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Abstract

Transition probabilities are proposed as the stochastic counterparts to set-based relations.
We propose the construction of the converse of a probabilistic relation. It is shown that two
of the most useful properties carry over: the converse is idempotent, and anticommutative.
The last property is shown to hold relative to some initial probability measure. This pa-
per investigates the relation between stochastic and set-based relations through the support
function of probabilities.
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1 Introduction

Relational methods are ubiquitous in Mathematics, Logic and Computer Science, they go
back as far as Schr�oder's work [13]. Ongoing work with a focus on program speci�cation may
be witnessed from the wealth of material collected in [2]. The map calculus [3] shows that
these methods determine an active line of research in Logic.

Specifying system properties using relations determine usually some kind of input-output-
behavior. This is not always entirely adequate because it is in some sense too nondetermin-
istic. Hence it may be more adequate to say that on input x an output y1 is produced with
probability 0.7, and output y2 is produced with probability 0.02 rather than saying that on
input x the outputs y1; y2 may be produced without giving a qualitative assessment.

This paper studies probabilistic relations. It is shown that these relations have converses,
and it is demonstrated that the converse behaves nearly like its nondeterministic counterpart.
The corresponding law for relations R and S reads

(R;S)^ = S^;R^:

Working in a probabilistic setting, we require an initial probability distribution in order to
get going. If K and L are probabilistic relations, and if the initial probability is �, then the
converse K^

� depends on �. After K is done, the initial probability is transformed by K

into K�(�) for the next step which in turn is modelled by L, so its converse is L^
K�(�). On

the other hand, the composed system starts with � and has the converse (K;L)^� : Thus the
simple relational equation translates into

(K;L)^� = L^K�(�);K
^
�

A large part of this paper is devoted to a proof of this identity which essentially depends on
the possibility of decomposing probabilities on a product space into a start probability and a
probabilistic relation.

This is only possible under suitable topological assumptions. We work in this paper
under the assumptions that all probabilities are de�ned on Polish (� topologically complete
and separable metric) spaces; Polish spaces have the disintegration property mentioned above.

We will also have a look at the relation between a probabilistic relation K between X and
Y , and the non-deterministic relation RK induced by K. It is described as

RK := fhx; yij x 2 X; y 2 supp(K(x))g;

where supp(K(x)) is the support of the probability measure K(x), hence the set of all y such
that K(x)(U) > 0 holds for each open neighborhood of y. supp(K(x)) being closed, RK
is the graph of a measurable relation between X and Y . Thus we get a nondeterministic
relation for free, when we de�ne a probabilistic one! The relationship between these relations
is investigated, we show that supp is a natural transformation between the functor which
assigns to each Polish space its probability measures and the one which assigns it its closed
and nonempty subsets. We show that under suitable topological assumptions one gets a
probabilistic relation for free from a nondeterministic one.

The rest of the paper is organized as follows: in Sect. 2 we collect some notions and basic
techniques from measure theory, the support function in investigated in sect. 3. Probabilistic
relations are introduced formally in sect. 4, and some relationships between them and their
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nondeterministic sidekicks are investigated (for example, the well known Peirce product re-
sults through a construction). The converse relation is de�ned and investigated in sect. 5,
Proposition 8 giving the result indicated above. Section 6 discusses related work, in particular
the approach proposed by Panangaden and his coworkers, and sect. 7 suggests a conclusion
and indicates further work to be done.
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Science Group of the Dipartimento di Matematica Pura ed Applicata at the University
of L'Aquila. This research was in part supported through grants from the Exchange Pro-
gramme for Scientists between Italy and Germany from the Italian Minstry of Foreign Af-
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\Nuovi paradigmi di calcolo: Linguaggi e Modelli". The author wants to thank Eugenio
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2 Preliminaries

A topological space is called a Polish space i� it is a complete and separable metric space.
These spaces are most convenient from a measure theoretic point of view.

Let X be a Polish space, then we equip X always with the �-algebra BX of all Borel sets,
hence the �-algebra generated from the open sets. Probability measures on X are always
de�ned on BX . The set Prob(X) of all probability measures is itself a Polish space, when
endowed with the topology of weak convergence, which in turn is metrizable by Prohorov's
metric.

