
 1

Autonomies in a Software Process Landscape

Volker Gruhn, Ursula Wellen
University of Dortmund

{gruhn, wellen@ls10.cs.uni-dortmund.de}

Abstract

Until now autonomy properties have been mainly discussed in the research area of database management
systems, agents and robotic systems. We address these properties to software process models, and distinguish
between data autonomy, operation autonomy and communication autonomy. In this paper we develop a
classification framework of different granularity levels and different degrees for each of the autonomy types. We
analyze the autonomy of an example software process landscape modelled with a Petri based net notation. The
example process landscape represents software process models for the development of multimedia applications.
Detailed analyses of the example check the classification framework, and consider the impact of autonomy
properties on software processes and on software process management.

Keywords
Autonomy, distributed processes, software process landscape, software process model, process modelling
language, Petri nets, Process Landscaping

1 Introduction

In the research area of database management systems (dbms) the term "federated dbms" is an established
description for a "collection of cooperating but autonomous component database systems" [SL90]. The
participating databases, possibly heterogeneous, are distributed and integrated to various degrees. We apply the
term "federated" to a software process landscape: it consists of a set of (distributed) process models describing
processes necessary for the development of software applications. They cooperate with each other via interfaces
in order to produce a certain software system. The modelled processes are often also distributed, heterogeneous
and integrated to various degrees. These are all properties well-known in software process modelling research:
for example in [ALO96], cooperative (and distributed) software processes are discussed, especially requirements
for cooperation support through process centered environments. Greenwood considers coordination as a
fundamental feature of software process technology [Gre95]. He criticizes that coordination in software
engineering is only achieved by low level details and suggests research results from coordination theory to
improve coordination in the area of software process technology. Obbink argues about differentiation and
integration of key development processes [Obb95]. Similar to data base management systems he demands a
federated organization of different processes like hardware and software engineering (co-engineering) and
management activities in order to fulfil market requirements like low costs, short development time and high
quality. Cugola et al and Graw et al focus on distribution aspects [CDF98, GG95]. Whereas the first authors
present a Java event-based distributed infrastructure (JEDI) to support the implementation of reconfigurable
distributed software components, Graw et al discuss coordination issues of distributed modelling and an
architecture to support distributed process enaction.

The different processes represented as a software process landscape are also autonomous to various degrees.
Until now, this property has been analyzed for agents [DF98], robotic systems [CW90] and of course for
federated [Ham94] and distributed [CMW94] database systems, but not yet explicitly for cooperating software
processes. In database systems research, Veijalainen and Popescu-Zeletin distinguish between three types of
autonomy [VP86], namely design autonomy, communication autonomy and execution autonomy. Subsets of
these types also have been identified. Alloui et al discuss these and additional types in [ALO96]. Other authors
classify autonomy in dependency of their relevance to operating systems and transaction management issues
[GK88].

The approach of Birk to discuss autonomous systems from a more general point of view, also does not consider
software processes [Bir99]. He summarizes the research issues in autonomous systems as physical devices,
distributed, embedded and cooperating autonomously. Autonomy has not been discussed as property of software
processes. We conceive that the increasing complexity of software development activities and the increasing
difficulty of its management requires discussion of the property of autonomy for software processes. A certain

 2

degree of process autonomy supports the management of software projects and can improve the quality of
software processes' cooperation. In this paper we define different types of software process autonomies and
discuss their semantics at different levels of degree and granularity.

First of all we have a look at the structure of a process landscape in order to identify types and levels of process
autonomy. Processes within a software process landscape are hierarchically structured and related via interfaces.
The hierarchical structure indicates that process models are arranged as activities within more abstract process
models. We use the term activity analogously to Chroust who defines it as the smallest unit of a job at a
considered abstraction level [Chr92]. Depending on the concrete level of abstraction an activity can be divided
into several subactivities, arranged within a separate process model. In the following we restrict ourselves to the
term activity instead of talking about activities and process models. This allows us to discuss a process landscape
at different levels of abstraction without specifying the concrete level previously.

The hierarchical structure of a process landscape with activities as first class entities allows the modelling at
different levels of detail which means adding further information about process landscape elements only where it
is useful. Analysis of process landscape properties is therefore possible in different granularity. It can be done
either for single activities or for a set of activities, describing a whole abstraction level of a process landscape
[GW00b].

Interfaces also serve as first class entities of a process landscape which means that they are already modelled at
the more abstract levels [GW00a]. Properties of interfaces and associated information objects to be exchanged
are defined and controlled by activities using these interfaces and exchanging information objects with each
other. The fewer activities that participate in the definition of a communication infrastructure needed for those
interfaces and information objects, the higher is their degree of autonomy.

For a software process landscape, we relate different types of autonomy to activities at different levels of detail.
We distinguish between operation autonomy, data autonomy and communication autonomy. Operation
autonomy concerns the way how an activity produces a certain result. Data autonomy describes the degree of
responsibility for a set of information objects concerning access and maintenance. If an activity decides about
communication infrastructure for information exchange with other activities, we talk about communication
autonomy. In the following sections we define in more detail what these types of autonomy mean for software
processes. We discuss their importance within a software process landscape and analyze an example representing
the software development of multimedia applications.

In order to analyze the autonomy within a process landscape we have to define precisely to what the term
autonomy is related. Section 2 shows a classification for process autonomies and discusses its relevance in the
area of software process management. We developed a formal process modelling language allowing us to model
the key elements of a process landscape and their (autonomy) properties quickly and easily. This Process
Landscaping Language (PLL) is introduced in section 3 together with a suitable graphical representation. Section
4 discusses autonomy issues of a concrete software process landscape by analyzing the related properties and
discussing the resulted benefits. Section 5 sums up our experience applying the term autonomy to a reference
software process landscape and gives an overview of our future research directions.

2 Autonomy – Types, Degrees and Granularities

In this section we introduce different types of autonomy. We discuss different levels of granularity and define
different degrees for each autonomy type.

2.1 Types of Autonomy

We distinguish three types of autonomy relevant for activities of a software process landscape:

• If an activity retains the control for a certain set of data, it is responsible for updates and other maintenance

tasks. But it is also the only one entitled to make changes and to inform other activities about these changes.
If this activity also keeps the data persistent, we talk about data autonomy. Persistency means, that an
activity stores locally the data it receives or sends. The quality management (as a complex activity) of a
software development project for example is called data autonomous with respect to programming
guidelines, if it is the only activity allowed to change these guidelines. It updates all affiliated document
copies, keeps the update of the original persistent and informs other activities using the guidelines (i.e.

 3

software development activities) about changes. This property of data autonomy can be extended to further
data within a process landscape. In the case of quality management, this could be the extension to all
guideline and recommendation documents.

• We call an activity operation autonomous, if it decides on its own how to produce a requested result.
Furthermore, such an activity does not need to inform others about the way it creates certain results.
Therefore, activities with operational autonomy can be seen as black boxes, where only interfaces and
incoming and outcoming information objects are known. One software process example for operation
autonomy is an activity which tries to find out how to develop a software component by prototyping.
Incoming information objects are some of the application requirements, and the outcoming information
object is the prototype itself.

