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1 Introduction

In product development, e.g. food industry, it is important to adapt quality stan-

dards efficiently, taking into account the changing demands of consumers. For pro-

duction lines, it is essential to perform tests in sensory profiling in order to control

quality. Periodical tests of flavor are helpful to detect defective products of, e.g., the

daily production. Further, they adapt the sensory product quality to the changing

preferences of consumers. The application of statistical methods in sensory profiling

attracts growing interest in theory and industrial practice: Lundahl & McDaniel

(1988) discuss the panelist effect to be random rather than fixed, Næs (1991) ex-

plores the handling of individual differences between assessors, or Brockhoff (1998)

considers a special model to compare panels.

Usually, sensory experiments are organized as follows: A set of assessors, called

the panel, evaluates samples of products in several periods of time. In the language

of design, the assessors are identified as blocks or units. The samples of different

products are identified as treatments. The experiment uses a crossover design with

t treatments being observed by n units, each having a length of p periods. Crossover

designs are especially useful if there is an assumed or known variability among the

units. The comparison of treatment effects can be done on the same unit.

Many papers deal with the most common model for crossover designs which in-

clude period, unit, direct treatment and carryover effects, e.g. Stufken (1996) or

Afsarinejad & Hedayat (2002). However, as Han (2007) points out, some authors

assess the common model to be too simple in its assumptions. Matthews (1988)

suggests that unit×treatment interaction may be of additional importance. There-

fore, special interest is paid to the interaction between products and assessors in this

thesis. The interactions represent some kind of the assessors preferences for certain

products, e.g. some may favor chocolate flavor. Thus, unit×treatment interaction

is apparently existent in tests of preference. The carryover effects represent the

influence of adjacent period treatments on the treatment evaluation of the current

1



2 1 Introduction

time period. Carryover effects are caused, e.g., through lingering taste so that a

sweet apple juice seems to be bitter after a grape juice. Certainly, such a carry-

over effect affects subsequent food products. There are very few papers available

dealing with the determination of optimal crossover designs including both effects:

unit×treatment interaction and carryover effects. Thus, the focus of this thesis is

set on this aspect.

The parametric model, being discussed in chapter 2.1, is, as already mentioned,

motivated from analyzing sensory panel data. Analysis of Variance (ANOVA) is a

technique that accounts for individual differences and is frequently used for analyzing

sensory profile data. Testing hypotheses in an ANOVA is done by creating F-Ratios

that are related to the analyzed subject. In detail, this relation compares a mean

square of the interesting source of variation (between-treatment variability) with its

expected value observed within the null hypothesis (within-treatments variability).

However, there are differences in the denominator if the panelist effect is either

considered to be random or fixed, i.e., the denominator would be the mean square

of the interaction effect or the mean square of the error, respectively.

In contrast to authors like O’Mahony (1986), the problem of the denominator of

the F-Ratio is usually solved by accepting assessors as random effects. This point of

view is taken because the assessors will always represent some type of population, at

least those people who would have passed the same training as the actual assessors

in the panel. Authors as Næs & Langsrud (1998) often argue that conclusions from

a fixed model (treatments are also considered to be fixed) are only valid for the

particular set of individuals participating. In addition to random assessor effects,

the model implies no constraints concerning the interaction effects among assessors

and products.

The interest of this thesis is to obtain a structure of an optimal design for the

given model. A descriptive example may be the evaluation of t = 4 different kinds

of coffee, named 1, 2, 3 and 4. A variety of n probands is supposed to evaluate p = 4

samples of coffee each. The question of optimality is, which sequence is the best

to serve the coffee samples to the probands in the four time periods. Suppose each

proband evaluates each kind of coffee once. Thus, a proband would get a sequence

of coffee samples equivalent to [1, 2, 3, 4], i.e., there is a different sample of coffee for

each time period. Another sequence may also be a sequence like [1, 2, 3, 3], in which

the last two coffee samples are identical. The advantage of direct repetition is the
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unbiased estimation of the carryover effect having an influence on the evaluation of

the repeated treatment. There are plenty of possible sequences occurring in such an

experiment. But most certainly it will not be manageable to perform all possibilities

of such sequences, especially if the number of time periods p is growing in magnitude.

The statistical design of experiments is a tool to determine a maximum of significant

information with as few as possible experiments and to find the optimal parameters

for a given process. An optimal design is the best out of a set of possible designs.

Its optimality is measured by a certain criterion. There are many different such

criteria of optimality. A design that is optimal under a multitude of criteria is called

universally optimal. Kemmler (1990) presented an optimal design for the case of p =

2 periods in a model with carryover effects and random unit×treatment interaction.

However, constructing efficient designs for larger p appears to be very demanding and

time consuming for complex models with carryover effects, if it is possible at all. A

huge improvement was provided by Kushner (1997). He introduced a method which

simplifies the construction of an optimal design through maximization of the trace

of the information matrix on the basis of quadratic, design-dependent functions.

Kunert & Martin (2000a), e.g., managed to generalize this method for interference

models. Moreover, optimal crossover designs have already been presented for a

model with self and mixed carryover effects, see Kunert & Stufken (2002). Referring

to the model with carryover and interaction effects, this thesis covers the cases of

structure analysis for optimal designs with p = 3, 4, 5, and 6 periods, as those are

the most practical sequence lengths used in experiments of sensory studies.

The method by Kushner (1997) is presented in section 2.2. It is used to examine

whether interactions among assessors and products influence the optimality of com-

mon designs. Furthermore, Kushner’s method is applied in order to evaluate how

interaction and carryover effects operate conjointly. In a traditional model with-

out assessor×product interaction, an optimal design is given by a combination of

sequences that have no replication in product samples at all (their proportion of

sequences in the design is [(p − 1)t − 1]/[(p − 1)t]), and sequences that repeat the

same product in the last two samples of the experiment (with proportion 1/[(p−1)t]

of sequences in the design). If the coefficient γ of the variance of the interaction

effect increases, a decreasing proportion of sequences with one replicate in the last

period and an increasing proportion of sequences with no replication of treatments

would be conceivable. Of course, the coefficient γ must be known. To this end, the



4 1 Introduction

dissertation of Han (2007) proposes the restricted maximum likelihood estimation

for the variance components in a model that includes unit×treatment interaction,

among other things.

In order to obtain the desirable characteristics mentioned above, some formulas of

auxiliary functions have to be derived. The auxiliary functions and their properties

for certain parameter performances are discussed in chapter 3. Their applications for

finding an optimal design in 3-, 4-, 5- and 6- time periods experiments are described

in chapter 4. Conclusions and recommendations for possible research extending the

results derived in this thesis are given in chapter 5. A list of notations as well as

some supporting technical arguments and results are provided in the appendices.



2 The Crossover Design with

Interaction and Carryover Effects

and an Instrument for Finding

Optimal Designs

This chapter introduces the parametric model of a crossover design with interaction

between products and assessors. Furthermore, the method by Kushner (1997) is

presented and applied to the model. For a better understanding, all important

mathematical abbreviations and notations are enlisted and described in Appendix

A.

2.1 The Model and Its Information Matrix Cd

A design is the basis of every scientific experiment. A general block design prescribes

how the treatments are to be assigned to the block plots. In sensory experiments,

it is common to compare effects in human subjects (= units) that receive several

treatments in different time periods. The attribute of one subject receiving different

treatments is what crossover designs account for. Typically, the primary goal is to

compare the treatment effects. The treatment effects are measured on the same

subject in crossover designs. Thus, they are favored amongst others, especially if

there is naturally variability among the subjects, see Cox (1958).

Let d be a design assigning treatment d(u, r) to time period r of unit u. The set

of all designs with t treatments, n units and p ≤ t periods is defined as Ωt,n,p. For

d ∈ Ωt,n,p the response of the considered model is written as

yu,r = au + βr + τd(u,r) + ρd(u,r−1) + ẽu,r (M0)

5



6 2 The Crossover Design and an Instrument for Finding Optimal Designs

In this model:
au is the (random) effect of unit u;

βr is the (fixed) effect of period r;

τd(u,r) is the (fixed) direct effect of treatment d(u, r);

ρd(u,r−1) is the (fixed) carryover (left neighbor) effect of the previous treat-

ment d(u, r − 1);

ẽu,r is the (random) error, 1 ≤ u ≤ n, 1 ≤ r ≤ p.

As can be seen from the indices of τd(u,r) and ρd(u,r−1), these effects are design-

dependent. The errors are assumed to be uncorrelated between different units,

while errors within a unit u have a covariance σ2Σdu. σ2 is an unknown constant

and Σdu is a known, non-singular p × p matrix. Its off-diagonal entries are 0 or γ,

its diagonal elements are equal to 1. A guard plot is not assumed, i.e., ρd(u,0) = 0

as there is no carryover effect influencing the treatment evaluation of the first time

period. In contrast to the listed random unit effects, au will be treated as fixed in

the variance structure of the response since its variance is extremely large.

The covariance matrix Σdu, i.e. the interactions between treatments and subjects,

implies the following covariance structure for yu,r:

Cov(yu,r1 ; yu,r2) =


σ2 , r1 = r2

0 , r1 6= r2 and d(u, r1) 6= d(u, r2)

γσ2 , r1 6= r2 and d(u, r1) = d(u, r2)

, (2.1)

in which γ ∈ (0, 1).

The matrix notation of model (M0) is as follows:

Y = [y1,1, . . . , y1,p, y2,1, . . . , yn,p]
T the vector of observations;

U = In ⊗ 1p the design matrix of the unit effects;

P = 1n ⊗ Ip the design matrix of the period effects;

Td = [T T
d1, . . . , T

T
dn]T the np × t design matrix of direct treatment

effects;

Md = [MT
d1, . . . ,M

T
dn]T the np× t design matrix of carryover effects;

Ẽ = [ẽ1,1, . . . , ẽ1,p, ẽ2,1, . . . , ẽn,p]
T the vector of errors ;

Σd = diag(Σd1, . . . , Σdn) the covariance matrix of Ẽ.

The vectors for the unit-, time period-, treatment- and carryover effects are a, β, τ ,
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and ρ, respectively. The vector notation reshapes model (M0) to

Y = Ua + Pβ + Tdτ + Mdρ + Ẽ.

In order to apply generalized least squares estimation, it is necessary to transform

the response vector Y with a correction matrix Vd. Vd is dependent on the design d.

In more detail, let Cov(Ẽ) be the covariance of the error Ẽ. Then Cov(Ẽ) equals

σ2Inp ⊗ Σdu := σ2Sd and is of dimension np× np. Consider Vd, the np× np matrix

with the properties VdVd = S−1
d and VdSdVd = Inp. Multiplying model (M0) with

Vd, the resulting model

VdY = VdUa + VdPβ + VdTdτ + VdMdρ + E, (M1)

has uncorrelated errors because E = VdẼ has expectation zero and covariance

σ2VdSdVd = σ2Inp.

The information matrix for the least squares estimate of the treatments vector τ

occurring in model (M1) is

C
(M1)
d = T T

d Vdω
⊥ (Vd[P, U,Md]) VdTd.

The information matrix of a model, which disregards the time periods effect vector

β of model (M1), would be

Cd = T T
d Vdω

⊥ (Vd[U,Md]) VdTd, (2.2)

with C
(M1)
d ≤ Cd in the Loewner-sense. Equality only holds iff

T T
d Vdω

⊥ ( Vd[U,Md]) VdP = 0. Notice that Td1t is in the column space of U , which

implies that Cd has row and column sums zero, see Kunert (1991).

2.2 A Method for Finding Optimal Designs

The main objective of this doctoral thesis is to determine the structure of optimal

designs. Therefore, the term of optimality needs to be clarified at first.

2.2.1 The Universal Optimum

In order to judge a design for its optimality, several criteria have been invented.

The most common ones are the E-, D- or A- criteria. Extracting the main results
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from Kiefer (1975), a universally optimal design d∗ ∈ Ωt,n,p is, among other criteria,

optimal under the three listed optimality criteria as well. A design d∗ is universally

optimal iff its information matrix Cd∗ is completely symmetric and tr Cd∗ is maxi-

mal over Ωt,n,p. A matrix M is completely symmetric iff its diagonal elements are

identical and its off-diagonal elements coincide as well.

Applying Kiefer (1975) to model (M1), an optimal design d∗ is detected through

determination of max
d

[tr C
(M1)
d ] = tr C

(M1)
d∗ . Because Cd of equation (2.2) is an upper

bound for C
(M1)
d , it is sufficient to determine max

d
[tr Cd] = tr C

(M1)
d∗ .

2.2.2 Maximizing the Trace of Cd

The intention of finding an optimal design d∗ means extensive work if all designs

d ∈ Ωt,n,p have to be identified. As the formula of Cd depends on the design d, it is

difficult to determine tr Cd for an arbitrary design d. Therefore, an upper bound of

tr Cd is needed.

Kushner (1997) introduced a method to convert the problem of finding an optimal

design into maximizing the minimum of a design-dependent function qd. Then, this

specific minimum of qd represents an upper bound of tr Cd. In order to obtain qd,

the trace of the information matrix Cd needs to be decomposed.

As in Stufken (1996), Cd can be decomposed into

Cd = Cd11 − Cd12C
−
d22C

T
d12,

by applying the formula ω⊥([A, B]) = ω⊥(A) − ω⊥(A)B
{
BT ω⊥(A)B

}−
BT ω⊥(A)

to Cd, see Math Analogy of Appendix A. The partitions Cdij, 1 ≤ i, j ≤ 2, are

determined by XT
diω

⊥(U)Xdj with Xd1 = Td and Xd2 = Md. As suggested by Kunert

& Martin (2000b), the Cdij, 1 ≤ i, j ≤ 2, of Cd of equation (2.2) can be transformed

into

Cd11 = T T
d V ∗

d Td,

Cd12 = T T
d V ∗

d Md,

Cd22 = MT
d V ∗

d Md,

by defining V ∗
d = diag(V ∗

d1, . . . , V
∗
dn) and setting

V ∗
du = Vduω

⊥(Vdu1p)Vdu = S−1
du − (1T

p S−1
du 1p)

−1︸ ︷︷ ︸
∈R

S−1
du 1p1

T
p S−1

du , (2.3)
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for all u = 1, . . . , n.

Multiplying the centralizing matrix Bt with the partitions of Cd, yields numerical

values cdij = tr(BtCdijBt), for 1 ≤ i, j ≤ 2. The matrix

[
BtCd11Bt BtCd12Bt

BtC
T
d12Bt BtCd22Bt

]
is

nonnegative definite. Using Theorem A.74 of Rao & Toutenburg (1995), the matrix[
cd11 cd12

cd12 cd22

]
is nonnegative definite as well, which implies that cd11, cd22 ≥ 0 and

cd11cd22 − c2
d12 ≥ 0. Thus, we can define a specific design-dependent value

q∗d = cd11 , for cd22 = 0 and

q∗d = cd11 − c2
d12/cd22 , for cd22 > 0.

Proposition 2 of Kunert & Martin (2000a) identifies q∗d to be an upper bound for

tr Cd that applies for every design d ∈ Ωt,n,p. Equality holds iff all partitions Cdij,

1 ≤ i, j ≤ 2, are completely symmetric (and therefore Cd is completely symmetric).

Hence, a design is needed, for which this equality is valid for a maximal value of q∗d.

A design f is desirable whose partitioned matrices Cfij, 1 ≤ i, j ≤ 2, are completely

symmetric and tr Cf is maximal with Cf = C
(M1)
f . If, additionally, the proportion

of units assigned to the treatment sequences yield a maximal q∗f , then f is optimal

for all designs in Ωt,n,p. Unfortunately, there is no guarantee for such a design to

exist. But for any design d, q∗f can still be seen as the best reachable value.

Now, Td = [T T
d1, . . . , T

T
du]

T and Md = [MT
d1, . . . ,M

T
du]

T , i.e., Tdu and Mdu are the

design matrices for the direct treatment and carryover effects of subject u, u =

1, . . . , n, respectively. Using

c
(u)
d11 = tr

(
Bt(T

T
duV

∗
duTdu)

)
,

c
(u)
d12 = tr

(
Bt(T

T
duV

∗
duMdu)

)
,

c
(u)
d22 = tr

(
Bt(M

T
duV

∗
duMdu)

)
,

(2.4)

and equation (2.3), cdij can be written as
n∑

u=1

c
(u)
dij , for 1 ≤ i, j ≤ 2. The c

(u)
dij are

determined by the sequence of the treatments applied to subject u.

Definition 1 (Sequence). A sequence is the prescribed order of treatment samples

given to one unit. There is one treatment sample for each time period. The length

of a sequence is p.
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Definition 2 (Equivalence of Sequences). Two sequences are said to be equiva-

lent iff one is derivable from the other, by relabelling treatments 1 through t appro-

priately.

Obviously, two units with equivalent sequences have the same values c
(u)
dij , 1 ≤

i, j ≤ 2. Hence, for a given t and p, the set of all possible treatment sequences can

be grouped according to their equivalence. Define equivalence classes of sequences,

l = 1, . . . , K, such that all c
(u)
dij , 1 ≤ i, j ≤ 2, are the same for every u receiving

a sequence from one class. For example, if p = 4, there exist K = 15 equivalence

classes, given the equivalence of sequences of Definition 2.

Let πdl be the proportion of subjects receiving sequences from the lth-class in a

given design d ∈ Ωt,n,p. Also, define cij(l) = c
(ul)
dij , in which ul is any subject receiving

a sequence from the lth class. Then

cdij = n

(
K∑

l=1

πdlcij(l)

)
, for 1 ≤ i, j ≤ 2. (2.5)

Because q∗d can be calculated from the cdij, the πdl determine q∗d. But q∗d is a non-

linear function of the proportions πdl, making maximization of q∗d through the de-

termination of optimal weights πdl difficult. According to Kunert & Martin (2000a,

Proposition 3), this problem can be linearized by using the following proposition.

Proposition 1. For any design d ∈ Ωt,n,p, define the function qd : R → R by

qd(x) = cd11 + 2xcd12 + x2cd22. (2.6)

Then for all x, we have qd(x) ≥ q∗d, and there is at least one xd such that qd(xd) = q∗d.

Proof. Case 1: qd(x) = cd11 + 2xcd12 + x2cd22, cd22 > 0.

By transforming u = x + cd12/cd22 or equivalently x = u− cd12/cd22, we get

qd(x) = cd11 + 2ucd12 − 2c2
d12/cd22 + (u− cd12/cd22)

2 cd22

= cd11 − c2
d12/cd22 + u2cd22 = q∗d + u2cd22,

which is minimal iff u2cd22 = 0, i.e. u = 0. Therefore, qd(x) ≥ q∗d.

Case 2: qd(x) = cd11 = q∗d, cd12 = 0 and cd22 = 0.
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Case 3: qd(x) = cd11 + 2xcd12, cd12 6= 0 and cd22 = 0.

Since cd22 = 0 and cd11cd22 − c2
d12 ≥ 0, we get cd12 = 0. Thus, we have

qd(x) = cd11. It follows: qd(x) ≥ q∗d.

Addendum to Proposition 1: The derivative ∂qd(x)
∂x

in xd for which qd(xd) = q∗d

must be zero, since qd(x) is a convex function of x.

For each equivalence class l = 1, . . . , K, the hl function is defined as

hl(x) = c11(l) + 2xc12(l) + x2c22(l). (2.7)

Apply equations (2.7) and (2.5) to (2.6), and qd(x) can be written as a linear com-

bination of the hl functions:

qd(x) = n
K∑

l=1

πdlhl(x). (2.8)

Definition 3 (Approximate Design). Let πdl,
k∑

l=1

πdl = 1, be the proportions

of subjects which receive sequences from the lth sequence class in a design d. A

design d∗ ∈ Ωt,n,p is said to be an approximate design iff there exists a nπdl /∈ N,

l = 1, . . . , k.

Taking Proposition 1 of Kunert & Stufken (2002) for the one dimensional qd

function into account, gives

Proposition 2. For a (approximate) design d∗ ∈ Ωt,n,p consider xd∗ for which

qd∗(xd∗) = q∗d∗. If nhl(xd∗) ≤ qd∗(xd∗) = q∗d∗ for all 1 ≤ l ≤ K, then trCd ≤ q∗d∗ for

every d ∈ Ωt,n,p.

Proof. Equivalent to the proof of Proposition 4 of Kunert & Martin (2000a), just

replace (xd, yd) with (xd∗).

For the design d∗ of Proposition 2, we have qd∗(xd∗)/n = max
l

hl(xd∗), which

implies

qd∗(xd∗) = min
x

qd∗(x) = n min
x

max
l

hl(x). (2.9)

If no design such as d∗ of Proposition 2 can be found, the right-hand side of (2.9) is

still an upper bound for tr Cd, for any design d ∈ Ωt,n,p. Figures 2.1 and 2.2 illustrate
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equations (2.6) and (2.9). The point xd∗ of Proposition 2, at which the min
x

max
l

hl

is being realized, lies either at the intersection of two ore more of the hl, or at the

minimum of one hl function. The function qd(x) is a linear combination of the hl

forming min
x

max
l

hl.

Fig. 2.1: qd(x) is a linear combination

of two hl functions.

Fig. 2.2: qd(x) only consists of h1.

The minx maxl hl is at the

minimum of the h1 function.

Summarizing this chapter, the main intention and, thus, the difficulty consists

in the determination of min
x

max
l

hl(x) for a general number of treatments t and

a (general) p. Although some results can be achieved, the generalization of p is

beyond the scope of this thesis. Therefore, the focus is put on the usual lengths

of time periods 3, 4, 5 and 6 since they are the most practical sequence lengths

used in experiments of, e.g., sensory studies. All parameters are examined with the

restriction that p ≤ t.



3 Deriving General Formulas and

Some of Their Properties

Before any extrema of the hl(x) can be determined, the coefficients cij(l) for each

equivalent class l have to be calculated. In order to simplify equations, some defini-

tions are helpful.

3.1 Definitions of Variables

For any subject ul receiving a sequence from the lth equivalence class, the following

quantities are defined:

tl the number of (different) treatments in the sequence (tl ≤ t);

nj(l) the number of treatment j occurring in the sequence, 1 ≤ j ≤ tl;

ñj(l) the number of the carryover effect j occurring in the sequence, i.e., the

number of appearances of treatment j followed by any other treatment

(including itself);

ñij(l) the number of appearances of treatment j following treatment i in the

sequence, whereas ñjj(l) is the number of appearances of treatment j

following itself (self-carryover effect);

ñ0j(l) = 1, if treatment j is in the first period; 0 otherwise.

As cij(l) = c
(ul)
dij

(2.4)
= tr BtC

(u)
dij , 1 ≤ i, j ≤ 2, the cij(l) are calculated with the help of

the design dependent matrix S−1
du , u = 1, . . . , n, which is

S−1
du =


a11 b12 · · · b1p

b21 a22
. . .

...
...

. . . . . . b(p−1)p

bp1 · · · bp(p−1) app

 .

13
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Matrix entries arr ∈ {anj(l)} and brr′ ∈ {bnj(l)} for j = 1, . . . , t. Dependent on the

treatment appearances nj(l), the numbers anj(l) and bnj(l) are listed in Table 3.1 for

nj(l) = 1, . . . , 6. Generally, for nj(l) ≥ 2 and γ ∈ (0, 1), the formulas of anj(l) and

bnj(l) are given as

anj(l) =
(nj(l)− 2)γ + 1

[(nj(l)− 1)γ + 1](1− γ)
and

bnj(l) =
−γ

[(nj(l)− 1)γ + 1](1− γ)
.

Note that the parameter γ is the same coefficient as in the covariance structure of

yu,r, cf. equation (2.1). If treatments in any two or more periods r, r′ = 1, . . . , p

coincide, then their coefficients arr and ar′r′ are identical and their coefficients brr′

and br′r as well. The rth column sum of S−1
du equals the rth row sum of S−1

du and can

be written as

crsnj(r)(l) = anj(r)(l) + (nj(r)(l)− 1)bnj(r)(l),

in which j(r) is the treatment j in period r of sequence l. The sum of all matrix

entries of S−1
du is symbolized by Ru, i.e., Ru =

p∑
r=1

crsnj(r)(l).

nj(l) anj(l) bnj(l)

1 1 0

2 1/((1 + γ)(1− γ)) −γ/((1 + γ)(1− γ))

3 (γ + 1)/((2γ + 1)(1− γ)) −γ/((2γ + 1)(1− γ))

4 (2γ + 1)/((3γ + 1)(1− γ)) −γ/((3γ + 1)(1− γ))

5 (3γ + 1)/((4γ + 1)(1− γ)) −γ/((4γ + 1)(1− γ))

6 (4γ + 1)/((5γ + 1)(1− γ)) −γ/((5γ + 1)(1− γ))

Table 3.1: Matrix entries of S−1
du , dependent on the number of treatment-j-

appearances nj(l).

Useful term characteristics for discussing properties of cij(l), 1 ≤ i, j ≤ 2, are

given by

• 1 = a1 < a2 < · · · < ap;

• b2 < b3 < · · · < bp < b1 = 0;

• 1 = crs1 > crs2 > · · · > crsp;
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• 1 = crs1 < 2crs2 < · · · < pcrsp;

• Ru is increasing as the number of different treatments in sequence u increases,

i.e., Ru is maximal if crsnj(l) is maximal (= 1) ∀j = 1, . . . , p.

The proofs are presented in Appendix C, Lemmas 13 through 16.

3.2 Deriving c11(l), c12(l) and c22(l)

Using the definition of cij(l) = c
(ul)
dij and equations (2.4), all three coefficients cij(l),

1 ≤ i, j ≤ 2, can be derived from the design matrices Td and Md. Let Tdu, Mdu and

S−1
du be the partial matrices of the design-dependent matrices Td, Md and S−1

d for

any unit ul of an equivalence class l = 1, . . . , K. Each row of matrix Tdu contains

exactly one 1 and (p − 1) zeros. Thus, the entries of the diagonal matrix T T
duTdu

equal the number of appearances of treatment j in the sequence of unit ul. The

matrices S−1
du and Tdu are of a structure, in which each element of S−1

du that is

different from 0 strikes one 1 of Tdu by multiplying S−1
du with Tdu. The expression

1T
t

(
T T

duS
−1
du − 1

Ru
T T

duS
−1
du 1p1

T
p S−1

du

)
equals 0, because 1T

t T T
du = 1T

p and Ru = 1T
p S−1

du 1p

and, therefore, multiplication with Bt could have been omitted in the definition of

equations c
(u)
d11 and c

(u)
d12 of (2.4). Analyzing T T

duS
−1
du Tdu, we see that the entries of the

diagonal matrix T T
duTdu are additionally multiplied with the corresponding row sum

of S−1
du . Thus, we obtain

tr
(
T T

duS
−1
du Tdu

)
=

t∑
j=1

nj(l)crsnj(l) = Ru, (3.1)

the summation of all entries of matrix S−1
du , cf. equation (C.1) of the appendix as

well. Furthermore, 1p = Tdu1t, which forces T T
duS

−1
du 1p to be equal to T T

duS
−1
du Tdu1t,

the column sums of T T
duS

−1
du Tdu. The matrix T T

duS
−1
du Tdu is diagonal, therefore,

tr
(
T T

duS
−1
du 1pR

−1
u 1T

p S−1
du Tdu

)
=

1

Ru

t∑
j=1

(
nj(l)crsnj(l)

)2
. (3.2)

Mdu is generated by deleting the last row of Tdu and adding a first row of 0s.

Because of this ”Tdu-shifting” structure, the elements of the diagonal matrix T T
duMdu

equal the number of appearances of the self-carryover effect j (= ñjj(l)), since Mdu

is the matrix of the carryover effects j in unit u, j = 1, . . . , t. The entries of the
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diagonal elements of matrix T T
duS

−1
du Mdu are, again, multiples of the row sums of S−1

du ,

such that

tr
(
T T

duS
−1
du Mdu

)
=

t∑
j=1

ñjj(l)crsnj(l). (3.3)

The vector 1T
p S−1

du Mdu turns out to be 1T
t T T

duS
−1
du Mdu, which are the column sums

of T T
duS

−1
du Mdu. The expression T T

duS
−1
d 1p represents the column sums of T T

duS
−1
du Tdu,

and, furthermore,

tr
(
T T

duS
−1
du 1pR

−1
u 1T

p S−1
du Mdu

)
=

1

Ru

t∑
j=1

(
nj(l)crsnj(l)

t∑
i=1

ñji(l)crsni(l)

)
. (3.4)

The summands of the trace of MT
duMdu contain all ñj(l), j = 1, . . . , t. The matrix

S−1
du is not of the ”Tdu-shifted” structure as Mdu. Thus, the entries of the diagonal

matrix MT
duS

−1
du Mdu are not exact multiples of the crsnj(l). They depend on ñij(l),

the number of appearances of treatment j following treatment i in sequence l:

tr
(
MT

duS
−1
du Mdu

)
=

t∑
i=1

t∑
j=1

ñij(l)
(
anj(l) + [ñij(l)− 1]bnj(l)

)
. (3.5)

Similar to Tdu, the matrix Mdu contains exactly one 1 in every but the first row.

Hence, 1T
t MT

du = (0, 1, . . . , 1) is a row vector with its first entry equal to 0 and

the following (p − 1) entries equal to 1. Multiplication of the matrix 1t1
T
t with

MT
duS

−1
du Mdu leads to a trace, in which all entries of S−1

du are added except the first

row and column, i.e.,

tr
(
1t1

T
t MT

duS
−1
du Mdu

)
=

t∑
j=1

(nj(l)− ñ0j(l))
(
crsnj(l) − ñ0j(l)bnj(l)

)
. (3.6)

Similar to equation (3.2), and using the annotations for deriving equation (3.4), we

get

tr
(
MT

duS
−1
du 1pR

−1
u 1T

p S−1
du Mdu

)
=

1

Ru

t∑
i=1

(
t∑

j=1

ñij(l)crsnj(l)

)2

. (3.7)

The vectors 1p and Mdu1t differ only in its first element. Thus, 1T
t MT

duS
−1
du 1p is the

sum of all elements of the matrix S−1
du , except the first column. However, the first

row elements of 1T
t MT

duS
−1
du Mdu1t have been left out as well, cf. the derivation of

equation (3.6). Therefore,

tr
(
1t1

T
t MT

duS
−1
du 1pR

−1
u 1T

p S−1
du Mdu

)
=

1

Ru

(
t∑

j=1

(nj(l)− ñ0j(l)crsnj(l)

)2

. (3.8)
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Inserting equations (3.1) through (3.8) into equations (2.4), it is easy to derive

that

c11(l) =Ru −
1

Ru

t∑
j=1

n2
j(l)crs

2
nj(l)

, (3.9)

c12(l) =
t∑

j=1

ñjj(l)crsnj(l) −
1

Ru

t∑
j=1

(
nj(l)crsnj(l)

t∑
i=1

ñji(l)crsni(l)

)
(3.10)

and

c22(l) =
t∑

i=1

t∑
j=1

ñij(l)
(
anj(l) + [ñij(l)− 1]bnj(l)

)
− 1

t

t∑
j=1

(nj(l)− ñ0j(l))
(
crsnj(l) − ñ0j(l)bnj(l)

)
− 1

Ru

t∑
i=1

(
t∑

j=1

ñij(l)crsnj(l)

)2

+
1

tRu

(
t∑

j=1

(nj(l)− ñ0j(l))crsnj(l)

)2

.

(3.11)

Using some transformations, the second and fourth term of c22(l) above can be

simplified to 1
tRu

(∑
j ñ0j(l)crsnj(l)

)2

− 1
t

∑
j ñ0j(l)anj(l), which provides an equivalent

expression:

c22(l) =
t∑

i=1

t∑
j=1

ñij(l)
(
anj(l) + [ñij(l)− 1]bnj(l)

)
− 1

t

t∑
j=1

ñ0j(l)anj(l)

− 1

Ru

t∑
i=1

(
t∑

j=1

ñij(l)crsnj(l)

)2

+
1

tRu

(
t∑

j=1

ñ0j(l)crsnj(l)

)2

.

(3.12)

An illustration of the mentioned transformation is presented in section C.2 of Ap-

pendix C.

3.3 Some Properties of c11(l) and c12(l)

Some simplifications of formulas and properties, concerning nj(l)-dependent behav-

ior of the cij(l) functions, are gathered in this section.
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Definition 4 (In-/ and Decreasing nj(l) of Sequence ul). Let ul and ul′ be two

sequences, in which all treatments except for k and j appear equally often. Suppose,

nk(l) < nk(l
′) and nj(l) > nj(l

′). Further, assume that there is an x ≥ 1, such that

nk(l
′) = nk(l) + x and nj(l

′) = nj(l)− x.

The number of appearances of treatment k is said to be increasing in ul′ iff nk(l) ≥
nj(l), nk(l

′) ≤ p and nj(l
′) ≥ 0. Alternatively, the number of appearances of treat-

ment j is said to be decreasing in ul′ iff nj(l) ≥ nk(l), nk(l
′) ≤ p and nj(l

′) > nk(l).

Illustration of Definition 4:

sequence ul: [j j 2 3 4 k j]

nj(l) is increasing ↑ ↓ nj(l) is decreasing

sequence ul′ : [j j 3 2 k k 4]

Notice, the number of different treatments tl′ in sequence ul′ decreases iff

nj(l
′) ↘ 0 for any j = 1, . . . , tl′ and it increases iff a new treatment j is added

to sequence ul′ such that nj(l
′) > 0 for any j = {1, . . . , t} \ {1, . . . , tl}.

Lemma 1. In a sequence ul of class l, c11(l) decreases if nj(l) increases for any

treatment j = 1, . . . , tl, in the sense of Definition 4.

Proof.

c11(l) = Ru

1−

t∑
j=1

n2
j(l)crs

2
nj(l)(

t∑
j=1

nj(l)crsnj(l)

)2

 := Ru

1−

t∑
j=1

η2
j(

t∑
j=1

ηj

)2

 .

(1) ηj ≥ 1 for all j and ∑
j

η2
j ≤

(∑
j

ηj

)2

∀ηj. (a)

Set t = tl since nj(l) = 0 for all treatments j being not in sequence ul, such

that
t∑
j

nj(l)crsnj(l) =
tl∑
j

nj(l)crsnj(l). Further, write

(
t∑
j

ηj

)2

=
t∑

j=1

η2
j + 2

t−1∑
i=1

t∑
j>i

ηiηj. (b)
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Using equation (b), we see that xratio :=

tP
j=1

η2
j 

tP
j=1

ηj

!2 is equal to

tP
j=1

η2
j

tP
j=1

η2
j +2

t−1P
i=1

tP
j>i

ηiηj

and is in the interval (0, 1), cf. equation (a). The magnitude of xratio is deter-

mined by expression 2
t−1∑
i=1

t∑
j>i

ηiηj, i.e., iff 2
t−1∑
i=1

t∑
j>i

ηiηj increases, xratio decreases

and vice versa.

Thus,

(
t∑
j

ηj

)2

consists of t summands η2
j and t(t− 1) summands ηiηj, i 6= j,

i, j = 1, . . . , t.

Let further be n1(l) ≤ n2(l) ≤ · · · ≤ nt(l), then η1(l) ≤ η2(l) ≤ · · · ≤ ηt(l),

cf. the listed characteristics of section 3.1. In general, 2
∑
i

∑
j>i

ηiηj has the

following structure

2
∑

i

∑
j>i

ηiηj = 2η1η2 + 2η1η3 + . . . + 2η1ηt + . . .

+ 2ηkηk+1 + . . . + 2ηkηt + . . . + 2ηt−1ηt.

(c0)

Without loss of generality, an arbitrary nk, 1 < k ≤ t, decreases to n′k = nk−x,

x ∈ N, implying that n1 increases to n′1 = n1 + x. Thus, 2
∑
i

∑
j>i

ηiηj becomes

2
∑

i

∑
j>i

η′iη
′
j = 2η′1η2 + 2η′1η3 + . . . + 2η′1η

′
k + 2η′1ηk+1 + . . . + 2η′1ηt+

+ . . . + 2η′kηk+1 + . . . + 2η′kηt + . . . + 2ηt−1ηt,

(c1)

with the assumption that n′k = nk − x ≥ n1. This assumption is equivalent to

n′1 = n1 + x ≤ nk, see Definition 4. The difference of (c0) and (c1) has to be

positive, i.e.,

2
∑

i

∑
j>i

η′iη
′
j − 2

∑
i

∑
j>i

ηiηj

!
> 0

⇔ η2(η
′
1 − η1) + η3(η

′
1 − η1) + . . . + η′kη

′
1 − ηkη1 + ηk+1(η

′
1 − η1) + . . .

+ ηt(η
′
1 − η1) + (η′k − ηk)ηk+1 + . . . + (η′k − ηk)ηt

!
> 0

⇔ η2x(1− γ)crsn1crsn′1
+ η3x(1− γ)crsn1crsn′1

+ . . . + (η′kη
′
1 − ηkη1)+

+ x(1− γ)(ηk+1 + . . . + ηt) (crsn1crsn′1
− crsnk

crsn′k
)︸ ︷︷ ︸

:=(∗)>0

!
> 0

⇔ η2x(1− γ)crsn1crsn′1
+ η3x(1− γ)crsn1crsn′1

+ . . . + (η′kη
′
1 − ηkη1)

!
> 0.

