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Abstract

The demonic product of two probabilistic relations is de�ned and investigated. It is shown
that the product is stable under bisimulations when the mediating object is probabilistic, and
that under some mild conditions the non-deterministic fringe of the probabilistic relations
behaves properly: the fringe of the product equals the demonic product of the fringes.
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1 Introduction

Let R � A�B and S � B�C be set theoretic relations, then, interpreting R and S as �lters
which form the pipe R � S, input a may yield output c i� there exists an intermediate value
b such that both ha; bi 2 R and hb; ci 2 S hold, hence input a produces output b via R which
in turn is fed into S giving c. This is an angelic version of the composition of two relations.
Demonic behavior, however, is worst case behavior: if something bad can happen, it happens.
Thus if on input a relation R produces an output b which is not in the domain of relation
S, then a will not be in the domain of the demonic product of R and S. This consideration
leads [DMN, p. 169] to the de�nition of the demonic product R � S of R and S as

R � S := R � S \R � S � (C � C):

Hence ha; ci 2 R � S i� ha; ci 2 R � S, and if for all b 2 B the following holds: if ha; bi 2 R,
then there exists c0 2 C such that hb; c0i 2 S.
When systems are modelled as stochastic systems rather than non-deterministic ones, demonic
behavior can still be described as worst case behavior. In the discrete case we would say that
c is the possible output of the demonic product of two probabilistic relations K and L upon
input a i� c may be produced by the usual product of K and L with positive probability,
and if the following holds: whenever K(a)(b) > 0 through a terminating computation, we can
always �nd c0 2 C such that L(b)(c0) > 0, and the computation for L terminates upon input
b. Widening the scope to probabilities on non-countable spaces, this description has to be
adjusted somewhat, because positive probabilities may not necessarily be assigned to single
outputs. This is what the present paper is about: we show how to carry over the de�nition
of demonic product from set theoretic relations to probabilistic ones, and we investigate this
product.
Probabilistic relations are the stochastic counterparts to set based relations(see [ABP98,
Pan98] or [Dob01a]). A probabilistic relation is a transition kernel between two measur-
able spaces, combining measurable maps with subprobability measures (a formal de�nition
is given in Sect. 2). We employ subprobability measures here rather than their probabilis-
tic step-twins because they permit modelling non-terminating computations: if K(x)(B) is
the probability that K with input x 2 X produces an output which lies in B � Y , then
K(x)(Y ) < 1 means that the computation does not produce an output with probability 1,
i.e., that the computation does not necessarily terminate. The demon, however, forces us to
continue only on inputs that guarantee termination, because only then the next computa-
tion L may start with an input that K has produced with certainty. This then leads to the
probabilistic version K ? L of the demonic product of K and L.
The analogy between set theoretic and probabilistic relations 
ows from two sources. First
and informally, set theoretic relations may be used for non-deterministic processes, so that
fyjhx; yi 2 Rg yields the set of all possible results of computation R after input x. Many
applications, however, assign probabilities to possible outcomes (because some events carry
more weight than others), and this leads to the notion of a transition probability which
gives us the probability K(x)(B) that upon input x the output will be an element of set
B. The intuitive reasoning is supported formally, as e.g. [Pan98] points out: the power set
functor forms a monad in the category of sets and has set theoretic relations as the Kleisli
construction; the functor assigning each measurable space its probability measures forms
also a monad and has Markov kernels as its Kleisli construction, see [Gir81]. In this way a
categorical underpinning of the intuitive reasoning is provided.
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This paper discusses the demonic product of two transition kernels, or probabilistic relations,
as we will also call them, it proposes a de�nition for this product, and it investigates two
properties, viz., stability under bisimulation and the behavior of an associated set theoretic
relation. Two notions of bisimulations [DEP98, Rut96] are de�ned for transition kernels, and
it is shown that they are very closely related. Then we show that bisimililarity is preserved
through the ordinary, and through the demonic product: if the factors are bisimilar, and if
the bisimulation is related through a probabilistic object, so are the respective products. For
each probabilistic relation K we can �nd a set theoretic relation supp K that characterizes
the unweighed outcome of K. This correspondence was investigated in depth in [Dob81]
with methods originating from stochastic dynamic programming, it is strengthened here to a
relation supp�K (called the non-deterministic fringe ofK) by taking termination into account.
It is shown that under some mild conditions calculating the demonic product and forming the
set theoretic relation may be interchanged, so that supp� (K ? L ) =supp�K � supp�L holds.
Most of this is only possible under some topological assumptions that are satis�ed e.g. when
considering the real line. Some preparations are needed, they are provided in Sect. 2. Sect. 3
de�nes the demonic product and investigates some basic properties like associativity, Sect. 4
suggests two de�nitions of bisimilarity, relates them to each other, selects one for further
work, and shows that bisimilarity and forming the product are compatible. Sect. 5 compares
the set theoretic and the probabilistic demonic products, and Sect. 6 o�ers some conclusions
together with some suggestions for further work.
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partimento di Informatica at the University of L'Aquila. This research was in part supported
through grants from the Exchange Programme for Scientists between Italy and Germany
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elli". Professor Fabio Spizzichino made it possible for me to work in the impressive and
exciting Mathematics Library of La Sapienza in Rome. I want to thank him, and Professor
Eugenio Omodeo, my host in L'Aquila. The referees' comments are appreciated.