• Communication autonomy concerns the decision making of an activity about the communication
infrastructure needed for information exchange with other activities. Often all activities taking part in a
communication decide together about how to exchange information, coded or not, synchronously or
asynchronously, etc.. If one of the participating activities is communication autonomous, it solely decides
how to communicate with other activities. We apply this type of autonomy to a single information exchange
of one document between two activities. But we can also extend it to the whole information exchange of one
activity to all related activities sending or receiving data to/from the communication autonomous activity. In
software development this property is interesting, especially for processes distributed among different
locations. If, for example the project management is communication autonomous and takes place at a
separate location, all related activities have to adapt their communication infrastructure to the requirements
of the project management activity.

2.2 Granularity of Autonomy Analysis

The granularity concerns the set of activities forming parts of process models to which autonomy attributes are
applied. If this set consists of only one activity, the granularity of the set of activities to be analyzed is very fine.
Analyzing a set of several activities can be useful, e.g. when this set takes place at the same location. In this case
we extend the autonomy property from single activities to locations. It is also useful to analyze the autonomy of
activities belonging to the same abstraction level of a process landscape. If all activities with similar autonomy
properties are parts of the same activity at an upper level of the process landscape, we can generalize these
properties for the upper abstraction level. A further suggestive set of activities to be analyzed is that of all
activities related via interfaces between two locations. This is interesting especially for data and communication
autonomy. These two types of autonomy may create inconsistencies when different activities are defined as
autonomous and exchange information objects. Summing up, we distinguish four levels of granularity for each
type of autonomy: a single activity, a set of activities which take place at the same location, a set of activities
belonging to the same abstraction level, and a set of activities communicating between two locations.

2.3 Autonomy degrees

Autonomy degrees describe the quantity of autonomy an activity or a set of activities may have. Activities
belonging to the same granularity level may be described as

• non-autonomous,
• weakly autonomous,
• semi-autonomous,
• strongly autonomous or
• (completely) autonomous.

The concrete degree of autonomy depends on the proportion of autonomous to non-autonomous activities at one
granularity level. For our example process landscape discussed later on, non-autonomous means that there are
less then 10% autonomous activities at a certain granularity level. Weakly autonomous means that up to 45% of
all activities belonging to a certain granularity level are autonomous. Semi-autonomous means autonomy for up
to 55% of the related activities and strongly autonomous means autonomy for up to 90%. If more than 90% of
autonomous activities are at the same granularity level, we talk about complete autonomy.

The concrete percentage for different autonomy degrees should be defined individually for each process
landscape. The advantage of assigning percentage numbers to informally described autonomy degrees
individually for each modelling project is that it allows the comparison of different process landscapes
independent from specific landscape characteristics.

 4

2.4 Interrelation of types, granularity and degrees

Table 1 gives an overview of the interrelation of different autonomy types, their assignment to granularity levels
and their possible degrees. The types of autonomy (table columns) are specified for different sets of activities,
representing different granularities of autonomy (table lines). Each table field indicates a certain ratio of
granularity to degree for a certain type of autonomy. For data autonomy the real instance of degree is dependent
on the ratio of the autonomous activity to the set of used and/or produced data. In the case of operation autonomy
it is dependent on the ratio of autonomously executed steps within an activity to the whole set of steps necessary
to carry out a certain task.

Table1: Classification of types, degrees and granularities of autonomy

The degree for communication autonomy depends on the ratio of the set of activities defining autonomously how
to communicate with a second activity to the set of those activities which are not allowed to define the way of
communication on their own. Calculating the degree of communication autonomy as one percentage number for
the granularity level of one location does not make sense: if one activity determines the communication
infrastructure for an information exchange, the second participating activity does not. Therefore, one location is
always semi-autonomous with respect to communication. That is why we restrict ourselves to the consideration
of the ratio between the single activity autonomies.

In order to examine (autonomy) properties of a concrete software process landscape we need a formal basis
allowing us to model a complex process landscape at different levels of abstraction. In this paper we discuss a
reference software process landscape as result of applying the method of Process Landscaping. We do not
discuss the method itself. It is sufficient to know that Process Landscaping is a suitable approach for modelling
complex sets of (distributed) processes [GW99]. The underlying process modelling language PLL (Process
Landscaping Language) supports the method of Process Landscaping by allowing the modelling of processes
and its interfaces at different levels of detail and provides the analysis of the resulting process landscape. PLL
can easily be extended by user-defined attributes describing properties which are considered important. In the
following we introduce the notation of PLL and extensions relevant for the analysis of autonomy properties.

3 Formalization of a Software Process Landscape

In PLL, activities at different levels of detail, information objects to be used and/or produced and access relations
between activities and information objects are considered as first class entities. In order to focus on static process
landscape properties like autonomy we abstract from the sequence of the activities' order and different types of
information objects. In section 3.1 we explain the formal basis consisting of a small language core and functions
enabling us to do some autonomy analysis. Section 3.2 discusses the graphical representation of PLL and
introduces an example process landscape modelled with PLL which is analyzed in section 4.

3.1 PLL Notation

PLL is an abstract Petri net notation [Pet81, Rei86] without control flow, where a word ω ∈ PLL represents a
process landscape. ω ∈ PLL is defined as a triple (V, D, Z) where V is a set of activities, D is a set of document
types, and Z is a set of relations between activities and document types. Document types are used as an
abstraction for (different types of) information objects. Relations out of Z represent either write or read access of
an activity to a document type. (v,d) ∈ Z represents write access and (d,v) represents read access.

degree of autonomy

 activity % % %
 activities at the same location % % %, ...,%
 activities at the same abstraction level % % %
 activities communicating between two locations % % %

communication
autonomy

 type of autonomy
 granularity of autonomy

data
autonomy

operation
autonomy

 5

With relation AB ⊆ V×V we describe the hierarchical composition of activities as a tree, more formally: (v1,v2)
∈ AB means that v2 is refining v1. We call AB an activity tree. The root r of this activity tree does not denote an
activity, but the process landscape itself.

An interface between two activities v1, v2 ∈ V is defined as follows:

interface: V×V → P(D) with
interface ((v1,v2)) := {d ∈ D ((v1,d) ∈ Z ∧ (d,v2) ∈ Z) ∨ ((v2,d) ∈ Z ∧ (d,v1) ∈ Z)}

This definition relates two activities with document types, one reading and the other writing the document types.
Elements out of interface ((v1,v2)) are called interface document types.

With function loc: V → L, where L is a set of locations, we assign a location l ∈ L to each activity v ∈ V. With
this activity attribute it is possible to analyze a set of activities at the granularity of locations (see table 1).

With the formalization of activities, document types as abstract information objects, interfaces, and AB as
relation structuring activities at different levels of abstraction it is possible to create a process landscape. In order
to analyze properties of a given process landscape, we extend PLL by functions assigning attributes to activities,
document types and relations. Extensions relevant for autonomy analysis are discussed in the following.

3.1.1 Definition of Data Autonomy

• per: Z →→→→ {0, 1, undefined} is a function assigning either zero, one or undefined to each relation z ∈ Z.

per ((v1,d1)) = 1 ∨ per ((d1,v1)) = 1 means that activity v1 stores a document of type d1 locally.
per ((v1,d1)) = 0 ∨ per ((d1,v1)) = 0 means that activity v1 does not store a document of type d1 locally.
per ((v1,d1)) = undefined ∨ per ((d1,v1)) = undefined means that it is not yet defined, if activity v1 stores a
document of type d1 locally.

