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Abstract

The system of mobile agents described here is like a beehive: agents (like bees) swarm o�
to do their duties, wandering to di�erent places, and �nally returning to their origin. The
main insight of this work is how to speci�cally separate the di�erent functionalities in such a
system of mobile agents, and in particular a description of the cooperative processes is given.
In fact, modeling the cooperation of agents is at the heart of this proposal.

This paper proposes the speci�cation of a mobile system in an object oriented speci�cation
language, thus permitting to model a system without binding it to a particular language, an
implementation platform or a programming model. The speci�cation is an architectural
description of the system, focusing on its components, their functionalities and connectors.
It helps making assumptions and hence properties of the system explicit, it will be used as a
blueprint for the implementation of a framework which supports mobile agents.
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1 Introduction

This paper proposes the speci�cation of a system of mobile agents in an object oriented
speci�cation language, in a formalism that is not too distant from implementation technol-
ogy, but which does not bind its constructions to a particular language, an implementation
platform or a programming model. The speci�cation is an architectural description of the
system, focussing on its components, their functionalities and connectors. It helps making
assumptions and hence properties of the system explicit, it will be used as a blueprint for the
implementation of a framework which supports mobile agents.

We assume in this paper that users utilize mobile agents for performing tasks in a dis-
tributed environment which consists of separate and addressable computing platforms. The
tasks to be performed lead to results which may have to be achieved on more than one
platform, hence agents travel between platforms, respecting security barriers. Agents do co-
operate, they form coalitions which may overlap. Eventually, an agent may return to its user
reporting what results it has collected during its journey.

This basic approach is captured here in an architecture, somewhat along the lines of [SG96,
Ch. 6]. The model that we discuss here is general in the sense that it may be instantiated
by di�erent implementations. Since an object oriented description is provided, we may leave
open speci�c bindings of properties. For example, strong mobility seems to prevail because
upon moving around, the agent merely has its location changed, all other attributes are not
manipulated explicitly. Subclassing, however, may introduce agent classes that manipulate
their respective states in speci�c ways. This happens in the realm of the inheritance hier-
archy, thus the agent stays within the conceptual boundaries imposed by the speci�cation.
Consequently, the architecture provides a sketch of the system in a speci�c way: it suggests
certain static properties that represent minimal requirements (e.g., that agents cooperate by
forming coalitions, and that users own agents which return results) whereas it leaves enough
degrees of freedom to represent speci�c ways of implementing characteristic properties (e.g.,
that the coalitions formed may be determined by badges which agents wear in the MOLE sys-
tem [BHRS98]). This is like Category Theory | it sketches important invariant properties,
leaving enough room for an individual realization.

This comparison may be somewhat daring, it provides the author, however, with an op-
portunity to endeavor a comparison with the approach to architecture proposed e.g. in the
COMMUNITY system [WF98] using Category Theory. COMMUNITY uses constructs like colimits
to synthesize programs: a program is essentially described through a sequence of carefully
constructed commutative diagrams that unfold elegantly before the reader, \compiling" into
real programs written in UNITY. Thus the properties of programs are speci�ed algebraically,
the speci�cation, however, does not address the program itself but rather some algebraic con-
struction determining it. Hence an architectural description is done at a very high level so
that important properties are captured through tracing homomorphisms back to their origi-
nating diagrams. This approach is very elegant, in particular when augmented by interface
functors as in [FM96], it su�ers a bit from this indirection, making immediate properties of
programs hard to discern. In contrast, the architectural speci�cation here focuses much more
on the discernible properties of the system, albeit paying the price of not being a fertile soil
of growing interesting theorems on.

The present speci�cation is written in Object-Z [Smi00, Smi92] which o�ers several ad-
vantages for our purposes. It permits a speci�cation style close to the problem, nevertheless
not too remote from an implementation [Spi89, 5.5 { 5.7]. Through its usage of set theory, it
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o�ers a natural and pleasant style of writing things down, and it is �nally through its pre- and
postconditions oriented towards speci�cations which follow the design by contract paradigm
so forcefully advocated by B. Meyer [Mey88]. The object oriented extension to Z permits the
formulation of abstract data types and supports inheritance. Thus it becomes possible to
formulate counterparts to purely virtual methods by abstractly relating the respective values
of a state variable before and after an operation (the method theWork on p. ?? is an example
for this). In this way pre- and postvalues are related quite abstractly, and subclasses may
�ll in the details in di�erent ways. This mode of working is particularly pleasant when the
speci�cation does not want to impose restrictions which may be considered too strong for
a general description. The handling of weak vs. strong mobility discussed above illustrates
this. The availability of a rather general form of inheritance and the structuring into classes
made us prefer Object-Z to, say, algebraic speci�cations.