2 Preliminaries

This section provides for the reader's convenience some notions from measure theory and
topology. We introduce transition kernels as, the probabilistic counterpart of set theoretic
relations, as members of a suitably chosen comma category, remind the reader of Polish
spaces, and give some basic de�nitions for relations.

Transition Kernels. LetM be the category of all measurable spaces with measurable maps
as morphisms. Denote by S (X) the set of all subprobability measures on (the �-algebra of)
X; we usually omit the �-algebra from the notation, when the context is clear, and talk
about measurable subsets as the members of it. S (X) is endowed with the � � �-algebra, i.e.
the smallest �-algebra that makes for each measurable subset A of X the map � 7! �(A)
measurable. P (X) consists of all probability measures on X.
Put for f : X ! Y and � 2 S (X)

S (f) (�) :B 7! �(f�1[B]);
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(the image of � under f ; P (f) is de�ned through exactly the same expression, having P (X)
and P (Y ) as domain, and as range, resp.), then S (f) 2 S (Y ). Consequently, S and P are
functors M ! M , becauseS (f) : S (X) ! S (Y ) and P (f) : P (X) ! P (Y ) are � � �-
measurable whenever f : X ! Y is measurable. The functor P has been investigated by
Giry [Gir81].
We will work in the comma category 1lM # S [Lan97, II.6] which has as objects triplets
hX;Y;Ki with objects X;Y from M and a morphism K : X ! S (Y ) ( 1lM is the identity
functor on M). Thus K has the following properties:

1. x 7! K(x)(B) is a measurable map for each measurable subset B of Y ,

2. K(x) 2 S (Y ) for each x 2 X, thus K(x) is a measure on the �-algebra of Y such that
K(x)(Y ) � 1 holds.

HenceK is a transition kernel from X to Y in the parlance of probability theory. IfK(x)(Y ) =
1 holds for each x 2 X, then K is called a transition probability or a Markov kernel, and
the corresponding object hX;Y;Ki a probabilistic object. In what follows, K : X  Y
indicates that K is a transition kernel from X to Y . These kernels are also called probabilistic
relations [ABP98, Dob01a, Pan98].
Given �i 2 S (Xi), the product measure �1
�2 assigns to measurable rectangles A1�A2 the
product of the single measures:

(�1 
 �2)(A1 �A2) := �1(A1) � �2(A2):

The product is uniquely determined by this property, since the set of all measurable rectangles
generates the product �-algebra and is closed under �nite intersections; whenever we talk
about the product of measurable spaces, we assume that the �-algebra on the Cartesian
product is the smallest �-algebra that contains all rectangles. The product measure has the
following property: if f : X1 �X2 ! R is measurable and bounded, then

Z
X1�X2

f d�1 
 �2 =

Z
X2

Z
X1

f(x1; x2) �1(dx1) �2(dx2)

=

Z
X1

Z
X2

f(x1; x2) �2(dx2) �1(dx1)

by Fubini's Theorem. Now let � 2 S (X) and K : X  Y , then

(�
K)(A) :=

Z
X

K(x)(Ax) �(dx)

de�nes a measure on the product X � Y (where Ax := fyjhx; yi 2 Ag). If f : X � Y ! R is
measurable and bounded, then

Z
X�Y

f d�
K =

Z
X

Z
Y

f(x; y) K(x)(dy) �(dx):

A morphism between hX;Y;Ki and hX 0; Y 0;K 0i in 1lM # S is a pair hf; gi of measurable maps
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f : X ! X 0, g : Y ! Y 0 which makes this diagram commute:

X
f
- X 0

S (Y )

K

?

S (g)
- S

�
Y 0
�

K 0

?

Hence

K 0(f(x))(B) = S (g) (K(x)) (B)

= K(x)(g�1[B])

holds for x 2 X and the measurable set B � Y 0.
Denote �nally the indicator function �A of a set A by

�A(x) := ( x2 A ? 1 : 0) :

Polish Spaces. A Polish space is a second countable topological space which is metrizable
with a complete metric. Polish spaces have always their Borel sets as their measurable struc-
ture, hence we talk also about Borel sets when addressing measurable subsets of a topological
space. The Polish space X induces a metric structure on S (X) through the topology of weak
convergence which is characterized through the famous Portmanteau Theorem [Par67]:

Proposition 1 The following conditions are equivalent for a sequence (�n)n�0 of �nite mea-
sures and for the �nite measure � on the Polish space X:

1. �n converges weakly to �,

2.
R
X
fd�n !

R
X
fd� for each bounded and continuous f : X ! R,

3. lim infn!1 �n(F ) � �(F ) for each closed subset F � X. 2

With this topology, S (X) becomes a Polish space with P (X) as a closed subspace. The
� � �-algebra are the Borel sets for the topology of weak convergence.
The Borel sets on a Polish space exhibit a certain 
exibility because they do not uniquely
determine the topology; in fact, the topology may be manipulated a bit without a�ecting the
Borel structure. We will make use of this rather surprising fact, which is quoted from [Sri98,
Corollary 3.2.6]:

Proposition 2 Suppose (X; T ) is a Polish space, Y a separable metric space, and f : X ! Y
a measurable map. Then there is a �ner Polish topology T 0 on X generating the same Borel
�-algebra such that f : ( X;T 0)! Y is continuous. 2