This attribute is important for the analysis of data autonomy (see section 2). But it is also useful for the
analysis of the effort for updates of different databases: if  per (z) = 1 with z = (v1,d1) or z = (d1,v1) is
"high" for a specific document of type d, one should consider about a central database where per (z) = 0 for
the affiliated relations. per (z) = 1 should retain only for the data autonomous activity.

• Let Z (v,d) := {(v,d) (v,d) ∈ Z} ⊂ Z. d-aut: Z (v,d) →→→→ {0, 1, undefined} is a function assigning either zero,
one or undefined to each relation z ∈ Z.
d-aut ((v1,d1)) = 1 means that only activity v1 is allowed to change a document of type d1 and
d-aut ((v1,d1)) = 0 means that activity v1 is not allowed. d-aut ((v1,d1)) = undefined means that it is not yet
defined, if activity v1 is allowed to change a document of type d1.

Function d-aut is restricted to relations representing write access because it does not make any sense to
define an activity as data autonomous concerning a specific document when it only has read access to it. The
following condition has to hold:

d-aut ((v1,d1)) = 1 ⇒ ∀ w ∈ V, w ≠ v1: d-aut ((w,d1)) = 0

We check this consistency condition, if we want to prove the data autonomy of an activity.
Activity v1 ∈ V is called (completely) data autonomous if

1. d-aut ((v1,d)) = 1 ∀ d ∈ D with (v1,d) ∈ Z
2. per ((v1,d)) = 1 ∀ d ∈ D with (v1,d) ∈ Z

3.1.2 Definition of Operation Autonomy

• op-aut: Z →→→→ {0, 1, undefined} is a function assigning either zero, one or undefined to each relation z ∈ Z.

op-aut ((v1,d1)) = 1 ∨ op-aut ((d1,v1)) = 1 means that only activity v1 defines guidelines how it creates,
changes or uses a document of type d1 and therefore does not have to follow guidelines from other activities.
op-aut ((v1,d1)) = 0 ∨ op-aut ((d1,v1)) = 0 means that activity v1 may has to follow guidelines when it creates,
changes or uses a document of type d1.

 6

 op-aut ((v1,d1)) = undefined ∨ op-aut ((d1,v1)) = undefined means that it is not yet defined, if activity v1 has
to follow guidelines when creating or changing a document of type d1 or using its content.

Function op-aut defines the operation autonomy of an activity with respect to a single document of type d.
If op-aut = 1 for all documents of type d ∈ {(v1,d), (d,v1)}, activity v1 is called operation autonomous.

3.1.3 Definition of Communication Autonomy

In order to specify the property of communication autonomy, we first have a closer look at a set of attributes
forming a communication infrastructure. Those are synchronity, changeability, coding, privacy, and persistency.
For a communication in working order, these attributes have to fit together for relations affiliated to
communication between two or more activities. In other words, if e.g. a sending activity requires synchronous
communication for a document type to be exchanged, the receiving activity also has to define its relation to this
document type as synchronously. The same has to hold for all other attributes. The following functions define
more formally, what we mean by synchronity, privacy, coding and changeability. They form the basis for the
analysis of communication autonomy.

• synch: Z →→→→ {0, 1, undefined} is a function assigning either zero, one or undefined to each relation z ∈ Z.

synch ((v1,d1)) = 1 ∨ synch ((d1,v1)) = 1 means that activity v1 expects synchronous data interchange when
sending or receiving a document of type d1 to/from other activities.
synch ((v1,d1)) = 0 ∨ synch ((d1,v1)) = 0 means that activity v1 expects asynchronous data interchange when
sending or receiving a document of type d1 to/from other activities.
synch ((v1,d1)) = undefined ∨ synch ((d1,v1)) = undefined means that it is not yet defined, if activity v1
expects synchronous data interchange when sending or receiving a document of type d1 to/from other
activities.

The attribute synchronous has impact on the communication infrastructure between activities:
communication via letter post for example always has to be defined as asynchronous, whereas calling per
telephone has to be defined as synchronous communication.

• priv: Z →→→→ {0, 1, undefined} is a function assigning either zero, one or undefined to each relation z ∈ Z.

priv ((v1,d1)) = 1 ∨ priv ((d1,v1)) = 1 means that activity v1 sends/receives a document of type d1 to/from
exactly one other activity.
priv ((v1,d1)) = 0 means that activity v1 sends a document of type d1 to more than one other activity.
priv ((d1,v1)) = 0 means that not only activity v1 receives a document of type d1 but also others.
priv ((v1,d1)) = undefined means that it is not yet defined, if activity v1 sends a document of type d1 only to
one or to several other activities.
priv ((d1,v1)) = undefined means that it is not yet defined, if only activity v1 receives a document of type d1.

Function priv defines whether information exchange between activities is private (priv (z) = 1) or not
(priv (z) = 0). This relation attribute has impact on the way how documents can be distributed between
several locations. If an activity wants to send information to others e.g. via broadcasting, priv (z) has to be
zero.

• coded: Z →→→→ {0, 1, undefined} is a function assigning either zero, one or undefined to each relation z ∈ Z.
coded ((v1,d1)) = 1 ∨ coded ((d1,v1)) = 1 means that activity v1 sends/receives a documents of type d1
encoded.
coded ((v1,d1)) = 0 ∨ coded ((d1,v1)) = 0 means that activity v1 sends/receives a document of type d1 not
encoded.
coded ((v1,d1)) = undefined ∨ coded ((v1,d1)) = undefined means that it is not yet defined, if activity v1 sends
or receives a document of type d1 encoded.

Encoding documents before sending them indicates that no other but the recipient(s) should read the content.
It also requires that decoding mechanisms are available at the recipient's side.

• change: Z →→→→ {0, 1, undefined} is a function assigning either zero, one or undefined to each relation z ∈ Z.
change ((v1,d1)) = 1 ∨ change ((d1,v1)) = 1 means that activity v1 sends or receives a document of type d1 in
a way that the recipient is able to change the content. Sending a document type e.g. as MS-Word file leaves
the file changeable, sending it as pdf file or in paper format does not.
change ((v1,d1)) = 0 ∨ change ((d1,v1)) = 0 means that activity v1 sends or receives a document of type d1 in

 7

a way that the recipient is not able to change the content.
change ((v1,d1)) = undefined ∨ change ((d1,v1)) = undefined means that it is not yet defined, if activity v1
sends or receives a changeable document of type d1.

This attribute corresponds with the data autonomy of an activity: if an activity wants to retain the control
with respect to certain documents, not only change (z) should be one but also the corresponding function
d-aut (z).

Communication infrastructure can be described by communication channels associated to interfaces.
Communication channels describe how an activity sends or receives information objects, and whether it
determines the communication infrastructure. This is specified by attribute values of relations belonging to an
interface, namely the values of functions per, synch, priv, coded and change. The attribute values have to fit
together to form a communication channel able to work. The communication infrastructure can be based on:

• electronic data interchange like email or sms,
• synchronous communication infrastructure like telephone for oral information exchange or
• real document interchange like letter post.