(d)
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Inequality (d) holds because

η′kη
′
1−ηkη1 = x(1−γ) (nk − n1 − x)︸ ︷︷ ︸

=nk−n′1≥0

(n1γ+nkγ+1−γ)crsnk
crsn1crsn′k

crsn′1
> 0,

for all x ∈ N and γ ∈ (0, 1); and, as indicated above, (∗) > 0 because n1 ≤ nk,

crsn1 > crsn′k
and crsn′1

≥ crsnk
. The reverse conclusion can be drawn for

−x ∈ N, i.e., some nk increases. Thus, equation (d) proves that, 2
∑
i

∑
j>i

ηiηj

increases iff some nk = nk(l) increases.

Therefore, xratio decreases iff nk(l) decreases for any treatment k = 1, . . . , tl.

The ratio xratio approaches its minimum 1P
j

ηj
� 1, iff nj(l) = 1 for all

j = 1, . . . , tl, such that tl = p.

(2) Ru decreases as nj(l) increases, cf. Lemma 16, Appendix C.

Lemma 1 follows with properties (1) and (2).

Lemma 2. Assuming nj(l) is fixed ∀j = 1, . . . , t, c12(l) is maximized by ordering

treatments according to ascending nj(l) and assigning identical treatments consecu-

tively.

Proof. Let

A =
t∑

j=1

ñjj(l)crsnj(l) and

B =
1

Ru

t∑
j=1

(
nj(l)crsnj(l)

t∑
i=1

ñji(l)crsni(l)

)
,

then c12(l) = A − B. Without loss of generality, assume that n1 ≤ n2 ≤ · · · ≤ nt,

in which t := tl is the number of different treatments in sequence ul. The purpose

is to maximize term A and minimize term B. The assumption is that the nj(l), or

crsnj(l) respectively, are fixed for all j = 1, . . . , t. Thus, we need to find a special

order of treatments that maximizes c12(l).

(1) A is maximal ⇔ ñjj(l) = nj(l) − 1 is maximal ⇔ identical treatments are

ordered consecutively.
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(2) The intention is to minimize B, which is equivalent to minimize RuB as Ru

is fixed iff all nj(l) are fixed. The measure to evaluate if RuB decreases is the

performance of RuB after certain shifting of treatments.

Therefore, first, consider an arbitrary sequence

S01 = [ · · · a k b · · · f m · · · ]

with treatments a, b, f, k, m ∈ {1, . . . , t} and their number of appearances are

such that na, nb, nf ≤ nk ≤ nm. The size of term RuB of sequence S01 is

described by

RuB01 =

{1...t}\{a,f,k}∑
j

(
njcrsnj

t∑
i=1

ñjicrsni

)

+ nacrsna

{1...t}\{k,b}∑
i

ñaicrsni
+ ñakcrsnk

+ ñabcrsnb


+ nfcrsnf

{1...t}\{k,m}∑
i

ñficrsni
+ ñfkcrsnk

+ ñfmcrsnm


+ nkcrsnk

{1...t}\{b,m}∑
i

ñkicrsni
+ ñkmcrsnm + ñkbcrsnb

 .

Based on the structure and assumptions of S01, the first shifting structure of

treatments is implemented as follows:

Shifting 1: [ . . . a k b

� �
. . . f ?m . . . ] =̂ [ . . . a b . . . f k m . . . ].

Shifting 1 modifies the magnitude of term RuB01 to

RuB1 =

{1...t}\{a,f,k}∑
j

(
njcrsnj

t∑
i=1

ñjicrsni

)

+ nacrsna

{1...t}\{k,b}∑
i

ñaicrsni
+ (ñak − 1)crsnk

+ (ñab + 1)crsnb


+ nfcrsnf

{1...t}\{k,m}∑
i

ñficrsni
+ (ñfk + 1)crsnk

+ (ñfm − 1)crsnm


+ nkcrsnk

{1...t}\{b,m}∑
i

ñkicrsni
+ (ñkm + 1)crsnm + (ñkb − 1)crsnb

 .
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Analyze now the difference Ru(B01−B1) to evaluate the performance of RuB

when Shifting 1 is applied to an arbitrary sequence S01. Three cases are re-

quired:

Case 1: Treatments a 6= k and k is not originally placed in period p = 1.

Ru(B01 −B1) = nacrsna (crsnk
− crsnb

)︸ ︷︷ ︸
≤0 as nb≤nk

+nfcrsnf
(crsnm − crsnk

)︸ ︷︷ ︸
≤0 as nb≤nk

+ nkcrsnk
(crsnb

− crsnm)︸ ︷︷ ︸
≥0 as nb≤nm

.

Define n∗crsn∗ = max{nacrsna , nfcrsnf
} to obtain

Ru(B01 −B1) ≥ n∗crsn∗(crsnm − crsnb
) + nkcrsnk

(crsnb
− crsnm)

= (nkcrsnk
− n∗crsn∗)︸ ︷︷ ︸

≥0 as nk≥n∗∈{na,nf}

(crsnb
− crsnm)

≥ 0.

Case 2: Treatments a = k and k is not originally placed in period p = 1.

The partitioning of the term RuB01 in nacrsna

t∑
i

ñaicrsni
can be omitted. The

same applies for summand nkcrsnk
ñkbcrsnb

, which is replaced by

nkcrsnk
ñkkcrsnk

. Similar to RuB01, the same partitioned structure applies

to RuB1. It follows that

Ru(B01 −B1) = nfcrsnf
(crsnm − crsnk

)︸ ︷︷ ︸
≤0 as nb≤nk

+nkcrsnk
(crsnb

− crsnm)︸ ︷︷ ︸
≥0 as nb≤nm

≥ (nkcrsnk
− nfcrsnf

)︸ ︷︷ ︸
≥0 as nf≤nk

(crsnk
− crsnm)︸ ︷︷ ︸

≥0 as nk≤nm

≥ 0.

Case 3: Treatment k is originally placed in period p = 1 and, thus, k is no

successor of any treatment in the sequence.

As in Case 2, the partitioning of terms RuB01 and RuB1 in summand
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nacrsna

t∑
i

ñaicrsni
can be omitted, which causes Ru(B01 −B1) to become

Ru(B01 −B1) = nfcrsnf
(crsnm − crsnk

)︸ ︷︷ ︸
≤0 as nb≤nk

+nkcrsnk
(crsnb

− crsnm)︸ ︷︷ ︸
≥0 as nb≤nm

≥ nkcrsnk
(crsnb

− crsnk
)︸ ︷︷ ︸

≥0 as nb≤nk

≥ 0.

Hence, RuB1 ≤ RuB01. The conclusion is that term B is getting smaller

by shifting an arbitrary treatment k to a position such that k is followed

by a treatment that appears at least k times in the sequence. However, the

assumption must be that treatment k is originally placed between two treat-

ments with number of appearances less than nk. Shifting 1 leaves B unaltered

iff nb = nk = nm.

The second shifting structure to be implemented is based on an arbitrary

sequence

S02 = [ · · · a t b · · · f ],

in which t is the treatment with the largest number of appearances in the

sequence, formally, nj ≤ nt for all j = 1, . . . , t − 1. Treatments a, b, f of

sequence S02 are elements of the set of treatments {1, . . . , t − 1}. Shifting 2

defines the movement of t to the last period, i.e.,

Shifting 2: [ . . . a t b

� �
. . . f ?] =̂ [ . . . a b . . . f t ].

The magnitude of the term RuB of sequence S02 is given by

RuB02 =

{1...t}\{a,f,t}∑
j

(
njcrsnj

t∑
i=1

ñjicrsni

)

+ nacrsna

{1...t}\{b,t}∑
i

ñaicrsni
+ ñatcrsnt + ñabcrsnb


+ nfcrsnf

{1...t−1}∑
i

ñficrsni
+ ñftcrsnt


+ ntcrsnt

{1...t}\{b}∑
i

ñticrsni
+ ñtbcrsnb

 .
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After applying Shifting 2 to sequence S02, the expression of RuB02 becomes

RuB2 =

{1...t}\{a,f,t}∑
j

(
njcrsnj

t∑
i=1

ñjicrsni

)

+ nacrsna

{1...t}\{b,t}∑
i

ñaicrsni
+ (ñat − 1)crsnt + (ñab + 1)crsnb


+ nfcrsnf

{1...t−1}∑
i

ñficrsni
+ (ñft + 1)crsnt


+ ntcrsnt

{1...t}\{b}∑
i

ñticrsni
+ (ñtb − 1)crsnb

 .

Let us now analyze the difference of term RuB before and after Shifting 2, i.e.,

consider Ru(B02 −B2) for the required cases:

Case 1: treatment a 6= t and t is not originally placed in period p = 1.

Ru(B02 −B2) = nacrsna (crsnt − crsnb
)︸ ︷︷ ︸

≤0 as nb≤nt

−nfcrsnf︸ ︷︷ ︸
≥ntcrsnt

crsnt + ntcrsntcrsnb

≥ (ntcrsnt − nacrsna)︸ ︷︷ ︸
≥0 as nt≥na

(crsnb
− crsnt)︸ ︷︷ ︸

≥0 as nb≤nt

≥ 0.

Case 2: treatment a = t and t is not originally placed in period p = 1.

The partitioning of term RuB02 in summand nacrsna

t∑
i

ñaicrsni
can be omit-

ted. The same applies for summand ntcrsntñtbcrsnb
, which is replaced by

ntcrsntñttcrsnt . Similar to RuB02, term RuB2 is readjusted, respectively. As

a result, we obtain

Ru(B02 −B2) = ntcrsntcrsnt − nfcrsnf
crsnt

= crsnt (ntcrsnt − nfcrsnf
)︸ ︷︷ ︸

≥0 as nt≥nf

≥ 0.

Case 3: Treatment t is originally placed in period p = 1 and, thus, t is no

successor of any treatment in the sequence.

As in Case 2, the partitioning of terms RuB02 and RuB2 in summand
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nacrsna

t∑
i

ñaicrsni
can be omitted, which causes Ru(B02 − B2) to take the

value

Ru(B02 −B2) = ntcrsntcrsnb
−nfcrsnf︸ ︷︷ ︸
≥ntcrsnt

crsnt

≥ ntcrsnt (crsnb
− crsnt)︸ ︷︷ ︸

≥0 as nb≤nt

≥ 0.

Hence, RuB2 ≤ RuB02. The conclusion is that term B can be further reduced

by shifting the treatment t with the largest number of appearances to the

last position in the sequence. Shifting 2 generates a constant value of B iff

nb = nf = nt.

Taking into account the definition of shifting structures 1 and 2, it is possible

to prove that sequences of the form

[1 · · · 1︸ ︷︷ ︸
]=n1

, 2 · · · 2︸ ︷︷ ︸
]=n2

, . . . , t− 1 · · · t− 1︸ ︷︷ ︸
]=nt−1

, t · · · t︸ ︷︷ ︸
]=nt

]

generate the maximum possible value of c12(l), assuming that all nj(l), j =

1, . . . , t, are fixed and n1 ≤ n2 ≤ · · · ≤ nt−1 ≤ nt.

The initial situation consists of an arbitrary sequence Sini, e.g. symbolized

as Sini = S02. The first improvement in minimizing B is done by picking

any treatment t and moving it to period p, i.e., by application of Shifting 2.

The ”worst” case would be if the B-values before and after the shifting are

identical. Thus, Shifting 2 is applicable in minimizing B, as it does not change

the value of B for the worse, see the definition of Shifting 2 above. The present

situation is symbolized by the sequence

S1 = [ · · · a b · · · f t ].

As t is the treatment with nj(l) ≤ t, ∀j = 1, . . . , t − 1, Shifting 1 guarantees

further minimization of B by applying Shifting 1 (nt − 1) times to all other

treatments t of sequence S1, which are not placed in period p. This operation

converts S1 to the sequence

S2 = [ · · · , t · · · t︸ ︷︷ ︸
]=nt

].
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The number of appearances of the remaining treatments in periods 1 through

p − nt of S2 are all less or equal to nt−1. However, this implies that the

application of Shifting 1 is feasible in minimizing B further. Shifting 1 means

to move any treatment t−1 to period p−nt. The repetition of Shifting 1, and,

thus, improvement of B, to all other nt−1 − 1 treatments t− 1 gives sequence

S3 = [ · · · , t− 1 · · · t− 1︸ ︷︷ ︸
]=nt−1

, t · · · t︸ ︷︷ ︸
]=nt

],

in which treatments t−1 are placed into periods p−nt through p−nt−nt−1+1.

The number of appearances of all remaining treatments in periods 1 through

p−nt−nt−1 of sequence S3 do not exceed nt−2. Hence, in the sense of Shifting

1, the ordering of all consecutively appointed treatments t− 2 as predecessor

of treatment t− 1 guarantees further minimization of B, since it is equivalent

to ordering all treatments t − 1 consecutively and in front of treatment t.

Furthermore, the sequencing application of Shifting 1 to all treatments t− 2,

t − 3, etc., results in a stepwise minimization of B until, finally, Shifting 1

allocates treatment 1 to be placed to periods n1 = p − nt − nt−1 − · · · − n2

through 1 = p− nt− nt−1− · · · − n2− n1 + 1. The final sequence yielding the

minimal value of B is

[1 · · · 1︸ ︷︷ ︸
]=n1

, 2 · · · 2︸ ︷︷ ︸
]=n2

, . . . , t− 1 · · · t− 1︸ ︷︷ ︸
]=nt−1

, t · · · t︸ ︷︷ ︸
]=nt

].

Properties (1) and (2) are consistent, and Lemma 2 follows.

3.4 Special Sequence Class Functions hl

There are two equivalence class functions of sequences, which prove to be crucial for

this thesis: The first class, l = 1, to be introduced, contains all sequences equivalent

to [1, 2, . . . , p − 1, p], i.e., there is a different treatment given to the unit in every

single period. The second class, l = 2, represents [1, 2, . . . , p− 1, p− 1], i.e., there is

a different treatment given to the unit in periods 1 through p− 1 and the treatment

of period p − 1 is to be evaluated in period p a second time. Applying equations

(3.9), (3.10), (3.12) to the sequence structures given above, and inserting the results

into hl of equation (2.7), the equivalence class functions h1 and h2 are given as

h1(x) = p− 1− 2(p− 1)

p
· x +

(p− 1)(tp− t− 1)

tp
· x2,
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with R1 = p and

h2(x) =
(p− 2)(p− 3)γ + p2 − p− 2

(p− 2)γ + p
− 2(p− 3)γ

(p− 2)γ + p
· x

+
((p− 3)2t− (p− 3))γ2 + 2((p− 3)t− 1)γ − (p− 1)2t + p− 1

((p− 2)γ2 + 2γ − p)t
· x2,

with R2 = [p + (p− 2)γ]/(1 + γ).

The sequence class functions h1 and h2 intersect once at x = 1/(p − 1) if γ = 0.

However, if γ ∈ (0, 1), there are two intersections located at

x1/2 =
∓
√

W − V

Z
, (3.13)

in which

W = [(−4p4 + 16p3 − 12p2 − 8p + 4)t2 + (4p2 − 8p)t]γ4 + [(4p4 − 24p3 + 28p2 +

16p−8)t2 +(20p−8p2)t]γ3 +[(p4 +6p3−23p2−8p+4)t2 +(4p2−16p)t]γ2 +

[(−2p4 + 4p3 + 6p2)t2 + 4pt]γ + (p4 − 2p3 + p2)t2,

V = tp(p− 1)(1− γ) + 2tγ(1− γ)

and

Z = [(2p2 − 4p− 2)t− 2]γ2 + [(2p + 2)t + 2]γ.

The value x1 is smaller than x2 because the numerator of x1 contains a negative root,

whereas the root of x2 is positive. The denominator is positive for all p ≥ 3. Some

further equivalent transformations lead to the following proposition.

Proposition 3. Let γ ∈ (0, 1) and t ≥ p ≥ 3. Then, the intersection point, in

which h1(x) = h2(x) is smallest, is located at x2 ∈ (0, 1) of equation (3.13).

Proof. (1)

x2 > 0 ⇔
(√

W
)2

≥ (tp(p− 1)(1− γ) + 2tγ(1− γ))2

:4ptγ⇔ (p− 2 + (−p3 + 4p2 − 3p− 2)t)γ3 + (5− 2p + (p3 − 6p2 + 6p + 5)t)γ2

+ (p− 4 + 2(p2 − 2p− 2)t)γ + 1 + (p + 1)t > 0

:=g(γ) > 0

Rewrite g(γ) as g(γ) = g0+g1γ+g2γ
2+g3γ

3. Then, observe that g0 > 0 for all

t and p and use the assumption that γ2 < γ which yields g0 +g1γ > (g0 +g1)γ.

Further, we have g0 + . . . + gi ≥ 0, for all 1 ≤ i ≤ 3, and for all t ≥ p ≥ 3,

which implies that g(γ) > (g0 + . . . + g3)γ
3 ≥ 0 for all t ≥ p ≥ 3. X
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(2) The minimum of the h1 parabola is located at xmin = t/(tp− t−1). The value

of x1 is negative and the value of x2 is positive. Calculating the Manhattan

distance (L1 norm), d(xmin, x1) = xmin + |x1|, while d(xmin, x2) = xmin− x2 <

xmin + |x1| if x2 < xmin, or d(xmin, x2) = x2 − xmin

|x2|≤|x1|
< xmin + |x1| if

x2 > xmin. Hence, d(xmin, x1) > d(xmin, x2). Since h1 is a quadratic function,

it follows that h1(x2) < h1(x1). X

(3) The proof of x2 < 1 is given in Appendix C, Lemma 17.

A third equivalence class, l = k, is introduced by the representative sequence

[1, 2, 2, 3, 3, . . . , p+1
2

, p+1
2

] for odd p, or [1, 2, 3, 3, . . . , p+2
2

, p+2
2

] for even p. Dependent

on the number of periods p, the properties of hk differ as follows:

For odd p, the sequence class function hk of equation (2.7) is given as:

hk(x) =
(p− 1)(p− 1 + 2γ)

(γ + 1)(γ + p)
+

(p− 3)(γ + p− 2)

(γ + 1)(γ + p)
· x

+
(p− 1)γ2 + (3p− 5)tγ + (p2 − 3p + 4)t− p + 1

t(1− γ2)(γ + p)
· x2,

for which Rk = 1 + (p− 1)/(γ + 1). The functions h1 and hk intersect twice at

x−k,k =
∓
√

W − V

Z
, (3.14)

in the interval (0, 1) of γ, in which

W = t(1− γ){[4(p− 1)2(p2 − p− 1)t− 4p(p− 1)2]γ5 + [4(p− 1)(2p4 − 5p3 + p2 +

3p + 1)t − 4p(p − 1)3]γ4 + [(2p2 − 3p − 1)(2p4 − 5p3 + 5p2 + 4p − 4)t]γ3 +

[(6p5 − 7p4 − 16p3 + 17p2 + 8p + 4)t + 4p(p− 1)3]γ2 + [p(−p5 + 8p4 − 13p3 +

14p2 − 8p− 12)t + 4p(p− 1)2]γ + (p4 − 6p3 + 13p2 − 8p + 4)p2t},
V = t(1− γ)[2(p− 1)γ2 + (3p2 − 3p− 2)γ + (p2 − 3p + 4)p]

and

Z = 2γ[((p−1)2t−p+1)γ3 +p(p−1)2tγ2 +((2p2−3p−1)t+p−1)γ−p(p−3)t].

For even p, the sequence class function hk of equation (2.7) is given as

hk(x) =
(p− 1)(p− 1 + 2γ)

(γ + 1)(γ + p)
+

(p− 3)(γ + p− 2)

(γ + 1)(γ + p)
· x

+
((p− 1)γ2 + (3p− 5)tγ + (p2 − 3p + 4)t− p + 1)

t(1− γ2)(γ + p)
· x2,
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for which Rk = 2 + (p− 2)/(γ + 1). Similar to equation (3.14), in which γ ∈ (0, 1),

the functions h1 and hk intersect twice at

x−k,k =
∓
√

W − V

Z
, (3.15)

in which

W = t(1−γ){[4(p−2)2(4p2−2p−1)t−8(p−2)2p]γ5 +[4(p−2)(4p4−13p3 +7p2 +

7p+2)t−4(p−2)2(p−1)p]γ4+[4(p2−p−1)(p4−5p3+10p2−8p−4)t+4(p−
2)2p]γ3 +[4(p5−p4−11p3 +14p2 +12p+4)t+4(p−2)2(p−1)p]γ2 +[(−p5 +

12p4−40p3+60p2−36p−32)pt+4(p−2)2p]γ+(p4−8p3+24p2−24p+4)p2t},
V = t(1− γ)[2(p− 2)γ2 + 4(p2 − 2p− 1)γ + p(p2 − 4p + 6)]

and

Z = 2γ[((p− 2)(2p− 1)t− p + 2)γ3 + (p− 2)(p− 1)ptγ2 + ((2p2 − 5p− 2)t + p−
2)γ − (p− 4)pt].

Proposition 4. Let γ ∈ (0.3, 1) and t ≥ p ≥ 5. The x-coordinate of the minimum

of the intersections of sequence class functions h1 and hk is xk ∈ (0, 1) of equation

(3.14) for odd p, or xk ∈ (0, 1) of equation (3.15) for even p, respectively.

Proof. Follows from Lemmas 18 and 19 of Appendix C.
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4 Optimal Designs

This chapter introduces optimal designs for sequences with p = 3, 4, 5 and 6 periods.

The equivalence classes representation given in the tables take the following rules

into account: All equivalence classes are grouped according to their Ru. The sum

Ru of all row sums of S−1
du , and c11(l) simply depend on the number of appearances

of each treatment j = 1, . . . , t in the sequence. The order of the treatments in the

sequence can be neglected. Thus, several equivalence classes yield the same Ru,

and c11(l) respectively, but their sequence class functions hl might be different. The

groups of equivalent c11(l) are arranged in descending order. Within each group,

the equivalence classes are listed in descending order of c12(l). The arrangement is

determined by c22(l) for identical values of c11(l) and c12(l). All classes l = 1, . . . , K

are labelled according to their generation by replacing each treatment of a period

repeated times. The starting sequence is class [1, 2, . . . , p]. Equivalent sequences are

eliminated, following Definition 2. However, there are several equivalence classes

with identical hl functions among the K listed classes. This is because of the assumed

model of section 2.1. Therefore, some values of {1, . . . , K} do not appear in the class

listings. The representative sequences of identical hl functions are listed in one group

of the corresponding hl.

Several calculations and term transformations of this thesis have been performed

using the computer algebra wxMaxima 0.7.1, which is implemented on Maxima

5.11.0.

4.1 Sequence Length p = 3

Restricting the sequence length to p = 3 periods, there are 5 equivalence classes,

which are listed in Table 4.1.

31
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l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

Ru = 3

1 : [123] h1 = 2 −4
3
· x +2(2t−1)

3t
· x2

Ru = (γ + 3)/(γ + 1)

2 : [122] h2 = 4
(3+γ)

+0 + 2(γ+2t−1)
t(1−γ)(3+γ)

· x2

4 : [112] h4 = 4
(3+γ)

− 2
(3+γ)

· x + 2(t−1)
t(1−γ)(3+γ)

· x2

3 : [121] h3 = 4
(3+γ)

− 6
(3+γ)

· x + 2(t(2−γ)−1)
t(1−γ)(3+γ)

· x2

Ru = 3/(2γ + 1)

5 : [111] h5 = 0 +0 + 2(t−1)
3t(1−γ)

· x2

Table 4.1: Equivalence classes l, their representative sequences [...] and hl functions

for sequence length p = 3.

Referring to section 3.4, the intersection point x2 of h1(x) = h2(x) is located at

x2 =

√
t(1− γ)[(5t− 3)γ3 + 13tγ2 + (9t + 3)γ + 9t]− t(1− γ)(γ + 3)

(2t− 1)γ2 + (4t + 1)γ
. (4.1)

The parameter domains are γ ∈ (0, 1) and t ≥ 3. Define RTx2 = t(1 − γ)[(5t −
3)γ3 + 13tγ2 + (9t + 3)γ + 9t]; it will be referred to as the root term of x2.

Lemma 3. For any t ≥ p = 3, γ ∈ (0, 1), and x2 being the intersection point

of equivalence class functions h1(x) = h2(x), cf. equation (4.1), it follows that

h2(x2) = max
l∈{2,...,5}

hl(x2).

Proof. Look at the equivalence class functions hl of Table 4.1:

a) h2(x) > h3(x) and h2(x) > h4(x) for all x > 0, because c11(2) = c11(3) =

c11(4); c12(2) > c12(3) and c22(2) > c22(3); c12(2) > c12(4) and c22(2) > c22(4)

for all γ ∈ (0, 1) and t ≥ 3. The results are reproducible by considering

Lemmas 1 and 2 for the comparison of c11(l) and c12(l), respectively.

b) h2(x) > h5(x) for all x > 0, because cij(2) > cij(5), 1 ≤ i, j ≤ 2, γ ∈ (0, 1)

and t ≥ 3.

As x2 > 0, Lemma 3 follows from a) and b).
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Lemma 4. For any t ≥ 16 and p = 3, the parameters 0 < γ1 < γ2 < 1 are given by

γ1/2 =
∓
√

(4t− 3)(4t3 − 67t2 + 52t− 12) + (4t− 5)t

2(2t− 1)(5t− 3)
.

Assume γ ∈ (γ1, γ2) exists, and observe that xmin = t/(2t− 1) is the abscissa of the

minimum of equivalence class function h1(x), then, h1(xmin) = max
l∈{1,...,5}

hl(xmin).

Proof. As xmin > 0 and h2(x) > hl(x) for all l ∈ {3, 4, 5} and all x > 0, it is

sufficient to verify whether h1(xmin) > h2(xmin). Thus, calculate the expression

(h2 − h1)(xmin) =
2[(2t− 1)(5t− 3)γ2 − t(4t− 5)γ + 3(2t− 1)]

3(2t− 1)2(1− γ)(γ + 3)
.

The solution of the quadratic equation (2t−1)(5t−3)γ2− t(4t−5)γ +3(2t−1) = 0

for all γ ∈ (0, 1) and all t ≥ 3 implies

(h2 − h1)(xmin)

< 0 ⇔ γ ∈ (γ1, γ2)

≥ 0 ⇔ γ /∈ (γ1, γ2)
.

Hence, h1(xmin) > h2(xmin) for all γ ∈ (γ1, γ2), and Lemma 4 follows.

Theorem 1. For any t ≥ p = 3 and γ ∈ (0, 1), the proportion α(γ) ∈ [0, 1] is given

by

α(γ) =
(1− γ)(γ + 3)

[
3t(γ + 2t− 1)− (2t− 1)

√
RTx2

]
γ[(2t− 1)γ + 4t + 1]

√
RTx2

.

If, additionally, t ≥ 16, the parameters 0 < γ1 < γ2 < 1 are given as in Lemma 4.

The optimal results are as follows:

For all t < 16, or if t ≥ 16 and γ /∈ (γ1, γ2), an approximate design d∗ is optimal

iff (1 − α(γ)) · 100% of its sequences are selected from class 1 with representative

sequence [1, 2, 3] and α(γ) · 100% of its sequences from class 2 with representative

sequence [1, 2, 2]. For t ≥ 16 and γ ∈ (γ1, γ2), all sequences of d∗ are representatives

of equivalence class 1.

Proof. Theorem 1 claims that xd∗ of Proposition 2 in which the min
x

max
l

hl(x) is

being realized, is either x2 or xmin, the x-coordinate of the minimum of h1. In this

manner, four points need to be verified:

1. For all t < 16 and γ ∈ (0, 1) or t ≥ 16 and γ /∈ (γ1, γ2): h2(x2) > hl(x2) for all

3 ≤ l ≤ 5.
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2. For all t < 16 and γ ∈ (0, 1) or t ≥ 16 and γ /∈ (γ1, γ2): sign h′1(x2) 6=
sign h′2(x2).

3. For all t ≥ 16 and γ ∈ (γ1, γ2): h1(xmin) > hl(xmin) for all 2 ≤ l ≤ 5.

4. The formula for α(γ).

Properties 1 and 3 are proved by Lemmas 3 and 4, respectively. X

As demanded in point 4, the proportion of sequences α(γ) ∈ (0, 1) of equivalence

class 2 needs to be determined. To this end, use equation (2.8) and put α = α(γ, x),

then qd∗(x) = αnh2(x)+ (1−α)nh1(x). The formula of α(γ, x) is derived by setting

0
!
=

δqd∗

δx
=

4

3 + γ
α

(
2t− 1 + γ

t(1− γ)
x

)
− 4

3
(1− α) + 4(1− α)

(2t− 1)

3t
x

⇔ α(γ, x) =
[(1− 2t)x + t](1− γ)(γ + 3)

[(2t− 1)γ + 4t + 1]γx + t(γ + 3)(1− γ)
.

Substitution of x = x2 in the formula of α(γ, x) provides α(γ). A graphical presen-

tation of α(γ) for different t is displayed in Figure 4.1. X

Referring to statement 2, there is one major condition in order to achieve that

α ∈ (0, 1) by using equation 0
!
= αnh′2(x) + (1 − α)nh′1(x) to derive proportion

α(γ). The condition is given as sign h′1(x2) 6= sign h′2(x2). The proportion α(γ) < 0

or α(γ) > 1 iff sign h′1(x2) = sign h′2(x2). This is not valid for an equivalence class

proportion. Thus, to prove 2, it is sufficient to analyze if a(γ), or α(γ, x) respectively,

is nonnegative and less or equal to 1 in the described domains of parameters t and

γ. For this, observe

α(γ,x = x2)
!
= 0 ⇔ [(1− 2t)x2 + t] = 0

(4.1)⇔ tγ[(2t− 1)γ + 4t + 1][(2t− 1)(5t− 3)γ2 − t(4t− 5)γ + 3(2t− 1)] = 0

⇔γ ∈ {γ1, γ2,−(4t + 1)/(2t− 1), 0}

The last two elements, −(4t + 1)/(2t − 1), and 0, are not in the domain (0, 1) of

γ. The boundaries γ1/2 are defined for all t ≥ 16. The proportion α(γ) ≥ 0, iff

γ /∈ (γ1, γ2), since tγ[(2t − 1)γ + 4t + 1] > 0 for all γ ∈ (0, 1) and t > 0, and

[(2t− 1)(5t− 3)γ2 − t(4t− 5)γ + 3(2t− 1)] is a convex parabola of γ.

In order to specify function α(γ) as a proportion, we have to examine

whether α(γ) ≤ 1. For this purpose, rewrite the numerator of α(γ, x) as
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t(1 − γ)(γ + 3) − (2t− 1)(1− γ)(γ + 3)︸ ︷︷ ︸
>0

x and the denominator of α(γ, x) as

t(1− γ)(γ + 3) + [(2t− 1)γ + 4t + 1]γ︸ ︷︷ ︸
>0

x. It is easy to derive that α(γ, x) < 1 for all

x, t > 0 and γ ∈ (0, 1) because the numerator of α(γ, x) must be smaller than its

denominator. The value x = x2 is positive and it follows that α(γ) ≤ 1 for all t ≥ 3

and all γ ∈ (0, 1).

The statement sign h′1(x2) 6= sign h′2(x2) holds for all t < 16 and γ ∈ (0, 1) or t ≥ 16

and γ /∈ (γ1, γ2), since 0 ≤ α(γ) ≤ 1. X

Theorem 1 follows from properties 1 through 4.

Figure 4.1: Proportions α(γ) of equivalence class 2 sequences for an approximate

optimal design with p = 3 periods.

4.2 Sequence Length p = 4

In the case of 4 periods for each sequence, there are 14 different equivalence classes

for l = 1, . . . , 15. All classes are listed in Table 4.2.

The intersection point x2 of section 3.4, in which h1(x) = h2(x), is located at

x2 =

√
t(1− γ)[(55t− 8)γ3 + (57t + 4)γ2 + (4− 4t)γ + 36t]− t(1− γ)(γ + 6)

(7t− 1)γ2 + (5t + 1)γ
.

(4.2)
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l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

Ru = 4

1 : [1234] h1 = 3 −3
2
· x +3(3t−1)

4t
· x2

Group A: RA = 2(γ + 2)/(γ + 1)

2 : [1233] h2 = (5+γ)
(2+γ)

− γ
(2+γ)

· x + (9t−3−2(t−1)γ−(t−1)γ2)
2t(γ+2)(1−γ)

· x2

5 : [1223] h5 = (5+γ)
(2+γ)

− 1
(2+γ)

· x + (7t−3+2γ−(t−1)γ2)
2t(γ+2)(1−γ)

· x2

11 : [1123] h11 = (5+γ)
(2+γ)

− (1+γ)
(2+γ)

· x + (7t−3−2tγ−2tγ2)
2t(γ+2)(1−γ)

· x2

3 : [1232] h3 = (5+γ)
(2+γ)

− 4
(2+γ)

· x + (9t−3−2(t−1)γ−(t−1)γ2)
2t(γ+2)(1−γ)

· x2

4 : [1231] h4 = (5+γ)
(2+γ)

− (4+γ)
(2+γ)

· x + (9t−3−4tγ−2tγ2)
2t(γ+2)(1−γ)

· x2

8 : [1213] h8 = (5+γ)
(2+γ)

− 5
(2+γ)

· x + (7t−3−4tγ)
2t(γ+2)(1−γ)

· x2

Group B: RB = 4/(γ + 1)

12 : [1122] h12 = 2
(1+γ)

+ 1
(1+γ)

· x + (7t−3+(5t−1)γ)
4t(1−γ2)

· x2

7 : [1221] h7 = 2
(1+γ)

− 1
(1+γ)

· x + (7t−3+(5t−1)γ)
4t(1−γ2)

· x2

9 : [1212] h9 = 2
(1+γ)

− 3
(1+γ)

· x + (7t−3−(3t+1)γ)
4t(1−γ2)

· x2

Group C: RC = 2(γ + 2)/(2γ + 1)

6 : [1222] h6 = 4(1−γ)
3

+4(1−γ)
9

· x +2(17t−9−(4t−18)γ+(5t−9)γ2)
27t(1−γ)

· x2

14 : [1112] h14 = 4(1−γ)
3

−4(1−γ)
9

· x +2(7t−7+(t−1)γ+(t−1)γ2)
27t(1−γ)

· x2

10 : [1211] 13 : [1121] h10 = 4(1−γ)
3

−4(1−γ)
3

· x +2(17t−7−(4t+1)γ+(5t−1)γ2)
27t(1−γ)

· x2

RD = 5/(4γ + 1)

15 : [1111] h15 = 0 +0 + 3(t−1)
4t(1−γ)

· x2

Table 4.2: Equivalence classes l, their representative sequences [...] and hl functions

for sequence length p = 4.
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The parameter domains are γ ∈ (0, 1) and t ≥ 4. Let RTx2 = t(1− γ)[(55t− 8)γ3 +

(57t + 4)γ2 + (4− 4t)γ + 36t] be the root term of x2 in the case of p = 4.

The equivalence classes 2, . . . , 14 are divided into groups of identical Ru. The

equivalence class l belongs to

group A ⇔ l ∈ LA = {2, 3, 4, 5, 8, 11};
group B ⇔ l ∈ LB = {7, 9, 12};
group C ⇔ l ∈ LC = {6, 10, 14}.

The intention is to determine the maximal hl functions for each defined group,

assuming x > 0. The coefficients c11(l) within each group are identical.

A) If l ∈ LA, h2(x) is maximal among the hl. This result follows from c12(2) >

c12(l) and c22(2) ≥ c22(l).

B) Examine group B, the maximal hl function is h12(x) because c12(12) > c12(l)

and c22(12) ≥ c22(l) for all l ∈ LB.

C) The maximal hl of group C connected with h15 turns out to be either h6 or h10.

This follows from c11(6) + 2c12(6)x > c11(l) + 2c12(l)x for all l ∈ LC ∪ {15}.
Furthermore, c22(6) or c22(10) is maximal for the c22(l) of l ∈ LC ∪ {15}.
Dependent on the correlation γ, the value of c22(10) increases rapidly, such that

its hl even exceeds h6; for all other l ∈ LC∪{15}\{10}, we have c22(6) ≥ c22(l).

D) Unite groups B and C ∪ {15}. Then, h12(x) = max
l∈{6,10,12}

hl(x). Observe that

c11(12)+2c12(12)x−c11(l)−2c12(l)x ≥
4(x + 3)γ2 + 5x + 6

9(γ + 1)
> 0, for l = 6, 10.

Moreover,

c22(12)− c22(6) =
(72− 40t)γ3 − (8t + 72)γ2 + (31t− 99)γ + 53t− 9

108t(1− γ)(γ + 1)
> 0

as well as

c22(12)− c22(10) =
(8− 40t)γ3 + (16− 8t)γ2 + (31t + 37)γ + 53t− 25

108t(1− γ)(γ + 1)
> 0.

The positive values can be confirmed by defining both numerators as functions

Gl(γ) = g0 + g1γ + g2γ
2 + g3γ

3 with
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G6(γ) = (72− 40t)γ3 − (8t + 72)γ2 + (31t− 99)γ + 53t− 9

and

G10(γ) = (8− 40t)γ3 + (16− 8t)γ2 + (31t + 37)γ + 53t− 25.

Since t ≥ 4, the coefficients g0 and g1 are positive for both functions G6(γ)

and G10(γ). As g0 + g1 + . . . + gi > 0, for i = 2, 3, γ ∈ (0, 1), and all t ≥ 4,

we have that Gl(γ) > (g0 + . . . + g3)γ
3 > 0 for l = 6, 10 and all t ≥ 4. The

denominators of both ratios are identical and positive for γ ∈ (0, 1). Thus,

c22(12) > c22(l) for l = 6, 10 and all t ≥ 4.