De�ne for � 2 S (X) ( XPolish) the support supp(�) of � as the smallest closed subset F � X
such that �(F ) = �(X) > 0, hence for positive �(X)

supp(�) =
\
fF jF � X is closed; � (F) = �(X)g

Because �nite measures on Polish spaces are � -additive, �(supp(�)) = �(X), and x 2 supp(�)
i� �(U) > 0 for each neighborhood U of x. The support for the null measure is de�ned as
the empty set.
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Relations. A relation R is, as usual, a subset of the Cartesian product X � Y of two sets
X and Y . The universal relation on X is just

UX := fhx; yijx; y 2 Xg;

and sometimes we will need a part of the diagonal

�A := fhx; xijx 2 Ag:

Assume that X carries a measurable structure, and that Y is a Polish space. If for each x 2 X
the set valued map induced by R (and again denoted by R)

R(x) := fy 2 Y jhx; yi 2 Rg

takes closed and non-empty values, and if the weak inverse

(9R)(G) := fx 2 XjR(x) \G 6= ;g

is a measurable set, whenever G � Y is open, then R is called a measurable relation. Since
Y is Polish, R is a measurable relation i� the strong inverse

(8R)(F ) := fx 2 XjF (x) � Fg

is measurable, whenever F � Y is closed [Him75, Theorem 3.5].
Transition kernels yield measurable relations in a natural way: K : X  Y with K 6= 0
induces a relation

supp K := fhx; yijx 2 X; y 2 supp(K(x))g

so that supp(K(x)) takes closed values, and it is measurable, because for an open set G � Y
the weak inverse

(9supp K)(G) = fx 2 XjK(x)(G) > 0g

is measurable. Measurability is also established for the strong inverse (8supp K)(F ) whenever
F � Y is closed, and, somewhat surprisingly, F may be replaced by an arbitrary measurable
subset A � Y , as we will see in Prop. 3. This seems to be a peculiar property of set valued
maps induced by the support of transition kernels; the general situation is that the weak
inverse of a general measurable subset if analytic [Him75, Theorem 3.5].

3 The Demonic Product

For motivating the demonic product of probabilistic relations, we �rst have a look at the
situation in the set based case. This then leads in quite a natural way to the de�nition for the
probabilistic case. We need some preparations for the de�nition proper, mainly showing that
sets interesting us here are measurable. As a byproduct we can establish the measurability
of the strong inverse of a measurable set under a measurable relation, provided this relation
is generated from a transition kernel. This is a rather surprising result when viewed from
the theory of measurable relations. Some elementary properties for the demonic product are
established, it is shown to be associative but not to posses the Dirac kernel as a neutral
element.
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Let R � A�B, S � B�C be relations. The demonic product R � S of R and S is de�ned as

R � S := R � S \R � S � UC :

Thus ha; ci 2 R � S i� ha; ci 2 R � S, and if it is not possible from a by R to reach a b that is
not in the domain of S [DMN, p. 169], hence ha; ci 2 R � S i� these conditions are satis�ed:

1. ha; ci 2 R � S,

2. 8b 2 B : [ ha; bi 2R) 9 c0 2 C : hb; c0i 2 S]

Call for the moment a 2 A S-extendable i� whenever ha; bi 2 R, then hb; c0i 2 S for some
c0 2 C, hence ha; ci 2 R � S i� ha; ci 2 R � S, and a is S-extendable.

Example 1 Put X := f1; 2; 3g; Y := fa; b; cg and Z := f�; �; 
g, and let

R := fh2; a i;h2; b i;h2; c i;h3; ai; h3; c ig;

S := fha; �i; ha; �i; ha; 
i; hb; �i; hb; �i; hb; 
ig:

Then only 3 is S-extendable, and

R � S = fh3; � i;h3; �i; h3; 
ig:

2

Now suppose that we have stochastic relations K : X  Y and L : Y  Z for the Pol-
ish spaces X;Y and Z. We want to model computations with these kernels. Intuitively,
the K-computation terminates on input x and yields output y i� both K(x)(Y ) = 1 and
y 2 supp(K(x)) are satis�ed. Note that we usually cannot assign positive measure to any sin-
gle point y, so K(x)(fyg) is not a suitable object for argumentation, which is the reason why
we resort to supp(K(x)) as manifesting the set of possible results. Termination of the com-
putation for input x is thus described by membership of x in the set fx 2 XjK(x)(Y ) = 1 g.
The output of this K-computation is thus fed into L, and we postulate that then the L-
computation terminates, too. Call by analogy x 2 X L -extendablei� the K-computation on
input x terminates with an output for which the L-computation also terminates, hence, i�
the conditions

1. K(x)(Y ) = 1 ;

2. supp(K(x)) � Tr(L)

are both satis�ed, where we have put

Tr(L) := fy 2 Y jL(y)(Z) = 1 g:

Hence a demon will permit the combined (K;L)-computation to terminate, and to produce
a result on input x i� the conditions above are satis�ed for x. Then the result is produced in
the usual manner.

