting tools. In [19], Theorem
1, [20], Theorem 5, E. Siebert obtained characterizations of integrabil-
ity of such f for continuous convolution semigroups resp. for Lévy
processes, in terms of the behaviour of the Lévy measures, resp. the
jump-measures of the processes: [19] is based on analytical methods
whereas in [20] the emphasis is laid on the behaviour of the processes.
In fact, a partial key result, [20], Theorem 4, is proved for (general) ad-
ditive processes resp. for convolution hemigroups. Whereas the afore
mentioned characterization of integrability of sub-multiplicative f (re-
lying on [20], Theorem 5,) is proved there only for continuous convolu-
tion semigroups resp. for Lévy processes.

For particular hemigroups and particular f (’logarithmic moments’)
appearing in investigations of self-decomposability resp. of (general-
ized) Ornstein-Uhlenbeck processes on homogeneous groups, Siebert’s
results were already generalized: For homogeneous groups see e.g.
[3, 5], for vector spaces see e.g., [12]. (For ’logarithmic moments’ con-
sider the sub-multiplicative functions f : x 7→ 1 + log(1 + ||x||) ≈
log+(||x||).)

Hemigroups resp. additive processes turned out to be essential for
investigations in various applications. The background for hemigroups
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2 WILFRIED HAZOD

on locally compact groups is found e.g., in [21], [7], [8], [9] and the
references mentioned there; see also [1] for further applications.

The afore mentioned result ([20], Theorem 5, resp. [19], Theorem
1) relies on a splitting of the underlying Lévy measure of the contin-
uous convolution semigroup (µt)t≥0 (resp. the jump-measure of the
underlying process) into a part with bounded support and a bounded
measure. Hence we obtain two continuous convolution semigroups(
µ

(i)
t

)
t≥0

, i = 1, 2: For the first any f is integrable, the second one

is a Poisson semigroup, and the underlying continuous convolution
semigroup (µt)t≥0 is represented by a perturbation series in terms of(
µ

(i)
t

)
t≥0

, i = 1, 2. This technique allows to reduce the investigations

to the Poisson part, and we obtain ([19, 20]): f is integrable w.r.t. the
underlying continuous convolution semigroup iff f is integrable w.r.t.
the bounded part of the Lévy measure.

Here, in Theorem 4.3, we generalize Siebert’s results to (Lipschitz-
continuous) convolution hemigroups on locally compact groups. We
start in Section 1 with perturbation series for operator hemigroups (also
called generalized semigroups or evolution families) to provide the tools
for the next sections. Then, following (and generalizing) the proofs in
[20] resp. [19], we obtain a version of Siebert’s characterization in the
general situation. At the first glance, a slightly weaker version, since
an additional technical condition (4.4) is needed. This condition is
however always satisfied for continuous convolution semigroups.

1. Perturbation series representations for hemigroups of
operators

Definition 1.1. Let B be a separable Banach space, and B(B) the
Banach space of bounded operators. A family {Ut,t+s}0≤s≤s+t≤T ⊆
B(B), (T ≤ ∞) is called continuous hemigroup of operators if (s, t) 7→
Ut,t+s is continuous w.r.t. the strong operator topology, Us,s = I for all
s, and Us,rUr,t = Us,t for all s ≤ r ≤ t, and finally ||Ut,t+s|| ≤Meβs for
all t, s ≥ 0, for some M ≥ 1 and β ≥ 0.

To simplify notations, here we shall throughout restrict to the case
M = 1 and frequently also β = 0, i.e., we restrict to contractions.

Hemigroups of operators were investigated under different nota-
tions, e.g., evolution families or evolution operators ([14, 15, 6, 10])
or semi-groupes generaliseés ([16]), etc. In view of the applications
to distributions of additive processes we prefer the expression operator
hemigroups (cf. [8]) in analogy to the standard notations in probability
theory.

Theorem 1.2. a) Let {Us,t}0≤s≤t be a continuous hemigroup of

contractions. Let R 3 t 7→ C(t) ∈ B(B) be a measurable mapping,
uniformly bounded, ||C(t)|| ≤ β for all t ≥ 0. Then

Vt,t+s :=
∑
k≥0

V
(k)
t,t+s with

V
(0)
t,t+s := Ut,t+s, V

(k+1)
t,t+s :=

∫ s

0

V
(0)
t,t+uC(t+ u)V

(k)
t+u,t+sdu

defines a continuous hemigroup satisfying a growth condition ||Vt,t+s|| ≤
eβs for all t, s ≥ 0.
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b) If s 7→ Ut,t+s is a.e. differentiable with ∂+

∂s
Ut,t+s|s=0(x) =: A(t)(x)

for x ∈ D(A(t)), and if D :=
⋂
t≥0

D(A(t)) is dense, then for all x ∈ D

s 7→ Vt,t+s(x) is differentiable a.e. with ∂+

∂s
Vt,t+s(x)|s=0 = A(t)x+C(t)x,

resp. in integrated form: Vt,t+s(x) =
∫ s

0
Vt,t+u (A(u) + C(u)) (x)du

c) In particular, let C(t) = c(t)(S(t) − I) with contractions S(·),
0 ≤ c(·) ≤ β, where t 7→ c(t) and t 7→ S(t) are measurable. Then we
obtain representations

