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Abstract

We have a look at the semantics of Entity-Relationship models, a popular device for modelling

data, but lacking a stringent semantics. In an earlier paper we have shown how to generate

an algebraic speci�cation for an extended ER-model; in this paper we extend the algebraic

view of a model through a categorial interpretation.

Inheritance induces a tree structure for an ER-model. This is decorated with objects from a

suitable category, and we ask for a unifying view of this model. Our approach suggests using

colimits as the semantics. It is shown that under very mild conditions the colimit exists,

and that this colimit is an adjoint to the diagonal. Finally we show how to integrate binary

relations into this approach by studying two general conditions on the morphism associated

to a relation.
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1 Introduction

Entity-Relationship modelling is a rather popular approach to data modelling, as witnessed

by the literature on data base systems [Ull88] and on software engineering [GJM91]. This

popularity is partly due to the visual representability of the models constructed, and to the

relative ease with which these models may be implemented. Furthermore, ER models come in

many di�erent variants, hence di�erent kinds of problems may be subjected to ER modeling,

indicating the wide applicability of this method, nay, of this family of methods.

This kind of data modeling has, however, quite a notable drawback from the conceptual point

of view. Its modelling facilities are almost seductive, but the formal foundations for its seman-

tics are not that readily described. In fact, a set theoretic semantics is easily conceived, but

it is not diÆcult to see that set theory due to its implied semantics is not always appropriate.

An alternative for giving some meaning to an ER model is provided through an algebraic

way of life: [CLWW94], [Het93] and [GH91, Hoh93] formulate an algebraic view, and [Dob97]

gives methods for generating an algebraic speci�cation for an ER model.

These approaches are mainly characterized by providing some axiomatic description for the

operations involved in a suitable variant of the model, and by establishing subsequently the

models provided by these descriptions as the (class of) semantics for the ER model. This

is a mathematically sound way providing a solid foundation for this powerful method. It

enables constructing concise models when ER modeling is combined with other approaches

that focus on modelling the functionality of an application. In [Dob97, Sec. 5] it is shown

with an example how data modeling with ER may be combined with functional modeling

using a Petri nets, essentially attributing the edges of the net with enabling terms from an

algebraic speci�cation.

This note carries the algebraic approach developed in [Dob97] a bit further. Given an al-

gebraic speci�cation, we may consider models for it. These models form a category, hence

the speci�cation determines objects of a category (which is usally unrelated to the category

of sets). Since each entity and each relation in determined by a speci�cation of its own, we

see a collection of models, hence a collection of objects in our model category. In addition,

some entities are related to each other (e.g., by IsA links). This translates to the edges of a

graph, each node of which is decorated with an algebraic speci�cation. Translating the edges

to morphisms between the corresponding objects, hence one ends up with a functor from a

diagram to the category under consideration.

It is this functor which is of interest here.

Carried away? It is easy to get carried away by the algebraic arguments, so the reason for

why it is helpful to have such an algebraic discussion should be elaborated. First, categories

abstract away all the implementation details and permit focussing on the structure of the

objects under consideration and their relationships. In fact, the details of an object in a cate-

gory is not accessible at all. An object may be internally as rich as Croesus (or Bill Gates) |

this is of no concern, as long as this richness is not expressible on the outside. This, in turn,

is determined by the set of morphisms associated with the object. Hence the approaches

(ER, categories) are in fact rather similar by focussing on external relations. They may be

oriented towards preserving structures (like homomorphisms familiar from group theory, or

like signature morphisms from algebraic speci�cations), but they may also be considered as

models for channels (like in the COMMUNITY approach, see [WF98]). This indicates that a

categorical approach may encompass also many other views to modelling. The full generality
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has, however, its price: further work is required for modelling those aspects which are not

determined by the structure alone, in particular questions on capturing attributes and their

dependence. This will require a judicious restriction to the kind of category that is used for

formulating the model.

Organization This paper is organized as follows: we �rst recall from [Dob97] the necessary

properties of ER models and focus on the forest induced by the model. Then we have a look

at the semantics of a diagram. It is formulated in terms of colimits, and we investigate

the question under which conditions such a colimit exists. It turns out that an answer for

the special case of trees is rather immediate, and that constructing an adjunction helps in

establishing the general model for forests (supporting once more MacLane's adjoints-are-

everywhere-hypothesis put forward in [Mac98, p. 97]). This result implies that the semantics

is compostional.

The constructions address entities only, and we discuss in the �nal section modelling the

interplay between relations and entities.