Let CC be a set of communication channels. c-channel: (Z××××Z)' →→→→ CC is a function assigning a communication
channel c ∈ CC to each tuple (z1, z2) ∈ (Z×Z)'. (Z×Z)' is a subset of Z×Z, where z1 and z2 are relations belonging
to the same document type and at least z1 or z2 is defined as a write access. More formally: (Z×Z)' ⊂ Z×Z and
∀ (z1, z2) ∈ (Z×Z)': (z1 = (v1,d1) ⇒ z2 = (d1,v2)) ∧ (z1 = (d1,v1) ⇒ z2 = (v2,d1)).

A communication channel is called congruent, if each attribute of relations z1 and z2 has the same value. If for
example persistency of z1 is 1, it also has to be 1 for z2. Communication channels which are not congruent can be
identified by consistency checks. Each congruent communication channel defines how an activity v1 receives or
sends a document of type d1 via an interface to another activity v2.

With the functions introduced above we are now able to define the property of communication autonomy for an
activity of a process landscape:

• com-aut: Z' →→→→ {0, 1, undefined} is a function assigning either zero, one or undefined to each relation z ∈

Z', where Z' = {z ∈ Z | ∃ ci ∈ CC, di ∈ D where ∀ va, vb ∈ V, va ≠ vb: (c-channel ((va,di) × (di,vb)) = ci) ∨
(c-channel ((vb,di) × (di,va)) = ci)}.
com-aut ((v1,d1)) = 1 ∨ com-aut ((d1,v1)) = 1 means that only activity v1 determines the values of relation
attributes corresponding to a communication channel for exchanging a document of type d1.
com-aut ((v1,d1)) = 0 ∨ com-aut ((d1,v1)) = 0 means that activity v1 does not determine the values of relation
attributes corresponding to a communication channel for exchanging a document of type d1.
com-aut ((v1,d1)) = undefined ∨ com-aut ((d1,v1)) = undefined means that it is not yet defined, if activity v1
determines the values of relation attributes corresponding to a communication channel for exchanging a
document of type d1.

The related communication channel has to be either congruent or is adapted by the second activity v2
affiliated with this communication channel to be able to work. In other words, the values of functions synch,
change, coded and priv have to match. We do not need to adapt persistency values because it has no impact
on the operativeness of a communication channel, if a sending activity keeps a document type persistent
whereas the receiving activity does not. Additionally, the following consistency conditions have to hold:
com-aut ((v1,d1)) = 1 ⇒ com-aut ((d1,v2)) = 0 and com-aut ((d1,v1)) = 1 ⇒ com-aut ((v2,d1)) = 0. These
conditions ensure that always only one of two activities belonging to a communication channel can be
defined as communication autonomous.

Function com-aut defines the communication autonomy of an activity v1 corresponding to one
communication channel and with respect to a single document of type d1. Activity v1 is called (completely)
communication autonomous if

1. com-aut ((v1,d)) = 1 ∧ com-aut ((d,v1)) = 1 ∀ d ∈ D with (v1,d) ∈ Z' ∨ (d, v1) ∈ Z'
2. ∀ c ∈ CC corresponding to activity v1: c is either congruent or is adapted by the second activity

corresponding to this communication channel to be able to work.

With this set of functions assigning attributes to activities and relations we are now able to analyze
communication and autonomy properties of a process landscape. In order to do so, we first explain how process

 8

landscapes are graphically represented. Those representations facilitate the understanding of a landscape and
support the processing of analysis.

3.2 Graphical Representation of a Software Process Landscape

In this section we introduce a graphical representation of a software process landscape. For this purpose we
model a process landscape which covers parts of the development for multimedia applications. Figure 1 shows
the activity tree of this software process landscape which already indicates some key features of multimedia
software development [Sof99, Hän97]. Activity "Media Management" for example is an activity at the same
level like "Project Management" or "Software Development". Other activities typical for this kind of software
development are refined to more concrete levels. Examples are "SD_Media Production" and "SD_Storyboard
Production" within the design phase and "SD_Media Integration" within the implementation phase, both as parts
of activity "Software Development". Activities modelled at a more detailed level start their name with an
abbreviation indicating their origin. For example, activity "SD_Documentation User Manual" is part of activity
"Software Development".

Figure 1: Activity tree of a software process landscape for multimedia application development

As already mentioned, activities can be refined in terms of process landscapes (see section 1). Figure 2 shows
such a refinement for activity "Software Development". It represents four activities and indicates interfaces
between them by bidirectional arrows. The arrows indicate the existence of interface document types exchanged
between two activities. They do not show the concrete document or relation types. The activities are still
modelled coarse-grained at this level of refinement.

Configuration Management

Software Development

SD Implementation

SD Design

SD Integration Test

SD Definition Phase

Quality Management

Project Management

Process Landscape

SD Requirements Acquisition

SD Requirements Analysis

SD Prototyping

Media Management

SD Software Architectural Design

SD Software Specification

SD Media Production

SD Programming

SD Media Integration

SD Storyboard Production

 9

Figure 2: Refinement of activity "Software Development" with indicated interfaces

Figure 3 shows another part of the software process landscape, where activities and their relations to concrete
types of documents are depicted. Document types are represented as circles, their names are listed in the legend
on the right side of figure 3. A document type related as interface document type to an activity which is not at the
same refinement level is indicated by an arrow pointing out of this level or pointing into it. In figure 3,
"programming guidelines", "software specification", "software code", "multimedia types" and "multimedia
application" are examples of interface document types.

Figure 3: Refinement of activity "SD_Implementation"

The document view of a software process landscape is presented in figure 4. It shows a document of type
"software code" affiliated to activities by different access relations. This view supports the analysis of access
relations from activities to documents of a certain type. The naming conventions – starting the name with the
abbreviation of the origin activity at the top level of the software process landscape – help to identify the position
of the activities in the activity tree.

Figure 4: Document view of document type "software code"

4 Analysis of Process Autonomies

We now analyze the example of a software process landscape introduced in the previous section. Table 2
presents an initial overview of the extend of the upper process landscape levels. For each activity modelled at the
top level of the process landscape the first table column indicates the number of affiliated subactivities which are
refined further. These subactivities represent the successors of each top level activity. The second table column

SD_Definition
Phase

SD_Implementation

SD_Design SD_Media
Production

SD_Progamming

SD_Media Integration

SD_Integration Test

1

7

6

5

4

2

3

 1 programming guidelines
 2 software specification
 3 error report software code
 4 software code
 5 media types
 6 multimedia application
 7 error report integration

SD_Integration Test

SD_Media Integration

QM_Functional Tests

SD_Programming 4

software code
Configuration Management

 10

shows the number of all subactivities affiliated to one top level activity which are modelled as leaves within the
activity tree (partially illustrated in figure 1). The maximum number of refinement levels and the number of
interface documents are listed for each top level activity in table columns three and four.

top level activity number of refined
subactivities (successor)

number of all
subactivities (leaves)

max number of
refinement levels

number of interface
documents

Project Mgmt 2 12 3 8
Quality Mgmt 3 8 3 7
Software Developm. 4 14 4 9
Media Mgmt 3 10 3 5
Configuration Mgmt 7 2 7

Table 2: Complexity of the entire example process landscape

As already observable in figure 1, the top level of the example software process landscape consists of five
activities. They represent the key processes of the software development for multimedia applications. Already at
the second level of abstraction they have been refined with different degrees of detail. For example, "Project
Management" is divided into two further refined subactivities, whereas "Configuration Management" is refined
by a set of subactivities which are not refined any further.