Vt,t+s = e−βs
∑
k≥0

W
(k)
t,t+s, with ||W (k)

t,t+s|| ≤
βksk

k!
(1.1)

W
(0)
t,t+s := Ut,t+s, W

(k+1)
t,t+s :=

∫ s

0

W
(0)
t,t+uC̃(t+ u)W

(k)
t+u,t+sdu, where

C̃(τ) = C(τ) + β · I = c(τ)S(τ) + (β − c(τ)) · I
alternatively,

Vt,t+s = e−βs
∑
k≥0

skβk

k!
W̃

(k)
t,t+s (1.2)

with ||W̃ (0)
t,t+s|| ≤ 1, W̃

(k)
t,t+s :=

k!

skβk
W

(k)
t,t+s

Proof. Consider the Banach space of measurable functions L1(R+,B) ={
f : R+ → B : ||f ||∗ :=

∫
R+
||f(t)||dt <∞

}
Then Ps : (Psf) (t) := Ut,t+s (f(t+ s)) , (1.3)

and Qs : (Qsf) (t) := es·C(t) (f(t)) , ∀t, s ≥ 0, (1.4)

define continuous one-parameter semi-groups of ’space-time’ operators
on L1(R+,B), where (Ps)s≥0 are contractions and |||Qs||| ≤ es·β, s ≥ 0,

||| · ||| denoting the operator norm on B̃ := (L1(R+,B), || · ||∗). See
e.g., [16], II.7, [8], 8.6, 8.7 for the space-time semigroup (1.3), with

B̃ := C0(R+,B). Here, to ensure QsB̃ ⊆ B̃ in (1.4), we had to use

B̃ := L1(R+,B).
Let T and S denote the generators of (Ps)s≥0 and (Qs)s≥0 respec-

tively. In particular, S : (Sf) (t) := C(t)(f(t)), t ≥ 0, is a bounded
operator. Let (Rs)s≥0 denote the semigroup generated by T + S. (The
addition of generators is well defined since S is bounded.)

According to T. Kato [13], IX, §2, Theorem 2.1, (2.4), (2.5), resp.
[11], (13.2.4)–(13.2.6), or [16], II.3, (Rs)s≥0 is representable by a norm-

convergent perturbation series in B(B̃):

Rs =
∑
k≥0

V
(k)
s where V

(0)
s = Ps and V

(k+1)
s =

∫ s

0
PuSV

(k)
s−udu.

(Obviously, we have V
(k+1)
s =

∫ s

0
Ps−uSV

(k)
u du, cf. e.g., [13], [11].)

Let f ∈ B̃, k ≥ 0, t, s ≥ 0, 0 ≤ u ≤ s.

Claim: ∀t, s ≥ 0, k ∈ Z+ there exist operators V
(k)
t,t+s ∈ B(B) such

that (
V(k)

s f
)
(t) = V

(k)
t,t+s (f(t+ s)) λ1 − a.e. (1.5)[[

k = 0 :
(
V

(0)
s f

)
(t) = (Psf) (t) = Ut,t+s (f(t+ s)), hence the

assertion with V
(0)
t,t+s = Ut,t+s.
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k + 1 > 0 : Assuume that (1.5) is proved for k′ ≤ k. Then(
V(k+1)

r f
)
(w) =

∫ r

0

(
V(0)

u SV
(k)
r−uf

)
(w)du

=

∫ r

0

Uw,w+u (hk(w + u)) du =: (∗),

where hk(w
′) := C(w′)(gk(w

′)), gk(w
′) := V

(k)
w′,w′+r−u (f(w′ + r − u)).

For w′ := w + u we obtain therefore
(∗) =

∫ r

0
Uw,w+uC(w + u)V

(k)
w+u,w+r (f(w + r)) du. Inserting r =

s, w = t this yields(
V(k+1)

s f
)
(t) =∫ s

0

Ut,t+uC(t+ u)V
(k)
t+u,t+s (f(t+ s)) du =: V

(k+1)
t,t+s (f(t+ s))

Put f = ϕ⊗x, x ∈ B, ϕ ∈ L1(R+), i.e., f : t 7→ ϕ(t)x, where 0 ≤ ϕ ≤ 1,
and ϕ ≡ 1 on [a, b]. Then for s, t, s+ t ∈ [a, b] we obtain:

V
(k+1)
t,t+s ((ϕ⊗ x)(s+ t)) = V

(k+1)
t,t+s (x) =

∫ s

0
Ut,t+uC(t+u)V

(k)
t+u,t+s(x)du,

as asserted.
]]

Note that (1.5) holds true for λ1−a almost all t. But considering the
particular f := ϕ⊗x as above, continuity of (t, r + s) 7→ Ut,t+s(x) (∀x)
yields that (t, t+ s) 7→ V

(k)
t,t+s(x) is continuous (∀x and ∀k.) Hence for

f = ψ ⊗ x, ψ ∈ L1 ∩ C0(G), (1.5) is valid for all t ≥ 0.

