
 

 

Design and synthesis of activity-based probes (ABPs), 

adaptation of activity-based protein profiling (ABPP) 

for plant proteomes studies 

 

 

Zur Erlangung des akademischen Grades eines Doktors der  

Naturwissenschaften von Fachbereich Chemie  

der Technischen Universität Dortmund  

angenommene 

 

 

DISSERTATION 

 

 

von 

Diplom-Chemiker 

Zhe Ming Wang 

aus Hangzhou 

 

 

1. Gutachter: Prof. Dr. H. Waldmann 

2. Gutacher: Prof. Dr. R. Goody 

Tag der mündlichen Prüfung: 28.09.2009 

 



Zhe Ming Wang  Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

 

 

 

 

 

 

 

 

Die  

vorliegende Arbeit  

wurde unter der Betreuung von  

Herrn Prof. Dr. Herbert Waldmann  

in der Zeit von Dezember 2005 bis September 2009  

am Fachbereich Chemie der Technischen Universität Dortmund,  

sowie am Chemical Genomics Centre (CGC) der Max-Planck-Gesellschaft  

in Dortmund angefertigt. 

 

 

29.07.2009 

 



Zhe Ming Wang  Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



Zhe Ming Wang  Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Zhe Ming Wang Acknowledgement Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

Acknowledgements 

Maybe this is the only opportunity to express my sincere gratitude to everyone at 

my working places (CGC, MPI-Dortmund and MPIZ) who offered any help or 

gave advices in the past. 

 

Patrick, working at the fume hood beside me, offered so many help, big or small. I 

thank you for always standing beside me, in roomage and emotion. 

 

Farnusch, Takayuki and Christian, my plant chemetics group colleagues in Cologne, 

did me great favours carrying out biological work. Your help is highly appreciated. 

 

Prof. Waldmann, you gave me the great opportunity to explore the subtlety of 

chemical biology and arranged a nice position for me with two excellent group 

leaders taking good care of me. I thank you. 

 

Markus, you spend me the lab, spend me the time, spend me the talks and spend me 

the ideas. How lucky to have met you. We shared happiness; we argued for the 

truth; we discussed for the problems and you cared for my private life. All things 

are engraved deeply on my memory. I say, thank you. 

 

Renier, you bring me to your newly born group, bring me to so many beautiful 

places, bring me to the fantastic biological world, bring me to the nature. You gave 

me skills, your kind guiding and your useful advises triggered me to be mature. 

They are always on my mind. I say, thank you. 

 



Zhe Ming Wang  Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

The last appreciation is well deserved for my most important home front, my papa, 

mama and Sumi as well as all my close friends from my hometown, from Bavaria 

and from other places. The time shared with you is wonderful. 

 

 



Zhe Ming Wang Table of content Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

Content 

1 General Introduction        1 

1.1 From genomics to functional genomics    1 

1.2 Short historical background to proteins    3 

1.3 From functional genomics to proteomics    5 

1.4 From proteomics to functional proteomics    7 

1.5 From functional proteomics to chemical proteomics  10 

1.6 Chemical biology in chemical proteomics    13 

1.7 Protease for life science       16 

1.8 Background to activity-based protein profiling (ABPP)  19 

1.9 ABPP for plant biology       23 

2 Aim of the PhD mission        26 

3 Results and discussions        29 

3.1 Natural product-based ABP design of anti- -lactones  29 

3.1.1 Introduction        29 

3.1.2 Syntheses        31 

3.1.3 Bioassays        37 

3.1.4 Discussion        43 

3.2 Mechanism-based ABP design of syn- -lactones   44 

3.2.1 Introduction        44 

3.2.2 Syntheses        45 

3.2.3 Bioassays        47 

3.2.4 Discussion        56 



Zhe Ming Wang Table of content Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

3.3 Non-directed ABP design of aziridines and azirines  58 

3.3.1 Introduction        58 

3.3.2 Syntheses        59 

3.3.3 Bioassays        64 

3.3.4 Discussion        66 

3.4 Direct ABPs design of AEBSF-based probes   67 

3.4.1 Introduction        67 

3.4.2 Syntheses        68 

3.4.3 Bioassays        69 

3.4.4 Discussion        77 

3.5 Mechanism-based ABP design of AOMK for AvrPphB  79 

3.5.1 Introduction        79 

3.5.2 Syntheses        80 

3.5.3 Bioassays        84 

3.5.4 Discussion        90 

3.6 Mechanism-based ABP design of AOMK for VPE  92 

3.6.1 Introduction        92 

3.6.2 Syntheses        92 

3.6.3 Bioassays        94 

3.6.4 Discussion        95 

3.7 Natural product syntheses of Gibbestatin    97 

3.7.1 Introduction        97 

3.7.2 Previous synthesis approachs for GNB   99 

3.7.3 First synthesis approach for GNB    100 

3.7.4 Second synthesis approach for GNB    106 

3.7.5 Discussion        109 



Zhe Ming Wang Table of content Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

4 Summary (English)        111 

4.1 Chemical part        111 

4.2 Chemical biological part       113 

4.3 Biological part        116 

5 Zusammenfassung (German)       117 

5.1 Chemischer Teil        117 

5.2 Chemisch-biologischer Teil      119 

5.3 Biologischer Teil        123 

6 Experimental section        124 

6.1 Chemical part        124 

6.1.1 Instruments and Reagents     124 

6.1.2 Synthetic procedures      128 

6.2 Biological part        225 

6.2.1 Materials of bioassays      225 

6.2.2 Methods of bioassays      228 

6.2.3 Procedures of ABPPs      232 

7 References          242 

8 NMR spectra         257 

 



Zhe Ming Wang Abbreviation Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

Abbreviations 

1D: One-dimensional 

2D: Two-dimensional 

ABPs: Activity-based probes 

ABPP: Activity-based protein profiling 

ACN: Acetonitrile 

AD: Activation domain 

AEBSF: 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride 

AFP: Affinity-based profiling 

AIBN: Azobis-iso-butyronitrile 

AOMK: Acyloxymethyl ketone 

BuLi: Butyl lithium 

br: Broad 

CDCl3: Deuterochloroform 

cICAT: Cleavable isotope-code affinity tag 

: Chemical shift 

DCC: N,N -Dicyclohexylcarbodiimide 

DCM: Dichloromethane 

DBD: DNA binding domain 

DHP: 2,3-Dihydropyrane 

DIAD: Di-iso-propyl azodicarboxylate 

DIC: N,N -Di-iso-propylcarbodiimide 

DIPEA: Di-iso-propylethylamine 

DIPT: Di-iso-propyl tartarate 

DMAP: 4-(Dimethylamino)pyridine 

DMF: N,N-Dimethylformamide 



Zhe Ming Wang Abbreviation Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

DMP: Dess-Martin periodinane 

DMSO: Dimethyl sulfoxide 

DOS: Diversity oriented synthesis 

DTT: Dithiothreitol 

ELISA: Enzyme-linked immuno-sorbent assay 

ESI: Electrospray ionization 

EST: Expressed sequence tag 

ETS: Effector-triggered susceptibility 

ETI: Effector-triggered immunity 

FCG: Forward chemical genetics 

FP: Fluorophosphonate 

h: Hour 

HBTU: O-(Benzotriazol-1-yl)-N,N,N ,N -tetramethyluronium hexafluorophosphate 

HOBt: N-Hydroxybenzotriazole 

HPLC: High performance liquid chromatography 

HR: Hypersensitive cell death response 

HRMS: High resolution mass spectroscopy 

HTS: High-throughput screening 

IBX: 2-Iodoxybenzoic acid 

IMAC: Immobilized metal affinity chromatography 

IR: Infrarot-spectroscopy 

J: Coupling constant in Hertz 

LDA: Lithium diisopropylamide 

LiHMDS: Lithium bis(trimethylsilyl)amide 

m: Multiplet 

MALDI: Matrix-assisted laser desorption ionization 

MAMPs: Microbial-associated molecular patterns 



Zhe Ming Wang Abbreviation Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

MHz: Megahertz 

min: Minute 

MS: Mass spectrometry 

MRM: Multiple reaction monitoring 

NaOAc: Sodium acetate 

NB-LRR: Nucleotide binding leucine rich repeat domain 

NBS: N-Bromosuccinimide 

ND: Natural product derivatives 

NMM: N-Methylmorpholine 

NMR: Nuclear magnetic resonance 

NP: Natural products 

ORF: Open reading frame 

PAMPs: Pathogen-associated molecular patterns 

PCD: Program cell death 

PGs: Polygalacturonases 

PMSF: Phenylmethanesulfonyl fluoride 

PNBA: Para-nitrobenzoic acid 

PPIs: Protein-protein interactions 

PPTS: Pyridinium para-toluenesulfonate 

PRRs: Pattern recognition receptors 

PTI: PAMP-triggered immunity 

PTM: Post-translational modification 

PyBOP: Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

q: Quartet 

QIT: Quadrupole/linear ion trap 

R protein: Disease resistance proteins 

ROIs: Reactive oxygen intermediates 



Zhe Ming Wang Abbreviation Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

ROS: Reactive oxygen species 

RGC: Reverse chemical genetics 

s: Singlet 

SA: Salicylic acid 

SAGE: Serial analysis of gene expression 

SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SIL: Stable isotope labelling 

SILAC: Stable isotope labelling of amino acids in cell culture 

SNP: Single-nucleotide polymorphism 

SRM: Selective reaction monitoring 

SPPS: Solid phase peptide synthesis 

t: Triplet 

TBAF: Tetrabutylammonium fluoride 

TBDPSCl: tert-Butyl diphenylchlorosilane 

TBS: Tris-buffered saline 

TEA: Triethylamine 

TFA: Trifluoroacetic acid 

TfOMe: Methyl trifluoromethanesulfonate 

TGLA: Target guided ligand assembly 

THF: Tetrahydrofuran 

TLCK: N -Tosyl-lysyl-chloromethylketone 

TMSCl: Chlorotrimethylsilane 

TOF: Time-of-flight 

TPCK: N-2-p-tosyl-l-phenylalanine-chloromethylketone 

TPP: Triphenylphosphine 

Tris buffer: Tris(hydroxymethyl)aminomethane buffer 

tR: Retention time 



Zhe Ming Wang Abbreviation Doctoral Dissertation 2009 

  Chemical Genomics Centre (CGC) 

TTSS: Type three secretion system 

VICAT: Visible isotope-coded affinity tag 

VIGS: Virus-induced gene silencing 

VS: Vinyl sulfone 

Y2H: Yeast-two-hybrid system 

Y3H: Yeast-three-hybrid system 

 

 

 



Zhe Ming Wang General Introduction Doctoral Dissertation 2009 

 - 1 - Chemical Genomics Centre (CGC) 

1 General introduction 

1.1 From genomics to functional genomics 

Genomics is the large-scale study of the genomes of organisms by 

biochemical tools, which was established by Nobel laureate Fred Sanger with the 

complete sequencing of genomes of 5S ribosomal RNA from Escherichia coli in 

1967 (Brownlee et al., 1967) and bacteriophage phi X174 DNA in 1977 (Sanger et 

al., 1977). However, the term “genomics” itself was coined by Tomas Roderick in 

1986. Genomics studies based on DNA sequencing were the central issue in the 

Pre-Genomic era, many significant milestones were reached during that time, such 

as the first sequencing of a gene of bacteriophage MS2 coat protein in 1972 (Min 

Jou et al., 1972), the first sequencing of a DNA-based genome of bacteriophage phi 

X174 in 1977 (Sanger et al., 1977), the first sequencing of a free-living organism of 

Haemophilus influenzae in 1995 (Reischmann et al., 1995) and a rough draft of the 

human genome by the Human Genome Project in early 2001 (International Human 

Genome Sequencing Consortium et al., 2001; Venter et al., 2001).  

This draft of the human genome as a symbol marked the coming of the Post-

Genomic era. However, at that time the intensive accumulation of complete gene 

codes in databases was still not sufficient to clarify their gene products. Several 

reasons result such difficulty: First, the existence of an open reading frame (ORF) 

in genomic data does not necessarily indicate the existence of the corresponding 

gene product, as was found in the case of alpha herpesviruses (Boldogkoei et al., 

1994); second, there is no strict linear relationship between genes and their 

corresponding gene products. This has been pointed out in by Pandey et al. in 2000 

(Pandey et al., 2000) and was indirectly supported with the study on the 

relationship between protein-fusion and gene co-expression by Gunter and 
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Gaasterland (Gunter et al., 2001); third, until now and even in the near future, it is 

still difficult to predict genes accurately from genomic data, as pointed out from the 

sequencing of human chromosome 22 (Dunham et al., 1999); fourth, as mentioned 

by Pandey et al., “the sequencing of related organisms will ease the problem of 

gene prediction through comparative genomics, the success rate for correct 

prediction of the primary structure is still low” (Claverie 1997, Pandey et al., 1999). 

The error rate was at least 8% in the annotations for 340 genes from the 

Mycoplasma genitalium genome (Brenner 1999) and even in the recent reports, the 

problem still exists in spite of the reduced error rate (Shampson et al., 2009).  

Furthermore, despite the difficult of identifying the gene products directly 

from their genome, the simple demonstrating the existence of the gene products is 

also not sufficient for understanding their function in a biological system. In order 

to understand the function of the genes, the genomes analyses have been improved. 

“Functional genomics” was initiated in the late eighties, which was conceived to be 

able to narrow the gap between traditional genome sequencing-based analysis and 

the required genome function analysis. The birth of functional genomics also 

marked the division of conventional genomics into two subtopics. Beside 

“functional genomics”, “structural genomics” was also invented (Burley et al., 

1999). During the early nineties, there were many different interpretations on 

functional genomics. In 1997, Philip Hieter and Mark Boguski pointed at a clearer 

task for functional genomics and enumerated several emerging methods (Hieter et 

al., 1997). Functional genomics nowadays is interpreted as a field, which utilizes 

the genomic data to describe gene functions and interactions. Especially studies on 

gene transcription, translation, and protein-protein interactions are in the focus of 

functional genomics. To this end, many associated techniques were developed in a 

rapid way: DNA microarrays (Schena et al., 1995, Shalon et al., 1996) and serial 

analysis of gene expression (SAGE) (Velculescu et al., 1995, Saha et al., 2002, 
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Matsumura et al., 2005) for mRNA, siRNA and cDNA transfection to study 

individual or libraries of genomic reagents in cell-based experiments (Mousses et 

al., 2003, Pullmann et al., 2007). A concept termed as “expressed sequence tag” 

(EST) (Adams et al., 1991) emerged during that time. As an important resource, 

ESTs have been intensively studied, benefited from above advanced methods 

(Nagaraj et al., 2006). Because most studies on ESTs are at the RNA level, the term 

“tanscriptomics” was proposed. In analogy to genomics, transcriptomics is the 

study of the transcriptomes. A recent review summerized the achievements of 

transcriptomics studies until now (Wang et al., 2009). The further that researchers 

go in addressing questions on functional genomics, the more they realize that 

studies only on gene function-related mutations and polymorphism, such as single-

nucleotide polymorphism (SNP) (Vignal et al., 2002) is insufficient, and that 

studies should also involve the measurement of final gene products (such as 

proteins and metabolites), which are opposite to transcripts, the prior gene product. 

Following the birth of transcriptomics, proteomics, the study of the proteomes and 

metabolomics, the study of the metabolomes (Oliver et al., 1998) emerged from 

functional genomics. 

1.2 Short historical background to proteins 

Proteins as distinct biological polymers have a long history in chemistry. In 

the eighteenth century, they were recognized as chemical compounds coagulating 

or flocculating under treatments with heat or acid by the French chemist and 

clinician Antoine Fourcroy (1755-1809) and others. The first elemental analysis of 

common proteins was performed by the Dutch chemist Gerhardus Johannes Mulder 

(1802-1880), to reveal the astonishing fact that nearly all proteins have a same 

empirical formula C400H620N100O120P1S1 (Mulder 1838). Mulder believed the 

proteins consists of a fundamental material, named as Grundstoff and hydrolysis of 
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proteins delivered a substance, with both amino and carboxylic functionalities. 

Hence, the substance was called an amino acid. The first two amino acids leucine 

(in 1819) and glycine (in 1820) were isolated by the French chemist and pharmacist 

Henri Braconnet (1780–1855). Mulder continued to identify the molecular mass of 

leucine and chemically synthesized it as the first synthetic amino acid in 1855 

(Perrett 2007). The term “protein”, derived from the greek word “prota” (of 

primary importance), however, was coined by Mulder’s associate in 1838, the 

Swedish chemist and clinician Joens Jakob Berzelius (1779-1848). Although later 

several other proteins such as albumins, fibrin and haemoglobin were isolated, the 

function of proteins in biological systems was not understood until the enzyme 

urease was demonstrated to be a protein (Sumner 1926). Before the phenylalanyl 

chain of insulin I/II in 1951 and the glycyl chain of insulin I/II in 1953 were 

sequenced by Frederick Sanger (Sanger et al., 1951, Sanger et al., 1953), proteins 

were presumed to be somewhat amorphous. The structures of myoglobin and 

haemoglobin were resolved by Sir John Cowdery Kendrew and Max Perutz, 

respectively (Kendrew et al., 1958, Perutz et al., 1960). Those were the first 3D 

structures determined by x-ray diffraction analysis.  

While the properties and structures of proteins such as catalytic activities of 

enzymes were studied by chemists, the biological functions of proteins in living 

organisms were also increasingly studied by biologists. Initially, proteins were 

studied individually. However, when the time of studying protein cellular functions 

came - studies into actin or tubulin (Weisenberg 1981), enzyme cascades such as 

the coagulation cascade (Zimmermann et al., 1978) or cell signalling such as 

Hedgehog signalling pathway (Nüsslein-Volhard et al., 1981) - a systematic study 

of proteins was appreciated in biology. 
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1.3 From functional genomics to proteomics 

Functional genomics made many achievements with mRNA studies. 

However when N. Leigh Anderson and Jeff Seilhamer presented the first multi-

gene comparison plot of mRNA vs protein abundance for cellular gene products in 

1997, they calculated a correlation coefficient between mRNA and protein of 0.48 

(Anderson et al., 1997). This correlation coefficient shows that the relationship 

between mRNA and proteins is not that strict. Studies of angiotensin (Pfeffer, 

1993), 7-transmembrane G-protein coupled receptors (Wess, 1997) and Alzheimer 

amyloid precursor protein (Hooper et al., 1997) showed that cellular control system 

can operate purely at the protein level. Transcriptomics cannot resolve the 

questions of cellular control systems. Furthermore, as proteins are more stable, they 

are much better samples than mRNA. Proteins are involved in nearly all biological 

activities, so they are the direct material to study functions of biological systems. 

“Functions: proteins 100 000 – mRNA 1” and “the current term functional 

genomics, which implies that function can be explored at the genomic level, is a 

bizarre…” were described in the review by Anderson (Anderson et al., 1998). No 

matter whether that comment extreme is or not, the proteomics indeed completely 

succeeded the principle and mission of functional genomics in studying functions 

of biological systems.  

Although the term “protein” originated in the field of chemistry as early as 

the nineteenth century, indeed much earlier than the term “gene”, “proteome” and 

“proteomics” were proposed later than “genome” and “genomics” in the field of 

molecular biology. The term proteome was coined by Marc Wilkins in 1994 in the 

symposium of "2D Electrophoresis: from protein maps to genomes" and later in his 

paper “from proteins to proteomes” to describe the proteome as “the PROTEin 

complement expressed by a genOME” (Wilkins et al., 1996). Nowadays, a 
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proteome usually refers to the entire of proteins expressed by a genome, cell, tissue 

or organism. Hence, proteome is not as genome strictly defined. To describe a 

proteome in an accurate way, the time and defined conditions to express the 

referred proteome have to be noted. In reality, the term proteome sometimes refers 

more widely to a group of cellular proteins, or a collection of proteins in certain 

sub-cellular biological systems. (In certain cases, a mixture of proteins from 

different organisms is also called a mixed proteome.) Due to alternative splicing of 

genes and post-translational modifications (PTMs) of proteins, there are more 

proteins than genes. To study a proteome is therefore more complex than a genome. 

The proteomics cannot be limited to the accumulation of the protein sequences like 

the genomics is a list of DNA sequences, but also including information on protein 

structures and the functional interaction between proteins. 

Although proteomics was first coined by James in 1997 (James, 1997), the 

origin of proteomics dates back to the late seventies when different high-resolution 

2D-electrophoresis methods were developed by Klose (Klose, 1975), O’Farrell 

(O’Farrell, 1975) and Scheele (Scheele, 1975) to assemble proteins databases. 

Hence, proteomics stood originally for analysis of a large number of proteins from 

a given cell line or organism on 2D polyacrylamide gels. With further developed 

techniques, proteomics is nowadays more widely defined as large-scale studies of 

proteins in living organisms, particularly their structures and physiological 

functions. 

Proteomics is complementary to genomics because it directly focuses on the 

proteins, which implements all biological processes. Verification of gene products 

by proteomics is a reliable way to interpret the genome. As a short summary, 

comparing to genomics or transcriptomics, the advantages of proteomics for 

studying the functions in biological systems are obvious: first, the existence of gene 

products can be confirmed by proteomics; second, the protein expression level can 
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be more accurately determined (Gygi et al., 1999); third, the subcellular 

localization of gene products can be monitored experimentally; fourth, the 

interaction between protein and the cellular chemical structures such can be 

analysed only in the protein level; fifth, modifications of the proteins are not 

encoded directly in the genome, such as isoforms, PTM, and regulation of protein 

function by proteolysis, recycling and sequestration in cell compartments can be 

investigated only by proteomics.  

1.4 From proteomics to functional proteomics 

In the genomic era, proteomics is mainly dependent on annotation from 2D 

protein gel of cell lysates (Berndt et al., 1999, Caron et al., 2002) and visualization 

of protein expression levels on 2D protein gels (Greenspan et al., 1995, Gygi et al., 

2000). The 2D gel approach dates back to the time when Frederick Sanger analysed 

the two polypeptide chains of Insulin (Sanger et al., 1951, Sanger et al., 1953). The 

resolution of the gel was always the bottleneck restricting the gel-based 

visualization of the proteome. The best 2D gel can resolve no more than 1000 

proteins, usually only for the most abundant proteins. However when the technique 

of mass spectrometric identification of gel-separated proteins was combined with 

proteomics, protein annotation on gel was widely extended. Comparing to classical 

Edman degradation technique, mass spectrometry is more sensitive for complex 

proteomes and able to be combined with high-throughput screening (HTS) 

techniques (Marvin et al., 2003). 

Proteins can be identified by gel-based mass spectrometric methods, however 

the information of the corresponding protein such as 3D structure, skeleton 

dynamicity, surface conditions (e. i. charges, lipo- or hydrophilic properties), 

interaction partners, or cellular localization are all lost with this method. These lost 

information indeed are more important than the sequence information of a protein 
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for studying its biological functions. In the Post-genomic era, many other 

techniques besides mass spectrometry joined in the proteomics for the complete 

study of functions of the biological systems. 

Mass spectrometric instrumentation for proteomics was quickly developed. 

Two soft ionization techniques, electrospray ionization (ESI) and matrix-assisted 

laser ionization (MALDI), enabled to ionize peptides or proteins (Fenn, et al., 1989, 

Karas et al., 1988). In order to analyse the complex proteome, four mass analyzers 

are routinely applied: quadrupole (Q), quadrupole/linear ion trap (QIT/LIT or LTQ), 

time-of-flight (TOF) and Fourier-transform ion cyclotron resonance (FTICR) mass 

analyzers. Nowadays, expensive hybrid analyzers are becoming popular for high 

sensitivity, such as Q-q-Q, Q-q-LIT, Q-TOF, TOF-TOF and LTQ-FTICR (Han et 

al., 2008). LTQ-Orbitrap is a new analyzer type, invented in 1999 (Makarov 2000), 

which was applied for proteome analysis and led to a fourfold improvement of 

sensitivity (Hu et al., 2005, Venable et al., 2007). The fragmentation techniques for 

tandem mass spectrometry (MS/MS) were also developed besides conventional 

collision-induced dissociation (CID), such as electron-capture dissociation (ECD) 

(Zubarev et al., 1998) or electron-transfer dissociation (Syka et al., 2004). With 

these new fragmentation methods, PTM of proteins can be better analysed (Shi et 

al., 2001, Chi et al., 2007). Benefited from the advanced technologies, the 

strategies for proteome annotation and PTM characterization were also improved. 

Bottom-up and Top-down are two usual strategies to analyse proteins. The bottom-

up approach refers to proteome separation before digestion followed by peptide 

mass fingerprinting-based acquisition or further peptide separation on-line coupled 

to tandem mass spectrometry to identify each protein. On the contrary, the top-

down approach means that the proteome is fractionated and separated into pure 

single protein or less complex protein mixtures, followed by off-line static infusion 

of samples into the mass spectrometer for intact protein mass measurement and 
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intact protein fragmentation to identify each protein. The shotgun method is a 

complementary method for the bottom-up approach (McDonald et al., 2003). 

However incorrect identification can lead to the loss of information from intact 

proteins and the limited dynamic range of mass spectrometric analysis only allows 

measurements of the most abundant peptides. The newer top-down approach 

provides direct analysis of modifications, but limits the ability to fragment intact 

proteins and the combination with throughout screening (Han et al., 2006, Parks et 

al., 2007).  

Protein-protein interactions (PPIs) study is another major field in functional 

proteomics. Protein microarrays are the first major application of PPIs. Similar to 

DNA microarrays, protein microarrays are applied to identify the substrates of 

proteins such as kinases (Schutkowski et al., 2004), transcription factors for gene-

regulation (Sala et al., 2009), or the targets of biologically active small molecules 

(Uttamchandani et al., 2006). Antibody microarray are a well-established protein 

microarray, and it is well known as the enzyme-linked immuno-sorbent assay 

(ELISA), used as a diagnostic tool in medicine and co-purification tool in plant 

pathology. Purification of protein complexes is a second part of PPIs. To purify 

entire multi-protein complexes by affinity-based methods, fusion proteins, 

antibodies, peptides, oligonucleotides or small molecules, targeting to a cellular 

target can be chosen to immunoprecipitate the complex by an antibody or 

immobilize the complex on a solid support via an associated ‘bait’ (Strausberg et 

al., 1999, Neubauer et al., 1998). Yeast-two-hybrid system (Y2H) and phage 

display are two other methods to study PPIs. Y2H was originally devised by 

Stanley Fields to monitor PPIs in Saccharomyces cerevisiae system (Fields et al., 

1989). A bait protein is fused to the DNA binding domain (DBD) and a prey 

protein is fused to the activation domain (AD) of a transcriptional activator. The 

interaction between bait and prey reconstitutes the functional transcription factor 
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and results in the expression of the reporter gene for positive selection. The bait 

protein can be screened against genomic or cDNA prey libraries expressing all 

encoded or expressed proteins in the organism or tissue of interest. Nowadays, 

improved Y2H systems have been reported, such as YTH for bacterial PPIs, 

MYTH for membrane associated PPIs and MAPPIT for mammalian PPIs (Suter et 

al., 2008). Like the Y2H, phage display is used for the HTS of PPIs, protein-

peptide or protein-DNA interactions. It uses bacteriophages to express proteins on 

their coat protein (Smith 1985). Highly diverse libraries (> 1010) can be represented 

as phage pools, and due to the link between genotype and phenotype, an antigen-

specific clone can be selected in vitro. Commonly used bacteriophages are M13 

and filamentous phage T7 (Kehoe et al., 2005, Sidhu et al., 2007). 

There are also several other methods in functional proteomics, such as 

fluorescence protein fusion to study protein localization (Van Roessel et al., 2002), 

proteomics analysis on large-scale mouse knockouts (Zambrowicz et al., 1998), 

RNA interference, as exemplified by small virus-induced gene silencing (VIGS) 

(Colbère-Garapin et al., 2005) or phenotypic analysis using deletion strains 

(Winzeler et al., 1999). 

1.5 From functional proteomics to chemical proteomics 

Although proteomics like genomics belongs to the study field of molecular 

biology, it returned to the chemistry study field recently, due to the inherent 

relationship. As shown in the above section, protein studies started in chemistry 

and chemical modification of proteins has a long-standing history in this field 

(Lundbald, 2004). The chemical tags used in proteomics today were established 

during the sixties to seventies. Chemical proteomics sometimes is considered as 

“methods to measure the interaction between small molecule compounds and 

protein targets” (Kruse et al., 2008). This view about chemical proteomics is 
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obviously too narrow; chemical proteomics is basically not different from 

conventional functional proteomics, but combines chemical tagging concepts 

(Leitner et al., 2006) systematically with proteomics, and enables this new hybrid 

methodology to much better resolve the difficulties in functional proteomics. 

Modifying functional groups in peptides to improve the sensitivity for mass 

spectrometry is one part of chemical proteomics. For example, the  “tandem mass 

tag” (Thompson et al., 2003) allows quantitation at the MS/MS level. Coumarin-

based tags were used to enhance detection sensitivity and fragmentation efficiency 

in MALDI-MS and -MS/MS (Pashkova et al., 2004). 

Introduction of labels for relative or absolute quantification is the second part 

of chemical proteomics. In stable isotope labelling (SIL), heavy isotopes such as 2H, 
13C, 15N and 18O are frequently used to determine protein levels. iTRAQ, an 

acronym for isobaric tag for relative and absolute quantification was introduced in 

2004 (Ross et al., 2004) and reductive dimethylation of amino groups (Hsu et al., 

2003) is a second method to label the proteome with heavy isotopes. These 

labelling methods enable mass spectrometry not only for determining the presence 

of a protein or PTM, but also for quantitative analysis of interiorly labelled 

proteomes. Stable isotope labelling of amino acids in cell culture (SILAC) (Ong et 

al., 2002), selective reaction monitoring (SRM) (Mayya et al., 2006) or multiple 

reaction monitoring (MRM) (Anderson et al., 2004) are further emerging mass 

spectrometric strategies.  

The introduction of affinity tags to enrich certain samples is the third 

important application in chemical proteomics. The cleavable isotope-code affinity 

tag (cICAT) originated from the isotope-code affinity tag (ICAT) techique, which 

is a method to quantify the proteome (Gygi et al., 1999). Unlike ICAT, the tags in 

cICAT incorporate a cleavage site in the linker region to its solid support (Zhou et 

al., 2002, Hansen et al., 2003). For cleavage, photoreactions or acids are used and 
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cysteine containing peptides are employed for attachment to the solid support. 

Similar to cICAT, visible isotope-coded affinity tag (VICAT) reagents tag thiols 

from proteins, by introducing a biotin affinity handle and a photocleavable linker 

for removing a portion of the tag, and an isotope tag for distinguishing sample and 

internal standard peptides (Bottari et al., 2004). Disulfide-exchange 

chromatography is used to enrich cysteine-containing peptides (Wang et al., 2001). 

The guanidine group of arginine can be reacted with 2,3-butanedione and a solid 

based boronate reagent to form bicyclo ring, which is labile for acid. This method 

enables to selective capture arginine containing proteins (Foettinger et al., 2005). 

PTM enrichment and characterization is the fourth major and significant part 

in chemical proteomics. In this study field, chemical proteomic approaches show 

almost unique properties. Phosphorylation and glycosylation are currently two 

intense study areas for PTM. Terms like phosphoproteomics or glycoproteomics 

were coined to show their special status as sub-proteomics study fields. 

Quantitation of natural phosphorylation is a major issue for analyzing 

phosphorylated proteins, and selective enrichment of phosphorylated peptides after 

digestion is required. Immobilized metal affinity chromatography (IMAC) with 

different metal ions or oxides such as Fe3+, Ga3+, TiO2, ZrO2, Al2O3 were developed 

(Sun et al., 2005, Schlosser et al., 2005, Kweon et al., 2006, Wolschin et al., 2005). 

Alternatively, -elimination of phosphate groups in pSer and pThr residues under 

alkaline conditions, followed by a Michael type addition of a thiol associated 

stable-isotope tags can also enrich or quantify the phosphorylated proteins 

(Adamczyk et al., 2002, Goshe et al., 2002, Amoresano et al., 2004). The study of 

PTM for glycosylation also focuses for the enrichment of glycosylated proteins. 

Besides traditional bioaffinity methods such as lectins (Kaji et al., 2003), chemical 

approaches were introduced, such as oxidation of the cis-diol to aldehyde, followed 

by a reaction with solid support hydrazine to form a hydrazone bond to immobilize 
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the glycosylated proteins (Zhang et al., 2003). Similar to phosphorylation, the N-

acetyl-glucosamine on serine or threonine residues can also be -eliminated under 

basic conditions (Vosseller, et al., 2006). Other PTMs, such as acetylation, 

methylation, S-nitrosylation and others were also studied by chemical proteomic 

approaches (Jaffrey et al. 2001, Hess et al. 2005). 

Some other techniques were and still are appearing in chemical proteomics. 

Instead of fluorescent fusion proteins, small organic molecules imaging techniques 

show potential advantage (Fernández-Suárez et al., 2008). PPIs can be influenced 

by small molecules, such as 14-3-3 proteins with fusicoccin (Malerba et al., 2004). 

Chemical microarrays are used for drug screening and discovery (Ma et al., 2006). 

Simliar to Y2H, Y3H is also a method to expand the Y2H principle (Schneider et 

al., 2008) and is another milestone showing that chemical proteomics enlarges 

conventional functional proteomics. 

Chemical proteomics is still a young family member in the field of life 

science, however due to its noble lineage from chemistry, it is destined to become 

one of the most prominent parts of proteomics. The publications achieved during 

only a short time period and earned high attentions, which is the best verification 

for its great potential. 

1.6 Chemical biology in chemical proteomics 

When scientists started to address biological questions based at the molecular 

level, the new interdiscipline chemical biology was born. Chemical biology was 

already reported in the early twentieth century (Dale, 1934, Beard, 1952), and the 

first publication could date back to 1916 (Henderson, 1916). The term chemical 

biology however first appeared in publications from the sixties (Stirewalt, 1963).  

One part of chemical biology is categorized as chemical genetics, which is 

defined as using chemical tools to study genetics (Mitchison, 1994, Schreiber, 
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1998). Forward chemical genetics (FCG) follows the way from effect to cause 

(“from phenotype to genotype” in forward genetics), first to screen the effect, that 

an inhibited or stimulated protein induces phenotype changes, and then to identify 

the small molecules causing the effects by regulation of the functions of certain 

proteins (Lokey 2003, Burdine et al., 2004). In contrast, reverse chemical genetics 

(RCG) follows the way from cause to effect, (“from genotype to phenotype” in 

reverse genetics), first to search the cause, i. e. a ligand stimulating or inhibiting the 

important protein by screening compound libraries, and then to study the effect, 

that introduction of that specific ligand to a cell or organism to prove the resulting 

changes in phenotype (Blackwell et al., 2003, Mayer, 2003). Chemical compounds 

libraries enable either forward or reverse chemical genetics. The required chemical 

compounds libraries consists for example of natural products (NPs), natural product 

derivatives (NDs), or collections derived from diversity oriented synthesis (DOS), 

tagged libraries, target guided ligand assembly (TGLA), dynamic combinatorial 

libraries (DCL) or annotated chemical libraries (ALC) (Walsh et al., 2006). These 

established chemical tools were also applied for many other chemical biology 

investigations and not only in chemical genetics screening.  

Another part of chemical biology focuses on medicine. The term “medicine” 

is derived from the Latin ars medicina (the art of healing). Considering this, 

medicine could be defined as the art and science of healing. It encompasses 

maintaining and restoring health and treating illnesses. To this end, chemical 

biology for medicine is also applied mainly for two sub-areas, pharmacology and 

physiology. For its application in pharmacology, clinicians initially argued that 

those “entering medicine should not waste their time on chemistry” (Rosenfeld, 

2003), but after the “magic bullet” was introduced by Paul Ehrlich in the early 

twentieth century (Ehrlich, 1911), such opinions lost markets swiftly. Those magic 

bullets are small molecules, which target specific tissues or microbes. This is the 
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starting point for modern pharmacology. Nowadays the pharmacologic functions of 

small molecules are more carefully studied, implemented via interactions between 

small molecules with DNA, RNA and proteins (Schreiber, 2005). Unlike 

pharmacology, physiology focuses on basic questions in life science. The way in 

which chemical biology is studied in the context of physiology is also different 

from that for pharmacology. Since physiological study values more about the 

activity and function of enzymes, activity-based protein profiling (ABPP) and 

affinity-based profiling (AFP) as two chemical biology methods were specially 

developed (Fonovi  et al., 2008, Beroza et al., 2005). AFP is designed to target the 

non-catalytic residues of proteins or enzymes, whereas ABPP is designed to target 

the catalytic residue of enzymes and enzymes need to be active to facilitate the 

labelling. Although there are already many chemical biology techniques in 

chemical proteomics, they are mainly used for determining the PTM of proteins, 

measuring the changes of proteins abundance, studying the interacting partners and 

regulation mechanism of proteins, but not be able to study the activity of proteins. 

The changes in the phenotype may either be due to changes in the overall amount 

of proteins, or be caused by the changes in the activity of proteins. ABPP can 

directly measure the changes in the activity of proteins and is frequently used for 

studying the activity of proteases (Evans et al., 2006). 

The functions of a biological system consist of the function of all interior 

proteins. Thus, to study the function of a biological system need first to study the 

function of the individual protein. However to study the function of an individual 

protein individually is less sufficient and efficient than to study the protein in its 

natural proteome. That is why the in vivo results are more appreciated than the in 

vitro results. Since the studying object in life science already from protein becomes 

proteome, the principles in system biology are naturally involved in the modern 

chemical biology.  
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1.7 Protease for life science 

Proteases, which hydrolyse the peptide bonds, form a subclass of the 

hydrolase enzyme family and are classified as EC 3.4 in the EC number 

classification of enzymes. Proteases can be classified into subgroups from different 

aspects. From the substrate aspect, proteases can be classified in two classes, which 

hydrolyse proteins or hydrolyse peptides. From the hydrolytic position aspect, 

proteases can be classified as endopeptidases (internal), aminopeptidases (N-

terminal exopeptidase) or carboxypeptidases (C-terminal exopeptidase). From the 

catalytic mechanism aspect, proteases can be classified as serine, cysteine, aspartate, 

threonine, metallo or glutamate proteases. On the basis of evolutionary 

relationships, proteases are grouped into clans that share structural similarities 

(homology) and are then further subgrouped into families with similar sequences. 

In this thesis work, the proteases are mainly classified by their catalytic 

mechanisms.  

From the protein structural aspect, all proteases can be roughly separated into 

a catalytic part and a structure maintaining part. The catalytic part sometimes is 

also called the active site pocket, which is the place for hydrolysis of the substrates. 

The oxyanion hole is a place inside the active site pocket, to polarize the carbonyl 

group of the amide bond, which will be hydrolyzed. The oxyanion hole contains 

Lewis acids such as an amide proton, acid proton or metal ion, which could interact 

with the oxygen atom of the carbonyl group. The activation energy of the 

hydrolysis of this amide bond will be reduced by the polarization of the carbonyl 

group in the oxyanion hole, so that the stable amide bond can be hydrolyzed under 

physiological conditions. The polarized carbonyl group will be attacked by a 

nucleophile. In case of serine, threonine or cysteine proteases, the nucleophile is the 

deprotonated hydroxyl or thiol group of the corresponding serine, threonine or 

cysteine amino acid. Whereas in case of aspartate, glutamate or metallo proteases, 
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the nucleophile is an activated water molecule. The substrate binding pocket 

stabilizes the peptide of the substrates and is responsible for selecting substrates. 

The selection of substrate pocket is achieved by the interaction between the amino 

acid of the peptide with each single substrate binding pocket, named as S1, S2, 

S3… or S1’, S2’, S3’…. “S” refers to subsite, “S or S’” refers to the direction (to 

N-terminal or C-terminal), and “1, 2, 3…” refers to the position (Van der Hoorn, 

2008). The substrate position associated with the substrate binding pocket is noted 

as “P1, P2, P3… or P1’, P2’, P3’”, relative to the substrate binding pocket (Nazif et 

al., 2001).  

Serine proteases are the most abundant proteases and their catalytic triad was 

the first well studied protease catalytic mechanism system (Damaschun et al., 1968, 

Steitz et al., 1969). The catalytic triad is a coordinated structure consisting of 

histidine, serine and aspartate as three essential amino acids. The hydroxyl group of 

the active site serine attacks the carbonyl group in the oxyanion hole, to cleave the 

peptide bond, release the amine-containing product fragment, and generate a 

peptidyl-O-protease covalent enzyme intermediate (acylation), which will be 

hydrolyzed in a second half-reaction (deacylation). Serine proteases are often 

divided into four major clans: chymotrypsin-like, subtilisin-like, alpha/beta 

hydrolase, and signal peptidase clans (Barrett et al., 1995).  

Cysteine proteases are another large group of proteases, which share a 

similar catalytic mechanism as serine proteases, sometimes lacking the aspartate 

residue of the catalytic triad. The thiol group of the active site cysteine attacks the 

carbonyl group to cleave the peptide bond and to generate a peptidyl-S-protease 

intermediate, which will be hydrolyzed in a second half-reaction. Cysteine 

proteases are often grouped into 7 major clans: CA, CD, CE, CF, CH, PA and PB 

(Barrett et al., 2001).  
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Aspartate proteases utilize two aspartate residues to hydrolse peptide 

substrates. The acid-base mechanism-based process includes the coordination of a 

water molecule between these two highly conserved aspartate residues, and one 

activates the water by abstracting a proton, enabling the water to attack the 

carbonyl group of the substrate (Brik et al., 2003). Aspartate proteases are normally 

active at acidic pH values.  

Metalloproteases hydrolysis of substrates via a metal ion in the active site 

pocket, which is coordinated by the imidazole groups of three conserved histidines. 

The fourth coordination position is left for a water molecule, which is activated by 

the chelated metal ion and deprotonated by the carboxylate group of one adjacent 

glutamate or aspartate residue to attack the carbonyl group of the substrate (Holz et 

al., 2003). Most metalloproteases are zinc-dependent, but also cobalt.  

The threonine proteases were described for the first time in 1995 in the 

proteasome (Orlowski et al., 2000). The threonine hydroxyl group and its free 

amino group are coordinating a water molecule. Following a cyclic deprotonation 

process, the amino group abstracts a proton from the water molecule and the water 

molecule abstracts the proton of the hydroxyl group. The deprotonated hydroxyl 

group as a nucleophilie attacks the carbonyl group of the substrate (Bochtler et al., 

1999).  

Glutamate proteases are similar to aspartate protease and were reported 

recently (Meijers et al., 2004). Most of these proteases have their zymogens and 

endogenous inhibitors. 

Proteases exist in all organisms and act in a multitude of physiological 

reactions from simple degradation of proteins to highly regulated cascades. Hence, 

they are one of the most important enzyme classes in life science. They can either 

cleave a specific peptide residue via limited proteolysis, depending on the amino 

acid sequence of a protein or degrade a complete peptide into amino acids via 
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unlimited proteolysis. Through these proteolytic processes, proteases can abolish 

functions of a protein by destroying its essential domain or they can create an 

active protein from inactive precursors. Thereby proteases can work as biological 

switches and the regulatory mechanisms are achieved by controlling the lifetime of 

proteins, which play important physiological role like hormones, antibodies, or 

other enzymes. Through subsequent cooperative cascade reactions, proteases can 

effect a rapid and efficient amplification of a physiological response to a biological 

signal. For example, some acid aspartate proteases, such as pepsin, are secreted into 

the stomach (Johnson, 1985) and serine proteases, such as trypsin and 

chymotrypsin, are present in the duodenum (Goldberg, 2000) enable humans to 

digest the proteins in food; the blood-clotting cascades, the lyses of the clots as well 

as the correct action of the immune system are highly regulated by blood serum 

proteases such as thrombin, plasmin or the Hageman factor (Bouma et al., 2006, 

Amara et al., 2008, Borensztajn et al., 2008, Krupiczojc et al., 2008). Some 

proteases, such as elastase and cathepsin G present in leukocytes, play several roles 

in metabolic control (Korkmaz et al., 2008). The cysteine proteases cathepsin K 

and caspases have vital roles in mammalian cells such as bone resorption, apoptosis, 

necrosis and inflammation (Le Gall et al., 2008, Franchi et al., 2009, Strasser et al., 

2009).  

1.8 Background to activity-based protein profiling (ABPP) 

Biological regulation consists of functions of numerous proteins, however 

the function of a protein is dependent on its activity. As discussed in the above 

sections, for a more detailed study on enzyme functions, we need to consider their 

activity. The variation of the active states enable enzymes to act as the biological 

switch for regulation of physiological processes. The activity of enzymes, for 

example a protease, is regulated by pH, co-enzymes, co-factors, temperature, ion 
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strength, etc. The ABPP approach is one of the best methods until now to directly 

study the activities of these enzymes. 

The term ABPP was first coined by Benjamin Cravatt in 1999, appearing in 

the paper “Activity-based protein profiling: the serine hydrolases” (Liu et al., 1999).

The principle of ABPP is to utilize the catalytic feature of enzymes and label them 

with small organic molecules. Those small organic molecules are termed activity-

based probes (ABPs), which mediate chemical reactions with active site residue of 

enzymes. The reactions are taking place only when the enzymes are active. For 

enzymes utilizing the catalytic amino acid as a nucleophile for the catalytic process, 

such as serine, cysteine, threonine proteases, glycosidases or phosphatases, ABPs 

usually react with the catalytic amino acid in the active site and form a covalent 

bond. For the enzymes utilizing an active water as a nucleophile for the catalytic 

process, such as aspartate, glutamate or metallo proteases, ABPs coordinate with 

the amino acids or metal ion, which activate the catalytic water, and, with the help 

of a photoreactive moiety, crosslink to the amino acid residue in the active pocket. 

For the non-hydrolytic enzymes such as lipid or protein kinases, ABPs 

(wortmannin-based probes) react with the amino acid (lysine) in the nucleotide 

binding site and form a covalent bond. All target enzymes, while covalently bound 

with ABPs, are permanently inactivated. Biotin or fluorophore tags in ABPs are 

used to visualize the labelled enzymes. Therefore ABPP is a multi-principles 

method, which is not only limited for screening or comparing the enzymes 

activities from different proteomes (Jessani et al., 2002, Jessani et al., 2004), but 

also can be applied for determining novel enzymes from an unknown proteome 

combined with different protein identification strategies  (Borodovsky et al., 2002, 

Jessani et al., 2005), for inhibitor discovery (Greenbaum et al., 2002, Leung et al., 

2003), for tissue based-imaging (Blum et al., 2005) or the elucidation of novel 

enzymatic mechanisms (Wang et al., 2008). 
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Different ABPs are needed to realize the plentiful ABPP strategies. Although 

the term ABPP was proposed till 1999 with the fluorophosphonate (FP) probe, the 

history of ABPs dates back to 1997, when Matthew Boygo and his colleagues 

developed vinyl sulfone (VS) probes for the proteasome (Bogyo et al., 1997). To 

enable ABPP, ABPs need three moieties, a warhead, a linker and a reporter tag. 

