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Kernel Rootkits
 a program runs in kernel space to take 

fundamental control of a computer system, 
without authorization by the system’s owners and 
legitimate. 

 Joanna Rustkowska classified three types of kernel 
rootkits.

1)Type I: modifying static kernel objects.

2)Type II: modifying dynamic kernel objects.

3)Type III: VMM, SMM and other hardware-based 
rootkits. 



How are malicious code inserted to 
the kernel ? 

 Loadable kernel module (LKM) or driver (most of 
Linux and Windows rootkits  are implemented in this 
way). 

 /dev/mem, /dev/kmem and \Device\PhysicalMemory 
(But modifying kernel memory through them has 
been disabled in recent Linux and Windows versions).

 Exploiting the vulnerabilities of benign kernel code 
(like buffer overflows).



Rootkit Detection
 Signature-based rootkit detection and kernel integrity 

verification are two generic rootkit detection 
approaches, and many research works have been 
focused the second one.

 Kernel integrity verification has following limitations:

1) It is infeasible to verify all the states of dynamic kernel 
objects.

2)It cannot cope with non-integrity-violation rootkits, 
e.g., some type III rootkits and confidentiality-
violation rootkits. 



A Confidentiality-violation Rootkit. 



Rootkit Prevention 
 Only authenticated/authorized LKMs/drivers are 

allowed to be loaded and executed in the kernel 
(Microsoft’s driver code signing, NICKLE and 
SecVisor).

 However, no authentication/authorization authority 
can assure the goodness of a driver/LKM.  VeriSign just 
sells the certificate to customers and doesn’t check the 
driver code to be signed at all. 

 This approach also cannot handle a large number of 
legacy drivers/LKMs, Windows XP and 32-bit Vista 
doesn’t enforce the code driver signing in default.



DARK
 DARK aims to assure the goodness of a LKM/driver 

that computer users don’t trust, while it is useful to 
them.

 It combines the program monitoring with the rootkit
identification techniques. The suspicious kernel code 
is monitored and its interactions with the rest of 
kernel are checked against a group of well-selected 
security policies. 

 DARK is built based on Qemu/Kqemu and its program 
monitoring is achieved through on-demand 
emulation.



On-demand Emulation



Design
 Use one feature of OS’s virtual memory 

management subsystem. 
 Set present bits in page table entries of the LKM’s 

code to 0.
 Page fault exception is generated when the VM 

attempts to run the LKM code.
 The VMM intercepts and interprets the exception 

and switches to emulation mode.
 The emulator sets those present bits to 1 and runs 

the LKM code along with DARK’s security policy 
checking. 



Implementation
 Reuse the existing demand emulation framework 

of Qemu/Kqemu.

 Instrument Linux kernel’s sys_init_module and 
sys_delete_module functions in kernel/module.c , 
and the VM issues the 0x90 and 0x91 software 
interrupt to VMM.

 Add DARK’s business logics to V-2-E and E-2-V 
control code of Qemu/Kqemu.

Modify Linux module loader (insmod.c) to store a 
module’s text range in its module descriptor.



Security Policy 
 They are manually created based on expert knowledge.

 The basic rule format is as below:

Subject Operation Object Action

Module X Read, 
Write, Call

Hardware 
Objects, 
Kernel 
Objects

Alarm, 
Reject



ID NAME OPERATION

GLOBAL 

VARIABLE OR 

FUNCTION

DATA TYPE ACTION DYNAMIC OPTIONAL

1
Console TTY 

Buffer
Read console_table tty_struct Alarm No No

2 Exception Table Write __start___ex_table Exception_table_entry Alarm No No

3 GDT table Write gdt_table Array Reject No No

4 IDT table Write idt_table Array Reject No No

5 Kernel Text Write _text - Reject No No

6 MM List Write init_task mm_struct Alarm Yes No

7 Module List Write module_list Module Alarm Yes No

8 Module Text Write module_list - Reject Yes No

9 Netfilter Hooks Call nf_register_hook - Alarm No Yes

10 Page Table Write init_task - Reject Yes No

11
Proc Dir Entry 

List
Write proc_root proc_dir_entry Alarm Yes No

12
Proc Inode Ops 

List
Write proc_root Proc_inode_operation Alarm Yes No

13
Proc File Ops 

List
Write proc_root Proc_file_operation Alarm Yes No

14
PTM TTY 

Buffer
Read ptm_table tty_struct Alarm Yes No

15
PTS TTY 

Buffer
Read pts_table tty_struct Alarm Yes No

16
Socket Buffer 

List
Read skbuff_head_cache sk_buff Alarm Yes Yes

17 Syscall Table Write sys_call_table Array Reject No No

18 Task List Write init_task task_struct Alarm Yes No

19 Segment Write init_tss Array Reject No No



DARK System Rules



Policy Enforcement
 Kernel rules are organized as two hash tables.

 The LKM code is monitored at the code translation of 
Qemu, and the cached code is not inspected again, 
which significantly improves the performance.

 External kernel memory accesses and function 
invocations can optionally be logged to a local file.  



Security Evaluation
 Total 18 Linux rootkits are available for the evaluation: 

17 are collected from the Internet; one is written by 
myself.

 We can’t find any type III rootkit that works in the 
testing system. 

 20 benign modules are selected from Linux source for 
false positive evaluation.

 All rootkits have been detected and blocked by DARK; 
only 1 benign module causes an alarm. 



ROOTKIT

FUNCTION

TYPE

HIT KERNEL RULE

ACTI

ONHID PE REE REC NEU
Load Operation

Adore X X I 17 18 Reject

Adore-ng X X X II 7, 12, 13 18 Alarm

Adore-ng (hidden) X X X II 7*, 12, 13 18 Alarm

Darklogger X II 15 Alarm

Exception X X I 2 18 Reject

Fileh-lkm X I 17 Reject

Hookstub X I 4 18 Reject

Hp X X II 18 Alarm

KIS X X I 17 Reject

Knark X X X I 17 18 Reject

Linspy2 X I 16 Reject

Nfsniffer X II 9 16 Alarm

Nushu X II 16 Alarm

Pizzaicmp X II 9 16 Alarm

Prrf X X II 11, 12, 13 18 Alarm

Sebek X I 7, 17 Reject

Srootkit X I 5 Reject

Vlogger X I 17 14 Reject

Vlogger (local) X II 1 Alarm



Performance Evaluation
Target LKM is iptable_filter.

Three systems: VMM-only, DARK and 
DARK-CS.

Three benchmarks: bonnie, iperf, lmbench.

When iptable_filter is excuted, DARK has 
about 10% performance penalty.



Sequential Output Sequential Input Random

Per Char Block Rewrite Per Char Block Seeks

K/sec %CPU K/sec %CPU K/sec %CPU K/sec
%CP

U
K/sec %CPU /sec

%CP

U

VMM
8528±

233
64±3

12755±1

425
45±5

19082±1

490
53.0±3

15805±2

301
75±4

1292

92
71±2

3515±1

908
84±4

DARK

-CS

8038±

345
61±5

11715 1

379
41±6

17402±1

834
48.2±2

16860±2

004
80±5

1302

66
74±4

4969±1

759
85±2

DARK
8168±

405
67 6

13949±1

106
43±5

18742±2

046
49.8±2

14480±2

720
73±7

1254

93
72±4

5117±1

254
83±4

Bonnie Test Result



VM as Server (M/sec) VM as Client (M/sec)

TCP UDP TCP UDP

VMM-only 21.8±1.2 1.05±0.1 26.8±2.3 1.13±0

DARK-CS 19.73±0.5 1.01±0 23.99±1.4 1.08±0.1

DARK 19.60±0.6 1.00±0.1 24.05±1.0 1.08±0.1

Iperf Test Result



Future Work
 Continually refine the policy rules to accommodate 

new rootkit attacks. 

 Tweak the tradeoff between performance and security: 
selectively enabling or disabling on-demand 
emulation based on certain conditions, e.g., current 
system load, virtual CPU usage and bandwidth usage. 

 Port DARK to Kernel-based Virtual Machine (KVM) 
that supports hardware virtualization extensions such 
as Intel’s VT-x and AMD’s AMD-V.