Note that V
(0)
t,t+u = Ut,t+u, V

(1)
t′,t′+s′ =

∫ s′

0
Ut′,t′+u1C(t′+u1)Ut′+u1,t′+s′du1,

hence, inserting t′ = t+ u, s′ = s− u

V
(2)
t,t+s =∫ s

0

∫ s−u

0

Ut,t+uC(t+ u)Ut+u,t+u+u1C(t+ u+ u1)Ut+u+u1,t+sdu1du

· · ·
whence by induction

V
(k+1)
t,t+s =

∫ s

0

∫ w0

0

· · ·
∫ wk

0

Ut,t+v0C(t+ v0) · · ·

· · ·Ut+vk
C(t+ vk+1)Ut+vk+1,t+sduk+1 · · · du1du (1.6)

where v0 := u, vi := u+
∑i

1 uj, wi := s− vi.

Whence immediately |||V (k)
t,t+s||| ≤ skβk

k!
follows, hence ||Vt,t+s|| ≤ eβs.

Finally, the relations Rs (ϕ⊗ x) (t) =
(∑

k V
(k)
t,t+s(x)

)
· ϕ(t + s) =:

Vt,t+s(x) · ϕ(t + s) and RsRs′ = Rs+s′ yield the hemigroup prop-
erty Vt,t+sVt+s,t+s+s′ = Vt,t+s+s′ . (Here, ϕ, s, s′, t are suitably chosen
as above.)

b) Claim: Let x ∈ D then
d+

ds
Vt,t+s(x)|s=0 =

∑
k

d+

ds
V

(k)
t,t+s(x)|s=0 = A(t)(x) + C(t)(x)[[

k = 0 : By assumption, d+

ds
V

(0)
t,t+s(x)|s=0 = d+

ds
Ut,t+s(x)|s=0 = A(t)(x)

for x ∈ D(A(t)).

Furthermore, for f ∈ D(T) we have d+

ds
Rsf |s=0 = Tf + Sf .

If x ∈ D and ϕ ∈ C1 ∩ L1(R+) then f := ϕ ⊗ x ∈ D(T), and

(Tf) (t) = d+

ds
(Ut,t+s(x) · ϕ(t+ s)) |s=0 = A(t)(x) · ϕ(t) + x · ϕ′(t). On

the other hand, S(ϕ⊗ x)(t) = C(t)(x) · ϕ(t). Moreover, d+

ds
esS|s=0 = S
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is bounded, hence we obtain for λ1−almost all t

d+

ds
(Vt,t+s(x)ϕ(t+ s)) |s=0 =

d+

ds
Rs |s=0(ϕ⊗ x)(t)

=
d+

ds
((Ut,t+s(x) · ϕ(t+ s)) |s=0 + C(t)(x) · ϕ(t)

= x · ϕ′(t) + (A(t) + C(t)) (x) · ϕ(t)

Whence the assertion follows if we choose ϕ and t, t + s suitable as

before.
]]

c) Proof of the special case:

Put S =: S̃ − βI, i.e. define C̃(t) := c(t)S(t) + (β − c(t)) · I and

S̃ : t 7→ C̃(t) (f(t)). Denote by (R)s≥0 the semigroup generated by T+S̃
and represent R̃s by a perturbation series. In view of Rs = R̃s · e−s·β,
the assertion follows. �

2. Continuous hemigroups of probabilities and
perturbation series

In the following let G denote a locally compact topological group.
G is assumed to be second countable. By M1(G) we denote the con-
volution semigroup of probabilities, ? denotes convolution. We use the
abbreviation 〈ν, f〉 =

∫
G fdν.

In the sequel we apply the results of Section 1 to operators defined
by convolution hemigroups on a locally compact group. (Cf. Definition
2.1 below). There, B := C0(G) and µ ∈ Mb(G) is identified with the
convolution operator Rµ : Rµf(x) :=

∫
G f(xy)dµ(y), f ∈ C0(G).

Definition 2.1. a) A continuous convolution semigroup is a one-
parameter family of probabilities (µs)s≥0 depending continuously on s,
and fulfilling µs+t = µs ? µt for all s, t ≥ 0. Throughout we assume
µ0 = ε0.
b) (Cf. [21, 7, 8].) A convolution hemigroup is a two-parameter
family of probabilities (µt,t+s)0≤t≤t+s≤T , depending continuously on the

parameters (t, t + s) and fulfilling µt,t+s ? µt+s,t+s+s′ = µt,t+s+s′ for all
0 ≤ t ≤ t+ s ≤ t+ s+ s′ ≤ T , for some 0 < T ≤ ∞.