The warhead is the active moiety, as an electrophile, reacts with the enzyme to 

form a covalent bond. Therefore warhead is the most important moiety of ABPs, 

and usually responsible for selecting enzyme and determining its activity. The 

reporter tag is responsible for visualization of the labelled enzymes. Depending on 

the purposes of assays, the reporter tag could be an affinity or fluororescent tag. 

The linker is a spacer between warhead and reporter tag. A good linker can enhance 

the selectivity and labelling affinity of ABPs (Jeffery et al., 2003).  

According to the warhead design strategy, ABPs can be classified into four 

major subgroups: natural product-based, mechanism-based, direct and non-directed 

probes. Natural product-based probes are probes derived directly from a natural 

product, utilizing the probe to find out its related biological targets. The natural 

product has a reactive moiety and can form a covalent bond with its target. 

Successful examples are like E-64-based probes for the papain family of cysteine 

proteases, derivated from E-64 a metabolite of Aspergillus japonicus (Hanada et al., 

1978, Bogyo et al., 2000); wortmannin-based probes for lipid and protein kinases, 

derived from a furanosteroid metabolite of Penicillium funiculosum Talaromyces 

(Penicillium) wortmannii, a covalent inhibitor of phosphoinositide 3-kinases 

(PI3Ks) (Stoyanova et al., 1997, Yee et al., 2005); microcystin-based probes for 

serine or threonine phosphatases, derived from the cyclic nonribosomal peptide and 

cyanotoxin produced by cyanobacteria (Gupta et al., 1997, Shreder et al., 2004). 

Mechanism-based probes mimick the catalytic transition state of the substrate 

within an enzyme. Because the probe mimics the transition state, it can interact 
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with the enzyme and bind the enzyme via a covalent bond. Examples are like FP 

probes for serine hydrolases (Liu et al., 1999); acyloxymethyl ketone (AOMK) 

probes for cysteine proteases (Kato et al., 2005); VS probes for the proteasome and 

ubiquitin-specific cysteine proteases (Bogyo et al., 1997, Borodovsky et al., 2002); 

2-Deoxy-2-fluoro glycoside probes for retaining exo and endo-glycosidases 

(Hekmat et al., 2005) and -Bromobenzylphosphonate for tyrosine phosphatases 

(Kumar et al., 2004). Photoreactive probes are special mechanism-based probes for 

non-covalent substrate binding enzymes, such as metallo or aspartate protease. The 

photoreactive group, such as benzophenone, can crosslink enzymes covalently 

under UV irradiation. The reported examples are photoreactive hydroxamate 

probes for metalloproteases (Chan et al., 2004) and photoreactive hydroxyl 

ethylene probes for aspartate proteases (Li et al., 2000). A direct probe is a probe 

derived from a known inhibitor, which has usually defined targets. Whereas the 

non-directed probe is a probe based on a chemical reactive moiety and the targets 

of these probes are usually difficult to predicted before the experiment. The non-

directed probes were first introduced by Benjamin Cravatt and a well known 

example is sulfonate ester (SE) based probes (Adam et al., 2002), however many 

other probes have been developed in the meantime. 

According to the reporter tag, ABPs can also be classified into three versions: 

affinity tagged, fluorophore or radioactive tagged and click chemistry support 

probes. Affinity tagged probes are widely used for purification or identification of 

labelled proteins. The most common affinity tag is biotin, which tightly binds 

avidin. The disadvantage of biotin is poor solubility and membrane permeability. 

Fluorophore tagged probes are very useful for profiling and imaging, comparable to 

conventional GFP or YFP. The fluorophore can be chosen depending on the assay 

conditions. Modified quencher fluorophore ABPs were introduced by Matthew 

Bogyo, revealed the unique advantage of activity-based imaging (Blum et al., 
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2005). Click chemistry support probes combine the bio-orthogonal chemical 

labelling technique with ABPP methodology, enabling ABPs to behave more 

similarly to inhibitors in vivo, minimizing the influence of the tag on the  warhead. 

It was introduced by Benjamin Cravatt (Speers et al., 2003). The trifunctional click 

patner enables click chemistry support probes to be more powerful (Speers et al., 

2004). 

The last part of this section will shortly discuss the relationship between 

ABPs and inhibitors. ABPs and inhibitors are in principle very similar. However, 

ABPs must irreversibly bind the enzymes whereas inhibitors can either bind 

reversibly or irreversibly. Irreversible inhibitors can be directly converted into 

ABPs as directed probes, whereas reversible inhibitors, e. g. based on an aldehyde, 

boron acid, -keto carbonyl, -keto amide or -keto aldehyde as active moieties 

(Bogyo et al., 2002) can only be transformed into ABPs by adding a photoreactive 

group. ABPs need a reporter tag and linker whereas inhibitors do not require them. 

Therefore all APBs are synthetic products whereas inhibitors can also be natural 

products. ABPs are usually designed to label the enzymes in an one-to-one 

stoichiometry whereas inhibitors can be synthesized to label the enzymes in one-to-

more stoichiometry (Loidl et al., 1999a,b). 

1.9 ABPP for plant biology 

Organisms are divided into two domains: prokaryotes and eukaryotes. 

Eukaryotes can be further classified into the kingdoms of animal, plant, fungi and 

protist. Perhaps for the reason of cognate relationship, the animal kingdom is most 

well-studied. A search of the reports of chemical biology study in PubMed 

(www.pubmed.org) till 14.07.2009, the reports for animal science are 15294 pieces, 

almost five times as much as the reports for plant science (3219 pieces). This 

demonstrates that the research intensity in plant biology is much less strong than in 
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animal biology. Generally, animals are considered as a higher life form than plants, 

and therefore most advantage methodologies are applied priorly in animal biology. 

However, botanic system shares many similarities with animal system, so the study 

of plant biology could be of benefit for animal biology and vice versa. Plant 

biology even has the advantage for certain studies for juristic or ethic reasons. 

Hence, we are applying chemical biology tools to study plant biology. 

Immunity is a common and essential physiological phenomenon, occurring 

in all organisms. Surprisingly, the plant immune system is similar to the animal 

innate immune system but features its own characters (Jones et al., 2006). The 

plant immune system uses two large branches of disease resistance (R) proteins to 

defend microbes or pathogens. The first type, recognising microbial- or pathogen-

associated molecular patterns (MAMPs or PAMPs), uses transmembrane pattern 

recognition receptors (PRRs). The second type, targeting pathogen effectors 

(proteins secreted by pathogen with virulent or avirulent effects) from diverse 

kingdoms uses polymorphic nucleotide binding leucine rich repeat domain (NB-

LRR) motif proteins. The defense machinery works in a “zigzag” way, which 

consists of four phases. In phase one, PRRs result in a PAMP-triggered immunity 

(PTI) with recognising PAMPs (or MAMPs). In phase two, the PTI is interfered by 

pathogen virulent effectors, which leads to an effector-triggered susceptibility 

(ETS). In phase three, certain pathogen avirulent effectors (Avr) can be recognised 

by NB-LRR proteins by forming cognate Avr-R pairs according to the “gene-for-

gene” theory (Flor, 1971). This causes an effector-triggered immunity (ETI). ETI 

accelerates and amplifies PTI, leading to disease resistance and usually a 

hypersensitive cell death response (HR). In phase four, due to natural selection of 

pathogens, ETI is suppressed by shedded or diversified pathogen effectors. Nitric 

oxide, reactive oxygen species (ROS), salicylic acid (SA) and jasmonates are such 

small molecules in plants, joining defense processes. 
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It is known that proteases play very important roles in the plant-pathogen 

interaction. Indeed, two recent reviews have discussed the function of plant 

proteases (Van der Hoorn et al., 2008a,b). Plant cysteine proteases such as papain-

like proteases Rcr3 and NbCathB are associated with HR (Rooney et al., 2005, 

Gilroy et al., 2007); caspase-like proteases mcII-Pa and VPEs are essential for 

program cell death (PCD) (Suarez et al., 2004, Hatsugai et al., 2006). Plant serine 

proteases such as carboxypeptidase-like proteases SNG1/2 are associated with UV-

B protection (Lehfeldt et al., 2000, Lorenzen et al., 1996). Plant aspartate proteases 

such as pepsin-like proteases CDR1 and PCS1 induce high levels of reactive 

oxygen intermediates (ROIs) and SA or prevent cell death during gametogenesis 

(Xia et al., 2004, Ge et al., 2005). The other plant hydrolases like soybean endo- -

1,3-glucanase-A (EGaseA) are also defense-related enzymes (Rose et al., 2002). 

The pathogen hydrolases such as endo- -1,4-xylanases (GH10/11) and 

polygalacturonases (PGs) are important for pathogens to degrade the plant cell wall 

(Juge, 2006). 

The application of ABPP for plant enzymes (e. g. hydrolases) studies can 

reveal novel aspects of the plant-pathogen interactions. ABPP of the plant 

proteome with known or novel ABPs can reveal novel enzymes, which might be 

responsible for the regulation of important defense processes in plants. Comparison 

of the ABPP results between diseased and normal plant proteomes can directly and 

quickly display variation of the activity for certain enzymes in vitro or in vivo. 

ABPs can also be used for inhibition of selected enzymes, or to observe phenotype 

changes. Fluorescent ABPs can visualize enzymes in vivo to study their localization, 

cyclization and lifetime. 
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2 Aim of the PhD mission 

In chemical biology, chemical tools are used to elucidate complex biological 

systems. Chemical biology research usually consists of three different stages. First, 

an interesting biological question is formulated. To answer this question, suitable 

chemical probes are designed and synthesized in a second stage. These probes are 

then applied to the biological system to investigate the biological question. 

Until now, the only technology to directly demonstrate the role of switching 

between the active/inactive states of enzymes during plant defence is ABPP. Since 

the discovery of ABPP ten years ago, several ABPs have been developed and used 

in pharmacological and physiological studies. However, a broader use of ABPP is 

still limited by the availability of suitable probes. 

In an attempt to expand this limited applicability of ABPP, in this thesis, new 

types of ABPs were designed, synthesized and evaluated as potential probes for the 

study of plant-pathogen interactions.  

To develop effective ABPs in an efficient way, different design strategies 

have been tested and discussed accompanying with five questions, to generate 

different types of novel ABPs: 

Lipstatin is a natural product that can covalently bind to the active site of 

lipases. Its derivate, tetrahydrolipstatin (THL), is a well-known drug used for 

obesity. The THL-based probes with an anti- -lactone moiety were generated with 

natural product-based design strategy. In order to target as many lipases as possible, 

only the reactive scaffold of THL was employed for probe design. This structural 

simplification, however, implies the danger of losing THL’s biological function. 

How tolerant are the THL-based probes to chemical modification in respect to 

retaining intrinsic targeting selectivity? This is the first question to discuss ABPs 
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design strategy and the biological profiling with anti- -lactones was studied 

consequently (chapter 3.1).  

A mechanism-based probe design strategy was applied for two types of 

probes. Syn- -lactone-based probes were chosen, as a syn- -lactone moiety exists 

in cysteine protease inhibitors of picornavirus. Additionally, AOMK-based probes 

were chosen, as the AOMK moiety is a well-known warhead. The advantage of 

mechanism-based probes is the high possibility to label a certain class of enzymes, 

whilst the disadvantage is the low labelling selectivity. To overcome this 

disadvantage, mechanism-based probes with epoxide or AOMK warheads were 

studied to enhance the labelling selectivity. The second question addressed is that: 

is it possible to enhance the selectivity of syn- -lactone-based probes with a similar 

strategy (chapter 3.2)?  

In an attempt to develop structurally novel, non-directed probes, azirine and 

aziridine derivatives were also investigated. These derivatives were chosen as they 

are natural products with diverse biological activities featuring reactive moieties 

isolated from various species. With this project, the possibility of transforming 

azirines and aziridines into ABPs is discussed (chapter 3.3). 

Moreover, the development of a direct probe based on the known serine 

protease inhibitor AEBSF was used to answer the fourth question: is it possible, as 

often proposed in literature, to directly transform AEBSF into a direct probe 

(chapter 3.4)? 

The last question, being the most essential and challenging task in the thesis 

is: can we design specific probes for targets of interest in plant biology? The probes 

with the well-studied AOMK warhead were designed to investigate two interesting 

biological targets; the role of an avirulent protein AvrPphB in plant-pathogen 

interactions (chapter 3.5) and the functions of a plant caspase like-cysteine protease 

VPE (chapter 3.6). 
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Finally, the development of reactive natural products into ABPs was also 

investigated. The reactive natural product Gibbestatin B (GNB) featuring a reactive 

epoxide moiety was chosen for this purpose. As GNB is not commercially available, 

prior to probe design, a total synthesis of GNB is required. Consequently, synthetic 

approaches towards this interesting natural product were pursued in this thesis.  

After the successful development of novel probes, they should be evaluated 

in ABPP assays to characterize their labelling properties. However, the ultimate 

goal is to use these newly developed ABPs for the biological study of plant-

pathogen interactions. To this end, biological experiments employing host plants 

and plant pathogens were devised and performed. 
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3 Results and Discussions 

3.1 Natural product-based ABP design of anti- -lactones 

3.1.1 Introduction 

The natural product lipstatin is an inhibitor of pancreatic lipase and was 

originally isolated from the gram-positive bacterium Streptomyces toxytricini 

(Weibel et al., 1987; Hochuli et al., 1987). Its tetrahydro derivate, known as 

terahydrolipostatin (THL) (trade name Orlistat®), has been developed by Roche for 

clinic therapy of severe obesity and hyperlipidemia (Figure 1). 

O
O

OO

NHCHO

THL

O
O

OO

NHCHO

Lipstatin  

Figure 1. Structure of lipstatin and THL 

 

Many biomedical studies on THL have been published during last two 

decades (Hauptman et al., 1992; Zhi et al., 1995; Ellrichmann et al., 2007) 

demonstrating that THL inhibits lipases with high potency by a covalent 

mechanism, which makes it an ideal template for APBs. Although the direct 

structure of lipase inhibited by lipstatin or THL is still not reported, the crystal 

structure of thioesterase with THL showed that the hydroxyl group of serine 

attacked the carboxyl group of the -lactone moiety, leading to ring opening and 

formation of a stable enzyme-acyl complex (Pemble et al., 2007; Figure 2). 
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Figure 2. Crystal structure of the thioestrase domain of human fatty acid synthase (FAS) 
inhibited by THL: the serine (S-113) in the active site attacks the -lactone moiety of THL to 
open the -lactone ring and to form a new ester. 

 

 Several targets of THL in mammalian organisms are already known but no 

targets in plants have been described yet. To investigate the targets of THL in 

plants, ABPs based on THL were developed. To synthesize THL-based probes, 

several approaches can be followed. The first total synthesis of THL has been 

accomplished in 1993 (Hanessian et al., 1993) and biosynthesis of lipstatin has also 

been investigated heavily (Eisenreich et al., 1997; Goese et al., 2000; Schuhr et al., 

2002). Key step of either total or biosynthesis is the formation of the 2-oxetanone 

moiety by an aldol reaction. Consequently, an aldol reaction also represents the key 

step of the synthesis of THL-based probes. As structure-activity relationship studies 

of THL-based lipase inhibition have revealed that the formylated leucine moiety in 

THL is not essential for inhibition, this moiety was not included in the probe design 

to simplify the required synthesis. 
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3.1.2 Syntheses 

To generate THL-based probes, an asymmetric synthesis of anti- -lactone is 

highly advantageous as they could be directly transformed into corresponding 

lactones by simple esterification of the required anti-(3S)-hydroxy-(2S)-alkyl-

carboxylic acid derivates, which can be obtained via an asymmetric aldol reaction 

between a corresponding aldehyde and a carbonyl compound attached to a chiral 

auxiliary by the Masamune methodology (Masamune et al., 1996). Based on this 

strategy, the retro-synthetic analysis of THL-based probes requires two synthetic 

building blocks, i.e. a carboxyl auxiliary derivate an aldehyde derivate and an 

organoborane-based reagent (Schema 1). 
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Scheme 1. Retro synthetic analysis of THL-based probes 

 

In principle, the required anti-product could be obtained also with Evans-

type chiral auxiliaries (Evans et al., 1981; Evans et al., 1982; Brown et al., 1992), 

that deliver a syn-aldol product, which can then be converted to the anti-aldol 

product via Mitsunobu inversion of the 3-hydroxyl group (Mitsunobu et al., 1967).  

Masamune-type auxiliaries however lead directly to the desired anti-aldol product 

and are therefore for our requirements more suitable. Two kinds of Masamune-

types auxiliaries have been developed so far: The S-3-(3-ethyl)pentyl thioate-based 

auxiliaries deliver a very good anti/syn-selection (~ 30:1) and ee % (> 90%) 
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(Masamune et al., 1986). However these thioates are not stable under basic 

conditions and the preparation of the required chiral organoborane is not 

convenient (Masamune et al., 1985). The second type is based on chiral ester 

derivatives (Masamune et al., 1996), which we chose for convenience for the 

synthesis of probes. 

The auxiliary that we used is derived from the natural product norephedrine 

of which both enantiomers are commercially available. The synthesis was achieved 

following Masamune’s protocol (Atsushi et al., 1997), using (1S, 2R)-(+)-

norephedrine to obtain the correct enantiomer for the THL-probes (Scheme 2). The 

amino group of (1S, 2R)-(+)-norephedrine was sulfonated with triMsCl to form 1, 

using the organic base triethylamine. The sulfon amide group of 1 was 

subsequently benzylated with benzyl bromide and caesium carbonate to yield the 

final auxiliary 2. All steps of the syntheses were convenient and occurred with high 

yields. 

N

OHPh

S
O

O
NH2

OHPh

N
H

OHPh

S
O

O

(1S,2R)-norephedrine 1 2

a b

 

Scheme 2. Synthesis of the Masamune auxiliary: a. TEA, triMsCl, DCM, 0 °C – rt, 3 h, 99%; b. 
BzBr, Cs2CO3, MeCN, reflux, 0.5 h, 95%. 

 

The preparation of the dicyclohexylboron triflate reagent was performed 

similar to the protocol of Atsushi (Atsushi, 2004) (Scheme 3), starting from the 

addition of borane to cyclohexene to obtain dicyclohexylboron 3. 3 was then 

reacted with trifluoromethanesulfonic acid to generate the organoborane reagent 4. 

The handling of trifluoromethanesulfonic acid proved as critical for the reaction, as 

it reacts heavily with traces of water including air moisture. Although the 

synthesized boron triflate is known as very sensitive, it could be stored under argon 

at 4 °C for half a month in a hexane solution. 
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3 4  

Scheme 3. Synthesis of dicyclohexylboron triflate: a. BH3-SMe2, diethyl ether, 0 °C, 3 h, 99%; b. 
CF3SO3H, hexane, rt, 3 h, 89%. 
 

All ABPs require an appropriate reporter tag. For THL-based probes, two 

possibilities to link the tag to the molecules are reasonable, being either an 

attachment on the ester or on the aldehyde moiety. To link this tag to the reactive -

lactone warhead, an amide linker was chosen. To incorporate the required amine 

moiety into the molecule, we therefore employed an appropriately protected 6-

amino hexanoic acid as a starting carboxyl building block for the aldol reaction. 

Consequently, derivate 8 was prepared (Scheme 4). Towards this purpose, 6-

amino-hexanoic acid was transferred into its methyl ester 5, and then its free amino 

group was di-Boc-protected in two steps to yield 6. Hydrolysis of the methyl ester 

of 6 with the strong base n-Bu4NOH led to 7, which was then coupled with the 

chiral Masamune auxiliary 2 to obtain the desired building block 8. 

H2N CO2H H2N COOMe (Boc)2N COOMe
a b, c

5 6
d

(Boc)2N CO2H(Boc)2N
O

O

N
S

O

O
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e

 

Scheme 4. Synthesis of building block 8: a. SOCl2, MeOH, 0 °C, 8 h, 100%; b. (Boc)2O, Na2CO3, 
dioxane/H2O (1:1), 0 °C - rt, overnight, 100%; c. (Boc)2O, DMAP, THF, reflux, 21 h, 90%; d. n-
Bu4NOH, MeCN/H2O, rt, 30 min, 100%; e. 2, DCC, DMAP, DCM, rt, overnight, 95%. 
 

Unfortunately, 8 was instable under aldol reaction conditions. Most probably, 

the di-Boc protecting group was incompatible to the strongly electrophilic boron 
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reagent. The synthetic plan was therefore revised (Scheme 5) by employment of a 

benzyloxycarbonyl (Cbz) protecting group instead of the di-Boc protection. In 

addition, this amino group was introduced this time into the aldehyde building 

block 10, which was derived from 6-amino-hexanol was via N-Cbz protection and 

oxidation with IBX in two steps. As a carboxylic acid building block, two 

lipophilic carboxylic acids, i.e. heptanoic acid or 4-phenyl-butanoic acid were 

coupled with the chiral auxiliary 2 to form the corresponding esters 11 and 12. The 

Masamune anti aldol reaction of 10 and 11 or 12 formed the desired anti-(3S)-

hydroxy-(2S)-alkyl-carboxylic acid esters 13 and 14. The auxiliary of 13 and 14 

was removed by hydrolysis with the mild base lithium hydroxide. Cyclization 

between the resulting free carboxyl group and the -hydroxyl group with 

benzenesulfonyl chloride at 0 °C for two days and the subsequent Cbz deprotection 

by hydrogenation led to the molecules 19 and 20. 
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Scheme 5. Synthesis of -lactones molecules: a. DCC, DMAP, DCM, rt, overnight, 84%; b. 
CbzCl, NaHCO3, dioxane/H2O (1:1), rt, 4 h, 87%; c. IBX, THF, 0 °C - rt, overnight, 95%; d. 4, 
TEA, DCM, -78 – 0 °C, 4 h, H2O2, pH=7, MeOH, rt, overnight, 88%; e. LiOH, THF/H2O (1:1), rt, 
3 d, 75%; f. Py, PhSO2Cl, 0 °C, 2 d, 70%; g. Pd/C, H2, EtOH, rt, overnight, 100%. 
 

In the next step, an appropriate tag was added to these intermediates. For this 

type of probes, biotin as a suitable tag was chosen. To minimize the spatial 

influence of biotin on lipase inhibition, an additional spacer was introduced 

between the biotin and the -lactone moiety (Scheme 6). Towards this purpose, 

biotin was coupled with previously prepared 5 (Scheme 4) to yield 6, which was 

subsequently hydrolysed with n-Bu4OH to obtain the biotinyl linker 22. 
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Scheme 6. Synthesis of the biotinyl linker: a. 5, HBTU, TEA, MeCN, rt, 3 h, 78%; b. n-Bu4NOH, 
MeCN/H2O, rt, 30 min, 84%. 
 

22 was then coupled with 19 and 20 to generate the probes 23 and 24 

respectively (Scheme 7). Because of the low solubility of biotin in DCM, the 

coupling reaction was performed in a solution of DCM containing a minimal 

amount of DMSO to solubilize all reagents. 
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Scheme 7. Synthesis of anti- -lactone probes: a.PyBOP, HOBt, TEA, DCM/DMSO, rt, 
overnight, 70%. 
 

For biological competition experiments, also the non-tagged, acetylated 

derivatives 25 and 26 were synthesized by acetylation of 19 and 20. In addition, for 

click-chemistry based profiling, also a probe 27 with an alkyne tag was generated 

by coupling of 4-pentynoic acid to 19 using DIC/HOBt as coupling reagents 

(Scheme 8). 
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Scheme 8. Synthesis of anti- -lactone probes 25 – 27 from 19 and 20: a. Ac2O, DIPEA, DCM, rt, 
overnight, 57%; b. 4-pentynoic acid, DIC, DCM, rt, 4 h, 40%. 

3.1.3 Bioassays 

To test the reactivity of the designed probes, commercially available wheat 

germ lipase and Pseudomonas fluorescence lipase were tested in a labelling assay 

(Figure 3). Both probes 23 and 24 caused biotinylation of a 35 kDa and a 42 kDa 

proteins of wheat germ lipase, whereas no labelling was observed with the 

Pseudomonas fluorescence lipase. The reactivity of the probes to a plant lipase 

encouraged us to profile the probes in Arabidopsis proteomes. 
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Figure 3. Probe 23 and 24 in vitro evaluation with commercially available lipases: wheat germ 
lipase Type I (WGL); Pseudomonas fluorescence lipase (PL); the commercial enzyme was 
prepared as a 0.5 mg/ml aqueous solution, and that solution was incubated with 4 μM probe for 3 
h. The proteins on the protein blots were detected by streptavidin-HRP. 
 

Labelling with probes 23 and 24 was performed on leaf and cell culture 

extracts (Figure 4). In leaf extract, probe 23 caused two bands of 27 and 35 kDa, 

the lower band was stronger than the higher band. Probe 24 only gave one band of 

27 kDa. In cell culture extract, both probes caused 27 and 35 kDa signals and 

signals at 42 and 56 kDa. There was also one strong 30 kDa background band that 

is also present in the no-probe-control. The labelling intensity from cell culture 

extract was higher because of a higher protein concentration. These data suggest 

that probes 23 and 24 share the same labelling targets but with different affinities. 

At high protein concentration (like in cell culture), both probes would cause a 

similar labelling pattern. The different affinity of both probes is caused by a 

different side chain. The longer aliphatic chain of 23 is more similar to the side 
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chain of THL, so it could fit the pocket of enzyme better than the aromatic side 

chain of 24. Because probe 23 and 24 cause nearly identical labelling profiles, 23 

was chosen for subsequent labelling assays. 

 

Figure 4. Labelling of Arabidopsis leaf extracts (LE) and cell cultures (CC) with probes 23 and 
24: Protein extracts were 5 mg/ml (LE) and 50 mg/ml (CC) and incubated at pH 6 with 4 μM 
probes for 3 h. The proteins on the protein blots were detected by streptavidin-HRP. 
 

To investigate the properties of probe 23, different competitive labelling 

assays were performed (Figure 5). Since the probe 23 was analogues to THL from a 

chemical aspect, it was interesting to investigate if they showed the same labelling 

reactivity. The assay showed that in Arabidopsis leaf extracts, the labelling of the 

27 and 35 kDa signals could not be competed by THL (Figure 5a). Labelling with 

probe 23 could also not be competed by E64, ebelactone B and 18, but by 17 as 

well as 25 and 26 for the lower band (27 kDa) (Figure 5b). The results from THL, 

E64 and ebelactone B suggested that the targets of probe 23 were not lipases, 

cysteine proteases or membrane methyl esterases. 17 was better competing with 23-

labelling than 25 indicating that the benzyl oxy carbonyl residue (17) is closer to 
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biotinyl residue (23) than amino acetyl residue (25) from the aspect of labelling 

reactivity. 24 had lower labelling affinity than 23, so its derivates 18 and 25 could 

not compete 23 very well. The molecules with longer side chains (17, 23) had a 

better affinity to the target, implying that the labelling pocket of target is quite deep.

 

Figure 5. Competition assay of probe 23: a. Competition with lipase inhibitor THL; b. 
Competition with cysteine protease inhibitor E64, esterase inhibitor ebelactone B (Eb) and 
derivatives 17, 18, 25 and 26; Protein extracts (~5 mg/ml) were co-incubated at pH 6 with 40 μM 
inhibitors and 4 μM probe 23 for 3 h. The proteins on the protein blots were detected by 
streptavidin-HRP.  
 

The competition assays suggest that the targets of the probe 23 were not the 

expected lipases or esterases. The direct way to identify the targets is to purify the 

labelled proteins, however all attempts were not successful due to the low 

abundance of the targets. Nevertheless several assays were performed to study the 

properties of the labelling. Labelling at various pH values showed that the optimal 

labelling condition was pH 6 (Figure 6a). At lower pH such as 4, labelling did not 

occur whereas labelling intensity also decreased with increasing pH value. There 

was no influence to the labelling by the absence or presence of the reduction 

reagent L-cysteine and labelling was also independent from calcium ions (Figure 
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6b). Labelling occurred in a very short time and was finished between 30 to 60 

minutes (Figure 6c). The localization assay showed that the targets were mainly 

soluble proteins whereas the background bands were in the membrane (Figure 6d). 

 

Figure 6. Characterisation of labelling with probe 23: a. pH curve; b. Influence of cofactors: 
reduction reagent L-cysteine (Cys) and CaCl2 (Ca); c. Time course of labelling; d. protein 
localization analysis: total cell culture (T), soluble protein (S) and membrane protein (P); protein 
extracts (~5 mg/ml) (except for d, 20 mg/ml), were incubated at pH 6 (expect for pH curve) with 
4 μM probe for 3 h. The proteins on the protein blots were detected by streptavidin-HRP. 
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Target identifications in bacterial systems were performed by Thomas 

Boettcher, a PhD student from the group of Dr. Stephan Sieber (LMU). Click probe 

27 was used for in vivo labelling of five different bacterial proteomes (Figure 7). 18 

labelled proteins were identified from the cytosol and from the membrane fractions. 

The probe caused many labelling signals in bacterial proteome. 

 

Figure 7. Target identification of probe 27 in bacterial proteome: Five different bacteria [Bacillus 

licheniformis (BL), Bacillus subtilis (BS), Escherichia coli (EC), Pseudomonas putida (PP), 
Listeria welshimeri (LW)] were labelled with probe 27 in vivo; the bacterial proteins were 
separated as cytosol proteins (C) and membrane proteins (M) in advance; The proteins were 
separated by SDS-PAGE and detected by an azide linked fluorescence tag. 
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3.1.4 Discussion 

The synthesis of the probes was completed in 9 steps in generally good 

yields. As expected, the auxiliary delivered a good enantiomer selection for the 

natural product analogues. Unfortunately, the synthesized -lactone probes proved 

as rather instable as hydrolysis of the probes in the DMSO stock solution even at -

20 °C occurred after already half a year, which limits applicability of these probes. 

The labelling reactivity was normal in the Arabidopsis proteome, and it could label 

proteins from a proteome of a concentration of 5 mg/ml.  

The idea of a natural product-based probe design did not work well in this 

project. The reason could be the strong modification of the molecule. The peptide 

moiety on the side chain of THL seems to have a more significant contribution as 

originally anticipated. Probes lacking this modified side chains seem to lose the 

original targeting ability of THL for lipases. However, this can still label other 

proteins, demonstrating the subtle conformational requisites for selective enzyme 

targeting with natural products. 
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3.2 Mechanism-based ABP design of syn- -lactones 

3.2.1 Introduction 

The genome of the model plant Arabidopsis thaliana encodes for ~320 serine 

and ~140 cysteine proteases, which include large families of subtilase-like 

proteases (~60 SLPs), serine carboxypeptidase-like proteins (~60 SCPLs) and 

papain-like cysteine proteases (~30 PLCPs) (Beers et al., 2004) Studies on some of 

these presumed plant proteases revealed that they can catalyze nonproteolytic 

reactions. Phytochelatin synthase, for example, acts as a glutathione transpeptidase, 

leading to phytochelatin which is required for heavy metal tolerance (Clemens et 

al., 2006). Furthermore, a number of SCPLs act as acyltransferases in the 

production of sinapoyl secondary metabolites, which protect plants against UV 

radiation (Lehfeldt et al., 2000). Some of the other proteases play key regulatory 

roles in defense and development, but the role, substrate and activation mechanisms 

of most of these enzymes are unknown (Van der Hoorn et al., 2008). 

So far, ABPP of plant proteases was mainly done using DCG-04, a 

biotinylated version E-64, which inhibits PLCPs (Greenbaum et al., 2000). ABPP 

with DCG-04 on Arabidopsis leaf extracts revealed the activities of six different 

PLCPs, including RD21 (Responsive-to-dessication-21) and AALP (Arabidopsis 

Aleurain-like Protease) (Van der Hoorn et al., 2004). To expand the range of serine 

and cysteine proteases that can be monitored by ABPP, a series of activity-based 

probes containing a 2-oxetanone reactive group were designed. This reactive group 

is found in covalent inhibitors of hepatitis A virus 3C (HAV-3C) proteinase and the 

proteasome (Dick et al., 1997; Lall et al., 1999). The inhibition mechanism of 

HAV-3C proteinase with -lactones is very well understood, so the mechanism-

based syn- -lactone ABPs were developed.  
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3.2.2 Syntheses 

The employed synthetic strategy was straightforward, using the chiral amino 

acid pool to develop an enantioselective sythesis. Towards this purpose, threonine-

based syn- -lactones were generated via intramolecular threonine cyclization as 

established by Dr Rengarajan Balamurugan from Prof. Dr. H. Waldmann’s group. 

Consequently, a L-threonine derived -lactone was generated (Scheme 9). N-Boc-

protected L-threonine as a starting material was cyclized via the coupling reagent 

PyBOP to form 28. 28 was then deprotected with trifluoroacetic acid and p-

toluenesulfonic acid to yield the -lactone tosyl salt 29, which proved as a good 

starting material for further coupling reactions.  

2928

BocHN
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OH

OH
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BocHN O

a O

H3N OTos

b

 

Scheme 9. Synthesis of the threonine based -lactone tosyl salt: a, PyBOP, TEA, DCM, 0 °C – rt, 
6 h, 85%; b. TFA, PTSA, 0 °C. 15 min, 97%. 
 

According to a previously published X-ray structure (Yin et al., 2005), the -

lactone moiety should occupy the S1 pocket of the protease; therefore, an 

additional L-amino acid attached to its amino group should accommodate the S2 

pocket, leading to more specific labelling. Consequently, eight different natural or 

non-natural amino acids were coupled with 29 to form syn- -lactone derivatives 30 

– 37, which were then deprotected with trifluoroacetic acid and coupled with 22 to 

obtain the final threonine-based syn- -lactone probes 38 – 45 (Scheme 10). 
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R = Pro, Gln, Trp, Phe, Leu, Ser, Trp(CHO), Leu(Me)
      38  39   40  41   42   43  44          45  

Scheme 10. Synthesis of threonine-based syn- -lactone probes: a, ClCO2Et, TEA, Py, DCM, -
5°C - rt, overnight; b. TFA, DCM, rt, 1 h; c. 22, PyBOP, TEA, DMSO, rt, overnight 

 

Six natural amino acids were chosen to probe binding specificity: L-

tryptophan (40) and L-phenylalanine (41) for evaluating the influence of aromatic 

residues on the P2 position; L-serine (43) and L-glutamine (39) as hydrophilic, non-

charged amino acid residues at P2 position; L-leucine (42) for testing the lipophilic 

character of the P2 position and L-proline (38) as a turn-inducing moiety. 

Furthermore, two modified amino acids were also included for comparison (Figure 

8), i.e. a tryptophan derivative in which the indole moiety was modified with a 

formaldehyde group (44) and a N-methyl leucine derivative (45). With such slight 

modifications, the sensitivity of recognition for the P2 position could be very well 

distinguished.  
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Figure 8. Structures of probes 44 and 45 
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In order to obtain also a probe suitable for in vivo labelling, derivative 46 

was also synthesized (Scheme 11). Thus, leucine -lactone derivative 35 was 

deprotected with trifluoroacetic acid and coupled with 2-azido acetic acid to yield 

the probe 46. 
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Scheme 11. Synthesis of click version probe  46: a. TFA, DCM, rt, 1 h; b. N3CH2CO2H, PyBOP, 
TEA, DCM, rt, overnight, 66%. 

3.2.3 Bioassays 

The probes were tested for labelling of Arabidopsis leaf proteomes of the 

first generation of probes (39, 44 and 45). Only 39 caused labelling (Figure 9a). P2 

positions of 44 and 45 have non-natural amino acids whereas 39 has a glutamine. 

This implied that modification of the natural amino acid prevents the probe for 

labelling. Probe 39 caused two weak signals of 50 and 60 kDa, indicating that 

glutamine is not the most suitable amino acid for the P2 position. The second-

generation probes (38, 40, 41, 42 and 43) carry proline, tryptophan, phenylanine, 

leucine and serine. Probes 40, 41 and 42 caused strong labelling whereas probes 38 

and 43 did not cause labelling (Figure 9b). In case for the P2 position of probes 

with tryptophan and leucine, when they were natural amino acid, the probes (40 

and 42) caused labelling while when they are chemical modified, the probes (44 

and 45) did not cause labelling. This indicates the importance of the P2 position of 

the probes for labelling. However probes 41-42 caused almost identical labelling 

patterns, implying that tryptophan, phenylanine and leucine do not influence the 

specificity of the probes. Probe 41 was chosen for further studies. 
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Figure 9. Labelling Arabidopsis leaf extracts with a series of threonine based -lactone probes: a. 
Profiling with a first generation probes containing chemical modified tryptophan (44) or leucine 
(45) and natural glutamine (39) at P2 position; b. Profiling with second generation probes 
containing tryptophan (40), leucine (42), phenylalanine (41), proline (38) or serine (43) at P2 
position; Protein extracts (~5 mg/ml (a) and 0.15 mg/ml (b)) were incubated at pH 8 with 2 μM 
probes and 1 mM DTT for 3 h. The proteins on the protein blots were detected by streptavidin-
HRP, 10 minutes long exposure (a) whereas 5 seconds short exposure (b). 
 

Since -lactone molecules can be inhibitors of cysteine proteases (Lall et al., 

1999), we compared labelling profiles of 41 with DCG-04, which labels papain-like 

cysteine protease (Figure 10). These assays were done in Caspase buffer at pH 7.4 

and TBS buffer pH 7.5, and these buffers do not cause different labelling patterns. 

Probe 41 and DCG-04 have significantly different labelling profiles, indicating that 

they do not label the same targets. Labelling by probe 41 was competed by its non-

biotinylated derivate 33 but not by 35, the non-biotinylated derivate of probe 43, 

which had no labelling reactivity. Surprisingly, labelling by probe 41 can also be 

competed by E-64, the non-biotinylated analogue of DCG-04. One hypothesis is 
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that E-64 has a broader target range than DCG-04, including the targets of probe 41. 

A direct way to prove this hypothesis was to identify the targets of probe 41.  

 

Figure 10. Comparison of labelling between DCG-04 and 41: DCG-04 and 41 were profiled for a 
labelling assay as well as a competition assay with their own inhibitors in Arabidopsis leaf 
extracts with two buffer systems (Caspase pH=7.5, TBS pH=7.4) respectively. Protein extracts 
(~50 μg/ml) were co-incubated at pH 7.5 with 2 μM probe (DCG-04 and 41) and 60 μM 
inhibitors (E-64, 33 and 35) and 1 mM DTT for 3 h. The proteins on the protein blots were 
detected by streptavidin-HRP. 
 

The purification of 41-labelled proteins was performed by Christian Gu 

(Figure 11a) and protein mass spectrometry analysis was done by Dr. Tom Colby.  

The strongest band of 24 kDa was identified as the 23 kDa PsbP protein, which is a 

non-proteolytic protein but involving in photosynthesis. The MS data showed that 

41 was bound to the N-terminus of PsbP (Figure 11d). 
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Figure 11. Identification of the major IS4 (41)-labelled protein: a. Purification of IS4 (41)-
labelled proteins from Arabidopsis leaf extracts. Arabidopsis leaf extracts were labelled with and 
without IS4 (41) and biotinylated proteins were captured and purified on magnetic streptavidin 
beads. Proteins eluted from these beads were analyzed on protein blot, probed with streptavidin-
HRP (left), and on coomassie-stained protein gel (middle). The differential protein band at 23 
kDa was isolated (brackets), analyzed by tandem mass spectrometry and confirmed as being PsbP 
using specific PsbP antisera on the purified proteins (right); b. Peptide mass fingerprint (PMF) of 
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the 23 kDa protein band. Proteins isolated from the 23 kDa region of the IS4 (41)-labelled 
proteins (blue) and no-probe control (NPC, red) were analyzed by MS. Only part of the PMF is 
shown. Peptides from bovine serum albumine (BSA, *), streptavidin and trypsin were present in 
both IS4 and the NPC sample. The remaining IS4 (41)-specific peptides covered most of the 23 
kDa mature PsbP protein (right). Peptides a-e are indicated in the PMF, the other matching 
peptides were outside the shown PMF. The section of the PMF with the IS4 (41)-modified N-
terminal peptide is shown in the inset and explained on the right. Both the IS4 (41)-labeled 
peptide and its oxidized form have predicted masses that match the masses in the PMF inset; c. 
Fragmentation data of the IS4-labeled N-terminal peptide. The predicted y-ions (right) are found 
in the spectrum at the expected masses (left). The b-ions are also found in the spectrum, with an 
additional mass of IS4. Also IS4 itself, and fragments of IS4 (41) are found in the spectrum (b1, 
b2 and b3 ions); d. Proposed structure of the N-terminus of IS4-labeled PsbP, based on the 
peptide fragmentation data. IS4 is linked via a normal threonine through a peptide bond to the N-
terminal Ala of PsbP.  
 

To further study 41-labelling, a series of assays were performed (Figure 12). 

Labelling occurred in mild basic conditions (Figure 12a), required reducing agent 

DTT (Figure 12b), completed rapidly within half an hour (Figure 12c) and 

increasing concentration of proteome resulted in enhanced labelling, indicating that 

the probe is over excess compared to its targets (Figure 12d).  
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Figure 12. Labelling properties of probe 41: a. pH curve; b. Cofactor DTT dependent labelling, 
DTT = 1 mM; c. Time course of 41 labelling; d. Protein concentration dependent labelling; 
Protein extracts (~50 μg/ml) (except for d) were incubated at pH 8 (except for a) with 2 μM 
probe 41 and 1 mM DTT (except for b) for 3 h (except for c). The proteins on the protein blots 
were detected by streptavidin-HRP. 
 

Labelling by probe 41 can be prevented by adding E-64 (Figure 10). We next 

determined if E-64 derivatives and other proteases can also prevent 41-labelling. 

Labelling by probe 41 could be competed by its non-biotinylated derivate 33 and 

all E-64 derivatives (E-64, E-64c and E-64d), whereas DCG-04 labelling could not 

be competed by 33. When DCG-04 was mixed with probe 41, DCG-04-signals 

were of the same labelling intensity but the intensity of 41-signals were reduced. 
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The mixed probe labelling could be competed by E-64 (Figure 13a). All the 

cysteine protease inhibitors could compete with 41-labelling whereas serine 

protease inhibitors such as PMSF, TLCK and TPCK could not compete (Figure 

13b). This indicated that the labelling of 41 requires cysteine proteases.  

 

Figure 13. Competition assay of 41: a. Investigation the labelling relationship between DCG-04 
and 41: DCG-04 vs 41’s competitor 33, 41 vs DCG-04’s competitors (E-64, E-64c and E-64d) 
and the mixture (DCG-04 + 41) vs E-64 in two doses (10 times- and 30 times-equivalent); b. 
Competition of 41 with other known serine or cysteine protease inhibitors: ZFAfmk (Zm), 
AcLvkCHO (Ac), leupeptin (Lp), Antipain (Ap), Chymostatin (Cm) as well as E64, PMSF, 
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TLCK and TPCK. Protein extracts (~50 μg/ml) were co-incubated at pH 8 with 2 μM probe 
(DCG-04 and 41) and 30 μM of inhibitors (except for two marked E64 competition assays in a) 
and 1 mM DTT for 3 h. The proteins on the protein blots were detected by streptavidin-HRP. 
 

If 41 had multiple targets, it probably would have different affinities to 

different targets. To monitor different affinities, several competitors were tested in 

a concentration series to compete with 41 labelling. The intensity of the strongest 

five signals were measured and plotted against the competitor concentration 

(Figure 14). These experiments showed that leupeptin was the strongest competitor 

(Figure 14c) and 33 was the weakest competitor (Figure 14d); E-64d was less 

potent than E-64 as a competitor (Figure 14a-b). However the intensities of all 

signals decreased similarly, indicating that 41 had almost the same affinity to all 

targets. 
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Figure 14. Monitoring the intensity variation of labelling bands of 41 with different competitors: 
E-64 (a), E-64d (b), leupeptin (c) and 33 (d) were diluted in a series of increased concentration to 
compete with 41; The labelling intensity of the five strongest signals of 41 was plotted against the 
concentration of competitor. 
 

Many evidences implied the labelling process of 41 is required for cysteine 

proteases, however the final labelled protein is a non-catalytic protein. 41-labelling 

can be interfered by DCG-04 (Figure 13a) implied that the target of 41 will be one 

of targets of DCG-04. The Arabidopsis genome encodes for 30 PLCPs, of which at 

least ten are expressed in leaves (www.genevestigator.ethz.ch), and six were 

identified by DCG-04 in leaf extracts (Van der Hoorn et al. 2004). We reasoned 

that one of these leaf PLCPs could be responsible for IS4 labelling. We therefore 
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generated knock-out lines by selecting lines carrying a T-DNA insertion in the 

genes encoding leaf-expressed PLCPs. IS4 labelling occurs in leaf extracts of all 

mutants, except of the rd21-1 line. However by adding recombinant RD21 to 

proteomes of rd21-1 mutant plants can complement IS4 labelling again. This 

demonstrates that only RD21 is required for IS4 labelling in leaf extracts (Wang et 

al., 2008). To understand the labelling mechanism, hypothesized that IS4 binds to 

RD21 and forms a thioester intermediate that can be transferred to the N-terminus 

of PsbP. Since a thioester bond is common to all intermediates of PLCPs with their 

substrates, we tested if thioesters formed from peptides could also be ligated to 

other proteins by RD21. To prove this hypothesis, we made a biotinylated peptide 

PepA (Bio-FTAYGE), which causes a labelling profile that is very similar to that 

of IS4. The unnormal labelling phenomenon finally revealed a new labelling 

mechanism of ABPP, proving mechanism of transligation (Figure 15). 
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Figure 15. Model for IS4 and pepA labelling of PsbP by RD21. IS4 (41) (a) and pepA (b) bind to 
RD21. The Phe of these acceptor molecules is at the P2 position, making contact with the S2 
substrate binding pocked of RD21. The active site Cys of RD21 acts as a nucleophile, resulting in 
a unstable thioester intermediate (c). At neutral to basic pH, the N-terminal amino group of PsbP 
acts as a nucleophile, resulting in IS4 (41) labelling of the N-terminus of PsbP through a peptide 
bond (d). 

3.2.4 Discussion 

Although we designed -lactone derivatives as activity-based probes, the fate 

of these small molecules in plant extracts appears more complex than we predicted. 