Lemma 5. For any t ≥ p = 4, γ ∈ (0, 1), and x2 being the intersection point

of equivalence class functions h1(x) = h2(x), cf. equation (4.2), it follows that

h2(x2) = max
l∈{2,...,15}

hl(x2).

Proof. Refer to the equivalence class functions hl of Table 4.2 and use the results

of A) through D) above. There are just two equivalence class functions, h2 and

h12, which exceed all other hl functions, l ∈ {3, . . . , 11, 13, 14, 15}, for x > 0. Since

x2 > 0, h2(x2) = max
l∈{2,...,15}

hl(x2) iff h2(x2) ≥ h12(x2). Accordingly, analyze

(h2 − h12)(x) =
γ2 + 4γ + 1

(γ + 1)(γ + 2)
− γ2 + 2γ + 2

(γ + 1)(γ + 2)
x

− 2(t− 1)γ3 + (11t− 7)γ2 + 3(t− 1)γ − 4t

4t(1− γ)(γ + 1)(γ + 2)
x2.

Set x = x2, and h2 − h12 turns out to be

(h2 − h12)(x2) =
a(γ) + b(γ)

√
RTx2

2γ2(γ + 1)[(7t− 1)γ + 5t + 1]2
.

The expression a(γ) := a0 + a1γ + . . . + a5γ
5 is given as

a(γ) = 6(5t2 + 6t − 1)γ5 + (21t2 + 111t − 8)γ4 + 2(103t2 + 5)γ3 + (17t2 + 71t +

4)γ2 − 2t(29t− 35)γ + 72t2.

The expression b(γ) := b0 + b1γ + b2γ
2 + b3γ

3 is a substitute for

b(γ) = −12tγ3 + (9t− 17)γ2 + (3t− 11)γ − 12t.

Again, use a0 > 0 and a0 + . . . + ai > 0 for 1 ≤ i ≤ 5. It can be concluded that

a(γ) ≥ (a0 + a1 + . . . + a5)γ
5 > 0.

Apply the same method to −b(γ) to obtain b(γ) < 0.

The denominator of (h2 − h12)(x2) is positive. Hence, in order to determine wether
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(h2−h12)(x2) is positive, it is necessary to confirm that a(γ)+b(γ)
√

RTx2 > 0. Thus,

subtract b(γ)
√

RTx2 on both sides of the inequality and square them afterwards to

obtain

a2(γ)− b2(γ)RTx2 > 0

⇔ 4γ2[(7t− 1)γ + 5t + 1]2 · g(γ) > 0

⇔ g(γ) := g0 + g1γ + . . . + g6γ
6 > 0,

in which

g(γ) = 9(5t2 + 2t + 1)γ6 − 3(39t2 − 37t− 14)γ5 + (165t2 − 42t + 61)γ4 + 2(33t2 +

33t + 14)γ3 − 4(26t2 − 29t− 1)γ2 + t(73t + 19)γ + 16t2.

In order to analyze g(γ), observe that g4 and g6 are positive for all t ≥ 4. The coef-

ficient g5 is negative, but g4γ
4 + g5γ

5 > (g4 + g5)γ
5 > 0, which implies that g(γ) is

positive iff
3∑

i=0

giγ
i > 0.

Therefore, define G03(γ) := g0 + . . .+g3γ
3. The third derivative of G03(γ) is positive

because g3 > 0. G′′′
03(γ) > 0 implies that ∂G03(γ)/∂γ, the function of the slope of

G03(γ), is convex.

The curvature of G03(γ) is the slope of G′
03(γ), which is given by the second deriva-

tive of G03(γ). G′′
03(γ) equals 0 iff γ = γ0 := 2(26t2−29t−1)

3(33t2+33t+14)
. The value of G′′

03(γ0) is

equal to 1819t4+21172t3−1365t2+334t−8
3(33t2+33t+14)

and positive for all t ≥ 4.

Because G′
03(γ) is convex, G′′

03(γ0) must be the minimum of G′
03(γ). Hence, the slope

of G03(γ) is nonnegative for all γ ∈ (0, 1).

Thus, G03(γ) is monotonous and increasing in γ, and the local minima of G03(γ) is

given at γ ↘ 0. The minimum G03(γ ↘ 0) = g0 = 16t2 is positive. This leads to

G03(γ) being positive for all t ≥ 4 and all γ ∈ (0, 1).

It follows that g(γ) is positve and the conclusion is: h2(x2) > h12(x2) for all γ ∈ (0, 1)

and all t ≥ 4.

Lemma 6. For any t ≥ p = 4, the parameters 0 < γ1 < γ2 < 1 are given as

γ1/2 =
∓
√

3721t4 − 7774t3 + 5137t2 − 1416t + 144 + 61t2 − 35t + 4

2(73t2 − 47t + 8)
.

Assume γ ∈ (γ1, γ2), and observe that xmin = t/(3t − 1) is the abscissa of the

minimum of equivalence class function h1(x). Then h1(xmin) = max
l∈{1,...,15}

hl(xmin).
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Proof. As xmin > 0, we can use the results of A) through D), i.e., either h2 or

h12 is the maximum of all other hl functions for l ∈ {2, . . . , 15} for any x > 0.

Thus, iff h1(xmin) > h2(xmin) and h1(xmin) > h12(xmin), h1(xmin) = max
l=1,...,15

hl(xmin).

Proceeding this way, consider the first difference of interest

(h2 − h1)(xmin) =
4(3t− 1)− (61t2 − 35t + 4)γ + (73t2 − 47t + 8)γ2

4(3t− 1)2(1− γ)(γ + 2)
.

The solution of the quadratic equation 4(3t−1)−(61t2−35t+4)γ+(73t2−47t+8)γ2 =

0 for all γ ∈ (0, 1) and all t ≥ 4 gives

(h2 − h1)(xmin)

< 0 ⇔ γ ∈ (γ1, γ2)

≥ 0 ⇔ γ /∈ (γ1, γ2)
.

Hence, h1(xmin) > h2(xmin) for γ ∈ (γ1, γ2) and γ1/2 being defined as in Lemma 6.

Analyze the expression

(h12 − h1)(xmin) =
3(3t− 1)(11t− 4)γ2 − (79t2 − 51t + 8)γ − 2(4t2 − 7t + 2)

4(3t− 1)2(1− γ2)
.

Solving the quadratic equation 3(3t−1)(11t−4)γ2−(79t2−51t+8)γ−2(4t2−7t+2) =

0 for all γ ∈ (0, 1) and all t ≥ 4 yields

(h12 − h1)(xmin)


= 0 ⇔ γ = γ5/6 = ∓

√
9409t4−15810t3+9697t2−2592t+256+79t2−51t+8

6(3t−1)(11t−4)

< 0 ⇔ γ ∈ (γ5, γ6)

> 0 ⇔ γ /∈ (γ5, γ6)

.

The parameter γ5 is negative and it follows immediately that γ5 < γ1. Next, consider

the parameters γ2 and γ6 as functions of t. Both functions γ2(t) and γ6(t) are

increasing in t as their slopes are positive for all t ≥ 4. Observe that γ2(t ↗∞) =

61/73 < (
√

96369 + 267)/660 = γ6(t ↘ 4), i.e., the maximum of the function γ2(t)

is less than the minimum of the function γ6(t), t ≥ 4. Therefore, γ2 < γ6 for all

t ≥ 4. Now we have (γ1, γ2) ⊂ (γ5, γ6).

Thus, h1(xmin) > h12(xmin) for γ ∈ (γ1, γ2). Hence, h1(xmin) > hl(xmin) for all

γ ∈ (γ1, γ2) and all l = 2, . . . , 15. Lemma 6 follows.

Theorem 2. For any t ≥ p = 4 and γ ∈ (0, 1), consider the parameters 0 < γ1 <

γ2 < 1 as in Lemma 6. Furthermore, the proportion α(γ) ∈ [0, 1] is given by

α(γ) =
3(1− γ)(γ + 2)[2t(2tγ2 + (3− 5t)γ + 9t− 3)− (3t− 1)

√
RTx2 ])

γ((7t− 1)γ + 5t + 1)
√

RTx2
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iff γ ∈ (0, γ1]
•
∪ [γ2, 1) and α(γ) := 0 iff γ ∈ (γ1, γ2).

The optimality results are as follows:

For all γ ∈ [0, γ1]
•
∪ [γ2, 1], an approximate design d∗ is optimal iff (1−α(γ)) · 100%

of its sequences are selected from class 1 with representative sequence [1, 2, 3, 4] and

α(γ) · 100% of its sequences from class 2 with representative sequence [1, 2, 3, 3]. Iff

γ ∈ (γ1, γ2), all sequences of d∗ are representatives of equivalence class 1.

Proof. Theorem 2 indicates that xd∗ of Proposition 2 in which the

min
x

max
l

hl(x) is being realized, is either x2 or xmin, the x-coordinate of the minimum

of h1. In order to verify this statement, four points need to be treated:

1. For all γ /∈ (γ1, γ2): h2(x2) > hl(x2) for all 3 ≤ l ≤ 15.

2. For all γ /∈ (γ1, γ2): sign h′1(x2) 6= sign h′2(x2).

3. For all γ ∈ (γ1, γ2): h1(xmin) > hl(xmin) for all 2 ≤ l ≤ 15.

4. The formula of α(γ).

Properties 1 and 3 are proved by Lemmas 5 and 6, respectively. X

As demanded in statement 4, the proportion α(γ) ∈ (0, 1) of equivalence class

2 sequences needs to be determined. To achieve this, use equation (2.8) and set

α = α(γ, x). We get qd∗(x) = αnh2(x) + (1 − α)nh1(x). The proportion α(γ) is

derived by substituting x = x2 in the formula of α(γ, x) which results from

0
!
=

∂qd∗

∂x
=α

(
3

2
− γ

2 + γ
+

3(3t− 1)− 2(t− 1)γ − (t− 1)γ2

t(γ + 2)(1− γ)
x− 3(3t− 1)

2t
x

)
− 3

2
+

3(3t− 1)

2t
x

⇔ α(γ, x) =
3[(1− 3t)x + t](1− γ)(γ + 2)

t(1− γ)(γ + 6) + [(7t− 1)γ + 5t + 1]γx
.

A graphical presentation of α(γ) for different t is displayed in figure 4.2. X

As in case p = 3, the condition sign h′1(x2) 6= sign h′2(x2) needs to be fulfilled.

Proportion α(γ) is negative or exceeds 1 iff sign h′1(x2) = sign h′2(x2). This, however,

is not valid for an equivalence class proportion. To prove 2, it is sufficient to analyze
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if a(γ), or α(γ, x) respectively, is nonnegative and less than 1 in the related domains

of the parameters t and γ. For this purpose, observe

α(γ,x = x2)
!
= 0 ⇔ [(1− 3t)x2 + t] = 0

(4.2)⇔ tγ[(7t− 1)γ + 5t + 1][(73t2 − 47t + 8)γ2 − (61t2 − 35t + 4)γ + 4(3t− 1)] = 0

⇔γ ∈ {γ1, γ2,−(5t + 1)/(7t− 1), 0}.

The last two elements, −(5t+1)/(7t−1), and 0, are not in the domain of γ ∈ (0, 1).

Since tγ[(7t − 1)γ + 5t + 1] > 0 for all γ > 0 and t > 0, and

[(73t2 − 47t + 8)γ2 − (61t2 − 35t + 4)γ + 4(3t − 1)] is a convex parabola in γ,

proportion α(γ) ≥ 0 iff γ /∈ (γ1, γ2).

It remains to verify whether α(γ) ≤ 1. Rewrite the numerator of α(γ, x) as

t(1− γ)(γ + 6) + 2γt(1− γ)− 3(3t− 1)(1− γ)(γ + 2)x. We get α(γ, x) ≤ 1 iff

2γt(1− γ)− 3(3t− 1)(1− γ)(γ + 2)x ≤ [(7t− 1)γ + 5t + 1]γx

⇔ − (t + x− tx)γ2 + (t− 2x + 2tx)γ − 3(3t− 1)x ≤ 0.

Substituting x = x2 > 0 and taking into account that γ ∈ (0, 1), we get −(t + x −
tx)γ2 +(t−2x+2tx)γ−3(3t−1)x < [−(t+x− tx)+(t−2x+2tx)−3(3t−1)x]γ =

−6txγ < 0. It follows that α(γ) ≤ 1 for all γ ∈ (0, 1) and t ≥ 4.

Since 0 ≤ a(γ) ≤ 1, sign h′1(x2) 6= sign h′2(x2) for all γ /∈ (γ1, γ2). X

Combining points 1 through 4 provides Theorem 2.

4.3 Sequence Length p = 5

In the case of 5 periods for each sequence, there exist 38 different equivalence classes

for l = 1, . . . , 52. The value of the outlined class k of section 3.4 is 19. Nine relevant

equivalence classes are listed in Table 4.3. For completeness, the set of all equivalence

classes is given in Table B.1 of Appendix B.

The intersection point x2 of section 3.4, in which h1(x) = h2(x), is located at

x2 =

√
RTx2 − t(1− γ)(γ + 10)

(14t− 1)γ2 + (6t + 1)γ
, (4.3)

in which RTx2 = t(1− γ)[(209t− 15)γ3 + (141t + 10)γ2 + 5(1− 10t)γ + 100t] is the

root term of x2. The parameter domains are γ ∈ (0, 1) and t ≥ 5.
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Figure 4.2: Proportions α(γ) of equivalence class 2 sequences for an approximate

optimal design with p = 4 periods.

Equivalence class k of section 3.4 is determined to be l = 19. The intersection

point x19, in which h1(x) = h19(x) is located at

x19 =

√
RTx19 − t(1− γ)(4γ2 + 29γ + 35)

2[(8t− 2)γ3 + 40tγ2 + (17t + 2)γ − 5t]
, (4.4)

in which RTx19 = t(1 − γ)[(304t − 80)γ5 + (2664t − 320)γ4 + 6511tγ3 + (3211t +

320)γ2 + (685t + 80)γ + 1025t] is the root term of x19. The denominator of x19 is

positive if the parameter domain for γ is restricted to the interval (0.3, 1), and t ≥ 5.

Thus, x19 ∈ (0, 1), cf. Proposition 4.

The 36 equivalence classes of l ∈ {2, . . . , 51} are divided into groups of identical

Ru. Equivalence class l belongs to

group A ⇔ l ∈ LA = {2, 3, 5, 6, 10, 14, 38};
group B ⇔ l ∈ LB = {8, 9, 11, 13, 15, 16, 19, 21, 25, 32, 39, 42};
group C ⇔ l ∈ LC = {7, 12, 17, 22, 31, 35, 48};
group D ⇔ l ∈ LD = {24, 26, 27, 34, 36, 43, 49};
group E ⇔ l ∈ LE = {23, 37, 51}.

As in the case of p = 3 or p = 4, the coefficients c11(l) are identical within each

group, A through E. Thus, the intention is to identify the maximal hl function of

each group by comparing all c12(l) and c22(l) within the group, assuming x > 0.
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l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

R1 = 5

1 : [12345] h1 = 4 −8
5
· x +4(4t−1)

5t
· x2

Group A: RA = (3γ + 5)/(γ + 1)

2 : [12344] h2 = 6(γ+3)
(3γ+5)

− 4γ
(3γ+5)

· x + (−(4t−2)γ2−(4t−2)γ+16t−4)
t(1−γ)(3γ+5)

· x2

Group B: RB = (γ + 5)/(γ + 1)

k ≡ 19 : [12233] h19 = 8(γ+2)
(γ+1)(γ+5)

+ 2(3+γ)
(γ+1)(γ+5)

· x + (4γ2+10tγ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

Group C: RC = (4γ + 5)/(2γ + 1)

7 : [12333] h7 = 2(2γ+7)
(4γ+5)

+4(1−γ)
(4γ+5)

· x + (−(2t−2)γ2+2γ+14t−4)
t(1−γ)(4γ+5)

· x2

12 : [12322] h12 = 2(2γ+7)
(4γ+5)

− 6
(4γ+5)

· x + (−(2t−2)γ2+(6t+2)γ+14t−4)
t(1−γ)(4γ+5)

· x2

20 : [12232]

Group D: RD = (7γ + 5)/((γ + 1)(2γ + 1))

43 : [11222] h43 = 12
(7γ+5)

+ 10
(7γ+5)

· x + ((10t−2)γ+12t−4)
t(1−γ)(7γ+5)

· x2

27 : [12211] h27 = 12
(7γ+5)

+0 + ((16t−4)γ+12t−4)
t(1−γ)(7γ+5)

· x2

44 : [11221]

Group E: RE = (3γ + 5)/(3γ + 1)

23 : [12222] h23 = 8
(3γ+5)

+ 4
(3γ+5)

· x + ((2t+4)γ+10t−4)
t(1−γ)(3γ+5)

· x2

37 : [12111] h37 = 12
(3γ+5)

− 6
(3γ+5)

· x + ((4t−2)γ+10t−4)
t(1−γ)(3γ+5)

· x2

47 : [11211]

50 : [11121]

Table 4.3: Some equivalence classes l, their representative sequences [...] and hl func-

tions for sequence length p = 5.

A) l ∈ LA: The maximal hl function is h2(x), because c12(2) > c12(l), and c22(2) ≥
c22(l) for all l.

B) The same criteria as in A) hold for h19, which is the maximum of all hl, l ∈ LB.

C) In group C, we have c12(7) > c12(l) and c22(12) > c22(l) for all l ∈ LC . The

sequences l with c22(l) > c22(7) have smaller c12(l) and c22(l) than h12. Thus,
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there are two hl functions, l = 7 and l = 12, representing the maximum in this

group, dependent on the magnitude of γ.

D) Similar to C), the maximal hl functions within group D are given by l = 27

and l = 43, dependent on the magnitude of γ. In this group, c12(43) > c12(l)

for all l ∈ LD and c22(43) > c22(l) for all l ∈ LD \ {27}.

E) Attach l = 52 to group E. As a result, the maximal hl is again represented by

two equivalence classes: l = 23 and l = 37, dependent on the magnitude of γ.

This is derived from c11(23) ≥ c11(l), c12(23) > c12(l) for all l ∈ LD ∪ {52}.
Additionally, c22(23) ≥ c22(l) for all l ∈ {LD ∪ {52}} \ {37} yielding h37 > h23

when γ is getting close to 1.

Lemma 7. The abscissa x19 is the intersection point of equivalence class functions

h1(x) = h19(x), cf. equation (4.4). For any t ≥ p = 5, define the parameter

γβ(t) ∈ (0.92, 0.93) as the γ-value for which h2(x19) = h19(x19).

The maximum of all hl(x19), l ∈ {2, . . . , 52}, is h19(x19) for all γ ∈ (γβ(t), 1) and all

t ≥ 5.

Proof. Consider the equivalence class functions hl of Table 4.3 and use the re-

sults of A) through E) above. There are just eight equivalence class functions hl,

l ∈ {2, 19, 7, 12, 43, 27, 23, 37}, which dominate the hl functions, l ∈ {2, . . . , 52} \
{2, 19, 7, 12, 43, 27, 23, 37}, for x > 0. Since x19 > 0 for all γ > 0.3, we have

h19(x19) = max
l∈{2,...,52}

hl(x19) iff h19(x19) > hl(x19) for all l ∈ {2, 7, 12, 43, 27, 23, 37}

and γβ(t) < γ < 1. Therefore, analyze

a)

(h19 − h2)(x) = −2(3γ3 + 15γ2 + 25γ + 5)

(γ + 1)(γ + 5)(3γ + 5)
+

2(2γ3 + 15γ2 + 24γ + 15)

(γ + 1)(γ + 5)(3γ + 5)
x

−2[(1− 2t)γ4 + (1− 14t)γ3 + (−29t− 1)γ2 + (−8t− 1)γ + 5t]

t(1− γ)(γ + 1)(γ + 5)(3γ + 5)
x2.

Substitution of x = x19 provides

(h19 − h2)(x19) =
a(γ) + b(γ)

√
RTx19

(3γ + 5)[(8t− 2)γ3 + 40tγ2 + (17t + 2)γ − 5t]2
,

with
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a(γ) = −16(2t2 + 3t− 1)γ7 + 4(24t2− 65t− 4)γ6 + (1286t2 + 175t− 16)γ5 +

2(109t2 + 98t + 8)γ4 − 2t(1232t + 51)γ3 + 8t(82t + 3)γ2 + 5t(178t +

3)γ − 650t2

and

b(γ) = 8tγ4 + (38t + 3)γ3 − 2(17t + 1)γ2 − (24t + 1)γ + 20t.

The denominator of (h19 − h2)(x19) is positive for arbitrary values of γ and t.

In order to determine the roots of a(γ) + b(γ)
√

RTx19 , the signs of a(γ) and

b(γ) for γ ∈ (0.92, 1) ⊃ (γβ(t), 1) have to be identified.

a1) The transformation γ = 0.08γ′ + 0.92, in which γ′ ∈ (0, 1), yields

a(γ′) = 16(1−γ′)
6103515625

[128(2t2 + 3t − 1)γ′6 + 16(704t2 + 3581t − 552)γ′5 −
10(154766t2−269901t+23392)γ′4−5(20560424t2−11815289t+

594688)γ′3 − 5(407891082t2 − 134949577t + 3542184)γ′2 −
(15626081286t2−3989533821t+32802232)γ′−(57425437544t2−
9922322659t− 53729472)].

Define a(γ′) = 16(1−γ′)
6103515625

[a6γ
′6 + . . . + a1γ

′ + a0]. It follows that ai < 0

for all 0 ≤ i ≤ 4 and t ≥ 5. Furthermore, a6γ
′6 + a5γ

′5 + a4γ
′4 <

(a6 + a5 + a4)γ
′4 < 0 for γ′ ∈ (0, 1). Then we conclude that a(γ) < 0, for

γ ∈ (0.92, 1).

a2) Apply the same transformation γ = 0.08γ′ + 0.92 with γ′ ∈ (0, 1) to b(γ)

to get

b(γ′) = 4
390625

[32tγ′4 +6(562t+25)γ′3 +(69692t+3925)γ′2 +3(90749t+

7650)γ′ + 435907t− 27025].

All coefficients of γ′i, 0 ≤ i ≤ 4, are positive. Hence, b(γ′) is positive for

γ′ ∈ (0, 1), such is b(γ) for all γ ∈ (0.92, 1) and t ≥ 5.

Subtracting a(γ) on both sides of a(γ) + b(γ)
√

RTx19 > 0 and squaring both

sides of the inequality afterwards is equivalent to

b2(γ)RTx19 − a2(γ) > 0

⇔ 4(1− γ)(8tγ3 − 2γ3 + 40tγ2 + 17tγ + 2γ − 5t)2 · g(γ) > 0

⇔ g(γ) := g0 + g1γ + . . . + g7γ
7 > 0,

in which
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−g(γ) = −16(5t2 +2t+1)γ7−8(71t2−t−2)γ6−t(698t−31)γ5 +2t(1241t+

44)γ4 − 5t(83t + 10)γ3 − 5t(303t + 8)γ2 + 5t(121t− 1)γ + 125t2.

In order to find the roots of g(γ), decompose −g(γ) into G03(γ) := −(g0 +

. . . + g3γ
3) and G47(γ) := −(g4γ

4 + . . . + g7γ
7). The mein purpose is to show

that G03(γ) intercepts once in interval (0, 1), and that G47(γ) is positive and

increasing in γ.

a3) The second derivative of G03(γ) is G′′
03(γ) = −(2g2 + 6g3γ) < 0 for all γ

and all t because g2 and g3 are positive. G′′
03(γ) < 0 implies that G03(γ) is

concave, i.e., the local minima of G03(γ)are represented by the end points

of (0, 1). Hence, G03(γ) cannot have more than two roots in the interval

(0, 1). But as the function values of G03(γ) for γ getting close to 0 or 1

have different signs, there is just one root possible for G03(γ).

a4) For all t ≥ 5, we have −g4γ
4 > 0 and all −giγ

i, i = 5, 6, 7, are negative.

Furthermore, 0 < −(g4 + gi)γ
i < −g4γ

4 − giγ
i and 0 < −(g4 + . . . + gi)

for all i = 5, 6, 7. Thus, G47(γ) > 0 for all t and all γ.

The first derivative of G47(γ) is G′
47(γ) = −

7∑
i=4

igiγ
i−1. The coefficient

−g4 > 0 and the other expressions −gi, i = 5, 6, 7, are negative. In

general, γi−1 > γi, ∀i ∈ N, and finally
j∑

i=4

igi > 0 for all j = 5, 6, 7. The

conclusion is that G′
47(γ) is positive for all t ≥ 5 and all γ ∈ (0, 1). As

G′
47(γ) is the slope of G47(γ), G47(γ) is monotonous and increasing in γ.

Combine the results of a3) and a4) to conclude that there are only two roots

possible to exist for −g(γ) in the interval (0, 1), because G03(γ) is monotonous

decreasing iff G03(γ) < 0, and G47(γ) > 0 is increasing and positive. Iff

G03(γ) > 0, the function −g(γ) is positive as G47(γ) > 0 for all γ ∈ (0, 1).

The function −g(γ) is continuously extendible on [0, 1]. Since −g(0) = 125t2

is positive and −g(1) = −64t2 is negative, −g(γ) can only have one root γβ(t)

in the interval (0, 1). Using −g(0.92) > 0 and −g(0.93) < 0, it follows that

γβ(t) ∈ (0.92, 0.93) and all t ≥ 5.

To summarize, (h19 − h2)(x19) > 0 for all γ ∈ (γβ(t), 1). Thus, h19(x19) >

hl(x19), l ∈ LA.

b) through g) is treated in Appendix B, section B.1.2.
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By a) through g), it follows that h19(x19) = max
l

hl(x19) for all 2 ≤ l ≤ 52 iff

γ > γβ.

Lemma 8. The abscissa x2 is the intersection point of equivalence class functions

h1(x) = h2(x), cf. equation (4.3). Similar to Lemma 7, consider the same parameter

γβ(t) ∈ (0.92, 0.93) as the γ-value for which h2(x19) = h19(x19), and h2(x2) = h19(x2)

as well, i.e., x2 = x19, for any t ≥ p = 5.

The maximum of all hl(x2), l ∈ {2, . . . , 52}, is h2(x2) for all γ ∈ (0, γβ(t)) and all

t ≥ 5.

Proof. Recall the equivalence class functions hl of Table 4.3 and use the re-

sults of A) through E) above. There are just eight equivalence class functions, hl,

l ∈ {2, 7, 12, 19, 43, 27, 23, 37}, which can exceed the hl functions, l ∈ {2, . . . , 52} \
{2, 7, 12, 19, 43, 27, 23, 37}, for x > 0. Since x2 > 0, h2(x2) = max

l∈{2,...,52}
hl(x2) iff

h2(x2) > hl(x2) for all l ∈ {7, 12, 19, 43, 27, 23, 37} and 0 < γ < γβ(t). For this

purpose, analyze

a)

(h2 − h19)(x) =
2(3γ3 + 15γ2 + 25γ + 5)

(γ + 1)(γ + 5)(3γ + 5)
− 2(2γ3 + 15γ2 + 24γ + 15)

(γ + 1)(γ + 5)(3γ + 5)
x

+
2[(1− 2t)γ4 + (1− 14t)γ3 + (−29t− 1)γ2 + (−8t− 1)γ + 5t]

t(1− γ)(γ + 1)(γ + 5)(3γ + 5)
x2.

Inserting x = x2 provides

(h2 − h19)(x2) =
a(γ) + b(γ)

√
RTx2

γ2(γ + 1)(γ + 5)(14tγ − γ + 6t + 1)2
,

in which

a(γ) = 8(12t2 + 13t − 1)γ6 − 2(142t2 + 27t − 8)γ5 − 4(231t2 + 19t + 2)γ4 +

16t(95t + 3)γ3 − 4t(7t + 3)γ2 − 10t(78t + 1)γ + 400t2

and

b(γ) = −16tγ4 − 2(38t + 3)γ3 + 4(17t + 1)γ2 + 2(24t + 1)γ − 40t.

The denominator of (h2−h19)(x2) is positive for all γ ∈ (0, 1) and t ≥ 5. Next

we have to examine the roots of a(γ)+b(γ)
√

RTx2 . The signs of a(γ) and b(γ)

need to be determined for all γ ∈ (0, 0.93) ⊃ (0, γβ(t)).

a1) Put a(γ) = a6γ
6 + . . . + a1γ + a0 and define A36 =

6∑
i=3

aiγ
i and A02 =

a0 + a1γ + a2γ
2.
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We have a6 > 0 and a5γ
5 + a4γ

4 + a3γ
3 > (a5 + a4 + a3)γ

5 > 0. Hence,

A36 > 0 for all γ ∈ (0, 0.93) and t ≥ 5.

One root of A02 lies in the interval (0, 0.93) and is located at

γroot = 5
√

6532t2+348t+1−5(78t+1)
4(7t+3)

with A02 > 0 for all γ < γroot. Some

simple calculus confirms that γroot > 0.5. Thus a(γ) is positive for all

γ ∈ (0, 0.5].

Next, transform γ = 0.5+0.43γ′ such that γ ∈ (0.5, 0.93) and γ′ ∈ (0, 1).

The value of

a(γ′) = [6321363049(12t2 +13t−1)γ′6 +3675211075(2t2 +129t−4)γ′5−
4273501250(1274t2 − 179t + 2)γ′4 − 9938375000(798t2 − 21t −
4)γ′3 +11556250000(1202t2−48t+1)γ′2−6718750000(1606t2 +

171t + 4)γ′ + 7812500000(2046t2 − 109t− 2)]/125000000000

can be written as a(γ′) = (a′6γ
′6+ . . .+a′1γ

′+a′0)/125000000000. Further-

more, a′1γ
′+a′0 > (a′1+a′0)γ

′ > 0, a′4γ
′4+a′3γ

′3+a′2γ
′2 > (a′4+a′3+a′2)γ

′4 >

0, a′5 > 0 and a′6 > 0. It follows that a(γ′) > 0 for all γ′ ∈ (0, 1) and,

therefore, a(γ) > 0 for all γ ∈ (0.5, 0.93) and t ≥ 5.

Hence, a(γ) is positive for all γ ∈ (0, 0.93).

a2) The second derivative of b(γ) is b′′(γ) = −192tγ2−12(38t+3)γ+8(17t+1).

Its root in range (0, 1) is located at yroot = 1
96t

[
√

3(6508t2 + 812t + 27)−
3(38t + 3)] such that b′′(γ) is positive for all γ ∈ (0, γroot) and negative

otherwise. Some calculus shows yroot < 0.3. The sign of b′′(γ) implies

that b(γ) is concave on the interval (0, γroot) and convex on the interval

(γroot, 0.93). Since b(γ) is negative for γ = γroot and γ = 0.93, it follows

that b(γ) is negative for all γ ∈ [0.3, 0.93).

Analyze b(γ) in the interval (0, 0.3) by transforming γ = 0.3γ′, such that

γ ∈ (0, 0.3) and γ′ ∈ (0, 1). Then

b(γ′) = [(−324tγ′4−135(38t+3)γ′3+900(17t+1)γ′2+1500(24t+1)γ′−
100000t]/2500 := (b4γ

′4 + . . . + b1γ
′ + b0)/2500.

Observe that b4, b3, and b2γ
′2 + b1γ

′ + b0 < (b2 + b1 + b0) are negative. It

follows that b(γ′) is negative for all γ′ ∈ (0, 1) and γ ∈ (0, 0.3).

Finally, b(γ) is negative for all γ ∈ (0, 0.93).
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As a consequence of a1) and a2), a(γ) + b(γ)
√

RTx2 > 0 is equivalent to

a2(γ)− b2(γ)RTx2 > 0

⇔ 4γ2(1− γ)[(14t− 1)γ + 6t + 1]2 · g∗(γ) > 0

⇔ g∗(γ) := g∗0 + g∗1γ + . . . + g∗7γ
7 > 0,

in which g∗(γ) ≡ −g(γ) in the proof of Lemma 7 a). It is required that

g∗(γ) and −g(γ) have the same root at γβ(t), the specific parameter, in which

x2 = x19.

Hence, (h2 − h19)(x2) > 0 for all γ ∈ (0, γβ(t)), and h2(x2) > hl(x2), for all

l ∈ LB.

b) Knowing that h19(x) > hl(x) for all l ∈ {7, 12, 23, 37, 43}, γ ∈ (0, 1) and

x ∈ (0, 1), cf. proof of Lemma 7 properties b) through d), f) and g), and using

h2(x2) > h19(x2) for all γ ∈ (0, γβ(t)), it follows that h2(x2) > hl(x2) for all

l ∈ {7, 12, 23, 37, 43}.

c) The analysis of (h2 − h27)(x) continues in Appendix B, section B.1.2.

Finally, h2(x2) = max
l

hl(x2) for all l ∈ {2, 7, 12, 19, 43, 27, 23, 37} iff γ ∈ (0, γβ).

Lemma 8 follows.

Lemma 9. For any t ≥ p = 5, the parameters 0 < γα1 < γα2 < 1 are given by

γα1/α2 =
∓
√

51076t4 − 64428t3 + 28761t2 − 5560t + 400 + 226t2 − 99t + 10

2(246t2 − 119t + 15)
.

Let γ ∈ (γ1, γ2), and observe that xmin = t/(4t− 1) is the abscissa of the minimum

of equivalence class function h1(x), then, h1(xmin) = max
l∈{1,...,52}

hl(xmin).

Proof. As xmin > 0, we can use the results of A) through E) above, i.e., one

of the hl, l ∈ {2, 7, 12, 19, 43, 27, 23, 37} is maximal within all other hl functions,

l ∈ {2, . . . , 52} \ {2, 7, 12, 19, 43, 27, 23, 37}, for any x > 0. Using the results of

the proof of Lemma 7, i.e., h19 = max
l∈{7,12,23,37,43}

(hl) for all x ∈ (0, 1), it remains to

verify whether h1(xmin) > hl(xmin) for l ∈ {2, 19, 27}, and it follows that h1(xmin) =

max
l=1,...,52

hl(xmin). Therefore, consider the first difference of interest:

a)

(h2−h1)(xmin) =
2(246t2 − 119t + 15)γ2 − 2(226t2 − 99t + 10)γ + 10(4t− 1)

5(4t− 1)2(1− γ)(3γ + 5)
.
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The solution of the quadratic equation 2(246t2−119t+15)γ2−2(226t2−99t+

10)γ + 10(4t− 1) = 0 for all γ ∈ (0, 1) and all t ≥ 5 yields

(h2 − h1)(xmin)

< 0 ⇔ γ ∈ (γα1, γα2)

≥ 0 ⇔ γ /∈ (γα1, γα2)
.

Hence, h1(xmin) > h2(xmin) for γ ∈ (γα1, γα2).

b) Consider now

(h19 − h1)(xmin) =
2 · g(γ)

5(4t− 1)2(1− γ2)(γ + 5)
,

in which g(γ) = 2(4t− 1)(19t− 5)γ3 + 5(84t2 − 43t + 6)γ2 − (487t2 − 248t +

30)γ − 5(5t2 − 9t + 2).

The denominator of (h19 − h1)(xmin) is positive for all γ ∈ (0, 1) and t. Let

us consider the numerator 2 · g(γ) of (h19−h1)(xmin). Differentiate g(γ) twice

to obtain g′′(γ) = 12(4t − 1)(19t − 5)γ + 10(84t2 − 43t + 6) > 0 for all t ≥ 5

and γ ∈ (0, 1). A positive curvature means that g(γ) is convex and may have

up to two roots in the interval (0, 1). By the continuity of g(γ), it follows that

the function has exactly one root at γroot ∈ (0, 1) because g(γ ↘ 0) is negative

and g(γ ↗ 1) is positive. Thus,

(h19 − h1)(xmin)

< 0 ⇔ γ < γroot

≥ 0 ⇔ γ ≥ γroot

.

Further, the value of g(γ) at γα2 is

g(γα2) =
5(Z

√
W − V )

2(246t2 − 119t + 15)3
,

in which

Z = 328516t6 − 297984t5 + 75149t4 + 10659t3 − 8790t2 + 1600t− 100,

W = 51076t4 − 64428t3 + 28761t2 − 5560t + 400

and

V = 74624744t8 − 113201004t7 + 64841794t6 − 13812609t5 − 2042961t4 +

1810990t3 − 421800t2 + 45900t− 2000.

Remodel g(γα2) properly to get g(γα2) < 0. However, this inequality implies

that γα2 < γroot.

Hence, h1(xmin) > h19(xmin) for all γ ∈ (γα1, γα2).
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c) The last difference to examine is

(h27 − h1)(xmin)

=
4[7(4t− 1)(19t− 5)γ2 − (4t− 1)(93t− 25)γ − 5(25t2 − 14t + 2)]

5(4t− 1)2(1− γ)(7γ + 5)
.

Again, solving the quadratic equation 7(4t − 1)(19t − 5)γ2 − (4t − 1)(93t −
25)γ − 5(25t2 − 14t + 2) = 0 yields

(h27 − h1)(xmin)

< 0 ⇔ γ ∈ (γ3, γ4)

≥ 0 ⇔ γ /∈ (γ3, γ4)

with

γ3/4 =
∓
√

(4t− 1)(101096t3 − 81989t2 + 22270t− 2025) + (4t− 1)(93t− 25)

14(4t− 1)(19t− 5)
.

Some simple calculus shows that γ3 < 0 and γ4 > 0.93. Hence, for all

γ ∈ (γα1, γα2) ⊂ (0, 0.93), the difference (h27 − h1)(xmin) is negative which

is equivalent to h1(xmin) > h27(xmin) for all γ ∈ (γα1, γα2).