If (µt,t+s)0≤t≤t+s≤T is a convolution hemigroup of probabilities then

the convolution operators
(
Ut,t+s := Rµt,t+s

)
0≤t≤t+s≤T

form a continu-

ous hemigroup of contractions on the Banach space B := C0(G).
We will frequently make use of the following well-known observation:

Lemma 2.2. Let (µt,t+s)0≤t≤t+s be a separately continuous hemigroup,
i.e., t 7→ µs,t and s 7→ µs,t are continuous, and µt,t = εe for all t. Then
∀T <∞, for all sequences 0 ≤ tn ≤ tn+sn ≤ T with sn → 0 we obtain:
µtn,tn+sn → εe.

Consequently, for all neighbourhoods U of e and all sn → 0 we obtain:
sup

0≤t≤T
µt,t+sn({U) → 0.

Proof. For all subsequences (n′) ⊆ N there exists a converging sub-

sequence (n′′) ⊆ (n′), i.e., tn
(n′′)−→ t0 ∈ [0, T ]. Hence ∀r > t0 we

have r ≥ tn + sn for sufficiently large n ≥ n(r) and by continu-
ity, µtn,tn+sn ? µtn+sn,r → µt0,r along (n′′), and also µtn+sn,r → µt0,r.
Whence by the shift-compactness theorem ([17], III, Theorem 2.1, 2.2,
[7], Theorem 1.21) we obtain that {µtn,tn+sn} is relatively compact and
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all accumulation points ν satisfy ν ? µt0,r = µt0,r. Hence, considering
r = rn ↘ t0, it follows ν ? εe = εe, whence ν = εe.

Hence we have shown: For all subsequences (n′) ⊆ N there exists a
subsequence (n′′) ⊆ (n′) such that µtn,tn+sn → εe along (n′′). Whence
the assertion follows. �

Corollary 2.3. For a hemigroup (µs,s+t) as above we obtain: For all
functions ϕ ∈ Cb(G)+ for all ε > 0 there exists a δ > 0 such that for
0 ≤ t ≤ t+ s ≤ T, s ≤ δ it follows 〈µt,t+s, ϕ〉 ≥ ϕ(e)− ε.

Let (µt)t≥0 be a continuous convolution semigroup with correspond-
ing C0−contraction semigroup (Rµt) acting on C0(G). The infinites-

imal generator is defined as N := d+

dt
Rµt |t=0 . Then D(N) ⊇ D(G),

the Schwartz-Bruhat space and moreover, D(G) is a core for N . The

generating functional is defined as 〈A, f〉 := Nf(e) = d+

dt
〈µt, f〉 |t=0 for

f ∈ D(G). In fact, A is canonically extended to E(G) :=
{
f ∈ Cb(G) :

f · ϕ ∈ D(G) ∀ϕ ∈ D(G)}. (For details see e.g., [7], IV, 4.1–4.5).) As
a consequence of E. Siebert’s characterization of generating function-
als ([18], Satz 5, [7], 4.4.18, 4.5.8) we obtain for Lipschitz-continuous

hemigroups (µt,t+s) that d+

ds
〈µt,t+s, f〉 |s=0 =: 〈A(t), f〉 exists λ1− a.e.

and defines a family of generating functionals (A(t))0≤t≤T . (For details
see e.g., [21], Theorem 4.3, Corollary 4.5., [8, 9].)

(µs,s+t) is a priori defined for 0 ≤ t ≤ t + s ≤ T (for some T ≤ ∞).
If the hemigroup is (a.e.) differentiable with generating functionals

A(t) = ∂+

∂s
µt,t+s|s=0 and if T < ∞ we continue the hemigroup beyond

time T defining A(T + t) := A(t), 0 ≤ t ≤ T , etc.
Next we apply the results of Section 1 to convolution hemigroups.

Tacitly we identify measures with convolution operators on B := C0(G)
and we identify the generating functionals of continuous convolution
semigroups with generators of the corresponding C0−contraction semi-
groups.

We note the following corollaries to Theorem 1.2:

Corollary 2.4. Let (µt,t+s) be a Lipschitz-continuous hemigroup in

M1(G) with a family of generating functionals A(t) = ∂+

∂s
µt,t+s|s=0, for

λ1−almost all t. (For details the reader is referred e.g., to [20], [21],
[8].) Let, for t ≥ 0, γ(t) := c(t) · (ρ(t)− εe) be Poisson generators,
where ρ(t) ∈ M1(G) and 0 ≤ c(t) ≤ β. Furthermore, t 7→ c(t) and
t 7→ ρ(t) ∈M1(G) are assumed to be measurable.

Then there exists an a.e. differentiable hemigroup (νt,t+s) with gen-

erating functionals ∂+

∂s
νt,t+s|s=0 = A(t) + γ(t), for a.a. t ≥ 0.

νt,t+s admits a representation by perturbation series :

νt,t+s = e−β·s
∑
k≥0

ν
(k)
t,t+s

where ν
(0)
t,t+s = µt,t+s, ν

(k+1)
t,t+s =

∫ s

0
µt,t+u ? σ(t + u) ? ν

(k)
t+u,t+sdu, and

σ(r) := c(r)ρ(r) + (β − c(r))εe ∈Mb
+(G).