IS4 labelling does not depend on the activity of the targeted proteins but is the 

result of an indirect labelling through a presumed protease. This illustrates that 

further investigation of unexpected labelling sites can lead to intriguing molecular 
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mechanisms. The discovery of the mechanism of transligation makes a 

complementary contribution to the ABPP proposal. Usually when we use designed 

ABPs to perform ABPP, we expect to find the targets in the gel. However this story 

tells that what is visualized does not need to be indeed the targets of the probe. The 

idea of mechanism-based probe design is reliable, however the enzyme-mediate 

labelling should also be considered. In this case, from a chemical aspect, it is 

known that the instability of the newly formed cysteine protease-probe conjugate, 

that can be imagined from the known labelling mechanism of cysteine proteases 

will use the thiol group of cysteine to attack the -lactone ring and form a thioester 

bond. However we could not predict whether this instable thioester bond could be 

tolerant to the ABPP condition. The final result shows us that the instable thioester 

bond indeed was not tolerant to the labelling condition. However this instability of 

the thioester bond revealed an unusual protease labelling mechanism. Whether 

these reactions also occur in living cells will be as an exciting topic for further 

studies. 
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3.3 Non-directed ABPs design of aziridines and azirines 

3.3.1 Introduction 

The non-directed probe design strategy was introduced by Cravatt in 2002, 

employing a sulfonate ester moiety as a reactive warhead (Adam et al., 2002). The 

non-directed strategy is based on the incorporation of a reactive functional group 

that does not represent a classical irreversible enzyme inhibitor as a warhead and to 

accommodate it with a linker and a reporter tag. Clearly, the reactivity of the 

warhead is critical for this approach as a too low reactivity will result in a weak or 

even no labelling while a too high reactivity will lead to false positive results 

resulting from unspecific labelling. As noted by Evans et al. in a review on this 

strategy, the “application of these probes significantly expanded the scope of 

enzymes addressable by ABPP, further underscoring the utility of combinatorial 

strategies for probe discovery.” was mentioned in the review (Evans et al., 2006). 

To date, several reactive functional groups have already been used for probes 

design, such as epoxides, -lactones, or halogeno methyl ketones. Further examples 

are the -chloroacetamide (Barglow et al., 2004) or reactive spiroepoxide (Evans et 

al., 2005) based probes. We rationalized that aziridines and azirines, in which a 

nitrogen residue replaces the oxygen of epoxide, might represent good candidates 

for non-directed probes. Besides the structural similarity of aziridines and azirines 

with epoxides, these also feature a similar reactivity, being an electrophilic reactive 

group that can react in nuleophilic ring opening reactions. 

The aziridine moiety can be found in various natural products such as 

azinomycin or miraziridin A (Corre et al., 2004 and Schaschke et al., 2004). Also 

azirines are elements of several bioactive natural products such as Azirinomycin 
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isolated from Streptomyces Aureus (Miller et al., 1971) or dysidazirine isolated 

from the marine sponge Dysidea Fragilis (Molinski et al., 1988) (Figure 16).  

N
CO2H

H

Azirinomycin

N
H

CO2Me

n-C12H25

(R)-(-)-dysidazirine  

Figure 16. Structure of  azirinomycin and R-(-)-dysidazirine 

 

Their central feature is the chiral center on the C3 position of the cyclic ring, 

which is connected to a carboxylic acid moiety, either in a free acid form or as a 

methyl ester. Therefore, ABPs based on this natural product motif could employ 

the required tag moiety either on the C3 attached carboxyl group or to the C2 ring 

position. 

3.3.2 Syntheses 

The chiral 2H-azirines (Figure 16) are synthetically accessible from 

corresponding chiral aziridine precursors via elimination (Davis et al., 1995). This 

intermediate can be prepared via an aza-Darzens asymmetric synthesis from N-

sulfinyl imines. (Davis et al., 1999) This synthetic route offers the advantage that it 

proceeds via an activated N-(p-toluenesulfinyl) aziridine intermediate which could 

also represent an interesting non-directed probe. In order to evaluate the impact of 

the attachment of the tag on labelling efficiency, two kinds of probes were initially 

synthesized.  

The first probe 51 was prepared with the tag on the C-2 side chain (Scheme 

12). To obtain this compound, the hydroxyl group of 5-hexyn-1-ol was converted 

into 47 with tosyl chloride in pyridine at 0 °C, followed by a substitution with 4-

hydroxy-benzaldehyde in DMF at 100 °C to form 48. 48 was then converted into 
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sulfinyl imine 49 with an in situ prepared lithium tolylsulfinyl trimethylsilyl amide 

in tetrahydrofurane. The sulfinyl imine can be isolated at room temperature and 

reacted with 2-bromo methyl acetate via an aza-Darzens reaction to generate the 

chiral aziridine 50 in good yields. Addition of lithium diisopropyl amide then 

induced elimination to the final product 2H-azirine 51. 
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Scheme 12. Synthesis of 51: a. TsCl, Py, 0 °C, overnight, 54%; b. 4-hydroxybenzaldehyde, 
Cs2CO3, DMF, 100 °C, 16 h, 87%; c. (1R, 2S, 5R)-Menthyl-(S)-p-tolylsulfinate, THF, LiHMDS, 
-78 °C, 7 h, 37%; d. BrCH2CO2Me, THF, LiHMDS, -78 °C, 20 min, 70.6%; e. LDA, TMSCl, 
THF, -78 °C, 15 min, 48%. 
 

With this strategy, 2H-azirine 51 could be conveniently prepared in a short 

reaction sequence with modest yields. Originally, we aimed at the synthesis of an 

acetylene derivative of 51 (Scheme 12). However, due to a side reaction during the 

last reaction step, the TMS-acetylene derivative 51 was obtained because an excess 

of TMSCl was used. As removal of the TMS group risked the degradation of the 

probe and as a TMS-acetylene residue in principle should be compatible with a 

“click chemistry” protocol, we decided to employ 51 as a first test probe. 

As this side reaction is an inherent problem of our synthesis strategy, we 

stopped our in parallel-performed synthesis (Scheme 13). 54 was obtained by 

following essentially the synthetic protocol as described for 50. In brief, the 
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commercially available trans-2-tridecenal was converted into its sulfinyl imine 53 

and the second building block 2-bromo 5-hexyne acetate 52 was prepared by 

esterification of 2-bromo acetic acid. Aza-Darzens reaction of 52 with 53 then led 

to the chiral aziridine intermediate 54. 
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b c
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Scheme 13. Synthesis of 54: a. HO(CH2)4CCH, DCC, DMAP, DCM, rt, overnight, 56%; b. (1R, 
2S, 5R)-menthyl-(S)-p-tolylsulfinate, THF, LiHMDS, -78 °C, 7 h, 85%; c. 52, THF, LiHMDS, -
78 °C, 20 min, 87%. 
 

With these two probes in hand, some first labelling assays were performed. 

Unfortunately, no labelling with 51 could be detected. 54 however showed 

promising labelling characteristics (Figure 17). The efficiency of labelling with 54 

demonstrated that the attachment of a tag to an ester group is compatible with 

labelling condition; secondly, the N-(p-toluenesulfinyl) aziridine is a suitable 

reactive warhead for labelling. These findings forced us to investigate these probe 

types more deeply. To prevent however any future problems with the acetylene 

moiety, the azide functionality was introduced as a tag for click chemistry. 

As both (1R, 2S, 5R)-(-)-menthyl-(S)-p-toluenesulfinate and its enantiomer 

(1S, 2R, 5S)-(+)-menthyl-(R)-p-toluenesulfinate are commercially available, the 

syntheses of the next generation of probes was established in the following manner. 

First, the 2-bromo 6-azido-hexyl acetate 55 and 2-bromo hexyl acetate 56 were 

prepared once in a large amount (Scheme 14). Starting from 2-bromo acetic acid, 

esterifications with two different alcohols were performed in good yields. 



Zhe Ming Wang Results and Discussions Doctoral Dissertation 2009 

 - 63 - Chemical Genomics Centre (CGC) 

a
Br

OH

O

Br
O

R
O

R =  C6H12N3   55
        C6H13       56  

Scheme 14. Synthesis of 55 and 56: a. alcohol, DCC, DMAP, DCM, rt, overnight, 53%. 

 

To introduce diversity into the probes, the C2 N-sulfinyl imine reaction 

intermediates were prepared from different aldehydes with both chiral menthyl-p-

toluenesulfinates (Scheme 15). The employed aldehydes were chemically different: 

The derivates 57 and 58 were synthesized to incorporate the side chain of 54, which 

led to successful labelling in the first generation probes. A shorter aliphatic version 

of 57 and 58 was also prepared (59 and 60). In addition, derivates with aromatic 

side chains were synthesized (61, 62, 67 and 68). To investigate the role of the 

double bond on the side chain, compounds 63 and 64 were made. 
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Scheme 15.  Synthesis of the collection of N-sulfinyl imines: a. (1R, 2S, 5R)-(-)-menthyl-(S)/(1S, 
2R, 5S)-(+)-menthyl-(R)-p-tolylsulfinate, THF, LiHMDS, -78 °C, 7 h. 
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The subsequent aza-Darzens reaction between these N-sulfinyl imines 57-68 

and 2-bromo acetic acid esters 55 and 56, then allowed the generation of a 

collection of N-(p-toluenesulfinyl) aziridines were obtained (Scheme 16). 
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Scheme 16. Synthesis of the collection of N-(p-toluenesulfinyl) aziridine probes: a. 55, THF, 
LiHMDS, -78 °C, 20 min. 
 

Additionally, to follow up the initial hit with the azirine derivative 54, the 

2H-azirine 81 this time carrying an azide instead of alkyne click tag was prepared 

from 69 with the same protocol as for 51 (Scheme 17).  
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Scheme 17. Synthesis of 81: a. LDA, TMSCl, THF, -78 °C, 15 min, 20%. 

3.3.3 Bioassays 

Probes 51 and 54 were tested immediately after preparation. The labelling 

procedure was performed as decribed in Chapter 3.1 and 3.2, complemented by an 

additional “click chemistry” step (Kaschani et al., 2009, see experimental part for 

the reaction condition). A representative example is shown in Figure 17. 

 

Figure 17. Labelling assays of probes 51 and 54: Protein extracts (~50 μg/ml) were incubated 
with probe of 5 and 10 μM, in pH 6 and 8 buffer solution for 3 h and one step more of a “click 
chemistry” to add a biotin tag on the probe. The proteins on the protein blots were detected by 
streptavidin-HRP. 
 

Unfortunately, the 2H-azirine probes 51 and 81 did not cause any labelling 

pattern neither at low pH or high pH. However, the N-(p-toluenesulfinyl) aziridine 

probe 54 caused a strong labelling band around 40 kDa at pH 8. Nevertheless, the 
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required probe labelling concentration of 10 μM was quite high and the experiment 

was hampered by a difficult reproducibility of labelling. 

Profiling experiments with the collection of N-(p-toluenesulfinyl) aziridines 

69-80 however resulted in a strong labelling pattern as depicted in Figure 18. 

 

Figure 18. Labelling assays of N-(p-toluenesulfinyl) aziridine probes series: Protein extracts (~50 
μg/ml) were incubated at pH 8 with 5 μM probe for 2 h and one step more of a “click chemistry” 
to add a biotin tag on the probe. The proteins on the protein blots were detected by streptavidin-
HRP. 
 

The different side chains of the probes had a distinct influence on labelling: 

69 and 70 with long unsaturated aliphatic chains, 75 and 76 with long saturated 

aliphatic side chains, 79 and 80 with long aromatic side chains generally caused 

stronger labelling than the probes with short side chain such as unsaturated 

aliphatic, aromatic and cyclic 71 – 74 and 77 – 78. Surprisingly, the different 

enantiomers did not cause different labelling patterns and although the probes 

featured different side chains and thus were chemically diverse, all labelling 

patterns seemed after visual inspection identical. Finally, the resolution of the gels 

was in all cases rather low, resulting in smeared bands. Unfortunately, also 

different labeling conditions did not improve the profiling quality. Despite these 

disadvantages, a pull down assay for identification of the targets was performed 
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analogously to the one described in chapter 3.2, but failed to deliver any positive 

results. After these negative results, a further follow up of this project was stopped. 

3.3.4 Discussion 

The non-directed 2H-azirine and N-(p-toluenesulfinyl) aziridines probes were 

synthesized by a straightforward synthesis route. A probe collection was generated 

by variation of the substitution pattern and the chiral centre on the three-membered 

ring. However, the adjacent biological assays were unsuccessful. 

Despite that 2H-azirine is a very reactive organic molecule, it exists as a 

stable compound in nature. It was therefore reasonable to assume that it could be 

used for labelling. However, no reproducible 2H-azirine based labelling could be 

detected. This unpleasant finding might result from the instability of the reactive 

ring system in the employed labelling conditions.  

The synthetic intermediate N-(p-toluenesulfinyl) aziridine is a less reactive 

organic molecule and showed some promising labelling patterns. This indicates a 

mild chemical reactivity of the warhead which is a prerequisite for the design of 

proper non-directed probes. The variation of the backbones from N-(p-

toluenesulfinyl) aziridine did not result in distinct labelling patterns. Thus, it seems 

that also this reactive group is much less reactive than 2H-azirines, it still reacts 

unspecific with the proteome, leading to the conclusion that also these type of 

aziridines are unsuitable for ABPP applications. 
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3.4 Direct ABP design of AEBSF-based probes 

3.4.1 Introduction 

4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) is a water 

soluble, irreversible serine protease inhibitor. Its specificity is similar to another 

serine protease inhibitor PMSF, nevertheless with higher stability at low pH values. 

It was discovered and applied as a pharmacological agent to inhibit chymotrypsin, 

kallikrein, plasmin, thrombin, and trypsin proteases, and many studies about the 

physiological functions of AEBSF from neurology, immunology and medicine 

were reported (Rideout et al., 2001; Nakabo et al., 1996; Okada et al., 2003).  

Sulfonate ester (SE) probes as nondirected probes were introduced by 

Cravatt, Sorensen and co-workers several years ago (Adam et al., 2001; Adam et 

al., 2002 and Adam et al., 2004). The mild chemically reactive group of SE could 

endow the carbon electrophile with an ability to target a broad spectrum of 

labelling sites in enzymes. SE probes proved to be a versatile chemotype for the 

creation of ABPs that target a broad range of enzyme classes. 

Compared to sulfonate esters, benzenesulfonyl fluorides have a much higher 

reactivity, and this high reactivity could disturb its labelling selectivity, similar to 

that of the azirine probes (Chapter 3.3). However AEBSF has been used for 

pharmacological studies, so directed probes i.e. AEBSF-based probes are still 

worth to generate and to test for monitoring serine proteases activities in plant 

proteomes. In addition to several known serine protease probes, such as 

Fluorophosphonate (FP) probes (Kidd et al., 2001), AEBSF-based probes may 

target new classes of serine proteases. 
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3.4.2 Syntheses 

AEBSF is commercially available and was used as a starting material. The 

design of the probes introduced the diversity on the amine function of AEBSF. To 

this end, peptide couplings that were performed in a parallel manner were used 

(Scheme 18). In brief, AEBSF was coupled with diverse N-Boc protected amino 

acids using PyBOP as the coupling reagent and TEA as a base. Subsequent 

deprotection with trifluoro acetic acid and coupling with the biotinyl linker building 

block 22 led after HPLC purification to the final products (82 – 86).  
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Scheme 18. Synthesis of a collection of sulfonyl fluoride probes: a. PyBOP, TEA, DCM, rt, 2 h; 
b. TFA, DCM, rt, 1 h; c. 22, PyBOP, TEA, DMSO, rt, overnight. 
 

The probes 82 to 86 were synthesized in a parallel reaction synthesizer 

without isolation of the reaction intermediates in a moderate yield of 30%. This 

might have resulted from the known instability of sulfonyl fluoride moiety, which 

could be improved by shortening the reaction time.  

Subsequent biological evaluation of the synthesized probes (see next section) 

revealed 84 (later on named as DS06) as a representative example compound of all 

other probes. Therefore, a fluorescence derivative of DS06 (84) was synthesized, 
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resulting in the generation of probe 87 (later on named as DS06R, scheme 19). The 

synthetic route for DS06R (87) was similar to the biotinylated probes, but in the 

last step rhodamine N-succinimidyl ester was coupled instead of the biotinyl linker.  
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Scheme 19. Synthesis of the fluorescence probe 87: a. PyBOP, TEA, DCM, rt, 2 h; b. TFA, 
DCM, rt, 1 h; c. 5(6)-Carboxytetramethylrhodamine N-succinimidyl ester, PyBOP, TEA, DMSO, 
rt, overnight, total 8.2%. 

3.4.3 Bioassays 

Arabidopsis leaf extracts were labelled with AEBSF-based-probes 82 to 87. 

All probes caused strong labelling of multiple proteins (Figure 19). There was no 

difference in the labelling pattern between the different probes, which indicates that 

variation of the amino acid in the main chain of the probes did not affect labelling 

selectivity.  
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Figure 19. Labelling of Arabidopsis leaf extracts with sulfonyl fluoride probes: Biotinylated 
AEBSF (BA) and its amino acid conjugates (82 – 86) were incubated with Arabidopsis leaf 
extracts in two buffer systems (NaOAc pH 6 and Tris pH 8). The protein extracts (~0.2 mg/ml) 
were incubated at pH 6 (NaOAc) or pH 8 (Tris) with 20 μM probe for 2 h. The proteins on the 
protein blots were detected by streptavidin-HRP. 
 

A similar labelling profile was generated by labelling with the fluorescent 

probe 87 (Figure 20). Since this fluorescent probe represented the labelling profiles 

of all the other probes and since it is easy to handle, probe 87 was chosen for 

further studies. 
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Figure 20. Co-labelling of 87 and 84: equal concentration of fluorescent probe 87 and 

biotinylated probe 84 were mixed and incubated with an Arabidopsis leaf extract: The labelled 

proteins were detected by streptavidin-HRP (a) and by a fluorescence photometer (b). The protein 

extracts (~30 μg/ml) were incubated at pH 8 with 2 μM probe for 2 h.  

 

To further characterise labelling, probe concentration and pH value were 

varied (Figure 21). Low probe concentration (~60 nM) already caused labelling 

(Figure 21a) illustrated the labelling sensitivity of probe 87. The signal intensities 

increased with increasing probe concentrations in the same ratio, which suggested 

that the probe 87 had almost the same affinity to all the targets. Furthermore, there 

was no saturation of the intensity of the signals, indicating that labelling cannot be 

saturated. Labelling at various pH revealed that the intensities of the signals 

increase with the rising pH value. This increased labelling is in contrast to the 

presumed probe stability since sulfonyl fluoride is less stable at higher pH. 
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Figure 21. Labelling at various probe concentrations and various pH values: a. the probe 
concentration of 87 ranges from 4 nM to 4 μM; b. the pH value ranges from 4 to 9; Protein 
extracts (~20 μg/ml) were incubated at pH 8 (a) with 2 μM probe (b) for 2 h. The labelled 
proteins on protein blot were detected by fluorescence photometer. 
 

Whether 87 is an activity-based probe was still not clear based on the above 

results. To understand the labelling mechanism, identification of the targets was 

required. Christian Gu performed a pull down assay with 84-labelled proteins and 

Dr. Colby did the protein mass spectroscopy analysis. More than hundred proteins 

were identified but there were no serine proteases or other proteases. The identified 

proteins represent different classes providing no clue on the labelling mechanism of 

the probes (84 and 87). However one 84 labelled peptide from a glutathione S-

transferase (AtGSTU20, class 20) was identified (Figure 22). The labelling 

position of probe 84 was not on the active centre residue but on a tyrosine, distant 

from the active site. 
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Figure 22. Mass spectrometry of 84-labelled peptide: the sulfonyl group was bound with a 
phenol group from tyrosine side chain; the probe 84 (blue); the peptide from AtGSTU20 (black) 
with the labelled tyrosine was (red) colour. 
 

To illustrate the unusual labelling position, a structure-based model was 

required. There is no crystal structure of Arabidopsis AtGSTU20 available, 

however the structure of its rice homologue OsGSTU1 (Dixon et al., 2003) with 

substrate – glutathione (GSH) was reported (Figure 23). GSH locates in the 

substrate-binding pocket of GST, the sulphur atom of GSH points to the adjacent 

tyrosine (Y-116), distant from the active site similar to the 84-labelled tyrosine in 

AtGSTU20. If that GSH could be replaced by probe 84, the tyrosine can attack the 

sulfonyl fluoride moiety of probe 84. This illustration helps us to understand the 

possible mechanism of probe 84 labelling the peptide from AtGSTU20 at the 

tyrosine residue. 
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Figure 23. Crystal structure of rice GST1 (OsGSTU1) in complex with glutathione: In the C-
domain GSH (space filling model) interacts with Y-116; the phenol group of Y-116 points to the 
cysteine side chain of GSH.  
 

In the meanwhile, the group of Prof. Dr. Cravatt (Scripps Institute, La Jolla) 

also made the same observation. With the alkyne-labelled AEBSF probe (BC) 

(Figure 24), they identified also many unrelated proteins including GST from 

labelled mouse liver extracts. 
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Figure 24. Structures of probes from the Cravatt lab: Click probe BC and fluorescence probe 
BCR 
 

They identified 43 labelled peptides, 72% of those peptides were labelled on 

tyrosines and 28% were labelled on serines. Furthermore, it is found that probe BC 

labelled tyrosines at multiple positions of the same peptide indicating that the 

targets could be multi-labelled. Labelled proteins included three classes of GST 

(class μ1, 1 and 1) as well as other proteins. Labelling with the different probes 

on plant and animal proteomes are mostly in agreement, except for competition 

assays. The signals of BCR could not be competed by adding an excess of AEBSF 

(in mouse liver extract) whereas the signals of 87 were successfully competed by 

AEBSF (in Arabidopsis leaf extract) (Figure 25). 
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Figure 25. Competition assay between 87 and AEBSF: Arabidopsis protein extracts (~20 μg/ml) 
were at pH 8 pre-incubated with 600 μM AEBSF for 30 min and then labelled with 2 μM probe 
87 for 2 h. The labelled proteins on the protein blot were detected by a fluorescence photometer. 
 

The opposite observations from two competitions can only be caused by two 

different factors. One is based on the biological difference between the two 

proteomes; the other is based on the chemical difference between BCR and 87. As 

it unreasonable to assume that the proteome changes the labelling activity of probe, 

the only cause seems to be the difference between those two probes, and an assay 

for comparing 87 and BCR was hence designed (Figure 26).  

The labelling pattern of 87 and BCR are different both in Arabidopsis leaf 

extract and mouse liver extract. The chemical structure difference between 87 and 

BCR is only one additional amino acid, however the side chain of that amino acid 

is not important, since probes 82 – 86 caused similar labelling patterns. Therefore 

the difference between 87 and BCR can only be explained by a spatial distance 

between warhead and reporter tag. The rhodamine moiety in 87 is further away 

from the warhead than in BCR. If the labelling pocket of the protein is too narrow, 

87 would have better labelling affinity than BCR.  
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Consistent with distinct probe targets, 87 and BCR had also their own 

competitors. 87-labelling can be competed by AEBSF but not by acetylated 

AEBSF (Ac-AEBSF). In contrast, BCR can be competed by Ac-AEBSF but not by 

AEBSF.  

 

Figure 26. Comparison of the labelling profile between 87 and BCR: 87 and BCR have a same 
AEBSF warhead (red), a same fluorescence tag (black), the slight difference is that 87 has a 
glycine more (yellow). Arabidopsis leaf extracts or mouse liver extracts (~20 μg/ml) were pre-
incubated at pH 8 with 600 μM AEBSF or Ac-AEBSF for 30 min and then labelled with 2 μM 
probe 87 or BCR at pH 8 for 2 h. The labelled proteins on protein blot were detected by 
fluorescence photometer. 

3.4.4 Discussion 

AEBSF-based probes did not label any serine proteases but many other 

enzymes such as GST, both in mammalian and plant proteomes. There are four 

possible explanations: One reason could be that AEBSF indeed does not target 

serine proteases, so the probe could not target serine proteases. Due to many clinic 

results showing that AEBSF cause phenol type, it could be that AEBSF does only 
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target serine proteases in vivo but not in vitro; an alternative explanation is that it 

targets serine proteases in situ but that label could be transferred to other enzymes 

under in vitro condition; the last possibility is that 87 is not equal to AEBSF itself, 

although it can be competed by AEBSF. Our studies could give previous 

pharmacological study of AEBSF a new idea. AEBSF can inhibit serine proteases 

in vitro however it does not mean that AEBSF must target serine proteases in vivo 

and it could have many other targets. 

Except for the targets, a significant variation of labelling selectivity caused 

by different linker is another prominent finding in this study. The different amino 

acids in probes 82 – 86 do not lead to a variation of labelling selectivity. But 

removing this amino acid significantly changes the labelling properties of the probe. 

Variation of the amino acid (82 – 86) does not change the spacer distance between 

warhead and tag, and does not change the labelling selectivity, but removing this 

amino acid shortens the spacer, changing the labelling properties of the probe. A 

long spacer may reduce the mobility of the probe whereas a short spacer may cause 

spatial problems in the presence of a bulky reporter tag.  

The reason of AEBSF-based probes preferably labelling at tyrosine could be 

explain that the benzene ring in AEBSF has an additional interaction with the 

phenol ring in tyrosine, and this interaction enhances the labelling affinity of 

AEBSF-based probes to tyrosine. 

The difference between AEBSF and its acetylated form Ac-AEBSF is the 

free amino group in AEBSF, causing a positive charge at pH < 9 on AEBSF. But 

whether this additional dipole really induces the different competition ability of 

AEBSF and Ac-AEBSF to probe 87 is still unknown. 

Based on our observations, AEBSF-based probes can be considered as multi- 

targets-reactivity probes, especially sensitive to GST, but they are not ABPs. Since 
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they do label many targets in one time, they could be used as an inhibitor instead of 

inhibitors cocktail in proteomics studies. 
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3.5 Mechanism-based ABPs design of AOMK for AvrPphB 

3.5.1 Introduction 

Plant–pathogen interactions are governed by specific interactions between a 

pathogen avr (avirulence) gene and the corresponding plant disease R (resistance) 

gene. When corresponding R and avr genes are present in both host and pathogen, 

disease will be resisted. However, if either of the two genes is inactive or absent, 

disease takes place (Flor et al., 1971). This “gene-for-gene” hypothesis was 

proposed 40 years ago but the gene-for-gene interaction had been interpreted on the 

protein level in the nineties for the first time (Keen et al., 1990). A model for the 

interaction between Avr and R proteins has been refined into “guard” and “decoy” 

models that involves an additional host protein (Van der Biezen et al., 1998; Dangl 

et al., 2001; Van der Hoorn et al., 2008). To complete the model, more Avr and R 

protein pairs need to be studied. 

The avirulence gene avrPphB was original discovered from Pseudomonas 

syringae pv. phaseolicola, which infects bean. Bean cultivars carrying the R3 

resistance gene introduce a hypersensitive reaction (HR) (Anastasia et al., 2002). 

AvrPphB was later found to induce a HR in Arabidopsis plants carrying the NB-

LRR resistance gene RPS5 (Warren et al., 1998 and Shao et al., 2002). AvrPphB is 

secreted into host cells by the Type Three Secretion System (TTSS) (Tampakaki et 

al., 2002), and belongs to a novel family of cysteine proteases. Its natural substrate 

is the Arabidopsis PBS1 protein kinase, which is specifically required for 

AvrPphB/RPS5-mediated resistance (Swiderski et al., 2001). The crystal structure 

showed that AvrPphB has a papain-like fold with a distinct substrate-binding site 

(Zhu et al., 2004). The information from the AvrPphB’s structure and amino acid 
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sequence of its natural substrate enable the design of its specific mechanism-based 

ABPs.  

Acyloxymethyl ketones (AOMKs) were introduced first in the last century 

(Bromme et al., 1989 and Pliura et al., 1992) and were reported as inhibitors of 

asparaginyl endopeptidase (Loak et al., 2004). ABPs with an AOMK warhead were 

generated by Boygo and his co-workers (Kato et al., 2005) and showed exceptional 

class-wide reactivity with cysteine proteases in proteomes. AOMK has a high 

selectivity for two major clans of cysteine proteases, the CA clan (cathepsin B and 

L) and the CD clan (caspase-3, legumain, Arg- and Lys-gingipains) (Evans et al., 

2006). Since AvrPphB belongs to the CA clan, AOMK was chosen as warhead for 

the AvrPphB probes. 

3.5.2 Synthesis 

For the synthesis of these probes (Figure 27), a solid phase peptide synthesis 

strategy (SPPS) was chosen, following essentially the protocols developed by the 

Bogyo laboratory.  

The AOMK moiety is introduced into the P1 position of the probe via a 

substitution reaction. To this end, the corresponding amino acid is transformed into 

a chloro or bromo methyl ketone (CMK or BMK) intermediate and then reacted 

with 2,6-dimethylbenzoic acid to obtain the AOMK-based amino acid (AS-

AOMK). In order to prevent side reaction during the reaction of the CMK or BMK 

intermediate and 2,6-dimethylbenzoic acid, two different protocols have been used 

which take into consideration the different chemical properties of P1 inhibitor 

residue. 

The designed probes for AvrPphB were based on the XXA-AOMK motif 

(thus alanine as a P1 residue), requiring the synthesis of an alanine AOMK (A-

AOMK) building block. Its synthesis could be separated into two parts, i.e. the 
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generation of Fmoc-Ala-CMK in solution (Scheme 20) and preparation of a 

semicarbazide linker on aminomethylpolystyrene resin (Scheme 21). For the 

synthesis of Fmoc-Ala-CMK, Fmoc-protected alanine was first converted in situ 

into a mixed anhydride with isobutylchloroformate and N-methyl morpholine in 

tetrahydrofurane, followed by a reaction with freshly generated diazomethane. The 

newly formed organo diazomethane compounds were immediately reacted with a 

one to one mixture of HCl and acetic acid to obtain the final chloro methyl ketone 

88. The resin 89 with a semicarbazide linker was obtained from commercial 

aminomethyl polystyrene resin, to which first carbonyl diimidazole and then 

hydrazine were added. 

FmocHN

O

OH

a, b, c

FmocHN
O

Cl

88  

Scheme 20. Synthesis of 88: a. isobutyl chloroformate, NMM, THF, -10°C, 25 min; b. 
diazomethane, 0 °C – rt, 3h; c. HCl/AcOH, 0 °C, 5 min, total 100%. 
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Scheme 21. Preparation of the semicarbazide linker 89: a. carbonyldiimidazole, DMF, rt, 3h; b. 
hydrazine, DMF, rt, 1h. 
 

After preparation of the semicarbazide linker, 88 was loaded on the resin and 

converted to resin-bound Fmoc-A-AOMK by reaction with dimethylbenzoic acid 

and KF in DMF to obtain the acyoxymethyl hydrazone 90 (Scheme 22). 
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Scheme 22. Synthesis of building block 90 for SPPS: a. 88, DMF, 50°C, 3h; b. dimethylbenzoic 
acid, KF, DMF, rt, overnight.  
 

After complete syntheses of intermediate 90, standard SPPS was applied for 

the further synthesis of the probes (Figure 27), coupling first either aspartate, 

glutamate, phenylalanine, serine or arginine, then as a next amino acid glycine and 

finally 4-pentynoic acid or 2-azido acetic acid as the reporter tag of the probes. 
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Figure 27. A collection of AOMK based probes for AvrPphB 

 

As mentioned above, the natural sequence of the peptide is XXGDK, and the 

G241A, D242A, and K243A mutations reduce the peptide cleavage by about 90, 75, 

and 15%, respectively (Shao et al., 2003). Consequently, variation of the P2 

position of the probes was pursued to investigate the role of the unique acidic 

property in P2 position, which is highly unusual for ‘standard’ cysteine proteases of 

the papain-like super family. The former experience with probes such as IS4 or E64 

suggested that papain-like cysteine proteases usually prefer hydrophobic groups 

such as a benzyl or iso-butyl group on the P2 position. Hence, the probes 95 and 96 

were prepared. In order to check the impact of the negative charge on binding, 

probes 99 and 100 featuring a positive charged P2 position were also synthesized. 

Finally, to probe the general influence of side chain residues on binding, probes 91-

94 and 97-98 were synthesized, which should allow a first glimpse on the spatial 

arrangement of the critical P2 position. 

Later, after a first profiling assay revealed that 91 and 92 are most promising, 

a rhodamine labelled version 101 (later on named as FH11) was synthesized for 

more thorough screening (Figure 28). 
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Figure 28. Structure of the fluorescently labelled probe 101 

3.5.3 Bioassays 

AvrPphB is an avirulence protein from Pseudomonas syringae pv. 

phaseolicola. To obtain AvrPphB for labelling assays, we need first to clone the 

avrPphB gene and overexpress the protein. AvrPphB is injected into the host 

cytoplasma via the TTSS. When during the infection it is activated is unknown, and 

one hypothesis is that AvrPphB is only activated upon interacting with the plant 

proteome. Based on this hypothesis, we wanted to make sure to overexpress the 

active enzyme for labelling, so AvrpPhB was overexpressed in Nicotiana 

benthamiana by infiltration of Argobacterium tumefaciens. The avrPphB gene 

sequence was amplified from Pseudomonas syringae pv. tomato carrying an 

avrPphB encoding plasmid and cloned into a binary vector, behind a plant-specific 

constitutive 35S promoter (Figure 29a). The haemagglutin (HA) epitope was fused 

to the C-terminus of AvrPphB to detect the protein with an anti-HA antibody. This 

binary vector (pZM05) was transformed into Argobacterium tumefaciens via 

electroporation. The transformed Argobacterium tumefaciens were infiltrated into 

leaves of Nicotiana benthamiana. Proteins were extracted after 2-5 days and 

analyzed by anti-HA western blot. However, AvrpPhB was not detected with an 
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antibody on western blot. Instead, pZM05 triggered cell death within 2.5 days after 

agroinfiltration, which might explain the absence of AvrPphB-HA protein 

accumulation (Figure 29b).  

 

Figure 29. AvrPphB expression in planta: Agrobacteria carrying binary plasmid pZM05 were 
infiltrated into N. benthamiana leaves in the presence of silencing inhibitor p19; a. map of 
transfer DNA of pZM05 (35S, constitutive promoter; HA, haemagglutin epitope; NptII, 
kanamycin resistance gene); b. AvrPphB expression triggers cell death. Pictures were taken at 2.5 
days after agroinfiltration. 

 

A second strategy for protein expression was to express AvrPphB in 

Pseudomonas syringae pv. tomato DC3000, which does not contain the avrPphB 

gene. Although AvrPphB would be expressed without interacting with plant 

proteome, it was still worth to test if AvrPphB is active. To perform this strategy, a 

new vector for bacterial over expression was constructed by Dr. Kaschani, using 

pZM05 as a template (Figure 30a). 
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Bacteria containing the vectors pFK141 (AvrPphB-HA) and pFK142 

(AvrPphB-his) as well as the non-transformed bacteria were grown overnight at 28 

°C in normal growth medium (NYG). To determine if Pseudomonas syringae 

secretes AvrPphB, the medium and bacterial pellet were separated and proteins 

from the medium were precipitated with acetone. Analysis of the proteins on 

western blot using anti-HA antibodies, revealed a 28 kDa signal in the bacterial 

pellet sample of bacteria expressing AvrPphB-HA, which matched the calculated 

molecular weight of AvrPphB-HA (Figure 30b). The protein expression level was 

low, and 10 minutes exposure not only caused a strong signal but also increased 

background signals of 34 kDa above the AvrPphB-HA signal. 

 

 

Figure 30. a, Structure of AvrPphB vectors: pFK141 contains a terminal HA epitope whereas 
pFK142 contains a terminal His tag; PNM, a strong constitutive promoter; b, AvrPphB 
expression in Pseudomonas: non-transformed Pseudomonas (-), Pseudomonas expressing HA-
tagged (pFK141) or His-tagged (pFK142) AvrPphB were grown in rich medium; Secreted 
proteins (medium) and protein in bacterial pellet (bacteria) were analyzed on western blot, using 
anti-HA antibody. 
 

These results demonstrated that AvrPphB was not secreted by Pseudomonas 

into the medium but it accumulated inside bacteria at low level. To increase protein 
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levels, Pseudomonas was grown in minimal medium (min-A), which mimics the 

natural habitat of Pseudomonas during infection. Western blot analysis with anti-

HA antibody on proteins from bacteria revealed a strong 28 kDa signal for bacteria 

expressing AvrPphB-HA but only when the bacteria were grown in min-A (Figure 

31a). 

Protein extracts of Pseudomonas grown in min-A medium were used for a 

labelling experiment with probe 101. Fluorescence scanning revealed clear 28 kDa 

signals from Pseudomonas carrying pFK141 and pFK142 suggesting that AvrPphB 

is covalently labelled with probe 101 (Figure 31b). The fluorescence bands 

correspond with the band on the anti-HA western blot and the coomassie gel. 

 

Figure 31. a. AvrPphB expression in two media: Different Pseudomonas strains were grown 
overnight in NYG or mim-A medium; The bacterial pellet was used for anti-HA antibody 
western blot analysis; b. Labelling of AvrPphB with probe 101: Bacteria pellet proteins were 
incubated at pH 8 with 5 μM 101 for 2 h. Fluorescent Proteins were detected by an in-gel 
fluorescence scanner, anti-HA antibody and coomassie staining in sequence. 
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To confirm that the labelled protein indeed represents AvrPphB, a pull-down 

assay was performed using Nickel beads, which bind the His tag of AvrPphB-his. 

The 28 kDa fluorescence signal only appeared in the enriched sample from 

Pseudomonas carrying vector pFK142 (Figure 32). This indicates that AvrPphB-

His was captured on the Nickel beads in a high yield and the fluorescence band 

showed labelling of AvrPphB with 101. 

 

Figure 32. Pull down assay of 101-labelled AvrPphB-His: Extracts from pFK142-containing 
bacteria were labelled with 101 for 2 hours and incubated Nickel beads for 2 h to immobilize His-
tagged proteins; Proteins on Beads (B) or Supernatant (S) were detected in gel by fluorescence 
scanning and coomassie staining. 

 

These results not only showed the activity of the probe but also the activity of 

AvrPphB. Based on these results, two properties of AvrPphB were revealed. First, 

AvrPphB is already active in the extract from Pseudomonas. Second, AvrPphB is 

not secreted by Pseudomonas unless there is a stimuli, which could happen during 

infection.  

To further investigate the properties of AvrPphB, labelling was performed at 

various pH values. This revealed that AvrPphB is active at neutral pH value, 

coinciding with the pH value of the plant cytoplasm (Figure 33). In fact, pH 8 was 

not the good labelling pH for probe 101 but the neutral pH values.  
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Figure 33. pH curve of labelling of AvrPphB with 101: AvrPphB-containing extracts were 
incubated at various pH with 5 μM 101 for 2 h, Fluorescent proteins were detected by in-gel 
fluorescence scanner. 

 

PLCPs are usually active at acidic pH value, but AvrPphB is active at neutral 

pH value. Since the cytoplasm of Pseudomonas syringae is mildly acidic (Dawson 

et al., 2009), AvrPphB is inactive inside bacteria. When the bacteria inject 

AvrPphB into the cytoplasm of host cell, having a neutral pH value, AvrPphB is 

activated. Thus in our pH-dependent ABPP assay, the AvrPphB shows the most 

labelling activity at pH 7, which matches the physiological reason in nature. 

The last assay was the competition assay to test the specificity of probe 101 

(Figure 34). Labelling by 101 (P2 = D) could be competed by pre-incubation with 

92 (P2 = D), but not by the other inhibitors (P = E, F, S, R). This shows that 101 

and 92 have a high labelling specificity. Especially in the case of 92 where the P2 

position is aspartic acid whereas the P2 position of 94 was glutamic acid. The fact 

that inhibitors containing P2 = D are effective, but P2 = E not, is intriguing since 

the two inhibitors differ only in one methylene group, indicating that the S2 pocket 

of AvrPphB is too shallow to accommodate P2 = E.  
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Figure 34. Competition assay of 101: The AvrPphB containing extracts were pre-incubated with 
alkyne-tagged probes 92, 94, 96, 98, 100 at 100 μM for 30 minutes, and remaining non-inhibited 
AvrPphB was labelled with fluorescence probe 101 of 5 μM for another 1.5 hours. Fluorescent 
proteins were detected by in-gel fluorescence scanner. 

3.5.4 Discussion 

The design of probe 101 as well as its click version 91 and 92 were 

successful according to the biological results. Due to the highly selective AOMK 

moiety and using aspartate and glycine at P2 and P3 position, the probes are 

specific to AvrPphB. Variation of amino acid at the P2 position confirms that the 

AvrPphB active pocket is selective towards the P2 position of the substrate. This is 

a unique character among PLCPs, since most PLCPs prefer substrates with 

aliphatic or aromatic residues at the P2 position. However, the natural substrate of 

AvrPphB carries aspartate at P2 position. The competition experiment showed that 

only inhibitors with aspartic acid at P2 position prevent 101 labelling but even with 

glutamic acid did not. This implies that the S2 substrate-binding pocket in 

AvrPphB is too shallow to accommodate the extra chemical residue. This 

experimental observation is supported by the crystal structure, in which an arginine 

residue is located in the S2 pocket that could be responsible for the narrow space. 

The absent labelling activity of AvrPphB at low pH value could result the 

denaturation of AvrPphB. Recently another avr protein, AvrPto was reported that it 

is denaturated at low pH in order to be transportable via TTSS (Dawson et al., 
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2009). The pH-sensitivity and that strict selectivity for P2 = D by AvrPphB could 

be related to the physiological function of this protease.  

After generation of ABPs for AvrPphB, future biological work on AvrPphB 

could be benefited and carried on utilizing the ABPP. We could still investigate the 

time course of expression and secretion of AvrPphB by Pseudomonas into different 

hosts in vivo; the localisation of secreted AvrPphB in plant intra- or extracellular; 

or to monitor the proteolytic in- or active state of AvrPphB. To explore the role of 

AvrPphB in the plant-pathogen interactions, the AvrPphB probes could be utilized 

as a powerful tool. 
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3.6 Mechanism-based ABPs design of AOMK for VPE 

3.6.1 Introduction 

Vacuolar processing enzymes (VPEs) are cysteine proteases responsible for 

the maturation of various vacuolar proteins in higher plants (Hara-Nishimura et al., 

1991). VPE can be subdivided into two subfamilies, one is specific for protein 

storage vacuoles in seeds and another is specific for lytic vacuoles in vegetative 

organs (Kinoshita et al., 1995). The VPE-mediated processing is similar in both 

situations and VPE cleaves at Asn-Gln bonds of natural substrates with a unique 

mechanism (Yamada et al., 1999). Activation of VPE occurs through self-catalytic 

removal of an auto-inhibitory C-terminal propeptide (Kuroyanagi et al., 2002). This 

self-activation process is similar to that of AvrPphB. Like caspases, VPE is 

involved in a mediate virus-induced hypersensitive cell death (Hatsugai et al., 

2004). There are four VPEs in Arabidopsis, namely , ,  and -VPE. The 

reversible Caspase-1 inhibitor Ac-YVAD-CHO and VPE inhibitor Ac-ESEN-CHO 

were introduced already. To monitor the change of activities for VPE in vivo and in 

vitro, specific ABPs need to be generated. 

Based on the success of AvrPphB probes, a similar probe design strategy was 

applied. AOMK was chosen as the warhead, since it can carry a P1 amino acid 

residue that determines selectivity to clan CD proteases like caspase and VPE. 

3.6.2 Syntheses 

The AOMK-based probes for VPE were synthesized by the same strategy as 

the probes for AvrPphB. The VPE probes were based on a XXN-AOMK motif. 

Contrary to Fmoc-Ala-AOMK, which was linked to the resin via a semicarbazide 

linker, the corresponding Asn-AOMK derivative can be obtained via side chain 
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linking of a corresponding Asp-AOMK building block to a 2-chlorotrityl chloride 

resin (Scheme 23). Consequently, Fmoc-Asp-AOMK was required as a building 

block for solid phase synthesis.  

To this end, Fmoc-Asp(OtBu)-OH was used as a starting material and 

converted into Fmoc-Asp(OtBu)-BMK, followed by solution transformation into 

the corresponding Fmoc-Asp(OtBu)-AOMK 103 (Scheme 23). Deprotection of the 

side chain t-Bu-ester with TFA generated building block 104, which was then 

coupled to 2-chlorotrityl chloride resin to deliver resin bound 105. 
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Scheme 23. Synthesis of building block 105 for SPPS: a. isobutylchloroformate, NMM, THF, -
10 °C, 25 min; b.  diazomethane, 0 °C - rt, 3h; c. HBr/AcOH, 0 °C, total 100%; d. 
dimethylbenzoic acid, KF, DMF, rt, overnight, 60%; e. TFA, DCM, rt, 1h, 100%; f. 2-Cl-trityl 
resin, DIPEA,  DCM, rt, 2h. 
 

The BMK reaction condition was much harsher than for CMK and hydrogen 

bromide was applied very carefully. After the synthesis of 105, standard SPPS was 

used to synthesize the biotinylated and fluorophore attached probes 106 and 107 

(Figure 35). 
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Figure 35. Structures of the biotinylated probe 106 and fluorescently labelled probe 107  

3.6.3 Bioassays 

The probe 107 was directly labelled with Arabidopsis leaf extract of different 

lines: Columbia (Col) wildtype contains an endogenous amount of VPE; -VPE 

overexpressed (O ) line has high level of -VPE protein; -VPE knockout (K ) line 

and VPE quadruple knockout (K) lines lack -VPE or all VPEs respectively. The 

result showed that probe 107 caused two 43 kDa signals in Col and O  lines. The 

size of the labelling coincides with the theoretical VPE protein size. The signal was 

absent in single and quadruple knockout lines but more intensive in the -VPE 

overexpressed line, confirming that the signal represents VPE (Figure 36a). To 

prove that the labelling was specific, a competition assay of probe 107 was carried 

out with its cognate biotin tagged probe 106. The assay showed that the labelling of 

107 can be competed by 106 (Figure 36b). 
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Figure 36. Evaluation of probe 107 as an ABP for VPE: a, Labelling of probe 107 with 
Arabidopsis leaf extract of different lines: Columbia wildtype (Col), -VPE overexpressed (O ), 
-VPE knockout (K ), , , , -VPEs quadruple knockout (K); b, biotin tagged probe 106 

prevents the labelling of probe 107 in Arabidopsis leaf extract of -VPE overexpressed line; 
Arabidopsis leaf extracts of different lines (~100 μg/ml) was labelled with 5 μM probe 107 (a) or 
pre-incubated with 100 μM 106 for 30 min and then labelled with 5 μM probe 107 (b) at pH 5.5 
for 2 h. The labelled proteins on protein blot were detected by fluorescence photometer and 
coomassie stain. 