Combining a), b) and c), h1(xmin) = max
l

hl(xmin) for all γ ∈ (γα1, γα2) and all

l ∈ {2, 19, 27}, and thus, for all 1 ≤ l ≤ 52. Lemma 9 follows.

Theorem 3. For any t ≥ p = 5 and γ ∈ (0, 1), consider the parameters 0 < γα1 <

γα2 < γβ(t) < 1 as in Lemmas 8 and 9. Furthermore, the proportion α(γ) ∈ [0, 1] is

given by

α(γ) =
2(1− γ)(3γ + 5)[10t(tγ2 + (1− 3t)γ + 4t− 1)− (4t− 1)

√
RTx2 ]

γ[(14t− 1)γ + 6t + 1]
√

RTx2

iff γ ∈ (0, γα1]
•
∪ [γα2, γβ(t)] and α(γ) := 0 iff γ ∈ (γα1, γα2) or γ ∈ (γβ(t), 1). Another

proportion β(γ) ∈ [0, 1] is given by

β(γ) =
2(1− γ2)(γ + 5)[5t((5− 4t)γ2 + (2t + 2)γ + 26t− 7)− (4t− 1)

√
RTx19 ]

[(8t− 2)γ3 + 40tγ2 + (17t + 2)γ − 5t]
√

RTx19

iff γ ∈ [γβ(t), 1) and β(γ) := 0 otherwise.

The optimality results are as follows:

a) For all γ ∈ (0, γβ(t)), an approximate design d∗ is optimal iff (1−α(γ))·100% of

its sequences are selected from class 1 with representative sequence [1, 2, 3, 4, 5]

and α(γ) · 100% of its sequences from class 2 with representative sequence

[1, 2, 3, 4, 4].



4.3 Sequence Length p = 5 53

b) For all γ ∈ (γβ(t), 1), an approximate design d∗ is optimal iff (1− β(γ)) · 100%

of its sequences are selected from class 1 and β(γ) · 100% of its sequences from

class 19 with representative sequence [1, 2, 2, 3, 3].

c) Iff γ = γβ(t), define proportion ϕ ∈ [0, 1]. An approximate design d∗ is optimal

iff ϕ · 100% of the sequences are arranged as in a) and (1 − ϕ) · 100% of the

sequences are arranged as in b).

Proof. Theorem 3 claims that xd∗ of Proposition 2, in which the

min
x

max
l

hl(x) is realized, is either x2, x19, x2 = x19, or xmin, the x-coordinate of

the minimum of h1. In order to verify this conjecture, eight properties and formulas

need to be derived:

1. For all γ /∈ (γα1, γα2) and γ < γβ(t): h2(x2) > hl(x2) for all 3 ≤ l ≤ 52.

2. For all γ /∈ (γα1, γα2): sign h′1(x2) 6= sign h′2(x2).

3. For all γ ∈ (γα1, γα2): h1(xmin) > hl(xmin) for all 2 ≤ l ≤ 52.

4. The formula of α(γ).

5. For all γ ∈ (γβ(t), 1): h19(x19) > hl(x19) for all 2 ≤ l ≤ 18 and 20 ≤ l ≤ 52.

6. For all γ ∈ (γβ(t), 1): sign h′1(x19) 6= sign h′19(x19).

7. The formula of β(γ).

8. For γ = γβ(t): x∗ := x2 = x19 and h2(x
∗) = h19(x

∗) > hl(x
∗) for all 3 ≤ l ≤ 18

and 20 ≤ l ≤ 52.

Statements 1, 3 and 5 follow from Lemmas 8, 9 and 7, respectively. Statement 8 is

a consequence of Lemmas 7 and 8. X

As required in point 4, the proportion α(γ) ∈ (0, 1) of equivalence class 2 sequences

has to be determined. For this purpose, use equation (2.8) and denote α(γ, x) as α,
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then qd∗(x) = αnh2(x)+(1−α)nh1(x). The proportion α(γ, x) is derived by setting

0
!
=

∂qd∗

∂x
=α

(
8

5
− 4γ

3γ + 5
+

4(1− 2t)γ2 + 4(1− 2t)γ + 8(4t− 1)

t(1− γ)(3γ + 5)
x− 8(4t− 1)

5t
x

)
− 8

5
+

8(4t− 1)

5t
x

⇔ α(γ, x) =
2[(1− 4t)x + t](1− γ)(3γ + 5)

xγ[(14t− 1)γ + 6t + 1] + t(1− γ)(γ + 10)
.

Substitution of x = x2 into the formula of α(γ, x) provides α(γ). A graphical pre-

sentation of α(γ) for different t is displayed in Figure 4.3. X

Again, as in the cases p = 3 and p = 4, it is necessary to consider the condition

sign h′1(x2) 6= sign h′2(x2). Proportion α(γ) is negative or exceeds 1 iff sign h′1(x2) =

sign h′2(x2). Thus, for the purpose of proving property 2, it is sufficient to analyze if

α(γ) or α(γ, x), respectively, is nonnegative and less or equal to 1 in the described

domains of the parameters t and γ. In this manner, observe that

α(γ,x = x2)
!
= 0 ⇔ (1− 4t)x2 + t = 0

(4.3)⇔ tγ[(14t− 1)γ + 6t + 1]·

· [(246t2 − 119t + 15)γ2 − (226t2 − 99t + 10)γ + 5(4t− 1)] = 0

⇔γ ∈ {γα1, γα2,−(6t + 1)/(14t− 1), 0}.

The last two elements −(6t+1)/(14t−1) and 0 are not in the required domain of γ.

Since tγ[(14t−1)γ+6t+1] > 0 for all γ > 0, t > 0, and [(246t2−119t+15)γ2−(226t2−
99t+10)γ +5(4t−1)] is a convex parabola in γ, proportion α(γ) = α(γ, x = x2) ≥ 0

iff γ /∈ (γα1, γα2).

We get α(γ) ≤ 1 iff its numerator A− B
√

RTx2 is less or equal to its denominator

C
√

RTx2 , whereas

A = 2(1− γ)(3γ + 5) · 10t(tγ2 + (1− 3t)γ + 4t− 1),

B = 2(1− γ)(3γ + 5)(4t− 1) and

C = γ[(14t− 1)γ + 6t + 1].
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All values A, B, C are positive since γ ∈ (0, 1) and t ≥ 5.

α(γ) ≤ 1 ⇔ A−B
√

RTx2 ≤ C
√

RTx2

⇔ . . . ⇔ A2 −RTx2(B + C)2 ≤ 0

⇔ 25t(1− γ)γ[(14t− 1)γ + 6t + 1] · f(γ) ≤ 0

⇔ f(γ) = f5γ
5 + . . . f1γ + f0 ≤ 0

The function f(γ) is defined by

f(γ) = −(70t2− 59t+15)γ5− (92t2− 118t+35)γ4 +(366t2− 253t+35)γ3 +

(436t2 − 404t + 75)γ2 − (640t2 − 320t + 40)γ − (320t2 − 160t + 20).

As γi > γi+1, i ∈ {0, 1, 2}, and f5, f4 are negative, we obtain that f(γ) < f5γ
5 +

f4γ
4 + (f3 + f2 + f1 + f0)γ = f5γ

5 + f4γ
4 − (158t12 + 177t − 50)γ < 0. Hence,

α(γ) ≤ 1 for all γ ∈ (0, 1) and t ≥ 5.

Since 0 ≤ α(γ) ≤ 1, it follows that sign h′1(x2) 6= sign h′2(x2) for all γ /∈ (γα1, γα2). X

The proportion β(γ) ∈ (0, 1) of equivalence class 19 sequences has to be determined

in property 7. For this purpose, use equation (2.8) and put β(γ, x) = β. Then,

qd∗(x) = βnh19(x) + (1− β)nh1(x). The proportion β(γ, x) is derived by setting

0
!
=

∂qd∗

∂x
=β

(
8

5
+

2(γ + 3)

(γ + 1)(γ + 5)
+

4[2γ2 + 5tγ + 7t− 2]

t(1− γ2)(γ + 5)
x− 8(4t− 1)

5t
x

)
− 8

5
+

8(4t− 1)

5t
x

⇔ β(γ, x) =
4(t + x− 4tx)(1− γ2)(γ + 5)

2[(8t− 2)γ3 + 40tγ2 + (17t + 2)γ − 5t]x + t(1− γ)(4γ2 + 29γ + 35)
.

Substitution of x = x19 in the formula of β(γ, x) provides β(γ). A graphical presen-

tation of β(γ) for different t is displayed in Figure 4.3. X

The condition to achieve that β ∈ (0, 1) is given by sign h′1(x19) 6= sign h′19(x19).

Proportion β(γ) is negative or exceeds 1 iff sign h′1(x19) = sign h′19(x19). However,

a value of β which is not in the interval [0, 1] is not valid for an equivalence class

proportion. Thus, to prove property 6, it is sufficient to analyze if β(γ), or β(γ, x)

respectively, is nonnegative and less or equal to 1 in the corresponding domains of
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the parameters t and γ. For this purpose, observe that

β(γ,x = x19)
!

≥ 0 ⇔ (1− 4t)x19 + t ≥ 0

(4.4)⇔ 4t · a(γ) · b(γ)

(4t− 1)2
> 0,

in which

a(γ) = 2(4t− 1)γ3 + 40tγ2 + (17t + 2)γ − 5t

and

b(γ) = 2(4t−1)(19t−5)γ3+5(84t2−43t+6)γ2−(487t2−248t+30)γ−5(5t2−9t+2).

Proportion β(γ) is positive iff a(γ) and b(γ) are both positive or both negative for

all γ ∈ (γβ(t), 1).

The function a(γ) is equal to a factor of the denominator of x19, which is positive

for all γ ∈ (0.3, 1), cf. Proposition 4. Since (γβ(t), 1) is a subset interval of (0.92, 1),

apply the transformation γ = 0.08γ′ + 0.92 to b(γ), in which γ′ ∈ (0, 1). This trans-

formation leads to

b(γ′) = [16(4t−1)(19t−5)γ′3+4(20988t2−10757t+1440)γ′2+34(24697t2−12708t+

1860)γ′ + 2(6317t2 + 237862t− 34540)]/15625.

Observe that all coefficients of γ′i of b(γ′) are positive, 0 ≤ i ≤ 3. Thus, b(γ′) is

positive for all γ′ ∈ (0, 1). Hence, β(γ) is positive for all γ ∈ (γβ(t), 1).

Next to verify is whether proportion β(γ) ≤ 1 holds. This condition is fulfilled iff

the numerator of β(γ) does not exceed the denominator of β(γ), i.e.,

β(γ) ≤ 1 ⇔ β(γ, x) ≤ 1

⇔ 4(t + x− 4tx)(1− γ2)(γ + 5)

≤ 2[(8t− 2)γ3 + 40tγ2 + (17t + 2)γ − 5t]x + t(1− γ)(4γ2 + 29γ + 35)

⇔ − 2[2γ2 + 5tγ + (7t− 1)]x− t(3− 2γ − γ2) ≤ 0.

Since γ ∈ (0, 1), it follows that −t(3−2γ−γ2) ≤ 0. Proportion β(γ) is defined for all

γ ∈ [γβ(t), 1), whereas 0.3 � γβ(t). Hence, x = x19 > 0 and −2[2γ2+5tγ+(7t−1)]x <

0. Consequently, β(γ) = β(γ, x = x19) ≤ 1.

Thus, sign h′1(x19) 6= sign h′19(x19). X

Theorem 3 follows with statements 1. - 8.
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Figure 4.3: Sequence proportions α(γ) and β(γ) of equivalence classes 2 and 19,

respectively, for an approximate optimal design with p = 5 periods.

4.4 Sequence Length p = 6

In the case of 6 periods for each sequence, there are 112 different equivalence classes

for l = 1, . . . , 203. Sixteen relevant equivalence classes are listed in table 4.4. For

completeness, the set of all equivalence classes is given in Table B.2 of Appendix B.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

R1 = 6

1 : [123456] 5 −5
3
x +5(5t−1)

6t
x2

Group A: RA = 2(2γ + 3)/(γ + 1)

2 : [123455] 2(3γ+7)
(2γ+3)

− 3γ
(2γ+3)

x + ((3−9t)γ2+(2−6t)γ+25t−5)
2t(1−γ)(2γ+3)

x2

Group B: RB = 2(γ + 3)/(γ + 1)

28 : [123344] (γ2+10γ+13)
((γ+1)(γ+3))

+ (4−γ2+γ)
(γ+1)(γ+3)

x + (−(t−1)γ3+(5−5t)γ2+(15t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

Group C: RC = 6/(γ + 1)

170 : [112233] 4
(γ+1)

+ 8
3(γ+1)

x + ((9t−1)γ+21t−5)
6t(1−γ)(γ+1)

x2

Group D: RD = 6(γ + 1)/(2γ + 1)

8 : [123444] (2γ+4)
(γ+1)

− (4γ−3)
3(γ+1)

x + ((4−8t)γ2+(t+1)γ+23t−5)
6t(1−γ)(γ+1)

x2

Table 4.4 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

14 : [123433] (2γ+4)
(γ+1)

− (2γ+3)
3(γ+1)

x + ((4−8t)γ2+(9t+1)γ+23t−5)
6t(1−γ)(γ+1)

x2

20 : [123422]

29 : [123343]

81 : [122342]

Group E: RE = 2(γ2 + 5γ + 3)/((γ + 1)(2γ + 1))

84 : [122333] (7γ+11)
(γ2+5γ+3)

+ (2γ+7)
(γ2+5γ+3)

x + ((t+7)γ2+(20t−2)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

38 : [123322] (7γ+11)
(γ2+5γ+3)

+ (2γ+1)
(γ2+5γ+3)

x + ((3t+7)γ2+(30t−2)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

85 : [122332]

Group F: RF = 6/(2γ + 1)

194 : [111222] 3
(2γ+1)

+ 3
(2γ+1)

x + ((19t−7)γ+17t−5)
6t(1−γ)(2γ+1)

x2

104 : [122211] 3
(2γ+1)

+ 1
(2γ+1)

x + ((31t−7)γ+17t−5)
6t(1−γ)(2γ+1)

x2

175 : [112221]

Group G: RG = 6(γ + 1)/(3γ + 1)

33 : [123333] (γ+3)
(γ+1)

+ (−3γ+4)
3(γ+1)

x + (−(3t−3)γ2+(2t+2)γ+19t−5)
6t(1−γ)(γ+1)

x2

55 : [123222] (γ+3)
(γ+1)

− 2
3(γ+1)

x + (−(3t−3)γ2+(14t+2)γ+19t−5)
6t(1−γ)(γ+1)

x2

89 : [122322]

97 : [122232]

Group H: RH = 2(5γ + 3)/((γ + 1)(3γ + 1))

174 : [112222] 8
(5γ+3)

+ 8
(5γ+3)

x + ((15t−3)γ+17t−5)
2t(1−γ)(5γ+3)

x2

114 : [122111] 8
(5γ+3)

+ 2
(5γ+3)

x + ((27t−7)γ+17t−5)
2t(1−γ)(5γ+3)

x2

178 : [112211]

195 : [111221]

Group I: RI = 2(2γ + 3)/(4γ + 1)

100 : [122222] 5
(2γ+3)

+ 3
(2γ+3)

x + ((3t+5)γ+13t−5)
2t(1−γ)(2γ+3)

x2

Table 4.4 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

151 : [121111] 5
(2γ+3)

− 3
(2γ+3)

x + ((7t−3)γ+13t−5)
2t(1−γ)(2γ+3)

x2

188 : [112111]

198 : [111211]

201 : [111121]

Table 4.4: Some equivalence classes l, their representative sequences [...] and hl func-

tions for sequence length p = 6.

The intersection point x2 of section 3.4, in which h1(x) = h2(x), is located at

x2 =

√
RTx2 − t(1− γ)(γ + 15)

(23t− 1)γ2 + (7t + 1)γ
, (4.5)

whereas RTx2 = t(1− γ)[(551t− 24)γ3 + (277t + 18)γ2 + 5(6− 153t)γ + 225t] is the

root term of x2 for p = 6. The parameter domains are γ ∈ (0, 1) and t ≥ 6.

Equivalence class k of section 3.4 is determined as l = 28. The intersection point

x28, in which h1(x) = h28(x), is located at

x28 =

√
RTx28 − t(1− γ)(2γ2 + 23γ + 27)

2((11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t)
, (4.6)

whereas RTx28 = t(1−γ)[(524t−48)γ5 +(2672t−120)γ4 +(3799t+24)γ3 +(1171t+

120)γ2 + (393t + 24)γ + 657t] is the root term of x28. According to Proposition 4,

the parameter domain for γ is restricted to the interval (0.3, 1), t ≥ 6. Thus, the

denominator of x28 is positive and x28 ∈ (0, 1).

The 110 equivalence classes of l ∈ {2, . . . , 202} are divided into groups of identical

Ru. The equivalence class l belongs to

group A ⇔ l ∈ LA = {2, 3, 6, 7, 12, 22, 152};
group B ⇔ l ∈ LB = {9, 10, 11, 13, 15, 16, 19, 21, 25, 28, 30, 31, 36, 40, 48, 49,

57, 62, 70, 79, 83, 91, 105, 116, 132, 153, 157, 169};
group C ⇔ l ∈ LC = {39, 42, 52, 58, 71, 86, 170};
group D ⇔ l ∈ LD = {8, 14, 26, 32, 47, 53, 65, 74, 128, 189};
group E ⇔ l ∈ LE = {34, 35, 37, 38, 41, 43, 51, 54, 56, 59, 60, 69, 72, 73, 75, 76,

84, 94, 96, 98, 102, 108, 109, 112, 121, 129, 139, 143, 146,

158, 163, 164, 173, 190, 191, 193};
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group F ⇔ l ∈ LF = {104, 111, 113, 140, 194};
group G ⇔ l ∈ LG = {33, 55, 77, 99, 131, 149, 199};
group H ⇔ l ∈ LH = {101, 103, 114, 141, 150, 174, 200};
group I ⇔ l ∈ LI = {100, 151, 202}.

The coefficients c11(l) are identical within each group, A through I. The intention

is to identify the hl function which is the maximum for each group by comparing all

c12(l) and c22(l) within the group, assuming x > 0.

A) For l ∈ LA, the maximal hl function is h2(x), because c12(2) > c12(l) and

c22(2) ≥ c22(l) for all l.

B) The same criteria as in A) hold for h28 which is the maximum of all hl, l ∈ LB.

C) In group C, we have c12(170) > c12(l) and c22(170) ≥ c22(l) for all l ∈ LC .

Thus, h170 is the maximum in this group.

D) The maximal hl functions within group D are given by l = 8 and l = 14,

dependent on the magnitude of γ. In this group, c12(8) > c12(l) for all l ∈ LD

and c22(14) ≥ c22(l) for all l ∈ LD. The sequences l with c22(l) > c22(8) have

smaller c12(l) and c22(l) than h14.

E) The same criteria as in D) hold for h84 and h38 of l ∈ LE.

F) Again, as in D), h194 and h104 are maximal for all hl, l ∈ LF .

G) The maximal hl functions within group G are given by l = 33 and l = 55,

dependent on the magnitude of γ. In this group, c12(33) > c12(l) for all l ∈ LG

and c22(55) > c22(l) for all l ∈ LG. The sequences l with c22(l) > c22(33) have

smaller c12(l) and c22(l) than h55.

H) The same criteria as in G) hold for h174 and h114 of l ∈ LH .

I) Unite group I with l = 203. As a result, the maximal hl is, again, represented

by two equivalence classes: l = 100 and l = 151, dependent on the magnitude

of γ. The result is derived from c11(100) ≥ c11(l), c12(100) > c12(l) for all

l ∈ LI ∪ {203} and c22(100) > c22(l) for l ∈ LI ∪ {203} \ {151}. Furthermore,

c22(151) > c22(l) for all l ∈ LI ∪ {203}, which yields h151 > h100 by γ letting

close to 1. X
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Lemma 10. The abscissa x28 is the intersection point of equivalence class functions

h1(x) = h28(x), cf. equation (4.6). For any t ≥ p = 6, define the parameter

γβ(t) ∈ (0.956, 0.958) as the γ-value of t ≥ 5 for which h2(x28) = h28(x28).

The maximum of all hl(x28), l ∈ {2, . . . , 203}, is h28(x28) for all γ ∈ (γβ(t), 1) and

all t ≥ 6.

Proof. Consider the equivalence class functions hl of Table 4.4 and use the re-

sults of A) through I) above. There are fifteen equivalence class functions, hl,

l ∈ {2, 28, 170, 8, 14, 84, 38, 194, 104, 33, 55, 174, 114, 100, 151}, which dominate all

other hl functions, l ∈ {2, . . . , 203} \ {2, 28, 170, 8, 14, 84, 38, 194, 104, 33, 55, 174,

114, 100, 151}, for x > 0. Since x28 > 0 for all γ > 0.3, h28(x28) = max
l∈{2,...,203}

hl(x28) iff

h28(x28) > hl(x28) for all l ∈ {2, 170, 8, 14, 84, 38, 194, 104, 33, 55, 174, 114, 100, 151}
and all γβ(t) < γ < 1. For this purpose, analyze

a)

(h28 − h2)(x) =− (4γ3 + 15γ2 + 18γ + 3)

(γ + 1)(γ + 3)(2γ + 3)
+

(γ3 + 11γ2 + 20γ + 12)

(γ + 1)(γ + 3)(2γ + 3)
x

+
(7t− 1)γ4 + (29t− 1)γ3 + (41t + 1)γ2 + (9t + 1)γ + 6t

2t(1− γ)(γ + 1)(γ + 3)(2γ + 3)
x2.

Substitution of x = x28 yields

(h28 − h2)(x28) =
b(γ)

√
RTx28 − (1− γ)a(γ)

4(2γ + 3)[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]2
,

with

a(γ) = −8(9t2+10t−1)γ6+2t(23t−117)γ5+(1745t2−71t−8)γ4+45t(41t+

1)γ3 − t(1147t + 29)γ2 − 3t(93t + 5)γ + 774t2

and

b(γ) = 8tγ4 + 3(17t + 1)γ3 − 2(23t + 1)γ2 − (35t + 1)γ + 30t.

The denominator of (h28−h2)(x28) is positive for all γ and t in the correspond-

ing domains. In order to determine the roots of b(γ)
√

RTx28 − (1 − γ)a(γ),

the algebraic signs of a(γ) and b(γ) need to be checked.

a1) Abbreviate a(γ) = a0 + a1γ + . . . + a6γ
6. The coefficients a1, a2 and

a6 are negative. We have a6γ
6 + a5γ

5 + a4γ
4 > (a6 + a5 + a4)γ

4 =

(1719t− 385)tγ4 > 0 for all γ and all t ≥ 6.
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Now, define the cubic function of γ, A03(γ) := a0 + a1γ + a2γ
2 + a3γ

3.

The second derivative of A03(γ) equals 0 iff γ = γinf := 1147t+29
135(41t+1)

. A03(γ)

is concave for all γ < γinf and convex for all γ > γinf .

There is one stationary point of A03(γ) in (0, 1) located at

γst =

√
2(1429937t2+93608t+1433)+1147t+29

135(41t+1)
. The convexity of A03(γ) implies

that A03(γst) is a local minimum of A03(γ), since γst > γinf . Some simple

calculus confirms that

A03(γextr) =
t(V − 4

√
2W 3)

54675(41t + 1)2

is positive for all t ≥ 6. The values of V and W are given as V =

62805491539t3+2691551589t2+19062633t−224953 and W = 1429937t2+

93608t + 1433 in the formula of A03(γextr). As A03(γextr) is positive, the

function A03(γ) is positive for all γ ∈ (0, 1) and all t ≥ 6.

To summarize, the function a(γ) = A03(γ)+a4γ
4 +a5γ

5 +a6γ
6 is positive

for all γ ∈ (0, 1) and all t ≥ 6.

a2) In order to prove that b(γ) is positive for all γ ∈ (0, 1), examine the

derivative of the function.

The function b(γ) has one point of inflection in the domain (0, 1) of γ at

γinf = 1
96t

[
√

10747t2 + 1046t + 27 − 3(17t + 1)]. Therefore, b(γ) is con-

cave for all γ < γinf and convex, otherwise. The local minimum of the

concave part of b(γ) is either located at 0 or γinf . The function value of

b(γ ↘ 0) = b0 is positive. Simple calculus provides that

b(γinf ) = [3(189803t3 + 30577t2 + 1569t +

27)
√

3(10747t2 + 1046t + 27)− (99598873t4 + 21481252t3 +

1654486t2 + 56484t + 729)]/147456t3.

is positive as well. Thus, b(γ) > 0 for all γ ∈ (0, γinf ). Equivalence trans-

formations confirm that γinf > 0.2.

In order to analyze b(γ) in the remaining interval of (γinf , 1), apply the

transformation γ = 0.2 + 0.8γ′ with γ′ ∈ (0, 1) and γ ∈ (0.2, 1). This

results in

b(γ′) = [2048tγ′4 +64(287t+15)γ′3−16(337t+5)γ′2−8(2939t+90)γ′+

16(843t− 10)]/625.

Abbreviate b(γ′) as (b0 +b1γ
′+ . . .+b4γ

′4)/625 and observe that the coef-
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ficients b0, b3 and b4 are positive, b2 and b1 are negative. In order to verify

whether b(γ′) > 0, define B03(γ
′) := b(γ′)− b4γ

′4. There is one stationary

point of B03(γ
′) in (0, 1) at γst =

√
5174527t2+422860t+8125+337t+5

12(287t+15)
. A point of

inflection of B03(γ
′) is located at γinf = 337t+5

12(287t+15)
, such that B03(γ

′) is

concave for all γ′ < γinf because B′′
03(γ

′ < γinf ) < 0, and convex for all

γ′ > γinf . It is easy to derive that γinf < γst. Hence, B03(γst) yields the

minimum of B03(γ
′).

B03(γst) =
2(25V −

√
W 3)

27(287t + 15)2
,

in which V = 496072778t3 + 45525909t2 + 604248t − 21875 and W =

5174527t2 + 422860t + 8125. Some simple equivalence transformations

confirm that B03(γst) is positive for all γ′ ∈ (0, 1) and all t ≥ 6.

As b(γ′) = B03(γ
′) + b4γ

′4 > 0 for all γ′ ∈ (0, 1), b(γ) is positive for all

γ ∈ [0.2, 1) ∪ (0, 0.2) and all t ≥ 6.

The results of a1) and a2) lead to an equivalent transformation of b(γ)
√

RTx28−
(1−γ)a(γ) > 0, in which (1−γ)a(γ) is added and the square is taken on both

sides of the inequality. This is equivalent to

b2(γ)RTx28 − (1− γ)2a2(γ) > 0

⇔ 8(1− γ)((11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t)2 · g(γ) > 0

⇔ g(γ) := g0 + g1γ + . . . + g7γ
7 > 0,

in which

g(γ) = 8(5t2 +2t+1)γ7 +4(97t2− t−2)γ6 +8t(97t−4)γ5− t(2267t+43)γ4 +

3t(135t + 11)γ3 + 9t(161t + 3)γ2 − 3t(217t− 1)γ − 108t2.

In order to find the roots of g(γ), decompose g(γ) into G−4(γ) = g(γ)− g4γ
4

and g4γ
4.

Since g4 is negative, g4 is strictly monotonous and decreasing in t for all

γ ∈ (0, 1) and t ≥ 6.

All coefficients gi, i ∈ {2, 3, 5, 6, 7}, are positive. Thus, the curvature, deter-

mined by the second derivative of G−4(γ), is positive for all γ ∈ (0, 1), and

the function G−4(γ) is convex in the entire domain of γ. The convexity of

G−4(γ) and different signs of the function values for the range boundaries,
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G−4(γ ↘ 0) = g0 < 0 and G−4(γ ↗ 1) = (1095t + 63)t > 0, imply that there

can only exist one root of G−4(γ) in the interval (0, 1).

It is clear that g(γ) is negative iff G−4(γ) is negative because g4 < 0.

In the range of G−4(γ) > 0, G−4(γ) is a monotonous and increasing function

of γ. The function g(γ) is positive iff |g4γ
4| < G−4(γ), assuming G−4(γ) > 0.

Iff |g4γ
4| > G−4(γ), the function g(γ) is negative again.

As g4 < 0 is strictly monotonous and G−4(γ) is monotonous in the interval in

which G−4(γ) > 0, it follows that the sum g(γ) of those two monotonous func-

tions can only change its algebraic signs once, most likely at the range bound-

ary γ ↗ 1. The function value of this range boundary is g(γ ↗ 1) = 32t2 > 0

for all t ≥ 6. Therefore, g(γ) actually can only have one root γβ(t), which is

located in the interval (0.956, 0.958). The root γβ(t) is the specific parameter

at which h2(x28) = h28(x28) for t ≥ 5. Thus, g(γ) is positive for all γ > γβ(t).

Hence, (h28 − h2)(x28) > 0 iff γ > γβ(t) which leads to h28(x28) > hl(x28) for

l ∈ LA and γ ∈ (γβ(t), 1).

b) through o) are treated in Appendix B, section B.2.2

Finally, as x28 ∈ (0, 1), h28(x28) = max
l

hl(x28) for all 2 ≤ l ≤ 203 iff γ ∈ (γβ(t), 1).

Lemma 11. The abscissa x2 is an intersection point of equivalence class functions

h1(x) = h2(x), cf. equation (4.5). Analogous to Lemma 10, consider the same

parameter γβ(t) ∈ (0.956, 0.958) as the γ-value for which h2(x28) = h28(x28) and

h2(x2) = h28(x2) as well, i.e., x2 = x28, for any t ≥ p = 6.

The maximum of hl(x2), l ∈ {2, . . . , 203}, is h2(x2) for all γ ∈ (0, γβ(t)) and all

t ≥ 6.

Proof. Refer to the equivalence class functions hl of Table 4.4 and use the re-

sults of A) through I) above. There are fifteen equivalence class functions hl,

l ∈ {2, 28, 170, 8, 14, 84, 38, 194, 104, 33, 55, 174, 114, 100, 151}, which dominate all

other hl functions, l ∈ {2, . . . , 203} \ {2, 28, 170, 8, 14, 84, 38, 194, 104, 33, 55, 174,

114, 100, 151}, for x > 0. Since x2 > 0, h2(x2) = max
l∈{2,...,203}

hl(x2) iff h2(x2) > hl(x2)

for all l ∈ {28, 170, 8, 14, 84, 38, 194, 104, 33, 55, 174, 114, 100, 151} and all 0 < γ <

γβ(t). We have to analyze
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a)

(h2 − h28)(x) =
(4γ3 + 15γ2 + 18γ + 3)

(γ + 1)(γ + 3)(2γ + 3)
− (γ3 + 11γ2 + 20γ + 12)

(γ + 1)(γ + 3)(2γ + 3)
x

+
−(7t− 1)γ4 − (29t− 1)γ3 − (41t + 1)γ2 − (9t + 1)γ + 6t

2t(1− γ)(γ + 1)(γ + 3)(2γ + 3)
x2.

Substitution of x = x2 provides

(h2 − h28)(x2) =
(1− γ)a(γ)− b(γ)

√
RTx2

γ2(1 + γ)(γ + 3)[(23t− 1)γ + 7t + 1]2
,

with

a(γ) = −4(21t2 +22t−1)γ5 +(143t2−29t−4)γ4 +(1271t+19)tγ3− t(419t+

13)γ2 − 3t(151t + 3)γ + 450t2

and

b(γ) = 8tγ4 + 3(17t + 1)γ3 − 2(23t + 1)γ2 − (35t + 1)γ + 30t.

The denominator of (h2 − h28)(x2) is positive for all γ and t in the stated do-

mains.

In order to determine the root of (h2−h28)(x2) to be located at γ = γβ(t), it is

convenient to take advantage of b(γ) being identical to b(γ) of (h28 − h2)(x28)

in the proof of Lemma 10 a). Thus, b(γ) is positive for all γ ∈ (0, 1) and all

t ≥ 6.

Function a(γ) is positive for all γ ∈ (0, 1) and all t ≥ 6 as well.

Define a(γ) = A45(γ)+A03(γ) and rewrite A45(γ) = a5γ
5 +a4γ

4 and A03(γ) =

a3γ
3 + a2γ

2 + a1γ + a0. Use the fact that a5γ
5 > a5γ

4 to get A45(γ) >

(a5 + a4)γ
4 = t(59t− 117)γ4 > 0 for all γ ∈ (0, 1) and all t ≥ 6.

Furthermore, the second derivative of A03(γ) implies that A03(γ) is concave for

all γ < γinf , and convex for all γ > γinf , in which γinf = 419t+13
3(1271t+19)

. The slope

of A03(γ) is zero in interval (0, 1) iff γ = γst =

√
2(951425t2+35516t+341)+419t+13

3813t+57
.

Compare γinf and γst to find that γinf < γst. Thus, A03(γst) yields the mini-

mum of A03(γ). Some calculus ensures that

A03(γst) =
t(V − 4

√
2W 3)

(43616907t2 + 1304046t + 9747)

is positive for all t ≥ 6. The substitutes in the formula of A03(γst) are given

as V = 17309285759t3 + 430169205t2 + 971061t− 24401 and W = 951425t2 +
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35516t + 341. It follows that A03(γ) is positive for all γ ∈ (0, 1) and all t ≥ 6.

As a(γ) = A45(γ) + A03(γ), a(γ) is positive for all γ ∈ (0, 1) and all t ≥ 6 as

well.

Therefore, (h2 − h28)(x2) > 0 is equivalent to

(1− γ)2a2(γ)− b2(γ)RTx2 > 0

⇔ 2(1− γ)γ2[(23t− 1)γ + 7t + 1]2 · g∗(γ) > 0

⇔ g∗(γ) > 0,

in which g∗(γ) = −g(γ) of the difference (h28−h2)(x28), cf. passage a) of proof

of Lemma 10. This symmetry implies that g∗(γ) and g(γ) have the same root

for all γ ∈ (0, 1) at γ = γβ(t) ∈ (0.956, 0.958) and γβ(t) is the specific parameter

in which x2 = x28.

Hence, h2(x2) > h28(x2) for all γ ∈ (0, γβ(t)).

b) Now, compare the equivalence class functions hl(x), l ∈ {8, 14, 194, 104, 33, 174,

100, 151}, to h2(x). It is known, so far, that h28(x) > hl(x) for l ∈ {8, 14, 194,

104, 33, 174, 100, 151} and all x, γ ∈ (0, 1), cf. proof of Lemma 10, state-

ments c), d), g), h), i), l), n) and o); x2 ∈ (0, 1), cf. Proposition 3; and

h2(x2) > h28(x2) for all γ ∈ (0, γβ(t)) ⊂ (0, 1). Combining the three results,

it follows that h2(x2) > hl(x2) for all l ∈ {LD, LF , {33, 174, 203}, LI} and all

γ ∈ (0, γβ(t)).

It remains to show whether h2(x2) > hl(x2) for all l ∈ {170, 84, 38, 55, 114}
and all γ ∈ (0, γβ).

c) through g) continues in Appendix B, section B.2.2

Summarizing statements a) through g), the conclusion is that h2(x2) = max
l

hl(x2)

for all l ∈ {LA, LB, LC , LD, LE, LF , LG, LH , LI , 203} and, thus, for all 2 ≤ l ≤ 203,

and all γ ∈ (0, γβ).

Lemma 12. For any t ≥ p = 6, the parameters 0 < γα1 < γα2 < 1 are given by

γα1/α2 =
∓
√

339889t4 − 317254t3 + 108061t2 − 16140t + 900 + 583t2 − 209t + 18

2(613t2 − 239t + 24)
.

Assume γ ∈ (γα1, γα2) and observe that xmin = t/(5t − 1) is the abscissa of the

minimum of equivalence class function h1(x). Then, h1(xmin) = max
l∈{1,...,203}

hl(xmin).
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Proof. Since xmin > 0, we may use the results of A) through I) above, i.e., one

of the hl, l ∈ {2, 28, 170, 8, 14, 84, 38, 194, 104, 33, 55, 174, 114, 100, 151} is the maxi-

mum of all other hl functions, l ∈ {2, . . . , 203} \ {2, 28, 170, 8, 14, 84, 38, 194, 104, 33,

55, 174, 114, 100, 151}, for any x > 0. Using the results of the proof of Lemma 10, i.e.,

h28 = max
l∈{8,14,194,104,33,174,100,151}

hl for all x ∈ (0, 1), it remains to verify whether

h1(xmin) > hl(xmin) for l ∈ {2, 28, 170, 84, 38, 55, 114}. It follows that

h1(xmin) = max
l=1,...,203

hl(xmin). Now we have

a)

(h2 − h1)(xmin) =
(613t2 − 239t + 24)γ2 − (583t2 − 209t + 18)γ + 6(5t− 1)

6(5t− 1)2(1− γ)(2γ + 3)
.

The solution of the quadratic equation (613t2− 239t+24)γ2− (583t2− 209t+

18)γ + 6(5t− 1) = 0 for all γ ∈ (0, 1) and all t ≥ 6 indicates

(h2 − h1)(xmin)

< 0 ⇔ γ ∈ (γα1, γα2)

≥ 0 ⇔ γ /∈ (γα1, γα2)
.

Hence, h1(xmin) > h2(xmin) for γ ∈ (γα1, γα2).

b) through g) is treated in Appendix B, section B.2.2.

Combining properties a) through g) shows that h1(xmin) is the maximum of the

hl(xmin) for all γ ∈ (γα1, γα2) and all l ∈ {2, 28, 170, 84, 38, 55, 114}, and thus, for all

2 ≤ l ≤ 203.