Example 2 Continuing Example 1, de�ne the transition kernels K : X  Y , and L : Y  Z
as follows:
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K a b c

1 0 :3 :4
2 :25 :25 :5
3 :5 0 :5

and

L � � 


a :3 :3 :4
b :6 :1 :1
c :2 :3 :5

Then Tr(K) = f2; 3g;Tr(L) = fa; cg and

K(x)(Y ) = 1 ^ supp(K(x)) � Tr(L), x = 3 :

The following equalities are straightforward:

supp(K(1)) = fb; cg; supp(K(2)) = fa; b; cg; supp(K(3)) = fa; cg:

It is easy to see that 1 is not L-extendable, since K(1)(Y ) < 1, and that 2 is not L-extendable,
because supp(K(2)) 6� Tr(L) holds; input 3, however, turns out to be L-extendable. 2

The product K ; L of the transition kernels K and L is de�ned as usual through

(K ; L)(x)(C) :=

Z
Y

L(y)(C) K(x)(dy);

(x 2 X, C is a measurable subset of Z), and K ; L : X  Z is easily established.
Before de�ning the demonic product for the probabilistic case, we need some technical prepa-
rations.

Proposition 3 Let X be a measurable space, Y and Z Polish spaces with transition kernels
K : X  Y and L : Y  Z, then

fx 2 Xjsupp(K(x)) � Tr(L)g:

is a measurable subset of X.

Proof: 1. Assume �rst that L is continuous in the topology of weak convergence. Then
Tr(L) is a closed subset of Y by the Portmanteau Theorem, and the assertion is obvious.
2. In the general case, let Y be the topology on Y . Since Z is a Polish space, S (Z) is, too,
hence it is separable; denote the latter topology by P. Since L : Y ! S (Z) is measurable,
Prop. 2 implies that there exists a Polish topology Y 0 on Y which has the same Borel sets as
Y so that L is Y 0 �P continuous.
It remains to show that this change of topologies does not modify supp(K(x)). Since the
support of K(x) denotes the smallest closed set F with K(x)(F ) = K(x)(Y ), we see that
suppY 0(K(x)) � suppY(K(x)). If this inclusion would be proper, we could �nd y 2 suppY 0(K(x))
such that y =2 suppY(K(x)). But then there is an open neighborhood U of y in Y with
K(x)(U) = 0. But this is impossible, since Y � Y 0. 2
Note that the set Tr(L) introduced above is just the set of points on which L is a proba-
bility measure; modelling computations using transition kernels, Tr(L) represents the set of
terminating computations.
Prop. 3 has a surprising consequence for the strong inverse of general measurable sets under
the measurable relation supp K:

Corollary 4 Let under the assumptions of Proposition 3 A � Y be a measurable subset.
Then (8supp K)(A) is measurable.
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Proof: It su�ces to represents A as Tr(L) for a suitable transition kernel L : Y  Y . Put
L(y)(B) := �A\B(y); then Tr(L) = A. 2
Returning to the preparations for the de�nition of the demonic product, we observe that the
expression supp(K(x)) � Tr(L) is sometimes a little impractical to handle; it may be replaced
by K(x) 
 L 2 P (Y � Z) ; provided the input x to K makes K's computation terminate.
Consequently, the former expression is equivalent for those inputs to (K(x)
 L) ( Y�Z) = 1 :
Note that this equivalence depends critically upon Prop. 3.

Corollary 5 De�ne under the assumptions of Proposition 3 the measurable sets

V (K;L) := fx 2 Tr(K)jsupp(K(x)) � Tr(L)g

W (K;L) := fx 2 Tr(K)jK(x) 
 L 2 P (Y � Z)g

Then
V (K;L) =W (K;L)

holds.

Proof: 1. Since

(K(x)
 L)(Y � Z) =

Z
Y

L(y)(Z) K(x)(dy)

=

Z
supp(K(x))

L(y)(Z) K(x)(dy);

the inclusion V (K;L) �W (K;L) is obvious.
2. The argumentation in the proof to Proposition 3 shows that we may assume w.l.g. that L is
continuous. If we can �nd for some x 2 Tr(K) an element y0 2 supp(K(x)) with y0 =2 Tr(L),
but (K(x) 
 L)(Y � Z) = 1, we know that K(x)(fy 2 Y jL(y)(Z) < 1g) = 0 ;but on the
other hand K(x)(U) > 0 for some open neighborhood U of y0 such that L(y0)(Z) < 1 for
all y0 2 U . Consequently, K(x)(fy 2 Y jL(y)(Z) < 1g) > 0: This is a contradiction, hence
W (K;L) � V (K;L) also holds. 2

De�ne the L-relativization K\
L of K by

K\
L(x) := �W (K;L)(x) �K(x):

Consequently, K\
L assumes the value of K(x) on W (K;L), and shrinks to the null measure

on the complement. Corollary 5 makes sure that K\
L : X  Y holds.

De�nition 1 Let X;Y and Z be Polish spaces, and assume that K : X  Y and L : Y  Z
are transition kernels. The demonic product K ? L of K and L is de�ned as

K ? L := K\
L ; L:

The following is immediate:

Observation 6 Under the assumptions of De�nition 1 we have

1. K ? L : X  Z,
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2. for each bounded and measurable f : Z ! RZ
Z

f d (K ? L )(x) =�W (K;L)(x) �

Z
Y

�Z
Z

f(z) L(y)(dz)

�
K(x)(dy):2

Example 3 De�ne K and L as in Example 2, then

K ; L � � 


1 :26 :15 :23
2 :325 :25 :375
3 :25 :3 :45

and

K ? L � � 


1 0 0 0
2 0 0 0
3 :25 :3 :45

are easily established. 2

Some elementary properties are collected in the next Proposition. Before stating and proving
them, it will be helpful to calculate someW -sets. The next technical lemma states that termi-
nation of compound processes may be considered at di�erent stages during their composition.
The result for the entire process, however, is the same. We need this statement of course for
establishing associativity of the demonic product in Prop. 8.