3.6.4 Discussion 

The simple biological assays prove that 107 is an ABP for VPE of 

Arabidopsis. The probe is very specific and highly selective for VPE, so this 

project gave another good example of the selectivity of the AOMK warhead to 

cysteine proteases. Unlike AOMK-based probe 101 for AvrPphB (chapter 3.5), 

which is a CA clan cysteine protease, this AOMK-based probe 107 is for VPE, a 

CD clan cysteine protease. The difference between probes 101 and 107 is only two 

different amino acids in the P1 and P2 positions, illustrating that the subtle 
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selectivity of targeting cysteine protease is dependent on the properties of the 

substrate pocket of the enzyme. 
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3.7 Natural product syntheses of Gibbestatin 

3.7.1 Introduction 

To date, Gibbestatins A-C have been described (Hayashi et al., 1999) of 

which Gibbestatin B (GNB) is the most important derivative. It was originally 

isolated in 1984 as the antibiotic 2-11-B from Streptomyces sp. 2-11 (Kinashi et al., 

1984), however without stereochemical assignments. In 1999, together with two 

other gibbestatins, the structure of GNB (Figure 37) was more thoroughly 

elucidated by spectroscopic analyses (Hayashi et al., 1999). Despite these advances, 

two chiral centres at C16 and C17 could only be assigned in relative 

stereochemistry (trans). Later, the same group reported an inhibitory effect of GNB 

on both gibberellin A3 (GA)-induced -amylase production in the cereal aleurone 

layers and the expression of various genes induced by GA, abscisic acid (ABA) and 

auxin on tobacco and Arabidopsis plants (Hayashi et al., 2000). This report 

concluded with the notion that GNB acts in a similar manner as typical plant 

hormones.  

To investigate the exact biological functional of GNB, an identification of its 

biological target is required. To this end, two strategies are in principle applicable: 

first, GNB can be transformed into an ABP for target pull-down experiments or 

second, a Y3H can be performed, necessitating a transformation of GNB into 

suitable hybrid ligands (Schneider et al., 2008). As access to the natural product is 

limited, both strategies require a previous natural product synthesis.  

The structure of GNB features one epoxide moiety and several double bonds. 

Its mode of action is still unknown, however several possibilities for a potential 

reaction of GNB with cellular proteins can be imagined from its functional groups. 

Thus, the epoxide group could be attacked by a nucleophile in an analogues manner 
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as in the natural product E-64, leading to ring opening either at C-16 as well as C-

17; in addition, GNB could be attacked by a nucleophile in a Michael-type reaction. 

Importantly, both reactions would lead to stabe, covalent protein-GNB conjugates, 

allowing efficient pull-down experiments with GNB in complex proteomes. 

As GNB represents an interesting natural product due to its inherent 

biological activity, a total synthesis was pursued, aiming at the synthesis of 

sufficient amounts of GNB for further biological screening and target identification. 

To date, no synthesis of GNB or a structurally related natural product has yet been 

reported.  
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Figure 37. Structure of GNB 

 

Although GNB is only a middle size natural product, the high density of 

functional groups still turns it into an interesting synthetic challenge. GNB features 

three double bonds, one benzene ring, one epoxide moiety and one carbonyl group 

in a only 22-carbon atoms molecule. Retro-synthetically, several strategies for 

synthesis of GNB can be differentiated.  
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3.7.2 Previous synthesis approachs for GNB 
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Scheme 24. Comparison of two retro-synthetic strategies towards GBN synthesis developed by 
Dr. Rama Narayana: a linear synthesis route (orange) and a more convergent synthesis route 
(blue) as an improved second route. However, both routes failed to deliver the desired product at 
a late stage of synthesis. 
 

The previous synthetic trial was performed by Dr. Rama Narayana (A 

postdoctoral fellow in the Kaiser group), and he first used a linear synthetic 

strategy to synthesize GNB. Because only the chiral centres on C12 and C20 were 

assigned during previous spectroscopic studies, an enantioselective aldol reaction 

was adapted for the generation of the 12S and 20S chiral centres. A Sharpless 

asymmetric epoxidation was utilized to generate both derivatives (16S, 17S & 16R, 

17R) on the epoxide moiety, because chiral information on C16 and C17 are still 

unknown (Scheme 24). Thus, first a deconjugated salicylic acid derivate 111 was 

synthesized (Scheme 24), which was then subsequently transformed into the final 

product by an anti-aldol and a HWE reaction as key steps. Starting from 2-

methoxyl benzoic acid, 11 steps are required to synthesize 111 (unpublished data). 
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It however turned out that the last step of this reaction sequence, consisting of a 

hydrolysis of methyl ester and adjacent coupling with the chiral auxiliary for the 

following aldol reaction could be achieved only in disappointing bad yields. 

Consequently, an improved synthetic route was sought. 

To this end, a convergent synthetic strategy was devised, basing again on an 

auxiliary-mediated enantioselective aldol reaction and a Sharpless epoxidation. Due 

to the instability of the TBS and t-butyl protecting groups on the salicylic acid 

moiety during the first synthetic trial, an alternative protecting group, i.e. an 

acetone acetal was used during the convergent synthetic route. As a key idea, GBN 

was divided into three building blocks via a formal separation of C8-C9 and C14-

C15 (Scheme 24). The synthesis of each building block can be achieved by 

straightforward chemistry. Indeed, the syntheses of the C8 benzyl phosphonate 

building block 112 (Scheme 24) and C15 epoxide building block 114 (Scheme 24) 

were optimized during the synthetic studies and could be achieved in good to high 

yields. The synthesis of the required building block 113 (Scheme 24) however 

could still not be achieved satisfyingly as the aldol reaction proved unexpectedly 

difficult (unpublished data). Although an assembly of 113 with the 114 could be 

achieved, the subsequent HWE reaction with 112 to complete the synthesis could 

not be performed under the investigated reaction conditions. 

3.7.3 First synthesis approach for GNB 

Retro-synthetic analysis of the first synthesis approach 
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Scheme 25. Second convergent retro-synthetic strategy 

 

At this point in time, an improved synthetic route including the gained 

knowledge of the previous trials of Dr. Narayana was developed during this thesis 

(Scheme 25): As the last step, i.e. the HWE reaction between 112 and 113/114 

building block failed in the previous synthetic route, the order of reactions was 

changed in the second convergent retro-synthesis. Thus, first 113 and 112 building 

blocks were connected by a HWE reaction and then as a last step, a HWE reaction 

between 114 and the other C14 phosphonate derivative 118 to form the C14-C15 

double bond was envisaged. The synthesis of 114 was already established 

previously. Consequently, only the generation of 118 had to be investigated. To this 

end, the C14 phosphonate moiety 118 was envisioned to be accessible by an 

elongation of the C13 aldehyde moiety 120 by a nucleophilic addition with diethyl 
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ethylphosphonate to form the C13-C14 bond. 120 could be obtained from 121, 

which in turn could be prepared by a HWE reaction between 112, whose synthesis 

was previously established, and the C9 aldol product based moiety 122. 122 could 

be generated with an auxiliary-based enantioselective aldol reaction as a key step 

within total 12 steps in total. 

However, a critical view on this synthetic strategy reveals that the generation 

of the two chiral centers on C12 and C20 is rather elaborate. As a consequence, the 

total yield of the reaction sequence was rather low, turning the final assembly of the 

synthesized building block into a tedious task. Thus, an alternative strategy would 

be advantageous for a more efficient synthesis of GNB. 

 

Synthesis of the first synthesis approach 

 

Benefited from the former experience of the GNB synthesis by Dr. Rama 

Narayana and the already obtained intermediates from his former synthesis, the 

synthesis of building block 112 was started with 126. 126 was refluxed in 10% 

sodium hydroxide ethanol solution for 2 hours to hydrolyze the ethyl ester. The 

obtained 6-methyl salicylic acid was isolated without further purification and 

reacted with acetone, thionyl chloride and a catalytic amount of DMAP in 

dimethoxyethane to protect the hydroxyl and carboxyl groups of salicylic acid as 

acetonide 127. Benzylic bromination with NBS and AIBN yielded 128, which then 

was refluxed in anhydrous toluene with triethylphosphite to generate the desired 

benzyl phosphonate building block 112 (Scheme 26). 
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Scheme 26. Synthesis of building block 112: a. NaOH, EtOH, reflux, 2 h; b. DMAP, CH3COCH3, 
SOCl2, Dimethoxyethane, < 30 °C, 3 h, 89%; c. NBS, AIBN, CCl4, reflux, overnight, 99%; d. 
P(OEt)3/Toluene, reflux, 3 h, 96%. 
 

To simplify the synthetic work, the (16S, 17S) isomer on the epoxide moiety 

was first chosen as the target molecule. After successful establishment of the 

synthetic route, the corresponding (16R, 17R) isomer could be synthesized easily. 

The synthesis of the required building block 114 started with a Sharpless 

asymmetric epoxidation of (E)-2-buten-1-ol to obtain [(2S, 3S)-3-methyloxiran-2-yl] 

methanol (129), which was then oxidized with DMP to generate the volatile 

building block 114 (Scheme 27). 
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Scheme 27. Synthesis of building block 114: a. DIPT, tBuOOH, Ti(OiPr)4, DCM, - 20 °C, 2 h, 
54%; b. DMP, DCM, 0 °C, 1 h, 90%. 

 

To perform the second convergent retro-synthetic strategy, preparation of the 

aldol-derived building block 122 is essential. The direct Masamune anti-aldol 

reaction was not compatible with the later reaction conditions, so a combination of 

a syn-aldol reaction and Mitsunobu inversion was adapted (unpublished data). To 

perform this strategy, two small fragments 124 and 125 were required. 124 was 

synthesized by mono-protection of 1,3-propanediol with TBDPSCl to generate 130 

followed by oxidation to the aldehyde 124 with a Swern oxidation. 125 was 

prepared from a coupling reaction of bromoacetyl bromide with of (2R)-4-(phenyl 
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methyl)-2-oxazolidinone (Evans auxiliary) to form 131 followed by bromide 

displacement by refluxing with triethylphosphite (Scheme 28). 
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Scheme 28. Syntheses of building blocks 124 and 125: a.TBDPSCl, DIPEA, DCM, rt, overnight, 
90%; b. DMSO, (COCl)2,  DCM, TEA, -78 °C, 2 h, 70%; c. bromoacetyl bromide, n-BuLi, THF, 
-78°C, 1 h, 94%; d. P(OEt)3, reflux, overnight, 80%. 

 

After accomplishing the preparation of 124 and 125, a HWE reaction 

between both led to 132, which then was subjected to a syn-aldol reaction with 

acetaldehyde to generate the syn-aldol product 133. In order to achieve the required 

inversion of the hydroxyl group, 133 was first transformed into an anti-para-

nitrobenzoic ester 134 by a Mitsunobu-type reaction, which was then hydrolyzed to 

generate the desired anti-aldol product 135. Surprisingly, the subsequent 

methylation of 135 failed with all employed methylation reagents such as 

iodomethane, methyl triflate and diazomethane in combination with different bases 

such as 2,6-di-tert-butyl-4-methyl pyridine, pyridine or TEA. The reason for the 

unsuccessful methylation could be the unfavorable spatial conformation of the 

substrate. The auxiliary seemed to strongly shield the reaction center of 135 by 

other reagents. As a consequence, the required building block 123 could not be 

synthesized (Scheme 29).  
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Scheme 29. Synthesis of building block 123: a. NaHMDS, THF, 0 °C – rt, 1 h, 85%; b. Bu2BOTf, 
TEA, CH3CHO, DCM, -78 °C – rt, 4 h, 91%; c. DIAD, TPP, PNBA, THF, 0 °C, 30 min, 91%; d. 
K2CO3, MeOH, rt, 1.5 h, 79%. 
 

Although 135 could not be methylated directly, this problem could be 

circumvented by removing the shielding auxiliary, which only results in some 

additional steps. However, in order to test if the designed synthetic strategy is 

feasible at all, the methylated syn-aldol product 136 was used to perform the test 

reactions. 136 was reduced with LiBH4 to remove the auxiliary and then protected 

with DHP to generate 137. The TBDPS protecting group was released with TBAF 

to obtain 138, which was then in situ oxidized to an aldehyde with DMP and 

transformed into 139 via a HWE reaction with building block 112. Deprotection of 

THP by PPTS in methanol yielded 140, which was then oxidized with DMP to 141. 

The aldehyde 141 was reacted with deprotonated diethylethylphosphonate to 

generate 142, which was then transformed into 143 by Dess-Martin oxidation 

(Scheme 30). The subsequent synthesis had to be stopped at this step because the 
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synthetic intermediate 143 could be obtained only in too low amounts for the 

further reactions overall steps. From 136 to 143, 9 steps were required for synthesis. 

As a consequence, although a transformation of 135 into the corresponding isomer 

of 136 by an alternative strategy in principle would be possible, the overall reaction 

sequence seems very uneconomic and an alternative strategy for the synthesis of 

GNB was sought. 
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Scheme 30. Test reactions for final part of the synthesis: a. LiBH4, Ether/Methanol, 0 °C – rt, 3 h, 
93%; b. DHP, PPTS, DCM, rt. 5 h, 80%; c. TBAF, THF, rt, 3 h, 85%; d. DMP, DCM, 0 °C, 1 h, 
90%; e. t-BuOK, 112, THF, 0 °C – rt, 1 h, 57%; f. PPTS, MeOH, rt, 2 d, 66%; g. DMP, DCM, 0 
°C, 1 h, 86%; h. EtPO(OEt)2, n-BuLi, THF, -78 °C, 1 h, 23%; i. DMP, DCM, 0 °C, 1 h, 50%. 

3.7.4 Second synthesis approach for GNB 

Retro-synthetic analysis of second synthesis approach 
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Scheme 31. Third convergent retro-synthetic route 

 

The third convergent retro-synthesis developed within this thesis is based on 

a division of GNB into two parts via the C12-C13 bond (Scheme 31). Although the 

generation of a carbanion at C12 of 144 as a prerequisite for a nucleophilic 

substitution and a subsequent stereoselective substitution at an activated carbon 

acid moiety surely is a difficult task, the suggested synthesis route is much more 

straightforward than previous ones. Thus, this reaction requires careful 

optimization of reaction conditions. As the complementary reaction partner of the 

carbanion, a suitable leaving group at the C13 moiety 145 was carefully discussed. 

Several potential groups could react with the generated carbanion in the desired 

manner, e.g. an acyl halide or active anhydride, which all are available from a 

carboxylic acid derivative. Thus, a HWE reaction on the former 114 building block 

could generate such a carboxylic acid. As for 144, it could also be obtained from 

the former 112 building block and a new C9 conjugated aldehyde building block 

146 by a HWE reaction. 146 could then be prepared within 2 steps from 

acetaldehyde by a proline-catalyzed one pot asymmetric synthesis of 5-hydroxy-

(2E)-hexenal (Cordova et al., 2002). It is obviously that the third version of  the 
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convergent retro-synthesis immensely simplifies the total synthesis of GNB despite 

the risky last step. 

 

Synthesis of second synthesis approach 

 

According to the third convergent retro-synthetic strategy, the building block 

147 was required. To this end, the ylide 149 was generated from methyl 

bromopropionate and triphenylphosphine. In a one-pot reaction, 129 was oxidized 

with manganese oxide and subsequently reacted with 149 to yield 150. Subsqeuent 

hydrolysis under mild basic conditions generated building block 147 (Scheme 32). 

The hydrolysis step still requires further optimization in future because hydrolysis 

of the epoxide moiety also occurred under the employed reaction conditions. 
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Scheme 32. Synthesis of building block 147: a. TPP, NaOH, H2O, 70°C, 24 h, 95%; b. 129, 
MnO2, DCM, rt, 2 d, 97%; c. 0.1 M NaOH, H2O/THF, rt, 3 h, 51%. 
 

The other building block 144 was obtained by an efficient reaction sequence. 

Acetaldehyde in THF solution in presence of L-proline undergoes a self-triple 

condensation to form 148 featuring the correct conformation, which was then 

methylated under a mild reaction to obtain 146. 146 was subjected to a HWE 

reaction with 112 to generate the building block 144 (Scheme 33). The synthetic 

route is compact with a very good overall yield (51%). 
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Scheme 33. Synthesis of building block 144: a. L-Proline, THF, 4 °C, 14 h; b. TfOMe, 2,6-di-(t-
butyl)-4-methylpyridine, DCM, rt, overnight, 90%; c. t-BuOK, 112, THF, 0 °C – rt, 1 h, 80%. 

 

After obtaining the building blocks of 144 and 147, the completion of the 

synthesis of GNB is very close. Deprotonation studies on 144 revealed n-BuLi as 

most efficient. The further synthesis is anticipated as following: 147 will be 

transformed into an active anhydride, which is added to the carbanion of 144 to 

generate a protected GNB derivative. Complete deprotection then delivers GNB 

(Scheme 34). Although the critical coupling reaction might not occur with high ee 

ratio, this route is still more efficient due to the in comparison to previous trials 

highly shortend reaction sequence.  

O

O

O

CO2H

H

OH

O

O
HO

O

O O

O

144 147 one isomer of GNB 108  

Scheme 34. Future synthetic plan for the synthesis of GNB 

3.7.5 Discussion 

We hope that with this fourth strategy, the total synthesis of GNB is very 

close to the end. This strategy for the first time does not rely on an auxiliary-based 

aldol reaction that strongly shortens the overall synthetic steps as no introduction 

and cleavage of the auxiliary is necessary. Instead, this method relies on an 

efficient organocatalytic transformation that introduces enantioselectively a 
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required first stereocenter that will be used to direct the outcome of subsequent 

reactions. 

We did not accomplish the synthesis yet. However, what we have learned via 

performing the synthesis is almost more meaningful than the synthesis itself. To 

study the synthesis is equally important as to complete the synthesis. The total 

synthesis of GNB will finish in soon future within few steps.  
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4 Summary (English) 

The present thesis includes the study and development of suitable small 

molecules for ABPP. Within this thesis, 4 different types of ABP design strategies 

were studied and 6 types of ABPs collections were generated. To this end, around 

150 organic compounds were characterised as reaction intermediates or products; 4 

proteomes from botanic, bacterial and mammalian species were profiled in vitro or 

in vivo respectively; around 200 1D-SDS-PAGE and manifold MS proteomics 

analyses were performed; several targets of the designed probes have been 

identified and the associated genetic work of cloning and in planta protein 

expression has also been completed. 

 

The summary of the whole PhD work is separated in three parts – the first 

chemical, the second chemical biological, and the third biological – in order to 

facilitate a more detailed discussion. 

4.1 Chemical part 

3 probes and 2 inhibitors with an anti- -lactone warhead (chapter 3.1), 9 

probes and 8 inhibitors with a syn- -lactone warhead (chapter 3.2), 2 probes with 

an azirine warhead (chapter 3.3), 13 probes and 1 inhibitor with an aziridine 

warhead (chapter 3.3), 6 probes and 1 inhibitor with an AEBSF warhead (chapter 

3.4) and finally 18 probes with an AOMK warhead (chapter 3.5 and 3.6) were 

generated. Of these probes, 3 were rhodamine tagged fluorescent probes, 16 were 

biotin tagged affinity probes and 27 were azide or acetylene tagged chemical 

orthogonal probes.  
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For generation of the anti- -lactone compounds, a Masamune auxiliary 

based synthetic strategy was used and delivered the desired -lactones with a high 

enantioselection and yield (chapter 3.1). With this methodology, probes with 

variant chemical moieties were generated. However, in later synthetic approaches 

(chapter 3.7), this methodology proved incompatible for variant aldol reactions 

such as a 1,3 or 1,5-shifted aldol reaction, probably due to lower reactivity and 

stability of the ester-based Masamune aldol reaction partner than the amide-based 

Evans aldol reaction partner.  

The cyclization of serine or threonine to form syn- -lactone compounds 

followed by peptide couplings proved as a direct and convenient method to 

generate a syn- -lactone-based probe collection in a short time (chapter 3.2). 

The Aza-Darzens asymmetric synthesis was demonstrated to be a versatile 

method to generate aziridine or azirine compounds. The reaction proved as 

compatible with many chemical moieties and application of the commercially 

available chiral menthyl-p-tolylsulfinate auxiliary led to a good enantioselection of 

the sulfinyl imine intermediate. Consequently, this methodology enabled the 

generation of a complete probe library (chapter 3.3) with yields ranging from 30% 

to 90%.  

Also AEBSF-derived probes featuring a sulfonyl fluoride moiety were 

synthetically straightforward available, although reaction yields were only modest 

due to hydrolysis under peptide coupling or purification conditions (chapter 3.4).  

The AOMK derivatives were rapidly and conveniently accessible by SPPS, 

enabling the generation of several AOMK-based peptide probes (chapter 3.5 and 

3.6). 

Finally, the total synthesis of GNB was studied intensively. To date, four 

different synthetic strategies were evaluated, two of them within this thesis (chapter 

3.7). To this end, around 40 reaction intermediates were prepared. Each re-
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evaluation of the synthesis strategy improved the former one, resulting in a more 

efficient synthesis regarding protecting group strategy or the number of 

intermediates. The latest retro-synthesis involved an allyl anion nucleophilic 

substitution based strategy, replacing the previously used aldol reaction-based 

strategy, thereby shortening the required synthetic steps significantly. The proline-

catalyzed one pot asymmetric synthesis of 5-hydroxy-(2E)-hexenal represents a 

short and efficient way to prepare the required building block. Although the total 

synthesis is not yet completed, the required building blocks were fully 

characterised, requiring now the final assembly. However, the employed strategy 

seems very promising and therefore finalisation of the synthesis should be possible 

in the near future. 

4.2 Chemical biological part 

Four ABP design strategies being direct, non-directed, natural product based 

and mechanism based probe design were studied within this thesis. The natural 

product based probe design strategy was used to obtain two THL-based ABPs. 

However, the targets of these two ABPs proved different from the expected lipase 

targets. One reason for this might be the modification of the peptide moiety on the 

side chain of THL, indicating that even subtle chemical modifications can change 

the target of a natural product. For future probe designs, it seems preferably to keep 

the synthesized probe as similar as possible to the natural product, although this 

burdens the required chemical synthesis.  

With the mechanism-based probe design strategy, 9 syn- -lactone-based 

probes and 18 AOMK-based probes were obtained. Interestingly, the 9 syn- -

lactone-based probes finally did not prove as “classical” ABPs. Instead, a 

transpeptidase activity of a previously known cysteine protease RD21 was 

discovered (chapter 3.2). The 18 AOMK-based probes for AvrPphB and VPE were 
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demonstrated to act as ABPs, labelling their target enzymes very specifically 

(chapter 3.5 and 3.6). These “opposite” results from the two types of probes 

evaluated during this thesis indicate that “classical” mechanism-based probes can 

be obtained only if the reacting warhead irreversibly binds the target enzyme while 

a “transiently” formed covalent bond can lead to unexpected results. 

Following the direct probe design strategy, 6 AEBSF-based probes were 

generated. Unexpectedly, these probes proved not as ABPs (chapter 3.4). One 

reason for this strange finding could be that the additional linker and reporter tag 

change the properties of the serine protease inhibitor AEBSF. This indicates that a 

direct transformation of an inhibitor into an ABP is not trivial. An alternative 

explanation could be that AEBSF contrary to previous reports is not a selective 

active site inhibitor.  

The non-directed probe design strategy was used to obtain 13 aziridine and 2 

azirine-based probes. However, the evaluation of their labelling potential proved as 

difficult and it seems that they cannot be used as valuable probes (chapter 3.3). To 

date, there is only a limited number of non-directed probes available, probably as a 

result of difficult probe design. The results of this thesis suggest that indeed 

chemical reactivity of the synthesized probes is a key point in non-directed probe 

design as the generated probes have to be in a very narrow reactivity window, 

being reactive enough to bind to active site residues but being inactive enough to 

prevent unspecific labelling. Consequently, non-directed probe design strategies 

still need further improvement. 

 

Regarding the specificity of the reactive warheads towards certain enzyme 

classes, AOMKs proved as most specific, targeting only cysteine proteases as 

reported in the literature (chapter 3.5 and 3.6). -Lactones proved as a potential 

new warhead class, targeting many classes of hydrolases. Consequently, in order to 
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obtain specific -lactone based probes, chemical modifications e.g. of the linker 

moiety (chapter 3.1 and 3.2) are necessary. Finally, AEBSF, aziridine and azirine-

derived probes were demonstrated to be too active for specific labelling, thereby 

generally limiting their applicability for the development of ABPs (chapter 3.3 and 

3.4).  

 

In addition, 3 types of tags were studied. Biotin proved as a good affinity tag 

not only for detection but also specially for purification of the targets in vitro. 

However, the poor solubility and membrane permeability of biotin-tagged ABPs 

severely limited their use in ABPP applications.  

Fluorescent tags proved as very versatile and easy to apply in many labelling 

studies, nevertheless application is limited due to the incapability to purify the 

labelled targets.  

Click chemistry-based chemically orthogonal tags proved as an elegant way 

to balance the advantages and disadvantages of affinity and fluorescent tags. The 

targets of interest could be labelled first either in vivo or in vitro, and only then an 

affinity or fluorescent tag is coupled. The only disadvantage of this method is the 

required click chemistry-mediated reaction, in presence of copper, which could 

cause protein aggregation. 

 

Studies of different linker system have been performed to investigate the 

influence of labelling selectivity. The results showed that small changes of linker 

composition such as the addition of one glycine moiety is able to cause a different 

labelling pattern, highlighting the often-neglected role of linkers during probe 

design (chapter 3.4). To date, there are no general rules to evaluate proper linker 

design and further attempts in this direction are required in future. 
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Profiling experiments in this thesis were performed exclusively with 1D 

protein gels, which proved as very convenient for evaluating profiling efficiency 

and to quickly display a chemical proteome map. However, the proteins of interest 

could be studied further more by 2D gel profiling. The target identification of 

probes could be carried out via gel-based or gel-free strategies. 

4.3 Biological part 

The biological part of this thesis focuses on the roles of enzymes for plant-

pathogen interactions. Several literature reports highlight the roles of hydrolytic 

enzymes during plant defence processes. To monitor the changes of the activity 

states of these enzymes in normal, susceptible or diseased plant proteomes, several 

probe types were developed as described previously. While some probes failed to 

deliver suitable labelling properties, the syn- -lactone protease probe could be used 

successfully to elucidate a transpeptidase mechanism of the Arabidopsis thaliana 

PLCP RD21 (chapter 3.2). The physiological meaning of this PTM will be studied 

further in future.  

Cloning of the Pseudomonas syringae PLCP AvrPphB and labelling 

experiments of this avirulence protein with an AOMK-based probe revealed several 

important properties of this enzyme. Especially the pH dependent activity of 

AvrPphB seems related with its physiological function in TTSS (chapter 3.5). 

Finally, the AOMK-based VPE probe has also been used to profile the 

activity of VPE in wild or mutant Arabidopsis strains (chapter 3.6). However, 

further studies on the implications of the observed different activity states are still 

required.  
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5 Zusammenfassung (German) 

Die vorliegende Doktorarbeit beschäftigt sich mit dem Studium und der 

Entwicklung geeigneter kleiner Moleküle zum ABPPs. Hierzu wurden vier Typen 

von ABPs entwickelt und sechs Substanzsammlungen generiert. Es wurden 150 

organische Verbindungen, entweder Zwischen- oder Endprodukte, charakterisiert; 

Ein Profiling von vier Proteomen, aus Pflanzen, Bakterien und Säugetieren, sowohl 

in vitro, als auch in vivo, erstellt; ungefähr 200 1D-SDS-PAGE und eine große 

Anzahl an MS-proteomischen Analysen wurden durchgeführt; einige der 

Zielproteine konnten durch die entwickelten Sonden identifiziert werden; 

zusätzlich konnte die dazugehörige genetische Arbeit der Klonierung und der in 

planta Proteinexpression abgeschlossen werden. 

 

Die Zusammenfassung der gesamten Doktorarbeit ist in drei Abschnitte 

unterteilt, um eine detailliertere Diskussion zu ermöglichen. Diese sind ein 

chemischer, ein chemisch-biologischer und ein biologischen Teil. 

5.1 Chemischer Teil 

Es wurde eine Vielzahl an Sonden und Inhibitoren mit verschiedenen 

reaktiven Gruppen synthetisiert, d.h. es wurden mit anti- -Lactonen 3 Sonden und 

2 Inhibitoren (Kapitel 3.1), mit syn- -Lactonen 9 Sonden und 8 Inhibitoren 

(Kapitel 3.2), mit Azirinen 2 Sonden (Kapitel 3.3), mit Aziridin 13 Sonden und 1 

Inhibitor (Kapitel 3.3), mit AEBSF 6 Sonden und 1 Inhibitor (Kapitel 3.4), mit 

AOMK 18 Sonden (Kapitel 3.5 und 3.6) hergestellt. Von diesen Verbindungen sind 

3 Fluoreszenssonden mit Rhodamin, 16 Affinitätssonden mit Biotin und 27 weitere 

chemisch orthogonale Sonden mit Azid oder Acetylen versehen worden. 
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Eine auf das Masamune-Auxiliar-basierende synthetische Strategie wurde 

genutzt, um die anti- -Lacton-Verbindungen in hoher Enantioselektivität und 

Ausbeute zu generieren (Kapitel 3.1). Mit dieser Methodologie konnten Sonden mit 

verschiedenen chemischen Motiven generiert werden. Dennoch hat sich diese 

Vorgehensweise in späteren synthetischen Versuchen (Kapitel 3.7) für variierte 

Aldol Reaktionen als inkompatibel erwiesen, beispielsweise bei der 1,3 oder 1,5-

verschobenen Aldolreaktion. Dies liegt wahrscheinlich an der niedrigeren 

Reaktivität und Stabilität der auf Estern basierenden Masamune-

Aldolreaktionspartner, im Vergleich zu den auf Amiden basierenden Evans-

Aldolreaktionspartnern. 

Um eine Sammlung aus syn- -Lacton-Sonden in kurzer Zeit zu generieren, 

erwies sich die Zyklisierung der Serine und Threonine, gefolgt von 

Peptidkupplungen als überzeugende Methode (Kapitel 3.2). 

Die asymmetrische Aza-Darzens-Synthese hat sich als vielseitige Methode 

erwiesen, um Aziridine und Azirine zu synthetisieren. Dieser Mechanismus führte 

zu Sulfinylimin-Intermediaten in guter Enantioselektivität, ist kompatibel mit 

vielen chemischen Resten und erlaubt die Verwendung des chiralen, kommerziell 

verfügbaren Menthyl-p-tolylsulfinat-Auxiliars. Daher erlaubte diese Methodologie 

die Erstellung einer kompletten Sondensammlung (Kapitel 3.3) mit Ausbeuten von 

30 bis 90%. 

Auch die auf AEBSF-basierenden-Sonden besitzen ein Sulfonylfluoridrest 

und sind synthetisch schnell verfügbar. Allerdings waren die Ausbeuten moderat, 

da sowohl unter den Bedingungen bei Peptidkupplungen, als auch bei der 

Aufreinigung eine Hydrolyse stattfand (Kapitel 3.4). 

Die AOMK-Derivate konnten schnell und einfach durch SPPS hergestellt 

werden. Dies ermöglichte die Synthese verschiedener peptidischer Sonden, die auf 

AOMK-Motiv basierten (Kapitel 3.5 und 3.6). 
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Abschließend wurde die Synthese von GNB ausgiebig studiert. Bishier sind 

vier verschiedene synthetische Strategien zur Synthese dieses Naturstoffes evaluiert 

worden; zwei dieser Strategien wurden in dieser Arbeit behandelt (Kapitel 3.7). 

Innerhalb der Doktorarbeit wurden zu diesem Zweck fast 40 Intermediate 

hergestellt. Jede neuerliche Evaluierung der synthetische Strategie erzielte 

Verbesserungen im Vergleich zu vorhergehenden Versuchen; dies führte zu einer 

effizienten Synthese in Bezug auf die Schutzgruppen und die Anzahl der 

Intermediate. Die neueste Retrosynthese basiert auf einer allylisch-anionischen, 

nukleophilen Substitutionsstrategie, auf diese Weise konnte die auf der 

Aldolreaktion basierende Retrosynthese erheblich verkürzt werden. Dies hat die 

Anzahl der benötigten Reaktionsschritte signifikant reduziert. Die 

prolinkatalysierte, asymmetrische Eintopfsynthese des 5-Hydroxy-(2E)-hexenal ist 

ein kurzer und effizienter Weg, um den benötigten Baustein zu synthetisieren. 

Obwohl die Totalsynthese noch nicht abgeschlossen werden konnte, sind alle 

Bausteine voll charakterisiert und können nun miteinander verknüpft werden. Da 

die verwendete Strategie äußerst vielversprechend erscheint, sollte ein Abschluss 

der Synthese bald erreicht werden können. 

5.2 Chemisch biologischer Teil 

Innerhalb dieser Doktorarbeit wurden vier Ansätze zur Generierung von 

ABP studiert. Diese sind das Design von direkten-, nicht-direkten-, naturstoff-

basierten- und Mechanismus-basierten Sonden. 

Die Naturstoffstrategie wurde genutzt, um zwei THL-basierte ABPs zu 

erhalten. Allerdings waren die Zielproteine dieser ABPs andere, als die der 

erwarteten Lipasezielstrukturen. Ein Grund für diese unterschiedlichen Zielproteine 

könnte die Modifikation des peptidischen Restes der THL-Seitenkette sein. Dies ist 

ein Anzeichen, dass selbst geringste chemische Veränderungen die Zielproteine 
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von Naturstoffen ändern können. Bei zukünftigen Planungen von Sonden sollten 

daher die synthetisierten Verbindungen dem Naturstoff so ähnlich wie möglich sein, 

auch wenn dies die Synthese erschwert. 

Mittels Mechanismus-basiertem Sondendesign konnten 9 syn- -Lactone und 

18 AOMK-basierte Sonden erhalten werden. Interessanterweise erwiesen sich die 9 

syn- -Lactone nicht als "klassische" ABPs, stattdessen erlaubten sie die 

Entdeckung der Transpeptidaseaktivität der bekannten Cysteinprotease RD21 

(Kapitel 3.2). Es konnte gezeigt werden, dass die 18-AOMK basierten Sonden für 

AvrPphB und VPE als ABPs fungieren und ihre Zielenzyme sehr spezifisch 

markieren (Kapitel 3.5 und 3.6). Die gegensätzlichen Ergebnisse der zwei 

Sondentypen geben Hinweise, dass "klassische" auf mechanismus basierende 

Sonden nur erhalten werden können, wenn die reaktive Gruppe irreversibel am 

Zielenzym bindet, während eine "vorübergehende", kovalente Bindung zu 

unerwarteten Resultaten führen kann. 

Dem direkten Sondendesign folgend wurden 6 AEBSF-basierte Sonden 

generiert. Diese Sonden erwiesen sich überrachender Weise nicht als ABPs 

(Kapitel 3.4). Dies könnte an dem zusätzlichen Linker und Reportertag liegen, der 

die Eigenschaften des Serinproteaseinhibitors AEBSF verändert. Dies deutet an, 

dass eine direkte Transformation eines Inhibitors in ein ABP nicht trivial ist. 

Außerdem wäre es möglich, dass entgegen bisherigen Erkenntnissen, AEBSF kein 

selektiver Inhibitor aktiver Zentren ist. 

Das nicht-direkte Sondendesign wurde genutzt, um 13 auf Aziridine und 2 

auf Azirine basierende Sonden zu synthetisieren. Allerdings hat sich die 

Evaluierung dieser Verbindungen als schwierig erwiesen und es scheint als könnten 

diese nicht als Sonden genutzt werden (Kapitel 3.3). Bis heute ist lediglich eine 

begrenzte Anzahl an nicht-direkten Sonden verfügbar, wahrscheinlich aufgrund der 

Schwierigkeiten beim Design der Sonden. Die Ergebnisse dieser Dissertation 
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weisen darauf hin, dass die chemische Reaktivität der synthetisierten Sonden 

absolut essentiell ist. Die Sonden haben ein enges Reaktivitätsfenster, sie müssen 

so reaktiv sein, dass sie am aktiven Zentrum binden, dürfen allerdings nicht so 

reaktiv sein, dass es zu unspezifischen Markierungen kommen kann. Nicht-direktes 

Sondendesign erfordert daher weitere Verbesserungen. 

 

In Bezug auf die Spezifität der reaktiven Gruppen zu bestimmten 

Enzymklassen haben sich AOMKs als am geeignetsten erwiesen. Wie in der 

Literatur angegeben, sind diese spezifisch gegenüber Cysteinproteasen (Kapitel 3.5 

und 3.6). -Lactone haben sich als neue Klasse für reaktive Gruppen erwiesen, da 

sie mit vielen Klassen der Hydrolasen interagieren. Um jedoch spezifische Sonden 

auf Basis von -Lactonen zu erhalten, sind chemische Modifikationen notwendig, 

Z.B. des Linkers (Kapitel 3.1 und 3.2). Abschließend hat es sich gezeigt, dass 

Sonden abgeleitet von AEBSF, Aziridinen und Azirinen zu reaktiv sind, um als 

spezifische Markierungen eingesetzt werden zu können; dies limitiert die 

Entwicklung und die Applikation dieser Verbindungen für ABPs generell (Kapitel 

3.3 und 3.4). 

 

Zusätzlich wurden drei Typen von Tags untersucht. Biotin hat sich als 

geeignetes Tag sowohl zur Detektion, als auch speziell zur Affinitätsaufreinigung 

der Zielproteine in vitro erwiesen. Die Nutzung von Biotin für ABPP-

Anwendungen ist jedoch aufgrund der schlechten Löslichkeit und 

Membranpermeabilität begrenzt. 

Fluoreszierende Sonden haben sich als vielseitig einsetzbar erwiesen und 

konnten in vielen Markierungsstudien verwendet werden. Dennoch ist die 

Anwendung eingeschränkt, da markierte Proteome nicht aufgereinigt werden 

können. 
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Auf Click-Chemie basierende, orthogonale Tags haben sich als vielseitige 

Alternative erwiesen. Sie besitzen eine gute Balance zwischen den Vor- und 

Nachteilen der Tags, die auf Affinität oder Fluoreszens basieren. Interessante 

Zielstrukturen konnten zunächst entweder in vivo oder in vitro markiert werden und 

dann in Abhängigkeit der jeweiligen Umstände mit einem Affinitäts- oder 

Fluoreszens Tag versehen werden. Der einzige Nachteil dieser Methode ist, dass 

die Click-Chemie-Reaktion Kupfer benötigt, welches Proteinaggregation 

verursachen kann. 

 

Des weiteren wurden Untersuchungen angestellt, um die Bedeutung 

verschiedener linker in Bezug auf die Selektivität der Markierungen aufzuklären. 

Die Ergebnisse haben gezeigt, dass kleine Änderungen im Aufbau des Linkers wie 

beispielsweise das Hinzufügen eines zusätzlichen Glycins, unterschiedliche 

Markierungsmuster zur Folge haben können. Dies zeigt, wie wichtig bei der 

Planung von Sonden die oft vernachlässigte Rolle des Linkers ist (Kapitel 3.4). Bis 

heute gibt es keine generellen Erkenntnisse zur Evaluierung des Designs von 

Linkern und künftig sind weitere Anstrengungen in diese Richtung notwendig. 

 

Alle Profiling-Experimente in dieser Doktorarbeit wurden ausschließlich mit 

1D-Proteingelen durchgeführt. Diese eignen sich sehr gut, um die Effiziens des 

Profiling zu evaluieren und zur schnellen kartographierung von Proteomen. Ein 

2D-Gelprofil könnte für ein gründlicheres Studium interessanter Proteine unter 

Umständen notwendig sein. Eine Identifikation der Zielstrukturen der Sonden 

könnte durch auf Gele basierende oder gelfreie Strategien durchgeführt werden. 
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5.3 Biologischer Teil 

Der biologische Teil dieser Doktorarbeit fokussiert sich auf die Rolle von 

Enzymen bei der Pflanzen-Pathogen Interaktion. Verschiedene Literaturquellen 

stellen die Rolle von hydrolytischen Enzymen bei Abwehrprozessen der Pflanzen 

heraus; um die Veränderungen der Aktivität dieser Enzyme in normalen, 

empfänglichen oder erkrankten Pflanzenproteomen zu überwachen, sind die zuvor 

erwähnten, unterschiedlichen Sondentypen entwickelt worden. Während einige 

Sonden nicht die notwendigen Eigenschaften zur Markierung aufwiesen, war es 

jedoch möglich die syn- -Lacton-Sonde erfolgreich zu nutzen, um den 

Mechanismus der Transpeptidase von Arabidopsis thaliana PLCP RD21 (Kapitel 

3.2) zu studieren. Die physiologische Bedeutung dieser PTM wird in 

darauffolgenden Studien weiter untersucht werden. 

Die Klonierung der Pseudomonas syringae PLCP AvrPphB, sowie 

Markierungsexperimente dieses avirulenten Proteins mit AOMK-basierten Sonden 

haben einige wichtige Eigenschaften dieses Proteins offenbart. Insbesondere die 

pH-abhängige Aktivität von AvrPphB, welche anscheinend mit ihrer 

physiologischen Funktion im TTSS zusammenhängt (Kapitel 3.5) ist zu erwähnen. 

Außerdem konnte die AOMK basierte Sonde dazu genutzt werden, die 

Aktivität von VPE in wildtyp oder mutierten Arabidopsis-Stämmen zu untersuchen 

(Kapitel 3.6). Dennoch sind weitere Untersuchungen in Bezug auf die 

Implikationen der beobachteten verschiedenen Aktivitätsstadien notwendig. 
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6 Experimental section 

6.1 Chemical part 

6.1.1 Instruments and Reagents 

NMR Spectroscopy 

 

The NMR spectra were measured with the following machines 

 

Varian Mercury VX-400: 400 MHz 1H-NMR and 100.5 MHz 13C-NMR 

Bruker DRX 500:   500 MHz 1H-NMR and 125.7 MHz 13C-NMR 

 

Chemical shifts are expressed in parts per million (ppm) from internal deuterated 

solvent standard (CDCl3): H = 7.27 ppm, C = 77.16 ppm; CD3OD: H = 4.85 ppm, 

C = 49.00 ppm; DMSO: H = 2.48 ppm, C = 39.43 ppm; CD3CN: H =1.94 ppm, 

C = 1.24 ppm; CD3COCD3: H =2.04 ppm, C = 29.8 ppm). Coupling constants (J) 

are given in Hertz (Hz) and the following notations indicate the multiplicity of the 

signals: s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet), br 

(broad signal). 

 

Optical rotation 

 

Optical rotations were measured in a Schmidt&Haensch Polartronic HH8 

polarimeter at 589 nm. Concentrations of different substrates are given in g/100mL 

solvent. 
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High resolution mass spectrometry 

 

HRMS was measured by a HPLC Agilent 1100 Series with one mass spectrometer 

of LTQ Orbitrap and nano-electrospray for ionisation. A C18-Dionex column was 

applied. 

 

Reversed phase liquid chromatography – electrospray ionisation mass 

spectrometry (LC-MS) 

LC-MS measurements were carried out on a Agilent 1200 Series HPLC with a 

150/4.6 Eclipse XDB-C18 5 μM and a 125/4 Nucleodur C4 Gravity 5 μM. The 

ESI-mass spectrometer was a LCQ Advantage MAX from Thermo. 

The standard gradient is the following: 

Solvent A: 0.1 % HCOOH in H2O; solvent B: 0.1 % HCOOH in ACN; Flow rate: 1 

ml/min, 1 min 10 % B, linearly increasing to 100 % B in 9 min, and 2 min with 

100% B. 

 

Melting point determination 

 

Melting points were measured with a Buechi melting point B-540 apparatus with 

open capillary (uncorrected values were reported). 

 

Fourier transform infrared spectroscopy (FT-IR) 

 

IR spectra were measured in Bruker vector 22 with a diffuse reflectance head A527 

from Spectra Tech (KBr as a matrix) and a Bruker tensor 27 spectrometer with 

transmission and attenuated total reflection (ATR) and coupled with infrared 
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microscope from Spectra Tech (neat). The following notations indicate the intensity 

of the absorption bands: s = strong, m = middle, w = weak, b = broad. 

 

Thin layer chromatography (TLC) 

 

TLCs were carried out on Silica gel 60 F254 from Merck with ultraviolet light 

irradiation at 254/360 nm or the following staining agents:  

Staining solution A: Molybdatophosphoric acid (20g) in ethanol (100 ml); 

Staining solution B: KMnO4 (5 g), NaOH solution (100 mg) in H2O (100 ml); 

Staining solution C: Ninhydrin (100 mg) in ethanol (50 ml) and acetic acid (1 ml). 

 

Preparative reverse phase high performance liquid chromatography (prep 

HPLC) 

 

Purification of compounds was performed on an LC-8A from Shimatsu with VP 

125/21 Nucleodur C18 Gravity 5 μm column from Macherey-Nagel. 

The standard gradient is the following: 

Solvent A: 0.1 % TFA in H2O; solvent B: 0.1 % TFA in ACN; Flow rate: 20 

ml/min. 

 

Solvents and Reagents 

 

The reagents and solvents were purchased from Acros Chimica, Aldrich, Fluka, 

Merck, Novabiochem, Riedel de Haen, Roth and were used without further 

purification.  

 

Deionized water was obtained using a Millipore Q-plus System. 
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Anhydrous solvents and reagents such as DCM, THF, diethyl ether, toluene, ACN, 

methanol, DMF, DMSO and DIPEA were purchased from Aldrich, Fluka or Acros 

Chimica. 

 

Triethylamine was distilled from CaH2 under argon and stored with KOH.  

 

NBS was recrystallized from water. 

 

Phosphate buffer pH 7.0: NaH2PO4 H2O (2.9 g) and Na2HPO4 2H2O (5.15 g) were 

dissolved in water (50 ml). 
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6.1.2 Synthetic procedures 

(1S, 2R)-2-(N-Mesitylenesulfonyl)amino-1-phenyl-1-propanol (1) 

 

N
H

OHPh

S
O

O

Chemical Formula: C18H23NO3S
Molecular Weight: 333.4451

 

 

To a stirred solution of (1S,2R)-norephedrine (3.78 g, 25 mmol) and TEA (4.2 ml, 

30 mmol) in anhydrous DCM (100 ml) was added mesitylenesulfonyl chloride 

(5.47g, 25 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 50 min and 

at room temperature for another 1.5 h. The mixture was washed with water (50 ml), 

1N HCl (40 ml), water (30 ml), saturated NaHCO3 solution (40 ml) in sequence. 

The organic layer was separated and concentrated in vacuo to afford the product 1 

(yield: 8.29 g, 24.9 mmol, 99%) as a yellow oil, which was used in the next step 

without further purification (Recrystallization from DCM/hexane if crystal 

required).  

 

TLC (MeOH/DCM = 1:9): Rf = 0.82; LC-MS (ESI): tR = 8.95 min, calcd. for 

C18H23NO3S [M]+, 333.45, found 333.78. 

 

(1S, 2R)-2-(N-benzyl-N-Mesitylenesulfonyl)amino-1-phenyl-1-propanol (2) 

 

N

OHPh

S
O

O Chemical Formula: C25H29NO3S
Molecular Weight: 423.5677
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A mixture of 1 (8.29 g, 24.9 mmol), benzyl bromide (3.5 ml, 30 mmol) and Cs2CO3 

(8.25 g, 37.5 mmol) in acetonitrile (100 ml) was refluxed for 0.5 h. The cooled 

mixture is filtered and the salt is washed with diethyl ether (30 ml) four times. 