Theorem 4. For any t ≥ p = 6 and γ ∈ (0, 1), consider the parameters 0 < γα1 <

γα2 < γβ(t) < 1 as in Lemmas 12 and 11. Furthermore, proportion α(γ) ∈ [0, 1] is

given by

α(γ) =
5(1− γ)(2γ + 3)[3t(6tγ2 − (21t− 5)γ + 5(5t− 1))− (5t− 1)

√
RTx2 ]

γ[(23t− 1)γ + 7t + 1]
√

RTx2

iff γ ∈ (0, γα1]
•
∪ [γα2, γβ(t)] and α(γ) := 0 iff γ ∈ (γα1, γα2) or γ ∈ (γβ(t), 1). Another

proportion β(γ) ∈ [0, 1] is given by

β(γ) =
5(1− γ2)(γ + 3)[3t(4tγ3 + (−15t + 7)γ2 + 2γ + 43t− 9)− (5t− 1)

√
RTx28 ]

2[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]
√

RTx28

iff γ ∈ [γβ(t), 1) and β(γ) := 0 otherwise.

The optimality results are as follows:
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a) For all γ ∈ (0, γβ(t)), an approximate design d∗ is optimal iff (1 − α(γ)) ·
100% of its sequences are selected from class 1 with representative sequence

[1, 2, 3, 4, 5, 6] and α(γ) ·100% of its sequences from class 2 with representative

sequence [1, 2, 3, 4, 5, 5].

b) For all γ ∈ (γβ(t), 1), an approximate design d∗ is optimal iff (1− β(γ)) · 100%

of its sequences are selected from class 1 and β(γ) · 100% of its sequences from

class 28 with representative sequence [1, 2, 3, 3, 4, 4].

c) Iff γ = γβ(t), define proportion ϕ ∈ [0, 1]. An approximate design d∗ is optimal

iff ϕ · 100% of the sequences are arranged as in a) and (1 − ϕ) · 100% of the

sequences are arranged as in b).

Proof. Theorem 4 indicates that xd∗ of Proposition 2 in which min
x

max
l

hl(x) is

being realized, is either x2, x28, x2 = x28, or xmin, the x-coordinate of the minimum

of h1. In order to verify this conjecture, eight properties and formulas need to be

derived:

1. For all γ /∈ (γα1, γα2) and γ < γβ(t): h2(x2) > hl(x2) for all 3 ≤ l ≤ 203.

2. For all γ /∈ (γα1, γα2): sign h′1(x2) 6= sign h′2(x2).

3. For all γ ∈ (γα1, γα2): h1(xmin) > hl(xmin) for all 2 ≤ l ≤ 203.

4. The formula of α(γ).

5. For all γ ∈ (γβ(t), 1): h28(x28) > hl(x28) for all 2 ≤ l ≤ 27 and 29 ≤ l ≤ 203.

6. For all γ ∈ (γβ(t), 1): sign h′1(x28) 6= sign h′28(x28).

7. The formula of β(γ).

8. For γ = γβ(t): x∗ := x2 = x28 and h2(x
∗) = h28(x

∗) > hl(x
∗) for all 3 ≤ l ≤ 27

and 29 ≤ l ≤ 203.

Properties 1, 3 and 5 follow from Lemmas 11, 12 and 10, respectively. Statement 8

is proved by Lemmas 10 and 11. X
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As required in point 4, the proportion α(γ) ∈ (0, 1) of equivalence class 2 sequences

needs to be determined. For this purpose, use equation (2.8) and write α(γ, x) = α.

Then qd∗(x) = αnh2(x)+(1−α)nh1(x). The proportion α(γ, x) results from setting

0
!
=

∂qd∗

∂x
=α

(
5

3
− 3γ

2γ + 3
+

(1− 3t)γ(2 + 3γ) + 5(5t− 1)

t(1− γ)(2γ + 3)
x− 5(5t− 1)

3t
x

)
− 5

3
+

5(5t− 1)

3t
x

⇔ α(γ, x) =
5[(1− 5t)x + t](1− γ)(2γ + 3)

xγ[(23t− 1)γ + 6t + 1] + t(1− γ)(γ + 15)
.

Substitution of x = x2 into the formula of α(γ, x) provides α(γ). A graphical pre-

sentation of α(γ) for t = p = 6 in comparison with t = p = 5 is displayed in Figure

4.4. A plot of α(γ) for p = 6 and different t is qualitatively equivalent to Figure

4.3. It is important to consider the downsizing in the scale of the proportions and

the shifting of γα1 approaching 0, and γα2 < γβ(t) both getting closer to 1 for in-

creasing t. X

The condition to achieve that α(γ) ∈ (0, 1) is sign h′1(x2) 6= sign h′2(x2). Proportion

α(γ) is negative or exceeds 1 iff sign h′1(x2) = sign h′2(x2). However, this is not valid

as an equivalence class proportion. In order to prove statement 2, it is sufficient to

analyze if α(γ), or α(γ, x) respectively, is nonnegative and less or equal to 1 in the

described domains of the parameters t and γ. Thus, observe

α(γ,x = x2)
!
= 0 ⇔ (1− 5t)x2 + t = 0

(4.5)⇔ tγ[(23t− 1)γ + 7t + 1]

· [(613t2 − 239t + 24)γ2 − (583t2 − 209t + 18)γ + 6(5t− 1)] = 0

⇔γ ∈ {γα1, γα2,−(7t + 1)/(23t− 1), 0}.

The last two elements −(7t+1)/(23t−1) and 0 are not in the required domain of γ.

As tγ[(23t− 1)γ + 7t + 1] > 0 for all γ > 0 and t > 0, and [(613t2 − 239t + 24)γ2 −
(583t2 − 209t + 18)γ + 6(5t− 1)] is a convex parabola in γ, proportion α(γ) ≥ 0 iff

γ /∈ (γα1, γα2).

Next, the proportion α(γ) needs to be less or equal to 1, which is fulfilled iff the

numerator, A−B
√

RTx2 , of α(γ) is less or equal to the denominator, C
√

RTx2 , of

α(γ) in which
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A = 5(1− γ)(2γ + 3) · 3t[6tγ2 − (21t− 5)γ + 5(5t− 1)],

B = 5(1− γ)(2γ + 3)(5t− 1) and

C = γ[(23t− 1)γ + 7t + 1].

All expressions A, B, C are positive as γ ∈ (0, 1) and t ≥ 5, i.e.,

A−B
√

RTx2 ≤ C
√

RTx2

⇔A2 −RTx2(B + C)2 ≤ 0

⇔27t(1− γ)γ[(23t− 1)γ + 7t + 1]f(γ) ≤ 0

⇔f(γ) ≤ 0,

for γ ∈ (0, γβ(t)), whereas

f(γ) = −3(233t2− 143t+24)γ5− 2(357t2− 295t+57)γ4 +(2965t2− 1537t+

184)γ3+(2348t2−1512t+212)γ2−(3650t2−1530t+160)γ−(1250t2−
500t + 50).

The value γβ(t) is the root of function

g(γ) = 8(5t2 +2t+1)γ7 +4(97t2− t−2)γ6 +8t(97t−4)γ5− t(2267t+43)γ4 +

3t(135t + 11)γ3 + 9t(161t + 3)γ2 − 3t(217t− 1)γ − 108t2

and simultaneously the value of γ ∈ (0, 1) at which x2 = x28, cf. Lemmas 10 and

11.

As already displayed in property a2) of proof of Lemma 10, g(γ) is negative for all

γ ∈ (0, γβ(t)). Hence, if f(γ) ≤ g(γ) for all γ ∈ (0, γβ(t)), f(γ) is negative for this

described interval of γ and α(γ) would be less or equal to 1.

Define F (γ) = f(γ)− g(γ) = f7γ
7 + . . . + f1γ + f0, i.e.,

F (γ) = −8(5t2 + 2t + 1)γ7 − 4(97t2 − t − 2)γ6 − (1475t2 − 461t + 72)γ5 +

(1553t2 + 633t− 114)γ4 + 2(1280t2− 785t + 92)γ3 + (899t2− 1539t +

212)γ2 − (2999t2 − 1527t + 160)γ − 2(571t2 − 250t + 25).

The coefficients f7, f6, f1 and f0 are negative, f5, f4, f3 and f2 are positive. Thus, if

F05(γ) := f5γ
5 + . . . + f1γ + f0 is negative, the entire function F (γ) is negative.

Now, analyze the second derivative of F05(γ). We have F ′′
05(γ) = 20f5γ

3 + 12f4γ
2 +

12f3γ + 2f2 > (20f5 + 12f4)︸ ︷︷ ︸
<0

γ2 + 12f3γ + 2f2 > (20f5 + 12f4 + 12f3)︸ ︷︷ ︸
>0

γ + 2f2 > 0,

i.e., F05(γ) is a convex function and its local maxima is either the left or right

range boundary of interval (0, γβ(t)) ⊂ (0, 0.958). Observe F05(γ ↘ 0) = f0 < 0

and F05(0.958) = −27857412064829501t2−2551129495924573t+35849766755040
33918856765500

< 0 for all t ≥ 6.
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Hence, F05(γ) is negative for all γ ∈ (0, 0.958) ⊃ (0, γβ(t)). Thus, F (γ) = f(γ) −
g(γ) < 0 ⇔ f(γ) < g(γ) < 0 for all γ ∈ (0, γβ(t)). It follows that α(γ) ≤ 1 for all

γ ∈ (0, γβ(t)). Hence, sign h′1(x2) 6= sign h′2(x2) for all γ /∈ (γα1, γα2). X

The proportion β(γ) ∈ (0, 1) of equivalence class 28 sequences needs to be determined

in statement 7. Therefore, use equation (2.8) and write β(γ, x) = β. Then, qd∗(x) =

βnh28(x) + (1− β)nh1(x). The proportion β(γ, x) is calculated from setting

0
!
=

∂qd∗

∂x
=

=β

(
5

3
+

4 + γ − γ2

(γ + 1)(γ + 3)
+

(1− t)γ3 + 5(1− t)γ2 + (15t + 1)γ + 23t− 5]

t(1− γ2)(γ + 3)
x

−5(5t− 1)

3t
x

)
− 5

3
+

5(5t− 1)

3t
x

⇔β(γ, x) =
5[(1− 5t)x + t](1− γ2)(γ + 3)

2[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]x + t(1− γ)(2γ2 + 23γ + 27)
.

Substitution of x = x28 into the formula of β(γ, x) provides β(γ). A graphical pre-

sentation of β(γ) for t = p = 6 in comparison to t = p = 5 is displayed in Figure 4.4.

For p = 6 and different t, a plot of β(γ), as well as α(γ), is qualitatively equivalent

to Figure 4.3. X

Behaving like α(γ), proportion β(γ) is negative or exceeds 1 iff sign h′1(x28) =

sign h′28(x28). In order to prove statement 6, it is sufficient to analyze if β(γ), or

β(γ, x) respectively, is nonnegative and less or equal to 1 for t ≥ 6 and γ ∈ (γβ(t), 1).

For this purpose, observe that

β(γ, x = x28)
!

≥ 0 ⇔ (1− 5t)x28 + t ≥ 0
(4.6)⇔ 4t · a(γ) · b(γ)

(5t− 1)2
> 0,

whereas

a(γ) = (11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t

and

b(γ) = (301t2−119t+12)γ3 +3(125t2−53t+6)γ2− (610t2−245t+24)γ−3(6t2−
11t + 2).

The proportion β(γ) is positive iff a(γ) and b(γ) are both positive or both negative

for all γ ∈ (γβ(t), 1).

The function a(γ) is equal to a factor of the denominator of x28, which is positive
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for all γ ∈ (0.3, 1), cf. equation (4.6) and Proposition 4. As (γβ(t), 1) is a subset of

(0.952, 1), apply the transformation γ = 0.048γ′ + 0.952 to b(γ), in which γ′ ∈ (0, 1)

and γ ∈ (0.92, 1). This transformation gives

b(γ′) = 6[36(301t2− 119t+12)γ3 +36(25722t2− 10393t+1089)γ2 +(14412383t2−
5957602t + 670296)γ + (275789t2 + 6336034t− 709932)]/1953125.

Observe that all coefficients of γ′i in the function b(γ′) are positive, 0 ≤ i ≤ 3.

Thus, b(γ′) is positive for all γ′ ∈ (0, 1). It follows that β(γ, x) is positive for all

γ ∈ (γβ(t), 1).

Just as α(γ) needs to be less or equal to 1 for all γ ∈ (0, γβ(t)), proportion β(γ) must

be less or equal to 1 for all γ ∈ (γβ(t), 1). The function β(γ, x) does not exceed 1 if

its numerator is less or equal to its denominator,i.e.,

5[(1− 5t)x + t](1− γ2)(γ + 3)

≤ 2[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]x + t(1− γ)(2γ2 + 23γ + 27)

⇔ [(t− 1)γ3 + 5(t− 1)γ2 − (15t− 1)γ − 23t + 5]︸ ︷︷ ︸
<0

x− t(1− γ)(4− y − y2) < 0

As β(γ) = β(γ, x = x28) and x28 > 0 for all γ ∈ (0.3, 1), proportion β(γ) ≤ 1 for all

γ ∈ (γβ(t), 1). Hence, we arrive at sign h′1(x28) 6= sign h′28(x28). X

Properties 1. through 8. prove Theorem 4 completely.

Figure 4.4: Sequence proportions α(γ) of equivalence class 2 and β(γ) of equivalence

classes 19 and 28, respectively, for an approximate optimal design with

t = p = 5 and t = p = 6 periods.
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The structure of optimal crossover designs is the main topic of this thesis. We in-

vestigate a model with carryover effects and, additionally, with interaction effects

between products and assessors. Although there are many papers dealing with

the construction of optimal designs including carryover effects, the number of au-

thors dealing with models which include additional interaction effects is limited, e.g.

Kemmler (1990).

A method by Kushner (1997) serves as a tool, in which the trace of the information

matrix of the design is maximized on the basis of design-dependent equivalence class

functions hl. The equivalence class functions hl are determined by the sequence of

treatments which is given to an assessor. Since 3-, 4-, 5-, and 6- periods experiments

are the most practical sequence lengths used in sensory studies, this thesis covers

those four cases for treatment sequences. As a result, it is possible to extract three

sequence classes l of which either two of their hl functions or all three of them present

the minimum of the maximal equivalence class function. The three sequences are

determined by [1, 2, . . . , p− 1, p], [1, 2, . . . , p− 1, p− 1] and [1, 2, 2, 3, 3, . . . , p+1
2

, p+1
2

]

for odd p, or [1, 2, 3, 3, . . . , p+2
2

, p+2
2

] for even p, respectively.

Dependent on the coefficient of the variance of the interaction γ ∈ (0, 1), the pro-

portion of the three sequences in an approximate optimal design can vary tremen-

dously:

Example 1: If t = 4, p = 4 and γ = 0.2, the optimal design only consists of

sequences of class [1, 2, 3, 4] and could be the following Latin square:


1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

.

This optimal design fulfills the conditions of section 2.2.2, i.e., Cf = C
(M1)
f and its

73



74 5 Conclusions and Recommendations

partitioned matrices Cfij, 1 ≤ i, j ≤ 2, are completely symmetric.

Example 2: If t = 4, p = 4 and γ = 0.9, about 6.5% of the sequences of an opti-

mal design are representatives of class [1, 2, 3, 3]. All other sequences of the optimal

design are to be chosen from class [1, 2, 3, 4].

Unfortunately, the proportion of sequences of class [1, 2, 3, 3] can only be realized

at 0% or 25%. Comparing the traces of the information matrix of the two possible

designs, the first has an efficiency of 99.35%, whereas the second has an efficiency

of about 94.01% if 25% of its sequences are selected from class [1, 2, 3, 3].

Example 3: If t = p = 5 and γ = 0.95, about 2.2% of the sequences of an optimal

design are representatives of class [1, 2, 2, 3, 3], all other sequences are representa-

tives of class [1, 2, 3, 4, 5].

It is not unusual that proportions of about 2.2% of sequence classes are not real-

izable, considering the rather small number of assessors in an experiment. Referring

to Example 3, there have to be n = 46 assessors in order to keep the specified pro-

portions of sequences, in which one sequence is a representative of [1, 2, 2, 3, 3] and 45

sequences are representatives of class [1, 2, 3, 4, 5]. Efficiency calculations show, that

designs, which fulfill the advised proportions of sequences, have a higher efficiency

as designs which do not repeat treatments. Therefore, small, not realizable propor-

tions can be interpreted as an indicator for including at least one representative of

the denoted sequence class to get a better, unbiased estimator of the treatments and

their carryover effects in the specified model. However, as Example 2 shows, if the

recommended proportion of sequence is highly exceeded, a design with no repetition

of treatments performs a lot better.

As a general conclusion for sequence lengths 3 ≤ p ≤ 6, an approximate optimal

design is a combination of sequences of three equivalence classes: 1 : [1, 2, . . . , p −
1, p], 2 : [1, 2, . . . , p − 1, p − 1], and 3a : [1, 2, 2, 3, 3, . . . , p+1

2
, p+1

2
] for odd p, or

3b : [1, 2, 3, 3, . . . , p+2
2

, p+2
2

] for even p, respectively. The proportion of sequences of

each equivalence class of an approximate optimal design is dependent on the param-

eter γ. If p = 3 or p = 4 equivalence classes 2 and 3a, or 2 and 3b, are identical

since their specifications of the treatment arrangements are the same. In contrast
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to the prediction of the introduction in chapter 1, the proportion of sequences of

equivalence class 1 does not increase on the entire interval (0, 1) as the coefficient γ

increases. At some point of γ getting close to 1, the partitioned matrix Cd22 increases

extremely, such that the stated proportion decreases again and sequences of equiva-

lence class 2 and k get more important. An explanation could be that the difference

of the two replicated observations is an estimator of the corresponding carryover

effect, with an extremely small variance if γ is close to 1. Still, the proportion of

sequences of equivalence class 2 does not exceed its magnitude in the traditional

model with carryover effects and no unit×treatment interaction. To summarize,

this thesis illustrates that it is important to model interaction and carryover effects

separately if unit×treatment interaction is likely. The results for the structure of

optimal crossover designs of the assumed model with interaction and carryover ef-

fects demonstrate their difference to the optimal designs of the traditional model

without unit×treatment interaction, even though the efficiency of optimal designs

of the traditional model is very high.

The global intention of this thesis could be the perspective of a generalization of

the optimal findings for a general number of periods p. The challenge is, however,

the proper treatment of the ”nuisance” parameter γ.
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Appendix A : Notations

General Variables:

γ ∈ (0, 1), coefficient of the variance of wd(u,r),u for iden-

tical treatments d(u, r) given to the same subjects u

u = 1, . . . , n units/subjects of the experiment

r = 1, . . . , p periods of the experiment

i = 1, . . . , t treatments of the experiment

i = 1, . . . , t∗ treatments in one unit

l = 1, . . . , K equivalence classes of sequences

ul sequence of treatments of class l

nj(l) is the number of appearances of treatment j in the

sequence

ñj(l) is the number of appearances of the carryover effect

j in the sequence (including itself)

ñij(l) number of appearances of treatment j following treat-

ment i in the sequence, whereas ñjj(l) is the number

of appearances of treatment j following itself

ñ0j(l) = 1, if treatment j is in the first period; 0 otherwise

hl equivalence class function of sequence class l

xmin location of the minimum of the h1(x) parabola

γβ(t) parameter function of t in which h2(x2) = hk(xk) and

x2 = xk
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Math Analogy:

⊗ Kronecker product

In n-dimensional identity matrix

1n n-vector of ones

A− generalized inverse (g-inverse) of matrix A

[A, B] matrix with partitions A and B

tr A trace of matrix A: sum of A’s diagonal

elements

ω(A) = A(AT A)−AT projection onto column space of matrix A

ω⊥(A) = I − ω(A) projection onto the orthogonal column

space of matrix A

Bt = It − 1
t
1t1

T
t centralizing matrix

anj(l) =
(nj(l)−2)γ+1

[(nj(l)−1)γ+1](1−γ)
diagonal entry of matrix S−1

du , ∀nj(l) ≥ 1

b1 := 0 off-diagonal entry of matrix S−1
du for

nj(l) = 1

bnj(l) = − γ
[(nj(l)−1)γ+1](1−γ)

off-diagonal entry of matrix S−1
du , ∀nj(l) >

1

crsnj(l) = anj(l) + (nj(l)− 1)bnj(l) column- or row- sum of S−1
du
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Design-Dependent Objects:

Ωt,n,p the set of all designs with t treatments, n

subjects and p ≤ t periods

d(u, r) treatment of design d assigned to period r of

unit u

Sd = diag(Sd1, . . . , Sdn) diagonal matrix with elements Sdu

Sdu = Ip + Σdu covariance factor of eu,r + wd(u,r),u

Σdu covariance matrix of the interaction effects of

unit u

eu,r (random) error, 1 ≤ u ≤ n, 1 ≤ r ≤ p , in

model (M0)

wd(u,r),u (random) interaction effect between treat-

ment d(u, r) and unit u

Vd = diag(Vd1, . . . , Vdn) diagonal matrix with elements Vdu and prop-

erties: VdVd = S−1
d and VdSdVd = Inp

V ∗
d = Vdω

⊥(Vd1p)Vd diagonal matrix with elements V ∗
du, cf. equa-

tion (2.3)

Ru =
p∑

r=1

crsnj(l),r sum of all entries of S−1
du

=
t∑

i=1

nj(l)crsnj(l)



80 Appendix A : Notations



Appendix B : Equivalence Classes of

Treatments

B.1 Sequence Length p = 5

B.1.1 Set of all Equivalence Classes

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

R1 = 5

1 : [12345] h1 = 4 −8
5
· x +4(4t−1)

5t
· x2

Group A: RA = (3γ + 5)/(γ + 1)

2 : [12344] h2 = 6(γ+3)
(3γ+5)

− 4γ
(3γ+5)

· x + (−(4t−2)γ2−(4t−2)γ+16t−4)
t(1−γ)(3γ+5)

· x2

6 : [12334] h6 = 6(γ+3)
(3γ+5)

−2(γ+1)
(3γ+5)

· x + (−(4t−2)γ2−(2t−2)γ+14t−4)
t(1−γ)(3γ+5)

· x2

18 : [12234]

38 : [11234] h38 = 6(γ+3)
(3γ+5)

−2(2γ+1)
(3γ+5)

· x + (−6tγ2−4tγ+14t−4)
t(1−γ)(3γ+5)

· x2

3 : [12343] h3 = 6(γ+3)
(3γ+5)

−2(γ+5)
(3γ+5)

· x + (−(4t−2)γ2−(4t−2)γ+16t−4)
t(1−γ)(3γ+5)

· x2

4 : [12342]

5 : [12341] h5 = 6(γ+3)
(3γ+5)

−2(2γ+5)
(3γ+5)

· x + (−6tγ2−6tγ+16t−4)
t(1−γ)(3γ+5)

· x2

10 : [12324] h10 = 6(γ+3)
(3γ+5)

− 12
(3γ+5)

· x + (−(2t−2)γ2−(4t−2)γ+14t−4)
t(1−γ)(3γ+5)

· x2

14 : [12314] h14 = 6(γ+3)
(3γ+5)

−2(γ+6)
(3γ+5)

· x + (−4tγ2−6tγ+14t−4)
t(1−γ)(3γ+5)

· x2

Table B.1 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

28 : [12134]

Group B: RB = (γ + 5)/(γ + 1)

k ≡ 19 : [12233] h19 = 8(γ+2)
(γ+1)(γ+5)

+ 2(3+γ)
(γ+1)(γ+5)

· x + (4γ2+10tγ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

39 : [11233] h39 = 8(γ+2)
(γ+1)(γ+5)

+ 2(3−γ)
(γ+1)(γ+5)

· x + (−2tγ2+(6t−2)γ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

42 : [11223] h42 = 8(γ+2)
(γ+1)(γ+5)

+ 4
(γ+1)(γ+5)

· x + (−2tγ2+(8t−2)γ+12t−4)
t(1−γ)(γ+1)(γ+5)

· x2

8 : [12332] h8 = 8(γ+2)
(γ+1)(γ+5)

− 4
(γ+1)(γ+5)

· x + (4γ2+10tγ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

9 : [12331] h9 = 8(γ+2)
(γ+1)(γ+5)

− 4
(γ+5)

· x + (−4tγ2+(8t−2)γ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

40 : [11232]

21 : [12231] h21 = 8(γ+2)
(γ+1)(γ+5)

− 4
(γ+5)

· x + (−2tγ2+(6t−2)γ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

29 : [12133]

25 : [12213] h25 = 8(γ+2)
(γ+1)(γ+5)

− 2(γ+3)
(γ+1)(γ+5)

· x + (−2tγ2+(8t−2)γ+12t−4)
t(1−γ)(γ+1)(γ+5)

· x2

11 : [12323] h11 = 8(γ+2)
(γ+1)(γ+5)

− 2(γ+7)
(γ+1)(γ+5)

· x + (−(2t−4)γ2+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

13 : [12321] h13 = 8(γ+2)
(γ+1)(γ+5)

− 2(3γ+7)
(γ+1)(γ+5)

· x + (−2tγ2+(6t−2)γ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

30 : [12132]

16 : [12312] h16 = 8(γ+2)
(γ+1)(γ+5)

− 2(3γ+7)
(γ+1)(γ+5)

· x + (−6tγ2−(2t+2)γ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

15 : [12313] h15 = 8(γ+2)
(γ+1)(γ+5)

− 2(5γ+7)
(γ+1)(γ+5)

· x + (−2tγ2+(6t−2)γ+14t−4)
t(1−γ)(γ+1)(γ+5)

· x2

32 : [12123] h32 = 8(γ+2)
(γ+1)(γ+5)

− 4(γ+4)
(γ+1)(γ+5)

· x + (−4tγ2−(2t+2)γ+12t−4)
t(1−γ)(γ+1)(γ+5)

· x2

Table B.1 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

Group C: RC = (4γ + 5)/(2γ + 1)

7 : [12333] h7 = 2(2γ+7)
(4γ+5)

+4(1−γ)
(4γ+5)

· x + (−(2t−2)γ2+2γ+14t−4)
t(1−γ)(4γ+5)

· x2

22 : [12223] h22 = 2(2γ+7)
(4γ+5)

+0 + (−(2t−2)γ2+(4t+2)γ+10t−4)
t(1−γ)(4γ+5)

· x2

48 : [11123] h48 = 2(2γ+7)
(4γ+5)

− 4γ
(4γ+5)

· x + (−4tγ2−2γ+10t−4)
t(1−γ)(4γ+5)

· x2

12 : [12322] h12 = 2(2γ+7)
(4γ+5)

− 6
(4γ+5)

· x + (−(2t−2)γ2+(6t+2)γ+14t−4)
t(1−γ)(4γ+5)

· x2

20 : [12232]

17 : [12311] h17 = 2(2γ+7)
(4γ+5)

−2(2γ+3)
(4γ+5)

· x + (−4tγ2+(2t−2)γ+14t−4)
t(1−γ)(4γ+5)

· x2

41 : [11231]

35 : [12113] h35 = 2(2γ+7)
(4γ+5)

− 10
(4γ+5)

· x + ((2t−2)γ+10t−4)
t(1−γ)(4γ+5)

· x2

45 : [11213]

31 : [12131] h31 = 2(2γ+7)
(4γ+5)

− 16
(4γ+5)

· x + (−(2t+2)γ+14t−4)
t(1−γ)(4γ+5)

· x2

Group D: RD = (7γ + 5)/((γ + 1)(2γ + 1))

43 : [11222] h43 = 12
(7γ+5)

+ 10
(7γ+5)

· x + ((10t−2)γ+12t−4)
t(1−γ)(7γ+5)

· x2

49 : [11122] h49 = 12
(7γ+5)

+ 8
(7γ+5)

· x + ((10t−4)γ+10t−4)
t(1−γ)(7γ+5)

· x2

27 : [12211] h27 = 12
(7γ+5)

+0 + ((16t−4)γ+12t−4)
t(1−γ)(7γ+5)

· x2

44 : [11221]

24 : [12221] h24 = 12
(7γ+5)

− 2
(7γ+5)

· x + ((12t−2)γ+10t−4)
t(1−γ)(7γ+5)

· x2

26 : [12212] h26 = 12
(7γ+5)

− 10
(7γ+5)

· x + ((10t−2)γ+12t−4)
t(1−γ)(7γ+5)

· x2

Table B.1 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

33 : [12122]

36 : [12112] h36 = 12
(7γ+5)

− 12
(7γ+5)

· x + ((6t−4)γ+10t−4)
t(1−γ)(7γ+5)

· x2

46 : [11212]

34 : [12121] h34 = 12
(7γ+5)

− 20
(7γ+5)

· x + (−(4t+4)γ+12t−4)
t(1−γ)(7γ+5)

· x2

Group E: RE = (3γ + 5)/(3γ + 1)

23 : [12222] h23 = 8
(3γ+5)

+ 4
(3γ+5)

· x + ((2t+4)γ+10t−4)
t(1−γ)(3γ+5)

· x2

51 : [11112] h51 = 12
(3γ+5)

− 2
(3γ+5)

· x + ((2t−2)γ+4t−4)
t(1−γ)(3γ+5)

· x2

37 : [12111] h37 = 12
(3γ+5)

− 6
(3γ+5)

· x + ((4t−2)γ+10t−4)
t(1−γ)(3γ+5)

· x2

47 : [11211]

50 : [11121]

R52 = 5/(4γ + 1)

52 : [11111] h52 = 0 +0 + 4(t−1)
5t(1−γ)

· x2

Table B.1: All equivalence classes, their representative sequences [...] and hl func-

tions for sequence length p = 5.

B.1.2 Steps of Argumentation

As Proof of Lemma 7. . . .

b) Next to analyze is

(h19 − h7)(x) =
2(1− γ)(2γ2 + 5γ + 5)

(γ + 1)(γ + 5)(4γ + 5)
+

2(2γ3 + 14γ2 + 15γ + 5)

(γ + 1)(γ + 5)(4γ + 5)
x

2γ[(t− 1)γ3 + (6t + 1)γ2 + (18t + 1)γ + 11t− 1]

t(1− γ)(γ + 1)(γ + 5)(4γ + 5)
x2.

All ratios of (h19−h7) are positive because its factors are positive for γ ∈ (0, 1)

and all t ≥ 5. It follows that h19 > h7 for all x > 0.
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c) Analyze

(h19 − h12)(x) =
2(1− γ)(2γ2 + 5γ + 5)

(γ + 1)(γ + 5)(4γ + 5)
+

2(7γ2 + 35γ + 30)

(γ + 1)(γ + 5)(4γ + 5)
x

2γ[(1− t)γ2 − 4tγ − 4t− 1]

t(γ + 1)(γ + 5)(4γ + 5)
x2

and write (h19 − h12)(x) = dc11 + dc12x + dc22x
2 to observe that dc11 > 0,

dc12 > 0 and dc22 < 0. Since x2 < x for all x ∈ (0, 1), we get dc12x + dc22c
2 >

(dc12 + dc22)x
2 > 0 for all γ ∈ (0, 1) and all t ≥ 5. It follows that h19 > h12

for all x ∈ (0, 1).

Notice, the conclusion of b) and c) is: h19(x) > hl(x) for l ∈ LC , γ ∈ (0, 1)

and x ∈ (0, 1).

d) Furthermore,

(h19 − h43)(x) =
4(11γ2 + 20γ + 5)

(γ + 1)(γ + 5)(7γ + 5)
− 4(5 + 2γ − γ2)

(γ + 1)(γ + 5)(7γ + 5)
x

+
2[(15− 5t)γ3 + (18− t)γ2 + (13t + 3)γ + 5t]

t(γ − 1)(γ + 1)(γ + 5)(7γ + 5)
x2.

Retype h19 − h43 as dc11 + dc12x + dc22x
2. The coefficients dc11 and dc22 are

positive, dc12 is negative and for γ ∈ (0, 1) and t ≥ 5. Assume x ∈ (0, 1), and

we get dc11 + dc12x > (dc11 + dc12)x > 0. It follows that h19(x) > h43(x) for

all x ∈ (0, 1).

e) Next to examine is

(h19 − h27)(x) =
4(11γ2 + 20γ + 5)

(γ + 1)(γ + 5)(7γ + 5)
+

2(3 + γ)

(γ + 1)(γ + 5)
x

+
2[(16− 8t)γ3 + (24− 19t)γ2 + (8− 2t)γ + 5t]

t(1− γ)(γ + 1)(γ + 5)(7γ + 5)
x2.

Substitution of x = x19 provides

(h19 − h27)(x19) =
a(γ) + b(γ)

√
RTx19

(7γ + 5)(8tγ3 − 2γ3 + 40tγ2 + 17tγ + 2γ − 5t)2
,

in which

a(γ) = 8(236t2+145t−58)γ6+2(6388t2+3981t−208)γ5+4(5093t2+2145t+

96)γ4+2(2697t2+2524t+208)γ3−10(1033t2−450t−8)γ2−50t(61t−
31)γ + 1750t2

and

b(γ) = 2(44t− 39)γ3 + 4(67t− 36)γ2 + 10(7t− 5)γ − 50t.
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The denominator of (h19 − h27)(x19) is positive for all γ ∈ (0, 1) and t ≥ 5. In

order to determine the roots of the numerator, the signs of a(γ) and b(γ) need

to be identified.

e1) In order to analyze a(γ) for all γ > γβ(t), transform γ by γ = 0.08γ′+0.92.

It follows that a(γ) > 0 is equivalent to a(γ′) > 0 for γ′ ∈ (0, 1) and

γ ∈ (0.92, 1). We get

a(γ′) = 16
244140625

[32(236t2 + 145t − 58)γ′6 + 4(289972t2 + 179565t −
37216)γ′5 + 10(6444478t2 + 3745785t − 463784)γ′4 +

5(340472317t2+190747390t−13934576)γ′3+10(2224492503t2+

1332710235t − 49288784)γ′2 + (132229285063t2 +

100682696410t − 1129648864)γ′ + 2(141605470551t2 +

162225704270t + 848499072)].

As all coefficients of γ′i are positive, 0 ≤ i ≤ 6, a(γ′) is positive for all

γ′ ∈ (0, 1), and thus, a(γ) is positive for all γ ∈ (0.92, 1) as well.

e2) Abbreviate b(γ) as b3γ
3 + b2γ

2 + b1γ + b0. The first derivative of b(γ) is

b′(γ) = 3b3γ
2+2b2γ+b1 > 0 for all γ ∈ (0, 1) and t ≥ 5, since b1, b2 and b3

are positive. A positive slope denotes that b(γ) increases monotonously

in γ. Therefore, as b(0.92) > 1320 is positive, b(γ) is positive for all

γ ∈ (0.92, 1).

Use the results of e1) and e2) to find that a(γ) + b(γ)
√

RTx19 is positive

for all γ ∈ (0.92, 1). The inequality implies that h19(x19) > h27(x19) for all

γ ∈ [γβ(t), 1).

Notice, combining the results of d) and e), we get h19(x19) > hl(x19) for all

l ∈ LD and γ ∈ [γβ(t), 1).

f) Now, observe that

(h19 − h23)(x) =
8(2γ2 + 5γ + 5)

(γ + 1)(γ + 5)(3γ + 5)
+

2(γ2 + 2γ + 5)

(γ + 1)(γ + 5)(3γ + 5)
x

2[(4− t)γ3 + 4tγ2 + (11t− 4)γ + 10t]

t(1− γ)(γ + 1)(γ + 5)(3γ + 5)
x2.

Write (h19 − h23)(x) = dc11 + dc12x + dc22x
2. It is clear to detect that dc11,

dc12 and dc22 are positive for γ ∈ (0, 1) and t ≥ 5.

The positive coefficients of x and x2 imply that h19(x) > h23(x) for all x > 0.
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g) Next to analyze is

(h19 − h37)(x) =
8(2γ2 + 5γ + 5)

(γ + 1)(γ + 5)(3γ + 5)
+

4(3γ2 + 16γ + 15)

(γ + 1)(γ + 5)(3γ + 5)
x

2[(7− 2t)γ3 + (18− 2t)γ2 + (6t + 11)γ + 10t]

t(1− γ)(γ + 1)(γ + 5)(3γ + 5)
x2.

Again, as in f), all the coefficients dcij are positive, 1 ≤ i, j ≤ 2, for γ ∈ (0, 1)

and t ≥ 5.

The conclusion is: h19(x) > h37(x) for all x > 0.

Notice, summing up f) and g), it follows that h19 > hl for all l ∈ LE ∪ {52},
γ ∈ (0, 1) and x > 0.

As Proof of Lemma 8. . . .

c) Remaining

(h2 − h27)(x) =
6(7γ2 + 20γ + 5)

(3γ + 5)(7γ + 5)
− 4γ

(3γ + 5)
x

+
2[7(1− 2t)γ3 + 6(3− 8t)γ2 + (7− 12t)γ + 10t]

t(1− γ)(3γ + 5)(7γ + 5)
x2

to be analyzed properly. Substitution of x = x2 supplies

(h2 − h27)(x2) =
a(γ) + b(γ)

√
RTx2

γ2(7γ + 5)(14tγ − γ + 6t + 1)2
,

in which

a(γ) = 4[14(12t2 +13t− 1)γ5− (12t2− 356t+7)γ4 +(1208t2− 97t+16)γ3−
(274t2 − 214t− 5)γ2 − 5t(98t− 29)γ + 200t2]

and

b(γ) = 8[−14tγ3 + 3(12t− 5)γ2 + (17t− 7)γ − 10t].