The total number of refinement levels and leaves of each top level activity gives no information about the
content's complexity of the modelled process landscape. This depends on the process modeller who decides
individually about the level of modelling detail in each modelling phase. The same holds for the number of
interface documents. The more detailed activities are modelled, then the more interfaces result without indicating
any conclusions about the concrete number and variety of information objects to be exchanged. Therefore, we do
not discuss the relation of activities to subactivity numbers. The total number of all activities within the
examined software process landscape is much higher. It increases further if we extend the process landscape by
adding information about temporal and causal dependencies of the modelled activities. With PLL, we only
model the upper levels of a process landscape with already complex activities where control flow and different
states of documents are not considered.

Due to the length of this paper we restrict ourselves to the discussion of autonomy types only at some selected
granularity levels (see table 1 in section 2.4):

• data autonomy of a single activity (section 4.1)
• data autonomy of activities at the same abstraction level (section 4.2)
• operation autonomy of activities which take place at the same location (section 4.3)
• communication autonomy of activities which take place at the same location (section 4.4)
• communication autonomy of activities communicating between two locations (section 4.5)

We analyze their different degrees and discuss their impact on the management of the software process
landscape. Therefore, we merge subsets of attribute values relevant for granularity levels and/or locations to be
considered. We focus on situations identified within the example landscape where autonomy analysis turned out
to be useful. Expected analysis benefits are

• identification of inconsistencies within the modelled process landscape
• verification of expected landscape characteristics
• identification of improvement possibilities concerning the autonomy of activities

4.1 Data Autonomy of a Single Activity

Figure 1 in section 3.2 shows activity "SD_Storyboard Production" as refining part of activity "SD_Design". If
we want to consider the data autonomy of "SD_Storyboard Production", we have to focus on attributes with
respect to all access relations starting with this activity. Figure 5 shows attribute values assigned by functions d-
aut and per. "SD_Storyboard Production" is related via write access to five documents of different types. For the
property of data autonomy only those relations are important where d-aut (SD_Storyboard Production, document
type di)= 1. This is the case for relations z1 = (SD_Storyboard Production, storyboard document) and z2 =
(SD_Storyboard Production, refined didactical design). In accordance with the regulations in section 3 we have
to check the consistency condition for d-aut (z1) and d-aut (z2). It requires that

 11

1. d-aut ((SD_ Storyboard Production, storyboard document)) = 1 ⇒
∀ w ∈ V, w ≠ SD_ Storyboard Production: d-aut ((w, storyboard document)) = 0

2. d-aut ((SD_ Storyboard Production, refined didactical design)) = 1 ⇒
∀ w ∈ V, w ≠ SD_ Storyboard Production: d-aut ((w, refined didactical design)) = 0

Figure 5: Data autonomy of activity "SD_Storyboard Production"

For checking the first condition, we have a closer look at the document view of document "storyboard
document". Figure 6 represents this document view together with the affiliated attribute values. In addition to
activity "SD_Storyboard Production" there are three other activities related to document "storyboard document".
For relation (SD_Media Integration, storyboard document), which is the only additional write access to this
document, d-aut is zero. This means that the first consistency condition is fulfilled.

Figure 6: Document view of document "storyboard document" with affiliated attribute values

Figure 7 shows the document view of document "refined didactical design". In this case, we identify relation
(SD_Media Integration, storyboard document) as only additional write access to "refined didactical design"
where d-aut is zero again. If it had been values "undefined" it would have to be changed to zero to obtain
consistency.

Figure 7: Document view of document "refined didactical design"

Coming back to the data autonomy of activity "SD_Storyboard Production", d-aut (SD_Storyboard Production,
software code) = d-aut (SD_Storyboard Production, refined didactical design) =1 is necessary but not sufficient
for this property. The concerned relations also have to be persistent. Figure 5 shows, that this additional
condition is also fulfilled.

SD_Storyboard Production

SD_Media Integration

QM_Storyboard Production

Media Management 9

storyboard document d-aut ((SD_M,9)) = 0

d-aut ((SD_S,9)) =1

 5 media types
 8 requirements document
 9 storyboard document
10 coarse didactical design
11 method concept
12 concept of scenes
13 refined didactical design
14 review report storyboard

9 12

d-aut ((SD_S,9)) = 1
per ((SD_S,9)) = 1

d-aut ((SD_S,12)) = 0
per ((SD_S,12)) = 1

SD_Storyboard
Production

8

13

10

11

d-aut ((SD_S,10)) = 0
per ((SD_S,10)) = 1

d-aut ((SD_S,5)) = 0
per ((SD_S,5)) = 1

14

5

d-aut ((SD_S,13)) = 1
per ((SD_S,13)) = 1

SD_Storyboard Production

QM_Storyboard Production

SD_Software Specification 13

refined didactical design d-aut ((SD_SSp,13)) = 0

d-aut ((SD_S,13)) =1

 12

Summarizing the discussion of data autonomy for activity "SD_Storyboard Production", we have identified two
of five relations where "SD_Storyboard Production" is data autonomous. With 40% data autonomous relations in
total we call "SD_Storyboard Production" weakly data autonomous (see section 2). Considering the task of
activity "SD_Storyboard Production" within the software process landscape, this degree seems to be realistic.
The activity has to support the software development by providing suitable software code needed by many other
activities. It is an important service activity where the requirements for the data to be produced are defined by
others and the produced data is used by others.

Weak data autonomy indicates a suitable degree for service activities. The described situation illustrates a useful
evaluation of a suitable degree of data autonomy. It supports the process management by checking the
distribution of data autonomy within a software process landscape. Only if the autonomy degree is not an
expected one, the associated activities need to be analyzed further.

4.2 Data Autonomy of Activities at the Same Abstraction Level

In the previous subsection we have analyzed the data autonomy of activity "SD_Storyboard Production". We
now want to discuss this property for its complete abstraction level. This means analysis of data autonomy for
the refined activity "SD_Design" (see also figure 1). There are two other activities at this abstraction level,
namely "SD_Software Architectural Design" and "SD_Software Specification". We first have to calculate their
degree of data autonomy in order to find out the degree of data autonomy for activity "SD_Design".

Figure 8 shows that activity "SD_Software Architectural Design" has only one of two relevant relations where d-
aut = 1 and per = 1, namely the relation to "architectural design document". Its document view in figure 9 shows
that the consistency condition is also fulfilled, because "SD_Software Architectural Design" is the only related
activity with d-aut = 1. Therefore, this activity is semi-autonomous.

Figure 8: Data Autonomy of activity "SD_ Software Architectural Design"

Figure 9: Document view of document "architectural design document" with affiliated attribute values

Figure 10 shows that activity "SD_Software Specification" is non-autonomous. The value of d-aut for relation
(SD_Software Specification, software specification) is one, but the persistency is zero. Therefore, we can now
calculate the degree of data autonomy for activity "SD_Design", representing the same abstraction level for
activities "SD_Storyboard Production", "SD_Software Architectural Design" and "SD_Software Specification".
We calculate the autonomy degree of higher levels by considering the ratio of the relation set with d-aut (z) = 1
and per (z) = 1 to those without data autonomy: with three out of nine data autonomous relations (= 33%)
activity "SD_Design" is called weakly autonomous. Obviously, modelling further activities as elements of
"SD_Design" requires recalculation of the autonomy degree.