Combined organic layers were concentrated and purified by flash chromatography 

(ethyl acetate/cyclohexane = 1:5) to afford the product 2 (yield: 10.05 g, 23.8 mmol, 

95 %) as a white powder and the side product N,O-dibenzyl compound (0.53 g).  

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.63; 1H NMR (CDCl3)  = 7.34-6.93 

(m, 12H), 5.0 (s br, 1H), 4.77 (ABq, J = 16 Hz), 4.54 (ABq, J = 16 Hz), 3.83 (dd, J 

= 7.2 Hz), 2.65 (s, 6H), 2.29 (s, 3H), 2.12 (br s, 1H), 1.03 (d, J = 7.2 Hz, 3H); 13C 

NMR (CDCl3)  = 142.8, 142.3, 140.4, 138.8, 132.3, 128.8, 128.3, 127.9, 127.6, 

127.5, 125.7, 59.9, 49.3, 48.0, 23.2, 21.1, 10.1; LC-MS (ESI): tR = 8.95 min, calcd. 

for C25H29NO3S [M]+, 423.57, found 423.86.  

 

Dicyclohexylborane (3) 

 

BH
Chemical Formula: C12H23B
Molecular Weight: 178.1220

 

 

Cyclohexene (3.34 ml, 33 mmol) and anhydrous diethyl ether (10 ml) were charged 

in a 50 ml round flask and kept at 0 °C under argon. Borane-dimethyl sulphide 

complex (2.94 ml, 16 mmol) was added dropwise. 5 minutes after addition of the 

borane, a precipitate was formed. The reaction mixture was stirred for 3 h at 0 °C, 

and the diethyl ether was removed as much as possible by a syringe. The remained 

solid was dried under reduced pressure to give the product 3 (yield: 2.8 g, 15.8 

mmol, 99%) as a white powder, which is used without further purification for the 

preparation of the triflate. 
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Dicyclohexylboron trifluoromethanesulfonate (4) 

 

B
O

S F

O

O
F

F

Chemical Formula: C13H22BF3O3S
Molecular Weight: 326.1832

 

 

To a suspension of 3 (2.8 g, 15.8 mmol) in anhydrous hexane (10 ml) was added 

dropwise via a glass drop funnel trifluoromethanesulfonic acid (1.42 ml, 16 mmol) 

under stirring, a gentle gas evolution occurred. The solid starting material gradually 

dissolved and after 5 min the solution turned clear and colourless. Stirring was 

continued at room temperature for 1.5 h. The reaction was completed when there 

was no gas evaporation any more. A slight amount of crystalline powder formed on 

the bottom of the flask, which was the acid precipitated from the hexane. After 

filtration, the filtrate was collected. (If crystals were needed, then the solution was 

placed in a -20°C freezer for 24 h. Larger crystals formed and the mother liquor 

was transferred via cannula to another flask. The crystals were dried under reduced 

pressure.) Hexane was removed at reduced pressure to obtain the product (yield 4.6 

g, 14.1 mmol, 89%) as colourless crystals. The isolated crystals could be preserved 

as an 1M hexane solution at 4 °C. 

 

Methyl 6-aminocaproate hydrochloride (5) 

 

H3N
OMe

O

Cl Chemical Formula: C7H16ClNO2
+

Molecular Weight: 181.6599  
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To a white suspension of 6-aminocaproic acid (2.62 g, 20 mmol) in ice-cooled 

anhydrous methanol (35 mL) was added dropwise thionyl chloride (2.04 mL, 28 

mmol). The reaction mixture was allowed to warm to room temperature and was 

subsequently stirred overnight. Removal of the volatiles under reduced pressure 

gave methyl 6-aminocaproate hydrochloride 5 (yield: 3.63 g, 20 mmol, 100%) as a 

colourless crystalline solid and was used in the next step without further 

purification. 

 
1H NMR (D2O)  = 3.59 (s, 3H), 2.89 (t, J = 7.6 Hz, 2H), 2.32 (t, J = 7.6 Hz, 2H), 

1.55 (m, 4H), 1.31 (m, 2H). 

 

Methyl (6-di-Boc-amino)caproate (6) 

 

(Boc)2N COOMe
Chemical Formula: C17H31NO6

Molecular Weight: 345.4311  

 

A solution of 5 (2.9 g, 20 mmol) in a mixture of dioxane (40 ml), water (20 ml) and 

Na2CO3 (2.12 g, 20 mmol) was stirred and cooled in an ice bath. Di-tert-butyl 

pyrocarbonate (4.8 g, 22 mmol) was added and stirred at room temperature for 

another 30 min. The solution was concentrated in vacuo to about 10 to 15 ml, 

cooled in an ice bath, covered with a layer of DCM (60 ml) and acidified with a 

dilute solution of KHSO4. The organic layer was separated, washed with NaHCO3 

aqueous solution (20 ml) and brine (20 ml), dried over Na2SO4 and concentrated in 

vacuo to obtain the product (6-mono-bocamino)caproate (yield 4.9 g, 20 mmol, 

100%) as a colourless oil.  

 
1H NMR (CDCl3)  = 4.5 (br s, 1H), 3.66 (s, 3H), 3.11 (q, J = 6.4 Hz, 2H), 2.31 (t, 

J = 7.2 Hz, 2H), 1.68-1.32 (m, 6H), 1.44 (s, 9H). 
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To a solution of above obtained methyl 6-(monobocamino)caproate (4.9 g, 20 

mmol) and DMAP (220 mg, 1.8  mmol) in THF (120 ml) was added a solution of 

Di-tert-butyl pyrocarbonate (6.54 g, 30 mmol) in THF (50 ml) and the mixture was 

refluxed for 16 h. Additional Di-tert-butyl pyrocarbonate (4.36 g, 20 mmol) was 

added and the heating was continued for 5 h. The deep orange colour reaction 

mixture was cooled down, concentrated, purified by column chromatography (ethyl 

acetate/cyclohexane = 3:97) to get the pure product 6 (yield: 6.2 g, 18 mmol, 90%) 

as a light yellow oil.  

 

TLC (ethyl acetate/cyclohexane = 3:97): Rf = 0.18; 1H NMR (CDCl3)  = 3.64 (s, 

3H), 3.53 (t, J = 7.5 Hz, 2H), 2.29 (t, J = 7.5 Hz, 2H), 1.66-1.53 (m, 4H), 1.48 (s, 

18H), 1.35-1.28 (m, 2H); 13C NMR (CDCl3)  = 173.8, 152.6, 81.9, 51.3, 46.1, 33.9, 

28.5, 27.9, 26.2, 24.5.  

 

(6-Di-Boc-amino)caproic acid (7) 

 

(Boc)2N CO2H
Chemical Formula: C16H29NO6

Molecular Weight: 331.4046  

 

6 (1.38 g, 4 mmol) in acetonitrile (20 ml) was cooled to 0°C. n-Bu4NOH  30 H2O 

(4.8 g, 6 mmol) was added under stirring (ACN/H2O = 2.5:1 to 6:1). The reaction 

was complete in 15 to 30 min. The organic layer was washed with 1N HCl and 

water, concentrated in vacuo to obtain the product 7 (yield 1.32 g, 4 mmol, 100 %) 

as a colourless oil.  
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1H NMR (CDCl3)  = 3.54 (t, J = 7.5 Hz, 2H), 2.35 (t, J = 7.5 Hz, 2H), 1.68-1.56 

(m, 4H), 1.49 (s, 18H), 1.45-1.35 (m, 2H); 13C NMR (CDCl3)  = 178.4, 152.6, 

82.0, 46.1, 33.8, 28.5, 27.9, 26.1, 24.5. 

 

(1S, 2R)-2-(N-benzyl-N-mesitylenesulfonyl)amino-1-phenyl-1-propanyl (6-di-

Boc-amino)caproate (8) 

 

(Boc)2N
O

O

N
S

O

O Chemical Formula: C41H56N2O8S
Molecular Weight: 736.9569

 

 

To a solution of 7 (662 mg, 2 mmol), DCC (412 mg, 2 mmol) and DMAP (0.01 g, 

0.1 mmol) in DCM (10 ml), 2 (0.846 g, 2 mmol) was added. The reaction was 

stirred overnight, concentrated in vacuo, purified by column chromatography (ethyl 

acetate/cyclohexane = 1:9) to get the pure product 8 (yield: 1.4 g, 1.9 mmol, 95%) 

as a colourless oil.  
 

TLC (ethyl acetate/cyclohexane = 1:9): Rf = 0.2; 1H NMR (CDCl3)  = 7.33-7.29 

(m, 3H), 7.23-7.18 (m, 5H), 6.93-6.87 (m, 4H), 5.82/5.00 (d/d, 1H, J = 4 Hz), 

4.77/4.71 (d/d, J = 16.5 Hz, 1H), 4.59/4.54 (d/d, J = 16.5 Hz, 1H), 4.04/3.81 (q/q, J 

= 2.5 Hz, 1H), 3.55/3.50/3.19 (t/t/t, J = 7.5 Hz, 2H), 2.65/2.61/2.50 (s/s/s, 6H), 

2.29/2.27 (s/s, 3H), 2.18-2.02 (m, 2H), 1.81-1.68 (m, 2H), 1.51/1.49 (s/s, 18H), 

1.33-1.18 (m, 4H), 1.11/1.02/0.96 (d/d/d, J = 7 Hz, 3H); 13C NMR (CDCl3)  = 

171.9, 152.8, 142.6, 140.4, 138.8, 138.7, 133.5, 132.3, 128.5, 128.3, 127.9, 127.9, 

127.5, 127.4, 127.2, 126.1, 125.7, 82.2, 78.1, 56.8, 48.3, 46.3, 35.1, 34.3, 28.8, 28.2, 
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26.4, 24.5, 23.1, 21.0, 13.0; LC-MS (ESI): tR = 11.95 min, calcd. for 

C41H56N2O8SNa [M+Na]+, 759.95, found 759.26. 

 

(6-Hydroxylhexyl)carbamic acid benzyl ester (9) 

 

OH

CbzHN
Chemical Formula: C14H21NO3

Molecular Weight: 251.3214  

 

6-Amino-1-hexanol (585 mg, 5 mmol) was dissolved in dioxane (7 ml) and sodium 

bicarbonate saturated aqueous solution (10 ml) at room temperature. To this 

solution, carbobenzoxy chloride (1 g, 6 mmol) in dioxane (3 ml) was added. The 

reaction was complete in 3 h and extracted with DCM and washed with brine, dried 

over sodium sulfate, purified by column chromatography (ethyl 

acetate/cyclohexane = 2:1) to get the pure product 9 (yield: 1.09 g, 4.3 mmol, 87%) 

as a colourless oil.  

 

TLC (ethyl acetate/cyclohexane = 2:1): Rf = 0.44; 1H NMR (CDCl3)  = 7.35-7.31 

(m, 5H), 5.09 (s, 2H), 4.74 (br s, 1H), 3.63 (t, J = 6.4 Hz, 3H), 3.19 (m, 2H), 1.58-

1.49 (m, 4H), 1.40-1.34 (m, 4H); 13C NMR (CDCl3)  =156.5, 136.79, 128.66, 

128.24, 66.76, 62.88, 41.05, 32.71, 30.11, 26.52, 25.44; HPLC: tR = 12.18 min. 

 

(6-Formylhexyl)carbamic acid benzyl ester (10) 

 

O

CbzHN
Chemical Formula: C14H19NO3

Molecular Weight: 249.3056  

 

To a solution of 9 (0.502 g, 2 mmol) in THF (7.5 ml) was added a solution of IBX 

[0.09 g/ml (DMSO), 7.5 ml, 2.4 mmol] at 0 °C. The clear reaction solution was 
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then stirred at room temperature overnight. The reaction mixture was filtrated 

before extraction. The product was extracted with DEE, washed with brine, dried 

and purified by a short column chromatography (ethyl acetate) to get the pure 

product 10 (yield: 0.47 g, 1.9 mmol, 95%) as a colourless oil.  

 

TLC (ethyl acetate): Rf = 0.87; 1H NMR (CDCl3)  = 9.76 (s, 1H), 7.37-7.32 (m, 

5H), 5.10 (s, 2H), 4.77 (br s, 1H), 3.20 (m, 2H), 2.44 (t, J = 7.24 Hz, 3H), 1.66 (m, 

2H), 1.53 (m, 2H), 1.35 (m, 2H); 13C NMR (CDCl3)  = 202.49, 156.5, 136.75, 

128.66, 128.25, 66.77, 43.85, 40.93, 29.93, 26.34, 21.77; HPLC: tR = 14.04 min. 

 

(1S, 2R)-2-(N-benzyl-N-mesitylenesulfonyl)amino-1-phenyl-1-propanyl  

enanthate (11)  

 

O

O

N
S

O

O
Chemical Formula: C32H41NO4S

Molecular Weight: 535.7372
 

 

To a solution of enanthic acid (311 μl, 2.2 mmol), DCC (453 mg, 2.2 mmol) and 

DMAP (12 mg, 0.1 mmol) in DCM (10 ml), 2 (846 mg, 2 mmol) was added. The 

reaction mixutre was stirred overnight, concentrated in vacuo, purified by column 

chromatography (ethyl acetate/cyclohexane = 1:9) to get the pure product 11 (yield: 

0.92 g, 1.7 mmol, 86%) as a colourless oil. 
  

TLC (ethyl acetate/cyclohexane = 1:9): Rf = 0.33; 1H NMR (CDCl3)  = 7.34-7.33 (d, 

J = 7 Hz, 2H), 7.19-7.18 (m, 6H), 6.89-6.88 (m, 4H), 5.82 (d, J = 4 Hz, 1H), 4.74 
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(ABq, J = 16.5 Hz, 1H), 4.54 (ABq, J = 16.5 Hz, 1H), 4.04 (dd, J = 2.5, 4 Hz, 1H), 

2.51 (s, 6H), 2.28 (s, 3H), 2.17-2.09 (m, 2H), 1.5-1.48 (m, 2H), 1.23-1.22 (m, 6H), 

1.12 (d, J = 7 Hz, 3H), 0.86 (t, J = 7 Hz, 3H); 13C NMR (CDCl3)  = 171.9, 142.4, 

140.1, 138.6, 138.4, 133.3, 132.0, 128.3, 128.2, 127.7, 127.3, 127.0, 125.9, 77.8, 

56.6, 48.1, 34.1, 31.3, 28.6, 24.5, 22.9, 22.3, 20.8, 13.9, 12.8; LC-MS (ESI): tR = 

11.75 min, calcd. for C32H41NO4SNa [M+Na]+, 558.72, found 558.26. 

 

(1S, 2R)-2-(N-benzyl-N-mesitylenesulfonyl)amino-1-phenyl-1-propanyl (4-

phenyl)butyrate (12) 

 

O

O

N
S

O

O
Chemical Formula: C35H39NO4S

Molecular Weight: 569.7535
 

 

Following the same protocol as above for 11 led to the pure product 12 (yield: 0.95 

g, 1.66 mmol, 83%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:9): Rf = 0.32; 1H NMR (CDCl3)  = 7.34-7.27 

(d, 4H), 7.24-7.18 (m, 7H), 7.11-7.10 (d, J = 2.2 Hz, 2H), 6.92-6.88 (m, 4H), 5.83 

(d, J = 4 Hz, 1H), 4.74 (d, J = 16.5 Hz, 1H), 4.54 (d, J = 16.5 Hz, 1H), 4.04 (m, 1H), 

2.54 (t, J = 7.5 Hz, 2H), 2.51 (s, 6H), 2.28 (s, 3H), 2.17-2.09 (m, 2H), 1.82 (m, 2H), 

1.11 (d, J = 7 Hz, 3H), 0.86 (t, J = 7 Hz, 3H); 13C NMR (CDCl3)  = 171.8, 142.6, 

141.4, 140.4, 138.8, 138.7, 133.5, 132.3, 128.6, 128.5, 128.4, 127.5, 127.2, 126.2, 

126.1, 78.1, 56.8, 48.3, 35.1, 33.5, 27.1, 26.2, 23.2, 21.0, 13.0; LC-MS (ESI): tR = 

11.43 min, calcd. for C35H39NO4SNa [M+Na]+, 592.74, found 592.23. 
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Anti- -(S)-Hydroxyl- -(S)-pentyl-(8-Cbz-amino)caprylic Masamune auxiliary 

ester (13) 

 

N

O

S
O

OO

OH
CbzHN

Chemical Formula: C46H60N2O7S
Molecular Weight: 785.0428

 

 

To a solution of 11 (474 mg, 884 μmol) in anhydrous DCM (15 ml) at -78 °C was 

added TEA (525 μl, 3.8 mmol) and 4 (1 M in hexane, 1.77 ml). After 2 h at -78 °C, 

10 (264 mg, 1.06 mmol) in anhydrous DCM (3 ml) was added dropwise. The 

reaction was stirred at -78 °C for 1 h and at 0 °C for another 1 h before quenched 

by adding pH 7 buffer (10 ml), MeOH (10 ml) and 30% H2O2 (10m ml). The 

heterogeneous mixture was stirred vigorously for 12 h and extracted with DCM 

thoroughly. The combined organic layers were dried over Na2SO4, concentrated in 

vacuo, purified by column chromatography (ethyl acetate/cyclohexane = 1:2) to get 

the pure product 13 (yield: 0.614 g, 0.78 mmol, 88%) as a colourless oil.  
 

[ ]20
D = -20.8 (c = 4.38, CDCl3); TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.5; 

1H NMR (CDCl3)  = 7.33-7.11, 6.84 (m, 17H, Ar), 5.82 (d, J = 5.64 Hz, 1H), 5.09 

(s, 2H), 4.74 (ABq, J = 16.2 Hz, 1H), 4.70 (m, 1H), 4.49 (ABq, J = 16.2 Hz, 1H), 

4.16 (m, 1H), 3.62 (m, 1H), 3.16 (m, 2H), 2.42 (s/s, 6H/1H), 2.27 (s, 3H), 1.90 (m, 

2H), 1.73 (m, 2H), 1.49-1.02 (m, 25H), 1.13 (d, J = 2.16 Hz, 3H), 0.78 (t, J = 6.8 

Hz, 3H); 13C NMR (CDCl3)  = 174.7, 156.5, 149.5, 142.6, 140.5, 138.5, 138.0, 

136.8, 136.7, 133.3, 128.6, 128.5, 128.2, 128.0, 127.8, 127.4, 127.1, 126.8, 78.2, 

72.1, 70.4, 66.7, 56.5, 51.5, 48.2, 41.0, 35.7, 35.2, 31.8, 30.1, 29.7, 26.9, 26.7, 25.6, 
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25.3, 24.3, 23.0, 22.5, 21.0, 14.6, 14.0; LC-MS (ESI): tR = 11.63 min, calcd. for 

C46H60N2O7SNa [M+Na]+, 807.04, found 807.21. 

 

Anti- -(S)-hydroxyl- -(S)-(2-phenylethyl)-(8-Cbzamino)caprylic masamune 

auxiliary ester (14) 

 

N

O

S
O

OO

OH
CbzHN

Chemical Formula: C49H58N2O7S
Molecular Weight: 819.0590

 

 

Following the same protocol as above for 13 led to the pure product 14 (yield: 

0.475 g, 0.58 mmol, 70%) as a colourless oil. 

 

[ ]20
D = -27.6 (c = 4.5, CDCl3); TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.31; 

1H NMR (CDCl3)  = 7.35-7.11, 6.84 (m, 22H), 5.82 (d, J = 5.64 Hz, 1H), 5.09 (s, 

2H), 4.74 (ABq, J = 16.2 Hz, 1H), 4.70 (m, 1H), 4.49 (ABq, J = 16.2 Hz, 1H), 4.16 

(m, 1H), 3.62 (m, 1H), 3.16 (m, 2H), 2.45 (m, 1H), 2.42 (s, 6H), 2.27 (s, 3H), 2.05 

(s, 1H), 1.87 (m, 2H), 1.32-1.02 (m, 10H), 1.13 (d, J = 2.16 Hz, 3H); 13C NMR 

(CDCl3)  = 174.2, 156.6, 142.8, 142.7, 141.5, 141.3, 140.6, 138.4, 138.0, 136.9, 

133.3, 132.3, 128.7, 128.68, 128.66, 128.62, 128.59, 128.56, 128.51, 128.46, 

128.42, 128.31, 128.21, 127.99, 127.5, 127.1, 127.0, 126.9, 126.3, 78.4, 77.4, 72.1, 

66.8, 56.5, 51.2, 50.9, 41.1, 35.2, 33.4, 31.4, 27.2, 26.7, 26.6, 23.1, 21.1, 15.1, 14.8; 

LC-MS (ESI): tR = 17.51 min, calcd. for C49H58N2O7SNa [M+Na]+, 842.04, found 

841.34. 
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Anti- -(S)-hydroxyl- -(S)-pentyl-(8-Cbzamino)caprylic acid (15) 

 

OH

O

OH
CbzHN

Chemical Formula: C21H33NO5
Molecular Weight: 379.4904

 

 

To a solution of 13 (395 mg, 0.5 mmol) in a THF/water mixture (2:1, 5 ml) was 

added LiOH  H2O (420 mg, 10 mmol). The reaction mixture was stirred at room 

temperature for 3 days and poured into water (10 ml) and extracted with ether to 

recover the auxiliary. The aqueous layer was acidified (pH 3) with 1N HCl and 

extracted with ether. The organic layer was carefully washed with brine, dried, and 

the solvent was removed at reduced pressure. The product 15 was nearly pure 

without additional purification (yield: 0.141 g, 0.37 mmol, 74.6%) as a colourless 

oil.  

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.11; 1H NMR (CDCl3)  = 7.36-7.31 

(m, 5H), 5.09 (s, 2H), 4.78 (s br, 1H), 3.70 (m, 1H), 3.17 (m, 2H), 2.46 (m, 1H), 

1.73-1.30 (m, 16H), 0.89 (t, J = 6.44 Hz, 3H); 13C NMR (CDCl3)  = 182.96, 

156.87, 134.76, 131.41, 128.76, 128.75, 128.36, 72.00, 52.77, 51.00, 45.8, 43.44, 

38.41, 32.51, 31.9, 29.7, 27.2, 26.4, 22.66, 22.65, 14.21. 
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Anti- -(S)-hydroxyl- -(S)-(2-phenylethyl)-(8-Cbzamino)caprylic acid (16) 

 

OH

O

OH
CbzHN

Chemical Formula: C24H31NO5
Molecular Weight: 413.5066

 

 

Following the same protocol as above for 15 led to the pure product 16 (yield: 25 

mg, 0.06 mmol, 71%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.08; 1H NMR (CDCl3)  = 7.36-7.13 

(m, 10H), 5.09 (s, 2H), 4.82 (s br, 1H), 3.79/3.67 (m, 1H), 3.10 (m, 2H), 2.74-2.43 

(m, 3H), 2.03-1.99 (m, 1H), 1.86-1.79 (m, 1H), 1.42-1.23 (m, 9H); 13C NMR 

(CDCl3)  = 174.61, 156.89, 148.64, 141.72, 141.53, 136.78, 128.76, 128.72, 

128.66, 128.64, 128.35, 126.3, 126.27, 72.23, 72.09, 66.94, 51.04, 50.4, 41.01, 34.1, 

34.0, 33.76, 31.5, 30.57, 30.02, 26.55, 26.48, 25.54. 

 

(3S, 4S)-3-pentyl-4 -[(5-cbzamino)pentyl]-2-oxetanone (17) 

 

O

O NHCbz
Chemical Formula: C21H31NO4

Molecular Weight: 361.4751  

 

To a cooled and stirred solution of 15  (54.2 mg, 143 μmol) in anhydrous pyridine 

(5.15 mL), 2-nitrobenzenesulfonyl chloride (63.2 mg, 286 μmol) in pyridine (1.2 

ml) was added dropwise via a syringe at 0 °C. The light yellow solution was stirred 

for two days at 0 °C and diluted with ether (100 ml). Water (30 ml) was added, and 

the aqueous layer was extracted with ether (3 x 10 mL). The combined organic 

layers were washed once with water (20 ml) and dried over anhydrous Na2SO4, 



Zhe Ming Wang Experimental section Doctoral Dissertation 2009 

 - 143 - Chemical Genomics Centre (CGC) 

concentrated in vacuo, purified by column chromatography (ethyl acetate/cyclo- 

hexane = 1:2) to get the pure product 17 (yield: 35.3 mg, 0.1 mmol, 70%) as a 

colourless oil.  

 

[ ]20
D = -18.0 (c = 3.5, CD3CN); TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.51; 

1H NMR (CD3CN)  = 7.33-7.31 (m, 5H), 5.56 (s br, 1H), 5.09 (s, 2H), 4.25 (m, 

1H), 3.24 (m, 1H), 3.09 (m, 2H), 1.74-1.70 (m, 4H), 1.47-1.31 (m, 12H), 0.92 (t, J 

= 6.84 Hz, 3H); 13C NMR (CD3CN)  = 172.90, 157.37, 138.62, 129.44, 129.11, 

128.82, 128.67, 126.51, 79.00, 66.65, 56.75, 41.4, 34.8, 32.17, 30.4, 28.44, 27.3, 

27.03, 25.41, 23.11, 14.27; LC-MS (ESI): tR = 12.31 min, calcd. for C21H31NO4Na 

[M+Na]+, 384.46, found 384.13. 

 

(3S, 4S)-3-(2-phenylethyl)-4-[(5-Cbz-amino)pentyl]-2-oxetanone (18)  

 

O

O NHCbz
Chemical Formula: C24H29NO4

Molecular Weight: 395.4914  

 

Following the same protocol as above for 17 led to the product 18 (yield: 24.6 mg, 

0.06 mmol, 71%) as a colourless oil, however 40% of product was racemized.    

 

[ ]20
D = -8.94 (c = 2.5, CD3CN); TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.36; 

1H NMR (CD3CN)  = 7.33-7.21 (m, 10H), 5.58 (s br, 1H), 5.09 (s, 2H), 

4.50(syn)/4.26(anti) (m/m, 1H), 3.66(syn)/3.24(anti) (m, 1H), 3.09 (m, 2H), 

2.8~2.65 (m/m, syn/anti, 2H), 2.05 (m, 2H), 1.72-1.64 (m, 2H), 1.46-1.31 (m, 6H); 
13C NMR (CD3CN)  = 173.38, 172.60, 154.45, 143.14, 142.05, 129.45, 129.44, 

129.41, 128.78, 128.63, 127.13, 127.09, 79.17(anti), 76.77(syn), 66.61, 56.19(anti), 



Zhe Ming Wang Experimental section Doctoral Dissertation 2009 

 - 144 - Chemical Genomics Centre (CGC) 

52.66(syn), 41.35, 34.6, 34.1, 33.63, 30.55, 30.33, 30.27, 26.97, 26.93, 26.5, 25.94, 

25.37; LC-MS (ESI): tR = 14.03 min, calcd. for C24H29NO4Na [M+Na]+, 418.48, 

found 418.05. 

 

(3S, 4S)-3-pentyl-4 -[(5-amino)pentyl]-2-oxetanone (19) 

 

O

O NH2
Chemical Formula: C13H25NO2

Molecular Weight: 227.3431  

 

17 (80 μmol, 28.9 mg) was weighted in a 10 ml flask with two necks equipped with 

gas catheters. Ethanol (2 ml), chloroform (25 μl) und Pd (10%) on active carbon (2 

mg, 2% mol) were added. The reaction mixture was heated by an oil bath to 40 °C 

and a hydrogen gas stream was applied. After 4 h, the suspesion was filtrated and 

the filtrate was concentrated in vacuo to obtain the pure product 19 (yield: 18 mg, 

80 μmol, 100%) as a colourless oil.  As free amino group could cause the 

degradation of the product, the product 19 was immediately transformed in a next 

step without further analyses.  

 

TLC (ethyl acetate/cyclohexane = 2:1): Rf = ~ 0. 

 

(3S, 4S)-3-(2-Phenylethyl)-4-[(5-amino)pentyl]-2-oxetanone (20) 

 

O

O NH2
Chemical Formula: C16H23NO2

Molecular Weight: 261.3593  

 



Zhe Ming Wang Experimental section Doctoral Dissertation 2009 

 - 145 - Chemical Genomics Centre (CGC) 

Following the same protocol as above for 19 led to the racemized product 20 (yield: 

15.6 mg, 60 μmol, 100%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 2:1): Rf = ~ 0. 

 

Methyl 6-(Biotinyl)-aminocaproate (21) 

 

OMe

H
N

O

O
S

N
H

NH
H

H

O
Chemical Formula: C17H29N3O4S

Molecular Weight: 371.4949
 

 

To a solution of 5 (284 mg, 1.56 mmol), biotin (366 mg, 1.5 mmol) and TEA (1.1 

mL) in acetonitrile (4 mL) was added HBTU (591 mg, 1.56 mmol) and HOBt (210 

mg, 1.56 mmol). After 30 min stirring at room temperature, a precipitate had 

formed. Water was added and the product was extracted with DCM. The organic 

phase was dried over anhydrous Na2SO4, evaporated to dryness and the crude 

product was purified by silica gel chromatography (MeOH/DCM = 1:9) to obtain 

21 (yield: 434 mg, 1.17 mmol, 78%) as a white powder.  

 

TLC (MeOH/DCM = 1:9): Rf = 0.63; 1H NMR (CDCl3):  = 6.46 (s, 1H), 6.15 (br 

s, 1H), 5.56 (br s, 1H), 4.52 (m, 1H), 4.31 (m, 1H), 3.66 (s, 3H), 3.32 (q, J = 6.8 Hz, 

2H), 3.15 (m, 1H), 2.91 (dd, J = 4.9, 8 Hz, 1H), 2.73 (d, J = 12.7 Hz, 1H), 2.32 (t, J 

= 7.6 Hz, 2H), 2.21 (t, J = 7.6 Hz, 2H), 1.6–1.3 (m, 13H); 13C NMR (CDCl3):  = 

174.4, 173.4, 164.2, 62.0, 60.4, 55.9, 51.8, 40.8, 39.4, 36.3, 34.1, 29.5, 28.4, 28.3, 

26.6, 25.9, 24.7; LC-MS (ESI): tR = 11.74 min, calcd. for C17H30N3O4S [M+H]+, 

372.19, found 372.18. 
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6-(Biotinyl)-aminocaproic acid (22) 

 

OH

H
N

O

O
S

N
H

NH
H

H

O Chemical Formula: C16H27N3O4S
Molecular Weight: 357.4683

 

 

21 (434 mg, 1.17 mmol) was dissolved in acetonitrile (7.5 mL) and cooled to 0 °C. 

(n-Bu4N)OH  30 H2O (1.80 g, 2.25 mmol) was added under vigorous stirring. 

After 40 min, the reaction mixture was acidified by addition of 1 M HCl. The 

desired product 22 precipitated as a white solid. It was filtered off, washed with 

water and dried to obtain 22 (yield: 350 mg, 0.98 mmol, 84 %) as a white solid. 

 
1H NMR (DMSO-d6):  = 11.96 (br s, 1H), 7.71 (s, 1H), 6.40 (s, 1H), 6.34 (s, 1H), 

4.28 (m, 1H), 4.11 (m, 1H), 3.08 (m, 1H), 2.97 (q, J = 6.8 Hz, 2H), 2.82 (dd, J = 4.9, 

8 Hz, 1H), 2.73 (d, J = 12.7 Hz, 1H), 2.12 (t, J = 7.6 Hz, 2H), 2.01 (t, J = 7.6 Hz, 

2H), 1.6 – 1.3 (m, 13H); 13C NMR (DMSO-d6):  = 174.4, 171.7, 162.7, 61.0, 59.2, 

55.4, 38.2, 35.2, 33.6, 28.9, 28.2, 28.0, 26.0, 25.3, 24.2. 

 

(3S, 4S)-3-Pentyl-4 -[(5-(6-biotinylamino)caproylamino)pentyl]-2-oxetanone 

(23) 

 

O

HN

OS

NH

HN

O

H

H

O

O
H
N

Chemical Formula: C29H50N4O5S
Molecular Weight: 566.7961
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To a solution of 22 (13.4 mg, 37.6 μmol) and TEA (14.3 μl, 103 μmol) in DMSO 

(500 μl), PyBOP (19.8 mg, 38 μmol) and HOBt hydrate (5.1 mg, 38 μmol) were 

added at room temperature. After 15 min, 19 (7.76 mg, 34.2 μmol) in DMSO (200 

μl) was added. The reaction was completed overnight.  Because of the poor 

solubility in many organic solvents, the product was precipitated with ethyl 

acetate/diethyl ether 10 ml (1:1), washed with sodium bicarbonate solution, ethyl 

ether and dried over Na2SO4 (yield: 13.6 mg, 24 μmol, 70%) as a white solid.  

 
1H NMR (DMSO-d6)  = 6.40 (s, 1H), 6.34 (m, 1H), 4.33 (m, 2H), 4.12 (m, 1H), 

3.09 (m, 1H), 3.01 (m, 4H), 2.83 (dd, J = 12.5 Hz, 4.95 Hz, 1H), 2.57 (d, J = 12.5 

Hz, 1H), 2.2~2.0 (m, 4H), 1.74 ~1.27 (m, 28H), 0.86 (t, J = 6.6 Hz, 3H); 13C NMR 

(DMSO-d6)  =172.44, 166.94, 161.26, 157.12, 83.09, 78.29, 61.74, 59.89, 56.12, 

50.93, 49.36, 41.14, 38.9, 35.9, 31.55, 29.67, 28.9, 28.72, 27.67, 26.63, 26.0, 24.86, 

22.54, 17.56; LC-MS (ESI): tR = 7.99 min, calcd. for C29H51N4O5S [M+H]+, 567.80, 

found 567.41. 

 

(3S, 4S)-3-(2-Phenylethyl)-4-[(5-(6-biotinylamino)caproylamino)pentyl]-2-

oxetanone (24) 

 

O

HN

OS

NH

HN

O

H

H

O

O
H
N

Chemical Formula: C32H48N4O5S
Molecular Weight: 600.8123
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Following the same protocol as above for 23 led to the racemized product 24 (yield: 

16.2 mg, 27 μmol, 65%) as a colourless oil. 

 
1H NMR (DMSO-d6)  = 7.32-7.27 (m, 5H), 6.40 (s, 1H), 6.33 (s, 1H), 4.34 (m, 

1H), 4.27 (m, 1H), 4.11 (m, 1H), 3.09 (m, 1H), 3.01 (m, 4H), 2.83 (dd, J = 12.5 Hz, 

4.95 Hz, 1H), 2.57 (d, J = 12.5 Hz, 1H), 2.04 (m, 6H), 1.74-1.19 (m, 25H); 13C 

NMR (DMSO-d6)  =172.44, 172.24, 168.83, 168.41, 163.39, 163.37, 162.98, 

141.44, 131.27, 129.08, 129.06, 128.87, 128.4, 127.93, 126.77, 76.96, 59.89, 56.11, 

55.3, 49.43, 47.46, 46.53, 39.0, 35.9, 34.05, 33.03, 29.68, 28.9, 28.72, 26.83, 25.78; 

LC-MS (ESI): tR = 7.93 min, calcd. for C32H48N4O5S [M+H]+, 601.81, found 

601.30. 

 

(3S, 4S)-3-Pentyl-4 -[(5-acetylamino)pentyl]-2-oxetanone (25) 

 

O

O
H
N

O

Chemical Formula: C15H27NO3
Molecular Weight: 269.3798

 

 

Acetic anhydride (14.28 mg, 140 μmol) and DIPEA (14.6 μl, 84 μmol) were 

dissolved in anhydrous DCM (280 μl) at room temperature. To this solution, 19 

(6.29 mg, 27.7 μmol) in anhydrous DCM (100 μl) was added. The reaction was 

stirred overnight and the mixture was purified directly by a short column 

chromatography (ethyl acetate/cyclohexane = 5:1) to get the pure product 25 (yield: 

4 mg, 15 μmol, 54%) as a colourless oil.  

 

TLC (ethyl acetate/cyclohexane = 2:1): Rf = 0.1; 1H NMR (CD3CN)  = 6.3 (s br, 

1H), 4.26 (m, 1H), 3.26 (m, 1H), 3.09 (m, 2H), 1.82 (s, 3H), 1.74-1.70 (m, 4H), 
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1.47-1.31 (m, 12H), 0.92 (t, J = 6.84 Hz, 3H); 13C NMR (CD3CN)  = 180.09, 

153.68, 79.00, 56.71, 39.68, 34.8, 32.14, 30.1, 28.4, 27.3, 27.2, 25.4, 23.1, 23.04, 

14.22. 

 

(3S, 4S)-3-(2-phenylethyl)-4-[(5-acetylamino)pentyl]-2-oxetanone (26) 

 

O

O
H
N

O

Chemical Formula: C18H25NO3
Molecular Weight: 303.3960

 

 

Following the same protocol as above for 25 led to the racemized product 26 (yield: 

3.7 mg, 12 μmol, 59%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 2:1): Rf = 0.08; 1H NMR (CD3CN)  = 

7.38~7.23 (m, 5H), 6.3 (s br, 1H), 4.55(syn)/4.29(anti) (m/m, 1H), 3.69(syn) 

/3.27(anti) (m, 1H), 3.09 (m, 2H), 2.8~2.65 (m/m, syn/anti, 2H), 2.05 (m, 2H), 1.84 

(s, 3H), 1.72~1.66 (m, 2H), 1.46~1.31 (m, 6H); 13C NMR (CD3CN)  = 183.3, 

147.67, 142.11, 136.64, 129.5, 129.4, 127.18, 85.97, 83.62, 70.61, 65.02, 66.61, 

51.73, 39.73, 34.66, 33.67, 30.07, 27.21, 27.18, 26.56, 25.46, 23.08. 

 

(3S, 4S)-3-Pentyl-4 -[(5-pentynylamino)pentyl]-2-oxetanone (27) 

 

O

O
H
N

O

Chemical Formula: C18H29NO3
Molecular Weight: 307.4278
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To a solution of 4-pentynoic acid (4.6 μmol, 0.5 mg) in anhydrous DCM (100 μl) 

were added HOBt (4.6 μmol, 0.6 mg) and DIC (6 μmol, 1 μl). After a short time, 

19 (0.9 mg, 4 μmol) in anhydrous DCM (100 μl) was added to this reaction mixture. 

The resulting reaction was stirred for 3 h and directly purified by HPLC to get the 

pure product 27 (yield: 0.5 mg, 1.6 μmol, 40%) as a yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 2:1): Rf = 0.15; 1H NMR (CDCl3)  = 5.61 (m, 

1H), 4.20 (m 1H), 3.28 (t, J = 6.44 Hz, 2H), 3.16 (m, 1H), 2.53 (t, J = 6.84 Hz, 2H), 

2.38 (t, J = 6.84 Hz, 2H), 2.01 (t, J = 2.52 Hz, 1H), 1.72-1.25 (m, 16H), 0.89 (t, J = 

6.8 Hz, 3H); LC-MS (ESI): tR = 7.25 min, calcd. for C18H30NO3 [M+H]+, 308.43, 

found 308.52. 

 

(3S,4R)-3-[(tert-Butyloxycarbonyl)amino]-4-methyloxetan-2-one (28) 

 

O

OBocHN

Chemical Formula: C9H15NO4
Molecular Weight: 201.2197  

 

To a mixture of Boc-L-Thr-OH (205 mg, 1 mmol), and PyBOP (0.624 g, 1.2 mmol) 

in anhydrous DCM (20 mL), TEA (0.42 mL, 3 mmol) was added dropwise at 0 °C. 

The reaction mixture was stirred at 0 °C for 30 min and then warmed to room 

temperature. After stirring for 6 h, it was concentrated in vacuo and purified by 

column chromatography (ethyl acetate/cyclohexane = 1:6) to get the pure product 

28 (yield: 0.159 g, 0.79 mmol, 85%) as a white solid.  

 

M.p. = 141-142 °C; [ ]20
D = +20.4 (c = 1.16, CHCl3); TLC (ethyl 

acetate/cyclohexane = 1:1): Rf = 0.53; 1H NMR (CDCl3):  = 5.43-5.40 (m, 1H), 

5.25 (br s, 1H), 4.84 (p, J = 6.2 Hz, 1H), 1.46 (s, 9 H), 1.41 (d, 6.3 Hz, 3 H); 13C 
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NMR (CDCl3):  = 169.2, 154.4, 81.3, 74.8, 60.1, 28.1, 15.0; HRMS (ESI) calcd. 

for C9H16NO4 [M+H]+, 202.1071, found 202.1079. 

 

(3S,4R)-3-amino-4-methyloxetan-2-one p-toluenesulfonate salt (29) 

 

O

H3N OTos Chemical Formula: C11H15NO4S
Molecular Weight: 257.3061  

 

To a mixture of para-toluenesulfonic acid (0.334 g, 1.94 mmol) and TFA (5 mL), 

28 (0.368 g, 1.83 mmol) was added dropwise at 0 °C and the resulting mixture was 

stirred for 15 min. TFA was removed in vacuo and the remaining residue was co-

evaporated twice with toluene. Dry ether was added to the residue, the white solid 

29 was filtered, washed twice with dry ether and used in the subsequent reaction 

without further purification (yield: 0.457 g, 1.78 mmol, 97%). 

 

General method for syntheses of 30 – 34 

 

Method A 

To a solution of N-Boc protected amino acid (0.5 mmol) in anhydrous DCM (4 mL) 

was added at -5 °C TEA (51 mg, 0.5 mmol) and ethyl chloroformate (54 mg, 0.5 

mmol). After stirring for 20 min, 29 (0.128 g, 0.5 mmol) and pyridine (79 mg, 1 

mmol) were added. After further 30 min stirring at -5 °C, the reaction mixture was 

warmed to room temperature and stirred overnight. The solvent was removed and 

the residue was dissolved in ethyl acetate, washed with water, dried over anhydrous 

Na2SO4 and concentrated to dryness. The residue was purified by silica gel column 

chromatography with ethyl acetate/cyclohexane. 

Method B 
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To a solution of the N-Boc protected amino acid (1.05 mmol), PyBOP (1.1 mmol), 

HOBt (1.1 mmol) and DIEA (0.42 mL) in DMF/DCM (1:1, 5 mL), 29 (0.256 g, 1 

mmol) was added at 0 °C. The reaction mixture was slowly warmed to room 

temperature and stirred for 4 h. Solvents were removed in vacuo, the residue was 

dissolved in ethyl acetate, washed with water, dried over anhydrous Na2SO4 and 

concentrated to dryness. The remaining residue was purified by silica gel column 

chromatography with ethyl acetate/cyclohexane.  

 

(3S,4R)-3-[(N-Boc prolinyl)amidyl]-4-methyloxetan-2-one (30) 

 

H
N

O O

O
N
Boc Chemical Formula: C14H22N2O5

Molecular Weight: 298.3349
 

 

Method A was followed, yield: 0.128g, 0.43 mmol, 86%; white solid.  

 

M.p. = 136-137 °C; [ ]20
D = -71.4 (c = 1.55, CHCl3); TLC (ethyl 

acetate/cyclohexane = 1:1): Rf = 0.28; 1H NMR (CDCl3):  = 8.15 (br s, 1H), 5.58 

(br s, 1H), 4.82 (p, J = 6.2 Hz, 1H), 4.32-4.21 (m, 1H), 3.53-3.25 (m, 2H), 2.35-

1.85 (m, 4H), 1.42 (s, 9H), 1.36 (d, J = 6.2 Hz, 3H); 13C NMR (CDCl3):  = 171.8, 

169.0, 156.1, 80.7, 74.3, 59.2, 58.6, 47.0, 28.2, 27.3, 24.6, 14.9; HRMS calcd. for 

C14H23N2O5 [M+H]+, 299.1607, found 299.1588. 
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(3S,4R)-3-[(N-Boc glutaminyl)amidyl]-4-methyloxetan-2-one (31) 

 

BocHN

H
N

O O

O

O NH2

Chemical Formula: C14H23N3O6
Molecular Weight: 329.3489

 

 

Method A was followed, yield: 0.11 g, 0.33 mmol, 67%; white solid. 

 

M.p. = 144-145 °C; [ ]20
D = +8.6 (c = 1.09, CH3OH), TLC (ethyl acetate): Rf = 

0.15; 1H NMR (CD3OD):  = 5.51 (d, J = 5.8 Hz, 1H), 4.86 (p, J = 6.2 Hz, 1H), 

4.07 (dd, J = 8.5, 5.4 Hz, 1H), 2.32 (t, J = 7.4 Hz, 2H), 2.07-1.99 (m, 1H), 1.92-

1.85 (m, 1H), 1.43 (s, 9H), 1.40 (d, J = 6.4 Hz, 3H); 13C NMR (CD3OD):  = 178.5, 

175.9, 171.4, 158.6, 81.6, 76.9, 60.8, 56.4, 33.4, 29.7, 29.5, 16.1; HRMS calcd. for 

C14H24N3O6 [M+H]+, 330.1665, found 330.1649. 

 

(3S,4R)-3-[(N-Boc tryptophanyl)amidyl]-4-methyloxetan-2-one (32) 

 

BocHN

H
N

O O

O

HN

Chemical Formula: C20H25N3O5
Molecular Weight: 387.4296

 

 

Method B was followed, yield: 0.325 g, 0.84 mmol, 84%; white solid.  

 

M.p. = 135-136 °C; [ ]20
D = +10.4 (c = 1.03, CH3OH), TLC (ethyl 

acetate/cyclohexane = 1:1): Rf = 0.26; 1H NMR (CD3OD)  = 7.63 (d, J = 6.2 Hz, 
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1H), 7.36 (d, J = 6.4 Hz, 1H), 7.13-7.03 (m, 3H), 5.47 (d, J = 4.6 Hz, 1H), 4.80 (p, J 

= 5.0 Hz, 1H), 4.44 (t, J = 5.5 Hz, 1H), 3.26 (dd, J = 11.5, 4.7 Hz, 1H), 3.13 (dd, J 

= 11.5, 6.1 Hz, 1H), 1.40 (s, 9H), 1.30 (d, J = 5.0 Hz, 3H); 13C NMR (CD3OD):  = 

175.9, 171.2, 158.3, 138.8, 129.6, 125.4, 123.3, 120.7, 120.2, 113.1, 111.4, 81.5, 

76.8, 60.8, 57.5, 29.9, 29.5, 15.9; HRMS calcd. for C20H25N3O5 [M]+, 387.1794, 

found 387.1786. 

(3S,4R)-3-[(N-Boc phenylalaninyl)amidyl]-4-methyloxetan-2-one (33) 

 

BocHN

H
N

O O

O

Chemical Formula: C18H24N2O5
Molecular Weight: 348.3936  

 

Method B was followed, yield: 0.24 g, 0.69 mmol, 69%; white solid.  