The rest of the paper is organized as follows: Section 2 gives an overview over the ar-
chitecture and discusses the essential building blocks. The detailed discussion in section 3
discusses agents(3.1) and their users ( 3.2), the source as the root of the system (3.3), and the
di�erent platforms (3.4) on which the work is done. The latters' components are discussed in
some detail. Section 4 puts the present work into perspective with other approaches, and in
section 5 some further work is suggested.

Acknowledgements J�org Pleumann made some very helpful suggestions which improved
the presentation.

2 Building Blocks

The static structure of the system is given by a uniquely determined source and by an arbitrary
number of platforms. The source has essentially administrative tasks: the users are located
here, and the agents �nd their home in the source. The basic 
ow has the users associate
agents with assignments and resources and send them out to remote platforms. When the
agents are done, they return to the source and report their results to their owners. The
platforms are responsible for the agents' work: they cooperate in performing their tasks;
the cooperation is managed by a platform manager which is also responsible for relating the
results of these cooperations. A platform is endowed with a security mechanism determining
whether or not an agent may enter it. The resources an agent is provided with may be spent
during the agent's work until a bottom resource is reached. Then the agent is exhausted.

Users Users live in the component introduced above as the source, which is the central (and
only) locus of their activities. This design decision permits concentrating user activities on
one place. Users create agents, endow them with resources, provide them with assignments
and send them away by giving them the address of a platform. When an agent is done, the
user (its owner) receives it and collects its results in an overall set of results. These results
may be processed further, in particular the user may wish to share them with other users,
this may be modeled through subclassing. The relationship between users is a neutral one:
the architecture does not impose any restrictions nor favor any particular approaches; in fact,
it would be easy to model coalitions (or hostilities) among user groups.
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Agents An agent has an identity, some assignments, some resources to work on them, and
a current location where the work is being done. In addition the agent is subject to security
restrictions. The agent collects results for its assignments in possibly varying coalitions with
other agents, spending its resources as it goes. It travels among platforms and appears to be
strongly mobile [FPV98, BHRS98], hence it does take its internal state with it. In general,
agents may or may not do so, as they migrate from one platform to another one. This is
discussed conceptually in [FPV98] and in [BHRS98] from a more pragmatic point of view.
Strong mobility, as suggested here, seems certainly to be the most restrictive way of preserving
an agent's state, but this is not so in the present setting: by subclassing the way a system
deals with the constraints, and the concrete embellishments of an agent's local state may be
adjusted by introducing inheriting classes ad libitum. Hence changing the address of an agent,
and leaving everything else subject to change is really the minimal requirement one should
impose on an agent that travels.

Upon entering a platform, an agent is received and handed over to the platform's manager
which selects one or more working groups of agents for cooperation. These groups are dynamic
and may change each time an agent enters or leaves the platform. When an agent wants to
leave, its results are collected, and it travels to a new location.

Platforms Platforms are created dynamically; they have an address and a security protocol
determining which agent may enter. They receive agents, get the agents to work, have results
collected and dismiss agents, when they want to travel. Platforms are the places where the
actual work of all the agents collected there is overseen. They employ a manager for dealing
with the administrative work. The work proper is done in workshops. In this way the agent's
work is abstracted into three components:

� the work proper,

� the coalitions an agent is attached to,

� an interface to the administration of collections of agents.

The platform provides the agent with the environment for its work, it associates collections
of agents with a workshop. The services an agent wants to make use of may be provided by
the manager or by a workshop.