Furthermore, ν
(k)
t,t+s ∈Mb

+(G) with ||ν(k)
t,t+s|| ≤ βk·sk

k!
for k ≥ 0.

Proof. Immediate consequence of Theorem 1.2 c), since ||σ(r)|| = β

and ||µt,t+u ? σ(t+u) ? ν
(k)
t+u,t+s|| = β · ||ν(k)

t+u,t+s||, for all 0 ≤ t ≤ t+u ≤
t+ s, k ∈ Z+. �

In particular we are interested in the following special case:
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Corollary 2.5. Let (νt,t+s) be a Lipschitz-continuous hemigroup in

M1(G) with a family of generating functionals A(t) = ∂+

∂s
νt,t+s|s=0,

for λ1−almost all t. Let U be an open neighbourhood of e in G such
that the Lévy measures satisfy

ηA(t)({U) =: c(t) ≤ β <∞ for all t (2.1)

t 7→ A(t), hence t 7→ c(t) are measurable. Put γ(t) := c(t) (ρ(t)− εe)
with ρ(t) := 1

c(t)
ηA(t)|{U ∈ M1(G) and put A(t) := A(t) − γ(t). Let

finally (µt,t+s) be the hemigroup generated by
(
A(t)

)
, t ≥ 0.

Then (νt,t+s) admits a series representation

νt,t+s = e−βs
∑
k≥0

ν
(k)
t,t+s

with summands ν
(k)
t,t+s sharing the properties described in Corollary 2.4[[

Put γ(t) := ηA(t)|{U − ηA(t)({U) · εe = c(t) (ρ(t)− εe), hence σ(t) =

ηA(t)|{U +
(
β − ηA(t)({U)

)
· εe and apply Corollary 2.4.

]]

3. Sub-multiplicative and sub-additive functions

First we collect some properties of sub-multiplicative and sub-addi-
tive functions. At first we note the nearly obvious

Lemma 3.1. Let f : G → R+ be sub-multiplicative and g : G → R+

sub-additive. Then
a) If f 6= 0 then f(e) ≥ 1. If f 6= 0 and symmetric, i.e., f(x−1) =
f(x) ∀x then f ≥ 1. In fact, Proposition 3.3 below shows that f ≥ f(e).
b) k := f + 1 and h := g + 1 are sub-multiplicative and ≥ 1.
c) h := eg is sub-multiplicative and ≥ 1.
d) If f ≥ 1 then h := log f is sub-additive and ≥ 0. Hence according
to b), log(g + 1) + 1 is sub-multiplicative and ≥ 1.

e) If f ≥ 1 then f̃ : x 7→ f(x−1) is sub-multiplicative and ≥ 1. Fur-

thermore, h := max
(
f, f̃

)
is sub-multiplicative, ≥ 1 and symmetric.

f) If f ≥ 1 then 1/f is super-multiplicative and 0 < 1/f ≤ 1.

To avoid complicated notations we restrict in the following Section
to continuous symmetric sub-multiplicative functions with f(e) = 1. In
view of the results mentioned above, and in view of applications we
have in mind there is no serious loss of generality.

Lemma 3.2. Let g be sub-additive, symmetric and ≥ 0. Then g(xy) ≥
|g(x)− g(y)| for all x, y ∈ G.[[
g(x) = g ((xy)y−1) ≤ g(xy) + g(y) and on the other hand, we have

g(y) = g (x−1(xy)) ≤ g(x) + g(xy). Whence the assertion.
]]

Proposition 3.3. Let f : G → [1,∞) be sub-multiplicative and sym-
metric. Then we have:
f(xy) ≥ f(x)

f(y)
· 1{f(x)≥f(y)} + f(y)

f(x)
· 1{f(y)>f(x)}

Whence in particular, f(xy) ≥ max
{

f(x)
f(y)

, f(y)
f(x)

, 1
}
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Applying Lemma 3.2 to g := log f yields:

f(xy) = eg(xy) ≥ e|g(x)−g(y)| = f(x)
f(y)

· 1{f(x)≥f(y)} + f(y)
f(x)

· 1{f(y)>f(x)}

]]
Proposition 3.4. Let f : G → [1,∞) be measurable, symmetric and
sub-multiplicative. Let µ, ν, λ ∈Mb

+(G). Then we have:
a) 〈µ ? ν, f〉 ≤ 〈µ, f〉 · 〈ν, f〉
b) 〈µ ? ν, f〉 ≥ max {〈µ, f〉 · 〈ν, 1/f〉 , 〈µ, 1/f〉 · 〈ν, f〉}
Hence
c) 〈µ ? ν ? λ, f〉 ≥
max

{
〈µ, f〉 · 〈ν, 1

f
〉 · 〈λ, 1

f
〉, 〈µ, 1

f
〉 · 〈ν, f〉 · 〈λ, 1

f
〉, 〈µ, 1

f
〉 · 〈ν, 1

f
〉 · 〈λ, f〉

}
Proof. a) is obvious.