� denotes as usual the Dirac kernel

�x(A) := (x 2 A ? 1 : 0);

hence � provides a continuous map P ! Prob(P ).
The Borel sets for the weak topology is also the initial �-algebra for all evaluations

evB : � 7! �(B)

for all Borel sets B in X (or for some generator of BX).
For a second Polish space Y, a transition probability (sometimes called a Markov kernel

or just a kernel) K from X to Y may be described as a BX � BProb(Y ) measurable map
K : X ! Prob(Y ), or, equivalently, as a map

K : X � BY ! [0; 1]

with the following properties:

� 8 x2 X : K(x) 2 Prob (Y);

� 8 B2 BY : x 7! K(x)(B) constitutes a measurable map to the unit-interval (which
carries always the Borel sets).

We denote a transition probability K from X to Y by K : X  Y .
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For the probability � 2 Prob(X) and the measurable map ' : X ! Y (where Y is
another measurable space) the measure � may be transported through ' upon setting for the
measurable subset B of Y

'(�)(B) := �('�1[B]):

Then '(�) is a probability on Y , and the integral w.r.t. '(�) is easily calculated through the
integral for �: whenever g : Y ! R is measurable and bounded, we haveZ

Y

g d' (�) =

Z
X

g � ' d�:

This will be referred to as the integral transform. The proof of this equality is somewhat
typical for the establishment of statements dealing with this kind of maps: the equation in
question is true, if g = 1A holds, when A � Y is measurable with 1A as the indicator function
of A. The set F of all functions g for which the above property holds is a vector space
which contains the indicator functions of measurable sets, hence their linear combinations
and monotone limits (by the Dominated Convergence Theorem). Consequently, F contains
all bounded measurable maps. We will often make use of this argumentation in what follows,
without explicitly repeating it.

3 The Support Function

The support supp(�) of a probability measure � 2 Prob(X) is the set of all points x 2 X such
that each open neighborhood U of x has positive measure. This set is the smallest closed
set F with �(F ) = 1, it is denoted by supp(�). We want to investigate the set valued map
x 7! supp(K(x)); when K is a transition probability from the Polish space X to the Polish
space Y . This map is the relational counterpart to a probabilistic relation, as we will see. It
is apparent that the map takes values in the set of all closed nonempty subsets of a Polish
space, and that the set supp(K(�))�1[U ] = fx 2 Xj K(x)(U) > 0g is a measurable subset of
X, whenever U � Y is open.

We need the characterization of the topology of weak convergence through the well known
Portmanteau Theorem [12]:

Proposition 1 The following conditions are equivalent for a sequence (�n)n�0 of probability
measures on the Polish space X:

1. �n converges weakly to �0 (in signs: �n *w �0),

2.
R
X
fd�n !

R
X
fd�0 for each bounded and continuous f : X ! R,

3. lim infn!1 �n(F ) � �0(F ) for each closed subset F � X.

Polish spaces with continuous maps form a category P. For a Polish space X the space
of all its probabilities Prob(X) is also a Polish space. We denote by PR the category which
has Prob(X) for an object X in P as its objects. A morphism K : Prob(X) ! Prob(Y ) is a
continuous map between Prob(X) and Prob(Y ) when both spaces carry their weak topologies.
According to a result due to Giry [7, Theorem 1] (cf. [11]), the functor G which assigns each
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Polish space its space of probability measures is actually a monad in P, the unit being the
Dirac kernel, multiplication being given by

Prob(Prob(X)) 3M 7!

 
�B 2 BX :

Z
Prob(X)

�(B) M(d�)

!
2 Prob(X):

Denote by Gf the composition of G with the forgetful functor PR ! SET ; the latter being
the category of sets with maps as morphisms.