Lemma 7 W (K ? L;M) =W (K;L ?M):

Proof: 0. We �rst establish W (K;L ? M) �W (K;L) : Let x 2W (K;L ?M) � Tr(L), thenZ
Y

L(y)(Z) K(x)(dy) =

Z
Y

Z
Z

1 L(y)(dz) K(x)(dy)

�

Z
Y

Z
Z

�W (L;M)(y) L(y)(dz) K(x)(dy)

�

Z
Y

Z
Z

M(z)(A) L\M (y)(dz) K(x)(dy)

= 1 :

1. Now assume x 2W (K;L ? M) �W (K;L), then

((K ; L)(x) 
M) (Z�A) =

Z
Y

Z
Z

M(z)(A) L(y)(dz) K(x)(dy)

�

Z
Y

Z
Z

M(z)(A) L\M (y)(dz) K(x)(dy)

= 1 ;

thus

((K ? L )(x)
M) (Z�A) =
�
�W (K;L)(x) � (K ; L)(x)
M

�
(Z �A)

= 1 ;

from which x 2 V (K ? L;M) =W (K ? L;M) (Cor. 5) is obtained.
2. Suppose that ((K ? L )(x)
M) (Z�A) = 1; we want to show that (K(x)
 (L ?M)) (Y �
A) = 1 holds. In fact,

(K(x)
 (L ?M)) (A�A) =

Z
Y

�Z
Z

M(z)(A) L(y)(dz)

�
�W (L;M)(y) �K(x)(dy)

= K(x)(V (L;M))

= 1
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This establishes the claim. 2
Some elementary properties of the demonic product are collected for convenience, ampli�-
cation and illustration. It turns out in particular that the demonic product K ? L coincides
with the usual one provided every input to K leads to a terminating computation.

Proposition 8 Let IX be the Dirac kernel on X, then

1. IX ? K = �Tr(K) �K;

2. K ? IY = K\
IY
;

3. if Tr(K) = X, then K ? L = K ; L,

4. the demonic product is associative.

Proof: The only non-trivial property is 4, which is established with the help of Lemma 7:

(K ? L )? M = �W (K ? L;M) � �W (K;L) � ((K ; L) ;M)

= �W (K ? L;M) � ((K ; L) ;M) ;

on the other hand,

(K ? L )? M = �W (K;L ?M) (K ; ( L;M))

= �W (K;L ?M)

�
K ; ( �W (L;M) � L ;M)

�
:

Since K(x)(W (L;M)) = 1 holds for x 2W (K;L ? M), we see that

(K ; ( L;M)) (x) =
�
K ; ( �W (L;M) � L) ;M

�
(x)

This establishes 4. 2

4 Bisimulations

The similarity in the behavior of transition kernels is captured through bisimulations, which
are introduced as span of morphisms:

De�nition 2 Let O1 and O2 be objects in 1lM # S with Oi = hXi; Yi;Kii (i = 1, 2).

1. An object P = hX;Y;Ki in 1lM # S together with morphisms �1 = hs1; t1i : P ! O1

and �2 = hs2; t2i : P ! O2 is called a 1-bisimulation for O1 and O2.

2. If X is a measurable subset of X1 � X2, and if both � and � are constituted by the
corresponding projections, then P is called a 2-bisimulation for O1 and O2. In this case
P will be written as hX;Ki.

P may be interpreted as an object mediating between O1 and O2. A 1-bisimulation makes
the following diagram commutative:

X1
�

s1
X

s2
- X2

S (Y1)

K1

?

�

S (t1)
S (Y )

K

?

S (t2)
- S (Y2)

K2

?
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Suppose that Bi is the �-algebra on Yi (i = 1 ;2), then

B0 := g�1
1 [B1] \ g

�1
2 [B2]

is the �-algebra of all shared events on Y (via g1; g2), so that B 2 B0 i� we can �nd Bi 2 Bi
with

g�1
1 [B1] = B = g�1

2 [B2]:

The transition kernels K1 � s1 and K2 � s2 coincide on B0 :

K1(s1(x))(B1) = K(x)
�
g�1
1 [B1]

�
= K(x)(B)

= K(x)
�
g�1
2 [B2]

�
= K2(s2(x))(B2):

In this sense, bisimilar objects display the same behavior on shared events. In particular, if
one of them terminates, the other will, too, since Y 2 B0.