 

M.p. = 141-143 °C; [ ]20
D = +10.3 (c = 1.01, CHCl3), TLC (ethyl 

acetate/cyclohexane = 1:1): Rf = 0.36; 1H NMR (CD3OD):  = 7.32-7.18 (m, 5H), 

7.14 (d, J = 7.7 Hz, 1H), 5.52 (dd, J = 8.0, 6.1 Hz, 1H), 5.07 (d, J = 7.8 Hz, 1H), 

4.84 (p, J = 6.2 Hz, 1H), 4.37 (q, J = 7.2 Hz, 1H), 3.11 (dd, J = 13.9, 6.5 Hz, 1H), 

3.01 (dd, J = 13.9, 7.6 Hz, 1H), 1.40 (s, 9H), 1.32 (d, J = 6.3 Hz, 3H); 13C NMR 

(CDCl3):  = 171.7, 168.4, 155.7, 136.1, 129.2, 128.8, 127.2, 81.4, 74.4, 58.8, 55.6, 

37.4, 28.2, 14.9; HRMS calcd. for C18H25N2O5 [M+H]+, 349.1763, found 349.1732. 

 



Zhe Ming Wang Experimental section Doctoral Dissertation 2009 

 - 155 - Chemical Genomics Centre (CGC) 

(3S,4R)-3-[(N-Boc leucinyl)amidyl]-4-methyloxetan-2-one (34) 

 

BocHN

H
N

O O

O
Chemical Formula: C15H26N2O5

Molecular Weight: 314.3773
 

 

Method B was followed, yield: 0.267 g, 0.85 mmol, 85%; white solid. 

 

M.p. = 139-140 °C; [ ]20
D = -10.6 (c = 1.28, CHCl3); TLC (ethyl 

acetate/cyclohexane = 1:3): Rf = 0.18; 1H NMR (CDCl3):  = 8.39 (d, J = 8.2 Hz, 

1H), 5.90 (d, J = 8.2 Hz, 1H), 5.58 (dd, J = 8.5, 5.9 Hz, 1H), 4.90 (p, J = 6.0 Hz, 

1H), 4.26-4.20 (m, 1H), 1.71-1.50 (m, 3H), 1.38 (s, 9H), 1.29 (d, J = 6.1 Hz, 3H), 

0.89 (d, J = 6.6 Hz, 3H), 0.88 (d, J = 6.6 Hz, 3H); 13C NMR (CDCl3):  = 173.7, 

169.0, 155.8, 79.8, 74.8, 58.8, 52.9, 40.1, 28.3, 24.6, 22.7, 21.9, 14.7; HRMS calcd. 

for C15H27N2O5 [M+H]+, 315.1920, found 315.1913. 

 

(3S,4R)-3-[(N-Boc serinyl)amidyl]-4-methyloxetan-2-one (35) 

 

BocHN

H
N

O O

O

HO

Chemical Formula: C12H20N2O6
Molecular Weight: 288.2970

 

 

Method B was followed, yield: 0.225 g, 0.78 mmol, 78%; colourless oil. 
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(3S,4R)-3-[(N-Boc formyltryptophanyl)amidyl]-4-methyloxetan-2-one (36) 

 

BocHN

H
N

O O

O

N
O

H

Chemical Formula: C21H25N3O6
Molecular Weight: 415.4397

 

 

Method B was followed, yield: 0.341 g, 0.82 mmol, 82%; colourless oil. 

 

(3S,4R)-3-[(N-Boc leucinyl)methylamidyl]-4-methyloxetan-2-one (37) 

 

BocHN
N

O O

O
Chemical Formula: C16H28N2O5

Molecular Weight: 328.4039
 

 

Method B was followed, yield: 0.246 g, 0.75 mmol, 75%; white solid. 

 

(3S,4R)-3-[(N-biotinyl prolinyl)amidyl]-4-methyloxetan-2-one (38) 

 

O

O
H
N

N

H
N

O

O

O
S

N
H

NH
H

H

O Chemical Formula: C25H39N5O6S
Molecular Weight: 537.6721

 

 

30 (44.7 mg, 150 μmol) was dissolved in DCM (2 mL). A mixture of 

triisopropylsilane (100 μL) and TFA (2 mL) was added and the resulting solution 

was stirred for 30 min. Evaporation to dryness, followed by co-evaporation in 
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presence of toluene delivered the deprotected intermediate which was used without 

further purification (yield: 46.8 mg, >98%).  

22 (53.6 mg, 150 μmol) was dissolved in acetonitrile (3 mL). TEA (62.3 L, 450 

mmol) and few drops of DMSO were added. PyBOP (85.8 mg, 165 μmol) and 

HOBt hydrate (25.2 mg, 165 μmol) were then added and the resulting solution was 

stirred for further 15 min, after which deprotected 30 (46.8 mg, 150 μmol) 

dissolved in acetonitrile (1 mL) was added. The resulting reaction mixture was 

heated to 50 °C for 5 min and then stirred at room temperature overnight. The 

mixture was evaporated to dryness, the residue was taken up in a small amount of 

DCM and precipitated by addition of ethylacetate/diethyl ether (1:1, 20 mL) at -20 

°C over two days. The precipitate was then purified by preparative HPLC (0 to 5 

min, 10% aq. acetonitrile (0.1% TFA), 5 to 35 min, from 10% aq. acetonitrile to 

70% aq. acetonitrile (0.1% TFA), 35 to 42 min, from 70% aq. acetonitrile to 100% 

acetonitrile (0.1% TFA)) to yield pure 38 (yield: 56.4 mg, 100 μmol, 67%) as a 

white powder. 

 
1H NMR (DMSO-d6):  = 6.42 (s, 1H), 6.36 (s, 1H), 4.30 (m, 1H), 4.13 (m, 1H), 

3.09 (m, 4H), 3.00 (m, 4H), 2.80 (dd, J = 4, 10 Hz, 1H), 2.56 (d, J = 10 Hz, 1H), 

2.18 (m, 2H), 2.04 (m, 2H), 1.89 – 1.25 (m, 21H); 13C NMR (DMSO-d6)  = 173.4, 

170.8, 169.9, 161.7, 73.6, 60.1, 58.2, 57.2, 54.4, 44.9, 37.3, 34.2, 32.6, 28.1, 27.2, 

24.9, 24.3, 23.2, 13.7; LC-MS (ESI): tR = 5.94 min, calcd. for C25H39N5O6S 

[M+H]+, 538.26, found 538.53. 
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(3S,4R)-3-[(N-biotinyl glutaminyl)amidyl]-4-methyloxetan-2-one (39) 

 

O

O
H
N

N
H

H
N

O

O

O
S

N
H

NH
H

H

O

OH2N

Chemical Formula: C25H40N6O7S
Molecular Weight: 568.6861

 

 

31 (20 mg, 60.8 μmol) was dissolved in DCM (1 mL). A mixture of 

triisopropylsilane (50 μL) and TFA (1 mL) was added and the resulting solution 

was stirred for 30 min. Evaporation to dryness, followed by co-evaporation in 

presence of toluene delivered the deprotected intermediate which was used without 

further purification (yield: 20.8 mg, >98%).  

22 (21.8 mg, 61 μmol) was dissolved in acetonitrile (1.2 mL). TEA (25.3 L, 183 

mmol) and few drops of DMSO were then added. PyBOP (34.9 mg, 67.1 μmol) 

and HOBt hydrate (10.3 mg, 67.1 μmol) were added and the resulting solution was 

stirred for further 15 min, after which deprotected 31 (20.8 mg, 60.8 μmol) 

dissolved in acetonitrile (400 μL) was added. The resulting reaction mixture was 

heated to 50 °C for 5 min and then stirred at room temperature overnight. The 

mixture was evaporated to dryness, the residue was taken up in a small amount of 

DCM and precipitated by addition of ethylacetate/diethyl ether (1:1, 20 mL) at -20 

°C over two days. The precipitate was then purified by preparative HPLC (0 to 5 

min, 10% aq. acetonitrile (0.1% TFA), 5 to 40 min, from 10% aq. acetonitrile to 

75% aq. acetonitrile (0.1% TFA), 40 to 46 min, from 75% aq. acetonitrile to 100% 

acetonitrile (0.1% TFA)) to yield pure 39 (yield: 23.8 mg, 42 μmol, 69%) as a 

white powder.  
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LC-MS (ESI): tR = 9.95 min, calcd. for C25H40N6O7S [M+H]+, 569.27, found 

569.22. 

 

(3S,4R)-3-[(N-biotinyl tryptophanyl)amidyl]-4-methyloxetan-2-one (40) 

 

O

O
H
N

N
H

H
N

O

O

O
S

N
H

NH
H

H

O

H
N

Chemical Formula: C31H42N6O6S
Molecular Weight: 626.7668

 

32 (15.5 mg, 40 μmol) was dissolved in DCM (1 mL). A mixture of 

triisopropylsilane (50 μL) and TFA (1 mL) was added and the resulting solution 

was stirred for 30 min. Evaporation to dryness, followed by co-evaporation in 

presence of toluene delivered the deprotected intermediate which was used without 

further purification (yield: 16.0 mg, >98%).  

22 (14.3 mg, 40 μmol) was dissolved in acetonitrile (1 mL). TEA (16.6 L, 120 

mmol) and few drops of DMSO were then added. PyBOP (22.8 mg, 44 μmol) and 

HOBt hydrate (6.7 mg, 44 μmol) were added and the resulting solution was stirred 

for further 15 min, after which deprotected 32 (16.0 mg, 40 μmol) dissolved in 

acetonitrile (400 μL) was added. The resulting reaction mixture was heated to 50 

°C for 5 min and then stirred at room temperature overnight. The mixture was 

evaporated to dryness, the residue was taken up in a small amount of DCM and 

precipitated by addition of ethylacetate/diethyl ether (1:1, 20 mL) at -20 °C over 

two days. The precipitate was then purified by preparative HPLC (0 to 5 min, 10% 

aq. acetonitrile (0.1% TFA), 5 to 40 min, from 10% aq. acetonitrile to 75% aq. 

acetonitrile (0.1% TFA), 40 to 46 min, from 75% aq. acetonitrile to 100% 
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acetonitrile (0.1% TFA)) to yield pure 40 (yield: 16.7 mg, 26.6 μmol, 67%) as a 

white powder. 

 
1H NMR (DMSO-d6):  = 7.97-7.73 (m, 5H), 6.40 (s, 1H), 6.34 (s, 1H), 5.52 (m, 

1H), 4.85 (t, J = 6.2 Hz, 1H), 4.63 (m, 1H), 4.29 (m, 1H), 4.12 (m, 1H), 3.09 (m, 

4H), 3.01 (m, 4H), 2.81 (dd, J = 5, 12.3 Hz, 1H), 2.57 (d, J = 12.3 Hz, 1H), 2.04 (m, 

4H), 1.49 – 1.31 (m, 16H); 13C NMR (DMSO-d6)  = 177.1, 172.5, 171.5, 162.4, 

152.7, 145.9, 136.1, 118.8, 113.5, 112.6, 111.1, 95.7, 83.3, 81.7, 77.1, 74.2, 74.1, 

63.9, 81.7, 77.1, 74.2, 63.9, 60.8, 58.9, 56.5, 55.1, 45.5, 34.9, 28.7, 27.9, 25.0, 24.5, 

14.0; LC-MS (ESI): tR = 6.93 min, calcd. for C31H42N6O6S [M+H]+, 627.29, found 

627.47.  

 

(3S,4R)-3-[(N-biotinyl phenylalaninyl)amidyl]-4-methyloxetan-2-one (41) 

 

O

O
H
N

N
H

H
N

O

O

O
S

N
H

NH
H

H

O
Chemical Formula: C29H41N5O6S

Molecular Weight: 587.7307

 

 

33 (20 mg, 57.5 μmol) was dissolved in DCM (1 mL). A mixture of 

triisopropylsilane (50 μL) and TFA (1 mL) was added and the resulting solution 

was stirred for 30 min. Evaporation to dryness, followed by co-evaporation in 

presence of toluene delivered the deprotected intermediate which was used without 

further purification (yield: 20.8 mg, >98%).  

22 (20.7 mg, 58 μmol) was dissolved in acetonitrile (1.5 mL). TEA (24 L, 174 

mmol) and few drops of DMSO were then added. PyBOP (33.2 mg, 63.8 μmol) 
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and HOBt hydrate (9.7 mg, 63.8 μmol) were added and the resulting solution was 

stirred for further 15 min, after which deprotected 33 (20.8 mg, 57.5 μmol) 

dissolved in acetonitrile (400 μL) was added. The resulting reaction mixture was 

heated to 50 °C for 5 min and then stirred at room temperature overnight. The 

mixture was evaporated to dryness, the residue was taken up in a small amount of 

DCM and precipitated by addition of ethylacetate/diethyl ether (1:1, 20 mL) at -20 

°C over two days. The precipitate was then purified by preparative HPLC (0 to 5 

min, 20% aq. acetonitrile (0.1% TFA), 5 to 40 min, from 20% aq. acetonitrile to 

80% aq. acetonitrile (0.1% TFA), 40 to 46 min, from 80% aq. acetonitrile to 100% 

acetonitrile (0.1% TFA)) to yield pure 41 (yield: 23.9 mg, 41 μmol, 71%) as a 

white powder. 

 
1H NMR (DMSO-d6):  = 7.26-7.18 (m, 5H), 6.42 (s, 1H), 6.35 (s, 1H), 5.48 (m, 

1H), 4.84 (t, J = 5 Hz, 1H), 4.53 (m, 1H), 4.29 (m, 1H), 4.12 (m, 1H), 3.08 (m, 2H), 

2.99 (m, 4H), 2.82 (m, 2H), 2.55 (d, J = 10 Hz, 1H), 2.02 (m, 4H), 1.74 – 1.45 (m, 

16H); 13C NMR (DMSO-d6):  = 172.0, 171.9, 169.0, 162.7, 137.7, 129.1, 128.0, 

126.3, 65.0, 61.0, 59.2, 58.3, 55.4, 53.7, 45.9, 38.3, 37.4, 35.2, 28.9, 28.2, 25.9, 

24.9, 14.6; LC-MS (ESI): tR = 6.88 min, calcd. for C29H41N5O6S [M+H]+, 588.28, 

found 588.40. 

 

(3S,4R)-3-[(N-biotinyl leucinyl)amidyl]-4-methyloxetan-2-one (42) 

 

O

O
H
N

N
H

H
N

O

O

O
S

N
H

NH
H

H

O Chemical Formula: C26H43N5O6S
Molecular Weight: 553.7145
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34 (12.6 mg, 40 μmol) was dissolved in DCM (1 mL). A mixture of 

triisopropylsilane (50 μL) and TFA (1 mL) was added and the resulting solution 

was stirred for 30 min. Evaporation to dryness, followed by co-evaporation in 

presence of toluene delivered the deprotected intermediate which was used without 

further purification (yield: 13.1 mg, >98%).  

22 (14.3 mg, 40 μmol) was dissolved in acetonitrile (1.5 mL). TEA (16.6 L, 120 

mmol) and few drops of DMSO were then added. PyBOP (22.8 mg, 44 μmol) and 

HOBt hydrate (6 mg, 44 μmol) were added and the resulting solution was stirred 

for further 15 min, after which deprotected 34 (13.1 mg, 40 μmol) dissolved in 

acetonitrile (400 μL) was added. The resulting reaction mixture was heated to 50 

°C for 5 min and then stirred at room temperature overnight. The mixture was 

evaporated to dryness, the residue was taken up in a small amount of DCM and 

precipitated by addition of ethylacetate/diethyl ether (1:1, 20 mL) at -20 °C over 

two days. The precipitate was then purified by preparative HPLC (0 to 5 min, 10% 

aq. acetonitrile (0.1% TFA), 5 to 35 min, from 10% aq. acetonitrile to 65% aq. 

acetonitrile (0.1% TFA), 35 to 40 min, from 65% aq. acetonitrile to 100% 

acetonitrile (0.1% TFA)) to yield pure 42 (yield: 13.7 mg, 24.8 μmol, 62%) as a 

white powder. 

 
1H NMR (DMSO-d6):  = 6.38 (s, 1H), 6.32 (s, 1H), 5.52 (m, 1H), 4.82 (t, J = 6.2 

Hz, 1H), 4.28 (m, 1H), 4.11 (m, 1H), 3.07 (m, 4H), 2.99 (m, 4H), 2.80 (dd, J = 5.1, 

12.3 Hz, 1H), 2.54 (d, J = 12.3 Hz, 1H), 2.08 (m, 4H), 1.73 – 1.14 (m, 17H), 0.86 

(d J = 6.4 Hz, 3H), 0.82 (d J = 6.4 Hz, 3H); 13C NMR (DMSO-d6)  = 177.3, 172.2, 

171.7, 169.7, 162.7, 76.1, 61.1, 59.2, 55.4, 54.9, 49.4, 45.8, 35.2, 33.4, 32.8, 28.2, 

25.9, 25.3, 24.9, 21.5, 14.5; LC-MS (ESI): tR = 5.61 min, calcd. for C26H43N5O6S 

[M+H]+, 554.29, found 554.47. 
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(3S,4R)-3-[(N-biotinyl serinyl)amidyl]-4-methyloxetan-2-one (43) 

 

O

O
H
N

N
H

H
N

O

O

O
S

N
H

NH
H

H

O

OH

Chemical Formula: C23H37N5O7S
Molecular Weight: 527.6342

 

 

35 (43.2 mg, 150 μmol) was dissolved in DCM (2 mL). A mixture of 

triisopropylsilane (100 μL) and TFA (2 mL) was added and the resulting solution 

was stirred for 30 min. Evaporation to dryness, followed by co-evaporation in 

presence of toluene delivered the deprotected intermediate which was used without 

further purification (yield: 45.3 mg, >98%).  

22 (53.6 mg, 150 μmol) was dissolved in acetonitrile (3 mL). TEA (62.3 L, 450 

mmol) and few drops of DMSO were then added. PyBOP (85.8 mg, 165 μmol) and 

HOBt hydrate (25.2 mg, 165 μmol) were added and the resulting solution was 

stirred for further 15 min, after which deprotected 35 (45.3 mg, 150 μmol) 

dissolved in acetonitrile (1000 μL) was added. The resulting reaction mixture was 

heated to 50 °C for 5 min and then stirred at room temperature overnight. The 

mixture was evaporated to dryness, the residue was taken up in a small amount of 

DCM and precipitated by addition of ethylacetate/diethyl ether (1:1, 20 mL) at -20 

°C over two days. The precipitate was then purified by preparative HPLC (0 to 5 

min, 10% aq. acetonitrile (0.1% TFA), 5 to 35 min, from 10% aq. acetonitrile to 

65% aq. acetonitrile (0.1% TFA), 35 to 45 min, from 65% aq. acetonitrile to 100% 

acetonitrile (0.1% TFA)) to yield pure 43 (yield: 43.4 mg, 82 μmol, 55%) as a 

white powder. 
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1H NMR (DMSO-d6):  = 6.42 (s, 1H), 6.35 (s, 1H), 4.28 (m, 1H), 4.12 (m, 1H), 

3.08 (m, 4H), 3.01 (m, 4H), 2.81 (dd, J = 4.9, 9.9 Hz, 1H), 2.56 (d, J = 9.9 Hz, 1H), 

2.17 (m, 2H), 2.03 (m, 2H), 1.72 – 1.16 (m, 21H); 13C NMR (DMSO-d6):  = 171.8, 

164.3, 162.7, 61.0, 59.2, 57.0, 55.4, 45.8, 38.2, 35.2, 33.6, 29.0, 28.2, 25.9, 25.3, 

18.9; LC-MS (ESI): tR = 6.03 min, calcd. for C23H37N5O7S [M+H]+, 528.24, found 

528.40. 

 

(3S,4R)-3-[(N-biotinyl formyltryptophanyl)amidyl]-4-methyloxetan-2-one (44) 

 

O

O
H
N

N
H

H
N

O

O

O
S

N
H

NH
H

H

O

N

H O

Chemical Formula: C32H42N6O7S
Molecular Weight: 654.7769

 

 

Following the same protocol as above for 40 led to the product 44 (yield: 17.7 mg, 

27 μmol, 66%) as a colourless oil. 

 

(3S,4R)-3-[(N-biotinyl leucinyl)methylamidyl]-4-methyloxetan-2-one (45) 

 

O

ON
N
H

H
N

O

O

O
S

N
H

NH
H

H

O
Chemical Formula: C27H45N5O6S

Molecular Weight: 567.7411
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Following the same protocol as above for 42 led to the product 45 (yield: 15.9 mg, 

28 μmol, 70%) as a colourless oil. 

 

(3S,4R)-3-[(N-azidoacetyl leucinyl)amidyl]-4-methyloxetan-2-one (46) 

 

O

O
H
N

HN

O

O

N3
Chemical Formula: C12H19N5O4

Molecular Weight: 297.3104
 

 

34 (24.3 mg, 77 μmol) was dissolved in DCM (2 mL). A mixture of 

triisopropylsilane (90 μL) and TFA (2 mL) was added and the resulting solution 

was stirred for 30 min. Evaporation to dryness, followed by co-evaporation in 

presence of toluene delivered the deprotected intermediate which was used without 

further purification (yield: 25.3 mg, >98%).  

Azidoacetic acid (8 mg, 80 μmol) was dissolved in DCM (1 mL). TEA (38 L, 280 

mmol) and PyBOP (41.6 mg, 80 μmol) were added and the resulting solution was 

stirred for further 15 min, after which deprotected 34 (25.3 mg, 77 μmol) dissolved 

in DCM (200 μL) was added. The resulting reaction mixture was heated to 50 °C 

for 5 min and then stirred at room temperature overnight. The mixture was 

evaporated to dryness, the residue was then direct purified by a short column (ethyl 

acetate/cyclohexane = 1:1) to yield pure 46 (yield: 15.1 mg, 50.8 μmol, 66%) as a 

light yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:1): Rf = 0.38; LC-MS (ESI): tR = 6.74 min, 

calcd. for C12H20N5O4 [M+H]+, 298.31, found 298.52. 
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5-Hexyn-1-OTs (47) 

 

TsO Chemical Formula: C13H16O3S
Molecular Weight: 252.3293  

 

Tosyl chloride (380 mg, 2 mmol) was added to pyridine (5 ml) at 0 °C. After a 

short time, 5-Hexyn-1-ol (217 μl, 2 mmol) was added. The reaction was stirred 

overnight and the product was extracted by DCM and washed with brine. The 

organic phase was dried over anhydrous Na2SO4, evaporated to dryness and the 

crude product was purified by silica gel chromatography (ethyl acetate/cyclohexane 

= 2:1) to obtain 47 (yield: 271.6 mg, 1.08 mmol, 54%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 2:1): Rf = 0.76; 1H NMR (CDCl3)  = 7.79 (d, J 

= 8 Hz), 7.35 (d, J = 8 Hz, 2H), 4.06 (t, J = 6.2 Hz, 2H), 2.45 (s, 3H), 2.17 (m, 2H), 

1.92 (s, 1H), 1.78 (m, 2H), 1.56 (m, 2H); 13C NMR (CDCl3)  144.86, 133.19, 

129.95, 127.96, 83.48, 70.02, 69.06, 27.86, 24.32, 21.71, 17.82; LC-MS (ESI): tR = 

14.85 min, calcd. for C20H25N5S2 [M+Ts+H]+, 409.53, found 409.21. 

 

4-(5-hexyn-1-oxy)-benzaldhyde (48) 

 

O
O

Chemical Formula: C13H14O2
Molecular Weight: 202.2491  

 

4-Hydroxybenzaldehyde (73.2 mg, 0.6 mmol) was added to 47 (151 mg, 0.6 mmol) 

and Cs2CO3 (292 mg, 0.9 mmol) in DMF (2 ml) under argon. The mixture was 

heated to 100 °C for 16 h, poured into water (5 ml) and extracted with diethyl ether. 

The crude product was purified by silica gel chromatography (ethyl 
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acetate/cyclohexane = 1:5) to obtain 48 (yield: 105.3 mg, 0.52 mmol, 87%) as a 

colourless oil.  

 

 TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.23; 1H NMR (CDCl3)  = 9.88 (s, 

1H), 7.82 (d, J = 8 Hz, 2H), 6.68 (d, J = 8 Hz, 2H), 4.06 (t, J = 6.2 Hz, 2H), 2.28 (m, 

2H), 1.96 (m, 3H), 1.71 (m, 2H); 13C NMR (CDCl3)  = 190.96, 164.3, 132.2, 

130.14, 114.97, 84.06, 69.04, 67.94, 28.28, 25.14, 18.34; LC-MS (ESI): tR = 8.95 

min, calcd. for C13H15O2 [M+H]+, 202.25, found 203.30. 

 

4-(5-hexyn-1-oxy)-phenyl sulfinate imine (49) 

 

O
N S O

Chemical Formula: C20H21NO2S
Molecular Weight: 339.4512

 

 

(1R, 2S, 5R)-(-)-menthyl (S)-p-toluenesulfinate (135.7 mg, 0.46 mmol) was 

dissolved in anhydrous THF (2.5 ml) at -78 °C. A solution of LiHMDS (0.6 mmol, 

1.0 M in THF) (0.6 ml) was added dropwise and the reaction mixture is allowed to 

warm to rt with stirring. After 5 h, the reaction mixture was cooled to -78 °C again 

and 48 (103.2 mg, 0.51 mmol) was added and stirred for 2 h at -78 °C. The reaction 

mixture was quenched with water (0.6 ml), diluted with ethyl ether (5 ml) and 

warmed to room temperature. The organic layer was washed with water and brine, 

dried, and the crude product was purified by silica gel chromatography (ethyl 

acetate/cyclohexane = 1:5) to obtain pure product 49 (yield: 56.8 mg, 0.17 mmol, 

37%) as a white solid. As the product is an instable imine, it was directly 

transferred into the next product and no detailed analysis was carried out.  
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TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.33; 1H NMR (CDCl3)  = 8.67 (s, 

1H), 7.78 (d, J = 8 Hz, 2H), 7.62 (d, J = 8 Hz, 2H), 7.30 (d, J = 8 Hz, 2H), 6.93 (d, J 

= 8 Hz, 2H), 4.03 (t, J = 6.2 Hz, 2H), 2.39 (s, 3H), 2.28 (m, 2H), 1.96 (m, 3H), 1.71 

(m, 2H).  

 

Aziridine (50) 

 

N

H

H3CO2C H

S O

O

Chemical Formula: C23H25NO4S
Molecular Weight: 411.5139

 

 

49 (56.8 mg, 0.17 mmol) in anhydrous THF (1 ml) was cooled to -78 °C and 

methyl -bromoacetate (30.9 μl, 0.336 mmol) was added. After 3 min, LiHMDS 

(219 μl, 1M in THF) was added dropwise. The reaction was stirred at – 78 °C for 

20 min, quenched with water (1 ml) and diluted with ethyl acetate (3 ml). The 

organic layer was separated and the aqueous phase was washed with ethyl acetate. 

The combined organic layer was washed with brine, dried and the crude product 

was purified by silica gel chromatography (ethyl acetate/cyclohexane = 5:1) to 

obtain pure product 50 (yield: 49.3 mg, 0.12 mmol, 70.6%) as a white solid.  

 

TLC (ethyl acetate/cyclohexane = 5:1): Rf = 0.14; 1H NMR (CDCl3)  = 7.71 (d, J 

= 8 Hz, 2H), 7.37 (d, J = 8 Hz, 2H), 7.32 (d, J = 8 Hz, 2H), 6.84 (d, J = 8 Hz, 2H), 

3.97 (t, J = 6.2 Hz, 2H), 3.81 (d, J = 7.32 Hz, 1H), 3.45 (d, J = 7.32 Hz, 1H), 3.41 (s, 

3H), 2.42 (s, 3H), 2.28 (m, 2H), 1.96 (m, 3H), 1.71 (m, 2H); 13C NMR (CDCl3)  = 

166.52, 159.31, 142.4, 141.15, 135.83, 135.82, 129.96, 129.24, 125.47, 124.73, 

114.39, 84.28, 68.89, 67.5, 52.27, 52.26, 47.65, 42.22, 35.09, 28.48, 25.26, 21.72, 
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18.38; LC-MS (ESI): tR = 5.45 min, calcd. for C23H26NO4S [M+H]+, 412.51, found 

412.14. 

 

Azirine (51) 

 

N

CO2CH3

H

O

TMS

Chemical Formula: C19H25NO3Si
Molecular Weight: 343.4922  

 

To a solution of 50 (41.1 mg, 0.1 mmol) in anhydrous THF (2 ml), TMSCl (77 μl, 

0.6 mmol) was added at -78 °C. 2 min later, LDA (0.3 ml, 0.3 mmol, 1.0 M in THF) 

was added dropwise. The reaction was stirred at -78 °C for 15 min, quenched with 

water (1 ml), and diluted with ethyl acetate (5 ml). The organic phase was 

separated and aqueous phase was washed with ethyl acetate. The combined organic 

layer was washed with brine, dried and the crude product was purified by silica gel 

chromatography (ethyl acetate/cyclohexane = 1:5) to obtain pure product 51 (yield: 

16.5 mg, 48 μmol, 48%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.46; 1H NMR (CDCl3)  = 7.74 (d, J 

= 8.7 Hz, 2H), 7.03 (d, J = 8.7 Hz, 2H), 4.07 (t, J = 6.3 Hz, 2H), 3.67 (S, 3H), 2.32 

(t, J = 7 Hz, 3H), 1.94 (m, 2H), 1.72 (m, 2H), 0.14 (s, 9H); 13C NMR (CDCl3)  = 

174.52, 163.41, 132.47, 115.47, 106.79; 85.28, 67.93, 52.11, 31.27, 28.26, 25.18, 

19.68, 0.28; LC-MS (ESI): tR = 7.62 min, calcd. for C19H26NO3Si [M+H]+, 344.49, 

found 344.76. 
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5-hexynyl alpha-bromoacetate (52) 

 

Br
O

O
Chemical Formula: C8H11BrO2
Molecular Weight: 219.0757  

 

In a 25 ml flask, Bromoacetic acid (304 mg, 2.2 mmol), DCC (453 mg, 2.2 mmol) 

and DMAP (12.2 mg, 0.1 mmol) were dissolved in DCM (10 ml). To this mixture, 

5-Hexyn-1-ol (217 μl, 2 mmol) was added. The reaction was completed overnight. 

The organic layer was washed with brine, dried and the crude product was purified 

by silica gel chromatography (ethyl acetate/cyclohexane = 1:2) to obtain pure 

product 52 (yield: 246 mg, 1.12 mmol, 56%) as a yellow oil.  

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.6; 1H NMR (CDCl3)  = 4.21 (t, J = 

8.05 2H), 3.82 (s, 2H), 2.25 (m, 2H), 1.96 (t, J = 3.4 Hz, 1H), 1.81 (m, 2H), 1.64 (m, 

2H); 13C NMR (CDCl3)  = 167.41, 83.8, 69.01, 65.9, 27.59, 25.94, 24.87, 18.17. 

 

trans-2-tridencenyl sulfinate imine (53) 

 

C10H21 N
S OH

Chemical Formula: C20H31NOS
Molecular Weight: 333.5312  

 

Following the same protocol as above for 49 led to the pure product 53 (yield: 130 

mg, 0.39 mmol, 85%) as a white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.61; 1H NMR (CDCl3)  = 8.33 (d, J 

= 9.5 Hz, 1H), 7.56 (d, J = 8.25 Hz, 2H), 7.29 (d, J = 8.25 Hz, 2H), 6.55 (m, 1H), 
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6.38 (m, 1H), 2.39 (s, 3H), 2.25 (m, 2H), 1.45 (m, 2H), 1.26 (m, 16H), 0.87 (t, J = 

6.7 Hz, 3H); 13C NMR (CDCl3)  = 162.2, 152.7, 141.8, 130.0, 128.7, 124.8, 45.2, 

33.2, 32.0, 29.7, 29.5, 29.3, 28.3, 22.8, 21.6, 14.3; LC-MS (ESI): tR = 15.26 min, 

calcd. for C20H32NOS [M+H]+, 334.53, found 334.03.  

 

Aziridine (54) 

 

NH H
S

C10H21

O

O

O

Chemical Formula: C28H41NO3S
Molecular Weight: 471.6950

 

 

Following the same protocol as above for 50 led to the pure product 54 (yield: 99 

mg, 0.21 mmol, 87%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.52; 1H NMR (CDCl3)  = 7.59 (m, 

2H), 7.31 (m, 2H), 6.02 (m, 1H), 5.38 (m, 1H), 4.20 (m, 2H), 4.03 (t, J = 6.2 Hz, 

1H), 3.59 (m, 1H), 3.27 (d, J = 3.75 Hz, 1H), 2.41 (s, 3H), 2.23 (m, 2H), 2.14 (m, 

2H), 2.08 (m, 2H), 1.96 (m, 1H), 1.81 (m, 2H), 1.61 (m, 4H), 1.41-1.26 (m, 11H), 

0.89 (t, J = 6.12 Hz, 3H); LC-MS (ESI): tR = 11.16 min, calcd. for C28H42NO3S 

[M+H]+, 472.70, found 472.24. 

 

6-azido hexyl bromo acetate (55) 

 

Br
O

O
N3

Chemical Formula: C8H14BrN3O2
Molecular Weight: 264.1197  
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Following the same protocol as above for 52 led to the pure product 55 (yield: 279 

mg, 1.06 mmol, 53%) as a yellow oil.  

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.42; 1H NMR (CDCl3)  = 4.19 (t, J = 

6.64 Hz, 2H), 3.84 (s, 2H), 3.28 (t, J = 6.84 Hz, 2H), 1.68 (m, 2H), 1.61 (m, 2H), 

1.42 (m, 4H); 13C NMR (CDCl3)  = 167.4, 66.3, 51.5, 28.9, 28.4, 26.5, 26.0, 25.5. 

 

hexyl bromo acetate (56) 

 

Br
O

O
Chemical Formula: C8H15BrO2
Molecular Weight: 223.1075  

 

Following the same protocol as above for 52 led to the pure product 56 (yield: 227 

mg, 1.02 mmol, 51%) as a light lemon oil.  

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.53; 1H NMR (CDCl3)  = 4.23 (t, J = 

6.64 Hz, 2H), 4.05 (s, 2H), 1.65 (m, 2H), 1.53 (m, 2H), 1.31 (m, 4H), 0.89 (t, J = 

6.8 Hz, 3H); 13C NMR (CDCl3)  = 167.1, 63.6, 30.5, 28.7, 26.2, 25.3, 22.4, 15.3. 

 

S-trans-2-tridencenyl sulfinate imine (57) 

 

N
S O

C10H21

Chemical Formula: C20H31NOS
Molecular Weight: 333.5312
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Following the same protocol as above for 49 led to the pure product 57 (yield: 130 

mg, 0.39 mmol, 85%) as a white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.61; 1H NMR (CDCl3)  = 8.33 (d, J 

= 9.5 Hz, 1H), 7.56 (d, J = 8.25 Hz, 2H), 7.29 (d, J = 8.25 Hz, 2H), 6.55 (m, 1H), 

6.38 (m, 1H), 2.39 (s, 3H), 2.25 (m, 2H), 1.45 (m, 2H), 1.26 (m, 16H), 0.87 (t, J = 

6.7 Hz, 3H); 13C NMR (CDCl3)  = 162.2, 152.7, 141.8, 130.0, 128.7, 124.8, 45.2, 

33.2, 32.0, 29.7, 29.5, 29.3, 28.3, 22.8, 21.6, 14.3; LC-MS (ESI): tR = 15.26 min, 

calcd. for C20H32NOS [M+H]+, 334.53, found 334.03. 

 

R-trans-2-tridencenyl sulfinate imine (58) 

 

N
S

O

C10H21

Chemical Formula: C20H31NOS
Molecular Weight: 333.5312

 

 

Following the same protocol as above for 49, but with (1S, 2R, 5S)-(+)-menthyl 

(R)-p-toluenesulfinate led to the pure enatiomer 58 (yield: 138 mg, 0.42 mmol, 

90%) as a white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.61; 1H NMR (CDCl3)  = 8.34 (d, J 

= 9.16 Hz, 1H), 7.57 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.55 (m, 1H), 

6.42 (m, 1H), 2.40 (s, 3H), 2.27 (m, 2H), 1.45 (m, 2H), 1.26 (m, 16H), 0.88 (t, J = 

6.7 Hz, 3H); LC-MS (ESI): tR = 15.34 min, calcd. for C20H31NOS [M+H]+, 334.53, 

found 334.32. 
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S-trans-crotonyl sulfinate imine (59) 

 

N
S O

Chemical Formula: C11H13NOS
Molecular Weight: 207.2920

 

 

Following the same protocol as above for 49 led to the product 59 (yield: 93.1 mg, 

0.45 mmol, 45%) as a white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.3; 1H NMR (CDCl3)  = 8.34 (d, J = 

9.16 Hz, 1H), 7.55 (d, J = 8 Hz, 2H), 7.28 (d, J = 8 Hz, 2H), 6.56 (m, 1H), 6.39 (m, 

1H), 2.38 (s, 3H), 1.95 (d, J = 5.6 Hz, 3H); 13C NMR (CDCl3)  = 161.7, 147.1, 

141.9, 141.6, 130.1, 129.8, 124.5, 34.5, 23.1, 20.9. 

 

R-trans-crotonyl sulfinate imine (60) 

 

N
S

O

Chemical Formula: C11H13NOS
Molecular Weight: 207.2920

 

 

Following the same protocol as above for 49, but with (1S, 2R, 5S)-(+)-menthyl 

(R)-p-toluenesulfinate led to the enantiomer 60 (yield: 107 mg, 0.52 mmol, 52%) as 

a white solid. 
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TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.3; 1H NMR (CDCl3)  = 8.34 (d, J = 

9.16 Hz, 1H), 7.55 (d, J = 8 Hz, 2H), 7.28 (d, J = 8 Hz, 2H), 6.56 (m, 1H), 6.39 (m, 

1H), 2.38 (s, 3H), 1.95 (d, J = 5.6 Hz, 3H). 

 

S-phenyl sulfinate imine (61) 

 

N
S O

Chemical Formula: C14H13NOS
Molecular Weight: 243.3241

 

 

Following the same protocol as above for 49 led to the product 61 (yield: 211 mg, 

0.87 mmol, 87%) as a light yellow solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.41; 1H NMR (CDCl3)  = 8.77 (s, 

1H), 7.85 (d, J = 7.44 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.49 (m, 3H), 7.32 (m, 2H), 

2.41 (s, 3H); 13C NMR (CDCl3)  = 160.8, 141.9, 141.9, 134.1, 132.7, 130.0, 129.7, 

129.0, 124.9, 21.6. 

 

R-phenyl sulfinate imine (62) 

 

N
S

O

Chemical Formula: C14H13NOS
Molecular Weight: 243.3241
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Following the same protocol as above for 49, but with (1S, 2R, 5S)-(+)-menthyl 

(R)-p-toluenesulfinate led to the enatiomer 62 (yield: 218 mg, 0.9 mmol, 90%) as a 

light yellow solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.41; 1H NMR (CDCl3)  = 8.77 (s, 

1H), 7.84 (d, J = 7.44 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.48 (m, 3H), 7.32 (m, 2H), 

2.41 (s, 3H); 

 

S-decanyl sulfinate imine (63) 

 

C10H21

N
S O Chemical Formula: C18H29NOS

Molecular Weight: 307.4940

 

 

Following the same protocol as above for 49 led to the product 63 (yield: 98 mg, 

0.32 mmol, 32%) as a white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.35; 1H NMR (CDCl3)  = 8.22 (t, J = 

5.2 Hz, 1H), 7.54 (d, J = 7.44 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 2.39 (s, 3H), 1.58-

1.42 (m, 18H), 0.89 (t, J = 6.5 Hz, 3H). 

 

R-decanyl sulfinate imine (64) 

 

C10H21

N
S

O

Chemical Formula: C18H29NOS
Molecular Weight: 307.4940
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Following the same protocol as above for 49, but with (1S, 2R, 5S)-(+)-menthyl 

(R)-p-toluenesulfinate led to the enatiomer 64 (yield: 92 mg, 0.3 mmol, 30%) as a 

white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.35; 1H NMR (CDCl3)  = 8.22 (t, J = 

5.2 Hz, 1H), 7.52 (d, J = 7.44 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 2.39 (s, 3H), 1.58-

1.42 (m, 18H), 0.89 (t, J = 6.5 Hz, 3H). 

 

S-cyclohexyl sulfinate imine (65) 

 

N
S O Chemical Formula: C14H19NOS

Molecular Weight: 249.3718

 

 

Following the same protocol as above for 49 led to the product 65 (yield: 204 mg, 

0.82 mmol, 82%) as a white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.34; 1H NMR (CDCl3)  = 8.09 (d, J 

= 4.8 Hz, 1H), 7.52 (d, J = 8 Hz, 2H), 7.27 (d, J = 8 Hz, 2H), 2.37 (s, 3H), 1.95 (m, 

1H), 1.93 (m, 2H), 1.89 (m, 2H), 1.83 (m, 2H), 1.74 (m, 4H); 13C NMR (CDCl3)  

= 170.6, 142.4, 141.8, 130.0, 124.9, 50.4, 45.3, 43.9, 29.4, 26.0, 25.5, 21.2. 
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R-cyclohexyl sulfinate imine (66) 

 

N
S

O
Chemical Formula: C14H19NOS

Molecular Weight: 249.3718

 

 

Following the same protocol as above for 49, but with (1S, 2R, 5S)-(+)-menthyl 

(R)-p-toluenesulfinate led to the enatiomer 66 (yield: 212 mg, 0.85 mmol, 85%) as 

a white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.34; 1H NMR (CDCl3)  = 8.09 (d, J 

= 4.8 Hz, 1H), 7.52 (d, J = 8 Hz, 2H), 7.27 (d, J = 8 Hz, 2H), 2.37 (s, 3H), 1.95 (m, 

1H), 1.93 (m, 2H), 1.89 (m, 2H), 1.83 (m, 2H), 1.74 (m, 4H). 

 

S-(3-phenyl propyl) sulfinate imine (67) 

 

N
S O

Chemical Formula: C16H17NOS
Molecular Weight: 271.3773

 

 

Following the same protocol as above for 49 led to the product 67 (yield: 67.3 mg, 

0.33 mmol, 33%) as a white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.22; 1H NMR (CDCl3)  = 8.28 (t, J = 

5.3 Hz, 1H), 7.42 (d, J = 8 Hz, 2H), 7.27 (d, J = 8 Hz, 2H), 7.13 (m, 3H), 7.04 (m, 
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2H), 2.37 (s, 3H), 1.95 (m, 2H), 1.93 (m, 2H); 13C NMR (CDCl3)  = 165.9, 148.5, 

142.1, 140.9, 139.0, 138.1, 129.3, 128.3, 127.5, 44.8, 34.3, 31.4, 21.9. 

 

S-(3-phenyl propyl) sulfinate imine (68) 

 

N
S

O

Chemical Formula: C16H17NOS
Molecular Weight: 271.3773

 

 

Following the same protocol as above for 49, but with (1S, 2R, 5S)-(+)-menthyl 

(R)-p-toluenesulfinate led to the enatiomer 68 (yield: 92 mg, 0.34 mmol, 34%) as a 

white solid. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.22; 1H NMR (CDCl3)  = 8.21 (t, J = 

5.3 Hz, 1H), 7.42 (d, J = 8 Hz, 2H), 7.24 (d, J = 8 Hz, 2H), 7.13 (m, 3H), 7.04 (m, 

2H), 2.31 (s, 3H), 1.95 (m, 2H), 1.93 (m, 2H); 13C NMR (CDCl3)  = 165.9, 148.5, 

142.1, 140.9, 139.0, 138.1, 129.3, 128.3, 127.5, 44.8, 34.3, 31.4, 21.9. 

 

Aziridine (69) 

 

N
S

C10H21

O

O

O

N3

Chemical Formula: C28H44N4O3S
Molecular Weight: 516.7390
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To a solution of 57 (186.5 mg, 0.56 mmol) in anhydrous THF (3 ml), 55 (297 mg, 

1.13 mmol) in anhydrous THF (3 ml) was added at -78 °C. After 3 min, LiHMDS 

(0.73 ml, 0.73 mmol, 1.0 M in THF) was added dropwise. The reaction was stirred 

at -78 °C for 1 h and warmed up to -38°C for another 1 h, quenched with water (0.5 

ml) and diluted with ethyl acetate (3 ml). The organic layer was separated and the 

aqueous phase was washed with ethyl acetate. The combined organic layer was 

washed with brine, dried and the crude product was purified by silica gel 

chromatography (ethyl acetate/cyclohexane = 5:1) to obtain pure product 69 (yield: 

245 mg, 0.47 mmol, 85%) as a yellow oil.  

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.42; 1H NMR (CDCl3)  = 7.59 (m, 

2H), 7.30 (m, 2H), 6.00 (m, 1H), 5.50 (m, 1H), 4.17 (t, J = 6.44 Hz, 1H), 3.99 (m, 

2H), 3.25 (m, 5H), 2.39 (s, 3H), 2.05 (m, 2H), 1.56-1.25 (m, 22H), 0.87 (t, J = 6.64 

Hz, 3H); 13C NMR (CDCl3)  = 167.3, 142.3, 141.3, 139.5, 129.9, 125.4, 125.2, 

122.2, 66.3, 65.2, 64.3, 51.5 42.6, 32.9, 32.8, 29.8, 29.6, 29.1, 28.9, 28.5, 26.5, 25.5, 

22.9, 21.7, 14.3. 

 

Aziridine (70) 

 

N
S

C10H21

O

O

N3

O
Chemical Formula: C28H44N4O3S

Molecular Weight: 516.7390

 

 

Following the same protocol as above for 69 led to the product 70 (yield: 239 mg, 

0.46 mmol, 83%) as a yellow oil. 
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TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.42; 1H NMR (CDCl3)  = 7.59 (m, 

2H), 7.28 (m, 2H), 5.97 (m, 1H), 5.46 (m, 1H), 4.17 (t, J = 6.64 Hz, 1H), 3.99 (m, 

2H), 3.26 (m, 5H), 2.39 (s, 3H), 2.05 (m, 2H), 1.56-1.25 (m, 22H), 0.87 (t, J = 6.64 

Hz, 3H); 13C NMR (CDCl3)  = 167.3, 142.3, 141.3, 139.5, 129.9, 125.4, 125.2, 

122.2, 66.3, 65.2, 64.3, 51.5 42.6, 32.9, 32.8, 29.8, 29.6, 29.1, 28.9, 28.5, 26.5, 25.5, 

22.9, 21.7, 14.3. 