Let F(X) be the space of all nonempty closed subsets for a Polish space X, endowed with
the Vietoris topology. This topology has as a subbase the sets

fF j F �
[

1�i�n

Uig \
\

1�i�n

fF j F \ Ui 6= ;g

for the open sets U1; : : : ; Un � X.
Here things are a bit more complicated than in the probabilistic setting: if X is a compact

metric space, so is F(X) [10, 4.9.12, 4.9.13]; if X is a Polish space, then the compacta in F(X)
form a Polish space under the Vietoris topology [4, Cor. II-9]. From [10, 4.9.7] it may be
deduced that X is a compact metric space provided F(X) is a Polish space. Anyway, denote
by CL the category which has F(X) for Polish spaces as objects. A morphism

F(f) := f ] : F(X) ! F(Y )

is induced by the continuous map f : X ! Y through the topological closure of the images
under closed sets:

f ](A) := (f [A])cl:

Apparently, f ] is continuous in the Vietoris topology, since f is under the metric topology,
hence F : P ! CL is a functor. The discussion above indicates that F is in general no monad
in P (it is, when P is replaced by the category of all compact metric spaces). Hence it is not
possible to relate two Kleisli categories directly. A weaker result may be obtained, however.

Compose this functor with the forgetful functor CL ! SET to obtain the functor Ff .

Proposition 2 supp : Gf
�
! Ff is a natural correspondence.

Proof: This follows from the fact that for each continuous map f between metric spaces
X and Y and for each � 2 Prob(X) the equality

(f [supp(�)])cl = supp(f(�))

holds. 2
Hence the map x 7! supp(K(x)) relating a transition probability to a set of elements with

positive probability is given by a natural transformation.
This relationship may be analyzed under an other aspect: Given a set-valued relation R,

�nd a transition probability K such that

hx; yi 2 R() x 2 supp(K(x))

holds. Apparently, relation R has to satisfy some constraints:
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Proposition 3 Let for the Polish spaces X and Y be R a relation such that

1. 8x 2 X : R(x) := fy 2 Y j h x; yi 2 Rg 2 F(Y ),

2. whenever U � Y is open, fx 2 Xj R(x) \ U 6= ;g is a measurable subset of X.

If Y is �-compact, or if R(x) assumes compact values for each x 2 X, then there exists a
transition probability K from X to Y such that R(x) = supp(K(x)) holds for all x 2 X.

Proof: This follows from [6, Cor. IV.11]. 2
Let us turn to probabilistic relations.

4 Probabilistic Relations

Modelling a stochastic input-output system through a transition probability K, intuitively
K(x)(dy) gives the probability that an input x 2 X will produce output y 2 Y . The system
will thus produce on input of x an element of the Borel set B � Y with probability K(x)(B),
so supp(K(x)) may be considered the set of all possible outputs on input x.

De�nition 1 A probabilistic relation between the Polish spaces X and Y is a transition
probability K : X  Y .

Consequently, each probabilistic relation K : X  Y induces a (set-theoretic) relation

RK := fhx; yij x 2 X; y 2 supp(K(x))g:

It is not di�cult to see that RK is a measurable subset of X � Y .
The relation RK then relates each input with all possible outputs. In the absence of the

possibility of assigning probabilities to single elements, possible outputs are characterized by
the positive probability for each open circle with positive radius around it.

The composition between relations is de�ned as to be expected: let K : X  Y and
L : Y  Z, then de�ne for x 2 X;C 2 BZ :

(K;L)(x)(C) :=

Z
Y

L(y)(C) K(x)(dy)

Standard arguments show that indeed K;L is a probabilistic relation between X and Z. The
properties that followed are collected for the reader's convenience:

� (K;L);M = K;(L;M),

� (K;L)� = K� �L� (where the latter composition denotes compositions of maps between
sets of probability measures),

� for the measurable and boundedmap f : Z ! R and for x 2 X the integral
R
Z
f d (K;L)(x)

is calculated as
R
Y

R
Z
f(z) L(y)(dz) K(x)(dy),

� K;IY = K and IX;K = K, where IX : X  X is the unit kernel on X which is de�ned
by IX(x)(A) := �x(A):
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There is an interplay between probabilistic relations X  Y and probability measures
on X � Y that is of vital interest here. Let K : X  Y be a probabilistic relation, and
� 2 Prob(X) be a probability measure. Introduce for a subset C � X � Y the sections