Manager When agents arrive at or want to leave a platform, the manager acts as a host,
associating them with other agents, and regrouping these working coalitions resp. Such a
coalition is essentially a collection consisting of agents and their assignments. When collecting
agents for cooperation, the manager caters for all agents presently visiting the platform, so
that each agent is the member of at least one working group for every task assigned to
it (hermits and other lone wolves populating their own group). Care has to be taken as to
conservatively form these groups: previous results obtained by the agents are to be maintained
and do not get lost. The manager assumes furthermore that the number of possible working
groups depends monotonically on the number of participating agents: the more agents we
have, the more coalitions we may build. Agents that want to leave are given their new address,
their results are determined and, together with the address of the present platform, added to
the results the agent has obtained previously.
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Workshops The work proper is being done in a workshop, each coalition of agents is
associated with one. Technically, a workshop houses a set of agents together with assignments
and (partial) results, and it is given control over the completion of the agents' work. The
work itself is performed in steps, determining results and spending resources. When the
workshop determines that the work is completed it �nishes it and o�ers the results (with the
participating agents and their assignments) to the platform. The platform in turn invokes the
workshops for all working groups in parallel, for the time being there is no other connection
between these concurrently working objects. Workshops are created almost casually as the
platform's work goes. They serve as an abstraction for the cooperative work processes in the
same way a coalition models cooperation. It would be possible to merge these abstractions
into one, but it is felt that a separation explains things better.

The interrelationship between the main players of our game is summarized through a very
simple ER-diagram in Fig. 1.

Source harbors Users

owns

Agents
travels

to
Platform

has a
is member

of

Manager
Coalition
of agents

manages

Workshop

work

communi-
cates

Figure 1: The interrelationship between the main players

3 Detailed Discussion

Atomic entities for the Object-Z speci�cation that will be discussed now are the following

[USER;ASSIGNMENT ;RESULT ;KEY ;RESOURCE ];

for convenience we model AGENT and LOCATION as natural numbers (so that we can
assign fresh numbers to them).
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Resources Each agent is provided with resources. This is modeled though a relation
Assignment2Resource between ASSIGNMENT and RESOURCE . During the agent's work,
resources are spent, hence we have for each agent a contracting map

spend : RESOURCE ! RESOURCE

such that
8 r : RESOURCES : spend(r) v r

holds, v being a re
exive and transitive relation. Transivity may be noted from the require-
ment that

spend(spend(r)) v r

should always hold. We assume that we have a bottom resource �nito indicating that no
resources are left. An agent adjusts its resources by computing a new instance of the relation
Assignment2Resource which is bound by the old relation and the spending map spend through
the assertion

Assignment2Resource 0 \ (Assignment2Resource � spend) 6= ?

(note that the primed state variables indicate transitions), hence Assignment2Resource 0

does contain pairs of the form (a; spend(b)) with (a; b) 2 Assignment2Resource. An assign-
ment a does not have any spendable resource at its disposal i�

spend(r) = �nito

holds for each resource r such that (a; r) 2 Assignment2Resource:

Security Security is key based: if the agent's key matches the platform's key, then the
agent may enter the platform. The scheme is simple, but general enough to subsume e.g.
key-based cryptographic procedures, it may be specialized for particular purposes.

To be speci�c: for each agent a key k is generated. Each platform has a key thisKey and a
relation keyRel ; both thisKey and keyRel are con�dential i.e. local to the platform. Matching
occurs if (k ; thisKey) 2 keyRel . These considerations are modeled in the class Security , from
which we have each platform inherit.

3.1 Agents

Each agent has a set theAssignment : PASSIGNMENT as a collection of its (initial) tasks,
and we assume that the results brought back by this agent are captured by a map

myResults : ASSIGNMENT 7! (LOCATION 7! P seqRESULT )

the domain of which is contained in theAssignment . In this way it is possible to attach to
each assignment and each location visited the corresponding results (that each single result
is really a word over the alphabet RESULT including the empty word). This is re
ected in
the method appendToResult which, given a location ` (viz., the place where the results have
been obtained) and a subset r of type P(ASSIGNMENT � seqRESULT ), iterates over all
assignments a and result sequences v which are in r , updating myResult(a) by overwriting it
with ` 7! v [myResult(a)(`), hence adding new results to the ones already obtained.
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An agent travels by executing the method travelTo which is given a destination address `.
It �rst identi�es the platform which has this address and checks whether or not the agent's
key matches by invoking the platform's itMatches method with the key. If this is successful,
the agent enters the platform's ante room, indicating that it wants to be admitted. Then the
platform knows that some agent is knocking at its door and may act accordingly.