Further work Attributes are not considered in this note, they are rather a subject of

further work. The solution we present is completely general as far as entities are concerned,

but could probably be �ne tuned when it comes to di�erent kinds of relations. This is also

delegated to the drawer labelled Further Work.

2 ER-Models

An entity-relationship model [Ull88, 2.4] consists of entities, relationships on these entities

and attributes both on entities and relations. Only binary relations will be considered for

the sake of simplicity. Entities may be related by the IsA relation: E1 IsA E2 indicates that

each instance of E1 is also an instance of E2, hence shares all the attributes de�ned on the

latter entity. Multiple inheritance is not permitted here (i.e, no entity may be related to

more than one other entity via an IsA -relation). If entities are represented by their extension,

then relations are subsets of the Cartesian product. If R relates the entities E1 and E2, the

entities in E1 (in E2) are said to be in the domain (in the co-domain) of R. In the graphical

representation the order of the factors for the product is not immediate, hence we number the

corners of the diamond counterclockwise starting in the northern corner, identifying domain

and co-domain uniquely. Attributes are mentioned for the sake of completeness; they are

usually represented as maps; as usual, an attribute is a key for an entity i� it uniquely

determines each instance. A relation R is N : 1 i� b1 = b2 is true whenever both aRb1 and

aRb2 hold (i.e. whenever R is a partial map), i.e. i� for each instance a in the domain of R the

set fb : aRbg contains at most one element. In a similar way 1:N relations are characterized:

R is an 1 : N relation i� its inverse R�1 is N : 1. A relation is said to be N :M i� there

are no restrictions concerning the domain or the co-domain of the pairs participating in the

relation. That a relation is N : 1 is indicated in the graphical representation by labelling the

edge leading to the domain with an � , and a 1 as a label for the co-domain.

Fig. 1 displays an example for modelling a simple graphical user interface.

The entities are window, button, textfield, menu entry, moreover trigger and text(fixed),

both of which are related to menu entry via the IsA relation, and output window and icon,
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for which IsA window holds. The relations are sequence, which is an N : M relation be-

tween windows, residesIn, a 1 :N relation between window and button, contains relates

textfield and window as an N :1 relation, inMenu is an N :1 relation between trigger and

window, and �nally invocation relates trigger and menu entry 1 :N . Attributes are e.g.

window layout de�ned on entity window or button position de�ned on relation residesIn.

As usual, key attributes are underlined, and total relations or attributes carry a dot where

they are total. We will, however, not deal with attributes here.

3 Preparations

This section will relate the construction of a graph from an ER-model (see [Dob97, Sec. 3]).

Furthermore it will collect some notations and results from category theory following [Mac98]

for easier reference and the reader's convenience.

3.1 The Graph

Given an ER-model M, denote by E and R the respective sets of entities and of relations.

Let N
E
and N

R
be fresh and disjoint sets of nodes representing E and the domains and co-

domains for the relations inM, so that each E 2 E is associated with a unique node nE 2 N
E
,

similarly for R. Construct a directed edge nE1
! nE2

i� E1 IsA E2 holds in M.

If r 2 R is a relation with E1 as domain and E2 as co-domain, generate two fresh nodes jÆ(r)

and j
(r) in N
E
which are linked through the directed edges jÆ(r) ! nE1

and j
(r) ! nE2
to

their domain and co-domain, resp. (this re
ects the fact that the domain and the co-domain

of r have to be taken care of when it comes to manipulate the relation). The construction

from [Dob97] additionally constructs non-directed edges nr $ nE1
and nr $ nE2

; it also takes

care of the attributes. But the simpler construction from above will suÆce for the purposes

of the present paper.

To illustrate things, we borrow from [Dob97] a simple ER-model for constructing a graphical

user interface. This is displayed in Fig. 1. The directed graph generated from it is shown in

Fig. 2.

3.2 Morphisms and all that

If C is a category, C(a; b) is the set of all morphisms a ! b in C. Suppose D is another

category, and S : C ! D is a functor, then hv; ri is called an arrow from x to S i� r : x! Sv

is a morphism in D, or, equivalenty, if hv; ri is a member of the comma category x # S.

An inital object in this category is called universal ; thus universal objects are unique up to

isomorphisms. Thus hv; ri is a universal arrow from x to S i� for each arrow hv0; r0i from x to

S there exists a unique morphism f : v ! v0 such that r0 = Sf Æ r holds, thus the following
diagram is commutative:

x

	�

�

�

�

�

r
@

@

@

@

@

r0

R

Sv
Sf

- Sv0
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Figure 1: A simple ER-model for a GUI

Recall that a natural transformation � : R
�

! S for the functors R;S : C ! D assigns to each

object c in C an arrow �c : Rc! Sc in D such that for each morphism f : c! c0 the diagram

Rc
�c
- Sc

Rc0

Rf

?