Cx := fy 2 Y j h x; yi 2 Cg;

Cy := fx 2 Xj h x; yi 2 Cg;

then de�ne

(�
K) (C) :=

Z
X

K(x)(Cx) �(dx)

as a measure on X � Y . It should be noted thatZ
X�Y

f(x; y)(�
K)(dx; dy) =

Z
X

Z
Y

f(x; y) K(x)(dy) �(dx)

holds, whenever f : X � Y ! R is measurable and bounded.
The following crucial disintegration property shows that each measure on a product space

can indeed be written as the product of a measure and a kernel. To be more speci�c: suppose
� 2 Prob(X � Y ) is a probability on the Cartesian product X � Y of X and Y . Then there
exists a probabilistic relation K : X  Y such that

� = �X(�)
K

holds. Here �X : X � Y ! X is the projection.
Finally, K : X  Y induces a map from Prob(X) to Prob(Y ) upon setting:

K�(�)(B) :=

Z
X

K(x)(B) �(dx):

Hence
R
Y
g dK�(�) =

R
X

R
Y
g(y) K(x)(dy) �(dx) holds for every measurable and bounded

function g : X ! R.
The relationship between the probabilistic relation K and its set-theoretic sidekick RK

may be interesting to observe. Composition carries over to the sidekick as follows:

Observation 4 Let K : X  Y and L : Y  Z be probabilistic relations, and assume that
L is continuous. Then

1. RK � RL � RK;L holds,

2. suppose that for each x 2 X the probability K(x)(G) is positive for each open ball
G � X, then also RK;L � RK �RL holds.

Proof: Since L is continuous, the set UL := fy 2 Y j L(y)(U) > 0g is open in Y , whenever
U � Z is open.

Now let hx; zi 2 RK � RL such that for some y both hx; yi 2 RK and hy; zi 2 RL hold. If
U is an open neighborhood of z, UL is an open neighborhood of y, thus

(K;L)(x)(U) �

Z
UL

L(y)(U) K(x)(dy) > 0:

This proves (1). If, on the other hand, (K;L)(x)(U) > 0 for some open set U containing z,
and if K(x)(UL) > 0, then hx; zi 2 RK;L implies hx; zi 2 RK � RL. This establishes (2). 2
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The condition in the second part of Obs. 4 is e.g. satis�ed for Y = R and the case that

K(x)([a; b]) =

Z b

a

f(x; y) dy;

with a strictly increasing and di�erentiable density f(x; �) for each x.
Recall that for a relation R � X � Y and a set P � X the (left) Peirce product P �R [2,

Ch. 1] is de�ned as
P �R := fhx; yi 2 Rj x 2 Pg:

Observation 5 If K : X  Y is a probabilistic relation, and � is a probability on X, then

1. supp(�
K) � (supp(�)�RK)
cl;

2. if K is continuous, supp(�)�RK � supp(�
K) holds.

Proof: Because
supp(�)�RK = ( supp(�)� Y ) \RK ;

and because RK is measurable, supp(�)�RK is. From

(�
K)(supp(�)�RK) =

Z
supp(�)

K(x)(supp(K(x)) �(dx)

= 1 ;

we may infer
supp(�
K) � (supp(�)�RK)

cl:

On the other hand, continuity of K implies that (�
K)(U �V ) > 0 for each open neighbor-
hood U � V of hx; yi 2 supp(�)�RK . 2

5 Converse Relations

Fix a probabilistic relation K : X  Y , and a probability measure � on X. Then � := �
K

is a probability on X � Y which has a kind of natural converse: put for D 2 BX�Y

�^(D) := �(D^)

with
D^ := fhx; yij hy; xi 2Dg

as the set theoretic converse.
Hence �^ is a probability measure on the Polish space X � Y and is representable by a

probability measure 
 on Y and a probabilistic relation K^
� : Y  X:

�^ = 
 
K^
� :

Note that reverting a stochastic matrix in the �nite or denumerable case does not yield
necessarily a stochastic matrix again: if p(i; j) is the probability that on input i system p

reacts with output j, then a converse interpretation that starts from j is not easy to devise.
Thus it is more di�cult to transpose a stochastic matrix so that another matrix of this type
emerges. The proposal made here is to use a kind of helper probability.