 

Aziridine (71) 

 

N
S

O

O

O
N3

Chemical Formula: C19H26N4O3S
Molecular Weight: 390.4997

 

 

Following the same protocol as above for 69 led to the product 71 (yield: 63 mg, 

0.16 mmol, 63%) as a yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.44; 1H NMR (CDCl3)  = 7.57 (m, 

2H), 7.29 (m, 2H), 5.98 (m, 1H), 5.49 (m, 1H), 4.15 (m, 1H), 3.99 (m, 2H), 3.58 (m, 

1H), 3.25 (m, 5H), 2.42 (s, 3H), 1.65-1.23 (m, 8H); 13C NMR (CDCl3)  = 167.3, 

142.9,141.3, 134.0, 129.9, 125.4, 125.2, 123.6, 71.9, 68.5, 65.1, 64.3, 51.5, 42.5, 

32.8, 28.9, 26.5, 25.5, 21.7, 18.3. 
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Aziridine (72) 

 

N
S

O

O

N3

O

Chemical Formula: C19H26N4O3S
Molecular Weight: 390.4997

 

Following the same protocol as above for 69 led to the product 72 (yield: 70 mg, 

0.18 mmol, 70%) as a yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.44; 1H NMR (CDCl3)  = 7.57 (m, 

2H), 7.29 (m, 2H), 5.98 (m, 1H), 5.49 (m, 1H), 4.15 (m, 1H), 3.99 (m, 2H), 3.58 (m, 

1H), 3.25 (m, 5H), 2.42 (s, 3H), 1.65-1.23 (m, 8H); 13C NMR (CDCl3)  = 167.3, 

142.9,141.3, 134.0, 129.9, 125.4, 125.2, 123.6, 71.9, 68.5, 65.1, 64.3, 51.5, 42.5, 

32.8, 28.9, 26.5, 25.5, 21.7, 18.3. 

 

Aziridine (73) 

 

N
S

O

O

O
N3

Chemical Formula: C22H26N4O3S
Molecular Weight: 426.5318

 

 

Following the same protocol as above for 69 led to the product 73 (yield: 215 mg, 

0.51 mmol, 90%) as a yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.27; 1H NMR (CDCl3)  = 7.74 (m, 

2H), 7.45 (m, 2H), 7.33 (m, 5H), 3.85 (m, 2H), 3.72 (m, 1H), 3.49 (d, J = 7.4 Hz, 
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1H), 3.19 (t, J = 7.04 Hz, 2H), 2.42 (s, 3H), 1.61-1.17 (m, 6H), 1.01 (m, 2H); 13C 

NMR (CDCl3)  = 166.0, 142.4, 141.3, 133.0, 130.0, 128.4, 128.0, 125.5, 65.0, 

51.5, 42.3, 35.3, 28.8, 28.4, 26.4, 25.3, 21.7. 

 

Aziridine (74) 

 

N
S

O

O

N3

O

Chemical Formula: C22H26N4O3S
Molecular Weight: 426.5318

 

 

Following the same protocol as above for 69 led to the product 74 (yield: 210 mg, 

0.49 mmol, 88%) as a yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.27; 1H NMR (CDCl3)  = 7.74 (m, 

2H), 7.45 (m, 2H), 7.33 (m, 5H), 3.85 (m, 2H), 3.72 (m, 1H), 3.49 (d, J = 7.4 Hz, 

1H), 3.19 (t, J = 7.04 Hz, 2H), 2.42 (s, 3H), 1.61-1.17 (m, 6H), 1.01 (m, 2H); 13C 

NMR (CDCl3)  = 166.0, 142.4, 141.3, 133.0, 130.0, 128.4, 128.0, 125.5, 65.0, 

51.5, 42.3, 35.3, 28.8, 28.4, 26.4, 25.3, 21.7. 

 

Aziridine (75) 

 

N
S

C10H21

O

O

O
N3

Chemical Formula: C26H42N4O3S
Molecular Weight: 490.7017
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Following the same protocol as above for 69 led to the product 75 (yield: 84 mg, 

0.17 mmol, 85%) as a light yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.28; 1H NMR (CDCl3)  = 7.58 (m, 

2H), 7.32 (m, 2H), 4.18 (t, J = 6.64 Hz, 2H), 3.84 (m, 2H), 3.28 (m, 2H), 2.41 (m, 

3H), 1.63-1.26 (m, 26H), 0.88 (t, J = 6.64 Hz, 3H); 13C NMR (CDCl3)  = 167.5, 

129.9, 126.4, 125.5, 125.4, 66.3, 64.3, 51.5, 32.1, 29.8, 29.7, 29.6, 28.9, 28.5, 26.5, 

26.0, 25.6, 22.9, 14.3. 

 

Aziridine (76) 

 

N
S

C10H21

O

O

N3

O
Chemical Formula: C26H42N4O3S

Molecular Weight: 490.7017
 

 

Following the same protocol as above for 69 led to the product 75 (yield: 86 mg, 

0.18 mmol, 87%) as a light yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.28; 1H NMR (CDCl3)  = 7.58 (m, 

2H), 7.32 (m, 2H), 4.18 (t, J = 6.64 Hz, 2H), 3.84 (m, 2H), 3.28 (m, 2H), 2.41 (m, 

3H), 1.63-1.26 (m, 26H), 0.88 (t, J = 6.64 Hz, 3H); 13C NMR (CDCl3)  = 167.5, 

129.9, 126.4, 125.5, 125.4, 66.3, 64.3, 51.5, 32.1, 29.8, 29.7, 29.6, 28.9, 28.5, 26.5, 

26.0, 25.6, 22.9, 14.3. 
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Aziridine (77) 

 

N
S

O

O

O

N3

Chemical Formula: C22H32N4O3S
Molecular Weight: 432.5795

 

 

Following the same protocol as above for 69 led to the product 77 (yield: 169 mg, 

0.39 mmol, 70%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.35; 1H NMR (CDCl3)  = 7.59 (m, 

2H), 7.29 (m, 2H), 4.18 (m, 1H), 3.99 (m, 2H), 3.58 (m, 1H), 3.25 (m, 2H), 2.42 (s, 

3H), 1.62-1.24 (m, 19H); 13C NMR (CDCl3)  = 167.8, 142.9, 129.9, 129.8, 125.4, 

125.2, 66.3, 65.2, 64.3, 51.5, 46.6, 36.2, 31.3, 30.1, 29.7, 28.9, 28.5, 26.5, 25.6, 

21.7 

 

Aziridine (78) 

 

N
S

O

O

N3

O

Chemical Formula: C22H32N4O3S
Molecular Weight: 432.5795

 

 

Following the same protocol as above for 69 led to the product 78 (yield: 164 mg, 

0.38 mmol, 68%) as a colourless oil. 
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TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.35; 1H NMR (CDCl3)  = 7.59 (m, 

2H), 7.29 (m, 2H), 4.18 (m, 1H), 3.99 (m, 2H), 3.58 (m, 1H), 3.25 (m, 2H), 2.42 (s, 

3H), 1.62-1.24 (m, 19H); 13C NMR (CDCl3)  = 167.8, 142.9, 129.9, 129.8, 125.4, 

125.2, 66.3, 65.2, 64.3, 51.5, 46.6, 36.2, 31.3, 30.1, 29.7, 28.9, 28.5, 26.5, 25.6, 

21.7 

 

Aziridine (79) 

 

N
S

O

O

O

N3

Chemical Formula: C24H30N4O3S
Molecular Weight: 454.5850

 

 

Following the same protocol as above for 69 led to the product 79 (yield: 69 mg, 

0.15 mmol, 50%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.29; 1H NMR (CDCl3)  = 7.59 (m, 

2H), 7.18 (m, 7H), 4.10 (m, 1H), 3.75 (m, 2H), 3.44 (m, 1H), 3.14 (m, 2H), 2.65 (m, 

1H), 2.43 (m, 1H), 2.32 (s, 3H), 1.55-1.13 (m, 10H); 13C NMR (CDCl3)  = 166.4, 

142.2, 141.9, 138.9, 129.8, 128.8, 128.7, 128.6, 125.4, 66.3, 65.0, 64.4, 51.5, 43.4, 

36.1, 35.5, 34.2, 30.4, 29.0, 28.5, 26.5, 25.5, 21.7. 
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Aziridine (80) 

 

N

S

O

O

N3

O

Chemical Formula: C24H30N4O3S
Molecular Weight: 454.5850

 

 

Following the same protocol as above for 69 led to the product 80 (yield: 76 mg, 

0.17 mmol, 55%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.29; 1H NMR (CDCl3)  = 7.59 (m, 

2H), 7.18 (m, 7H), 4.10 (m, 1H), 3.75 (m, 2H), 3.44 (m, 1H), 3.14 (m, 2H), 2.65 (m, 

1H), 2.43 (m, 1H), 2.32 (s, 3H), 1.55-1.13 (m, 10H); 13C NMR (CDCl3)  = 166.4, 

142.2, 141.9, 138.9, 129.8, 128.8, 128.7, 128.6, 125.4, 66.3, 65.0, 64.4, 51.5, 43.4, 

36.1, 35.5, 34.2, 30.4, 29.0, 28.5, 26.5, 25.5, 21.7. 

 

Aziridine (81) 

 

N

C10H21

O

O

N3

Chemical Formula: C21H36N4O2
Molecular Weight: 376.5361

 

 

To a solution of 69 (51.6 mg, 0.1 mmol) in anhydrous THF (1 ml), LDA (130 μl, 

0.13 mmol, 1.0 M in THF) was added dropwise at -78 °C. The reaction was stirred 

at -78 °C for 15 min, at which time iodomethane (12.4 μl, 0.2 mmol) was added. 

After stirring for 20 min, the reaction was quenched with water (0.2 ml) and diluted 
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with ethyl acetate (5 ml). The organic phase was separated and aqueous phase was 

washed with ethyl acetate. The combined organic layer was washed with brine, 

dried and the crude product was purified by silica gel chromatography (ethyl 

acetate/cyclohexane = 5:1) to obtain product 81 (yield: 7 mg, 19 μmol, 20%) as a 

brown oil.  

 

TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.85. 

 

General methods for the syntheses of compounds 82 – 86 

 

Syntheses were carried out in a parallel reaction synthesizer without isolation of the 

reaction intermediates. 

Amino acids (0.2 mmol) were weighted in 12 different reaction tubes. HBTU (1.1 g, 

2.88 mmol), HOBt (440 mg, 2.88 mmol) and TEA (996 μl, 7.2 mmol) were 

dissolved in DCM (final volume 12 ml) and aliquoted to each tube. The reaction 

mixture was stirred for 5 min and a solution of AEBSF (48 mg, 0.24 mmol) in 

DCM (0.25 ml) was added and stirred at room temperature for another 3 h (TLC 

control). 

The solvent in each reaction tube was removed carefully at reduced pressure and 

50% TFA in DCM (1 ml) was added. The resulting reaction mixtures were stirred 

for 3 h. Toluene (5 ml) was added and removed at reduced pressure.  

22 (857 mg, 2.4 mmol), PyBOP (1.25 g, 2.4 mmol) and TEA (1.32 ml, 9.6 mmol) 

were dissolved in DMSO (final volume 6 ml) at room temperature. After stirring 

for 15 min, the DMSO solution (500 μl) was aliquoted to each reaction tube. The 

reactions were completed overnight. The products were isolated after removing 

DMSO by precipitation with ethyl acetate/diethyl ether 5 ml (1:1) and washed with 
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sodium bicarbonate solution and ethyl ether, dried and purified by preparative 

HPLC. 

 

Biotinyl leucinyl AEBSF (82) 

 

S
O

O F

N
H

O

NHO

N
H

O

S

HN
NH

O

H
H

Chemical Formula: C30H46FN5O6S2
Molecular Weight: 655.8445

 

 

Following the above protocol led to the product 82 (yield: 46 mg, 0.07 mmol, 35%) 

as a white solid. 

 

1H NMR (DMSO-d6)  = 8.04 (d, J = 8.2 Hz, 2H), 7.95 (t, J = 5.48 Hz, 1H), 7.79 

(d, J = 8.2 Hz, 1H), 7.68 (t, J = 5.48 Hz, 1H), 7.58 (d, J = 8.2 Hz, 2H), 6.35 (s/s, 

2H), 4.31 (m, 1H), 4.15 (m, 2H), 3.14 (t, J = 8.4 Hz, 1H), 3.08 (m, 1H), 2.96 (q, J = 

6.84 Hz, 2H), 2.84 (t, J = 6.84 Hz, 2H), 2.79 (dd, J = 12.52, 5.08 Hz, 1H), 2.55 (d, J 

= 12.52 Hz, 1H), 2.04 (m, 4H), 1.61-1.26 (m, 14H), 0.92 (t, J = 7.24 Hz, 2H), 0.78 

(d, J = 6.44 Hz, 3H), 0.74 (d, J = 6.44 Hz, 3H); 19F NMR (DMSO-d6)  = -74.0, -

199.2; MS (ESI): calcd. for C30H47FN5O6S2 [M+H]+, 656.84, found 656.20. 
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Biotinyl valinyl AEBSF (83) 

 

S
O

O F

N
H

O

NHO

N
H

O

S

HN
NH

O

H
H

Chemical Formula: C29H44FN5O6S2
Molecular Weight: 641.8180

 

 

Following the above protocol led to the product 83 (yield: 36 mg, 0.06 mmol, 28%) 

as a white solid. 

 

1H NMR (DMSO-d6)  = 7.99 (d, J = 8.4 Hz, 3H), 7.70 (t, J = 3.32 Hz, 2H), 7.60 

(d, J = 8.4 Hz, 2H), 6.35 (s/s, 2H), 4.27 (m, 1H), 4.10 (m, 1H), 4.00 (m, 1H), 3.06 

(m, 1H), 2.96 (q, J = 6.84 Hz, 2H), 2.86 (t, J = 6.84 Hz, 2H), 2.79 (dd, J = 12.52, 

5.08 Hz, 1H), 2.55 (d, J = 12.52 HZ, 1H), 2.08 (m, 4H), 1.61-1.26 (m, 15H), 0.70 (t, 

J = 6.64 Hz, 6H); 19F NMR (DMSO-d6)  = -74.1, -199.2; MS (ESI): calcd. for 

C29H45FN5O6S2 [M+H]+, 642.82, found 642.27. 
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Biotinyl glycinyl AEBSF (84) 

 

S
O

O F

N
H

O

NHO

N
H

O

S

HN
NH

O

H
H

Chemical Formula: C26H38FN5O6S2
Molecular Weight: 599.7382

 

 

Following the above protocol led to the product 84 (yield: 43 mg, 0.07 mmol, 36%) 

as a white solid. 

 

1H NMR (DMSO-d6)  = 8.04 (d, J = 8.2 Hz, 2H), 7.95 (t, J = 5.48 Hz, 1H), 7.79 

(d, J = 8.2 Hz, 1H), 7.68 (t, J = 5.48 Hz, 1H), 7.58 (d, J = 8.2 Hz, 2H), 6.35 (br s, 

2H), 4.28 (m, 1H), 4.12 (m, 1H), 3.59 (d, J = 5.84 Hz, 2H), 3.33 (m, 3H), 3.09 (m, 

2H), 2.99 (m, 1H), 2.86 (t, J = 6.84 Hz, 2H), 2.78 (dd, J = 12.52, 5.08 Hz, 1H), 2.55 

(d, J = 12.52 HZ, 1H), 2.06 (m, 4H), 1.61-1.26 (m, 11H); 19F NMR (DMSO-d6)  = 

-75.0, -199.2; MS (ESI): calcd. for C26H39FN5O6S2 [M+H]+, 600.74, found 600.20. 
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Biotinyl phenylalaninyl AEBSF (85) 

 

S
O

O F

N
H

O

NHO

N
H

O

S

HN
NH

O

H
H Chemical Formula: C33H44FN5O6S2

Molecular Weight: 689.8608

 

 

Following the above protocol to get the product 85 (yield: 45 mg, 0.07 mmol, 33%) 

as a white solid. 

 

1H NMR (DMSO-d6)  = 8.04 (m, 3H), 7.56 (d, J = 8.36 Hz, 2H), 7.16 (m, 7H), 

6.35 (br s, 2H), 4.38 (m, 1H), 4.28 (m, 1H), 4.10 (m, 1H), 3.33 (m, 4H), 3.14 (t, J = 

8.4 Hz, 2H), 3.08 (m, 1H), 2.96 (q, J = 6.84 Hz, 2H), 2.84 (t, J = 6.84 Hz, 2H), 2.66 

(dd, J = 12.52, 5.08 Hz, 1H), 2.55 (d, J = 12.52 Hz, 1H), 2.04 (m, 4H), 1.61-1.26 

(m, 8H), 0.92 (t, J = 7.24 Hz, 2H); 19F NMR (DMSO-d6)  = -74.8, -199.2; MS 

(ESI): calcd. for C33H45FN5O6S2 [M+H]+, 690.86, found 690.27. 
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Biotinyl serinyl AEBSF (86) 

 

S
O

O F

N
H

O

NHO

N
H

O

S

HN
NH

O

H
H

OH

Chemical Formula: C27H40FN5O7S2
Molecular Weight: 629.7642

 

 

Following the above protocol to get the product 86 (yield: 38 mg, 0.06 mmol, 30%) 

as a white solid. 

 

1H NMR (DMSO-d6)  = 8.04 (d, J = 8.2 Hz, 2H), 7.95 (m, 1H), 7.71 (t, J = 5.48 

Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 6.35 (s/s, 2H), 4.30 (m, 1H), 4.26 (m, 1H), 4.12 

(m, 1H), 3.34 (m, 2H), 3.14 (m, 4H), 2.96 (q, J = 6.84 Hz, 1H), 2.84 (t, J = 6.84 Hz, 

2H), 2.79 (d/d, J = 12.52, 5.08 Hz, 1H), 2.55 (d, J = 12.52 Hz, 1H), 2.09 (m, 3H), 

1.81 (m, 4H), 1.61-1.26 (m, 10H); 19F NMR (DMSO-d6)  = -74.8, -199.1; MS 

(ESI): calcd. for C27H41FN5O7S2 [M+H]+, 630.76, found 630.20. 
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Rhodaminyl glycinyl AEBSF (87) 

 

HNNH
O

O

N

N

O O

O

S
O

O

F

Chemical Formula: C35H33FN4O7S
Molecular Weight: 672.7225

 

 

Boc-Gly-OH (35 mg, 0.2 mmol), HOBt (27 mg, 0.2 mmol) and DIC (31 μl, 0.2 

mmol) were dissolved in DCM (2 ml). To this reaction mixture, AEBSF (48 mg, 

0.2 mmol) was added and the reaction mixture was stirred for the following 3 h. 

After that, DCM was removed and 50% TFA in DCM (1 ml) was added to cleave 

the Boc protecting group within 1 h. The solvent was removed and TEA was added 

to neutralize excess TFA. 5(6)-Carboxytetramethylrhodamine N-succinimidyl ester 

(25 mg, 47.4 μmol) in DCM (1 ml) was added, stirred overnight, evaporated and 

the product 87 was purified directly via HPLC (yield: 11 mg, 16 μmol, 8.2%) as a 

violet solid.  

 

LC-MS (ESI): tR = 7.32 min, calcd. for C35H34FN4O7S [M+H]+, 673.72, found 

673.24. 

 

Fmoc-Ala-CMK (88) 

 

FmocHN
O

Cl Chemical Formula: C19H18ClNO3
Molecular Weight: 343.8041  
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A 0.2 M solution of N -Fmoc alanine (1.65 g, 5 mmol) in anhydrous THF was 

stirred in an ice/ acetone bath at -10 °C. To this solution, N-methylmorpholine (686 

μl, 6.25 mmol) and iso-butylchloroformate (752 μl, 5.75 mmol) were sequentially 

added. Immediately after the addition of the latter compound, a white precipitate 

formed. The reaction mixture was maintained at -10 °C for 25 min.  

Diazomethane was generated in situ using the procedure described in the Aldrich 

Technical Bulletin (AL-180). Ethereal diazomethane (20 mmol) was transferred to 

the stirred solution of the mixed anhydride at 0 °C. The reaction mixture was 

warmed to room temperature over 3 h.  

To obtain the corresponding chloromethyl ketones, a solution of concentrated 

hydrochloric acid and acetic acid 1:1 (15 mL) was added dropwise to the reaction 

mixture at 0 °C. Ethyl acetate was added and the organic layer was separated, 

washed with water, brine, saturated aqueous NaHCO3, and dried over Na2SO4, 

concentrated under reduced pressure. The product 88 was obtained (yield: 1.82 g, 5 

mmol, 100%) as a white solid without further purification. 

 

LC-MS (ESI): tR = 7.83 min, calcd. for C19H19ClNO3 [M+H]+, 344.80, found 

344.20. 

 

Semicarbazide linker (89) 

 

H
N

H
N

O

H2N

 

 

Aminomethylpolystyrene resin (2.2 g, 1.1 mmol/g) was dried in vacuo overnight in 

a 12-mL polypropylene cartridge. The resin was presolvated with DMF for 30 min 
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and another 30 min with DCM. A 1 M solution of N, N’-Carbonyldiimidazole (1.95 

g, 12 mmol) in DCM was added to the resin and the resin was shaken at room 

temperature for 3 h. The reagent was drained and the resin was washed with DCM 

followed by DMF. A 10 M solution of hydrazine (3.76 ml, 120 mmol) in DMF was 

added to the resin, and the resin was shaken at room temperature for 1 h. The resin 

was washed with DMF followed by DCM, dried in vacuo, and stored at -4 °C. 

 

Acyoxymethyl hydrazone (90) 

 

FmocHN

N

O

NH

N
H

O

O

 

 

A 0.5 M solution of 88 (1 g, 3 mmol) in DMF was added to the resin. The cartridge 

was tightly sealed and shaken at 50 °C for 3 h. The resin was washed with DMF. A 

0.5 M solution of 2,6-dimethylbenzoic acid (750 mg, 5 mmol) and potassium 

fluoride (580 mg, 10 mmol) were added to the resin. The resin was shaken at room 

temperature overnight. After the solution was removed, the resin was washed with 

DMF followed by DCM, and dried in vacuo. The resin load was estimated by UV 

absorption of cleaved Fmoc (loading: 0.565 mmol/g). 
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General protocol for syntheses of compounds 91-100 

 

Protocol for deprotection 

1. Add 20% piperidine in DMF and shake for 15 minutes. 

2. Drain solution 

3. Wash resin with DMF (3x) 

Protocol for coupling 

1. Add Fmoc-amino acid and HOBt to the cartridge (both 3 eq.).  

2. Add DMF to the resin (so that final concentration will be 0.25 M of Fmoc-amino 

acid).  

3. Add DIC (3 eq.) to the cartridge. 

4. Shake for 2 h. 

5. Drain solution 

6. Wash with DMF (3x) 

7. Wash with DCM (2x) to get rid of residual DMF 

8. Kaiser test, if necessary. 

Protocol for elongation 

1. Wash resin with DMF. 

2. Deprotect Fmoc following deprotection protocol. 

3. Couple amino acid following coupling protocol. 

Protocol for cleavage 

1. Make a stock of 95% TFA, 2.5% H2O and 2.5% TIS. 

2. Add TFA mixture to resin. 

3. Cleave for 1h. 

4. Collect the solution into a little flask. 

5. Rinse the resin twice with 95% TFA to collect all the peptide. 

6. Evaporate the TFA, dry peptide in vacuo and purify it with preparative HPLC. 
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Ak-GDA-AOMK (91) 

 

H
N

N
H

H
N O

O

O

O

O

O

COOH

Chemical Formula: C24H29N3O8
Molecular Weight: 487.5024

 

 

Following the above protocol led to the product 91 (yield: 2.4 mg, 4.9 μmol, 9.9%) 

as a brown solid. 

 

LC-MS (ESI): tR = 7.77 min, calcd. for C24H30N3O8 [M+H]+, 488.50, found 488.07. 

 

Az-GDA-AOMK (92) 

 

N3

H
N

N
H

H
N O

O

O

O

O

O

COOH

Chemical Formula: C21H26N6O8
Molecular Weight: 490.4665  

 

Following the above protocol led to get the product 92 (yield: 3 mg, 6 μmol, 12%) 

as a yellow solid. 

 

LC-MS (ESI): tR = 7.72 min, calcd. for C21H27N6O8 [M+H]+, 491.47, found 491.07. 

 

Ak-GEA-AOMK (93) 

 

H
N

N
H

H
N O

O

O

O

O

O

COOH

Chemical Formula: C25H31N3O8
Molecular Weight: 501.5289
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Following the above protocol led to the product 93 (yield: 2.5 mg, 5 μmol, 10%) as 

a brown solid. 

 

LC-MS (ESI): tR = 7.75 min, calcd. for C25H32N3O8 [M+H]+, 502.53, found 502.13. 

 

Az-GEA-AOMK (94) 

 

N3

H
N

N
H

H
N O

O

O

O

O

O

COOH

Chemical Formula: C22H28N6O8
Molecular Weight: 504.4931

 

 

Following the above protocol led to the product 94 (yield: 2 mg, 4 μmol, 8%) as a 

brown solid. 

 

LC-MS (ESI): tR = 7.69 min, calcd. for C22H29N6O8 [M+H]+, 505.49, found 505.13. 

 

Ak-GFA-AOMK (95) 

 

H
N

N
H

H
N O

O

O

O

Ph
O

O

Chemical Formula: C29H33N3O6
Molecular Weight: 519.5888

 

 

Following the above protocol led to the product 95 (yield: 1.5 mg, 2.9 μmol, 5.8%) 

as a white solid. 

 

LC-MS (ESI): tR = 9.20 min, calcd. for C29H34N3O6 [M+H]+, 520.59, found 520.20. 
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Az-GFA-AOMK (96) 

 

N3

H
N

N
H

H
N O

O

O

Ph
O

OO

Chemical Formula: C26H30N6O6
Molecular Weight: 522.5530

 

 

Following the above protocol led to the product 96 (yield: 2 mg, 3.8 μmol, 7.6%) 

as a yellow solid. 

 

LC-MS (ESI): tR = 9.19 min, calcd. for C26H33N6O5 [M+H]+, 523.55, found 523.13. 

 

Ak-GSA-AOMK (97) 

 

H
N

N
H

H
N O

O

O

O

OH
O

O
Chemical Formula: C23H29N3O7

Molecular Weight: 459.4923  

 

Following the above protocol led to the product 97 (yield: 1.8 mg, 3.9 μmol, 7.8%) 

as a white solid. 

 

LC-MS (ESI): tR = 7.61 min, calcd. for C23H30N3O7 [M+H]+, 460.49, found 460.13. 

 

Az-GSA-AOMK (98) 

 

N3

H
N

N
H

H
N O

O

O

O

OH
O

O

Chemical Formula: C20H26N6O7
Molecular Weight: 462.4564
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Following the above protocol led to the product 98 (yield: 2 mg, 4.3 μmol, 8.6%) 

as a white solid. 

 

LC-MS (ESI): tR = 7.54 min, calcd. for C20H27N6O7 [M+H]+, 460.49, found 460.07. 

 

Ak-GRA-AOMK (99) 

 

H
N

N
H

H
N O

O

O

O

O

O

H
N NH2

NH

Chemical Formula: C26H36N6O6
Molecular Weight: 528.6006

 

 

Following the above protocol led to the product 99 (yield: 4.1 mg, 7.7 μmol, 15.4%) 

as a brown solid. 

 

LC-MS (ESI): tR = 6.53 min, calcd. for C26H37N6O6 [M+H]+, 529.60, found 529.40. 

 

Az-GRA-AOMK (100) 

 

N3

H
N

N
H

H
N O

O

O

O

O

O

H
N NH2

NH

Chemical Formula: C23H33N9O6
Molecular Weight: 531.5648

 

 

Following the above protocol led to the product 100 (yield: 4 mg, 7.5 μmol, 15%) 

as a brown solid. 

 

LC-MS (ESI): tR = 6.51 min, calcd. for C23H34N9O6 [M+H]+, 532.56, found 532.33. 
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Rho-GDA-AOMK (101) 

 

H
N

N
H

H
N O

O

O

O

O

O

COOH

NH

O

O

CO2 N

N

Chemical Formula: C58H64N6O12
Molecular Weight: 1037.1618

 

 

Following the above protocol led to the product 101 (yield: 6.2 mg, 6 μmol, 12%) 

as a violet solid. 

 

LC-MS (ESI): tR = 8.01 min, calcd. for C58H65N6O12 [M+H]+, 1038.16, found 

1037.80. 

 

Fmoc-Asp(OtBu)-BMK (102) 

 

FmocHN

OBu

O

O
Br Chemical Formula: C24H26BrNO5

Molecular Weight: 488.3709
 

 

A 0.2 M solution of N-Fmoc (OtBu) aspartate (2 g, 5 mmol) in anhydrous THF was 

stirred in an ice/acetone bath at -10 °C. To this solution, N-methylmorpholine (686 

μl, 6.25 mmol) and iso-butylchloroformate (752 μl, 5.75 mmol) were sequentially 
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added. Immediately after the addition of the latter compound, a white precipitate 

formed. The reaction mixture was maintained at -10° C for 25 min.  

Diazomethane was generated in situ using the procedure described in the Aldrich 

Technical Bulletin (AL-180). Ethereal diazomethane (20 mmol) was transferred to 

the stirred solution of the mixed anhydride at 0 °C. The reaction mixture was 

warmed to room temperature over 3 h.  

To obtain the corresponding bromomethyl ketones, 30% hydrogen bromide in 

acetic acid (10 ml) was added to the reaction mixture at 0 °C. Workup was carried 

out as described for the chloromethyl ketone synthesis. The product 102 was 

obtained (yield: 2.4 g, 5 mmol, 100%) as a yellow oil without further purification. 

 

Fmoc-Asp(OtBu)-AOMK (103) 

 

FmocHN

OtBu

O

O

O

O

Chemical Formula: C33H35NO7
Molecular Weight: 557.6335

 

 

A 0.2 M solution of 102 (2.4 g, 5 mmol) in DMF was stirred at 0 °C. To this 

solution, potassium fluoride (870 mg, 15 mmol) and 2,6-dimethylbenzoic acid (900 

mg, 6 mmol) were added. The reaction mixture was warmed to room temperature 

and stirred overnight, diluted with ethyl acetate.The organic layer was separated 

and washed with water, brine, saturated aqueous NaHCO3 and dried over MgSO4. 

The solvent was removed under reduced pressure. The crude product was purified 

by silica gel chromatography (ethyl acetate/cyclohexane = 1:5) to obtain pure 

product 103 (yield: 1.65 g, 2.96 mmol, 60%) as a white solid.  
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TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.2; 1H NMR (CDCl3)  = 7.82 (d, J = 

8.2 Hz, 2H), 7.63 (m, 2H), 7.41 (m, 2H), 7.33 (m, 2H), 7.20 (t, J = 7.6 Hz, 1H), 

7.04 (d, J = 7.64 Hz, 2H), 5.89 (d, J = 8.8 Hz, 1H), 5.07 (q, J = 16.8 Hz, 3H), 4.65 

(m, 2H), 4.24 (t, J = 6.44 Hz, 1H), 2.97 (dd, J = 17.1, 4.88 Hz, 1H), 2.91 (dd, J = 

17.1, 4.88 Hz, 1H), 2.40 (s, 6H), 1.45 (s, 9H); 13C NMR (CDCl3)  = 201.1, 169.0, 

156.2, 143.7, 141.5, 141.5, 135.8, 132.7, 129.8, 127.9, 127.8, 125.2, 120.2, 120.2, 

82.4, 67.3, 66.8, 54.9, 47.4, 36.7, 28.1, 27.1, 20.0; LC-MS (ESI): tR = 11.86 min, 

calcd. for C33H36NO7 [M+H]+, 558.63, found 558.32. 

 

Fmoc-Asp(OH)-AOMK (104) 

 

FmocHN

OH

O

O

O

O

Chemical Formula: C29H27NO7
Molecular Weight: 501.5272  

 

A 0.2 M solution of 103 (1.65 g, 2.96 mmol) was dissolved in 25% TFA in DCM 

and allowed to stand for 30 min with occasional shaking. The reaction mixture was 

diluted with DCM. The cleavage solution was removed by coevaporation with 

toluene. The product was further dried in vacuo. The crude product 104 was used 

without further purification. 
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Fmoc-Asp(O-trityl resin)-AOMK (105) 

 

FmocHN

O

O

O

O

O

Cl

 

 

2-chlorotrityl chloride resin (1.5 g, 1.95 mmol) was washed with DCM. A 0.5 M 

solution of 104 (1 g, 2 mmol) and DIPEA (1.34 ml, 8 mmol) were added to the 

resin, shaking for 2 h. The resin was washed with DCM and DMF, yielding the 

loaded resin. Resin load was determined by UV absorption of cleaved Fmoc 

(loading: 0.77 mmol/g). 

 

Bio-AHxPD-AOMK (106) 

 

N

H
N O

O

O

O

ONHO CO2HS

HN

NH

O

H

H

Chemical Formula: C35H49N5O9S
Molecular Weight: 715.8567

 

 

Following the above SPPS protocol led to the product 106 (yield: 75 mg, 0.1 mmol, 

20%) as a white solid. 

 

LC-MS (ESI): tR = 7.47 min, calcd. for C35H50N5O9S [M+H]+, 716.86, found 

716.47. 



Zhe Ming Wang Experimental section Doctoral Dissertation 2009 

 - 206 - Chemical Genomics Centre (CGC) 

Rho-AHxPD-AOMK (107) 

 

N

H
N O

O

O

O

ONHO

O

N

N

CO2H

O
O

Chemical Formula: C50H55N5O11
Molecular Weight: 901.9986

 

 

Following the above SPPS protocol led to the product 107 (yield: 5.2 mg, 6 μmol, 

12.2%) as a violet solid. 

LC-MS (ESI): tR = 7.49 min, calcd. for C50H56N5O11 [M+H]+, 903.00, found 902.60. 

 

Diethyl (2, 2-dimethyl-4-oxo-4H-benzo[d][1,3]dioxin-5-yl)methyl phosphonate 

(112) 

 

O

O

O

PO(OEt)2

Chemical Formula: C15H21O6P
Molecular Weight: 328.2974

 

 

To a stirred solution of 128 (1.1 g, 4 mmol) in anhydrous toluene (10 ml) at room 

temperature was added triethylphosphite (10 ml, 61.2 mmol) dropwise. The 

resulting mixture was refluxed for 2 h, allowed to cool to room temperature and 

directly transferred on top of a silica gel column. Flash chromatography (ethyl 

acetate/petroleum ether = 4:1) furnished the desired diethyl benzyl phosphonate 

112 (yield: 1.3 g, 3.84 mmol, 96%) as a colourless oil.  
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TLC (ethyl acetate/petroleum ether = 4:1): Rf = 0.1; 1H NMR (CDCl3):  = 7.42 (t, 

J = 7.8 Hz, 1H), 7.06 (dd, J = 3.0, 7.6 Hz, 1H), 6.87 (ddd, J=1.1, 2.4, 8.2 Hz, 1H), 

4.08 (m, 4H), 3.99 (s, 1H); 3.93 (s, 1H); 1.71 (s, 6H); 1.24 (m, 6H); 13C NMR 

(CDCl3,):  = 160.82, 157.01, 136.53, 134.82, 126.36, 116.23, 113.04, 105.41, 

62.07, 30.92, 25.58, 16.30; IR (neat): 2987, 1730, 1016, 964 cm-1; HRMS: Calcd. 

for C15H22O6P: [M+1]+ 329.2974, found 329.1150. 

 

(2R, 3S)-3-methyloxirane-2-carbaldehyde (114) 

 

O

O Chemical Formula: C4H6O2
Molecular Weight: 86.0892  

 

To a solution of oxalylchloride (0.447 mL, 5.2 mmol) in DCM (15 ml) was added 

dropwise DMSO (0.695 mL, 10.6 mmol) at -78 °C. After ceasing of the gas 

evolution, a solution of 129 (0.3 g, 3.4 mmol) in DCM (2 mL) was added. After 

stirring for 90 min at –78 °C, TEA (2 mL, 14.3 mmol) was added dropwise. After 

20 min the mixture was allowed to warm to room temperature. The precipitate was 

filtered off and the filtrate was concentrated in vacuo. The crude product was 

purified by column chromatography (petroleum ether/diethyl ether = 1:1) to obtain 

the product 114 (yield: 263 mg, 3 mmol, 90%) as a liquid. Because 114 has a very 

low boiling point, it can only be obtained in a diether ether solution. No NMR 

spectrum could be measured in good quality and the yield was only estimated. 

 

3-(tert-Butyldiphenylsilyloxy)-propanal (124) 

 

TBDPSO O Chemical Formula: C19H24O2Si
Molecular Weight: 312.4782  

 

To a solution of oxalylchloride (0.54 ml, 6.36 mmol) in DCM (15 ml) was added 

DMSO (0.9 g, 12.7 mmol) dropwise at -78 °C. After ceasing of the gas evolution, a 
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solution of 130 (1 g, 3.18 mmol) in DCM (10 ml) was added. After 90 min of 

stirring at -78°C, TEA (2.65 ml 18.8 mmol) was added dropwise. After additional 20 

min, the mixture was allowed to warm to room temperature. The reaction mixture 

was quenched with water, the organic layer was separated and the aqueous layer 

was extracted with DCM. The combined organic layers were successively washed 

with cold water, brine, dried over Na2SO4 and solvent was removed under reduced 

pressure. The crude product was purified by silica gel chromatography (ethyl 

acetate/cyclohexane = 1:2) to obtain pure product 124 (yield: 0.7 g, 2.2 mmol, 70%) 

as a colourless oil.  

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.72; 1H NMR (CDCl3):  = 9.82 (t, J 

= 2.1 Hz, 1H), 7.66 (d, J = 1.56 Hz, 4 H), 7.41 (m, 6H), 4.02 (t, J = 5.9 Hz, 2H), 

2.61 (dt, J = 2.1, 5.9 Hz, 2H), 1.04 (s, 9H); 13C NMR (CDCl3):  = 202.0, 135.7, 

135.0, 133.4, 130.0, 127.9, 58.5, 46.5, 26.9, 19.3; LC-MS (ESI): tR = 12.45 min, 

calcd. for C19H25O2Si [M+H]+, 313.48, found 312.86. 

 

(S)-Diethyl 2-(4-benzyl-2-oxooxazolidin-3-yl)-2-oxoethylphosphonate (125) 

 

N O

OO
P

EtO

O

OEt

Ph

Chemical Formula: C16H22NO6P
Molecular Weight: 355.3227

 

 

A stirred solution of 131 (2 g, 6.71 mmol) in triethylphosphite (10 ml) was refluxed 

for 12 h, allowed to cool to room temperature and directly transferred on top of a 

silica gel column. Flash chromatography (ethyl acetate/cyclohexane = 5:1) 

furnished the desired product 125 (yield: 1.91 g, 5.4 mmol, 80%) as a viscous 

colourless oil.  
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TLC (ethyl acetate/cyclohexane = 1:1): Rf = 0.1; 1H NMR (CDCl3):  = 7.33-7.23 

(m, 5H), 4.70 (m, 1H), 4.18 (m, 6H), 3.80 (m, 2H), 3.35 (dd, J = 3.3, 13.4 Hz, 1H), 

2.75 (dd, J = 9.8, 13.4 Hz, 1H), 1.35 (t, J = 7.0 Hz, 6H); 13C NMR (CDCl3):  = 

165.2, 164.9, 153.5, 135.3, 129.6, 129.1, 127.5, 66.2, 62.9, 55.6, 37.8, 35.1, 33.9, 

16.5; HRMS: Calcd. for C16H23NO6P: [M+1]+ 356.3227, found 356.1255. 

 

2,2,5-trimethyl-4H-benzo[d]dioxin-4-one (127) 

 

O

O

O Chemical Formula: C11H12O3
Molecular Weight: 192.2112

 

 

126 (1.93 g, 10.7 mmol) was dissolved in 10% NaOH/EtOH solution (20 ml) and 

refluxed for 2 h. The ethanol solution was acidified and extracted with acetyl 

acetate. The solvent was removed and the intermediate was used for the next step.  

To a solution of 6-methylsalicylic acid (1.62 g, 10.7 mmol), DMAP (67 mg, 0.55 

mmol) and acetone (0.96 ml, 13 mmol) in dimethoxyethane (3.6 ml) was added 

dropwise a solution of thionylchloride (1.1 ml, 15 mmol) in dimethoxyethane (0.5 

ml). The temperature was maintained below 30 °C. The reaction mixture was 

stirred for 3 h, after which it was concentrated. The crude product was purified by 

silica gel chromatography (ethyl acetate/cyclohexane = 1:2) to obtain 127 (yield: 

1.82 g, 9.5 mmol, 89%) as a colourless solid.  

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.55; 1H NMR (CDCl3):  = 7.37 (t, J 

= 7.8 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.79 (dq, J = 0.5, 8.2 Hz, 1H), 2.67 (s, 3H), 

1.70 (s, 6H); 13C NMR (CDCl3):  160.60, 156.98, 143.53, 135.01, 125.70, 115.02, 
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112.46, 105.13, 25.67, 21.94; LC-MS (ESI): tR = 11.04 min, calcd. for C11H13O3 

[M+H]+, 193.21, found 193.00. 

 

5-(bromomethyl)-2,2-dimethyl-4H-benzo[d]dioxin-4-one (128) 

 

O

O

O

Br

Chemical Formula: C11H11BrO3
Molecular Weight: 271.1072

 

 

A solution of 127 (1.55 g, 8 mmol), N-bromosuccinimide (1.56 g, 8.8 mmol) and 

AIBN (197 mg, 0.8 mmol) in carbon tetrachloride (20 ml) was refluxed for 15 h. 

The reaction mixture was filtered, and the filtrate was concentrated in vacuo. The 

crude product was dissolved in ethyl acetate, and the organic phase was washed 

with water, brine and dried over Na2SO4. The crude product was purified by silica 

gel chromatography (ethyl acetate/cyclohexane = 1:2) to obtain 128 (yield: 2.15 g, 

7.9 mmol, 99%) as a white solid.  

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.61; 1H NMR (CDCl3):  = 7.47 (dd, 

J = 7.6, 8.2 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 6.94 (dd, J = 1.1, 8.2 Hz, 1H), 5.05 

(s, 2H), 1.72 (s, 6H); 13C NMR (CDCl3):  = 159.70, 157.26, 141.76, 135.57, 

125.75, 117.99, 111.45, 105.70, 30.85, 25.58; LC-MS (ESI): tR = 10.05 min, calcd. 

for C11H12BrO3 [M+H]+, 271.99, found 271.07. 

 

[(2S, 3S)-3-methyloxiran-2-yl] methanol (129) 

 

OH

O Chemical Formula: C4H8O2
Molecular Weight: 88.1051  
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Molecular sieves (4 g, 4 Å) in a Schlenk flask were carefully dried under reduced 

pressure (ca. 0.1 mbar). In an argon atmosphere, DCM (150 ml) was cooled to – 20 

°C.  L-(+) isopropyl tartrate (1 g, 4.3 mmol), (E)-2-buten-1-ol (5 g, 69.4 mmol) and 

titanium (IV)-isopropoxide (1 g, 10 mmol) were added. After stirring for 15 min at 

-20 °C, tert-butyl hydroperoxide solution (23.6 ml, 5.5 M) was added dropwise. 

The mixture was stirred for 2 h at -20 °C. Then, tributylphosphine (17.1 ml) was 

added to the reaction mixture until no peroxides were detected. The solvent was 

removed under reduced pressure; the residue was distilled using a Vigreux column 

(13 mbar, 64 °C) to give pure product 129 (yield: 3.3 g, 37.5 mmol, 54%) as 

colorless liquid.  

 

B.p. = 64 °C at 13 mbar; 1H NMR (CDCl3):  = 3.89 (dd, J = 12.6, 2.16 Hz, 1H), 

3.61 (dd, J = 12.6, 3.92 Hz, 1H), 3.03 (q, J = 2.32 Hz, 1H), 2.88 (t, J = 2.16 Hz, 

1H), 1.86 (br s, 1H), 1.33 (d, J = 5.28 Hz, 3H); 13C NMR (CDCl3):  = 61.73, 

59.52, 52.06, 17.29. 

 

3-(tert-Butyldiphenylsilyloxy)-propanol (130) 

 

TBDPSO OH Chemical Formula: C19H26O2Si
Molecular Weight: 314.4940  

 

To a stirred solution of propanediol (5.8 g, 76.4 mmol) in DCM (50 ml) was added 

DIPEA (5.2 ml, 38.2 mmol) at 0 oC under an inert atmosphere. After 10 min, 

TBDPSCl (7.0 g, 25.5 mmol) in DCM was added at 0 oC and stirred for 12 h at 

room temperature. Water was added and the organic layer was separated. The 

aqueous layer was re-extracted with DCM.  The combined organic layers were 

washed with brine, dried, evaporated and the residue was purified by silica gel 
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chromatography (ethyl acetate/cyclohexane = 1:2) to obtain 130 (yield: 7.2 g, 23 

mmol, 90%) as a viscous liquid. 

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.4; 1H NMR (CDCl3):  = 7.68 (m, 4 

H), 7.42 (m, 6H), 3.84 (m, 4H), 1.81 (m, 2H), 1.06 (s, 9H); 13C NMR (CDCl3):  = 

135.7, 133.4, 129.9, 127.9, 63.4, 62.1, 34.4, 27.0, 19.2; LC-MS (ESI): tR = 12.04 

min, calcd. for C19H27O2Si [M+H]+, 315.49, found 315.07. 

 

(S)-4-Benzyl-3-(2-bromoacetyl)oxazolidin-2-one (131) 

 

N O

OO
Br

Ph

Chemical Formula: C12H12BrNO3
Molecular Weight: 298.1326

 

 

To a solution of (2R)-4-(phenyl methyl)-2-oxazolidinone (4 g, 22.5 mmol) in 

anhydrous THF (50 ml) at – 78 oC was added n-butyl lithium (15.5 ml, 31.5 mmol, 

1.6 M in hexane), followed by bromoacetyl bromide (2.76 ml, 24.8 mmol). The 

solution was stirred at -78 oC for 10 min and then the cooling bath was removed. 

After 20 min, the reaction was quenched by addition of sat. aqueous NH4Cl (50 ml) 

and the residue was extracted with DCM. The organic phases were dried over 

Na2SO4 and concentrated. The crude product was purified by silica gel 

chromatography (ethyl acetate/cyclohexane = 1:2) to obtain 131 (yield: 6.3 g, 21 

mmol, 94%) as a yellow oil.  

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.28; 1H NMR (CDCl3, 400 MHz):  = 

7.34 (m, 3H), 7.21 (m, 2H), 4.70 (m, 1H), 4.55 (d, J = 12.7 Hz, 1H), 4.52 (d, J = 

12.7 Hz, 1H), 4.25 (m, 2H), 3.33 (dd, J = 3.3, 13.4 Hz, 1H), 2.81 (dd, J = 9.5, 13.4 
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Hz, 1H); 13C NMR (CDCl3):  = 166.1, 153.1, 134.9, 129.6, 129.2, 127.7, 66.8, 

55.6, 37.7, 28.3; LC-MS (ESI): tR = 9.46 min, calcd. for C12H13BrNO3 [M+H]+, 

298.56, found 298.27. 