Hence the act of traveling is reduced to a simple change of address | everything else
remaining unchanged. To be more speci�c, the travel method for the agent class may be
formulated as follows. It is immediate that this method invites specializations.

travelTo
�(myAddress)
`? : LOCATION

Loc2Platform(`?):itMatches(myKey)
myAddress 0 = `?
phi(`?) = phi(`?) [ fmyKeyg

Here myAddress is the state variable representing the agent's current address, and ` is
the LOCATION which is input as its new address. The map Loc2Platform maps an address
(i. e., a LOCATION ) to a platform, and myKey is the agent's key. Watching of keys
is investigated and | in case of success | the new address is set by modifying the state
variable. Then the agent is introduced into the ante room of the platform which is modeled
by a map phi : LOCATION 7! AgentSet such that di�erent images are disjoint (where
AgentSet abbreviates PAGENT ). This indicates that an agent must not work on two di�erent
platforms: later on, when an agent is actually received on a platform, it is removed from the
platform's phi-set.

3.2 Users

Agents are owned and managed by users, they are assigned tasks and resources by them, and
they �nally deliver their results when returning from their travels. A user is modeled by a
nonterminating process which performs the following tasks repeatedly:

1. If there are new agents, these agents are welcomed. That there are new agents is
detected by the method haveNewAgents.

haveNewAgents b=
[�(newAgents); b! : B j

b! = ( newAgents0 6= ? ^ newAgents 0 \ agentPool = ?) ]

It investigates the state variable newAgents which is changed in such a way that there
are really new agents (hence not already in the agentPool state variable maintaining
all agents presented so far). The new agents are welcomed by providing them with an
identity, by establishing an instance of AgentClass for them, and by setting their owner
to the present user. Finally, agentPool is adjusted:
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welcomeNewAgents
�(agentPool)

agentPool 0 = agentPool [ newAgents
8 a : newAgents : caterForAgent(a)

caterForAgent
a? : AGENT ; ac : AgentClass

ac:INIT
let b == Directory :newAgentId �

ac:setEgo(b)
AgentIdentif (b) = ac
AgentOwner(b) = this

2. If there are assignments which the user wants to be worked on, these assignments are
processed. Given that there are agents available, the assignments are related to them
by de�ning a relation between AGENT and ASSIGNMENT the domain of which is
contained in the current pool of agents, the range of which is contained in the assign-
ments (the code calls this state variable relateAssignment). Each agent which now has
an assignment (these things are in the set dom relateAssignment) are now related to
a location by computing the state variable relateLocation : AGENT 7! LOCATION
and sent to the corresponding location, providing them with their assignments and ad-
justing agentPool . It is noted that each agent sent out is an active one (for keeping
track which agents are out there). The code for this collection of methods re
ects these
considerations using the angelic choice operator:

processAssignment

(agentPool = ?

hireNewAgents
processAssignment)

[]
(agentPool 6= ?

setAssignment2Agent(allAssignments)
setLocation2Agent(dom relateAssignment)
8 x : dom relateLocation j sendAgent(x ; relateLocation(x ))
residualAssignments)

setAssignment2Agent b=
[�(relateAssignment); assgs? : AssignmentSet j ran relateAssignment 0 � assgs? ]
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setLocation2Agent b=
[�(relateLocation); ags? : AgentSet j dom relateLocation 0 = ags? ]

The method for processing assignments is recursive: if the agent pool is empty, a pre-
processing phase hires new agents.

3. If agents return, they must belong to the set of active agents entertained by this user.
This can be investigated by relating the state variables returningAgents to activeAgents.
Each of these agents is received by invoking

V
(p : returningAgents � receiveThisAgent(p))

where receiveThisAgent adjusts the user's state variable theResult by incorporating the
results this agents brings back. Receiving an agent also means updating the pool of
agents and the set of active agents, resp.

receiveThisAgent
�(theResult ; agentPool ; activeAgents)
ag? : AGENT

agentPool 0 = agentPool [ f ag?g ^ activeAgents 0 = activeAgents n f ag?g
let � == AgentIdentif (ag?):giveMyResult �

theResult 0 =
theResult
[
fs : ASSIGNMENT ; ` : LOCATION ; r : ResultSequencej

s 2 dom � ^ ` 2 dom �(s) ^ r 2 �(s)(`) �
(a; s; `; r)g

agentReturns b=
[�(returningAgents); b! : B j

b! = ( returningAgents0 6= ? ^ returningAgents � activeAgents) ]

3.3 The Source

Users live on the source as kind of a special platform. At �rst sight it seems that the source
could be derived from some common ancestor it is having with the platform class, but the
functionalities are too di�erent for that. The source class inherits from a class Singleton, indi-
cating and making sure that there is one and only one source in the system. This requirement
is imposed for rooting the system and providing a focal point for harboring users and serving
as a uniform return address to agents. It is moreover easier to support user cooperation, given
that users are immobile. It would be easy to extend the present considerations to more than
one source.