We are ready for the de�nition of the converse of a probabilistic relation.
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De�nition 2 The �-converse K^
� of the probabilistic relation K with respect to the input

probability � is de�ned by the equation

(�
K)^ = K�(�)
K^
� :

It is remarked that the converse K^
� always exists, and that it is unique �-almost everywhere.

Since

�(A) = ( �
K)(A� Y )

= ( K�(�)
K^
� )((Y �A)^)

is true for A 2 BX ,

�(A) =

Z
X

Z
Y

K^
� (A) K(x)(dy) �(dx)

=

Z
Y

K^
� (A) K�(�)(dy);

we infer that

� =
�
K^
�

��
(K�(�))

= ( K;K^
� )�(�)

holds. Hence the converse K^
� solves the equation

� = ( K;T )�(�)

for T . This equation does, however, not determine the converse uniquely. This is so because
it is an equation in terms of the Borel sets of X, hence may only be carried over to the \strip"
fA� Y j A 2 BXg on the product X � Y . This is not enough to determine a measure on the
entire product.

The construction implies that for the Borel set D � Y �X the equationZ
X

K(x)(Dx) �(dx) =

Z
Y

K^
� (y)(Dy) 
(dy)(�)

holds, which implies


(B) =

Z
X

K(x)(B) �(dx)

= K�(�)(B):

Now equation (*) reads a little more symmetric:Z
X

K(x)(Dx) �(dx) =

Z
Y

K^
� (y)(Dy) K

�(�)(dy):

This will be generalized and made use of later:

Observation 6 Let f : X � Y ! R be measurable and bounded. Then this identity holds:Z
X

Z
Y

f(x; y) K(x)(dy) �(dx) =

Z
Y

Z
X

f(x; y) K^
� (y)(dx) K�(�)(dy)
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2

Thus we may interchange the order of integration of f as in Fubini's Theorem, but, unlike
that Theorem, we have to adjust the measures used for integration.

Some properties of forming the converse will be investigated now. Let us have a look at
an analogue of the property R^^ = R which holds for the set theoretic converse. We need
again a helper probability � and will see that we have a similar property.

Proposition 7 If K : X  Y , and if � 2 Prob(X), then

(K^
� )^

K�(�)
=� K:

holds.

Proof: The probabilistic relation (K^
� )^

K�(�)
is determined by the equation

(K�(�)
K^
� )^ = � 
 (K^

� )^
K�(�)

with � := K^
� (K�(�)). Equation (�) implies now that � = �, consequently,

�
K = �
 (K^
� )^

K�(�)
;

as expected. 2
Compatibility of composition and forming the converse is an important property in the

world of set-theoretic relations. In that case it is well known that

(R;S)^ = S^;R^

always holds. The corresponding property for probabilistic relations reads

Proposition 8 Let K : X  Y;L : Y  T be probabilistic relations, and let � 2 Prob (X) be
a probability. Then

(K;L)^� = L^K�(�);K
^
�

holds.

Proof: We will make use of observation 6 by showing that both relations have the same
properties on measurable and bounded functions.

Allora: Let f : X � Z ! R be bounded, thenZ
X�Z

f d (�
 (K;L)) =

Z
Z

Z
X

f(x; z) ( K;L)^� (z)(dx) L� (K�(�)) (dz) (1)

=

Z
X

Z
Z

f(x; z) (K;L) (x)(dz)�(dx) (2)

=

Z
X

Z
Y

Z
Z

f(x; z) L(y)(dz) K(x)(dy) �(dx) (3)

=

Z
Y

Z
X

Z
Z

f(x; z) L(y)(dz) K^
� (dx) K�(�)(dy) (4)