It is plain that there exists always a 2-bisimulation between probabilistic objects O1 =
hX1; Y1;K1i and O2 = hX2; Y2;K2i: de�ne the mediating object P := hX1 �X2; Y1 � Y2;Ki;
where

K(x1; x2) := K1(x1)
K2(x2)

is the product of K(x1) and K(x2). Then

K1(x1)(A1) = K(x1; x2)(A1 � Y2)

K2(x2)(A2) = K(x1; x2)(Y1 �A2)

holds, whenever Ai � Yi is a measurable subset (i = 1 ;2). Consequently, the projections

h�X1�X2

X1
; �Y1�Y2Y1

i : P ! O1

h�X1�X2

X2
; �Y1�Y2Y2

i : P ! O2

are the desired morphisms. Thus bisimulations are only non-trivial for the non-probabilistic
objects in 1lM # S, i.e. for such objects the termination of which cannot always be guaranteed.
The following observation shows why we may and do restrict our attention to 2-bisimulations:

Proposition 9 Let Oi = hXi; Yi;Kii be objects in 1lM # S, then the following conditions are
equivalent:

1. There exists a 1-bisimulation hP; hs1; t1i; hs2; t2ii with P = hX;Y;Ki for O1 and O2

such that
fhs1(x); s2(x)ijx 2 Xg

is a measurable subset of X1 �X2.

2. There exists a 2-bisimulation for O1 and O2.

Proof: 0. Since 2 is a special case of 1, it is su�cient to demonstrate the implication 1) 2:
1. De�ne

A := fhs1(x); s2(x)ijx 2 Xg;
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and note that s1(x) = s2(x
0) implies K(x)(Y ) = K(x0)(Y ): from K1(s1(x)) = K1(s1(x

0)) we
get S (t1) (K(x)) = S (t1) (K(x

0)); and

K(x)(Y ) = K(x)(t�1
1 [Y1])

= S (t1) (K(x))(Y1)

= S (t1) (K(x
0))(Y1)

= K(x0)(Y ):

Now de�ne for hs1(x); s2(x)i 2 A

L(hs1(x); s2(x)i) :=

�
(K(x)(Y ))�1 � (S (t1) (K(x))
 S (t2) (K(x))) ; K(x)(Y ) > 0
0 otherwise

Thus L : A ! S (X1 �X2) is well de�ned and measurable, and it is not di�cult to see that
for the measurable subset Ai � Xi (i = 1 ;2)

Ki (�i(hs1(x); s2(x)i)) (Ai) = S (�1) (L(hs1(x); s2(x)i)) (Ai)

holds. This establishes 2. 2
Let us comment brie
y on the condition that fhs1(x); s2(x)ijx 2 Xg is a measurable subset of
X1�X2: This condition is in general not easy to handle, working in Polish spaces, however, a
well-known Theorem attributed to Arsenin-Kunugui [Sri98, 5.12.1] renders it somewhat more
practical:

Observation 10 Let X;X1;X2 be Polish spaces, and assume that si : X ! Xi is measurable.
Assume that

fx 2 Xjhs1(x); s2(x)i = hx1; x2ig

is �-compact for each xi 2 Xi. Then

fhs1(x); s2(x)ijx 2 Xg

is a measurable subset of X1 �X2:

Proof: The graph G(s1� s2) of s1� s2 : X ! X1 �X2 is a measurable subset of X � (X1 �
X2) [Sri98, 3.1.21] all cuts of which are �-compact by assumption. Since

fhs1(x); s2(x)ijx 2 Xg = �X1�X2
(G(s1 � s2)) ;

the assertion follows indeed from the Arsenin-Kunugui Theorem. 2
Hence if si has compact or countable inverse point images, the condition is satis�ed, in
particular if si is one-to-one, generalizing the well-known fact that the image of the domain
of a one-to-one Borel map on Polish spaces is a Borel set (this generalization is well known,
too). If X1 and X2 are �-compact, and both s1 and s2 are continuous, the condition also
applies, thus real-valued functions on a Polish space are captured by Observation 10.
In what follows, bisimulation will mean 2-bisimulation; we write O1 �hA;Ki O2 if hA;Ki is a
bisimulation for O1 and O2.
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Remarks: 1. Desharnais, Edalat and Panangaden [DEP98] de�ne bisimulations between
labelled Markov processes as spans of zig-zag morphisms in the category A of analytic spaces.
They work in the full subcategory of 1lA # S that has objects of the diagonal form hS; S;Ki.
Because the product of two analytic spaces is an analytic space again [Par67, Theorem I.3.2],
two labelled Markov processes with probabilistic (rather than sub-probabilistic) transition
kernels are always bisimilar.
2. Rutten [Rut96] de�nes bisimulations through projections: let S be the category of sets,
and F : S ! S a functor, then the pair hS; �i with � : S ! F (S) is a coalgebra, thus
coalgebras are diagonal members of a full subcategory of 1lS # F. A bisimulation between
the coalgebras hS1; �1i and hS2; �2i is a coalgebra hR; 
i with R � S1 � S2 such that the
projections �i : R! Si satisfy

�1 � �i = F (�i) � 
:

In [dVR98], de Rutten and Vink de�ne probabilistic bisimulations through relations quite close
to the de�nition for labelled transition systems given by Milner [Mil80], and the de�nition
given by Larsen and Skou [LS91]. They de�ne also bisimulations for a functor similar to P

on diagonal objects. They prove the equivalence on ultrametric spaces for what they call
z-closed relations with a Borel decomposition ([dVR98], Lemma 5.5, Theorem 5.8).
3. Moss [Mos99, Sect. 3] de�nes a bisimulation on a coalgebra (rather than for two coal-
gebras), and he shows that the existence of a bisimulation can be established under rather
weak conditions (Prop. 3.10, which he attributes to Aczel and Mendler). Moss works in the
category of sets and classes, he bases coalgebras on a functor which is set based, and which
preserves weak pullbacks, assumptions that are not met in the situation considered here.