The Source class is essentially run by an engine that works in an in�nite loop. Before
invoking the engine, however, the source starts the system by �rst adding users, and then
adding platforms.
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Adding platforms works like this

addPlatforms
�(allPlatforms)

allPlatforms 0 = allPlatforms [ newPlatforms
8 p : newPlatforms j p:INITV
(p : allUsers � p:updateAddresses(allPlatforms 0))

Hence all platforms are initialized, and all users are informed that a new platform is
available, so that they are not sent into Nirvana when they travel. In a similar way, new
users are added initially and during further work. The engine distinguishes these cases in its
in�nite loop:

1. There are new users; this is the case whenever the method haveNewUsers returns true:

haveNewUsers b=
[�(newUsers); b! : B j

b! = ( newUsers0 6= ? ^ newUsers 0 \ allUsers = ?) ]

Then the users are added with addUsers.

2. There are new platforms. This is handled similarly.

3. Platforms are to be deleted. The corresponding platforms are removed from the set of
all platforms and the users' registry of available addresses is updated.

4. Users are to be deleted. Again, this is handled similarly.

Deletion is handled somewhat merciless: when a platform gets lost, all agents are lost, too,
for good. Note that the temporal availability or unavailability of a platform is not touched
upon here and should be modeled in a subclass of Source. In a similar way, deletion of users
orphans the corresponding agents, which may then wander around in the system and, upon
returning to the source, �nding out that their owner is no longer available. In this case we
do not provide an orphanage.

3.4 The Platform

The platform is powered by an engine, its administration is in the hands of a manager with
which it communicates whenever it is necessary. The manager is introduced as a matter of
separations of concerns. It permits discussing administrative issues related to agents sepa-
rately from their work proper. Communication between the platform and its manager takes
place whenever agents arrive or leave. Upon arrival, the manager is noti�ed and handed the
agents together with their assignments and results obtained so far, upon wishing to leave,
the manager noti�es the platform and provides it with all the information needed to send the
agent away. These administrative chores are dealt with, in any case (and in the default case
that no movement in the agent theater is noted) the work proper is done by invoking routine.
Hence the platform should be aware of the coalitions formed.
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3.4.1 The Workshop

Coalitions are formed by selecting pairs of agents and assignments, hence a coalition's type
is given by

AgentTaskSet == P(AGENT �ASSIGNMENT )

The set of all coalitions that are active at any time should cover that element of AgentTaskSet
which describes the totality of current agents with their assignments. When the system is
working, each agent in each coalition is supposed to yield results for each of its assignments,
hence the workshop deals with sets of type

AgentYieldSet == P(AGENT �ASSIGNMENT � seqRESULT )

the projections ZoomResOut of which form just these coalitions (the latter map having
type AgentYieldSet 7! AgentTaskSet). Hence, given a set result : AgentYieldSet with its
associated coalition c = ZoomResOut(result), the transition to a new set result 0 of results
requires at least that c = ZoomResOut(result 0) holds (and that the work is not done yet).

The class Workshop maintains state variables result and coopDone; the latter one is
Boolean and 
ags the work being done:

isDone b= [�(coopDone); b! : B j b! = coopDone 0 ]

The work proper is formulated in the recursive method theWork as follows:

theWork
�(result)

let b == self :isDone;
zoom == ZoomResOut(result) �

if b then
(ZoomResOut(result 0) = zoom ^V
(ag : dom zoom �
AgentIdentif (ag):adjustResources)

o
9
theWork)

The agents in a coalition update their resources, once a piece of their work is done.