�c0
- Sc0

Sf

?

is commutative. Denote for two natural transformations � : R
�

! S and � : S
�

! T their

vertical composition by � � � , hence

(� � �)c = �c Æ �c

holds for each object c in C. The vertical composition is again a natural transformation.

Trees are directed towards their root, a forest is a �nite collection of �nite trees. Each forest

B may be considered as a category and each map S : B ! C that assigns nodes to objects and

edges to morphisms (so that each edge e : i! j in B yields a morphism Se 2 C(Si; Sj)) may

be considered as a functor: we can de�ne a unique morphism Sp 2 C(Si0 ; Sik) for each path

p from i0 to ik in B upon piecing Sp together from these edges. This is an old trick discussed

at length e.g. in [Mit65, II.1], see also [Mac98, II.7].

The category CB is the category of all functors from B to C, natural transformations serving

as usual as morphisms between functors. These functors are called B-diagrams over C, or
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Figure 2: The graph derived from the ER-model

simply diagrams, if the context is clear. Denote by �
B
the diagonal functor from C to CB,

hence �
B
(v) is a constant functor on B, mapping each object to v, and each morphism to

the identity 1v. The pair hv; ri is called a colimit for the diagram S i� it is a universal arrow

from S to �
B
. Thus for each node j in B, rj : Sj ! v is a morphism in C such that for each

edge e : i! j the diagram

Si
Se

- Sj

@

@

@

@

@

ri
R 	�

�

�

�

�

rj

v

commutes, and if we have another arrow hv0; r0i from S to �
B
; hence a commutative diagram

for
�
r0j : Sj ! v0

�
j
, then

r0j = f Æ rj

holds for each node j, where f : v ! v0 is a uniquely determined morphism in C.
The coproduct hv; ri of an object a in Cn is a universal arrow from a to �n, v being denoted

An Note on a Categorical Semantics for ER-Models Page 5



E.-E. Doberkat

by
`

i=1;:::;n ai, and r being identi�ed by a collection

rj : aj !
a

i=1;:::;n

ai

of injections. The coproduct is sometimes only identi�ed by its object, similarly for the

colimit.

Suppose that R : C ! D and S : D ! C are functors, and that for each pair of objects c in C
and d in D there exists a bijection

'c;d : D(Rc; d)! C(c; Sd)

that is natural in c and d. Then hR;S; 'i : C * D is called an adjunction, and R is called the

left adjoint for S.

4 Basic Constructions

Consider the graph B associated with the entities of an ER-model. This graph is actually a

forest of trees, since only the nodes coming from entities are considered, re
ecting the fact

that we do not permit multiple inheritance, hence each entity inherits from at most one other

entity. Suppose that we have constructed for each node an algebraic speci�cation, as outlined

at length in [Dob97, 4.2]. Interpreting the speci�cation, and assuming that the speci�cation

is valid, this yields for each node a model living in that node.

Formally, we map each node j to a model Sj. These models are linked by an edge, whenever

the corresponding nodes are related by the IsA-relation, hence there is a directed edge

e : j1 ! j2

between two nodes j1 and j2 i� j2 inherits from j1. Re
ecting this in the world of models

(no, not Claudia Schi�er's), we establish a homomorphism

Se : Sj1 ! Sj2:

The models for a given speci�cation form a category C, so we end up with a map S associating

each node in B an object from C, cf. 3.2.
Now the project investigating the semantics of an ER-model may be formulated more speci�c:

Given the functor above, associate an object | provisionally called s | and morphisms �

with the diagram such that

� there is an arrow �j : Sj ! s for each node in the speci�cation tree (indicating that

each model for a speci�cation may be associated with the object through a morphism),

� the arrows are compatible, hence if e : j1 ! j2 is an edge in B, then �j1 = �j2 Æ Se,
hence making the diagram

Sj1
Se

- Sj2

@

@

@

@

@

�j1
R 	�

�

�

�

�

�j2

s

commutative,

An Note on a Categorical Semantics for ER-Models Page 6



E.-E. Doberkat

� the object s should be as close as possible to the objects described by S: thus if there

is another object s0 together with morphisms �j : Sj ! s0 having the two properties

above, then � should factor uniquely through �, hence we postulate that

9!
 : s! s08j : �j = 
 Æ �j

holds (hence requesting information which is as precise as possible).

In other words: we are looking for a colimit for the functor S.

5 ER-Completeness

Fix a category C and a forest B. The following de�nition is just an abbreviation.