 

(S,E)-4-Benzyl-3-(5-(tert-butyldiphenylsilyloxy)pent-2-enoyl)oxazolidin-2-one 

(132) 

 

N
O

OO

Ph

TBDPSO

Chemical Formula: C31H35NO4Si
Molecular Weight: 513.6994

 

 

To a solution of 125 (1 g, 3.2 mmol) in anhydrous THF (20 ml) at 0 oC was added 

NaHMDS (0.586 g, 3.2 mmol), leading to a hazy orange solution, to which was 

added a solution of 124 (1.13 g, 3.2 mmol) in anhydrous THF (14 ml). The reaction 

mixture was allowed to warm to room temperature and stirred for 1 h before it was 

poured into ethyl acetate and sat. aqueous NH4Cl. The layers were separated and 

the aqueous layer was extracted with ethyl acetate. The combined organic extracts 

were dried with Na2SO4, and concentrated in vacuo. The crude product was 

purified by silica gel chromatography (ethyl acetate/cyclohexane = 1:2) to obtain 

132 (yield: 1.4 g, 2.7 mmol, 85%) as a colourless oil.  

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.65; 1H NMR (CDCl3):  = 7.68 (m, 

4H), 7.46-7.19 (m, 13H), 4.77-4.69 (m, 1H), 4.23-4.14 (m, 2H), 3.81 (t, J = 6.3 Hz, 

2H), 3.33 (dd, J = 3.2, 13.3 Hz, 1H), 2.80 (dd, J = 9.5, 13.3 Hz, 1H), 2.54 (q, J = 

6.3 Hz, 2H), 1.06 (s, 9H); 13C NMR (CDCl):  = 164.8, 153.3, 148.4, 135.6, 135.4, 

133.6, 133.6, 129.7, 129.4, 128.9, 127.7, 127.3, 122.0, 66.1, 62.4, 55.3, 37.9, 36.0, 

26.8, 19.2; HRMS: Calcd. for C31H36NO4Si [M+H]+ 514.6994, found 514.2404.  
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(S)-4-Benzyl-3-((S)-5-(tert-butyldiphenylsilyloxy)-2-((R)-1-hydroxyethyl)pent-

3-enoyl) oxazolidin-2-one (133) 

 

TBDPSO

OH

O

N

O

O
Ph Chemical Formula: C33H39NO5Si

Molecular Weight: 557.7520  

 

To a solution of 132 (1.2 g, 2.34 mmol) in anhydrous DCM (20 ml), TEA (0.445 

ml, 3.26 mmol) and Bu2BOTf (2.8 mL, 2.8 mmol, 1.0 M in DCM) were added at -

78oC. The mixture was stirred for 1 h at -78 oC and 1 h at 0 oC. Acetaldehyde 

(0.262 ml, 4.6 mmol) in DCM (1 mL) was added dropwise at -78 oC. The mixture 

was stirred for 2 h at -78 oC and 2 h at 0 oC. The reaction was quenched with a 

mixture of phosphate buffer pH 7, MeOH and H2O2 (1:1:1, 15 ml) and the mixture 

was kept under vigorous stirring overnight. The product was then extracted with 

ethyl acetate and the combined extracts were washed with water and brine, dried 

over Na2SO4, and concentrated under reduced pressure. The crude product was 

purified by silica gel chromatography (ethyl acetate/cyclohexane = 1:2) to obtain 

133 (yield: 1.2 g, 2.1 mmol, 91%) as a light yellow oil.  

 

[ ]20
D = +18.97 (c = 0.78, CDCl3); TLC (ethyl acetate/cyclohexane = 1:2): Rf = 

0.16; 1H NMR (CDCl3):  = 7.72 (m, 4H), 7.46 (m, 6H), 7.29 (m, 3H), 7.18 (m, 

2H), 5.94 (d, J = 6.08 Hz, 1H), 4.72 (m, 1H), 4.52 (m, 1H), 4.28-4.14 (m, 5H), 3.22 

(dd, J = 9.36, 13.36 Hz, 1H), 2.70 (dd, J = 9.36, 13.36 Hz, 1H), 1.20 (d, J = 6.24 Hz, 

3H), 1.07 (s, 9H); 13C NMR (CDCl3):  = 174.3, 153.1, 136.3, 135.7, 135.1, 133.7, 

129.8, 129.60, 127.8, 123.9, 123.0, 66.1, 64.2, 60.5, 55.2, 52.2, 48.7, 37.7, 27.0, 

20.0, 19.3; HRMS: Calcd. for C33H40NO5Si [M+H]+ 558.7520, found 558.2667. 
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(S)-4-Benzyl-3-((S)-5-(tert-butyldiphenylsilyloxy)-2-((S)-1-para-

nitrobenzoicylethyl)pent-3- enoyl)oxazolidin-2-one (134) 

 

TBDPSO
O

O
N

O
O

Ph

O
NO2

Chemical Formula: C40H42N2O8Si
Molecular Weight: 706.8556

 

 

To an ice-cooled solution of 133 (0.84 g, 1.5 mmol) in THF (50 ml) were added 

para-nitrobenzoic acid (0.5 g, 3 mmol), triphenylphosphine (0.79 g, 3 mmol) and 

dropwise di-iso-propyl azodicarboxylate (627 μl, 3 mmol). The reaction mixture 

was stirred for 30 min at 0 oC and 30 min at room temperature. After concentration 

in vacuo, the residue was purified by silica gel chromatography (ethyl 

acetate/cyclohexane = 1:2) to obtain 134 (yield: 0.96 g, 1.36 mmol, 91%) as a 

yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.5; 1H NMR (CDCl3):  = 7.65 (m, 

5H), 7.46-7.32 (m, 14H), 6.69 (m, 1H), 5.85 (m, 1H), 4.69 (m, 1H), 4.29 (m, 2H), 

4.14 (m, 4H), 3.42 (dd, J = 9.36, 13.36 Hz, 1H), 2.72 (dd, J = 9.36, 13.36 Hz, 1H), 

1.86 (d, J = 6.24 Hz, 3H), 1.07 (s, 9H); 13C NMR (CDCl3):  = 181.4, 169.5, 135.3, 

134.9, 134.2, 133.2, 130.5, 129.4, 129.1, 128.7, 127.4, 121.8, 121.4, 65.8, 63.8, 

55.0, 37.6, 26.6, 21.3, 18.9, 13.3; LC-MS (ESI): tR = 13.10 min, calcd. for 

C40H43N2O8Si [M+H]+, 707.86, found 707.32. 
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(S)-4-benzyl-3-((S)-5-(tert-butyldiphenylsilyloxy)-2-((S)-1-hydroxyethyl)pent-3-

enoyl) oxazolidin-2-one (135) 

 

TBDPSO

OH

O

N

O

O
Ph Chemical Formula: C33H39NO5Si

Molecular Weight: 557.7520
 

 

To a solution of 134 (0.96 g, 1.36 mmol) in MeOH (50 mL) was added K2CO3 

(0.414 g, 3 mmol). After stirring for 2 h at room temperature, the reaction mixture 

was filtered and then evaporated. The residue was purified by silica gel 

chromatography (ethyl acetate/cyclohexane = 1:2) to obtain 135 (yield: 0.6 g, 1.07 

mmol, 79%) as a colourless oil. 

 

[ ]20
D = -5.19 (c = 0.67, CDCl3); TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.2; 

1H NMR (CDCl3):  = 7.72 (m, 4H), 7.46 (m, 6H), 7.29 (m, 3H), 7.18 (m, 2H), 

6.52 (m, 2H), 5.68 (m, 2H), 4.24 (m, 3H), 4.14 (m, 1H), 3.66 (m, 2H), 2.86 (m, 2H), 

2.45 (br s, 1H), 1.76 (d, J = 6.24 Hz, 3H), 1.08 (s, 9H); 13C NMR (CDCl3):  = 

169.4, 137.7, 135.7, 135.6, 134.8, 133.6, 132.3, 129.9, 129.3, 128.8, 126.9, 122.7, 

121.4, 69.8, 65.2, 64.0, 53.5, 37.0, 27.0, 19.4, 14.0; LC-MS (ESI): tR = 12.43 min, 

calcd. for C33H40NO5Si [M+H]+, 558.75, found 558.42. 

 

tert-Butyl-((4R,5R)-5-methoxy-4-((tetrahydro-2H-pyran-2-yloxy)methyl)hex-2-

enyloxy)diphenylsilane (137) 

 

TBDPSO

O

OTHP
Chemical Formula: C29H42O4Si

Molecular Weight: 482.7269  

 



Zhe Ming Wang Experimental section Doctoral Dissertation 2009 

 - 217 - Chemical Genomics Centre (CGC) 

To a solution of 136 (0.8 g, 1.4 mmol) and methanol (115 μl, 2.8 mmol) in diethyl 

ether (25 ml) was added LiBH4 (62 mg, 2.8 mmol) at 0 °C. After stirring for 2 h, 

the resulting mixture was warmed to room temperature and stirred for 1 h. The 

reaction mixture was quenched with sat. NH4Cl and extracted with ethyl acetate. 

The combined organic extracts were washed with brine, dried over Na2SO4 and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(ethyl acetate/cyclohexane = 1:2) to obtain the intermediate (yield: 0.52 g, 1.3 

mmol, 93%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.5;  

 

To a solution of the above intermediate (0.46 g, 1.14 mmol) in DCM (20 ml) were 

added DHP (0.32 mL, 3.5 mmol) and PPTS (28 mg, 0.11 mmol) at room 

temperature. After 5 h, the mixture was quenched by addtion of  NaHCO3, the 

organic layer was separated and the aqueous layer was re-extracted. The combined 

organic layers were dried over Na2SO4, concentrated and the crude product was 

purified by silica gel chromatography (ethyl acetate/cyclohexane = 1:9) to obtain 

product 137 (yield: 0.43 g, 0.9 mmol, 80%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:9): Rf = 0.67; 1H NMR (CDCl3):  = 7.68 (m, 

4H), 7.38 (m, 6H), 5.82 (m, 1H), 5.68 (m, 1H), 4.55 (m, 1H), 4.27 (m, 1H), 4.18 (m, 

1H), 3.73 (m, 2H), 3.54-3.33 (m, 3H), 3.31 (s, 3 H), 2.48 (m, 1H), 1.87-1.43 (m, 

6H), 1.10 (d, J = 6.3 Hz, 3H), 1.04 (s, 9H); 13C NMR (CDCl3):  = 134.6, 133.9, 

132.0, 129.5, 128.3, 127.6, 99.0, 98.8, 76.5, 67.9, 67.8, 64.7, 62.2, 56.7, 48.2, 47.9, 

30.7, 26.9, 26.8, 25.5, 19.5, 19.2, 16.6. 
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(4R, 5R)-5-Methoxy-4-((tetrahydro-2H-pyran-2-yloxy)methyl)hex-2-en-1-ol 

(138) 

 

HO

O

OTHP
Chemical Formula: C13H24O4
Molecular Weight: 244.3273  

 

To a solution of 137 (0.36 g, 0.74 mmol) in THF (30 ml), TBAF (0.26 g, 0.82 

mmol) was added at room temperature. After 3 h, the reaction mixture was 

quenched by addition of sat. aqueous NH4Cl and extracted with ethyl acetate. The 

organic layer was washed with water and brine, dried over Na2SO4, and 

concentrated in vacuo. The crude product was purified by silica gel 

chromatography (ethyl acetate/cyclohexane = 1:2) to obtain product 138 (yield: 

0.15 g, 0.63 mmol, 85%) as a yellow oil. 

 

TLC (ethyl acetate/cyclohexane = 1:2): Rf = 0.23; 1H NMR (Acetone-d6):  = 5.68 

(m, 1H), 5.58 (m, 1H), 4.56 (t, J = 8.4 Hz, 1H), 4.03 (m, 2H), 3.80 (m, 1H), 3.55 (m, 

2H), 3.45 (m, 1H), 3.28 (s, 3H), 3.25 (m, 1H), 2.76 (t, J = 1.0 Hz, 1H); 2.35 (m, 

1H), 1.85-1.40 (m, 6H), 1.07 (d, J = 8.2 Hz, 3H); 13C NMR (Acetone-D6):  = 

135.3, 129.6, 100.5, 77.7, 69.7, 64.3, 63.3, 57.7, 50.3, 32.5, 27.4, 21.2, 17.9; LC-

MS (ESI): tR = 7.32 min, calcd. for C13H25O4 [M+H]+, 245.33, found 245.01. 

 



Zhe Ming Wang Experimental section Doctoral Dissertation 2009 

 - 219 - Chemical Genomics Centre (CGC) 

5-((1E,3E,5R,6R)-6-Methoxy-5-((tetrahydro-2H-pyran-2-yloxy)methyl)hepta-

1,3-dienyl)-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (139) 

 

O

OTHP

O O

O
Chemical Formula: C24H32O6
Molecular Weight: 416.5073

 

 

To a solution of 138 (120 mg, 0.48 mmol) in DCM (15 mL) was added NaHCO3 

(81 mg, 1 mmol) and DMP (312 mg, 0.73 mmol). The mixture was stirred at 0 °C 

for 45 min and quenched by addition of aqueous Na2S2O3 and aqueous NaHCO3. 

The layers were separated and the organic phase was extracted with diethyl ether. 

The combined organic layers were washed with brine, dried over Na2SO4 and 

concentrated in vacuo to give the crude aldehyde intermediate (105 mg) which was 

used immediately.  

 

To a solution of 112 (141 mg, 0.43 mmol) and the above aldehyde intermediate 

(105 mg, 0.43 mmol) in anhydrous THF (10 ml) was added KOtBu (50 mg, 0.45 

mmol) at 0 oC and stirred for 1 h. The reaction mixture was quenched by addition 

of NH4Cl and extracted with ethyl acetate. The organic layer was separated, dried, 

concentrated and the crude product was purified by silica gel chromatography 

(ethyl acetate/cyclohexane = 1:1) to obtain product 139 (yield: 100 mg, 0.24 mmol, 

57%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:1): Rf = 0.62; 1H NMR (CDCl3):  = 7.63 (d, J 

= 14.7 Hz, 1H), 7.42 (t, J = 7.9 Hz, 1H), 7.29 (d, J = 8 Hz, 1H), 6.80 (q, J = 8.2 Hz, 

2H), 6.42 (m, 1H), 5.85 (m, 1H), 4.59 (t, J = 3.4 Hz, 1H), 3.89 (m, 2H), 3.75 (m, 
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3H), 3.34 (s, 3H), 2.48 (m, 1H), 1.88-1.74 (m, 2H), 1.70 (s, 6H), 1.64-1.46 (m, 4H), 

1.14 (d, J = 6.8 Hz, 3H); 13C NMR (CDCl3):  = 157.1, 135.1, 134.4, 134.3, 133.9, 

128.6, 120.8, 115.9, 105.2, 99.3, 98.9, 68.1, 62.4, 56.9, 49.1, 30.8, 27.0, 25.8, 19.7, 

17.0. 

 

5-((1E,3E,5R,6R)-5-(Hydroxymethyl)-6-methoxyhepta-1,3-dienyl)-2,2-

dimethyl-4H-benzo[d][1,3]dioxin-4-one (140) 

 

O

OH

O O

O
Chemical Formula: C19H24O5
Molecular Weight: 332.3909

 

 

To a stirred solution of 139 (90 mg, 0.22 mmol) in methanol (15 ml) were added 

catalytic amounts of PPTS (12 mg) at 0 oC under an inert atmosphere. The reaction 

mixture was stirred for 2 days at room temperature. The solvent was removed 

under reduced pressure and the residue was purified by silica gel chromatography 

(ethyl acetate/cyclohexane = 1:1) to obtain product 140 (yield: 46 mg, 0.14 mmol, 

66%) as a colourless oil. 

 

TLC (ethyl acetate/cyclohexane = 1:1): Rf = 0.21; 1H NMR (CDCl3):  = 7.65 (d, J 

= 15.6 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 7.29 (d, J = 7.9 Hz, 1H), 6.80 (m, 2H), 

6.42 (m, 1H), 5.83 (dd, J = 9.1, 15.2 Hz, 1H), 3.82-3.61 (m, 3H), 3.36 (s, 3H), 2.52 

(m, 1H), 1.70 (s, 6H), 1.16 (d, J = 6.24 Hz, 3H); 13C NMR (CDCl3):  = 160.6, 

157.1, 141.9, 135.2, 134.3, 133.2, 132.5, 129.4, 128.1, 120.8, 116.1, 105.3, 79.2, 

64.6, 56.7, 50.1, 25.8, 16.2; IR (neat): 3435, 2928, 1725, 1042 cm-1; LC-MS (ESI): 

tR = 8.24 min, calcd. for C19H25O5 [M+H]+, 333.39, found 333.22. 
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5-((1E,3E,5R,6R)-5-Formyl-6-methoxyhepta-1,3-dienyl)-2,2-dimethyl-4H-

benzo[d][1,3]dioxin-4-one (141) 

 

O

O

O O

O
Chemical Formula: C19H22O5
Molecular Weight: 330.3750

 

 

To a solution of 140 (40 mg, 0.12 mmol) in DCM (5 ml) was added NaHCO3 (21 

mg, 0.25 mmol) and DMP (0.08 g, 0.18 mmol). The resulting mixture was stirred at 

0 °C for 30 min and directly transferred on top of a silica gel column. Flash 

chromatography (ethyl acetate/cyclohexane = 1:1) furnished the desired 141 (yield: 

33 mg, 0.1 mmol, 86%) as a colourless oil, which was used immediately.  

 

TLC (ethyl acetate/cyclohexane = 1:1): Rf = 0.56. 

 

5-((1E,3E,5R,6R)-5-(1-Hydroxyl-2-diethylphosphonyl-propyl)-6-

methoxyhepta-1,3-dienyl)-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (142) 

 

O

O O

O OH
P OEt
OEt

O

Chemical Formula: C25H37O8P
Molecular Weight: 496.5302

 

 

To a solution of diethylethylphosphonate (50 mg, 0.3 mmol) in THF (1 ml) at -78 

°C was added n-BuLi (125 μl, 0.2 mmol, 1.6 M in hexanes) dropwise. The reaction 

mixture was stirred for 15 min and then a solution of 141 (33 mg, 0.1 mmol) in 
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THF (1 ml) was added dropwise. The dark yellow solution was stirred at - 78 °C 

for 1h, and a sat. NH4Cl solution (2 ml) was added. The mixture was diluted with 

water (2 ml) and the organic layer was separated, dried over Na2SO4, and 

concentrated in vacuo. The residue was purified by silica gel chromatography 

(ethyl acetate/cyclohexane = 1:1) to obtain product 142 (yield: 11 mg, 23 μmol, 

23%) as a yellow oil, which was inpure due to remaining impurity. 

 

TLC (ethyl acetate/cyclohexane = 1:1): Rf = 0.47; LC-MS (ESI): tR = 7.67 min, 

calcd. for C25H38O8P [M+H]+, 497.53, found 497.26. 

 

5-((1E,3E,6R)-6-Methoxyhepta-1,3-dienyl)-2,2-dimethyl-4H-

benzo[d][1,3]dioxin-4-one (144) 

 

O

O O

O

Chemical Formula: C18H22O4
Molecular Weight: 302.3649

 

 

To a solution of 112 (435 mg, 1.33 mmol) in anhydrous THF (5 ml) was added 

KOtBu (145 mg, 1.3 mmol) at 0 °C. After the reaction mixture turns red, 146 (170 

mg, 1.33 mmol) in anhydrous THF (4 ml) was added. The reaction mixture was 

stirred at 0 °C for 1 h and at room temperature for 1 h, quenched by addition of sat. 

NH4Cl and extracted with ethyl acetate. The organic layer was separated, dried over 

Na2SO4, and concentrated in vacuo. The residue was purified by silica gel 

chromatography (ethyl acetate/cyclohexane = 1:5) to obtain pure product 144 (yield: 

321 mg, 1.06 mmol, 80%) as a yellow oil.  
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TLC (ethyl acetate/cyclohexane = 1:5): Rf = 0.27; 1H NMR (CDCl3):  = 7.59 (d, J 

= 15.6 Hz, 1H), 7.38 (t, J = 8 Hz, 1H), 7.29 (q, J = 7.8 Hz, 1H), 6.76 (m, 2H), 6.35 

(m, 1H), 5.86 (m, 1H), 3.38 (q, J = 6.08 Hz, 1H), 3.32 (s, 3H), 2.31 (m, 2H), 1.68 (s, 

6H), 1.14 (d, J = 6.04 Hz, 3H); 13C NMR (CDCl3):  = 160.5, 157.0, 142.1, 135.1, 

133.5, 133.2, 133.1, 128.4, 120.7, 115.8, 110.7, 105.2, 76.6, 56.2, 39.5, 25.7, 19.1; 

LC-MS (ESI): tR = 11.20 min, calcd. for C18H23O4 [M+H]+, 303.36, found 303.07. 

 

5-Methoxy-(2E)-hexenal (146) 

 

O

O Chemical Formula: C7H12O2
Molecular Weight: 128.1690  

 

To a solution of 5-(S)-Hydroxy-(2E)-hexenal (500 mg, 4.38 mmol) and 2,6-di-tert-

butyl-4-methylpyridine (1.17 g, 5.7 mmol) in anhydrous DCM (8 ml) was added 

methyltriflate (645 μl, 5.7 mmol) at room temperature. After stirring overnight, the 

mixture was directly transferred on top of a silica gel column. Flash 

chromatography (ethyl acetate/petroleum ether = 1:2) furnished the desired 146 

(yield: 504 mg, 3.9 mmol, 90%). However it could not be obtained as pure 

compound due to its low boiling point, and used directly for the next reaction. 

 

B.p. = 33 °C at 16 mbar; TLC (ethyl acetate/petroleum ether = 1:2): Rf = 0.52. 
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1-Methyl-(3S,4S)-oxirane-(2E)-hexenoic acid (147) 

 

O

O
HO

Chemical Formula: C7H10O3
Molecular Weight: 142.1525  

 

To a 0.1 M NaOH solution (THF/H2O 1:1, 10 ml) was added 150 (167 mg, 1.1 

mmol) at room temperature for 3 h. The unreacted 150 was removed by addition of 

ethyl acetate and extraction. The aqueous phase was acidfied by addition of 0.1 M 

HCl to pH 4 and the product was extracted by addition of ethyl acetate. The organic 

layer was dried over Na2SO4 and concentrated in vacuo. The residue was purified 

by silica gel chromatography (methanol/DCM = 1:9) to obtain pure product 147 

(yield: 79 mg, 0.56 mmol, 51%) as a viscous colourless oil.  

 

TLC (methanol/DCM = 1:9): Rf = 0.48; 1H NMR (MeOD):  = 6.65 (d, J = 9.1 Hz, 

1H), 4.20 (dd, J = 6.24, 9.16 Hz, 1H), 3.68 (m, 1H), 1.88 (s, 3H), 1.12 (d, J = 6.44 

Hz, 3H); 13C NMR (MeOD):  = 171.3, 141.7, 131.4, 73.6, 71.5, 18.7, 13.4. 

 

5-Hydroxy-(2E)-hexenal (148) 

 

OH

O Chemical Formula: C6H10O2
Molecular Weight: 114.1424  

 

A mixture of THF/acetaldehyde (4:1, 500 ml) and L-proline (1.2 g) was stirred for 

14 h at 4 °C. The crude reaction mixture was filtered through silica gel and 

concentrated in vacuo. The residue was then purified by silica gel chromatography 

(ethyl acetate/petroleum ether = 1:1) to obtain pure product 148 (yield: 3.2 g, 28 

mmol) as a colourless oil.  
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TLC (ethyl acetate/petroleum ether = 1:1): Rf = 0.38. The obtained NMR 

spectrums were in accordance to the literature values. 

 

Methyl (triphenylphosphoranylidene)propionate (149) 

 

OMe

O

PPh3
Chemical Formula: C22H21O2P

Molecular Weight: 348.3747  

 

A mixture of triphenylphosphine (2.11 g, 8.06 mmol) and methyl bromopropionate 

(1.00 ml, 8.96 mmol) in H2O (10 mL) was stirred for 24 h at 70 °C. The mixture 

was cooled to room temperature, then a solution of NaOH (716 mg, 17.9 mmol) in 

H2O (21 mL) was added. The resulting mixture was stirred for 5 min at room 

temperature, then DCM was added to redissolve the suspension formed overnight. 

The organic layer was separated, and the aqueous layer was extracted with DCM. 

The combined organic layers were dried over Na2SO4 and concentrated. The 

residue was triturated with hexane and filtered. The resulting residue was dried in 

vacuo to give 149 (2.66 g, 7.64 mmol, 95%) as a light yellow solid.  

 

The obtained NMR spectrums were in accordance to the literature values. 

 

1-methyl-(3S,4S)-oxirane-(2E)-hexenoic methyl ester (150) 

 

O

O
O

Chemical Formula: C8H12O3
Molecular Weight: 156.1791  

 

To a solution of 129 (317 mg, 3.6 mmol) and 149 (1.5 g, 4.33 mmol) in DCM (90 

ml) was added MnO2 (2.5 g, 29 mmol) at room temperature. The resulting mixture 
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was stirred for 2 days and then filtrated through Celite and washed with DCM. The 

filtrate was concentrated. The residue was purified by silica gel chromatography 

(ethyl acetate/petroleum ether = 1:5) to obtain pure product 150 (yield: 546 mg, 3.5 

mmol, 97%) as a colourless oil.  

 

TLC (ethyl acetate/petroleum ether = 1:5): Rf = 0.47; 1H NMR (CDCl3):  = 6.28 

(d, J = 8.8 Hz, 1H), 3.74 (s, 3H), 3.31 (dd, J = 1.76, 8.8 Hz, 1H), 3.03 (m, 1H), 2.00 

(s, 3H), 1.39 (d, J = 5.28 Hz, 3H); 13C NMR (CDCl3):  = 167.8, 138.4, 132.4, 56.4, 

55.6, 52.2, 17.7, 13.1; LC-MS (ESI): tR = 7.99 min, calcd. for C8H12O3 [M]+, 156.18, 

found 156.93. 
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6.2 Biological part 

6.2.1 Material of bioassays 

Chemicals, antibiotics and inhibitors 

 

All chemicals and antibiotics were purchased from Sigma, Roth, Merck and 

Duchefa. DCG-04 was provided by Dr. H. Overkleeft (Leiden University, 

Netherlands) and Dr. M. Bogyo (Stanford Medical School, US). “Click Chemistry” 

trifunctional tag was provided by Dr. B. F. Cravatt (Skaggs Institute for Chemical 

Biology, US). Inhibitors for competition assays were purchased from Sigma, 

Bachem, Fluka, Calbiochem and from labs of Dr. Dr. H. Overkleeft, Dr. M. Bogyo, 

Dr. B. F. Cravatt and Dr. S. Q. Yao (National University of Singapore). 

 

Enzymes 

 

Restriction enzymes were purchased from Fermentas and New England Biolabs. 

Taq polymerase for standard PCR was purchased from Promega and BioBudget. 

High-fidelity polymerase was purchased from Roche. Ligase was purchased from 

Promega and Fermentas. Wheat germ lipase Type I and Pseudomonas fluorescence 

lipase were purchased from Sigma-aldrich.  

  

Vectors 

 

Plasmid pFK26 was supplied by Dr. F. Kaschani at MPIZ (Colonge, Germany). 
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Kits and primers 

 

Oligonucleotide primers were purchased from Invitrogen. Kits for isolating DNA 

were purchased from Qiagen (Hilden, Germany). Kits for isolating Plasmid were 

purchased from Peqlab (Erlangen, Germany) or Macherey-Nagel (Duren, 

Germany). 

 

Pathogens 

 

Pseudomonas syringea pv. tomato strain DC3000 (Pst) was obtained from Dr. 

Silke Robatzek and Dr. Jane Parker at the MPIZ (Cologne, Germany). 

Pseudomonas syringea pv. tomato DC3000 carrying AvrPphB was obtained from 

lab of Dr. R. A. van der Hoorn at MPIZ (Cologne, Germany). 

 

Bacterial strains 

 

Cloning was applied with Escherichia coli strain DH10B. Agrobacterium-

infiltration and plant transformation was utilized with Agrobacterium tumefaciens 

strain GV3101. 

  

Plant material 

 

The Arabidopsis thaliana was carried out using ecotype Columbia (Col-0). -VPE 

overexpressor and knockout lines described in (Rojo et al., 2003 and Rojo et al., 

2004) and quadrupole mutant of VPE described in (Gruis et al., 2004) were used 

for labelling assays. Arabidopsis thaliana ecotype Landsberg cell suspension 
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culture was obtained from Sainsbury lab (John Innes centre, Norwich, UK). N. 

benthamiana (310A) were grown at the MPIZ (Cologne, Germany). 
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6.2.2 Methods of bioassays 

Plant growth conditions 

 

Arabidopsis used for labelling assays were grown in two different ways: long day 

(16:8 day/night regime) or short day condition (12:12 day/night regime). Four to 

five weeks old plants were applied for labelling assays. N. benthamiana were 

grown in a climate chamber at a 14 h light regime at 18°C (night) and 22°C (day). 

Four to six weeks old plants were applied for agroinfiltration.  

All the plants were planted by labmates from plant chemetics lab and workers in 

MPIZ. 

 

Preparation of leaf extracts 

 

The leaves of Arabidopsis were usually 1 cm long and 0.5 cm broad. The well 

growing leaves, without speckles on the surface, were used for assays.  

 

a. Extraction with 10% triton TX-100 

 

Leaves in an Eppendorf tube (1.5 ml) with water (100 μl) were grinded with a blue 

stick (sigma C7353). After that, water (890 μl) was added with 10% triton TX-100 

(10 μl). The mixture was centrifugated at 13.2 krpm for 1 min after a short time of 

vibration by a vortex. Clear green aqueous extract (900 μl) was removed out and 

used for labelling assays.  
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b. Extraction without 10% triton TX-100 

 

The process is same as above without using triton. 

 

General principle of ABPP  

 

Basic Material: 

TBS: 150 mM NaCl and 50 mM pH 7.5 Tris-HCl Buffer 

TBST: TBS + 0.1% Tween-20 

TBS + 3% BSA: 50 ml TBS + 1.5 g BSA 

Loading buffer (2 x SDS buffer): 5 ml total, 0.5 ml 1M pH 6.8 Tris, 3.5 ml 

50% glycerol, 1.6 ml 10% SDS, 0.4 ml BME + BFB 

 

Master solution: per each assay 

25 μl buffer (final 50 mM); 

0.5 μl 1M CaCl2 (end 1 mM); if needed 

0.5 mg L-Cys (final 1 mg/ml) or DTT (final 1 mM); if needed 

375 μl H2O  

 

Labelling 

 

To one Eppendorf tube (1.5 ml) with master solution (400 μl) was added fresh leaf 

extract (100 μl) and ABP (n μM). The mixture was rotated with a rotary shaker for 

n h and the labelling reaction was quenched with a -20°C acetone (1 ml). The 

proteins were centrifugated at 13 krpm for 2 min and supernatant was removed. 70 

% acetone (500 μl) of -20°C was added again. The proteins in acetone solution 
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were vortexed and centrifugated (1 min, 13 krpm) and the supernatant was removed. 

The protein pellets were dried at room temperature, resuspended in 50 μl SDS 

loading buffer, heated at 90°C for 10 min and stored at -20°C.  

 

Western blot for detecting biotinylated proteins: 

 

Samples were loaded onto polyacrylamide gel (12%) and proteins were transferred 

to a PVDF membrane (Millipore IVPH00010). The membrane was incubated with 

ultrasensitive streptavidin-HRP (Sigma S2438, dilution of 1:3000) and signals were 

detected using enhanced chemiluminescence (pierce femto ECL 34095)/(pico ECL 

34080) (Thermo Fisher Scientific, Bonn, Germny) on X-ray films (Kodak, 

Germany). 

 

Fluorescence scan for detecting fluorescent probe labelled proteins 

 

Samples were loaded onto polyacrylamide gel (12%). After a short time of washing 

the gel, proteins on the gel were directly scanned with a Typhoon 8600 variable 

mode imager.  

 

No probe control 

 

The protocol is same as above, only using same volume of DMSO instead of ABP 

solution. 
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Cloning for AvrPphB 

 

AvrPphB was amplified from Pseudomonas syringea pv. tomato DC3000 carrying 

AvrPphB with the primers we designed. Cloning vector pFK26 was digested with 

restriction enzymes XhoI and Pst1. PCR products were digested and ligated into 

pFK26 and the plasmids were transformed into E. coli. Successful clones, validated 

by nucleotide sequencing, were digested using the same restriction enzymes for 

shuttling into the PTP05 binary vector. Inserts in the generated pZM05 plasmid 

were confirmed by PCR using vector specific primers. 

 

Agrobacterium infiltration of AvrPphB construct 

 

pZM05 plasmids were transformed into Agrobacterium tumefaciens strain GV3101. 

Spin down the bacteria from the medium, add 0.5 to 1 ml MES Buffer (10 mM 

MgCl2, 10 mM 2-(N-Morpholino)ethanesulfonic acid) and measure OD. Tune the 

concentration and dilute OD into 2, add acetosyringon (final 10 mM). Let the 

mixture stay in darkness for 2 hours and in the meanwhile put water on the plant 

soil under light to activate the plant. When plant is treated water under light, the 

stomas back side of leaves will be open. The bacteria were infiltrated into the 

leaves of N. benthamiana with a syringe. 
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6.2.3 Procedures of ABPP 

All the procedures follow the general principle of ABPP, and the detail information 

of each assay is described according to the figure of the assay. 

 

Figure 3 

 

Wheat germ lipase Type I (WGL) and Pseudomonas fluorescence lipase (PL) were 

prepared as 0.5 mg/ml aqueous solutions, which were incubated with probes 23 and 

24 at a final concentration (4 μM) for 3 h at room temperature. Preparation of 

protein samples was followed the general method and the proteins on the protein 

blots were detected by streptavidin-HRP. 

 

Figure 4 

 

Arabidopsis leaf extracts (LE) and cell cultures (CC) were prepared as 5 mg/ml (LE) 

and 50 mg/ml (CC) pH 6 NaOAc buffer solutions respectively, which were 

incubated with probes 23 and 24 at a final concentration (4 μM) for 3 h at room 

temperature. Preparation of protein samples was followed the general method and 

the proteins on the protein blots were detected by streptavidin-HRP. 

 

Figure 5a/b 

 

Arabidopsis leaf extracts were prepared as 5 mg/ml pH 6 NaOAc buffer solutions, 

which were incubated with probe 23 at a final concentration (4 μM) and co-

incubated with inhibitors at a final concentration (40 μM) for competition labelling, 

for 3 h at room temperature. Preparation of protein samples was followed the 
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general method and the proteins on the protein blots were detected by streptavidin-

HRP. 

 

Figure 6 

 

a 

Arabidopsis leaf extracts were prepared as 5 mg/ml pH (4 or 6) NaOAc and (8 or 

10) Tris buffer solutions respectively, which were incubated with probe 23 at a 

final concentration (4 μM) for 3 h at room temperature.  

b 

Arabidopsis leaf extracts were prepared as 5 mg/ml pH 6 NaOAc buffer solutions 

with additional cofactors (Cysteine or CaCl2) respectively, which were incubated 

with probe 23 at a final concentration (4 μM) for 3 h at room temperature. 

c 

Arabidopsis leaf extracts were prepared as 5 mg/ml pH 6 NaOAc buffer solutions, 

which were incubated with probe 23 at a final concentration (4 μM) for (1/4, 1/2, 1, 

2, 3, 4, 5, 10) h at room temperature. 

d 

Arabidopsis leaf extract was separated as membrane proteome (M) and soluble 

proteome (S) with an ultra-centrifugation. Another equal leaf extract as total 

proteome (T) with M and S were prepared as 20 mg/ml (T) pH 6, NaOAc buffer 

solutions respectively, which were incubated with probe 23 at a final concentration 

(4 μM) for 3 h at room temperature. 

All preparation of protein samples was followed the general method and the 

proteins on the protein blots were detected by streptavidin-HRP. 

 



Zhe Ming Wang Experimental section Doctoral Dissertation 2009 

 - 236 - Chemical Genomics Centre (CGC) 

Figure 9a/b 

 

Arabidopsis leaf extracts were prepared as 5 mg/ml (a) and 0.15 mg/ml (b) pH 8 

Tris buffer solutions with DTT (1 mM), which were incubated with probes 38 - 45 

at a final concentration (2 μM) for 3 h at room temperature. Preparation of protein 

samples was followed the general method and the proteins on the protein blots were 

detected by streptavidin-HRP. 

 

Figure 10 

 

Arabidopsis leaf extracts were prepared as 50 μg/ml pH 7.4 TBS and pH 7.5 

caspase buffer solutions with DTT (1 mM) respectively, which were incubated with 

probes 41 and DCG-04 at a final concentration (2 μM) and co-incubated with 

inhibitors at a final concentration (60 μM) for competition labelling, for 3 h at room 

temperature. Preparation of protein samples was followed the general method and 

the proteins on the protein blots were detected by streptavidin-HRP. 

 

Figure 12 

 

a 

Arabidopsis leaf extracts were prepared as 50 μg/ml pH (4 – 6.5) NaOAC and pH 

(7 – 10) Tris buffer solutions with DTT (1 mM) respectively, which were incubated 

with probes 41 at a final concentration (2 μM) for 3 h at room temperature.  

b 

Arabidopsis leaf extracts were prepared as 50 μg/ml pH 8 Tris buffer solutions with 

or without DTT (1 mM) respectively, which were incubated with probes 41 at a 

final concentration (2 μM) for 3 h at room temperature. 
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c 

Arabidopsis leaf extracts were prepared as 50 μg/ml pH 8 Tris buffer solutions with 

DTT (1 mM), which were incubated with probes 41 at a final concentration (2 μM) 

for (1/30, 1/4, 1/2, 1, 2, 3, 4, 5, 6, 7, 8) h at room temperature. 

d 

Arabidopsis leaf extracts were prepared as (12.5, 25, 50, 100, 200) μg/ml pH 8 Tris 

buffer solutions with DTT (1 mM) respectively, which were incubated with probes 

41 at a final concentration (2 μM) for 3 h at room temperature. 

Preparation of protein samples was followed the general method and the proteins 

on the protein blots were detected by streptavidin-HRP. 

 

Figure 13a/b 

 

Arabidopsis leaf extracts were prepared as 50 μg/ml pH 8 Tris buffer solutions with 

DTT (1 mM), which were incubated with probes 41 and DCG-04 at a final 

concentration (2 μM) and co-incubated with inhibitors at a final concentration (30 

μM) for competition labelling, for 3 h at room temperature. Preparation of protein 

samples was followed the general method and the proteins on the protein blots were 

detected by streptavidin-HRP. 

 

Figure 18 

 

Arabidopsis leaf extracts were prepared as 50 μg/ml pH 8 Tris buffer solutions, 

which were incubated with probes 69 - 80 at a final concentration (5 μM) for 2 h at 

room temperature. The next step was followed “click chemistry” protocol 

(Kaschani et al., 2009). Preparation of protein samples was followed the general 

method and the proteins on the protein blots were detected by streptavidin-HRP. 
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Figure 19 

 

Arabidopsis leaf extracts were prepared as 200 μg/ml pH 6 NaOAc and pH 8 Tris 

buffer solutions, which were incubated with probes 82 - 86 and biotinylated 

AEBSF at a final concentration (20 μM) for 2 h at room temperature. Preparation 

of protein samples was followed the general method and the proteins on the protein 

blots were detected by streptavidin-HRP. 

 

Figure 20 

 

Arabidopsis leaf extracts were prepared as 30 μg/ml pH 8 Tris buffer solutions, 

which were incubated with a mixed probe of 84 and 87 at a final concentration (2 

μM) for 2 h at room temperature. Preparation of protein samples was followed the 

general method and the proteins labelled by fluorescent probe 87 on protein gel 

were detected by fluorescence photometer and proteins labelled by affinity probe 

84 on the protein blots from the same protein gel were detected by streptavidin-

HRP. 

 

Figure 21 

 

a 

Arabidopsis leaf extracts were prepared as 20 μg/ml pH 8 Tris buffer solutions, 

which were incubated with probe 87 at a final concentration (4 nM - 4 μM) for 2 h 

at room temperature.  
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b 

Arabidopsis leaf extracts were prepared as 20 μg/ml pH (4 – 6.5) NaOAc and pH (7 

– 9) Tris buffer solutions, which were incubated with probe 87 at a final 

concentration (2 μM) for 2 h at room temperature. 

Preparation of protein samples was followed the general method and the proteins 

on protein gel were detected by fluorescence photometer. 

 

Figure 25 

 

Arabidopsis leaf extracts were prepared as 20 μg/ml pH 8 Tris buffer solutions, 

which were pre-incubated with AEBSF at a final concentration (600 μM) for 1/2 h 

at room temperature and then incubated with probe 87 at a final concentration (2 

μM) for 2 h at room temperature. Preparation of protein samples was followed the 

general method and the proteins on protein gel were detected by fluorescence 

photometer. 

 

Figure 26 

 

Arabidopsis leaf extracts and mouse liver extracts were prepared as 20 μg/ml pH 8 

Tris buffer solutions, which were pre-incubated with AEBSF or Ac-AEBS at a final 

concentration (600 μM) for 1/2 h at room temperature and then incubated with 

probe 87 and BCR at a final concentration (2 μM) for 2 h at room temperature. 

Preparation of protein samples was followed the general method and the proteins 

on protein gel were detected by fluorescence photometer. 
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Figure 30 

 

Non-transformed Pseudomonas (-), Pseudomonas expressing HA-tagged (pFK141) 

or His-tagged (pFK142) AvrPphB were grown in rich medium (NYG) containing 

gentamicin (10 μg/ml) and rifampicin (30 μg/ml) at 28°C overnight. The bacteria 

were measured OD at 600 nm and calculated as 1.25 (-), 0.97 (pFK141) and 1.03 

(pFK142). The bacterial medium was centrifuged at 5000 rpm for 10 min and the 

liquid and pellets were separated. Secreted proteins in medium and proteins in 

bacterial pellet were Samples were loaded onto polyacrylamide gel (12%) and 

proteins were transferred to a PVDF membrane (Millipore IVPH00010). The 

membrane was incubated with anti-HA antibody (plant chemetics lab, dilution of 

1:3000) and followed with ultrasensitive streptavidin-HRP (Sigma S2438, dilution 

of 1:3000) and signals were detected using enhanced chemiluminescence (pierce 

femto ECL 34095)/(pico ECL 34080) (Thermo Fisher Scientific, Bonn, Germny) 

on X-ray films (Kodak, Germany). 

 

Figure 31 

 

a 

Non-transformed Pseudomonas (-), Pseudomonas expressing HA-tagged (pFK141) 

or His-tagged (pFK142) AvrPphB were grown in rich medium (NYG) and min-A 

medium containing gentamicin (10 μg/ml) and rifampicin (30 μg/ml) at 28°C 

overnight. The bacteria were measured OD at 600 nm and calculated as 0.78 (-), 

1.02 (pFK141) and 0.86 (pFK142) in NYG medium and 0.88 (-), 1.04 (pFK141) 

and 1.06 (pFK142) in min-A medium. The western blot was performed as same as 

above. 
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b 

Pseudomonas pellets were frozen with liquid nitrogen and crashed by metal balls 

with a shaker. After one minute shaking, the solid baterial powder were prepared as  

pH 8 Tris buffer solutions, which were incubated with probe 101 at a final 

concentration (5 μM) for 2 h at room temperature. Preparation of protein samples 

was followed the general method and the proteins on protein gel were detected by 

fluorescence photometer and the proteins were transferred to a PVDF membrane 

(Millipore IVPH00010) to perform the western blot as above and the protein blot 

was finally stained by coomassie. 

 

Figure 32 

 

Non-transformed Pseudomonas (-) and Pseudomonas expressing His-tagged 

(pFK142) AvrPphB were grown in min-A medium containing gentamicin (10 

μg/ml) and rifampicin (30 μg/ml) at 28°C overnight. The bacteria were measured 

OD at 600 nm and calculated as 0.47 (-) and 0.5 (pFK142). The bacterial proteome 

solutions were prepared following above procedure, which were incubated with 

probe 101 at a final concentration (5 μM) for 2 h at room temperature. After that, 

the 101 labelled AvrPphB were incubated with Nickel beads (50 μl, Qiagen Ni-

NTA Agarose) in 8 ml pH 7.4 PBS buffer for 1 h. The supernatant and beads were 

separated by centriguation at 3000 rpm for 5 min, and preparation of protein 

samples in both components was followed the general method. The proteins on 

protein gel were detected by fluorescence photometer and then stained by 

coomassie. 
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Figure 33 

 

Pseudomonas expressing HA-tagged (pFK141) was grown in min-A medium 

containing gentamicin (10 μg/ml) and rifampicin (30 μg/ml) at 28°C overnight. The 

bacteria were measured OD at 600 nm and calculated as 0.5 (pFK141). The 

bacterial proteome solutions were prepared following above procedure but with 

variant pH (6 – 9), which were incubated with probe 101 at a final concentration (5 

μM) for 2 h at room temperature. Preparation of protein samples was followed the 

general method. The proteins on protein gel were detected by fluorescence 

photometer. 

 

Figure 34 

 

Pseudomonas expressing HA-tagged (pFK141) was grown in min-A medium 

containing gentamicin (10 μg/ml) and rifampicin (30 μg/ml) at 28°C overnight. The 

bacteria were measured OD at 600 nm and calculated as 0.47 (pFK141). The 

bacterial proteome solutions were prepared following above procedure at pH 7, 

which were pre-incubated with inhibitors (92, 94, 96, 98, 100) at a final 

concentration (100 μM) for 1/2 h at room temperature and then incubated with 

probe 101 at a final concentration (5 μM) for 1.5 h at room temperature. 

Preparation of protein samples was followed the general method. The proteins on 

protein gel were detected by fluorescence photometer. 
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Figure 36 

 

a 

Arabidopsis leaf extracts of different lines: Columbia wildtype (Col), -VPE over 

expressed (O ), -VPE knockout (K ), , , , -VPEs quadruple knockout (K) 

were prepared as 100 μg/ml pH 5.5 NaOAc buffer solutions, which were incubated 

with probe 107 at a final concentration (5 μM) for 2 h at room temperature. 

Preparation of protein samples was followed the general method and the proteins 

on protein gel were detected by fluorescence photometer and stained by coomassie. 

b 

Arabidopsis leaf extracts of -VPE over expressed (O ), were prepared as 100 

μg/ml pH 5.5 NaOAc buffer solutions, which were pre-incubated with 106 at a 

final concentration (100 μM) for 1/2 h at room temperature and then incubated with 

probe 107 at a final concentration (5 μM) for 2 h at room temperature. Preparation 

of protein samples was followed the general method and the proteins on protein gel 

were detected by fluorescence photometer. 
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