SD_Software
Architectural Design 155

2
d-aut ((SD_SAD,2)) = 0
per ((SD_SAD,2)) = 1

d-aut ((SD_SAD,15)) = 1
per ((SD_SAD,15)) = 1

 2 software specification
 5 media types
15 architectural design document

SD_Integration Test

SD_Software Architectural Design

QM_Specification Review

SD_Media Integration 15

architectural design document

d-aut ((SD_SAD,15)) =1

d-aut ((SD_M,14)) = 0

 13

Figure 10: Data autonomy of activity "SD_Software Specification"

For process management it is useful to consider especially those activities at a high level of abstraction, which
are either non- or completely autonomous with respect to data autonomy. Unusual high or low degrees indicate
states of software process landscape parts where data autonomy might not be determined correct. For example
for the refined activity "SD_Definition Phase" (see also figure 1), we measured first no data autonomy. The
reason was an undefined autonomy value where the responsible roles did not come to an agreement yet. In most
cases some subactivities are at least weakly autonomous like it has been in the example for subactivities
"SD_Software Architectural Design" and SD_Software Specification".

4.3 Operation Autonomy of Activities which take Place at the Same Location

In the following we analyze the property of operation autonomy for activities which take place at the customer's
side. In our example these are activities "SD_Requirements Acquisition", "SD_Requirements Analysis" and
"SD_Storyboard Production". In figure 11, they are arranged with all document types they are related with. For
the sake of clarity, we assigned only the results of function op-aut to the relation arrows except for those
representing both, read and write access.

Figure 11: Activities which take place at the customer's side

Activity "SD_Requirements Definition" is completely operation autonomous, because for every relation function
op-aut = 1. The activity produces the requirements documentation without guidelines from other activities. The
templates it uses are defined by the activity itself. Analysis results which cause changes to the requirements
document have no impact on the way how activity "SD_Requirements Definition" implements these changes.

"SD_Requirements Analysis" uses the requirements document in order to prepare the design phase of the
software development. Some of the analysis results may require changes to the requirements document. Because
op-aut = 1 for the relations to documents "requirements document" and "analysis results", activity
"SD_Requirements Analysis" is also completely operation autonomous.

"SD_Storyboard Production" is related to most of the documents in a non-autonomous way with respect to
operation autonomy. For example, the documents describing the method concept and the concept of scenes (no.
11, 12) may have impact on the way the storyboard is produced. The report of the storyboard review (no. 14)
also changes the production process, if there are e.g. some issues missing which require the use of additional
techniques. Therefore, activity "SD_Storyboard Production" cannot produce the storyboard document
independent on other activities. Only a previous storyboard version and changes in the fine didactical concept or

SD_Software Specification

15
5

2
d-aut ((SD_SSp,2)) =1
per ((SD_SSp,2)) = 0

d-aut ((SD_SSp,15)) = 0
per ((SD_SSp,15)) = 1

13 16

 2 software specification
 5 media types
13 refined didactical design
15 architectural design document
16 error report software specification

 5 media types
 8 requirements document
 9 storyboard document
10 coarse didactical design
11 method concept
12 concept of scenes
13 refined didactical design
14 review report storyboard
17 requirements template
18 analysis results

customer's location

SD_Requirements Definition

SD_Requirements Analysis18

8

17
op-aut ((SD_RD,8)) = 1
op-aut ((8,SD_RD)) = 1 1

1

1

1
1

9

12

op-aut ((SD_S,9)) = 0
op-aut ((9,SD_S)) = 1

op-aut ((SD_S,12)) = 0
op-aut ((12,SD_S)) = 1

SD_Storyboard
Production

13

10

11

op-aut ((SD_S,10)) = 0
op-aut ((10,SD_S)) = 0

op-aut ((SD_S,5)) = 0
op-aut ((5,SD_S)) = 1

14

5

0

0

op-aut ((SD_S,13)) = 0
op-aut ((13,SD_S)) = 1

 14

in the concept of scenes should have impact on the production process of the next version. This is where op-aut
(z) = 1 with "SD_Storyboard Production" as affiliated activity. With four of 13 relations, where op-aut (z) = 1,
we call activity "SD_Storyboard Production" weakly operation autonomous.

Now we can calculate the autonomy degree for the total granularity level: op-aut (z) = 1 for nine of 12 relations
at this location. In other words, the set of activities of this software development project taking place at the
customer's location is strongly autonomous (see section 2). A high degree of operation autonomy supports the
software process management because it does not have to spend much time organizing and managing those
processes. It is sufficient to check their output data in order to start the following processes with correct input
data.

4.4 Communication Autonomy of Activities which take Place at the Same Location

Figure 12 shows activities which take place at one location. Because all activities concern developing tasks, we
call it the developers' location. If we want to analyze communication autonomy at the granularity level of one
location we have to focus on information exchange within this location. In our example in figure 12, the
elements of the software process landscape participating at this communication are shaded grey: activities
"SD_Programming", "SD_Media Integration" and "SD_Integration Test" exchange documents "software code",
"multimedia application" and "error report integration" with each other. "SD_Prototyping" also takes place at the
developers' location, but at this level of abstraction and location it does not exchange data with other activities at
this location.

Figure 12: Activities which take place at the developers' location

Dotted frames around grey shaded document types denote three different communication channels. In order to
keep figure 12 simple and comprehensible we list their associated communication attributes in table 3. We assign
again only the results of function com-aut to the relevant relation arrows in figure 12. In the case of a
bidirectional arrow the value is assigned to write access. A first look at figure 12 shows that com-aut is defined
properly: each communication channel contains one relation with com-aut = 1 and the other with com-aut = 0
(see definition in section 3).

Table 3 shows three communication channels we have to analyze before calculating the autonomy degrees of
activities "SD_Programming", "SD_Media Integration" and "SD_Integration Test". The channels are each
indicated by two lines surrounded by double frames. The software code e.g. is exchanged via the communication
channel between activity "SD_Programming" and "SD_Media Integration". This channel is not congruent
because priv (software code, SD_Media Integration) is "undefined". The value has to be changed to 1, because
"SD_Programming" is defined as communication autonomous with respect to document "software code" (see
figure 12) and therefore determines the value of this attribute.

"SD_Media Integration" sends document "multimedia application" to "SD_Integration Test" via the second
communication channel (see also dotted frame around document type no. 6 in figure 12). This communication

 1 programming guidelines
 2 software specification
 3 error report software code
 4 software code
 5 media component
 6 multimedia application
 7 error report integration
 9 requirements document
10 coarse didactical concept
14 prototype

SD_Prototyping

9

10

14

developers' location

SD_Progamming

SD_Media Integration

SD_Integration Test

1

7

6

5

4

2

3

0

0

0

1

1

1

 15

channel is defined in an inconsistent way: "SD_Media Integration" sends the document not changeable whereas
"SD_Integration Test" expects to receive it changeable. Because com-aut (SD_Media Integration, multimedia
application) = 1, change (multimedia application, SD_Integration Test) has to be adapted.

 persistent synchronous private encoded changeable
SD_Programming,
software code 1 0 1 0 1
software code, SD_Media
Integration 1 0 undefined 0 1

SD_Media Integration,
multimedia application 1 0 0 1 0
multimedia application,
SD_Integration Test 1 0 0 1 1

SD_Integration Test,
error report integration 0 1 1 undefined 0
error report integration,
SD_Media Integration 1 1 1 1 0

Table 3: Communication channels and related attributes at the developer's location

The last two lines in table 3 describe the communication channel via which "SD_Integration Test" sends an error
report of the integration test to " SD_Media Integration". This report is only kept persistent by the receiving
activity. As already mentioned with the formal introduction of function com-aut, we do not need to adapt this
attribute value because it has no impact on the operativeness of the communication channel. However, we have
to adapt the value of coded (SD_Integration Test, SD_Media Integration) and change it to 1. This is determined
by the communication autonomy of activity " SD_Media Integration" with respect to document "error report
integration" (see figure 12).