b) 〈µ ? ν, f〉 =

∫ ∫
f(xy)dµ(x)dν(y)

Prop.3.3

≥
∫ ∫

f(x)

f(y)
· 1{f(x)≥f(y)} +

f(y)

f(x)
· 1{f(y)>f(x)}dν(y)dµ(x)

=

∫
f(x)

∫
1

f(y)

(
1{f(x)≥f(y)} +

f(y)2

f(x)2
· 1{f(y)>f(x)}

)
dν(y)dµ(x)

≥
∫
f(x)

∫
1

f(y)

(
1{f(x)≥f(y)} + 1{f(y)>f(x)}

)
dν(y)dµ(x)

= 〈µ, f〉 · 〈ν, 1/f〉
The other assertions are now obvious. �

Proposition 3.5. Let f be continuous, symmetric, sub-multiplicative,
let µn, µ ∈Mb

+(G) with µn → µ weakly. Then
〈µ, f〉 ≤ lim inf〈µn, f〉[[
For all N > 0 we have 〈µn, f∧N〉 → 〈µ, f∧N〉 by assumption, hence

〈µ, f〉 = supN〈µ, f ∧N〉 = supN limn〈µn, f ∧N〉 ≤ lim infn〈µn, f〉
]]

Proposition 3.6. Let f : G → [1,∞) be continuous, sub-multiplica-
tive, symmetric with f(e) = 1. Let (µt,t+s)0≤t≤t+s be a continuous

hemigroup with 〈µt0,t0+s0 , f〉 <∞. Then sup
t0≤t≤t+s≤t0+s0

〈µt,t+s, f〉 <∞.

Proof. Let α ∈ (0, 1). Then there exist a δ = δ(α) > 0 such that for
0 < u − v < δ we have 〈µu,v, 1/f〉 > α (cf. Lemma 2.2, Corollary
2.3). Furthermore, according to Lemma 3.4 we have 〈µt0,t0+s0 , f〉 ≥
〈µt0,t0+v, 1/f〉〈µt0+v,t0+u, f〉〈µt0+u,t0+s0 , 1/f〉. Consequently, choose t1,
s1 such that t0 ≤ t1 ≤ t1 + s1 ≤ t0 + s0 < δ, t1 − t0 < δ and
t0+s0−t1−s1 < δ, then 〈µt1,t0+s0 , f〉 ≤ 〈µt0,t0+s0 , f〉·α−1, 〈µt0,t1+s1 , f〉 ≤
〈µt0,t0+s0 , f〉 · α−1, and 〈µt1,t1+s1 , f〉 ≤ 〈µt0,t0+s0 , f〉 · α−2.

Let [t∗, t∗ + s∗] ⊆ [t0, t0 + s0] be a sub-interval of length s∗ < δ.
Then there exist t0 < · · · < ti < ti+1 < . . . tN+1 := t0 + s0 such that
ti+1 − ti < δ ∀i and t∗ = ti0 , t∗ + s∗ = ti0+1 for some i0. Therefore,
repeating the above consideration N−times, we obtain 〈µt∗,t∗+s∗ , f〉 ≤
〈µt0,t0+s0 , f〉 · α−2N .

Hence for any sub-interval [t, t+s] ⊆ [t0, t0+s0], decomposing [t, t+s]
in at most N sub-intervals of lengths ≤ δ we obtain 〈µt,t+s, f〉 ≤(
〈µt0,t0+s0 , f〉 · α−2N

)N
. (Note that N ≈ [s0/δ] + 1 can be chosen inde-

pendently from the particular decomposition.) �
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4. Moments of Lipschitz-continuous hemigroups and their
Lévy-measures

The following key-result is proved in [20], Theorem 4:

Proposition 4.1. Let (µt,t+s)t,s≥0 be a Lipschitz continuous hemigroup

with generating functionals (A(t)), resp. B(s, t) :=
∫ t

s
A(τ)dτ and Lévy

measures ηA(τ) and ηB(s,t) =
∫ t

s
ηA(τ)dτ respectively.

Assume that there exists a neighbourhood U of e such that

ηA(τ)

(
{U

)
= 0 ∀τ, hence ηB(s,t)

(
{U

)
= 0, ∀ s < t (4.1)

Then for any continuous sub-multiplicative function f : G → [1,∞),
for all 0 < T <∞ we have:

sup
0≤t≤t+s≤T

〈µt,t+s, f〉 <∞ (4.2)

In fact, more is shown there: Let α > 0, r ∈ (0, α). Then ∃t > 0:
sup

0≤s≤t
〈µr,r+s, f〉 ≤

∫
sup

0≤s≤t
f (X−1

r Xr+s) dP ≤ β(t).

There β(t) ↘ 1 (with t↘ 0) and (X−1
r Xr+s) denote the increments

of an additive process with distributions (µr,r+s)r,r+s≥0.