De�nition 1 C is called ER-complete i� each B-diagram over C has a colimit.

We want to investigate these categories �rst.

Suppose S is a B-diagram over C, and let fw1; : : : ; wkg be the roots of the trees in B, wi being

the root of the tree Ti. Restrict S to this tree, obtaining a Ti-diagram over C. If vi is its

colimit, then
`

i=1;:::;n vi is the colimit for S. On the other hand, suppose that the colimit for

S exists, then all colimits for the trees exist, and their coproduct form the colimit. By the

way, this colimit is the least upper bound of all node labels if C is a partially ordered set with

an antisymmetric order relation.

We have demonstrated:

Observation 1 An ER-complete category has coproducts.

We will show now that the converse also holds. Let T be a tree with root w, and let S

be a T -diagram over C. Let for each node j in T be �j the unique path from j to w,

and put �Sj := S�j, hence �
S
j : Sj ! Sw. Then hSw; �

Si is a universal arrow from S to

�
T
. First, we have to show that hSw; �

Si is in fact an arrow from S to �
T
; this follows

from the construction. Next, suppose that we have another arrow hv; ri from S to �
T
, then

rw : Sw ! v is a morphism in C, and

rj = rw Æ �
S
j

holds for each node j. The latter property determines the factor for �S uniquely.

Thus we have established

Proposition 1 The category C is ER-complete i� it has all �nite coproducts.

In fact, we have shown more: let

R0
T
: CT ! C

be the map that assigns to each diagram S the value Sw at the root w of tree T . The

argumentation above indicates that

�S : S 7! �
T
(R0

T
S)

constitutes a universal arrow from S to �
T
ÆR0

T
, and from MacLane's Portmanteau Theorem

[Mac98, IV.1.2(ii)] we may conclude that R0
T
is the object function of a functor R

T
which is

the left adjoint to �
T
, speci�cally:
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Proposition 2 hR
T
;�

T
; 'i : CT * C is an adjunction, where ' is de�ned through

'S;c :

�
C(R

T
S; c) ! CT (S;�

T
(c))

f 7! �
T
(f) Æ �S

Recall that the maps ' for an adjunction are bijections. Thus the result above may be

restated as follows: the meaning of each diagram is uniquely determined by the meaning

which is assigned to the root.

This re
ects the usual emphasis and care on modeling the root class in an inheritance hier-

archy, because this class essentially determines the properties of all its descendants. Recall,

moreover, that these maps are natural transformations. Consequently, homomorphic changes

to the modeling of the root induce homomorphic changes to the meaning of the entire hier-

archy. The latter may be considered to be a sort of continuity property: smooth changes at

the root do not induce drastic changes in the object hierarchy.

Let us turn to forests. The colimit of a forest was shown to be the coproduct, the factors being

determined by the constituting trees. Denote for the diagram S and the forest B this colimit

again by R
B
S, then we will show that there exists a natural bijection between C(R

B
S; c) and

CB(S;�
B
(c)) for each diagram S and each object c in C, hence the adjunction generalizes to

forests.

Suppose again that fw1; : : : ; wtg is the collection of roots in B, so that each node j lies in

a uniquely determined tree with root w(j). Denote for the diagram S the unique morphism

Sj ! Sw(j) by sj. Then

R
B
S =

a
i=1;:::;t

Swi
:

Denote the canonical injection Swj
! R

B
S by rw(j). Fix for the moment S and c, then a

morphism f : R
B
S ! c is uniquely determined by the morphisms

 S;c(f)j := f Æ rw(j) Æ sj

yielding for �xed S, c and f a natural transformation

 S;c(f) : S
�

! �
B
(c):

It is not diÆcult to see that  S;c is a bijection between C(R
B
S; c) and CB(S;�

B
(c)); and it

now will be shown to be natural in S and in c. Keeping c �xed, let � : S0
�

! S be a natural

transformation. � induces a unique morphism

�B : R
B
S0 ! R

B
S

which makes the diagram

S0wi

r0wi-

a
i=1;:::;t

S0wi

Swi

�wi

?

rwi

-

a
i=1;:::;t

Swi

�B

?
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commutative for each root wi (the primed morphism refers to S0). De�ne

�B
�
:

�
C(R

B
S; c) ! C(R

B
S0; c)

g 7! g Æ �B

and

�
�
:

�
CB(S;�

B
(c)) ! CB(S0;�

B
(c))

� 7! � � �

and chase a morphism g : R
B
S ! c around in the diagram (note the contravariance)

C(R
B
S; c)

 S;c
- CB(S;�

B
(c))

C(R
B
S0; c)

�B
�

?