We will show now that bisimulations respect the conventional and the demonic product and
start out with a technical observation. It states that bisimilarity is maintained when we
restrict the possible inputs (otherwise the similarity of behavior would depend on the chosen
base set which would be irritating for a concept which exhibits local properties):

Observation 11 Denote for K : X  Y and the measurable subset ; 6 =A � X the restric-
tion of K to A by K � A. Then the following holds:

1. K � A : A Y , and hA; Y;K � Ai is a probabilistic object, if hX;Y;Ki is one.

2. If hX1; Y1;K1i �hA;T i hX2; Y2;K2i; and if ; 6 =Ai � Xi are measurable (i = 1, 2), then

hA1; Y1;K1 � A1i �hB;Ri hA2; Y2;K2 � A2i;

where B := A \ (A1 �A2), and R := T � (A1 �A2):

Proof: Expand the de�nitions. 2
We show �rst that bisimilarity respects the conventional product. Suppose that hA; T i and
hB;Si are the intermediate objects from which the respective spans are obtained. For main-
taining bisimilarity, the composition of the mediating objects hA;B; T i should be a proba-
bilistic one. This is intuitively clear: the mediating computation should terminate, otherwise
similar behavior cannot be carried through the composition.
We will see subsequently that a mediating probabilistic object is also required for making
bisimulation respect demonic products, too.

Proposition 12 Let Ki : Xi  Yi, and Li : Yi  Zi (i = 1 ;2), and assume that
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1. hX1; Y1;K1i �hA;T i hX2; Y2;K2i;

2. hY1; Z1; L1i �hB;Si hY2; Z2; L2i:

Then
hX1; Z1;K1 ; L1i �hA; T ; Si hX2; Z2;K2 ; L2i;

provided hA;B; T i is a probabilistic object.

Proof: The proof essentially juggles with image measures and commutative diagrams. Let's
see: �x hx1; x2i 2 A for the moment, and let C � Z1 be measurable, then

S (�Z1) (( T ; S)(x1; x2)) (C) = ( T; S)(C � Z2)

=

Z
A2

S(y1; y2)(C � Z2) T (x1; x2)(dhy1; y2i)

=

Z
A2

S (�Z1) (S(y1; y2)) (C) T (x1; x2)(dhy1; y2i)

(�)
=

Z
Y1�Y2

L1 (�Y1(y1; y2)) (C) T (x1; x2)(dhy1; y2i)

(�)
=

Z
Y1

L1(y1)(C) S (�Y1) ( T(x1; x2)) (dy1)

=

Z
Y1

L1(y1) K1(x1)(dy1)

= ( K; L) (�X1
(x1; x2)) (C)

The equalities (�) work only for T : A! P (B). Consequently,

S (�Z1) � (T ; S) = ( K1 ; L1) � �X1
;

and, similarly,
S (�Z2) � (T ; S) = ( K2 ; L2) � �X2

:

This completes the proof. 2
This carries readily over to the demonic product:

Corollary 13 Put under the assumptions of Proposition 12

C := A \ (W (K1; L1)�W (K2; L2))

R := (T ; S) � C;

and assume that hC;B;Ri is a probabilistic object. Then

hX1; Z1;K1 ? L1i �hC;Ri hX2; Z2;K2 ? L2i;

holds.

Proof: Immediate from Proposition 12 and Observation 11. 2
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5 Comparing Demonic Products

A transition kernel K : X  Y induces a closed-valued relation via the support function,
whenever Y is Polish (see Sect. 2). This correspondence was investigated in [Dob81] with a
view towards stochastic and non-deterministic automata, in particular it could be shown under
which conditions a closed-valued relation in representable by a Markov kernel. The present
line of investigation, however, requires a somewhat more discriminating instrument than the
support function, because the set supp(K(x)) does not tell us anything about termination
upon input x | it merely states what outputs are produced.
Thus we work with the modi�ed relation

De�nition 3 The non-deterministic fringe of the transition kernel K is the relation

supp�K := �Tr(K) � supp K:

Hence the fringe captures exactly those inputs that contribute to termination, composition
with relation �Tr(K) serving as a �lter. Thus hx; yi 2 supp�K holds i� K(x)(Y ) = 1, and if y
is a possible output to K(x).
We will in this section investigate how the demonic product of transition kernels relates to
the demonic product of the fringe as a modi�ed support function, hence we will investigate
the question under which conditions

supp�(K ? L ) =supp�K � supp�L

(or possibly a weaker subset relation) holds, where L : X  Y is the factor to K in this game.
This will shed some light on the relationship between the set theoretic and the probabilistic
version of the demonic product. Since the latter is modelled after the former, it would
intuitively be gratifying to see that they behave similar, provided they can be compared at
all. The fringe relation serves exactly this purpose by converting a probabilistic relation into
a set theoretic one.