Hence, if f(e) = 1, then sup (〈µr,r+s, f〉 − 1) → 0. This proves in
particular the assertion (4.2) if [0, T ] is covered by a finite number of
small intervals.

Lemma 4.2. Let (νt,t+s) be represented by a perturbation series as in

Corollaries 2.4, 2.5: νt,t+s = e−β·s ∑
k≥0 ν

(k)
t,t+s, where ν

(0)
t,t+s = µt,t+s,

ν
(k+1)
t,t+s =

∫ s

0
µt,t+u ? σ(t+ u) ? ν

(k)
t+u,t+sdu.

Then for continuous symmetric sub-multiplicative functions f ≥ 1
with f(e) = 1 we have:

a) 〈νt,t+s, f〉 = e−βs
∑

k≥0〈ν
(k)
t,t+s, f〉, 〈ν(0)

t,t+s, f〉 = 〈µt,t+s, f〉 and

〈ν(k+1)
t,t+s , f〉 ≤∫ s0

0

· · ·
∫ sk

0

k+1∏
i=0

〈µti,ti+1
, f〉 ·

k∏
i=0

〈σ(ti+1), f〉duk+1 · · · du0 (4.3)

where t0 = t, ti := ti + ui, tk+1 := t+ s, s0 := s, si := s−
∑i

1 uj.
b) 〈νt,t+s, f〉 ≥ 〈µt,t+s, f〉 · e−βs.
c) 〈νt,t+s, f〉 ≥ C ·D · e−βs

∫ s

0
〈σ(t+ u), f〉du

with positive constants C = C(t, t+ s), D = D(t, t+ s) ∈ (0, 1].
d) Furthermore, we observe∫ s

0
〈σ(t+u), f〉du =

∫ s

0
c(t+u)〈ρ(t+u), f〉du+

∫ s

0
(β − c(t+ u)) du·εe

with
∫ s

0
(β − c(t+ u)) du ≤ β · s.[[

a) and b) follow immediately by 2.4, 2.5 (in view of (1.6)) and by

Proposition 3.4.
Analogously, c) follows applying 3.4 to

〈νt,t+s, f〉 ≥ e−βs

∫ s

0

〈µt,t+u ? σ(t+ u) ? µt+u,t+s, f〉du

defining C := inf
0≤u≤s

〈µt,t+u, 1/f〉 and D := inf
0≤u≤s

〈µt+u,t+s, 1/f〉. (Recall

that f(e) = 1.)
]]

Now we have the means to formulate the main result:
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Theorem 4.3. Let (νt,t+s) be a Lipschitz-continuous hemigroup with

generating functionals A(τ) and B(s, t) =
∫ t

s
A(τ)dτ respectively. As-

sume as in Corollary 2.5 (2.1)

c(τ) := ηA(τ)

(
{U

)
≤ β, 0 ≤ τ ≤ T (4.4)

for some neighbourhood U of the unit e. Let as before, f : G → [1,∞)
be continuous, sub-multiplicative and symmetric with f(e) = 1. Then
the following assertions are equivalent:
(i) 〈νt,t+s, f〉 <∞ for all 0 ≤ t ≤ t+ s ≤ T
(ii) 〈ν0,T , f〉 <∞
(iii)

∫ T

0
〈σ(τ), f〉dτ <∞ (with the notations introduced in 2.5).

(iv) 〈ηB(0,T ), f1{U〉 =
∫ T

0

∫
{U
fdηA(τ)dτ <∞

(v) For all s ∈ (0, T ) sup
0≤t≤t+s≤T

〈ηB(t,t+s), f1{U〉 <∞

Proof. We use the notations introduced above, in particular in 2.5.
”(i) ⇔ (ii)” cf. Lemma 3.6.

”(iii) ⇔ (iv)” Note that σ(τ) ≥ 0, βT ≥
∫ T

0
β − ηA(r)({U)dr ≥ 0 and

and 〈ηB(0,T ), f1{U〉 =
∫ T

0
〈σ(τ), f〉dτ −

∫ T

0
β − ηA(r)({U)dr (cf. Lemma

4.2 d) ). Whence the assertion follows.
”(iv) ⇔ (v)” is obvious, since the integrands are non-negative.
”(ii) ⇒ (iii)” follows by Lemma 4.2 c). (Note that C ·D > 0).
”(iii) ⇒ (ii)” According to Lemma 4.2 a) we have to show that

e−βT
∑

k〈ν
(k)
0,T , f〉 < ∞. For k = 0 we have 〈ν(0)

0,T , f〉 = 〈µ0,T , f〉 ≤
supt≤t+s≤T 〈µt,t+s, f〉 =: M0 < ∞ (cf. Proposition 4.1.) Note that

1 ≤ M0 ≤ M2
0 and by assumption (iii),

∫ T

0
〈σ(τ), f〉dτ < ∞. t 7→

Γ(t) :=
∫ t

0
〈σ(v), f〉dv is increasing, bounded on [0, T ] and absolutely

continuous w.r.t. λ1|[0,T ]. Hence for all ε > 0 there exists a δ(ε) > 0
such that ∀ s < δ(ε),∀t we have Γ(t, t + s) := Γ(t + s) − Γ(t) < ε.
Furthermore, for all k ∈ Z+0, d > 0 we have in view of (4.3):