The denominator of (h2− h27)(x2) is positive for all γ ∈ (0, 1) and t ≥ 5. The

next step is the determination of the roots of a(γ)+b(γ)
√

RTx2 in the interval

(0, 0.93) ⊃ (0, γβ(t)] of γ.
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c1) Abbreviate a(γ) = a5γ
5 + a4γ

4 + a3γ
3 + a2γ

2 + a1γ + a0 and decompose

a3 into 48t2 + (4784t2 − 388t + 64). Next, define A03(γ) := a0 + a1γ +

a2γ
2 + (4784t2 − 388t + 64)γ3. The first derivative of A03(γ) is A′

03(γ) =

12(1196t2−97t+16)γ2 +2a2γ +a1 and equals 0 iff γ ∈ (0, 1) is equivalent

to

γst =

√
W + 274t2 − 214t− 5

3(1196t2 − 97t + 16)
,

in which W = 1833196t4−780122t3 +108771t2−4820t+25. Some simple

calculus confirms that 0.4 < γst < 0.5. Analyzing the curvature of A03(γ),

the root of A′′
03(γ) is located at some γinf < 0.1 such that A03((0, γinf ))

is concave and A03((γinf , 0.93)) convex. This, however, proves A03(γst) is

a minimum of A03(γ). Remodel the function value of A03(γst) properly

and it proves A03(γst) > 0. Knowing that A03(γ ↘ 0) is positive, the

function A03(γ) is positive for all γ ∈ (0, 0.93). In addition to A03(γ),

a5 > 0 and a4γ
4 + 48t2γ3 > (a4 + 48t2)γ3 > 0, such that a(γ) is positive

for all γ ∈ (0, 0.93) and t ≥ 5.

c2) In order to determine the range of γ in which b(γ) is nonpositive, observe

that b′(γ) = −336tγ2 + 48(12t − 5)γ + 8(17t − 7) > 0 for γ ∈ (0, 1) and

t ≥ 5 because −336tγ2 + 48(12t − 5)γ > 240(t − 1)γ2 > 0 for all t ≥ 5.

The positive slope of b(γ) implies that there exists just one root in the

interval (0, 1) of γ, since b(γ ↘ 0) is negative and b(γ ↗ 1) is positive.

The function value b(0.4) is positive. Thus, the true root of b(γ) is at

some γ < 0.4 and b(γ) is positive for all γ > 0.4.

A positive function value of b(γ) implies that (h2− h27)(x2) is positive. Thus,

assume b(γ) < 0 and analyze if a(γ) > −b(γ)
√

RTx2 . The inequality is equiv-

alent to

a2(γ)− b2(γ)RTx2 > 0

⇔ 16[(14t− 1)γ + 6t + 1]2 · g(γ) > 0

⇔ g(γ) := g0 + g1γ + . . . + g6γ
6 > 0,

in which

g(γ) = 196(5t2+2t+1)γ6−28(194t2−57t−21)γ5+(10680t2−2636t+581)γ4+

2(516t2+569t+105)γ3−5(1363t2−448t−5)γ2+10t(53t+47)γ+625t2.
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It is sufficient to evaluate g(γ) for b(γ) < 0, i.e., γ ∈ (0, 0.4). Thus, restrict γ

to interval (0, 0.4) by the transformation γ = 0.4γ′, in which γ′ ∈ (0, 1). The

transformation gives

g(γ′) = [12544(5t2 + 2t + 1)γ′6 − 4480(194t2 − 57t − 21)γ′5 + 400(10680t2 −
2636t+581)γ′4 +2000(516t2 +569t+105)γ′3−12500(1363t2−448t−
5)γ′2 + 62500t(53t + 47)γ′ + 9765625t2]/15625.

Write g(γ′) = g′6γ
′6 + . . . + g′1γ

′ + g′0. All g′i, i ∈ {0, 1, 3, 4, 6}, are positive,

except for i = 2, 5. Define G04(γ
′) :=

∑3
i=0 g′iγ

′i +(g′4 + g′5)γ
′4 to get G04(γ

′) <∑5
i=0 g′iγ

′i < g(γ′). Take the derivative of G04(γ
′) twice and it yields G′

04(γ
′) =

4(g′4 + g′5)γ
′3 +3g′3γ

′2 +2g′2γ
′ + g′1 and G′′

04(γ
′) = 12(g′4 + g′5)γ

′2 +6g′3γ
′2g′2. The

second derivative equals 0 iff γ′ is equivalent to

γinf =
25
√

3W − 75(516t2 + 569t + 105)

12(42536t2 − 9988t + 4081)
,

in which W = 116751904t4 − 63577920t3 + 20945057t2 − 3198226t − 7735.

G′′
04(γ

′) is negative for all γ′ < γinf . Thus, G04((0, γinf )) is concave. The

concavity implies that local minima of G04(γ) are represented in the range

boundaries of either γ′ = 0 or γ′ = γinf . Since the function value of G04(γ
′ ↘

0) is positive and some simple calculus confirms that G04(γinf ) is positive as

well, it is concluded that G04(γ
′) > 0 for all γ′ ∈ (0, γinf ).

G04((γinf , 1)) is convex. The convexity implies that G′
04(γ) increases on the

whole range of γ′ ∈ (γinf , 1). G′
04(1) is negative, as well as G′

04 for all γ′ ∈
(γinf , 1). This denotes G04(γ) is (monotonous) decreasing in this described

interval of γ′. Observe that G04(1) is positive for all t ≥ 5 and combine

the result with the former declarations, and thus, G04(γ) is positive for all

γ′ ∈ (γinf , 1).

To summarize, G04(γ) is positive for all γ′ ∈ (0, 1) and all t ≥ 5. Hence, since

0 < G04(γ
′) < g(γ′), we get (h2 − h27)(x2) > 0 .

Summing up the results of l = 27 and l = 43, h2(x2) > hl(x2) for all l ∈ LD,

γ ∈ (0, γβ(t)] and t ≥ 5.
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B.2 Sequence Length p = 6

B.2.1 Set of all Equivalence Classes

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

R1 = 6

1 : [123456] 5 −5
3
x +5(5t−1)

6t
x2

Group A: RA = 2(2γ + 3)/(γ + 1)

2 : [123455] 2(3γ+7)
(2γ+3)

− 3γ
(2γ+3)

x + ((3−9t)γ2+(2−6t)γ+25t−5)
2t(1−γ)(2γ+3)

x2

7 : [123445] 2(3γ+7)
(2γ+3)

− (2γ+1)
(2γ+3)

x + ((3−9t)γ2+(2−4t)γ+23t−5)
2t(1−γ)(2γ+3)

x2

27 : [123345]

78 : [122345]

152 : [112345] 2(3γ+7)
(2γ+3)

− (3γ+1)
(2γ+3)

x + (−12tγ2−6tγ+23t−5)
2t(1−γ)(2γ+3)

x2

3 : [123454] 2(3γ+7)
(2γ+3)

−2(γ+3)
(2γ+3)

x + ((3−9t)γ2+(2−6t)γ+25t−5)
2t(1−γ)(2γ+3)

x2

4 : [123453]

5 : [123452]

12 : [123435] 2(3γ+7)
(2γ+3)

− (γ+7)
(2γ+3)

x + ((3−7t)γ2+(2−6t)γ+23t−5)
2t(1−γ)(2γ+3)

x2

17 : [123425]

44 : [123245]

6 : [123451] 2(3γ+7)
(2γ+3)

−3(γ+2)
(2γ+3)

x + (−12tγ2−8tγ+25t−5)
2t(1−γ)(2γ+3)

x2

22 : [123415] 2(3γ+7)
(2γ+3)

− (2γ+7)
(2γ+3)

x + (−10tγ2−8tγ+23t−5)
2t(1−γ)(2γ+3)

x2

61 : [123145]

115 : [121345]

Group B: RB = 2(γ + 3)/(γ + 1)

28 : [123344] (γ2+10γ+13)
((γ+1)(γ+3))

+ (4−γ2+γ)
(γ+1)(γ+3)

x + (−(t−1)γ3+(5−5t)γ2+(15t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

79 : [122344] (γ2+10γ+13)
((γ+1)(γ+3))

+ 4
(γ+1)(γ+3)

x + (−(t−1)γ3+(5−3t)γ2+(13t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

Table B.2 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

83 : [122334] (γ2+10γ+13)
((γ+1)(γ+3))

+ 1
(γ+1)

x + (−(t−1)γ3+(5−3t)γ2+(15t−1)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

153 : [112344] (γ2+10γ+13)
((γ+1)(γ+3))

+ (4−γ2−γ)
(γ+1)(γ+3)

x + (−2tγ3−8tγ2+(11t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

169 : [112234] (γ2+10γ+13)
((γ+1)(γ+3))

+ (3−γ2)
(γ+1)(γ+3)

x + (−2tγ3−8tγ2+(13t−3)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

157 : [112334] (γ2+10γ+13)
((γ+1)(γ+3))

+ (3−γ)
(γ+1)(γ+3)

x + (−2tγ3−6tγ2+(11t−3)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

36 : [123324] (γ2+10γ+13)
((γ+1)(γ+3))

− 1
(γ+1)

x + (−(t−1)γ3+(5−3t)γ2+(15t−1)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

10 : [123442] (γ2+10γ+13)
((γ+1)(γ+3))

− 2
(γ+3)

x + (−(t−1)γ3+(5−5t)γ2+(15t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

80 : [122343]

30 : [123342] (γ2+10γ+13)
((γ+1)(γ+3))

− 2
(γ+3)

x + (−(t−1)γ3+(5−3t)γ2+(13t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

45 : [123244]

11 : [123441] (γ2+10γ+13)
((γ+1)(γ+3))

− (γ+2)
(γ+3)

x + (−2tγ3−10tγ2+(13t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

155 : [112342]

62 : [123144] (γ2+10γ+13)
((γ+1)(γ+3))

− (γ+2)
(γ+3)

x + (−2tγ3−8tγ2+(11t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

82 : [122341]

40 : [123314] (γ2+10γ+13)
((γ+1)(γ+3))

− 3
(γ+3)

x + (−8tγ2+(11t−3)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

161 : [112324]

91 : [122314] (γ2+10γ+13)
((γ+1)(γ+3))

− 3
(γ+3)

x + (−2tγ3−6tγ2+(11t−3)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

120 : [121334]

9 : [123443] (γ2+10γ+13)
((γ+1)(γ+3))

− (γ2+γ+2)
(γ+1)(γ+3)

x + (−(t−1)γ3+(5−5t)γ2+(15t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

Table B.2 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

31 : [123341] (γ2+10γ+13)
((γ+1)(γ+3))

− (4γ+2)
(γ+1)(γ+3)

x + (−2tγ3−8tγ2+(11t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

154 : [112343]

116 : [121344] (γ2+10γ+13)
((γ+1)(γ+3))

− (4γ+2)
(γ+1)(γ+3)

x + (−8tγ2+(9t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

105 : [122134] (γ2+10γ+13)
((γ+1)(γ+3))

− (γ2+2γ+3)
(γ+1)(γ+3)

x + (−2tγ3−8tγ2+(13t−3)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

13 : [123434] (γ2+10γ+13)
((γ+1)(γ+3))

− (γ2+3γ+8)
(γ+1)(γ+3)

x + (−(t−1)γ3+(5−9t)γ2+(3t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

15 : [123432] (γ2+10γ+13)
((γ+1)(γ+3))

− (4γ+8)
(γ+1)(γ+3)

x + (−(t−1)γ3+(5−3t)γ2+(13t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

18 : [123424]

46 : [123243]

19 : [123423] (γ2+10γ+13)
((γ+1)(γ+3))

− (4γ+8)
(γ+1)(γ+3)

x + (−(t−1)γ3+(5−9t)γ2+(3t−1)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

49 : [123234] (γ2+10γ+13)
((γ+1)(γ+3))

− 3
(γ+1)

x + (−(t−1)γ3+(5−7t)γ2+(3t−1)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

21 : [123421] (γ2+10γ+13)
((γ+1)(γ+3))

− (γ2+5γ+8)
(γ+1)(γ+3)

x + (−2tγ3−8tγ2+(11t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

23 : [123414]

118 : [121342]

25 : [123412] (γ2+10γ+13)
((γ+1)(γ+3))

− (γ2+5γ+8)
(γ+1)(γ+3)

x + (−2tγ3−14tγ2+(t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

16 : [123431] (γ2+10γ+13)
((γ+1)(γ+3))

− (6γ+8)
(γ+1)(γ+3)

x + (−2tγ3−8tγ2+(11t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

24 : [123413]

64 : [123142]

117 : [121343]

48 : [123241] (γ2+10γ+13)
((γ+1)(γ+3))

− (6γ+8)
(γ+1)(γ+3)

x + (−8tγ2+(9t−3)γ+23t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

Table B.2 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

63 : [123143]

132 : [121234] (γ2+10γ+13)
((γ+1)(γ+3))

− (γ2+4γ+9)
(γ+1)(γ+3)

x + (−2tγ3−12tγ2+(t−3)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

57 : [123214] (γ2+10γ+13)
((γ+1)(γ+3))

− (5γ+9)
(γ+1)(γ+3)

x + (−2tγ3−6tγ2+(11t−3)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

66 : [123134]

124 : [121324]

70 : [123124] (γ2+10γ+13)
((γ+1)(γ+3))

− (5γ+9)
(γ+1)(γ+3)

x + (−12tγ2−(t+3)γ+21t−5)
(2t(1−γ)(γ+1)(γ+3))

x2

Group C: RC = 6/(γ + 1)

170 : [112233] 4
(γ+1)

+ 8
3(γ+1)

x + ((9t−1)γ+21t−5)
6t(1−γ)(γ+1)

x2

86 : [122331] 4
(γ+1)

+ 2
3(γ+1)

x + ((9t−1)γ+21t−5)
6t(1−γ)(γ+1)

x2

106 : [122133]

159 : [112332]

39 : [123321] 4
(γ+1)

− 4
3(γ+1)

x + ((9t−1)γ+21t−5)
6t(1−γ)(γ+1)

x2

92 : [122313]

122 : [121332]

42 : [123312] 4
(γ+1)

− 4
3(γ+1)

x + (−(3t+1)γ+21t−5)
6t(1−γ)(γ+1)

x2

133 : [121233]

162 : [112323]

58 : [123213] 4
(γ+1)

− 10
3(γ+1)

x + ((9t−1)γ+21t−5)
6t(1−γ)(γ+1)

x2

68 : [123132]

125 : [121323]

71 : [123123] 4
(γ+1)

− 10
3(γ+1)

x + (−(15t+1)γ+21t−5)
6t(1−γ)(γ+1)

x2

Table B.2 continues on the next page ...



94 Appendix B : Equivalence Classes of Treatments

... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

52 : [123231] 4
(γ+1)

− 10
3(γ+1)

x + (−(3t+1)γ+21t−5)
6t(1−γ)(γ+1)

x2

Group D: RD = 6(γ + 1)/(2γ + 1)

8 : [123444] (2γ+4)
(γ+1)

− (4γ−3)
3(γ+1)

x + ((4−8t)γ2+(t+1)γ+23t−5)
6t(1−γ)(γ+1)

x2

32 : [123334] (2γ+4)
(γ+1)

− (2γ−1)
3(γ+1)

x + ((4−8t)γ2+(5t+1)γ+19t−5)
6t(1−γ)(γ+1)

x2

95 : [122234]

189 : [111234] (2γ+4)
(γ+1)

− (4γ−1)
3(γ+1)

x + (−12tγ2+(t−3)γ+19t−5)
6t(1−γ)(γ+1)

x2

14 : [123433] (2γ+4)
(γ+1)

− (2γ+3)
3(γ+1)

x + ((4−8t)γ2+(9t+1)γ+23t−5)
6t(1−γ)(γ+1)

x2

20 : [123422]

29 : [123343]

81 : [122342]

53 : [123224] (2γ+4)
(γ+1)

− 5
3(γ+1)

x + ((4−4t)γ2+(9t+1)γ+19t−5)
6t(1−γ)(γ+1)

x2

87 : [122324]

26 : [123411] (2γ+4)
(γ+1)

− (4γ+3)
3(γ+1)

x + (−12tγ2+(5t−3)γ+23t−5)
6t(1−γ)(γ+1)

x2

156 : [112341]

74 : [123114] (2γ+4)
(γ+1)

− (2γ+5)
3(γ+1)

x + (−8tγ2+(5t−3)γ+19t−5)
6t(1−γ)(γ+1)

x2

142 : [121134]

165 : [112314]

179 : [112134]

47 : [123242] (2γ+4)
(γ+1)

− 3
(γ+1)

x + ((4−4t)γ2+(5t+1)γ+23t−5)
6t(1−γ)(γ+1)

x2

65 : [123141] (2γ+4)
(γ+1)

− (2γ+9)
3(γ+1)

x + (−8tγ2+(t−3)γ+23t−5)
6t(1−γ)(γ+1)

x2

119 : [121341]

Table B.2 continues on the next page ...
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l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

128 : [121314] (2γ+4)
(γ+1)

− 11
3(γ+1)

x + (−3(t+1)γ+19t−5)
6t(1−γ)(γ+1)

x2

Group E: RE = 2(γ2 + 5γ + 3)/((γ + 1)(2γ + 1))

84 : [122333] (7γ+11)
(γ2+5γ+3)

+ (2γ+7)
(γ2+5γ+3)

x + ((t+7)γ2+(20t−2)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

96 : [122233] (7γ+11)
(γ2+5γ+3)

+ (3γ+6)
(γ2+5γ+3)

x + ((t+7)γ2+(22t−2)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

158 : [112333] (7γ+11)
(γ2+5γ+3)

+ (−γ+7)
(γ2+5γ+3)

x + (−2tγ2+(14t−4)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

173 : [112223] (7γ+11)
(γ2+5γ+3)

+ (γ+5)
(γ2+5γ+3)

x + (−2tγ2+(18t−4)γ+17t−5)
2t(1−γ)(γ2+5γ+3)

x2

190 : [111233] (7γ+11)
(γ2+5γ+3)

+ (−γ+6)
(γ2+5γ+3)

x + (−(3t+1)γ2+(14t−6)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

193 : [111223] (7γ+11)
(γ2+5γ+3)

+ 5
(γ2+5γ+3)

x + (−(3t+1)γ2+(16t−6)γ+17t−5)
2t(1−γ)(γ2+5γ+3)

x2

38 : [123322] (7γ+11)
(γ2+5γ+3)

+ (2γ+1)
(γ2+5γ+3)

x + ((3t+7)γ2+(30t−2)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

85 : [122332]

163 : [112322] (7γ+11)
(γ2+5γ+3)

+ (−γ+1)
(γ2+5γ+3)

x + (−2tγ2+(26t−4)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

171 : [112232]

34 : [123332] (7γ+11)
(γ2+5γ+3)

+0 + ((t+7)γ2+(22t−2)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

143 : [121133] (7γ+11)
(γ2+5γ+3)

− γ
(γ2+5γ+3)

x + ((t−1)γ2+(22t−6)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

180 : [112133]

112 : [122113] (7γ+11)
(γ2+5γ+3)

− 1
(γ2+5γ+3)

x + ((t−1)γ2+(24t−6)γ+17t−5)
2t(1−γ)(γ2+5γ+3)

x2

176 : [112213]

43 : [123311] (7γ+11)
(γ2+5γ+3)

− (2γ−1)
(γ2+5γ+3)

x + (−(3t+1)γ2+(24t−6)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

160 : [112331]

Table B.2 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

94 : [122311] (7γ+11)
(γ2+5γ+3)

− (2γ−1)
(γ2+5γ+3)

x + (−(t+1)γ2+(22t−6)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

172 : [112231]

121 : [121333] (7γ+11)
(γ2+5γ+3)

− (4γ−1)
(γ2+5γ+3)

x + (−4tγ2+(16t−4)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

35 : [123331] (7γ+11)
(γ2+5γ+3)

− 3γ
(γ2+5γ+3)

x + (−6tγ2+(20t−4)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

98 : [122231] (7γ+11)
(γ2+5γ+3)

− 3γ
(γ2+5γ+3)

x + (−2tγ2+(16t−4)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

191 : [111232] (7γ+11)
(γ2+5γ+3)

− 4γ
(γ2+5γ+3)

x + (−(7t+1)γ2+(18t−6)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

102 : [122213] (7γ+11)
(γ2+5γ+3)

− (2γ+1)
(γ2+5γ+3)

x + (−4tγ2+(20t−4)γ+17t−5)
2t(1−γ)(γ2+5γ+3)

x2

37 : [123323] (7γ+11)
(γ2+5γ+3)

− (γ+5)
(γ2+5γ+3)

x + ((t+7)γ2+(20t−2)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

50 : [123233]

164 : [112321] (7γ+11)
(γ2+5γ+3)

− (5γ+2)
(γ2+5γ+3)

x + (−(3t+1)γ2+(24t−6)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

54 : [123223] (7γ+11)
(γ2+5γ+3)

− 6
(γ2+5γ+3)

x + ((7−t)γ2+(18t−2)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

88 : [122323]

108 : [122131] (7γ+11)
(γ2+5γ+3)

− (2γ+5)
(γ2+5γ+3)

x + (−(t+1)γ2+(22t−6)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

123 : [121331]

41 : [123313] (7γ+11)
(γ2+5γ+3)

− (4γ+5)
(γ2+5γ+3)

x + (−2tγ2+(26t−4)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

67 : [123133]

107 : [122132]

126 : [121322]

Table B.2 continues on the next page ...
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l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

72 : [123122] (7γ+11)
(γ2+5γ+3)

− (4γ+5)
(γ2+5γ+3)

x + (−4tγ2+(16t−4)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

93 : [122312]

56 : [123221] (7γ+11)
(γ2+5γ+3)

− (3γ+6)
(γ2+5γ+3)

x + (2tγ2+(24t−4)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

90 : [122321]

109 : [122123] (7γ+11)
(γ2+5γ+3)

− (2γ+7)
(γ2+5γ+3)

x + ((16t−4)γ+17t−5)
2t(1−γ)(γ2+5γ+3)

x2

136 : [121223]

60 : [123211] (7γ+11)
(γ2+5γ+3)

− (5γ+5)
(γ2+5γ+3)

x + (−(3t+1)γ2+(24t−6)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

75 : [123113] (7γ+11)
(γ2+5γ+3)

− (4γ+6)
(γ2+5γ+3)

x + ((t−1)γ2+(22t−6)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

144 : [121132]

181 : [112132]

166 : [112313]

76 : [123112] (7γ+11)
(γ2+5γ+3)

− (4γ+6)
(γ2+5γ+3)

x + (−(9t+1)γ2+(14t−6)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

167 : [112312]

146 : [121123] (7γ+11)
(γ2+5γ+3)

− (3γ+7)
(γ2+5γ+3)

x + (−(7t+1)γ2+(14t−6)γ+17t−5)
2t(1−γ)(γ2+5γ+3)

x2

183 : [112123]

51 : [123232] (7γ+11)
(γ2+5γ+3)

− (γ+11)
(γ2+5γ+3)

x + ((7−3t)γ2+(6t−2)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

59 : [123212] (7γ+11)
(γ2+5γ+3)

− (4γ+11)
(γ2+5γ+3)

x + (−2tγ2+(14t−4)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

134 : [121232]

69 : [123131] (7γ+11)
(γ2+5γ+3)

− (5γ+11)
(γ2+5γ+3)

x + (−(3t+1)γ2+(12t−6)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

127 : [121321]

Table B.2 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

73 : [123121] (7γ+11)
(γ2+5γ+3)

− (5γ+11)
(γ2+5γ+3)

x + (−(7t+1)γ2+(10t−6)γ+21t−5)
2t(1−γ)(γ2+5γ+3)

x2

135 : [121231]

129 : [121313] (7γ+11)
(γ2+5γ+3)

− (4γ+12)
(γ2+5γ+3)

x + (−(t+1)γ2+(6t−6)γ+19t−5)
2t(1−γ)(γ2+5γ+3)

x2

130 : [121312]

139 : [121213] (7γ+11)
(γ2+5γ+3)

− (3γ+13)
(γ2+5γ+3)

x + (−(3t+1)γ2+(−2t−6)γ+17t−5)
2t(1−γ)(γ2+5γ+3)

x2

Group F: RF = 6/(2γ + 1)

194 : [111222] 3
(2γ+1)

+ 3
(2γ+1)

x + ((19t−7)γ+17t−5)
6t(1−γ)(2γ+1)

x2

104 : [122211] 3
(2γ+1)

+ 1
(2γ+1)

x + ((31t−7)γ+17t−5)
6t(1−γ)(2γ+1)

x2

175 : [112221]

113 : [122112] 3
(2γ+1)

− 1
(2γ+1)

x + ((31t−7)γ+17t−5)
6t(1−γ)(2γ+1)

x2

147 : [121122]

177 : [112212]

184 : [112122]

111 : [122121] 3
(2γ+1)

− 3
(2γ+1)

x + ((19t−7)γ+17t−5)
6t(1−γ)(2γ+1)

x2

138 : [121221]

140 : [121212] 3
(2γ+1)

− 5
(2γ+1)

x + (−(5t+7)γ+17t−5)
6t(1−γ)(2γ+1)

x2

Group G: RG = 6(γ + 1)/(3γ + 1)

33 : [123333] (γ+3)
(γ+1)

+ (−3γ+4)
3(γ+1)

x + (−(3t−3)γ2+(2t+2)γ+19t−5)
6t(1−γ)(γ+1)

x2

99 : [122223] (γ+3)
(γ+1)

+ 1
3(γ+1)

x + (−(3t−3)γ2+(8t+2)γ+13t−5)
6t(1−γ)(γ+1)

x2

199 : [111123] (γ+3)
(γ+1)

− (3γ−1)
3(γ+1)

x + (−6tγ2+(2t−4)γ+13t−5)
6t(1−γ)(γ+1)

x2

55 : [123222] (γ+3)
(γ+1)

− 2
3(γ+1)

x + (−(3t−3)γ2+(14t+2)γ+19t−5)
6t(1−γ)(γ+1)

x2

Table B.2 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

89 : [122322]

97 : [122232]

77 : [123111] (γ+3)
(γ+1)

− (3γ+2)
3(γ+1)

x + (−6tγ2+(8t−4)γ+19t−5)
6t(1−γ)(γ+1)

x2

168 : [112311]

192 : [111231]

149 : [121113] (γ+3)
(γ+1)

− 5
3(γ+1)

x + ((8t−4)γ+13t−5)
6t(1−γ)(γ+1)

x2

186 : [112113]

196 : [111213]

131 : [121311] (γ+3)
(γ+1)

− 8
3(γ+1)

x + ((8t−4)γ+19t−5)
6t(1−γ)(γ+1)

x2

145 : [121131]

182 : [112131]

Group H: RH = 2(5γ + 3)/((γ + 1)(3γ + 1))

174 : [112222] 8
(5γ+3)

+ 8
(5γ+3)

x + ((15t−3)γ+17t−5)
2t(1−γ)(5γ+3)

x2

200 : [111122] 8
(5γ+3)

+ 6
(5γ+3)

x + ((15t−7)γ+13t−5)
2t(1−γ)(5γ+3)

x2

114 : [122111] 8
(5γ+3)

+ 2
(5γ+3)

x + ((27t−7)γ+17t−5)
2t(1−γ)(5γ+3)

x2

178 : [112211]

195 : [111221]

101 : [122221] 8
(5γ+3)

+0 + ((19t−3)γ+13t−5)
2t(1−γ)(5γ+3)

x2

103 : [122212] 8
(5γ+3)

− 4
(5γ+3)

x + ((23t−3)γ+17t−5)
2t(1−γ)(5γ+3)

x2

104 : [122122]

137 : [121222]

150 : [121112] 8
(5γ+3)

− 6
(5γ+3)

x + ((15t−7)γ+13t−5)
2t(1−γ)(5γ+3)

x2

Table B.2 continues on the next page ...
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... continued from the previous page.

l : [...] hl = c11(l) +2c12(l)x +c22(l)x
2

187 : [112112]

197 : [111212]

141 : [121211] 8
(5γ+3)

− 10
(5γ+3)

x + ((11t−7)γ+17t−5)
2t(1−γ)(5γ+3)

x2

148 : [121121]

185 : [112121]

Group I: RI = 2(2γ + 3)/(4γ + 1)

100 : [122222] 5
(2γ+3)

+ 3
(2γ+3)

x + ((3t+5)γ+13t−5)
2t(1−γ)(2γ+3)

x2

202 : [111112] 5
(2γ+3)

+0 + ((3t−3)γ+5t−5)
2t(1−γ)(2γ+3)

x2

151 : [121111] 5
(2γ+3)

− 3
(2γ+3)

x + ((7t−3)γ+13t−5)
2t(1−γ)(2γ+3)

x2

188 : [112111]

198 : [111211]

201 : [111121]

R203 = 6/(5γ + 1)

203 : [111111] 0 +0 + 5(t−1)
6t(1−γ)

x2

Table B.2: All equivalence classes, their representative sequences [...] and hl func-

tions for sequence length p = 6.

B.2.2 Steps of Argumentation

As Proof of Lemma 10. . . .

b) Further, observe the expression

(h28 − h170)(x) =
(γ2 + 6γ + 1)

(γ + 1)(γ + 3)
− (3γ2 + 5γ + 12)

3(γ + 1)(γ + 3)
x

+
−3(t− 1)γ3 − 8(3t− 2)γ2 − (3t− 5)γ + 6t

6t(1− γ)(γ + 1)(γ + 3)
x2.
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Substitution of x = x28 gives

(h28 − h170)(x28) =
a(γ)− b(γ)

√
RTx28

12(γ + 1)[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]2
,

in which

a(γ) = 60(9t2 + 10t− 1)γ7 + 2(1465t2 + 2417t− 156)γ6 + 3(3117t2 + 3179t−
40)γ5 +2(5308t2 +2375t+144)γ4 +12(156t2 +205t+15)γ3−8(44t2−
512t− 3)γ2 + 3t(639t + 457)γ + 774t2

and

b(γ) = 60tγ4 − 7(t− 13)γ3 + 6(t + 28)γ2 + (79t + 53)γ + 30t.

The denominator of (h28 − h170)(x28) is positive for all γ ∈ (0, 1) and t ≥ 6.

The function a(γ) := a0 + a1γ + . . . + a7γ
7 is positive because all coeffi-

cients ai, i ∈ {0, 1, 3, 4, 5, 6, 7}, are positive and (a2γ
2 + a1γ) > (a2 + a1)γ =

(1565t2 + 5467t + 24)γ is positive for γ ∈ (0, 1) and t ≥ 6.

Abbreviate b(γ) = b0 + b1γ + . . . + b4γ
4. All coefficients bi are positive, except

for b3. Still, b(γ) is positive for γ ∈ (0, 1) since (b3γ
3 + b1γ) > (b3 + b1)γ =

72(t + 2)γ > 0.

It follows that the numerator of (h28 − h170)(x28) is positive iff

a2(γ)− b2(γ)RTx28 > 0

⇔ 24[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]2 · g(γ) > 0

⇔ g(γ) := g0 + g1γ + . . . + g8γ
8 > 0,

in which

g(γ) = 150(5t2 + 2t + 1)γ8 − 10(49t2 − 355t − 156)γ7 + (3079t2 + 7001t +

4956)γ6+(5929t2+5393t+4800)γ5+6(258t2+887t+329)γ4+4(155t2+

1153t + 90)γ3 + (1691t2 + 1393t + 24)γ2 + (661t + 77)tγ + 36t2.

It holds that −10(49t2−355t−156)γ7 +(3079t2 +7001t+4956)γ6 > (2589t2 +

10551t + 6516)γ6 > 0. All other coefficients of γi, 0 ≤ i ≤ 5, of the function

g(γ) are positive and it follows that g(γ) is positive.

Hence, h28(x28) > h170(x28) for all γ ∈ (0, 1) and t ≥ 6.



102 Appendix B : Equivalence Classes of Treatments

c) Analyze

(h28 − h8)(x) =
(1− γ)

(γ + 3)
+

(γ2 + 12γ + 3)

3(γ + 1)(γ + 3)
x

+
(5t− 1)γ3 + (8t + 2)γ2 + (19t− 1)γ

6t(1− γ)(γ + 1)(γ + 3)
x2

and rewrite h28 − h8 as dc11 + dc12x + dc22x
2. The coefficients dc11, dc12 and

dc22 are positive for γ ∈ (0, 1) and t ≥ 6.

Hence, h28 > h8 for all x ∈ (0, 1).

d) Next to analyze is

(h28 − h14)(x) =
(1− γ)

(γ + 3)
+

(21 + 12γ − γ2)

3(γ + 1)(γ + 3)
x +

(1− 5t)γ2 − (5t + 1)γ

6t(γ + 1)(γ + 3)
x2.

Retype (h28 − h14)(x) = dc11 + dc12x + dc22x
2. The coefficients dc11 and dc12

are positive, dc22 is negative for γ ∈ (0, 1) and t ≥ 6. For x ∈ (0, 1) we get

dc12x+dc22x
2 > (dc12 +dc22)x

2 = [(1−7t)γ2 +(19t−1)γ +42t]/[6t(γ +1)(γ +

3)] · x2 > 0 because γ2 < γ and (1− 7t) + (19t− 1) > 0.

Therefore, h28(x) > h14(x) for all x ∈ (0, 1).

Notice, the conclusion of c) and d) is: h28(x) > hl(x) for l ∈ LD, γ ∈ (0, 1)

and x ∈ (0, 1).

e) Next to observe is

(h28 − h84)(x) =
(γ4 + 8γ3 + 27γ2 + 30γ + 6)

(γ + 1)(γ + 3)(γ2 + 5γ + 3)
− (γ4 + 6γ3 + 9γ2 + 11γ + 9)

(γ + 1)(γ + 3)(γ2 + 5γ + 3)
x

+
−(t− 1)γ5 − (11t− 3)γ4 − (37t− 1)γ3 − 3(7t + 1)γ2 + 2(8t− 1)γ + 6t

2t(1− γ)(γ + 1)(γ + 3)(γ2 + 5γ + 3)
x2.

Substitution of x = x28 provides

(h28 − h84)(x28) =
a(γ)− b(γ)

√
RTx28

4(γ2 + 5γ + 3)[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]2
,

in which

a(γ) = 20(9t2 +10t−1)γ8 +2(397t2 +359t−10)γ7 +(4217t2−169t+48)γ6 +

2(9489t2−856t+16)γ5 +2(13292t2 +139t−14)γ4 +2(1664t2 +647t−
6)γ3 − 3t(1347t + 95)γ2 + 36t(119t− 9)γ + 972t2

and

b(γ) = 20tγ5 +(67t+17)γ4−2(52t−7)γ3− (79t+19)γ2 +12(15t−1)γ +36t.
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The denominator of (h28 − h84)(x28) is positive for all γ ∈ (0, 1) and t ≥ 6.

Abbreviate a(γ) = a0 + a1γ + . . . + a8γ
8. Just the coefficient a2 is negative. It

follows from a2γ
2 +a1γ > (a2 +a1)γ = 3t(81t−203)γ > 0 that a(γ) is positive

for γ ∈ (0, 1) and t ≥ 6.

The same approach leads to b(γ) > 0. Rewrite b(γ) = b0 + b1γ + . . . + b5γ
5.

The coefficients b2 and b3 are negative, but
3∑

i=0

biγ
i > (

3∑
i=0

bi)γ = (33t− 17)γ is

positive for all γ ∈ (0, 1) and t ≥ 6.

Thus, (h28 − h84)(x28) > 0 is equivalent to

a2(γ)− b2(γ)RTx28 > 0

⇔ 8[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]2 · g(γ) > 0

⇔ g(γ) := g0 + g1γ + . . . + g10γ
10 > 0,

in which

g(γ) = 50(5t2 +2t+1)γ10+10(127t2 +61t+10)γ9− (431t2−2041t+90)γ8−
2(1511t2 − 1042t + 100)γ7 + 2(16648t2 − 749t + 19)γ6 + 2(37900t2 −
665t+42)γ5+3(11275t2+667t+6)γ4−12t(523t+121)γ3+36t(530t−
59)γ2 + 432t(25t− 1)γ + 1296t2.

The coefficients g3, g7 and g8 are negative. With (g3γ
3 +g2γ

2) > (g3 +g2)γ
2 =

12t(1067t − 298)γ2 > 0 and (g8γ
8 + g7γ

7 + g6γ
6) > (g8 + g7 + g6)γ

6 =

(29843t2 + 2627t − 252)γ6 > 0 follows that g(γ) is positive for all γ ∈ (0, 1)

and t ≥ 6.

According to g(γ) > 0, h28(x28) > h84(x28) for all γ ∈ (0, 1) and all t ≥ 6.

f) Now, observe that

(h28 − h38)(x) =
(γ4 + 8γ3 + 27γ2 + 30γ + 6)

(γ + 1)(γ + 3)(γ2 + 5γ + 3)
+

(13γ + 9− 3γ2 − 6γ3 − γ4)

(γ + 1)(γ + 3)(γ2 + 5γ + 3)
x

+
−(t− 1)γ5 − (13t− 3)γ4 − (55t− 1)γ3 − (67t + 3)γ2 − (14t + 2)γ + 6t

2t(1− γ)(γ + 1)(γ + 3)(γ2 + 5γ + 3)
x2.