3.4.2 The Manager

The agents' coalitions and the result of performing their tasks are administered here. The
engine driving this class distinguishes the cases that there are incoming agents, and outgoing
ones, resp; these cases are not disjoint, they are detected by examining whether or not the
corresponding state variables InAgents and OutAgents, which are sets, are empty. We will
discuss these cases in turn now.
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Incoming Agents If there are incoming agents, new coalitions are formed. A coalition is
a member of AgentTaskSet , hence consists of pairs of agents and assignments. All coalitions
active at any moment are bundled into a vector of such sets. New coalitions are formed by
adding new pairs of agents with their assignments to already existing coalitions and by ap-
pending new ones to the vector of all coalitions. Adding new pairs means in particular that
existing pairs are not withdrawn, so that the extension is conservative. The overall constraint
that only pairs (a; s) are added such that agent a is assigned the assignment s is also to be ob-
served. Technically, we store the coalition in a sequence Collection of type seqAgentTaskSet ,
and we arrive at the following formulation for the method ComputeCollection:

ComputeCollection
�(Collection; InAgents)
ag : AGENT

incomingAgents = true
ag = AgentSelection
#Collection � #Collection 0

(8 i : N j i 2 domCollection �
Collection(i) =

fa : AGENT ; s : ASSIGNMENT j (a; s) 2 Collection 0(i) ^ a 62 InAgents ^
: AgentIdentif (a):isDepleted(s) � (a; s)g)

Covers[AgentTaskSet ][A=Agent2Assgn;
B=fi : N j i 2 domCollection 0 � Collection 0(i)g]

InAgents 0 = ?

InAgent is the state variable in which new agents are stored, where

incomingAgents = ( InAgents 6= ?);

and the modi�ed schema Covers makes sure that all pairs (a; s) are indeed covered, when the
global set Agent2Assgn maintains all these pairs.

Covers [X ]
A : PX
B : PPX

[fb : PX j b 2 B � bg = A

After the collection is computed, it is forwarded to the platform for further processing.

Outgoing Agents The set OutAgents contains all those agents which want to travel. For
each such agent, the results obtained are computed, the sets of collective results are updated
and the agent is released. Then, new coalitions are computed and handed over to the platform.

Compute the results: The manager maintains a collection partialResult which is of type
PAgentYieldSet , hence each element of this set consists of triplets (a; s; r) where a is
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an agent, s is an assignment and r is a word over the alphabet RESULT , indicating
a partial result which the agent has obtained for that assignment so far. This state
variable is actually computed by the platform and handed to the manager. From this
set, the results for a given agent are extracted and appended to its previous results.

ComputeAgentResult
x? : AGENT

x? 2 OutAgents
let r ==

[fa : AgentYieldSet j a 2 partialResult � FilterForAgent(x?)(a)g �

AgentIdentif (x?):appendToResult((p:`; r))

The map FilterForAgent selects accordingly:

FilterForAgent : AGENT ! AgentYieldSet ! YieldSet

(8 a : AGENT ; R : AgentYieldSet j
FilterForAgent(a)(R) =

fs : ASSIGNMENT ; r : ResultSequence j (a; s; r) 2 R � (s; r)g)

Update collective results The collection partialResult should note that an agent is no
longer to be taken into account. Hence the traces of the agent are to be removed:

removeTraces
�(partialResult)
x? : AGENT

partialResult 0 =
fq : AgentYieldSet j

q 2 partialResult � RemoveAgentTrace(x?)(q)g

RemoveAgentTrace : AGENT ! AgentYieldSet ! AgentYieldSet

(8 x : AGENT ; R : AgentYieldSet j
RemoveAgentTrace(x )(R) =

fa : AGENT ; s : ASSIGNMENT ; r : ResultSequencej
(a; s; r) 2 R ^ a 6= x � (a; s; r)g

Page 12



An Architecture For A System of Mobile Agents

Release the agent The new address of the agent is computed by determining a new value
for the manager's state variable newAddress and handing this address to the agent.
This new platform is then set as the destination address for the agent, the agent travels
there, provided security permits this, and the agent is moved into the platform's ante
room.

getNewAddress b=
[�(newAddress); x? : AGENT ; a! : LOCATION j

a! = newAdress 0 ]
agentTravels b=

[ x? : AGENT ; loc! : LOCATION j
loc! = getNewAddress(x?) ^ AgentIdentif (x?):travelTo(loc!) ]

letAgentFly b=
[ x? : AGENT j

let loc == agentTravels(x?) � phi(loc) = phi(loc) [ f x?g ]

Propagate to the platform Both the coalitions and the partial results are communicated
to the platform. This communication is technically accomplished through the piping
mechanism available in Object-Z. The manager propagates, and the platform p gets
these objects, hence

propagateCollectionPartialResults k! p:getCollectionPartialResults

The Driver method as the manager's engine selects nondeterministically what to do: to
welcome incoming agents, to wave good bye to outgoing agents, or simply to invoke itself
again; both welcoming and waving depends on the corresponding sets not being empty.