=

Z
Y

Z
Z

Z
X

f(x; z) K^
� (dx) L(y)(dz) K�(�)(dy) (5)

=

Z
Z

Z
Y

Z
X

f(x; z) K^
� (dx) L^K��(z)(dy) L

� (K�(�)) (dz) (6)

=

Z
Z

Z
X

Z
Y

f(x; z) K^
� (dx) L^K��(z)(dy) L

� (K�(�)) (dz) (7)

=

Z
Z

Z
X

f(x; z)
�
L^K�(�);K

^
�

�
(z)(dx) L� (K�(�)) (dz): (8)
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Eq. (1) is a �rst application of Observation 6, equation (2) applies the de�nition of �
(K;L) ;
to the �rst integral. In eq. (3) the de�nition of K;L is expanded, and in eq. (4) Observation 6
is applied to the two outermost integrals, similarly for eq. (6). Fubini's Theorem is used for
the interchanges of integrals in eqs. (5) and (7). Finally, equation (8) applies the de�nition
of the composition of kernels to L^

K�(�) and K^
� . Comparing the �rst and the last equalities

established the claim.

6 Related Work

The generalization of set-based relations to probabilistic ones appears straightforward: replace
the nondeterminism inherent in these relations by randomness. Panangaden [11] carries out a
very elegant construction, arguing as follows: the powerset functor is a monad which has rela-
tions as morphisms in its Kleisly category [9], the functor that assigns each measurable space
the set of all (sub-) probability measures is also a monad having transition probabilities as
morphisms in its Kleisli category [7]. This parallel justi�es their introduction as probabilistic
relations. The category SRel of measurable spaces with transition sub-probabilities is scruti-
nized closer in [11], and an application to the semantics Kozen's probabilistic programs [8] is
given. Abramsky, Blute, and Panangaden [1] investigate that category (now called Stoch) in
the context of Hilbert spaces and their adjoints, hereby introducing the converse of a proba-
bilistic relation as we do through the product measure (Cor. 7.7). The process by which they
arrive at this construction (Theorem 7.6) is quite similar to disintegration, as proposed here
but makes heavier use of what is called here the image measure. The argumentation in the
present paper seems to be closer to the set-theoretic case by looking at what happens when we
compute the probability for a converse relation. Further investigations of the converse do not
include the anti-commutative law. This is probably due to the fact that integration technique
are directly used in the present paper (while [1] prefers arguing with absolute continuity, and
consequently, with the Radon-Nikodym Theorem).

The observation that each transition probability on a Polish space spawns through the
support function a measurable set-valued function, hence a relation, was used in [6] for in-
vestigating the relationship between nondeterministic and stochastic automata. It could be
shown that each nondeterministic automaton can be represented through a stochastic one,
and that this representation is preserved through the sequential work of the automata. Mea-
surable selections play a major role, but the results are not formulated in terms of monads
or categories.

7 Conclusion

This paper proposes the notion of the converse of a probabilistic relation through disinte-
grating a probability that measures the converse of a set-theoretic relation. The resulting
converse depends on an initial probability. The techniques applied are based on the theory
of measures on Polish spaces.

The main contribution of this paper are:

� Some fundamental laws for dealing with converse relations could be established,

� The support function of a probability measure was investigated in terms of monads and
shown to be a natural transformation;
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� The support function was used to clarify the interplay between set-theoretic and prob-
abilistic relations.

Some questions remain open. Desharnais, Edalat and Panangaden [5] formulate some of
their work on stochastic bisimulation using analytic spaces. This gives rise to the question
which topological requirements are basic for work on probabilistic relations. What can be
carried over to these spaces, that appear as quite natural candidates? The question arises,
too, whether some of the rather stringent assumptions can be bypassed (e.g., compactness is
needed to ensure that the functor F forms a monad in sect. 3 because the Vietoris topology
forces innocent assumptions like separability of a hyperspace into compactness). The T-
algebras arising from the functor G in sect. 3 require identi�cation and interpretation in
terms of probabilistic relations.

All this may help in establish a theory of probabilistic relations, comparable in breadth
and scope to their set-valued cousins.
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