Substitution of x = x28 gives

(h28 − h38)(x28) =
(1− γ)a(γ)− b(γ)

√
RTx28

4(γ2 + 5γ + 3)((11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t)2
,

in which
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a(γ) = −20(9t2 + 10t − 1)γ7 − 2(227t2 + 483t − 20)γ6 + (249t2 − 1133t −
8)γ5− (6047t2− 255t + 40)γ4− (24123t2− 241t + 12)γ3− 3t(8013t +

335)γ2 − 18t(227t + 36)γ + 1944t2

and

b(γ) = 20tγ5+(63t+17)γ4−2(151t−13)γ3−(723t+19)γ2−6(35t+4)γ+72t.

The denominator of (h28 − h38)(x28) is positive for all γ ∈ (0, 1) and t ≥ 6.

The parameter γ is restricted to the interval (0.95, 1) by applying the trans-

formation γ = 0.95 + 0.05γ′, in which γ′ ∈ (0, 1). The functions a(γ) and b(γ)

alter to

a(γ′) = [−(9t2+10t−1)γ′7−(1651t2+2296t−173)γ′6−(115005t2+208594t−
11981)γ′5 − 5(1312939t2 + 1936448t − 85093)γ′4 − 5(92433167t2 +

50050166t − 1631767)γ′3 − (21099339321t2 + 3792553480t −
79088279)γ′2 − (441059980079t2 + 35707554774t − 276384127)γ′ −
3(1056158611135t2 + 60474582592t + 121356287)]/64000000

and

b(γ′) = [tγ′5 + (158t + 17)γ′4 + 6(393t + 302)γ′3 − 2(214216t − 29431)γ′2 −
(16830847t− 548772)γ′ − (155543238t + 609463)]/160000.

Since all coefficients ai of γi, 0 ≤ i ≤ 7, in a(γ′) are negative for γ′ ∈ (0, 1)

and t ≥ 6, function a(γ′) is negative itself.

Rewrite b(γ′) = b5γ
′5+. . .+b1γ

′+b0. The coefficients b3, b4 and b5 are positive,

such that b(γ′) < (b3 + b4 + b5)γ
′5 + (b0 + b1 + b2)γ

′5 = −1728 · 105tγ′5 < 0 for

t ≥ 6 and γ′ ∈ (0, 1).

Both functions, a(γ) and b(γ), are negative for γ ∈ [0.95, 1). Thus,

(h28 − h38)(x28) > 0 is equivalent to

b2(γ)RTx28 − (1− γ)2a2(γ) > 0

⇔ 8[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]2 · g(γ) > 0

⇔ g(γ) > 0,

in which

g(γ) = 50(5t2 +2t+1)γ9 +10(124t2 +47t+15)γ8− (4991t2− 591t− 60)γ7−
(31731t2 + 2977t + 140)γ6 + (8685t2− 10751t− 102)γ5 + 3(70811t2−
2379t− 6)γ4 +6t(50151t+1424)γ3 +72t(1537t+131)γ2− 432t(21t−
4)γ − 5184t2.
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As a(γ) and b(γ) are negative for γ ∈ (0.95, 1), the function g(γ) needs to

be restricted to this particular interval. Therefore, apply the transformation

γ = 0.95 + 0.05γ′, in which γ′ ∈ (0, 1). Function g(γ) rearranges to

g(γ′) = [(5t2 + 2t + 1)γ′9 + (1351t2 + 530t + 231)γ′8 + 4(25111t2 +

14824t + 5649)γ′7 − 4(623259t2 − 801280t − 306019)γ′6 −
2(290528897t2 − 26095866t − 20112783)γ′5 − 2(7378207115t2 +

1415158086t − 410555937)γ′4 + 4(182179985991t2 − 39444395060t +

2530562861)γ′3 + 4(11238809719909t2 − 714376954124t +

16876169151)γ′2 + (826994043598981t2 − 16914338970310t +

162906812649)γ′ + 5099305337440679t2 + 19932399226538t −
241396325041]/10240000000.

Abbreviate g(γ′) = g0 + g1γ
′ + . . . + g9γ

′9. Three coefficients, g4 g5 and g6, are

negative. However, g(γ′) is positive because g6γ
′6 + g5γ

′5 + g4γ
′4 + g3γ

′3 >

(g6 + g5 + g4 + g3)γ
′4 = 8(89172497363t2− 20069062445t+1373101620)γ′4 > 0

for t ≥ 6 and γ′ ∈ (0, 1).

It follows that the numerator of (h28−h38)(x28) is positive for all γ ∈ (0.95, 1) ⊃
[γβ(t), 1), and thus, h28(x28) > h38(x28) for all γ ∈ [γβ(t), 1) and all t ≥ 6.

g) Next to analyze is

(h28−h194)(x) =
2(γ3 + 9γ2 + 12γ + 2)

(γ + 1)(γ + 3)(2γ + 1)
− (2γ3 + 2γ2 + 3γ + 5)

(γ + 1)(γ + 3)(2γ + 1)
x

+
−3(t− 1)γ4 − 2(13t− 10)γ3 − 3(3t− 7)γ2 + (29t + 4)γ + 9t

3t(1− γ)(γ + 1)(γ + 3)(2γ + 1)
x2.

Define function

d(γ) := d4γ
4 + . . . + d1γ + d0 = −3(t− 1)γ4 − 2(13t− 10)γ3 − 3(3t− 7)γ2 +

(29t + 4)γ + 9t.

The expression (h28 − h194)(x) is a convex function in x because d(γ) >

(d4 + . . . + d1 + d0)γ = 48γ > 0 for all γ ∈ (0, 1) and t ≥ 6. Hence, the

second derivative (h28 − h194)
′′(x) is positive.

The slope of (h28 − h194)(x) equals 0 iff x = xst = 3t(1−γ)(2γ3+2γ2+3γ+5)
2·d(γ)

. The

function value of this stationary point must be the minimum of the function

and is equal to

(h28 − h194)(xst) =
g(γ)

4(γ + 1)(γ + 3)(2γ + 1)d(γ)
,
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in which

g(γ) = −12(t− 2)γ7 − 4(103t− 94)γ6 − 24(92t− 79)γ5 − 8(364t− 439)γ4 +

(871t + 2624)γ3 + 3(1097t + 240)γ2 + (1313t + 64)γ + 69t.

Abbreviate g(γ) as the sum of g7γ
7+. . .+g1γ+g0 and reckon that g7, g6, g5 and

g4 are negative coefficients. But since g(γ) > (g7+. . .+g1+g0)γ
3 = 9216γ3 > 0

and d(γ) > 0 for all γ ∈ (0, 1) and t ≥ 6, (h28 − h194)(xst) is positive as well.

The conclusion of g) is: h28(x) > h194(x) for all x > 0 because the minimum

of (h28 − h194)(x) is positive for all γ ∈ (0, 1) and all t ≥ 6.

h) Another expression to examine is

(h28 − h104)(x) =
2(γ3 + 9γ2 + 12γ + 2)

(γ + 1)(γ + 3)(2γ + 1)
+

(1 + 5γ − 2γ3)

(γ + 1)(γ + 3)(2γ + 1)
x

+
−3(t− 1)γ4 − 4(8t− 5)γ3 − 3(11t− 7)γ2 + (11t + 4)γ + 9t

3t(1− γ)(γ + 1)(γ + 3)(2γ + 1)
x2.

Rewrite (h28 − h104)(x) = dc11 + dc12x + dc22x
2. It is clear to detect that dc11

and dc12 are positive for γ ∈ (0, 1) and t ≥ 6. The sum dc11 + dc12 + dc22 is

equivalent to d(γ)/[3t(1− γ)(γ + 1)(γ + 3)(2γ + 1)], in which

d(γ) := d4γ
4+. . .+d1γ+d0 = 3(t−1)γ4−2(11t−10)γ3−21γ2+(61t−4)γ+6t.

It holds that d(γ) > d4γ
4 + (d3 + d2 + d1 + d0)γ

2 = (3γ2 + 45)(t− 1)γ2 > 0 for

all γ ∈ (0, 1) and t ≥ 6. Hence, dc11 + dc12x + dc22x
2 > (dc11 + dc12 + dc22)x

2

for all x ∈ (0, 1) and h28(x) > h104(x) for all x, γ ∈ (0, 1) and t ≥ 6.

Notice, summing up g) and h), it follows that h28 > hl for all l ∈ LF ,

x, γ ∈ (0, 1) and t ≥ 6.

i) As −(2t− 1)γ2 + 3t > (t + 1)γ2, all coefficients of xi, 0 ≤ i ≤ 2, of

(h28−h33)(x) =
4

(γ + 3)
+

8γ

3(γ + 1)(γ + 3)
x+

2[−(2t− 1)γ2 + (5t− 1)γ + 3t]

3t(1− γ)(γ + 1)(γ + 3)
x2,

are positive for x > 0, γ ∈ (0, 1) and t ≥ 6.

Thus, h28(x) > h33(x) for all x > 0, γ ∈ (0, 1) and t ≥ 6.

k) Observe that

(h28−h55)(x) =
4

(γ + 3)
+

(18 + 5γ − 3γ2)

3(γ + 1)(γ + 3)
x+

2[−(5t− 1)γ2 − (4t + 1)γ + 3t]

3t(1− γ)(γ + 1)(γ + 3)
x2.
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Substitution of x = x28 gives

(h28 − h55)(x28) =
a(γ)− b(γ)

√
RTx28

2(γ + 1)((11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t)2
,

in which

a(γ) = −2t(11t−1)γ7−(87t2−89t+8)γ6+8(179t2−2t+1)γ5+(4471t2−298t+

8)γ4 +(2163t2 +254t− 8)γ3− 37t(76t− 5)γ2− 3t(395t+72)γ +648t2

and

b(γ) = (11t− 1)γ4 − 2(14t− 3)γ3 − (104t− 3)γ2 − (35t + 8)γ + 24t.

The denominator of (h28 − h55)(x28) is positive for all γ ∈ (0, 1) and t ≥ 6.

In order to determine the roots of (h28 − h55)(x28) for γ ∈ (γβ(t), 1), apply the

transformation γ = 0.95 + 0.05γ′, in which γ′ ∈ (0, 1) and γ ∈ (0.95, 1) ⊃
[γβ(t), 1). As a result, functions a(γ) and b(γ) alter to

a(γ′) = [−t(11t − 1)γ′7 − (2333t2 − 1023t + 80)γ′6 + (103829t2 + 105841t −
7520)γ′5 + 5(7548047t2 + 712683t − 49840)γ′4 + 5(479321563t2 +

8965487t−681280)γ′3+(61472332081t2+444663429t−13809200)γ′2+

(639250046383t2 + 5105401827t + 38872480)γ′ + 3(748654390667t2−
1866187657t− 7133360)]/640000000

and

b(γ′) = [(11t − 1)γ′4 + 4(69t + 11)γ′3 − 2(24847t − 2937)γ′2 − 4(541371t −
21031)γ′ − (18905109t + 90041)]/160000.

Abbreviate a(γ′) = [a7γ
′7 + . . .+a1γ

′ +a0]/64000000 and b(γ′) = [b4γ
′4 + . . .+

b1γ
′ + b0]/160000.

In order to show that a(γ′) is positive, observe that all coefficients ai, 0 ≤ i ≤ 5,

are negative. Furthermore, (a7γ
′7 + a6γ

′6 + a5γ
′5) > (a7 + a6 + a5)γ

′5 =

5(20297t2 + 21373t − 1520)γ′5 > 0. It follows that a(γ′) is positive for all

γ′ ∈ (0, 1) and t ≥ 6.

Use the fact that b2γ
′2 + b3γ

′3 + b4γ
′4 < (b2 + b3 + b4)γ

′4 =−(49407t− 5917)γ′4,

b0 and b1 are negative for γ′ ∈ (0, 1) and t ≥ 6. It follows that the function

b(γ′) is negative for all γ′ ∈ (0, 1) and all t ≥ 6.

A positive function a(γ′) and a negative function b(γ′) lead to

a(γ)− b(γ)
√

RTx28 > 0 for all γ ∈ (0.95, 1) ⊃ [γβ(t), 1).

Hence, h28(x28) > h55(x28) for all γ ∈ [γβ(t), 1) and all t ≥ 6.
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l) Another expression to analyze is

(h28 − h174)(x) =
(5γ3 + 45γ2 + 63γ + 15)

(γ + 1)(γ + 3)(5γ + 3)
− (5γ3 + 6γ2 + 9γ + 12)

(γ + 1)(γ + 3)(5γ + 3)
x

+
−5(t− 1)γ4 − (43t− 31)γ3 − (17t− 27)γ2 + (47t + 1)γ + 18t

2t(1− γ)(γ + 1)(γ + 3)(5γ + 3)
x2.

Rewrite (h28−h174)(x) = dc11 +dc12x+dc22x
2. It is clear to observe that dc11

is positive and dc12 is negative. The coefficient dc22 := d4γ4+...+d1γ+d0

2t(1−γ)(γ+1)(γ+3)(5γ+3)

is positive, because its denominator is positive and d0 + d1γ > (d0 + d1)γ ≥
−(d2 + d3 + d4)γ

2 > −(d2γ
2 + d3γ

3 + d4γ
4). Restrict x to interval (0, 1) to get

dc11 + dc12x > (dc11 + dc12)x = 39γ2+54γ+3
(γ+1)(γ+3)(5γ+3)

x > 0 for all γ ∈ (0, 1).

It follows that h28(x) > h174(x) for x, γ ∈ (0, 1) and t ≥ 6.

m) Next, observe the expression

(h28−h114)(x) =
(5γ3 + 45γ2 + 63γ + 15)

(γ + 1)(γ + 3)(5γ + 3)
+

(6 + 15γ − 5γ3)

(γ + 1)(γ + 3)(5γ + 3)
x

+
−5(t− 1)γ4 − 5(11t− 7)γ3 − (65t− 43)γ2 + (11t + 13)γ + 18t

2t(1− γ)(γ + 1)(γ + 3)(5γ + 3)
x2.

Substitution of x = x28 gives

(h28 − h114)(x28) =
a(γ)− b(γ)

√
RTx28

4(5γ + 3)[(11t− 1)γ3 + 30tγ2 + (10t + 1)γ − 3t]2
,

in which

a(γ) = 100(9t2 + 10t− 1)γ7 + 10(771t2 + 823t− 56)γ6 + (35777t2 + 17071t−
320)γ5 + 2(28163t2 + 5552t + 244)γ4 + 2(5837t2 + 3449t + 210)γ3 −
2(11585t2 − 4073t− 36)γ2 − 3t(573t− 949)γ + 4662t2

and

b(γ) = 100tγ4 − 5(65t− 37)γ3 − 2(380t− 163)γ2 − (5t− 113)γ + 174t.

The denominator of (h28 − h55)(x28) is positive for all γ ∈ (0, 1) and t ≥ 6.

In order to determine the algebraic signs of a(γ) and b(γ) for γ ∈ [γβ(t), 1) ⊂
(0.95, 1), apply the transformation γ = 0.95 + 0.05γ′, in which γ′ ∈ (0, 1) and

γ ∈ (0.95, 1). Both functions are modified to
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a(γ′) = [(9t2 +10t−1)γ′7 +(2739t2 +2976t−245)γ′6 +(387125t2 +331738t−
21629)γ′5 + 5(5722371t2 + 3737808t− 185821)γ′4 + 5(226068607t2 +

119292998t − 4181431)γ′3 + (23381483241t2 + 11235076560t −
233563919)γ′2 + (233705284871t2 + 120293779134t− 940884655)γ′ +

3(307133962375t2 + 191881485184t + 398768903)]/12800000

and

b(γ′) = [tγ′4 + (11t + 37)γ′3 − (4579t − 3413)γ′2 − (158879t − 98663)γ′ −
(1142154t− 896287)]/1600.

The function a(γ′) is positive for γ′ ∈ (0, 1), because all coefficients of γ′i,

0 ≤ i ≤ 7, are positive. On the contrary, b(γ′) is negative for γ′ ∈ (0, 1). In

function b(γ′) := [b4γ
′4 + . . . + b1γ

′ + b0]/1600, just coefficients b3 and b4 are

positive and, therefore, b(γ′) < (b0+b1+ . . .+b4)γ
′2 = −76800(17t−13)γ′2 < 0

for all γ′ ∈ (0, 1) and t ≥ 6.

Thus, (h28 − h114)(x28) is positive for γ ∈ (0.95, 1), which leads to the conclu-

sion that h28(x28) > h114(x28) for γ ∈ [γβ(t), 1) and t ≥ 6.

n) The difference of h28 and h100 is

(h28 − h100)(x) =
2(γ3 + 9γ2 + 18γ + 12)

(γ + 1)(γ + 3)(2γ + 3)
− (2γ3 + 4γ2 + γ − 3)

(γ + 1)(γ + 3)(2γ + 3)
x

+
−(t− 1)γ4 − 4(2t− 1)γ3 − (5t + 1)γ2 + (15t− 4)γ + 15t

t(1− γ)(γ + 1)(γ + 3)(2γ + 3)
x2

and positive for all x, γ ∈ (0, 1) and t ≥ 6. Rewrite (h28 − h100)(x) as

dc11 + dc12x + dc22x
2. Use the fact that γi > γi+1, for all i ∈ N, the coef-

ficients dc11 and dc22 are positive. Assume x ∈ (0, 1) to get dc11 + dc12x >

(dc11 + dc12)x = (14γ2+35γ+27)
(γ+1)(γ+3)(2γ+3)

x > 0.

Hence, h28(x) > h100(x) for all x, γ ∈ (0, 1) and t ≥ 6.

o) The last hl function to compare to h28 is l = 151. In this manner,

(h28 − h151)(x) =
2(γ3 + 9γ2 + 18γ + 12)

(γ + 1)(γ + 3)(2γ + 3)
+

(21 + 23γ + 2γ2 − 2γ3)

(γ + 1)(γ + 3)(2γ + 3)
x

+
−(t− 1)γ4 − 2(5t− 4)γ3 − (13t− 15)γ2 + (9t + 8)γ + 15t

t(1− γ)(γ + 1)(γ + 3)(2γ + 3)
x2.

Again, use the fact that γi > γi+1, for all i ∈ N, and it can be seen that

coefficients dc11, dc12 and dc22 are positive by rewriting (h28 − h151)(x) =
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dc11 + dc12x + dc22x
2.

Thus, h28(x) > h151(x) for all x > 0, γ ∈ (0, 1) and t ≥ 6.

Notice, summing up n) and o), it follows that h28 > hl for all l ∈ LI ∪ {203},
x, γ ∈ (0, 1) and t ≥ 6.

As Proof of Lemma 11. . . .

c) In this manner, observe that

(h2 − h170)(x) =
2(3γ2 + 6γ + 1)

(γ + 1)(2γ + 3)
− 9γ2 + 25γ + 24

3(γ + 1)(2γ + 3)
x

+
−9(3t− 1)γ3 − (63t− 17)γ2 − (3t− 1)γ + 12t

6t(1− γ)(γ + 1)(2γ + 3)
x2.

Substitution of x = x2 provides

(h2 − h170)(x2) =
a(γ)− 2b(γ)

√
RTx2

3γ2(γ + 1)[(23t− 1)γ + 7t + 1]2
,

with

a(γ) = 45(21t2 +22t−1)γ5−2(551t2−599t−3)γ4 +(2993t2−620t+33)γ3 +

2(160t2 + 350t + 3)γ2 − 12t(113t− 36)γ + 900t2

and

b(γ) = 45tγ3 − (25t− 34)γ2 − 2(10t− 7)γ + 30t.

The denominator of (h2 − h170)(x2) is positive for all γ ∈ (0, 1) and t ≥ 6.

The function a(γ) is positive for γ ∈ (0, 1). Just the coefficient −2(551t2 −
599t−3) of γ4 is negative for all t ≥ 6, but as −2(551t2−599t−3)γ4+(2993t2−
620t + 33)γ3 > (1891t2 + 578t + 39)γ4 > 0, the function a(γ) is positive for all

t ≥ 6.

Analyze the characteristics of b(γ) by taking its derivative twice. The slope,

b′(γ), reveals one stationary point in interval (0, 1) at γ =

γst = 1
135t

[
√

3325t2 − 3590t + 1156 + 25t − 34]. A change in the curvature

of b(γ) in interval (0, 1) is located at γinf = (25t − 34)/135t. Hence, the
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function b(γ) is concave for all γ < γinf , and convex for all γ > γinf . Since

γst > γinf and b(γ) is convex for all γ > γinf , γst is the location of a minimum

of b(γ). Some simple equation transformations confirm that the function value

of

b(γst) =
2(5t + 4)(140650t2 − 58055t + 9826)− 2

√
(3325t2 − 3590t + 1156)3

54675t2

is positive for all t ≥ 6. Thus, b(γ) is positive for all γ ∈ (0, 1) and t ≥ 6

because the minimum of b(γ) of interval (0, 1) is positive.

Use that the function a(γ) and b(γ) are positive. It follows that

(h2 − h170)(x2) > 0 is equivalent to

a2(γ)− 4b2(γ)RTx2 > 0

⇔ 3γ2[(23t− 1)γ + 7t + 1]2 · g(γ) > 0

⇔ g(γ) := g6γ
6 + . . . + g1γ + g0 > 0,

in which

g(γ) = 675(5t2+2t+1)γ6−30(263t2−98t−39)γ5+(6547t2−2578t+687)γ4+

12(274t2+152t+13)γ3−12(427t2−142t−1)γ2+8t(277t+20)γ+288t2.

In order to show that g(γ) is positive for all γ ∈ (0, 1), decompose g(γ) into

G03(γ) + G46(γ)γ4. Iff G03(γ) and G46(γ) are both positive for all γ ∈ (0, 1),

the function g(γ) is positive, as well.

c1) The first derivative of G03(γ) is presented by G′
03(γ) = g1 +2g2γ +3g3γ

3.

For t = 6, G′
03(γ) = 388404γ2 − 248456γ + 80736 > 0 for all γ in the

interval (0, 1). A positive slope G′
03(γ) means that the function G03(γ)

is increasing in γ. Thus, G03(γ ↘ 0) = g0 > 0 is the local minimum of

G03(γ) of the interval (0, 1). Since the minimum of G03(γ) is positive for

all γ ∈ (0, 1) and t = 6, the function G03(γ) is positive in the described

domains of the parameters γ and t.

For t > 6, stationary points of interval (0, 1) are derived from G′
03(γ)

!
= 0,

which is fulfilled iff γ equals

γst1/2 =
∓
√

30533t4 − 216436t3 + 6028t2 − 236t + 1 + 427t2 − 142t− 1

3(274t2 + 152t + 13)
.

The second derivative of G03(γ) of interval (0, 1) is 0 iff γ = γinf =
427t2−142t−1

3(274t2+152t+13)
. Thus, G03(γ) is concave for all γ < γinf , and G03(γ) is



112 Appendix B : Equivalence Classes of Treatments

convex for all γ > γinf .

Compare γinf with γst1/2 to get γst1 < γinf < γst2. The relation im-

plies that G03(γst1) is a maximum and G03(γst2) is a minimum of G03(γ).

Therefore, iff G03(γ) is positive at its local minima with locations 0 and

γst2, the function G03(γ) is positive for all γ ∈ (0, 1).

Calculate the function values of both potential minima and observe that

G03(γ ↘ 0) = g0 is positive. Some simple equation transformations

confirm that

G03(γst2) =
8[V −

√
(30533t4 − 216436t3 + 6028t2 − 236t + 1)3]

9(274t2 + 152t + 13)2
,

in which V = 43695479t6 + 133282614t5 − 27480582t4 + 1141174t3 −
16716t2 − 354t + 1 is positive for t > 6. It follows that G03(γ) is positive

for all γ ∈ (0, 1) and all t > 6.

c2) G46(γ) is a convex function of γ because its second derivative,

G′′
46(γ) = 2g6, is positive for t ≥ 6. There exists just one stationary point

of G46(γ) at −g5/(2g6) > 1, which must be a minimum. Thus, G46(γ) is

decreasing in γ in interval (0, 1). Its local minima is

G46(γ ↗ 1) = 4(508t2 + 428t + 633), which is positive for all t ≥ 6

and, therefore, G46(γ) is positive in the entire interval (0, 1).

We get g(γ) = G03(γ) + G46(γ)γ4 > 0 for all γ ∈ (0, 1) and t ≥ 6.

The consequence is that h2(x2) > h170(x2) for all γ ∈ (0, 1) and t ≥ 6.

d) Next to analyze is

(h2 − h84)(x) =
3(2γ3 + 10γ2 + 15γ + 3)

(2γ + 3)(γ2 + 5γ + 3)
− 3γ3 + 19γ2 + 29γ + 21

(2γ + 3)(γ2 + 5γ + 3)
x

+
−3(3t− 1)γ4 − (53t− 3)γ3 − (75t + 3)γ2 + (5t− 3)γ + 12t

2t(1− γ)(2γ + 3)(γ2 + 5γ + 3)
x2.

Substitution of x = x2 gives

(h2 − h84)(x2) =
a(γ)− 2b(γ)

√
RTx2

γ2(γ2 + 5γ + 3)[(23t− 1)γ + 7t + 1]2
,

with
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a(γ) = 15(21t2 +22t−1)γ6− (129t2 +184t−27)γ5 +(1169t2−432t−9)γ4 +

(5735t2 + 348t− 3)γ3 − 2t(1202t− 23)γ2 − 6t(31t + 18)γ + 900t2

and

b(γ) = 15tγ4 + (45t + 8)γ3 − (85t + 4)γ2 + (19t− 4)γ + 30t.

The denominator of (h2 − h84)(x2) is positive for all γ ∈ (0, 1) and t ≥ 6.

Rewrite a(γ) = a6γ
6 + . . . + a1γ + a0. We get a(γ) > 0 for γ ∈ (0, 1) and

t ≥ 6 because a5γ
5 + a4γ

4 > (a5 + a4)γ
4 = 2(520t2 − 308t + 9)γ2 > 0 and

a1γ + a0 > (a1 + a0)γ = 6(119t− 18)tγ > 0.

Abbreviate b(γ) = B03(γ) + 15tγ4. Since 15tγ4 > 0 for all γ > 0 and

t ≥ 6, the function b(γ) is positive iff B03(γ) is positive on the interval

(0, 1). Thus, differentiating B03(γ) twice, reveals that B03(γ) is concave in

the interval (0, γinf ), and B03(γ) is convex in interval (γinf,1), whereas γinf =
85t+4

3(45t+8)
. There is just one stationary point of B03(γ) located in (0, 1) at

γst = 85t+4−2
√

1165t2+191t+28
3(45t+8)

< γinf . Hence, B03(γst) is a maximum of B03(γ)

and the local minimum of B03(γ) is either range boundary 0 or 1, which are

both positive, because B03(γ ↘ 0) = 30t and B03(γ ↗ 1) = 9t.

It follows that B03(γ) is positive, and, therefore, b(γ) is positive for all γ ∈
(0, 1) and t ≥ 6.

Since both functions a(γ) and b(γ) are positive, (h2−h84)(x2) > 0 is equivalent

to

a2(γ)− 4b2(γ)RTx2 > 0

⇔ 3γ2[(23t− 1)γ + 7t + 1]2 · g(γ) > 0

⇔ g(γ) := g8γ
8 + . . . + g1γ + g0 > 0,

in which

g(γ) = 75(5t2 + 2t + 1)γ8 + 40(36t2 + 4t− 3)γ7 − 2(1171t2 − 384t− 9)γ6 −
4(1835t2 + 399t− 6)γ5 + (23935t2 + 850t + 3)γ4− 4t(1561t− 87)γ3−
8t(521t + 69)γ2 + 8t(517t− 16)γ + 1008t2.

The coefficients g8 and g7 are positive for t ≥ 6. Observe that g6γ
6 + g5γ

5 +

9935t2γ4 > (g6 + g5 + 9935t2)γ4 = (253t2 − 828t + 42)γ4 > 0 for t ≥ 6, such

that g(γ) is positive iff G04(γ) := (g4− 9935t2)γ4 + g3γ
3 + g2γ

2 + g1γ + g0 > 0

for all γ ∈ (0, 0.35], γ ∈ (0.35, 1) and t ≥ 6.
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d1) There is one point of inflection for G04(γ) in the interval (0, 1) at

γinf =
3t(1561t− 87) +

√
3t(36486163t3 + 4820558t2 + 263559t + 828)

3(14000t2 + 850t + 3)
.

G04(γ) is concave for γ ∈ (0, γinf ). Thus, the local minimum of G04(γ)

is either G04(γ ↘ 0) = g0, which is positive, or G04(γinf ). We have

γinf > 0.35 and G04(0.35) � 85t(t−1) > 0. Therefore, G04(γ) is positive

for all γ ∈ (0, 0.35] and all t ≥ 6.

d2) In order to analyze the performance of G04(γ) for γ ∈ (0.35, 1), apply the

transformation γ = 0.35+0.65γ′, in which γ′ ∈ (0, 1). As a result, G04(γ)

converts to

G04(γ
′) = [28561(14000t2+850t+3)γ′4+8788(66780t2+7690t+21)γ′3−

338(86840t2 − 87630t − 441)γ′2 + 52(2649460t2 − 481470t +

1029)γ′ + 21(14380160t2 − 645670t + 343)]/160000.

Rewrite G04(γ
′) = [g′4γ

′4 + . . . + g′1γ
′ + g′0]/160000. Since γ′2 < γ′, we get

g′2γ
′2 + g′1γ

′ > (g′2 + g′1)γ
′ � 78γ′ > 0 for all γ′ ∈ (0, 1) and t ≥ 6. All

other coefficients g0, g1, g3 and g4 are positive. Thus, it is concluded that

G04(γ
′) is positive for γ′ ∈ (0, 1).

Hence, G04(γ) is positive for all γ ∈ (0.35, 1) and t ≥ 6.

Making use of the results d1) and d2), it follows that G04(γ) is positive for all

γ ∈ (0, 1) and, therefore, the function g(γ) is positive for all γ ∈ (0, 1) and

t ≥ 6.

We arrive at h2(x2) > h84(x2) for all γ ∈ (0, 1) and t ≥ 6.

e) Further, analyze

(h2 − h38)(x) =
3(2γ3 + 10γ2 + 15γ + 3)

(2γ + 3)(γ2 + 5γ + 3)
− 3γ3 + 19γ2 + 17γ + 3

(2γ + 3)(γ2 + 5γ + 3)
x

+
−3(3t− 1)γ4 − 3(19t− 1)γ3 − (101t + 3)γ2 − (25t + 3)γ + 12t

2t(1− γ)(2γ + 3)(γ2 + 5γ + 3)
x2.

Substitution of x = x2 provides

(h2 − h38)(x2) =
(1− α)a(γ)− 2b(γ)

√
RTx2

γ2(γ2 + 5γ + 3)[(23t− 1)γ + 7t + 1]2
,

in which
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a(γ) = −15(21t2 +22t−1)γ5 +2(182t2−85t−6)γ4 +(2055t2 +166t−3)γ3−
2t(2381t + 4)γ2 − 6t(361t + 33)γ + 900t2

and

b(γ) = 15tγ4 + 4(11t + 2)γ3 − (174t + 1)γ2 − 7(11t + 1)γ + 30t.

The denominator of (h2 − h38)(x2) is positive for all γ ∈ (0, 1) and t ≥ 6.

The following subitems e1) and e2) show that the functions a(γ) and b(γ) have

both one root in interval (0, 1).

e1) Define a(γ) = A02(γ) + A35(γ) and rewrite A02(γ) = a0 + a1γ + a2γ
2 and

A35(γ) = a3γ
3 + a4γ

4 + a5γ
5.

The first derivative of A35(γ) is A′
35(γ) = γ3(6046t2 − 1832t + 18) > 0

for γ ∈ (0, 1) and t ≥ 6. Thus, A35(γ) is monotonous and increasing in

γ in the interval (0, 1). Additionally, A35(γ) is positive because A35(γ) >

(a5 + a4 + a3)γ
4 = 2t(1052t− 167)γ4 > 0 for all γ ∈ (0, 1) and t ≥ 6.

Use the fact that a1 and a2 are negative and observe that the first and

second derivatives of A02(γ) are negative for γ ∈ (0, 1) and t ≥ 6. Thus,

function A02(γ) is monotonous and decreasing in γ in the interval (0, 1).

The function values of the range boundaries, A02(γ ↘ 0) = a0 > 0 and

A02(γ ↗ 1) � −2t < 0, have different algebraic signs. As a consequence,

A02(γ) has exactly one root in the interval (0, 1).

The sum of two monotonous functions with different algebraic signs in its

slopes and one function offering one root in the interval (0, 1), can only

have two roots at most iff the function values of the range boundaries

have the same algebraic sign. Iff not, the sum of the two functions has

exactly one root. The range boundaries of a(γ) are 0 and 1 with function

values a(γ ↘ 0) = a0 > 0 and a(γ ↗ 1) = −36t(109g +15) < 0 for t ≥ 6.

Hence, a(γ) has one root at γa in interval (0, 1). In more detail, we get

γa ∈ (0.27, 0.28).

e2) Similar to e1), rewrite b(γ) = B02(γ) + B34(γ) and define B02(γ) =

b0 + b1γ + b2γ
2 and B34(γ) = b3γ

3 + b4γ
4.

The coefficients b3 and b4 are positive. Thus, B34(γ) is positive, monoton-

ous and increasing in γ for γ ∈ (0, 1).

Equivalent to A02(γ), function B02(γ) is monotonous and decreasing in

γ because the coefficients b1 and b2 are negative. The function values of
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B02(γ ↘ 0) = b0 > 0 and B02(γ ↗ 1) = −(221t + 8) < 0 have different

algebraic signs. Thus, B02(γ) has one root in interval (0, 1).

Again, the function b(γ) is the sum of a monotonous, increasing posi-

tive function and a monotonous, decreasing function with one root. The

function values of b(γ ↘ 0) = b0 > 0 and b(γ ↗ 1) = −162t < 0 have

different algebraic signs. Hence, b(γ) has exactly one root at γb in interval

(0, 1). More precisely, γb ∈ (0.25, 0.26).

In order to determine whether (h2 − h38)(x2) is positive, the intercept points

γa > γb conceal three cases:

1. Case: γ ∈ (0, γb), which implies that b(γ) and a(γ) are positive. The

expression (h2 − h38)(x2) > 0 is equivalent to

(1− γ)2a2(γ)− 4b2(γ)RTx2 > 0

⇔ 3γ2(1− γ)[(23t− 1)γ + 7t + 1]2 · g(γ) > 0

⇔ g(γ) := g7γ
7 + . . . + g1γ + g0 > 0.

2. Case: γ ∈ (γa, 1), which implies that b(γ) and a(γ) are negative. The

expression (h2 − h38)(x2) > 0 is equivalent to

4b2(γ)RTx2 − (1− γ)2a2(γ) > 0

⇔ −3γ2(1− γ)[(23t− 1)γ + 7t + 1]2 · g(γ) > 0

⇔ −g(γ) := −(g7γ
7 + . . . + g1γ + g0) > 0.

3. Case: γ ∈ [γb, γa], which implies that b(γ) < 0 and a(γ) > 0. The instant

conclusion is: (h2 − h38)(x2) > 0.

Function g(γ) of Cases 1 and 2 is given as

g(γ) = −75(5t2 +2t+1)γ7− 5(311t2 +14t− 9)γ6 +(5295t2 +170t+27)γ5 +

(20503t2 + 1754t + 3)γ4 − 4t(8768t − 91)γ3 − 4t(7095t + 419)γ2 +

8t(358t− 49)γ + 1728t2.

In order to evaluate the performance of g(γ), define functions G03(γ) :=

g3γ
3 + g2γ

2 + g1γ + g0 and G47(γ) := g(γ)−G03(γ).

Since both coefficients g2 and g3 are negative, the second derivative G′′
03(γ) is

negative for γ ∈ (0, 1) and t ≥ 6. The function values of G03(γ) at γ ↘ 0

and γ ↗ 1 are G03(0) = g0 > 0 and G03(1) = −12t(4905t + 142) < 0. Thus,
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G03(γ) has one root in interval (0, 1), because G03(γ) is concave and the func-

tion values of the range boundaries have different algebraic signs. Recall, that

a concave function, like G03(γ), which is restricted to (0, 1) and a positive

function value at the left range boundary must be monotonous and decreasing

in γ for all G03(γ) < 0, regardless of an potential maximum of the function in

the interval (0, 1).

Use the fact that g7γ
7+g6γ

6+g5γ
5 > (g7+g6+g5)γ

5 = (3365t2−50t−3)γ > 0

and it follows that the function G47(γ) is positive for all γ ∈ (0, 1) and t ≥ 6. A

similar approach leads to the conclusion that G47(γ) is increasing in γ because

G′
47(γ) > (7g7 + 6g6 + 5g5)γ

4 + 4g4γ
3 = 20(726t2 − 31t − 6)γ4 + 4(20503t2 +

1754t + 3)γ3 > 0 for all γ ∈ (0, 1) and t ≥ 6.

To summarize, the function g(γ) is the sum of a positive, monotonous increas-

ing function G47(γ) and a concave function G03(γ) with one root in the interval

(0, 1). G03(γ) is also monotonous decreasing for all G03(γ) < 0. Adding a pos-

itive increasing function to G03(γ) < 0, g(γ) can have two roots at most in the

interval (0, 1) iff the function values of g(γ) of the range boundaries have the

same sign. Iff not, g(γ) has exactly one root.