〈ν(k+1)
t,t+s , f〉

3.4c), (4.3)

≤∫ s0

0

· · ·
∫ sk

0

k+1∏
i=0

〈µti,ti+1
, f〉 ·

k∏
i=0

〈σ(ti+1), f〉duk+1 · · · du0 ≤

Mk+2
0 ·

∫ s0

0

· · ·
∫ sk

0

k∏
i=0

〈σ(ti+1), f〉duk+1 · · · du0 ≤

M0 · (M0 · d)k+1 (4.5)

(with the notations introduced in (4.3)), if s < δ(d), hence si < δ(d).

To prove the last estimate of (4.5) note that
∫ sk

0

k∏
i=0

〈σ(ti+1), f〉duk+1 =

k−1∏
i=0

〈σ(ti+1), f〉 ·
∫ sk

0
〈σ(tk + uk+1), f〉duk+1 ≤

k−1∏
i=0

〈σ(ti+1), f〉 · d, etc.

Let 0 < c < 1, choose 0 < d < c/M0. (Note that M0 only depends
on T .) We begin with 0 = t0. Put ti+1 := ti + si and choose si < δ(d),
hence Γ(ti, ti+1) < d . Then according to (4.5) we observe 〈νt0,t1 , f〉 ≤
e−βs1

∑
k〈ν

(k)
t0,t0+s1

, f〉 ≤ e−βs1 (1− c)−1 ·M0.
Now replace t0 by t0 + s =: t1, s < δ(d) etc. After N repetitions,

N ≈ T/δ(d), the interval [0, T ] is covered and we obtain in view of

Proposition 3.4: 〈ν0,T , f〉 ≤
∏N

1 〈νti,ti+1
, f〉 ≤ e−βT (1− c)−N ·MN

0 . �
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5. Appendix

Remarks 5.1. a) The constant M0 in (4.5) depends on the the length
of the chosen interval: Put M0 = M0(s) if the behaviour of νt,t+u is
considered in the interval 0 ≤ u ≤ s.

If (νt,t+s) is time-homogeneous, i.e. if (νs := νt,t+s)s≥0 (and also

(µs := µt,t+s)s≥0) are continuous convolution semigroups, then we have

with M0(s) = sup
u≤s
〈µu, f〉:

〈νt,t+s, f〉 = 〈νs, f〉 ≤M0(s)e
−sβeM0(s)〈σ,f〉 (5.1)

where A(t) ≡ A, σ(t) ≡ σ = ηA|{U , β := σ(G) = ηA({U) ≡ c(t).
With different notations the upper bound (5.1) is found in [20], proof

of Theorem 5. In fact, in the time-homogeneous case sharper estimates
are available:

〈νs, f〉 = 〈νt,t+s, f〉 = e−βs
∑

k

〈ν(k)
t,t+s, f〉 with 〈ν(0)

t,t+s, f〉 = 〈µt,t+s, f〉

〈ν(k+1)
t,t+s , f〉 ≤

∫ s

0

〈µu, f〉〈σ, f〉〈ν(k)
t+u,t+s, f〉du

≤M0(s)〈σ, f〉
∫ s

0

〈ν(k)
t+u,t+s, f〉du ≤ · · · ≤ M0(s)

(k + 1)!
(M0(s)〈σ, f〉)k+1

Whence (5.1) follows.
b) E. Siebert’s results in [19, 20] for the time-homogeneous case are
proved for general continuous convolution semigroups, and in that case
the restrictive condition (2.1) is trivially fulfilled (for any T > 0). It is
natural to conjecture that the assertions of Theorem 4.3 hold true also
without condition (2.1) resp (4.4). But up to now no proof is available.
c) Throughout, in order to avoid problems with measurability and in
view of [20], Theorem 4, we assumed G to be second contable. In fact,
this is not a serious restriction:
Firstly, w.l.o.g. we may assume G to be σ−compact, since the group
generated by the supports

⋃
0≤t<t+s≤T

supp(νt,t+s) is σ−compact.

As well known (cf. e.g., [2], page 101, exerc. 11) a σ−compact group
is representable as projective limit of second countable groups G =
lim
←

G/K, K ∈ K, a set of compact normal subgroups with
⋂

K∈K

= {e}.

Let f be as above, then W := {f = 1} is a closed subgroup and f is
K−invariant for any compact subgroup K ⊆ W . Moreover, g := log f
is uniformly continuous by Lemma 3.2. Let e.g., ψ : x 7→ x2/ (1 + x2),
then h := ψ ◦ g is uniformly continuous and bounded. Hence h is
K0−invariant for some K0 ∈ K (cf. the above reference [2]). There-
fore, h, hence also f is K0−invariant. Thus integrability of f w.r.t.
(νt,t+s) can be reduced to the case of second countable groups.
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