After the adaption of some communication channel attributes it is now possible to calculate the autonomy
degrees for activities "SD_Programming", "SD_Media Integration" and "SD_Integration Test". At this
granularity level we call "SD_Programming" (completely) autonomous. "SD_Media Integration" is strongly
autonomous because for two of three affiliated relations the value of function com-aut is 1. "SD_Integration
Test" is non-autonomous.

In order to judge these three autonomy degrees process management can follow a general rule: the more relations
to different information objects an activity has, the higher the degree of communication autonomy should be.
Otherwise this activity would have an enormous effort to manage the communication infrastructure needed to
fulfil the probably heterogeneous requirements for information exchange. In our example "SD_Programming" is
completely autonomous and "SD_Media Integration" is strongly autonomous. The two activities have the most
relations of all to different information objects at the developers' location. Therefore, the different degrees of
communication autonomy indicate a satisfactory value. The benefit of analyzing this special situation within the
examined software process landscape was at least the identification and removement of inconsistencies for two
communication channels and the verification of suitable autonomy degrees.

4.5 Communication Autonomy of Activities Communicating between two Locations

In this section we analyze communication autonomy between activities at the developers' location and at the
department for quality management. The latter department is settled at a separate location. Figure 13 shows three
documents which are exchanged between the two locations, namely "programming guidelines", "error report
software code" and the "software code" itself. Not all activities are participating at the external information
exchange. Some are only communicating within its location (see section 4.4). Activities participating at the
communication with another location, and the affiliated interface documents and communication channels are
shaded grey in figure 13. The results of function com-aut are assigned to each relation arrow. In the case of a
bidirectional arrow the value is assigned to write access as in figure 12.

Table 4 shows the attributes of the affected communication channels in detail. "QM_Development Guidelines"
sends the programming guidelines to "SD_Programming" at the developers' location. The sender keeps the
document persistent, the receiver does not. But this fact has no impact on the communication infrastructure. The
value of function priv (programming guidelines, SD_Programming) has to be changed from 1 to 0 because
activity " QM_Development Guidelines" determines the value for this communication channel and has already
defined the value to be 0.

 16

Figure 13: Communication between developer's location and department for quality management

 persistent synchronous private encoded changeable
QM_Development Guidelines,
programming guidelines 1 0 0 0 0
programming guidelines,
SD_Programming 0 0 1 0 0

SD_Programming,
software code 1 0 1 0 1
software code,
QM_Functional Tests 1 0 1 0 0

QM_Functional Tests,
error report software code 0 1 1 undefined 0
error report software code,
SD_Programming 0 1 1 0 0

Table 4: Communication channels between developer's location and department for quality management

The second communication channel in table 4 describes the attributes for sending software code from
"SD_Programming" to "QM_Functional Tests". In this case we have to adapt the value of function change
(software code, QM_Functional Tests) to 1. "SD_Programming" is defined as communication autonomous with
respect to this information exchange (see figure 13) and therefore sends the software code changeable.

For the third communication channel between the two locations, we just have to specify the value of function
coded (QM_Functional Tests, error report software code) which is "undefined". "SD_Programming" is also
communication autonomous with respect to this information exchange which means that the value of the affected
function has to be changed to zero.

Considering now the communication autonomy degrees for the two locations, we call activity
"SD_Programming" strongly autonomous and "QM_Development Guidelines" weakly autonomous.
"QM_Functional Tests" is non-autonomous. In total, developers' location is more communication autonomous
than the department of quality management. It is the task of the software company to evaluate if this ratio of
communication autonomy is wanted or not. A software process modeller only supports this evaluation by
presenting the properties in a suitable and transparent way. In general, one should take care that locations
receiving a lot of data are at least half autonomous with respect to communication autonomy. This minimizes the
effort for maintaining the underlying communication infrastructure.

In our example process landscape we increased the degree of communication autonomy for the Department for
Quality Management concerning activities communicating with a fourth location, where the content and
didactical management tasks take place. This location and the affiliated activities have not been discussed in the
previous section in order to keep the discussed process landscape simple and clear. We mention it here to show a
further situation where autonomy analysis turned out to be useful for the identification of improvement potential:
the increase of communication autonomy for the Department of Quality Management decreased the effort for
communication infrastructure maintenance.

SD_Prototyping

developers' location

SD_Progamming

SD_Media Integration

SD_Integration Test

4

1

3

1

QM_Specification Review

QM_Functional Tests

QM_Development Guidelines

Department for
quality management

1

0

0

0

1

 1 programming guidelines
 3 error report software code
 4 software code

 17

4.6 Evaluation Approach

Until now, we have discussed single results of our autonomy analyses. Table 5 summarizes these results
according to the classification frame introduced in section 2.4. Although only some results concerning different
parts of the software process landscape are presented, the table already indicates process specific features which
could be measured and checked by autonomy analysis.

Table 5: Some analysis results of the example software process landscape.

Considering the measured degrees of data autonomy, we determine e.g. weak autonomy for the set of activities
belonging to "SD_Design". This conforms to the idea of design activities which have to deal with data identified
already in the requirements definition phase. During the design phase this data will not be modified but arranged
to form a software specification. Only activity "SD_Software Architectural Design" creates a new set of data,
namely the architectural design. The activity is also responsible for changes in the architectural design and is
therefore rightly identified as semi-autonomous.

The set of activities taking place at the customers' side is strongly autonomous (75%) with respect to operation
autonomy. "SD_Requirements Definition" and "SD_Requirements Analysis" are elements of this set which are
completely autonomous. This fact approves the accepted opinion that though these activities have to deal with
concrete data, the way they work is highly creative and does not follow rules defined by others and the sequence
of their definition resp. analysis steps cannot be predicted in advance.

Finally, we have analyzed the communication autonomy of activities at one location (internal communication)
and between two different locations (external communication). The resultant ratio of 66% to 33%
communication autonomy for the external communication between the developers' location and the Department
of Quality Management demonstrates a suitable ratio. For activities at the developers' location the amount of
communication and communication partners is much higher than for the Department of Quality Management
because many consultations and iterations are necessary. Therefore, the developers' location should be more
communication autonomous than the locations the developers communicate with in order to keep the underlying
communication infrastructure simple and maintainable. A great variety of different communication channels
would increase the effort and costs for maintenance. More generally, the rule formulated in section 4.4 for
internal communication (the more relations to different information objects an activity - here a set of activities -
has, the higher the degree of communication autonomy should be), is also valid for external communication
issues.