The function values of the range boundaries are g(γ ↘ 0) = g0 > 0 and

g(γ ↗ 1) = −34992t2 < 0. Thus, g(γ) has exactly one root. It proves that

g(0.26) > (37t− 200)t is positive and g(0.27) < −t(142t− 211) is negative for

t ≥ 6. It can be concluded that g(γ) is positive for γ ∈ (0, 0.26) and g(γ) is

negative for γ ∈ (0.27, 1). Hence, assuming Case 1, g(γ) is positive, assuming

Case 2, −g(γ) is positive. The performance of the function g(γ) implies that

(h2 − h38)(x2) is positive. Thus, h2(x2) > h38(x2) for all γ ∈ (0, 1) and t ≥ 6.

f) A further relation to analyze is

(h2 − h55)(x) =
(4γ2 + 11γ + 5)

(γ + 1)(2γ + 3)
− (9γ2 + 13γ + 6)

3(γ + 1)(2γ + 3)
x

+
−3(7t− 1)γ3 − 2(32t + 1)γ2 − (23t + 5)γ + 18t

6t(1− γ)(γ + 1)(2γ + 3)
x2.

Substitution of x = x2 provides

(h2 − h38)(x2) =
a(γ)− b(γ)

√
RTx2

3γ2(γ + 1)[(23t− 1)γ + 7t + 1]2
,

in which
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a(γ) = 3(61t2 +89t−4)γ5−2(673t2 +76t−12)γ4 +2(2597t2−277t−6)γ3 +

2t(389t + 383)γ2 − 3t(1153t + 109)γ + 1350t2

and

b(γ) = 3(31t− 1)γ3 − 2(74t− 13)γ2 − (155t + 23)γ + 90t.

The denominator of (h2 − h55)(x2) is positive for all γ ∈ (0, 1) and t ≥ 6.

Once again, the algebraic signs of functions a(γ) and b(γ) need to be deter-

mined in order to evaluate whether (h2 − h38)(x2) is positive or not.

f1) Rewrite a(γ) = a5γ
5+ . . .+a1γ+a0 and define A03(γ) = a0+a1γ+a2γ

2+

(a3−2194t2)γ3. The function a(γ) is positive iff A03(γ) is positive because

a5 > 0 and a4γ
4 + 2194t2γ3 > (a4 + 2194t2)γ3 = 8(106t2− 19t + 3)γ3 > 0

for all γ ∈ (0, 1) and t ≥ 6.

The coefficients a2 and (a3 − 2194t2) are positive for t ≥ 6. Thus, the

second derivative A′′
03(γ) is positive for γ ∈ (0, 1) and the function A03(γ)

is convex in the entire interval (0, 1). There is one stationary point of

A03(γ) in interval (0, 1), located at

γst =

√
2t(15868142t3 − 806981t2 − 40621t− 5886)− 2t(389t + 383)

6(1500t2 − 277t− 6)
.

Since A03(γ) is a convex function, A03(γst) is a minimum. Some simple

equation transformations confirm that

A03(γst) =
V t2 − t

√
2t(15868142t3 − 806981t2 − 40621t− 5886)3

27(1500t2 − 277t− 6)2

is positive for t ≥ 6. The substitute V of A03(γst) is given as V =

100412893976t4 − 13346937327t3 + 823674048t2 − 44746465t − 5450814.

The conclusion is: A03(γ) is positive for all γ ∈ (0, 1) and, therefore, a(γ)

is positive for all γ ∈ (0, 1) and t ≥ 6.

f2) The curvature of b(γ) switches from positive to negative, i.e., the function

b(γ) is concave for all γ < γinf := 2(74t−13)
9(31t−1)

and convex for all γ > γinf .

We have γinf > 0.5, such that local minima of b(γ) in the interval (0, 0.5)

are located in the range boundaries itself. Since b(γ) is concave in the

interval (0, 0.5), b(γ ↘ 0) = 90t > 0 and b(0.5) = −(103t + 43)/8 < 0,

the function b(γ) has one root in interval (0, 0.5).

Furthermore, b(γ) must be decreasing for all γ ∈ [0.5, γinf ) and is convex
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for all γ ∈ (γinf , 1). As b(γ ↗ 1) = −120t < 0, the entire function must

be negative for all γ ∈ [0.5, 1). Thus, b(γ) has exactly one root in (0, 1)

at γb. Narrowing the root, we arrive at γb ∈ (0.44, 0.45), such that b(γ)

is positive iff γ ∈ (0, γb), and negative otherwise.

Knowing that a(γ) is positive for γ ∈ (0, 1), expression a(γ) − b(γ)
√

RTx2

is positive for all b(γ) < 0. Thus, assume b(γ) > 0. The inequality a(γ) −
b(γ)

√
RTx2 > 0 is equivalent to

a2(γ)− b2(γ)RTx2 > 0

⇔ 6γ2[(23t− 1)γ + 7t + 1]2 · g(γ) > 0

⇔ g(γ) := g6γ
6 + . . . + g1γ + g0 > 0,

in which

g(γ) = 24(63t2 + 1)γ6 − (6601t2 − 455t + 48)γ5 + 2(2525t2 − 610t + 12)γ4 +

6t(1575t + 151)γ3 − 4t(1898t− 97)γ2 − t(2593t + 529)γ + 2124t2.

The intention is to prove that g(γ) is positive for all γ ∈ (0, 0.5), since (0, γb)

is a subset of (0, 0.5), cf. property f2). Rewrite g(γ) = γ4G46(γ) + G03(γ) to

get G46(γ) := g4 + g5γ + g6γ
2 and G03(γ) := g0 + g1γ + g2γ

2 + g3γ
3.

The function G46(γ) is monotonous and decreasing for all γ ∈ (0, 1) be-

cause its first derivative, G′
46(γ) = g5 + 2g6γ < g5 + g6 = −7t(511t − 65)

is negative for t ≥ 6. The local minimum of G46(γ) in interval (0, 1) is

G46(0.5) = (4255t2 − 1985t + 12)/2 > 0 for t ≥ 6. Thus, G46(γ) is posi-

tive for all γ ∈ (0, 0.5).

Analyze now G03(γ). Its curvature is negative and positive as well, i.e., G03(γ)

is concave iff γ < γinf2 := 2(1898t−97)
9(1575t+151)

and convex iff γ > γinf2. There is one

stationary point of G03(γ) in the interval (0, 1), located at

γst =

√
2(65575007t2 + 8076766t + 794183) + 4(1898t− 97)

18(1575t + 151)
.

Use the fact that γinf2 < γst and γst > 0.5 to get that G03(γst) is a minimum

of G03(γ) and G03(γ) is decreasing for γ ∈ (0, 0.5). Hence, G03(γ) is positive

for all γ ∈ (0, 0.5) because G03(0.5) = t(443t−217)/4 > 0 for t ≥ 6.

The conclusion is: g(γ) = γ4G46(γ)+G03(γ) is positive for all γ ∈ (0, 0.5) and,

therefore, for all γ ∈ (0, γb) as well.

We arrive at h2(x2) > h55(x2) for all γ ∈ (0, 1) and t ≥ 6.
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g) The last expression to examine is

(h2 − h114)(x) =
6(5γ2 + 12γ + 3)

(2γ + 3)(5γ + 3)
− 15γ2 + 13γ + 6

(2γ + 3)(5γ + 3)
x

+
−15(3t− 1)γ3 − 3(37t− 11)γ2 − 4(2t− 3)γ + 24t

2t(1− γ)(2γ + 3)(5γ + 3)
x2.

Substitution of x = x2 provides

(h2 − h38)(x2) =
a(γ)− 2b(γ)

√
RTx2

γ2(5γ + 3)[(23t− 1)γ + 7t + 1]2
,

in which

a(γ) = 75(21t2 + 22t − 1)γ5 + 2(421t2 + 1192t − 6)γ4 + (11403t2 − 886t +

69)γ3 − 2(1819t2 − 649t− 9)γ2 − 6t(497t− 159)γ + 1800t2

and

b(γ) = 75tγ3 − 13(16t− 5)γ2 − (49t− 31)γ + 60t.

The denominator of (h2 − h114)(x2) is positive for all γ ∈ (0, 1) and t ≥ 6.

In order to show that the function a(γ) is positive for all γ ∈ (0, 1), rewrite

a(γ) = a5γ
5 + . . . + a1γ + a0. The coefficients a5 and a4 are positive for t ≥ 6.

Thus, a(γ) > 0 is equivalent to A03(γ) := a0 + a1γ + a2γ
2 + a3γ

3 > 0 for all

γ ∈ (0, 1).

Derive A03(γ) twice and find A′′
03(γ) < 0 iff γ < γinf := 2(1819t2−649t−9)

3(11403t2−886t+69)
, and

A′′
03(γ) > 0 iff γ > γinf . There is just one stationary point of A03(γ) in interval

(0, 1) at

γst =

√
2W + 2(1819t2 − 649t− 9)

3(11403t2 − 886t + 69)
,

in which W = 57623141t4 − 25002895t3 + 2353421t2 − 75375t + 162. Since

γinf < γst and A03(γ) is convex for all γ > γst, the value A03(γst) is a local

minima of the function A03(γ). Observe that

A03(γst) =
4[V −

√
2W 3]

27(11403t2 − 886t + 69)2
,

whereas V = 1277432961431t6−9755571192t5−26892004035t4+2413576147t3−
48111462t2− 2035125t+2916. Some simple calculus confirms A03(γst) > 0 for

t ≥ 6. Hence, A03(γ) is positive and, therefore, a(γ) is positive for all γ ∈ (0, 1)

and all t ≥ 6.

The function b(γ) is monotonous and decreasing for all γ ∈ (0, 1). Use the fact
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that γ2 < γ to get b′(γ) < 225tγ−26(16t−5)γ−(49t−31)γ < −(240t−161)γ <

0 for all γ ∈ (0, 1) and t ≥ 6. Thus, the slope of b(γ) is negative in interval

(0, 1). The function values of the range boundaries γ ↘ 0 and γ ↗ 1 have

different algebraic signs. Hence, b(γ) has one root in interval (0, 1). Since

b(0.5) = (254− 57t)/8 < 0 for t ≥ 6, we conclude that b(γ) is negative for all

γ ∈ [0.5, 1).

Iff b(γ) is negative, the numerator a(γ)−2b(γ)
√

RTx2 is positive because a(γ)

is positive for all γ ∈ (0, 1). The immediate conclusion is that (h2 − h55)(x2)

is positive.

For all γ with b(γ) > 0, the numerator a(γ) − 2b(γ)
√

RTx2

!
> 0 is equivalent

to

a2(γ)− 4b2(γ)RTx2 > 0

⇔ 3γ2[(23t− 1)γ + 7t + 1]2 · g(γ) > 0

⇔ g(γ) := g6γ
6 + . . . + g1γ + g0 > 0,

in which

g(γ) = 1875(5t2 +2t+1)γ6−50(1025t2−304t−87)γ5 +(118735t2−15414t+

3423)γ4 − 4(1867t2 − 2713t − 261)γ3 − 4(14440t2 − 4463t − 27)γ2 +

16t(716t + 235)γ + 6912t2.

Restrict γ to the interval (0, 0.5). This will include all function values of

b(γ) which are positive. Hence, iff g(γ) is positive for γ ∈ (0, 0.5), the

function g(γ) is positive for all b(γ) > 0. Use the fact that g6 > 0 and

g5γ
5 + 51250t2γ4 > (g5 + 51250t2)γ4 ≥ 0 for t ≥ 6 and γ ∈ (0, 1). It follows

that g(γ) is positive iff G04(γ) := (g4−51250t2)γ4 + g3γ
3 + g2γ

2 + g1γ + g0 > 0

for γ ∈ (0, 0.5).

For this purpose, differentiate G04(γ) twice and observe that G04(γ) has one

point of inflection in interval (0, 0.5) which is located at

γinf =

√
Z + 1867t2 − 2713t− 261

3(22495t2 − 5138t + 1141)
,

whereas Z = 653141289t4 − 359306152t3 + 83984933t2 − 8490928t + 6507.

G04(γ) is concave for all γ ∈ (0, γinf ) and convex for all γ ∈ (γinf , 0.5). The

alteration from concavity to convexity implies that G′
04(γinf ) is nonpositive.

Iff G′
04(0.5) ≤ 0, the function G04(γ) must be decreasing in (γinf , 0.5) as there
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is no further point of inflection located in this particular interval. Therefore,

calculate the function value of the slope G′
04(0.5) = −(36325t2 − 44088t −

5205)/2 < 0 for t ≥ 6. Hence, the local minimum of G04(γ) in interval (0, 0.5)

is either range boundary γ ↘ 0 or γ ↗ 0.5. The function values of G04(γ) at

0 and 0.5 are 6912t2 > 0 and (23749t2 + 107778t + 5943)/16 > 0, respectively,

for all t ≥ 6.

It follows that g(γ) is positive for all γ ∈ (0, 0.5) because G04(γ) is positive for

all γ ∈ (0, 0.5) and g(γ) − G04(γ) is positive for all γ ∈ (0, 1). Add the fact

that a(γ)− 2b(γ)
√

RTx2 is positive for γ ∈ [0.5, 1) and the final conclusion of

this property g) is: h2(x2) > h114(x2) for all γ ∈ (0, 1) and t ≥ 6.

As Proof of Lemma 12. . . .

b) Next to analyze is

(h28 − h1)(xmin) =
g(γ)

3(5t− 1)2(1− γ)(γ + 1)(γ + 3)
,

in which

g(γ) = 301t2 − 119t + 12)γ3 + 3(125t2 − 53t + 6)γ2 − (610t2 − 245t + 24)γ −
3(6t2 − 11t + 2).

The denominator of (h28 − h1)(xmin) is positive for all γ ∈ (0, 1) and t ≥ 6.

The numerator g(γ) := g3γ
3+g2γ

2+g1γ+g0 performs as follows. Differentiate

g(γ) twice and it gives g′′(γ) > 0 for t ≥ 6 and γ ∈ (0, 1) since g3 and g2 are

both positive. The positive coefficients imply that g(γ) is convex and can have

up to two roots in the interval (0, 1). The function g(γ) is continuous and it

follows that g(γ) has exactly one root at γroot ∈ (0, 1) because g(γ ↘ 0) = g0

is negative and g(γ ↗ 1) = 48t2 is positive for t ≥ 6. Thus,

(h28 − h1)(xmin)

< 0 ⇔ γ < γroot

≥ 0 ⇔ γ ≥ γroot

.
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Further, calculate

g(γα2) = − V + Z
√

W

8(613t2 − 239t + 24)3
,

in which

V = 255180863548t8−410488247348t7+287443352916t6−114504471500t5+

28390200837t4 − 4486763522t3 + 441322859t2 − 24691062t + 601128,

W = 339889t4 − 317254t3 + 108061t2 − 16140t + 900

and

Z = 380807860t6− 454733736t5 + 226099812t4− 60016064t3 + 8983427t2−
720025t + 24180.

Remodel g(γα2) properly to get g(γα2) < 0. However, the negative output im-

plies that γα2 < γroot.

Hence, h1(xmin) > h28(xmin) for all γ ∈ (γα1, γα2).

c) The next expression to examine is

(h170 − h1)(xmin)

=
5(5t− 1)(29t− 6)γ2 − (671t2 − 255t + 24)γ − 2(12t2 − 17t + 3)

6(5t− 1)2(1− γ)(γ + 1)
.

The denominator of (h170 − h1)(xmin) is positive for all γ ∈ (0, 1) and t ≥ 6.

Abbreviate the numerator of (h170 − h1)(xmin) as function g(γ). There is just

one root of g(γ) in interval (0, 1). This root is located at

γroot =

√
519841t4 − 469130t3 + 157633t2 − 23400t + 1296 + 671t2 − 255t + 24

10(5t− 1)(29t− 6)
,

such that g(γ) is negative for all γ ∈ (0, γroot). Some simple equivalent equation

transformations confirm that γα2 < γroot.

Hence, h1(xmin) > h170(xmin) for all γ ∈ (γα1, γα2).

d) Calculate

(h84 − h1)(xmin) =
g(γ)

6(5t− 1)2(1− γ)(γ2 + 5γ + 3)
,

in which

g(γ) = 5(5t − 1)(29t − 6)γ3 + (1793t2 − 727t + 78)γ2 − 2(1070t2 − 427t +

42)γ − 12(21t2 − 14t + 2).
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The denominator of (h84 − h1)(xmin) is positive for all γ ∈ (0, 1) and t ≥ 6.

Abbreviate g(γ) := g3γ
3 + g2γ

2 + g1γ + g0. The second derivative of g(γ) is

positive for all γ ∈ (0, 1) because g3 and g2 are positive for t ≥ 6. Thus,

g(γ) is convex in the entire interval (0, 1). The convexity implies that the

local maximum of g(γ) is located in one of the range boundaries of interest,

which is either γα1 or γα2. Since 0 < γα1 < γα2 < γβ(t) < 0.96, (γα1, γα2) is

a subset of [0, 0.96]. Observe that g(γ ↘ 0) = −12(21t2 − 14t + 2) < 0 and

g(0.96) = −(29980507t2 − 135917873t + 14857122)/2391250 < 0. Thus, g(γ)

is negative in the entire interval [0, 0.96] which implies that g(γ) is negative

for all γ ∈ (γα1, γα2).

To summarize, h1(xmin) > h84(xmin) for all γ ∈ (γα1, γα2).

e) Next,

(h38 − h1)(xmin) =
g(γ)

6(5t− 1)2(1− γ)(γ2 + 5γ + 3)
,

whereas

g(γ) = 5(5t−1)(29t−6)γ3 +(1799t2−727t+78)γ2−2(965t2−409t+42)γ−
12(4t− 1)(9t− 2).

The denominator of (h38 − h1)(xmin) is positive for all γ ∈ (0, 1) and t ≥ 6.

Abbreviate the numerator g(γ) as g3γ
3 + g2γ

2 + g1γ + g0. The second deriva-

tive of g(γ) is positive for all γ ∈ (0, 1) because g3 and g2 are positive for

t ≥ 6. Thus, g(γ) is convex in the entire interval (0, 1). The convexity implies

that the local maximum of g(γ) is located in one of the range boundaries,

γα1 or γα2. Since 0 < γα1 < γα2 < 0.952, the interval (γα1, γα2) ⊂ [0, 0.952].

Consequently, g(0) = g0 < 0 and g(0.952) = −6(128685971t2 − 666365608t +

71054112)/57671875 < 0. Thus, g(γ) is negative in the entire interval [0, 0.952]

which implies that g(γ) is negative for all γ ∈ (γα1, γα2).

It follows that h1(xmin) > h38(xmin) for all γ ∈ (γα1, γα2).

f) Another expression to analyze is

(h55 − h1)(xmin)

=
2(143t2 − 58t + 6)γ2 − (7t− 2)(19t− 3)γ − 3(46t2 − 19t + 2)

3(5t− 1)2(1− γ)(γ + 1)
.

The denominator of (h55 − h1)(xmin) is positive for all γ ∈ (0, 1) and t ≥ 6.

Abbreviate the numerator of (h55 − h1)(xmin) as function g(γ). There is just
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one root of g(γ) in the interval (0, 1). This root is located at

γroot =

√
175561t4 − 144934t3 + 45013t2 − 6228t + 324 + (7t− 2)(19t− 3)

4(143t2 − 58t + 6)
,

such that g(γ) is negative for all γ ∈ (0, γroot). Some simple equivalent equation

transformations confirm γα2 < γroot.

Hence, h1(xmin) > h55(xmin) for all γ ∈ (γα1, γα2).

g) Now observe the expression

(h114 − h1)(xmin)

=
25(5t− 1)(29t− 6)γ2 − (2629t2 − 1061t + 108)γ − 6(144t2 − 63t + 7)

6(5t− 1)2(1− γ)(5γ + 3)
.

The denominator of (h114 − h1)(xmin) is positive for all γ ∈ (0, 1) and t ≥ 6.

Abbreviate the numerator of (h114 − h1)(xmin) as function g(γ). There is just

one root of g(γ) in the interval (0, 1). This root is located at

γroot =

√W

+ 2629t2 − 1061t + 108


50(5t− 1)(29t− 6)

,

in which W = 19439641t4 − 16157338t3 + 5051185t2 − 703776t + 36864. The

function g(γ) is negative for all γ ∈ (0, γroot). Some simple equivalent equation

transformations confirm γα2 < γroot.

Hence, h1(xmin) > h114(xmin) for all γ ∈ (γα1, γα2).
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Appendix C : Some more Lemmata

and Transformations

C.1 Lemmata

Lemma 13. The parameter anj(l) is increasing as nj(l) increases, j = 1, . . . , t.

Proof. The assumption a1 = 1 < 1/(1− γ2) = a2 holds because γ ∈ (0, 1). X

anj(l) < anj(l)+1

⇔ (nj(l)− 2)γ + 1

[(nj(l)− 1)γ + 1](1− γ)
<

(nj(l)− 1)γ + 1

[nj(l)γ + 1](1− γ)

⇔ (nj(l)γ − 2γ + 1)(nj(l)γ + 1) < (nj(l)γ − γ + 1)2

⇔ 2nj(l)γ − 2γ < γ2 + 2(nj(l)− 1)γ

⇔ 0 < γ2 X

The statement follows from the assumption and the definition of anj(l).

Lemma 14. Assuming nj(l) ≥ 2, bnj(l) is increasing as nj(l) increases and is max-

imal for nj(l) = 1, j = 1, . . . , t.

Proof. bnj(l) < bnj(l)+1 < 0 = b1 holds, because the enumerator of bnj(l) is a negative

constant and the denominator is an increasing function of nj(l) ∀nj(l) > 1.

Lemma 15. The column sum crsnj(l) of S−1
du of treatment j is decreasing as nj(l)

increases for all j = 1, . . . , tl. On the contrary, nj(l)crsnj(l) is increasing as nj(l)

increases.

Proof. 1) We have

crsnj(l) = anj(l) + [nj(l)− 1]bnj(l) =
1

[nj(l)− 1]γ + 1
,

127
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which is an decreasing function of nj(l).

2)

nj(l)crsnj(l)

!
< (nj(l) + 1)crsnj(l)+1

⇔ nj(l)

(nj(l)− 1)γ + 1
<

nj(l) + 1

nj(l)γ + 1

⇔0 < 1− γ,

which is true, as γ ∈ (0, 1).

Lemma 15 follows from 1) and 2).

Lemma 16. Ru is increasing as the number of treatments tl in sequence u increases.

Proof. Ru is the sum of all matrix entries of S−1
du , therefore, it can be written as

the sum of all row sums of S−1
du :

Ru =

p∑
r=1

crsnj(r)(l).

The sum is maximal iff every summand is maximal. Thus, Ru is maximal iff every

summand equals 1, i.e., crsnj(l) = 1 for every treatment j. Since crsnj(l) decreases

as nj(l) increases, Ru increases as the nj(l) decrease. Ru is maximal iff all nj(l) = 1,

for every j = 1, . . . , tl. A decreasing nj(l) means that another nj∗(l) increases under

the condition of nj∗(l) ≤ nj(l) and j∗ ∈ {1, . . . , t}. Thus, iff tl increases, there must

be some nj(l) which decreases, j ∈ {1, . . . , tl}, and any nj∗ increases to a value

unequal to 0 , j ∈ {1, . . . , t} \ {1, . . . , tl}.
Lemma 16 follows.

Note, rearranging
p∑

r=1

crsnj(r)(l), then Ru can also be written as

Ru =
t∑

i=1

nj(l)crsnj(l). (C.1)

Lemma 17. The intersection of h1 and h2 at x2 of (3.13) is less than 1 for all

t ≥ p ≥ 3 and γ ∈ (0, 1).

Proof.

x2 < 1

⇔
√

RTx2 <

[(2p2 − 4p− 2)t− 2]γ2 + [(2p + 2)t + 2]γ + tp(p− 1)(1− γ) + 2tγ(1− γ)
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Square both sides of the inequality and divide them by 4γ, gives

K(γ) :=k3γ
3 + k2γ

2 + k1γ + k0

=[−(2p4 − 8p3 + 3p2 + 10p + 3)t2 + (3p2 − 6p− 4)t− 1]γ3

+ [(2p4 − 11p3 + 7p2 + 18p + 6)t2 − (5p2 − 12p− 8)t + 2]γ2

+ [−(p4 − 6p3 + 6p2 + 10p + 3)t2 + (3p2 − 8p− 4)t− 1]γ

+ pt[−(p2 − p− 2)t− p + 2]

!
<0

a) k0 < 0 because −p + 2 < 0 and −(p2 − p− 2) < 0 for all p ≥ 3. X

b) k1 + 1 < 0
:t⇔ (∗) := p3t (6− p)︸ ︷︷ ︸

≤0,p≥6

−3p2(2t− 1)− 10pt− 3t− 8p− 4 < 0

Case p = 3: (∗) = −6t− 1 < 0 for all t ≥ 3

Case p = 4: (∗) = −11t + 12 < 0 for all t ≥ 3

Case p = 5: (∗) = −78t + 31 < 0 for all t ≥ 3

⇒ k1 + 1 < 0 ⇒ k1 < 0 ∀t ≥ p ≥ 3. X

c) k2 − 2 > 0 for all p ≥ 5

⇔ (∗) := p3t2 (2p− 11)︸ ︷︷ ︸
>0,p≥6

+p2t(7t− 5) + 6pt(3t + 2) + 6t2 + 8t > 0

Case p = 3: (∗) = −12t2 − t < 0 for all t ≥ 3

Case p = 4: (∗) = −2t2 − 24t + 2 < 0 for all t ≥ 3

Case p = 5: (∗) = 146t2 − 57t + 2 < 0 for all t ≥ 3

⇒ k2 − 2 > 0 ∀p ≥ 5 ⇒ k2 > 0 ∀p ≥ 5. X

d) k3 + 1 < 0 for all p ≥ 4

⇔ (∗) := 2p3t2 (4− p)︸ ︷︷ ︸
≤0,p≥4

−3p2t(p− 1)− 2pt(3 + 5t)− t(3t− 4) < 0

Case p = 3: (∗) = t(21t− 68) < 0 iff t = 3, or

(∗) = t(21t− 68) > 0 for all t > 3

⇒ k3 + 1 < 0 for all p > 3, ⇒ k3 < 0 ∀t ≥ p > 3. X

Rewrite K(γ) = A(γ) · γ + k0, A(γ) is continuous expandable on γ ∈ [0, 1], i.e.,

A(0) = k1 < 0 and A(1) = −pt[(p3 − 3p2 + 2p + 2)t − p + 2] < 0 because

[(p3 − 3p2 + 2p + 2)t− p + 2]
t≥3
> p3 − 3p2 + p + 4

p≥3
> p + 4 > 0.
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1) A′′(γ) = 2k3

d)
> 0 iff p = t = 3. Hence, A(γ) is convex (parabola) and local

maxima of A(γ) are given in the range boundaries γ ↘ 0 and γ ↗ 1. A(0) and

A(1) are negative. Since A(γ) is continuous, it is negative for all γ ∈ (0, 1).

X

2) A′′(γ) = 2k3

d)
< 0 for all t ≥ p > 3, and it causes A(γ) to be concave. Local

maxima of A(γ) are given in its turning points, or, if those turning points are

not in the interval (0, 1), in the range boundaries of A(γ) as well.

A′(γ) = 2k3γ + k2
!
= 0 ⇔ γ = γmax = −k2/(2k3).

Iff k2 < 0 (see item c)), γmax < 0 and, thus, out of range (0, 1). Hence, A(γ)

is monotonous and the local maxima are given by A(0) and A(1) which are

both negative.

Else, for k2 > 0, γmax > 0 and A(γmax) is the maximum of function A(γ). It

is

A(γmax) =k1 − k2
2/(4k3)

=− pt[(p− 3)(4p6 − 24p5 + 31p4 + 31p3 − 36p2 − 36p− 8)t3

− 2(p− 2)(8p4 − 33p3 + 13p2 + 44p + 14)t2

+ 5(p− 2)(3p2 − 6p− 4)t− 4(p− 2)]

/
(
4[(p2 − 2p− 1)t− 1][(2p2 − 4p− 3)t− 1]

)
The denominator is positive for all t ≥ p ≥ 3. Next, rewrite the enumerator

as −pt ·G(t) with G(t) = g3t
3 + g2t

2 + g1t + g0.

It is g0 < 0 and g1 > 0. Therefore, g0+g1t > g0+g1 = 3(p−2)(5p2−10p−8) > 0

for all p ≥ 3.

Further, g2 < 0 and g3 > 0. Thus, g2 + g3t > g2 + 4g3 = 2(p2 − 2p− 2)(8p5 −
56p4 + 102p3 + 17p2 − 99p− 38) > 0 for all t ≥ 4.

Because of the factor,−pt, of the enumerator of A(γmax), the maximum of

A(γ) is negative for all t ≥ p ≥ 4. Since A(γ) is concave, it is negative for all

γ ∈ (0, 1). X

The function A(γ) is negative (see items 1) and 2)), the coefficient k0 is negative (see

a)) and γ ∈ (0, 1). Hence, K(γ) = A(γ) · γ + k0 is negative. It follows, x2 < 1.

Lemma 18. The intersection of h1 and hk at xk is positive and less than 1 for all

t ≥ p ≥ 5 and γ ∈ (0.3, 1).
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Proof.A) Assume p is odd and γ ∈ (0.3, 1).

The denominator of xk of equation 3.14 is increasing in γ because its first derivative

is positive for all γ in the domain (0.3, 1) and all t ≥ p ≥ 5. The outcome of the

specified denominator at γ = 0.3 is [(90p3−553p2+2136p−273)t+273p−273]/500 >

0. Thus, the denominator of xk is positive for all γ ∈ (0.3, 1) and all t ≥ p ≥ 5. It

follows:

A1)

xk

!
> 0 ⇔

4(p− 1)pt(1− γ)[γ2 + (p− 1)γ + 1] · [((p2 − 2p + 1)t− p + 1)γ3+

+(p3 − 2p2 + p)tγ2 + ((2p2 − 3p− 1)t + p− 1)γ + (3p− p2)t] > 0 ⇔

g(γ) := [((p2 − 2p + 1)t− p + 1)γ3 + (p3 − 2p2 + p)tγ2+

+((2p2 − 3p− 1)t + p− 1)γ + (3p− p2)t] > 0

Transform γ by γ = 0.3 + 0.7γ′, in which γ′ ∈ (0, 1) and γ ∈ (0.3, 1). Thus, g(γ)

alters to

g(γ′) = 1
1000

[343(p−1)((p−1)t−1)γ′3 +49(p−1)((10p2−p−9)t−9)γ′2 +7((60p3 +

107p2−294p−73)t+73(p−1))γ′+(90p3−553p2+2136p−273)t+273(p−1)],

which is positive for all t ≥ p ≥ 5 and all γ′ ∈ (0, 1). X

A2)

xk

!
< 1 ⇔

−4 · a(γ) · b(γ) < 0 ⇔

a(γ) > 0 ∧ b(γ) > 0 or a(γ) < 0 ∧ b(γ) < 0

in which

a(γ) = [(p2−2p+1)t−p+1]γ3+(p3−2p2+p)tγ2+[(2p2−3p−1)t+p−1]γ+(3p−p2)t

and

b(γ) = [(2p2 − 5p + 3)t− p + 1]γ3 + (2p3 − 8p2 + 8p)tγ2 + [(−2p3 + 11p2 − 12p−
3)t + p− 1]γ + (p3 − 5p2 + 8p)t.

Again, apply the transformation γ = 0.3 + 0.7γ′ with γ′ ∈ (0, 1) and γ ∈ (0.3, 1).

The functions a(γ) and b(γ) alter to a(γ′), being identical to g(γ′) of passage A1),

and
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b(γ′) = [343(p− 1)((2p− 3)t− 1)γ′3 +49((20p3− 62p2 +35p+27)t− 9(p− 1))γ′2−
7((80p3− 674p2 + 855p + 219)t− 73(p− 1))γ′ + (580p3− 2366p2 + 4985p−
819)t + 273p− 273]/1000,

respectively. The function a(γ) is positive for all γ ∈ (0.3, 1) and t ≥ p ≥ 5 because

all coefficients of γ′i, 0 ≤ i ≤ 3, are positive. Rewrite b(γ′) as b3γ
′3 + . . .+b0. We get

b1γ
′ + b0 > (b1 + b0)γ

′ > 0 for all t ≥ p ≥ 5. The coefficients b2 and b3 are positive

for all t ≥ p ≥ 5 as well. Thus, b(γ) is positive for all γ ∈ (0.3, 1) and all t ≥ p ≥ 5.

X

Lemma 18 for xk of equation (3.14) follows from combining properties A1) and A2).

B) Assume p is even and γ ∈ (0.3, 1).

The denominator of xk of equation 3.15 is increasing in γ as the first derivative is

positive for all γ in the domain (0.3, 1) and all t ≥ p ≥ 5. The function value of the

specified denominator at γ = 0.3 is [(90p3−616p2+2545p−546)t+273p−546]/500 >

0. Thus, the denominator of xk is positive for all γ ∈ (0.3, 1) and all t ≥ p ≥ 5. It

follows:

B1)

xk

!
> 0 ⇔

4(p− 2)pt(1− γ)[2γ2 + (p− 1)γ + 1] · [((2p2 − 5p + 2)t− p + 2)γ3+

+(p3 − 3p2 + 2p)tγ2 + ((2p2 − 5p− 2)t + p− 2)γ + (4p− p2)t] > 0 ⇔

g(γ) := [((2p2 − 5p + 2)t− p + 2)γ3 + (p3 − 3p2 + 2p)tγ2+

+((2p2 − 5p− 2)t + p− 2)γ + (4p− p2)t] > 0

Transform γ by γ = 0.3 + 0.7γ′, in which γ′ ∈ (0, 1) and γ ∈ (0.3, 1). Thus, g(γ)

alters to

g(γ′) = 1
1000

[343(p−2)((2p−1)t−1)γ′3+49(p−2)((10p2+8p−9)t−9)γ′2+7((60p3+

74p2−515p−146)t+73(p−2))γ′+(90p3−616p2+2545p−546)t+273p−546],

which is positive for all t ≥ p ≥ 5 and all γ′ ∈ (0, 1). X

B2)

xk

!
< 1 ⇔

−4 · a(γ) · b(γ) < 0 ⇔

a(γ) > 0 ∧ b(γ) > 0 or a(γ) < 0 ∧ b(γ) < 0
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in which

a(γ) = [(2p2 − 5p + 2)t − p + 2]γ3 + (p3 − 3p2 + 2p)tγ2 + [(2p2 − 5p − 2)t + p −
2]γ + (4p− p2)t

and

b(γ) = [(4p2− 11p+6)t− p+2]γ3 +(2p3− 12p2 +18p)tγ2 +[(−2p3 +14p2− 23p−
6)t + p− 2]γ + (p3 − 6p2 + 12p)t.

Again, apply the transformation γ = 0.3 + 0.7γ′ with γ′ ∈ (0, 1) and γ ∈ (0.3, 1).

The functions a(γ) and b(γ) alter to a(γ′), being identical to g(γ′) of passage B1),

and

b(γ′) = [343(p− 2)((4p− 3)t− 1)γ′3 +49((20p3− 84p2 +81p+54)t− 9(p− 2))γ′2−
7((80p3− 788p2 +1517p+438)t− 73(p− 2))γ′ +(580p3− 2772p2 +6423p−
1638)t + 273p− 546]/1000,

respectively. The function a(γ′) is positive for all γ ∈ (0.3, 1) and t ≥ p ≥ 5 because

all coefficients of γ′i, 0 ≤ i ≤ 3, are positive. Rewrite b(γ′) as b3γ
′3 + . . .+b0. We get

b1γ
′ + b0 > (b1 + b0)γ

′ > 0 for all t ≥ p ≥ 5. The coefficients b2 and b3 are positive

for all t ≥ p ≥ 5 as well. Thus, b(γ) is positive for all γ ∈ (0.3, 1) and all t ≥ p ≥ 5.

X

Lemma 18 for xk of equation (3.15) follows from combining properties B1) and

B2).

Lemma 19. The minimum of h1 = hk is located at xk for all γ ∈ (0.3, 1).

Proof. As pointed out in Lemma 18, the denominator of xk is positive for all

γ ∈ (0.3, 1) as is the denominator of x−k. Thus, it follows that the abscissa x−k is

negative because the enumerator of x−k is negative. The enumerator of x−k consists

of a negative root term and a positive subtrahend for all t ≥ p ≥ 5, cf. equations

(3.14) and (3.15).

The rest of the proof is equivalent to property (2) of the proof of Proposition 3, just

replace x1 by x−k and x2 by xk, respectively.
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C.2 Term Transformations

The transformation of terms of c22(l): Multiplying terms 2 and 4 of equation (3.11)

with tRu is equivalent to(∑
j

(nj − ñ0j)crsnj

)2

−Ru

∑
j

(nj − ñ0j)crsnj
+ Ru

∑
j

(nj − ñ0j)ñ0jbnj

=

(∑
j

(nj − ñ0j)crsnj

)
︸ ︷︷ ︸

=Ru−
P

j ñ0jcrsnj

(∑
j

(nj − ñ0j)crsnj
−Ru

)
︸ ︷︷ ︸

=−
P

j ñ0jcrsnj

+Ru

∑
j

(nj − ñ0j)ñ0jbnj

=

(∑
j

ñ0jcrsnj

)2

−Ru

∑
j

ñ0jcrsnj
+ Ru

∑
j

njñ0jbnj
−Ru

∑
j

ñ2
0j︸︷︷︸

=ñ0j

bnj

Proof of
=

Lemma 15

(∑
j

ñ0jcrsnj

)2

−Ru

∑
j

ñ0janj
.

This results into equation (3.12) of section 3.3.
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