Driver b=
[

incomingAgents = true
^ ComputeCollection
o
9
propagateCollection k! p:CollectionTransfer

o
9
p:newAgentIsProcessed o

9
Driver

[] outgoingAgents = true
^ p:putIntermediateResult k! getIntermediateResult
o
9
newCooperations

o
9
propagateCollectionPartialResults k! p:getCollectionPartialResults

o
9
Driver

[] Driver
]

The control 
ow in this method gets a bit complex through the combination of angelic
choice and recursion, resp., and handshaking with the corresponding methods in the platform.

3.4.3 The Platform Proper

Apart from all the administrative work, the platform's task is to get the work done which the
agents visiting it are assigned to. For each of the coalitions formed a workshop is instantiated
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where the coalition may do its work. Since in general no particular order in which the
coalitions may perform their duties is visible, the method AllTheWork which serves as the
workhorse observes this nondeterminism:

AllTheWork b=

[Comrades? : seqWorkshop j
V
(com : Comrades? � com:theWork) ]

The method is invoked with the actual parameter Collection.
The platform does its work depending on whether there are agents wanting to come in,

and wanting to leave, resp. The corresponding agents are being dealt with along the lines
already perceivable. This is now discussed in greater detail.

Agents ante portas If there are agents waiting to be admitted at this platform with address
` (hence phi(`) 6= ?), one agent is selected, phi(`) is adjusted by removing this agent,
and the set activeAgents incorporates it. This agent is handed to the manager's receiving
method which in turn processes it through an appropriate branch of its Driver method.
The manager communicates the new coalitions, and the platform invokes the appropriate
workshops.

Agents want to leave We detect whether there are agents that want to travel by examining
the state variable wantsToTravel which should be non-empty and contain only active
agents. Dually to admitting agents, an agent is selected from this set and handed to
the manager. Again, the new coalition is communicated to the platform, and the work
continues.

The engine proper selects angelically among these choices, invoking in any case the method
AllTheWork :

Engine b=
[

someAgentKnocks = true
^ receiveAgent k! m:AgentArrives
o
9
AllTheWork(Collection) o

9
Engine

[] someAgentIsDone = true
^ dismissAgent k! m:AgentWantsToTravel
o
9
AllTheWork(Collection) o

9
Engine

[] AllTheWork(Collection) o
9
Engine

]

For communication with the manager the platform makes two methods available. The
method CollectionTransfer permits obtaining new coalitions from the manager. The second
method obtains coalitions and partial results for further processing.

These methods are central to the communication between a manager and its platform,
and they are discussed in a little greater detail. The method CollectionTransfer works as
indicated here:
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CollectionTransfer
�(Collection;CoalitionResults)
pk? : seqYieldSet

let lgthOld == #Collection; lgthNew == #pk? �
Collection 0 = pk?
8 i : N j 1 � i � lgthOld �

CoalitionResults 0(i) = CoalitionResults(i)
8 i : N j lgthOld < i � lgthNew �

CoalitionResults 0(i):initResult(Collection 0(i)� fh ig)

It receives through the input parameter pk? the state variable Collection from the man-
ager and assigns it to the platform's state variable with the same name. For each index that
indicates an old coalition, the working results for that coalition are carried over. For new coali-
tions, the workshop initializes the results to the empty sequence. The vector CoalitionResults :
seqWorkshop stores all these results. The second method, getCollectionPartialResults is also
invoked from the manager's driver method, but in contrast to the �rst one, this happens when
agents are about to leave the platform.

getCollectionPartialResults
�(Collection;CoalitionResults)
pk? : seqYieldSet
pr? : PAgentYieldSet

Collection 0 = pk?
#CoalitionResults 0 = # Collection0

8 i : N j i 2 domCoalitionResults 0 �
ZoomResOut(CoalitionResults 0(i)) = Collection 0(i)

[fi : N j i 2 domCoalitionResults 0 � CoalitionResults 0(i):getResultg

=

[fc : AgentYieldSet j c 2 pr? � cg

With pk? = Collection and pr? = partialResult (manager versions), it also transports
the coalitions to the platform and makes the partial results obtained so far available there.
Since leaving of agents means that coalitions and result vectors are shrinking, this method
determines a new vector CoalitionResults which is compatible with the coalitions invoked
(�rst condition: indicated by the equation for ZoomResOut) and which preserves intermediate
results (second condition: indicated by the union).

