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Importance of Memory Error Exploits

 Memory error exploits continue to be the dominant threat

 Behind most “critical updates” from Microsoft and other vendors

 Mechanism of choice in “mass market” attacks, including worms

 Defense techniques to address this problem continues to be 

the hot topic of research

 Over 20 techniques have been invented so far

 Techniques that provide full protection haven’t been practical

 High performance cost

 Code compatibility issues

 Diversity based defenses emerging as more promising

 Address Space Randomization (ASR)

 Instruction Set Randomization (ISR)
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Previous Diversity Based Techniques

Runtime performance overheads
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DSR Technique

 Basic idea:  randomize data representation

 Xor each data object with a distinct random mask

 Effect of data corruption becomes non-deterministic

 Example: use out-of-bounds access on array X1 to corrupt variable 

X2 with value V

– Actual value written: mask(X1)  V

– When X2 is read, its value interpreted as mask(X2)  (mask(X1)  V)

– mask(X2)  mask(X1)  V ≠ V (because mask(X2) ≠ mask(X1) )

X1 X2

Example: Buffer overflow
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Differences with PointGuard

 DSR randomizes all data objects, not just pointers

 PointGuard breaks working programs, DSR doesn’t

 Attacks targeted:

 PointGuard targets absolute address-dependent attacks 

(pointer corruption)

 DSR targets relative address-dependent attacks

 Helps defeating non-control data attacks that corrupt files names, 

userids, command names, authentication data, …

 Automatically defeats absolute address-dependent attacks as 

pointer corruption step is relative address-dependant

 Unlike PointGuard, DSR is not vulnerable to information 

leakage attacks (details forthcoming)
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DSR Transformation Approach

 For each variable v, introduce another variable m_v for 
storing its mask

 Randomize values assigned to variables (LHS)

 Example:   x = 5              x = 5; x = x ^ m_x;

 Derandomize used variables (RHS)

 Example:  (x + y)             ((x ^ m_x) + (y ^ m_y))

 Key problem: aliasing

int x, y, *ptr; …

ptr = &x; …

ptr = &y; …

z = *ptr

 Unfortunately, we cannot statically determine the mask 
associated with *ptr – it could be that of x or y
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Aliasing Problem

 Solution to aliasing problem: assign the same 

randomization mask to possibly aliased objects

 Requires alias analysis

 Current implementation supports Steensgaard’s algorithm for  

alias analysis

 Flow-insensitive

 Context-insensitive

 Field-insensitive

 All heap objects allocated at the same point represented by a single 

logical object

 Linear time complexity
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Pointer Analysis & Mask Assignment

int intval;

int *p1,*p2,*p3;

int **pp1,**pp2;

p1  = &intval;

pp1 = &p1;...

pp1 = &p3;...

pp2 = pp1;

p2  = *pp2;

…

= &pp2;

pp2
pp1 

p1,p3

intval

P2

mask: m1

mask: m2

mask: m3

p2 = *pp2

p2 = *(pp2^m3)^m2;

p2 = pp2^m4;

mask: m4
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Optimization

 Basic idea: mask only overflow candidate objects (OCOs),

e.g., arrays, structures containing arrays, objects whose 
addresses are taken

 Optimization is very effective because majority of memory 
access in a typical program are to non-OCOs

 Ensure that optimization doesn’t significantly impact security

 Claim: all data corruptions involve overflows from OCOs

 All relative address-dependent attacks involve overflows from 
OCOs

 All absolute address-dependent attacks involve corruption of 
pointers

 Require a relative address-dependent step, e.g., buffer overflow, 
integer overflow, heap overflow, etc.

 Implication: need protection from overflows in OCOs
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Protection from Overflows in OCOs  (Optimization ctd)

 Protect non-OCOs from overflows in OCOs

 Non-OCOs separated from OCOs with an unmapped memory 

page

 Guard against overflows among OCOs

 Use of distinct masks provides automatic protection for 

overflows between unaliased OCOs

 Prevent overflows between aliased OCOs by allocating them in 

disjoint memory regions

 Stack: allocate local OCOs on disjoint stacks (buffer stacks) if small 

in number; allocate in heap if the number is high

 Static: number of disjoint memory areas statically known

 Heap:  heap OCOs allocations (typically large in number) randomly 

distributed in a fixed number of heap memory regions



Secure Systems Laboratory,  http://seclab.cs.sunysb.edu
11

Implementation

 Based on source-to-source transformation of C programs

 Uses CIL as front-end and OCAML as implementation language

 Implementation issues

 Handling overflows within structures

 Use field-sensitive pointer analysis so as to assign distinct mask to 

each field of a structure (not done yet)

 Handle functions such as memcpy, bzero in a context-sensitive way

 Handling variable argument functions

 Treat them as if they take array (with maximum size limit) parameter

 Transformation of libraries

 Source code available: need dynamic mask resolution

 Source code unavailable: need summary functions for library calls
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Execution Time Overheads
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Effectiveness Against Various Attacks

 Stack buffer overflows

 Overflows to corrupt data on main stack (e.g., return address, 
based pointer, saved registers) fail

 Overflows among overflow candidate objects

 fail if source and target objects are in different buffer stack or 
disjoint memory regions

 succeed with probability 2-32 otherwise

 Static buffer overflows

 Overflows to corrupt non overflow candidate objects fail

 Overflows between overflow candidate objects 

 fail if source and target objects are in different memory regions

 succeed with probability 2-32 otherwise
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Effectiveness Against Various Attacks

 Heap overflows

 Traditional attack (corruption of heap control data) succeeds 
with probability  2-32

 An overflow from one heap block to the next succeeds with 
probability > 2-32 (property of a program)

 Heap objects randomly distributed

 Nonetheless, such overflows also detected when control data 
between the heap blocks get corrupted

 Format string attacks

 Traditional attack with %n directive fails

 DSR cannot stop attacks that print contents of stack with %x

 Relative address attacks based on integer overflows

 If source and target objects share the same mask, such attacks 
can be successful (protection provided in the form of RAR)
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Effectiveness Against Attacks targeting DSR

 Information leakage attacks

 If a masked data is leaked, an attacker can deduce the mask if 

the plaintext data value is known

 Attempt to read masked data results in reading plaintext data

 Brute force and guessing attacks

 become difficult because of low probability of success 

 Partial pointer overwrites

 become impossible on stack-resident data because the main 

stack does not contain overflow candidate objects 
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Related Work

 Runtime guarding: StackGuard, StackShield, RAD, Libsafe, 
Libverify, ProPolice, FormatGuard, …

 Attack specific, no comprehensive protection

 Runtime bounds and pointer checking: [Austin+94], 
[Jones+97], Cyclone, CCured, [Ruwase+04], [Xu+04], 
[Dhurjati et al 06]

 High overheads or incompatibility with legacy code

 Runtime enforcement of static analysis results: CFI, DFI, 
WIT

 Don’t target all exploits (e.g., data leakage/corruption) 

 Randomization techniques: ASR (PaX, [Bhatkar+03], 
[Xu+03]), ISR ([Barrantes+03], [Kc+03]), PointGuard

 No or limited protection from non-control data attacks
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Summary of Contributions

 Randomization of all types of data provides comprehensive 
coverage

 Control data attacks

 Non-control data attacks

 Unlike other randomization techniques, resistant to 
information leakage attacks

 Higher range of randomization than other randomization 
techniques

 Capable of detecting exploits that are missed by full bounds-
checking techniques

 Example: overflows within structures

 Low runtime overhead

 Average around 15%
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Thank You!

R.Sekar
Email: sekar@cs.sunysb.edu