Example 4 Let K and L be de�ned as in Example 2, then

supp�K = fh2; a i;h2; b i;h2; c i; h3; ai; h3; cig;

supp�L = fha; �i; ha; �i; ha; 
i; hb; �i; hb; �i; hb; 
ig;

with

supp�K � supp�L = fh3; � i;h3; �i; h3; 
ig

= supp�(K ? L )

(cp. relations R and S from Example 1). 2

We �x for the rest of this section the measurable space X and the Polish spaces Y;Z as well
as the transition kernels K : X  Y and L : Y  Z. L may be assumed to be (weakly)
continuous in view of Prop. 2 . To avoid trivialities, we assume that both Tr(K) 6= ; and
Tr(L) 6= ; holds.
It is known from [Dob01a, Obs. 4] that the support function has these properties when related
to the product of transition kernels:
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1. supp K � supp L � supp(K ; L);

2. supp(K ; L) � supp K � supp L, provided K(x)(G) > 0 holds for each x 2 X and each
open ball G in Y .

These properties have been established for Markov kernels, but the proofs carry over easily
to the present situation.
We collect some readily established properties for the fringe relation:

Observation 14 1. Tr(K ? L ) =W (K;L),

2. supp(K ? L ) = �W (K;L) � supp(K ; L) = supp�(K ? L );

3. W (K;L)� Z = supp�K � supp�L � UZ ,

4. �W (K;L) � supp K � supp L � supp�K � supp�L:

Proof: 1. The �rst assertion is immediate from

(K ? L )(x)(Z) = 1, w 2W (K;L):

From
y 2 supp(K ? L )(x), x 2W (K;L) ^ y 2 supp(K ; L)

we see the �rst half of the second assertion. The second half follows from

�Tr(K ? L )��W (K;L) = �W (K;L);

when expanding de�nitions.
2. Now consider these equivalences for establishing part 3:

hx; zi =2 supp�K � supp�L � UZ , 8 y2 Y : (y 2 supp�K(x)) supp�L(y) 6= ;)

, supp�K(x) � Tr(L)

, h x; zi 2W (K;L)� Z:

3. Let hx; zi 2 �W (K;L) � supp K � supp L, then x 2 W (K;L), and we can �nd some y0
with hx; y0i 2 supp K and hy0; zi 2 supp L. Since x 2 W (K;L) implies that y0 2 Tr(L) for
each y0 2 supp(K(x)), we may conclude that y0 2 Tr(L) holds, hence hx; y0i 2 supp�K and
hy0; zi 2 supp�L. 2
With these preparations we are able to characterize the relationship between the demonic
product of the fringes, and the fringe of the demonic product:

Proposition 15 The non-deterministic fringe of the demonic product of probabilistic rela-
tions and the demonic product of their fringes are related in the following way:

1. supp�K � supp�L � supp�(K ? L );

2. if supp (K ; L) = supp K � supp L can be established, then

supp�K � supp�L = supp� (K ? L )

may be inferred.
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Proof: 1. Expanding de�nitions, we see

supp�K � supp�L = supp�K � supp�L \ supp�K � supp�L � UZ

� suppK � suppL \ (W (K;L)� Z)

� �W (K;L) � supp(K ; L)

= supp�(K ? L ):

2. Now assume that in addition supp (K ; L) � supp K � supp L holds, then

supp�(K ? L ) = �W (K;L) � supp (K ; L)

� supp�K � supp�L \ supp�K � supp�L � UZ

(by Obs: 14; 3 and 4)

= supp�K � supp�L:

2

Corollary 16 Assume that K(x)(G) > 0 for each x 2 X and each open ball G in Y , then

supp�K � supp�L = supp� (K ? L )

holds. 2

Suppose that our probabilistic demon � has a little brother � who is keen on set theoretic
relations, and, being junior to �, is handed always the fringe. � performs two computations
through the demonic product, and hands to � his share. In general, � is better o� (in the
sense of having obtained a larger relation) in not performing the demonic product himself
(hence it pays for � to wait for � doing the combined computation). If the �rst computation,
however, is thrifty by never vanishing on non-empty open sets, then it is of no concern to �
who combines the computations.

6 Conclusion

We make in this paper a proposal for the de�nition of the demonic product of two transition
kernels. This product indicates how a probabilistic demon might act when composing two
computations that are modelled through probabilistic relations. It turns out that the demonic
product coincides with the ordinary product, provided Markov kernels are involved, i.e. com-
putations that terminate with probability one. It could be shown that the demonic product
is stable under bisimulations under the provision that the relating object is a Markov kernel.
Bisimulations have been de�ned for the situation at hand, slightly generalizing the notion of
bisimulation for stochastic systems given in [DEP98], and relating it to the de�nition given in
the context of coalgebras in [Rut96]. The paper shows then that there is a close relationship
between the demonic product of two probabilistic relations and the demonic product of their
respective fringe relations, the latter product being the set theoretic product, as introduced
and investigated in e.g. [DMN].
Further investigations in the area of probabilistic relations will deal with bisimulations along
the lines suggested by Moss [Mos99], cp. [DEP98], in particular the characterization theorems
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for bisimulations that have been formulated for coalgebras should be transported to the
comma category underlying the discussions here. Less abstract, we will see how bisimulation
relates to the converse of a probabilistic relation, as de�ned and investigated in [Dob01a]. We
still do not know under which conditions 2-bisimilarity is a transitive relation. In [Dob01b]
a theory of hierarchical re�nement of probabilistic relations is proposed in terms of the usual
product. It would be interesting to see what happens when the demonic product is used
instead.
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