 S0;c

- CB(S0;�
B
(c))

�
�

?

to obtain

(g Æ �B) Æ r0w(j) Æ s
0

j = g Æ rw(j) Æ sj Æ �j

This implies

 S0;c Æ �
B

�
= �

�
Æ  S;c;

hence the diagram above is commutative. Thus  is natural in S, and it is immediate that it

is natural in c. Thus we have established another adjunction:

Proposition 3 hR
B
;�

B
;  i : CB * C is an adjunction.

Summarizing, we have proved

Proposition 4 In a category with �nite coproducts, the functor yielding the semantics of an

ER-model is left adjoint to the diagonal.

Although we do not need it here, it might be interesting to note that the semantic functor

is colimit-preserving [Mac98, p. 119]. This implies in particular that our semantics is com-

postional: if the ER-model is composed as, say, the coproduct of smaller models, then the

semantics behaves civilized in the sense that it composes from the semantics of the coproduct's

factors, and similarly for other colimits. These aspects should be investigated further.

6 Relations

R is the �nite set of binary relations for the ER model with diagram B. We assume that

the category C has �nite products as well as �nite coproducts, so that S
B
is de�ned for the

schema S. For each relation r 2 R with Æ(r) and 
(r) as the domain and the codomain

entities with associated nodes nÆ(r) and n
(r), resp., let j
Æ(r) and j
(r) be the corresponding

new nodes in B. Since C has �nite products, (SnÆ(r)) � (Sn
(r)) exists in C with respective

projections �Æ(r) and �
(r). Because relation r may always be represented as a subobject of

the Cartesian product of the domain and the codomain, we assume that there exists a monic

�r : cr ! (SnÆ(r))� (Sn
(r))
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for some object cr in C. Hence we label the edges (j
Æ(r); nÆ(r)) and (j
(r); n
(r)) with �Æ(r) Æ�

r

and �
(r) Æ �
r, resp. The nodes are added together with the edges to the graph. This

transmogri�es the graph construction outlined in [Dob97], cp. Section 4. This process yields

a new diagram B� and a new schema S� with a colimit � := S�
B
� .

We want to investigate the relationship between an arbitrary relation r and �. By construc-

tion, r helps to de�ne the colimit.

Just a brief aside. Recall in this stage of the development that each object ` 2 C gives

rise to a set-valued functor

�` : C ! S;

the latter denoting the category of all small sets, upon putting

�` := C(`;�);

mapping a morphism f : a! b to

�`f :

�
C(`; a) ! C(`; b)
g 7! f Æ g

The famous Yoneda Lemma [Mac98, p. 61] identi�es the natural transformations �`
�

! �t

with the morphisms in C(`; t). Similarly,

�` := C(�; `)

de�nes a (contravariant) functor �` : C ! S mapping f : a! b to

�`f :

�
C(b; `) ! C(a; `)
g 7! g Æ f

Let us return to relations. The �rst scenario captializes on the assumption that �r is

a monic. Thus the natural transformation

�cr
�

! �(SnÆ(r))�(Sn
(r))

implied by this morphism, again denoted by �r, is a monic, too, when considered as a mor-

phism in the category SB of all functors. In particular, �r induces an injective map

C(�; cr)! C
�
(SnÆ(r))� (Sn
(r)); cr

�
:

This means that each operation from � to the object cr corresponds uniquely to an operation

from � to (SnÆ(r))�(Sn
(r)). Since there exists the embedding as a morphism from each node

to �, each morphism from a node to cr gives rise to a morphism from � to (SnÆ(r))�(Sn
(r)).

This models the 
ow of information from the colimit to the relation (and does probably not

constitute an entirely surprising observation).

Next, suppose that �r is a split mono, thus it has a left inverse. This is e.g. the case whenever

C is a subcategory of S. The Yoneda Lemma implies that the induced natural transformation

�(SnÆ(r))�(Sn
(r)

�

! �cr
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is an epi (cp. [Mac98, Lemma IV.3]), again as a morphism in the functor category SB. In

particular, the induced map

C
�
(SnÆ(r))� (Sn
(r));�

�
! C(cr;�)

is an epi between sets. Epis in S are exactly the onto maps. Reformulating, each operation

cr ! � is induced by an operation (SnÆ(r)) � (Sn
(r)) ! �: This applies in particular to

operations between cr and Sn, where n is an arbitrary node in the forest.

Alas, this is about how far the general considerations on relations can go. More speci�c results

require more speci�c assumptions, and this is | as usual | indicated as subject to further

work.
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