In a very similar way, coalitions and intermediate results are propagated from the platform
to the manager through a pipe.
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4 Related Work

Fuggetta, Picco and Vigna paint in their overview [FPV98] (cp. [GV]) a panoramic picture of
ongoing activities in the �eld of mobile computing from the software engineering point of view
(another exhaustive overview over the literature is given in [Cha97, Ch. 2]). It becomes clear
from these discussions that architectural issues are important, and that their study is devoted
to special topics like the study of connectors as in [WF98] or linguistic issues as in [NFP98],
and to the problem of �nding general architectural frameworks, as in [CTV+98] or in the
description of the MOLE system [BHRS98]; an analysis of architectural styles for multi-agent
systems may be found in [She98]. The approaches quoted are geared towards systems that
serve general purposes, in contrast e.g. to [Cha97], in which an agent system for speech
recognition is designed (and which discusses the domain dependency and the in
uence of the
speci�c domain on the architecture in great detail), or to [Fer92] which is strongly interested
in the implications of the assumption that rational agents are acting in the system.

The present proposal centers around the interplay between users, agents and platforms
supporting cooperation, in contrast to e.g. [PS]. This is quite similar to the cooperation
aspect in MOLE [BHRS98], which, however, does not model results and their intermediate
nature. The in
uence of the environment is being made more explicit in that system, and
a blend of strong and weak mobility has proven to be practical. Environments do not play
a role in the present proposal, they may be added easily through subclassing; the 
avor of
mobility suggested here has been discussed already. MOLE does also not provide an explicit
security system, in contrast to systems like Telescript [Whi96] which are dedicated to special
purposes like electronic commerce (as in this case). Apart from the programming model, the
Concordia infrastructure [WPW+] has some similarities with the current proposal. Agents
are managed there by a conduit server. If an agent travels, it is propagated by these servers
from location to location; traveling proper, however, is controlled by an agent's itinerary, a
data structure quite separate from the agent. This provides just one possibility of specializing
the way an agent travels in the present approach.

Ciancarini et al. [CTV+98] propose a reference architecture for coordinating applications.
The emphasis on the PageSpace architecture lies on the coordination aspects (Linda or rel-
atives seem to be a favorite mechanism for that), quite apart from implementation related
questions, a suggestion is provided to distinguish several kinds of agents. Homeagents are
avatars for users; they are similar to the users modeled here, but there is no counterpart to
the Source. Application agents in PageSpace perform the work proper and are similar to the
agents discussed here; cooperation of agents is, however, not discussed. The role of aManager
in the current proposal is a blend of what gateway, and kernel agents are supposed to do in
PageSpace; platforms and workshops are somewhat implicit. One of the important points
made by this paper is to show how the Web, Java, and Linda can be made to cooperate as
basic building blocks, a point of view quite remote from the one adopted in the present paper
using a set-oriented speci�cation method.

5 Conclusion and Further Work

The system of mobile agents described here reminds of a beehive: agents (like bees) swarm
o� to do their duties, wandering to di�erent places, and �nally returning to their origin. The
main insight of this work is how to speci�cally separate the di�erent functionalities in such
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a system of mobile agents, and in particular a description of the cooperative processes was
given. In fact, modeling the cooperation of agents is at the heart of this proposal.

Agents cooperate only on one platform, and users may be rather unfriendly to each other.
It would be helpful to remove these restrictions: agents could be able to cooperate irrespective
whether or not there are boundaries given by platforms between them, at least they could
have access to data that are stored on another platform. This view gives rise to a type
system in [NFP98] which permits to statically detect security violations, and some of the
complications accompanying such a property are visible there. A similar property is not
modeled here (so it is not excluded alltogether), but its explicit modeling will provide further
insight how agent communities work. Users do not cooperate, so this is a further possible
extension: they might be interested in sharing results e.g. through a public blackboard.
Interfacing with real users is also an issue that has not been addressed in this work.

An implementation could provide further insight into applications of an agent system like
the present one; as in many other cases, Linda will be the coordination mechanism to have a
closer look at.

The third area to be covered addresses provable properties of the model; model check-
ing [EMCGP00] will be the method of choice (see e.g. [CFM00]). Here considerable back-
ground work is still needed for model checking Object-Z speci�cations.
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