Summarizing the evaluation approach, our analysis aims, namely the identification of inconsistencies (indicated
in subsections 4.2, 4.3, 4.4), the verification of process landscape characteristics (indicated in subsections 4.1,
4.3, 4.4) and the identification of improvement potential (indicated in subsection 4.5) have been reached. We
have identified some general rules for the evaluation of autonomy supporting process management when
checking a software process landscape. Orocess management benefits from strongly autonomous activities
because they allow on focussing on the management of less or non-autonomous activities.

5 Conclusions

We have presented a classification for different autonomy properties of a software process landscape at different
granularity levels and to various degrees. PLL as an underlying process modelling language serves as a formal
basis to model and to analyze the upper levels of a software process landscape. The discussion in the previous
section shows that knowledge about the autonomy of process landscape parts supports process management.
Unusually high or low degrees indicate autonomy characteristics which have to be considered in more detail.
Therefore, they serve as indicator of where to start the analysis of the huge number of attribute values.

 SD_Storyboard Production 40%
 activities at customer's side 75%
 activities at developers' location 100%, 75%, 0%
 activities at the same abstraction level of SD_Design 33%
 activities communicating between developers' 66% / 33%
 location and Department for Quality Management

communication
autonomy

 type of autonomy
 granularity of autonomy

data
autonomy

operation
autonomy

 18

With the classification and discussion of autonomy with respect to software process landscapes, we finally have
discussed all characteristics serving as precondition for a database management system to be named federated.
Therefore, we also apply the term "federated" to the area of software process modelling research: we call a
software process landscape federated, if the integrated process models are distributed, cooperating but
autonomous to various degree.

Our future research will focus on tool support for modelling and analysis of software process landscapes with
special interest in communication and autonomy properties. We have already started with the specification of a
process landscape editor and an analysis component supporting PLL. It allows us to model a software process
landscape at different abstraction levels, and to analyze different properties in order to identify some
improvements. Furthermore, we also will review our experiences with autonomy properties by applying the
analysis steps to additional and more complex software process landscapes.

References

[ALO96] I. Alloui, S. Latrous, F. Oquendo, A Multi-Agent Approach for Modelling, Enacting and Evolving

Distributed cooperative Software Processes, In: C. Montangero (ed.), Proceedings of the 5th European
Workshop on Software Process Technology EWSPT'96, Nancy, France, October 1996, appeared as
Lecture Notes in Computer Science No. 1149, pages 225-235

[Bir99] A. Birk, Autonomous Systems as distributed embedded devices, 1999,
http://arti.vub.ac.be/~cyrano/AUTOSYS/index.html

[Chr92] G. Chroust, Modelle der Software-Entwicklung, Oldenbourg Verlag, 1992, in German
[CDF98] G. Cugola, E. Di Nitto, A. Fuggetta, Exploiting an Event-Based Infrastructure to Develop Complex

Distributed Systems, In: Proceedings of the 20th International Conference on Software Engineering,
Kyoto, Japan, April 1998, pages 261-270

[CMW94] S. Chawathe, H. Molina, J. Widom, Flexible Constraint Management for Autonomous Distributed
Databases, Data Engineering Bulletin, Vol. 17, No. 2, June 1994

[CW90] I.J. Cox, G.T. Wilfong, Autonomous Robot Vehicles, Springer, 1990
[DF98] V. Decugis, J. Ferber, Action selection in an autonomous agent with a hierarchical distributed

reactive planning architecture, In: K.P. Sycara, T. Finin, M. Woolridge (eds.), Proceedings of the
Second International Conference on Autonomous Agents (Agents'98), ACM Press, 1998

[Gre95] M. Greenwood, Coordination Theory and Software Process Technology, In: Wilhelm Schäfer (ed.),
Software Process Technology, Proceedings of the 4th European Workshop on Software Process
Technology, EWSPT'95, Noordwijkerhout, The Netherlands, April 1995, appeared as Lecture Notes
in Computer Science No. 913, pages 209-213

[GG95] G. Graw, V. Gruhn, Distributed Modelling and Distributed Enaction of Business Processes, In:
Software Engineering – ESEC95, 5th European Software Engineering Conference, Sitges, Spain,
September 1995, appeared as Lecture Notes in Computer Science No. 989, pages 8-27

[GK88] H. Garcia-Molina, B. Kogan, Node autonomy in distributed systems, In: Proceedings of the
International Symposium on Databases in Parallel and Distributed Systems, Austin, Texas, December
1988, pages 158-166

[GW99] V. Gruhn, U. Wellen, Software Process Landscaping: An Approach to Structure Complex Software
Processes, International Process Technology Workshop IPTW, Villard de Lans, France, September
1999

[GW00a] V. Gruhn, U. Wellen, Process Landscaping – Eine Methode zur Geschäftsprozessmodellierung, In:
Wirtschaftsinformatik, Vol. 4, Vieweg Verlag, pages 297-309, August 2000, in German

[GW00b] V. Gruhn, U. Wellen, Simulating a Process Landscape, ProSim2000 International Workshop on
Software Process and Simulation Modelling, Imperial College London, July 2000

[Hän97] M. Hänßle, Entwicklung eines Vorgehensmodells für Multimedia-Projekte, master thesis at the
University of Dortmund, Department of Computer Science, September 1997, in German

[Ham94] J. Hammer, Resolving Semantic Heterogenity in a Federation of Autonomous, Heterogeneous
Database Systems, Technical Report USC-CS-94-569 (Ph.D. thesis), University of Southern
California, Los Angeles, May 1994

[Obb95] J.H. Obbink, Process differentiation and integration: the key to just-in-time in product development,
In: Wilhelm Schäfer (ed.), Software Process Technology, Proceedings of the 4th European Workshop
on Software Process Technology, EWSPT'95, Noordwijkerhout, The Netherlands, April 1995,
appeared as Lecture Notes in Computer Science No. 913, pages 79-92

[Sof99] SofTec NRW research group, Softwaretechnische Anforderungen an multimediale Lehr- und
Lernsysteme, September 1999, http://www.uvm.nrw.de/News/AktuellesFS, in German

http://arti.vub.ac.be/~cyrano/AUTOSYS/index.html
http://www.uvm.nrw.de/News/AktuellesFS

 19

[Pet81] J.L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice-Hall, 1981
[Rei86] W. Reisig, Petrinetze – Eine Einführung, 2. edition, Springer, 1986, in German
[SL90] S.P. Sheth, J.A. Larson, Federated Database Systems for Managing Distributed, Heterogeneous, and

Autonomous Databases, ACM Computing Surveys, Vol. 22, No. 3, September 1990
[VP86] J. Veijalainen, R. Popescu-Zeletin, On multi-database transactions in cooperative, autonomous

environment, Technical Report, Hahn-Meitner Institut, Berlin, Germany, 1986

	Abstract
	Keywords
	1	Introduction
	2	Autonomy – Types, Degrees and Granularities
	
	2.1	Types of Autonomy
	2.2	Granularity of Autonomy Analysis
	2.3	Autonomy degrees
	2.4	Interrelation of types, granularity and degrees

	3	Formalization of a Software Process Landscape
	
	3.1	PLL Notation
	Graphical Representation of a Software Process Landscape

	4	Analysis of Process Autonomies
	5	Conclusions
	References

		2002-04-03T16:38:56+0200
	Universitaetsbibliothek Dortmund - Eldorado

